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Abstract

We investigate the luminosity suppression and its effect on the mass–radius relation and cooling evolution of
highly magnetized white dwarfs. Based on the effect of magnetic field relative to gravitational energy, we suitably
modify our treatment of the radiative opacity, magnetostatic equilibrium, and degenerate core equation of state to
obtain the structural properties of these stars. Although the Chandrasekhar mass limit is retained in the absence of
magnetic field and irrespective of the luminosity, strong central fields of about 1014 G can yield super-
Chandrasekhar white dwarfs with masses∼2.0Me. Smaller white dwarfs tend to remain super-Chandrasekhar for
sufficiently strong central fields even when their luminosity is significantly suppressed to 10−16 Le. Nevertheless,
owing to the cooling evolution and simultaneous field decay over 10 Gyr, the limiting masses of small magnetized
white dwarfs can fall to 1.5Me over time. However, the majority of these systems still remain practically hidden
throughout their cooling evolution because of their high fields and correspondingly low luminosities. Utilizing the
stellar evolution code STARS, we obtain close agreement with the analytical mass limit estimates, which suggests
that our analytical formalism is physically motivated. Our results argue that super-Chandrasekhar white dwarfs
born as a result of strong-field effects may not remain so forever. This explains their apparent scarcity, in addition
to making them hard to detect because of their suppressed luminosities.

Unified Astronomy Thesaurus concepts: Chandrasekhar limit (221); Type Ia supernovae (1728); White dwarf stars
(1799); Magnetohydrodynamics (1964); Radiative transfer (1335); Degenerate matter (367); Magnetic stars (995)

1. Introduction

Observations of more than a dozen overluminous Type Ia
supernovae (SNe Ia; Howell et al. 2006; Scalzo et al. 2010)
strongly indicate the existence of their very massive progenitors
with masses M> 2Me. SNe Ia are widely studied because of
their utility as standard candles to estimate cosmological
distances. While binary evolution of accreting/rapidly differen-
tially rotating white dwarfs (WDs; Hachisu 1986; Yoon &
Langer 2004) has already been used to explain such high-mass
progenitors, none of these models could account for progenitor
masses as high as 2.8 Me, which are inferred from the
observations. Therefore, an alternate but equally exciting
proposal relates to the highly magnetized super-Chandrasekhar
WDs (hereafter B-WDs). In addition to being the super-
Chandrasekhar mass progenitors of overluminous SNe Ia,
B-WDs have also been proposed as promising candidates for
soft gamma-ray repeaters and anomalous X-ray pulsars that have
significantly lower magnetic fields and ultraviolet luminosities
(Mukhopadhyay & Rao 2016).

Previous studies (Das & Mukhopadhyay 2012, 2013; Sub-
ramanian & Mukhopadhyay 2015) already showed that strong
magnetic fields can appropriately modify the equation of state
(EOS) of the electron-degenerate matter to yield super-
Chandrasekhar WDs with M≈ 2.6Me, with or without

sufficiently rapid rotation. Interestingly, a misalignment
between the rotation and magnetic axes can generate, along
with dipole radiation, significant gravitational radiation, which
can be detected by space-based gravitational wave detectors,
leading to a direct detection of super-Chandrasekhar WDs
(Kalita & Mukhopadhyay 2019). Observations confirm that
magnetized WDs are indeed more massive than other
nonmagnetized WDs (Ferrario et al. 2015). Furthermore, data
from the Sloan Digital Sky Survey (SDSS) suggest that, in
addition to having marginally higher masses, magnetized WDs
span a similar effective temperature range to their nonmagnetic
counterparts (Vanlandingham et al. 2005).
The effect of strong magnetic fields on the WD mass–radius

relation has already been explored in some detail previously by
our group, for both Newtonian (Das & Mukhopadhyay 2012)
and general relativistic formalisms (Das & Mukhopad-
hyay 2014, 2015; Subramanian & Mukhopadhyay 2015).
These investigations were carried out for various different
magnetic field configurations and were in good agreement with
the results from independent studies that indicate the existence
of super-Chandrasekhar WDs (Boshkayev et al. 2013; Franzon
& Schramm 2015; Carvalho et al. 2018). Otoniel et al. (2019)
recently studied potential matter instabilities for these B-WDs
in a general relativistic framework, particularly in relation to
the pycnonuclear and electron capture reactions. While they
found that the limiting mass for nonrotating B-WDs is about
2.14 Me, and potentially larger if rotation is considered, the
pycnonuclear reactions are likely to destabilize the star once the
central density exceeds about 1010 g cm−3.
It should be noted that magnetized WDs have many important

implications apart from their apparent link to overluminous
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SNe Ia, and hence their other properties should also be explored
(Mukhopadhyay & Rao 2016; Mukhopadhyay et al. 2017a,
2017b). Apart from increasing the limiting mass of WDs, strong
magnetic fields can also influence the thermal properties, such as
luminosity, temperature gradient, and cooling rate of the star.
Bhattacharya et al. (2018a) explored the luminosities and cooling
rates of B-WDs with the theoretical model proposed by Shapiro
& Teukolsky (1983) for nonmagnetic WDs. Assuming that the
interface properties are similar for both B-WDs and nonmagne-
tized WDs for a given stellar age and a nonzero temperature
gradient across the surface layers, they showed that the
luminosity for B-WDs can be suppressed significantly up to
about 10−9 Le for large fields B 1012 G. They also computed
the cooling rates for these B-WDs with suppressed luminosities
and showed that their cooling evolution is significantly slowed
down at large B. Indeed, Valyavin et al. (2014) analyzed the
optical data for cool WD 1953−011 and found that strong fields
suppress convection over the entire B-WD surface and thereby
attenuate the cooling rate.

The initial exploration into the cooling of nonmagnetized
WDs started with attempts to model the degenerate core as
the primary source of thermal energy, which is then radiated
away as the observed luminosity from the surface layers as the
star gradually evolves over time (Mestel 1952; Mestel &
Ruderman 1967). Tutukov & Yungelson (1996) calculated the
cooling curves for low-mass WDs starting from a luminous star
and evolving to the crystallization stage after about 10 Gyr,
while Fontaine et al. (2001) discussed some limitations of the
Mestel (1952) model in the context of WD cosmochronology.
However, it is important to note that these studies either did not
consider the effects of strong fields or assumed that the
underlying fields were just too weak to have any practical
effects on the WD cooling evolution.

Recently, Gupta et al. (2020) revisited the physics of
luminosity suppression and the mass–radius relation in the
context of B-WDs. In contrast to Bhattacharya et al. (2018a),
they relaxed the assumption of fixing interface parameters and
a preassigned mass or radius across all B-WDs and
nonmagnetized WDs. They further extended their analysis to
compute the radial profiles of the B-WD thermal properties for
both the nondegenerate surface layers and the electron-
degenerate B-WD cores. However, they ignored the effect of
strong fields on the EOS of the degenerate core electrons, as
well as the correction to the total B-WD mass by general
relativistic effects.

Here, in a considerably more generalized framework, we
model the B-WD structure properties from the center to the
surface by solving the magnetostatic equilibrium, mass
conservation, and photon diffusion equations simultaneously.
We investigate the effect of the temperature gradient (directly
related to the luminosity) on the mass–radius relation by
considering both radiative and convective cooling. While the
total pressure is the sum of the contributions from the electron-
degenerate, ideal gas and magnetic pressures, the interface
location is taken to be the radius where the degenerate pressure
is roughly comparable to the ideal gas pressure.

In order to distinguish between the weakly and strongly
magnetized cases, we compare the relative energy densities in
the magnetic and gravitational fields. Accordingly, we modify
the radiative opacity, magnetostatic balance equation, and EOS
for the electron-degenerate core. This paper is organized as
follows. In Section 2, we provide a brief overview of the

method used to obtain the radial profiles of the WD properties
and the mass–radius relation for a given luminosity. In
Section 3, we discuss the physical effects of the magnetic
field for both the weak- and strong-field limits, based on a
comparison with the gravitational energy of the B-WD.
Subsequently, in Section 4, we evaluate the suppressed
luminosity of strongly magnetized B-WDs, after including
the effects of cooling evolution and magnetic field decay by
dissipative processes over long timescales. Next, we explore a
set of numerical models produced using the stellar evolution
code STARS in order to validate our analytical approach in
Section 5. Finally, we conclude with a summary of the main
results in Section 6.

2. White Dwarf Structure Properties

In this section, we describe the physical considerations used
to self-consistently obtain the structure properties of magne-
tized WDs. We formulate a method to solve the magnetostatic
equilibrium, mass conservation, and photon diffusion equations
for a given luminosity and magnetic field configuration. We
model the total pressure by including the contributions from the
degenerate electron gas (dominant within the isothermal core),
ideal gas (dominant in the surface layer), and magnetic
pressures. The interface is defined to be at the WD radius,
where the contributions from the inner electron-degenerate core
and outer ideal gas pressures are equal. For our study, we
consider radially varying magnetic fields that are realistic (see
Deb et al. 2021). The presence of strong fields inside compact
stars gives rise to additional pressure PB= B2/8π and density
ρB= B2/8πc2, where B BB .= is the strength of the
magnetic field (Sinha et al. 2013; Bhattacharya et al.
2018a, 2018b).
We assume the B-WDs to be approximately spherical. The

assumption of spherical symmetry is justified if the central field
does not exceed about 1014 G (Subramanian & Mukhopadhyay
2015), which is toroidally dominated, so the model equations
characterizing magnetostatic equilibrium, photon diffusion, and
mass conservation can be written within a Newtonian frame-
work as

d
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P P P
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where the magnetic tension terms are ignored for a radially
varying B. In these equations, Pdeg and Pig= ρkT/μmp are the
electron degeneracy pressure established by Chandrasekhar
(1935) and the ideal gas pressure, respectively, ρ is the matter
density, k is Boltzmann’s constant, T is the temperature, μ≈ 2
is the mean molecular mass per electron, mp is the proton mass,
G is Newton’s gravitational constant, m(r) is the mass enclosed
within radius r, a is the radiation constant, c is the speed of
light, κ is the radiative opacity, Lr is the luminosity at radius r,
and γ is the adiabatic index of the gas.
The second term on the right-hand side of Equation (2) is the

convective cooling contribution, which can be dominant over
the radiative photon cooling at some combinations of T and
P= Pdeg+ Pig+ PB. Although strong central magnetic fields
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can potentially impede convection (Canuto & Mazzitelli 1992;
Solanki 2003), a large fraction of the total energy flux can
still be efficiently transported across the B-WD. Hence,
we consider its effect on the stellar temperature profile in addition
to the radiative cooling. The opacity in the surface layers of a
nonmagnetized WD can be approximated by Kramers’s formula,
κ= κ0ρT

−3.5, where κ0= 4.34×1024Z(1+X) cm2 g−1 and X and
Z are the mass fractions of hydrogen and heavy elements (other
than hydrogen and helium) in the stellar interior, respectively.
Assuming helium WDs for our purposes here, we set the helium
mass fraction to Y= 0.9 and Z= 0.1 for simplicity. The radiative
opacity in the surface layers is primarily due to the bound–free
and free–free transitions of electrons (Shapiro & Teukolsky
1983). The radiation conduction typically dominates over the
electron conduction in these regions, and hence the same goes for
the corresponding opacities (Potekhin & Yakovlev 2001).
However, in the presence of strong magnetic fields, the radiative
opacity depends strongly on B, as we shall discuss in the next
section.

It should be noted that there will be residual currents
generated owing to the variation of magnetic field within the
star. However, the entire degenerate B-WD core is essentially
isothermal owing to its very large thermal conductivity, which
also leads to the frozen magnetic flux. As a consequence, the
heating ability is minimal given the near-superconducting
nature of the degenerate core, and magnetic dissipation turns
out to be negligible.

While a large number of B-WDs with surface fields
up to 109 G or so have already been discovered by SDSS
(Schmidt et al. 2003), it is likely that the central fields are
several orders of magnitude larger (Fujisawa et al. 2012; Das &
Mukhopadhyay 2014; Subramanian & Mukhopadhyay 2015).
This is expected for residual field arising from the fossil
field of the original star, which had a stronger core field in
addition to dynamo effects that can replenish those fields (see
Potter & Tout 2010; Das et al. 2013; Mukhopadhyay et al.
2021). In order to capture the variation of field magnitude
radially within the B-WD, here we adopt a profile used
extensively to model magnetized neutron stars (NSs) and B-WDs
(Bandyopadhyay et al. 1997; Das & Mukhopadhyay 2014;
Deb et al. 2021),
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Here Bs is the surface magnetic field, B0 is a fiducial
magnetic field, and η and γ are dimensionless parameters that
determine how the magnetic field changes from the core to the
surface. As ρ→ 0 close to the WD surface, B→ Bs, whereas
ρ→ ρc near the B-WD core that leads to B→ B0. For our
analysis here, we set ρ0= 109 g cm−3, η= 0.8, and γ= 0.9 for
all calculations, following Bhattacharya et al. (2018a, 2018b).
The profile in Equation (4) essentially indicates the magnitude
of the field at various density points within the star and hence
radial coordinates. Here we neglect effects such as offset
dipoles and magnetic spots that can arise with more complex
field configurations (Maxted & Marsh 1999; Vennes et al.
2003). Hereafter, we denote the magnetic field as B= (Bs, B0)
in order to specify both the surface and core fields.

It should be noted that the model field profile given by
Equation (4) is not a unique choice and alternate profiles have
been explored in the literature, especially for magnetized NSs.
In particular, Dexheimer et al. (2017) showed that the magnetic

field profile can be well approximated by a quadratic
polynomial in the baryon chemical potential instead of an
exponential function of matter density. They presented a
realistic distribution for a poloidal magnetic field in the polar
direction, for which the magnetic field distribution self-
consistently satisfies the Einstein–Maxwell field equations.
There is no hydrogen burning or other nuclear fusion

reactions taking place within the WD core, so we assume that
the radial luminosity is constant, Lr= L, where L is the surface
luminosity. The degenerate electrons in the WD core generally
have a large mean free path owing to the filled Fermi sea, and
therefore their high thermal conductivity leads to a uniform
temperature throughout the region (Shapiro & Teukolsky 1983).
In the case of magnetized NSs, the thermal conduction can be
suppressed along directions transverse to the magnetic field
lines (Hernquist 1985; Potekhin et al. 2007). However, these
changes in conduction rates are unlikely to affect the cooling
process in B-WDs because the insulating region is nondegene-
rate and thermal conduction occurs only in the stellar interior
(Tremblay et al. 2015). Furthermore, the average magnetic
fields considered here are much weaker than those in
magnetized NSs, and so we assume that the core is perfectly
isothermal for B-WDs. Gupta et al. (2020) considered
speculative cases with dT/dr≠ 0 below the interface to show
that even nonmagnetized WDs can have super-Chandrasekhar
masses for sufficiently large luminosities. However, for the
purpose of our work here, we ignore this possibility because
there is no existing observational evidence to indicate that
nonmagnetized and/or nonrotating WDs can have super-
Chandrasekhar masses.

2.1. Nonmagnetic Results

First, we explore some basic features of nonmagnetic WDs
considering B= (0, 0). We solve the set of differential
Equations (1)–(3) for model WDs with the Runge–Kutta
method, by providing the surface density, mass, and surface
temperature as the boundary conditions. For a given WD
surface luminosity L and its corresponding radius R, the surface
temperature is obtained with the Stefan–Boltzmann law as
T L R4s

2 1 4( )p s= , where σ is the Stefan–Boltzmann constant.
We set the surface density to ρs= 10−4 g cm−3 as representa-
tive for all the cases considered here. Following Gupta et al.
(2020), the total mass is obtained by iteratively solving
Equations (1)–(3) until the integrated mass starting from the
WD surface and extending up to 10 km from the center matches
the mass that is obtained by solving the mass conservation
Equation (3) independently using the solution for the density
profile.
The left panel of Figure 1 shows the effect of luminosity and

thereby the temperature gradient (see Equation (2)) on the
mass–radius relation for nonmagnetized WDs compared to
Chandrasekhar’s results (Chandrasekhar 1935). We find that
the Chandrasekhar mass limit is retained irrespective of the
luminosity 10−4 L/Le 10−2. However, an increase in
surface luminosity leads to progressively higher masses for
the larger WDs. This is expected, as larger L translates to more
thermal energy, which results in higher ideal gas pressure,
thereby allowing the WD to hold more mass. The right panel of
Figure 1 shows the radial temperature profiles corresponding to
the same luminosities for an R= 10,000 km WD. While
the uniform T within the isothermal core increases with a
corresponding increase in L, the temperature drops rapidly
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within the thin nondegenerate surface layers. With the increase
in L, the interface shifts inward and the degenerate region
shrinks in volume. As expected from Equation (2), the
temperature gradient near the surface increases with L.

Table 1 lists the central and interface properties for a range
of WD radii 2000 R/km 20,000 and luminosities
10−4 L/Le 10−2. It can be seen that an increase in L
for a given R leads to somewhat larger central densities ρc but
a more compact degenerate core (smaller interface radius R*)
and therefore an increased capacity to retain more mass. This
effect tends to be more pronounced for larger-radius WDs. In
the case of smaller stars, the increase in central density due to
larger effective thermal energy (or higher L) is not found to be
significant such that the Chandrasekhar mass limit is always
preserved. For the same L but a larger R, the core temperatures
are approximately similar but ρc decreases substantially.

3. Magnetic Field Effects

In the previous section, we described the formalism used to
self-consistently obtain the properties of WDs by solving the
structure equations for a given luminosity and radius and also
obtained the solutions for nonmagnetized WDs. Here we discuss
in detail the effects of magnetic field on the thermal properties
and the mass–radius relations of B-WDs, for both the weak and
strong magnetic field limits. Based on the strength of the
magnetic field, we appropriately modify our treatment of the
radiative opacity, magnetostatic pressure balance, and EOS for
the degenerate core and thence the interface location.
We compare the energy density in the magnetic field with

that of the gravitational field in order to distinguish between the
weakly and strongly magnetized cases. We only evaluate the
contribution to the respective energy densities from the
degenerate core because the envelope is generally very thin with

Figure 1. Left panel: the effect of surface luminosity on the mass–radius relation of nonmagnetized WDs is shown for the Chandrasekhar result (black squares),
L = 10−4 Le (blue diamonds), L = 10−3 Le (green circles), and L = 10−2 Le (red triangles). Right panel: the variation of temperature as a function of radius is shown
for nonmagnetized WDs with L = 10−4 Le (blue curve), L = 10−3 Le (green curve), and L = 10−2 Le (red curve).

Table 1
The Effect of Luminosity L on the Mass–Radius Relation for Nonmagnetized WDs

R/1000 km L/Le Tc/10
6 K ρc/10

6 g cm−3 ρ*/10
6 g cm−3 R*/1000 km M/Me

2.0 10−4 4.65 2215 0.0005 1.997 1.378
10−3 8.72 2243 0.0016 1.994 1.379
10−2 17.20 2286 0.0040 1.989 1.381

6.0 10−4 5.00 23.41 0.0006 5.962 0.956
10−3 9.64 24.47 0.0016 5.924 0.967
10−2 18.49 26.07 0.0041 5.860 0.986

12.0 10−4 6.82 0.827 0.0012 11.427 0.376
10−3 12.31 0.966 0.0021 11.171 0.410
10−2 23.04 1.819 0.0082 10.469 0.462

20.0 10−4 8.24 0.097 0.0015 16.208 0.164
10−3 15.22 0.136 0.0043 14.976 0.205
10−2 27.01 0.205 0.0093 13.542 0.268

Note. Here M is the total mass and R is the WD radius. The core temperature and density are Tc and ρc, respectively, while ρ* and R* denote the interface density and
radius, respectively.
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a high magnetic field and theoretically vanishing matter density
for the cases that we consider here. Assuming a polytropic
stellar structure model with an index n= 3 (corresponding to
γ= 4/3), the WD central density can be evaluated for a general
solution of the Lane–Emden equation as ρc=M/0.077R3≈
3.636×107 g cm−3(M/1.4Me) (R/10,000 km)−3. For a spheri-
cally symmetric WD geometry, the average gravitational
energy density is ρm,avg≈ 3M/4πR3 6.688 10 g cm5 3= ´ -

M M R1.4 10,000 km 3( )( )- , while the average magnetic
field energy density is B44.232g cm 10 GB,avg

3
avg

12 2( )r = - ,
where Bavg is obtained from the field profile (see Equation (4))
averaged over the matter density assuming ρ0≈ 0.1ρc.
We consider the strong magnetic field limit to be valid
provided that ζ= ρB,avg/ρm,avg 0.01 for a given WD mass
and radius.

Figure 2 shows the ratio between the magnetic field and
gravitational energies within the isothermal degenerate B-WD
core for three different magnetic field configurations and radius
within 2000 R/km 20,000. We find that the effect of
surface field on the ratio EB/Egrav is insignificant provided that
the central field is considerably larger than the surface magnetic
field. As shown in Figure 2, the gravitational energy dominates
over the magnetic field energy for the entire range of WD
radius and for central fields as strong as ∼1014 G. While
assuming a spherically symmetric star is justified provided that
B 1014 G, WDs with such strong magnetic fields can often
have significantly larger masses as compared to their
nonmagnetized counterparts (see Subramanian & Mukhopad-
hyay 2015). This would then result in a higher gravitational
energy density relative to magnetic energy density and
consequently marginally smaller EB/Egrav ratios than what
we estimate for the B= (109, 1014)G case here. Therefore, the
B-WD configurations considered in our study will always
satisfy the structural stability criteria for both weak and strong
magnetic field limits.

3.1. Weak-field Limit

For weaker magnetic fields with ζ= 1, the radiative opacity
can be effectively approximated with Kramers’s formula,

κ= κ0ρT
−3.5, similar to the nonmagnetized WDs discussed in

Section 2. Similarly, the general relativistic effects can also be
ignored while considering the magnetostatic pressure balance
(see Equation (1)) because the incremental change to the
inferred B-WD mass is not found to be significant (Gupta et al.
2020). While the EOS for the B-WD core matter corresponds to
that of a nonrelativistic degenerate gas, the surface layer EOS is
given by nondegenerate ideal gas. In order to evaluate the
interface location, the respective pressures can be equated on
both sides to obtain (Shapiro & Teukolsky 1983)

* *K T2.4 10 g cm , 5e
8 3 3 2 3 2( ) ( )r m» ´ - - -

where μe≈ 2 is the mean molecular weight per electron and ρ*
and T* are the density and temperature, respectively, for the
interface between the degenerate core and the nondegenerate
envelope.

3.2. Strong-field Limit

Strong magnetic fields can modify the radiative opacity for
photon diffusion and the EOS of the matter therein. For
sufficiently large magnetic fields, the variation of radiative
opacity with B can be modeled similarly to NSs as κ=
κB≈ 5.5× 1031ρT−1.5B−2 cm2 g−1 (Potekhin & Yakovlev
2001; Ventura & Potekhin 2001). Themagnetic-field-dependent
Potekhin’s opacity is generally used instead of Kramers’s opacity
if B/1012 G� T/106 K and if radiation dominates over convec-
tion, which is valid for the strong B cases that we consider here.
The general relativistic effects on the inferred mass–radius
relation of B-WDs have already been investigated in detail for
various magnetic field and rotational configurations (Das &
Mukhopadhyay 2014; Subramanian & Mukhopadhyay 2015).
The effect of poloidally and toroidally dominated field config-
urations is seen as super-Chandrasekhar WDs with generally
nonspherical shapes that depend on the magnetic field and
geometry.
Here we explore the general relativistic effects on the B-WD

with the Tolman–Oppenheimer–Volkoff (TOV) equation
(Oppenheimer & Volkoff 1939)

6

d
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2 2
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r r r p
r r

=-
+ + + + +

- +

where P= Pdeg+ Pig is the sum of the electron degeneracy
pressure and ideal gas pressure. The remaining terms are
defined similarly to Equation (1). However, for simplicity, here
we assume the WDs to be approximately spherical in shape and
neglect the magnetic tension term that can lead to a potentially
anisotropic pressure component. Hence, Equation (6) is valid
only approximately. Nevertheless, recent works (Subramanian
& Mukhopadhyay 2015; Kalita & Mukhopadhyay 2019)
showed that, for toroidally dominated magnetic fields, a
B-WD does not deviate much from a sphere, and the natural
existence of toroidally dominated fields was indeed confirmed
by Quentin & Tout (2018) with numerical simulations.
In the presence of strong fields ζ 0.01, quantum mechan-

ical effects turn out to be important, and Equation (5) is not
strictly valid while obtaining the interface radius (Haensel et al.
2007). After including the Landau quantization effects,
the degenerate core EOS depends on the magnetic field,
whereas the nondegenerate envelope EOS remains unaffected

Figure 2. Comparison between magnetic field energy and gravitational energy
within the degenerate core used in order to determine the appropriate field
regimes for B-WDs with different radii. The results here are shown for varying
magnetic fields B = (109, 1012) G (blue circles), B = (109, 1013) G (red
squares), and B = (109, 1014) G (green triangles).
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(Ventura & Potekhin 2001). The electron pressure can then be
equated on both sides to give

* * * *B T B1.482 10 g cm K G , 712 3 1 2 1 1 2( ) ( ) ( )r = ´ - - - -

where B*(ρ*) is the magnetic field at the interface radius
r= r*. It has already been shown (Das & Mukhopadhyay
2012, 2013) that if B> Bc≈ 4.414× 1013 G, the electron
Larmor radius becomes comparable to the Compton wave-
length and the electron-degenerate matter EOS has to be
adequately modified. This can potentially yield super-Chan-
drasekhar WDs with mass limit M≈ 2.58Me.

3.3. Results

Here we discuss the results related to the mass–radius
relation and WD structure properties for both weak and strong
magnetic field cases. Figure 3 shows the effect of magnetic
field on the mass–radius relation for B-WDs with surface
luminosity L= 10−4 Le and compares them to the nonmagnetic
Chandrasekhar results. We find that the magnetic field affects
the mass–radius relation in a manner that is analogous to
increasing L (see Figure 1), by shifting the curve toward higher
masses for WDs with larger radii. While Bs does not have any
appreciable effect on the inferred mass, the magnitude of B0 is
vital in deciding the shape of the mass–radius curve. The mass–
radius curves for B0 1013 G practically overlap with each
other and retain the Chandrasekhar mass limit. However, for
strong central fields with B0∼ 1014 G, we obtain super-
Chandrasekhar WDs with masses as large as ∼1.9Me.

Table 2 lists the central and interface properties for different
magnetic fields and B-WD radii for fixed luminosity
L= 10−4 Le. While the interface location R* and the interface
density ρ* do not vary much with B, the core density ρc and
therefore the total mass M increase significantly with an
increase in the magnetic field. The central density for stronger
fields is expected to be larger in order to compensate for the
additional magnetic pressure, as the relative contribution of
magnetic field to the total pressure is larger than that to the total

density. With an increase in stellar radius for a given B, ρc
reduces substantially whereas R* increases, resulting in smaller
average mass density within the isothermal degenerate core.
The left panel of Figure 4 shows the radial variation of the
matter density for R= 10,000 km and different magnetic field
profiles, while the right panel shows the temperature profiles
for the same cases. As listed in Table 2, the interface densities
ρ* tend to be roughly similar, but the central density ρc
increases with the effective magnetic field. Although the core
temperature Tc (primarily determined by L) is unchanged
irrespective of the magnetic field, the radial temperature
gradient dT/dr within the surface layers for B= (109, 1014)G
is approximately half that for the other weaker-field cases.

4. Luminosity Suppression, Cooling, and Field Decay
in B-WDs

We study the effects of strong magnetic fields on the
observed luminosities for magnetized WDs, i.e., B-WDs. In
particular, we compute the luminosities that are expected for
B-WDs in order to obtain mass–radius relations that are similar
to those for nonmagnetized WDs. We then discuss the cooling
process of these B-WDs and also the decay of large magnetic
fields by various dissipative processes such as ohmic dissipa-
tion, ambipolar diffusion, and Hall drift that can occur within
the typical WD age evolution.

4.1. Suppression of Luminosity

Bhattacharya et al. (2018a) investigated the variation of
surface luminosity as the magnetic field increases, particularly
for fixed interface radii and/or temperatures. The motivation
for fixing interface parameters between nonmagnetized and
magnetized WDs was to better constrain the individual
components (thermal, gravitational, and magnetic) of the
conserved total energy for these stars. Here we relax the
assumptions of fixed interface parameters between nonmagne-
tized and magnetized WDs. Nevertheless, in order to ensure
structural stability for a B-WD, an increase in magnetic energy
density has to be compensated by a corresponding decrease in
the thermal energy and hence the luminosity, provided that the
gravitational energy is not affected significantly. This effect is
especially prominent for B-WDs with larger radii, where the
magnetic, thermal, and gravitational energies are comparable to
each other.
Table 3 lists the initial luminosities (see rows with time

t= 0) corresponding to field B= (109, 1014)G that yield
masses closest to those obtained for nonmagnetized WDs with
radii 2000� R/km� 20,000. While a slight decrease in the
luminosity (within the observable range) for R 12,000 km
WDs leads to masses that are similar to those of their
nonmagnetic counterparts, the smaller-radius B-WDs require a
substantial drop in their luminosity (well outside the observable
range) and still do not achieve masses that are similar to the
nonmagnetized WDs. This is expected because the thermal
pressure is subdominant in the case of WDs with small radii,
and therefore a decrease in the thermal energy (or luminosity)
does not significantly affect the total mass. As a result, for stars
with 2000� R/km� 10,000, even if the luminosity decreases
substantially to 10−16� L/Le� 10−12, the resulting mass of
the B-WD remains larger than its nonmagnetic counterpart.
This leads to an extended branch in the mass–radius relation.

Figure 3. The effect of magnetic field on the mass–radius relation of B-WDs is
shown for B = (0, 0) (blue diamonds), B = (109, 1013) G (orange crosses),
B = (107, 1014) G (green circles), and B = (109, 1014) G (red plus signs), along
with the Chandrasekhar result (black squares). The luminosity is set as 10−4 Le
for these results.
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4.2. Magnetic Field Decay

In a strongly magnetized NS, ambipolar diffusion and beta
decays can cause the magnetic energy release that is observed
from magnetars. However, the magnetic fields inside an
electron-degenerate WD generally undergo decay by ohmic
dissipation and Hall drift processes with timescales that are
given by Heyl & Kulkarni (1998) and Cumming (2002) as

t R7 10 yr , 8cOhm
10

,6
1 3

4
1 2

avg c( ) ( ) ( )r r r= ´

t l B T5 10 yr , 9Hall
10

8
2

0,14
1

c,7
2

c,10( ) ( )r= ´ -

where ρc,n= ρc/10
n g cm−3, R4= R/104 km, Tc,7= Tc/10

7 K,
B0,14= B0/10

14 G, and l= l8× 108 cm is a characteristic length
scale of the flux loops through the outer core of the WD. In the
case of isolated and cool WDs, theoretical calculations indicate
that if the magnetic field is not very strong like that for the
B-WD center, it typically decays owing to ohmic dissipation by
a factor of two in 10 Gyr (Fontaine et al. 1973; Wendell et al.
1987). Cumming (2002) estimated a lowest-order decay time of
8� tOhm/Gyr� 12 for dipole fields and 4� tOhm/Gyr� 6 for
quadrupole fields in the context of accreting WDs.

Ohmic decay is characterized by the induction equation, ∂B/
∂t=−∇× (η∇× B), where η= c2/4πσ is the magnetic
diffusivity and σ is the electrical conductivity. The field decay
timescale can then be written as tOhm≈ 4πσL2/c2, where L is
the length scale over which the field varies (Cumming 2002).
The electrical conductivity is set by the collisions between the
electrons and ions (see, e.g., Yakovlev & Urpin 1980; Itoh
et al. 1983; Schatz et al. 1999). Unlike within the degenerate
core, the electrical conductivity is dependent on the temper-
ature in the surface layers, where the electrons are nondegene-
rate. As the B-WD mass increases, the increase in conductivity
is offset by the decreasing radius.

Ohmic decay is the dominant field dissipation process for
B 1012 G, while for 1012� B/G� 1014 the decay occurs via
Hall drift and for B 1014 G the principal decay mechanism is
likely to be ambipolar diffusion (Heyl & Kulkarni 1998). We

assume that Hall drift dominates within the B-WD degenerate
core with B0≈ 1014 G, while ohmic dissipation is the main
decay mechanism for surface fields Bs≈ 109 G. Although
Equations (8) and (9) are primarily used to model the field
decay over time for strongly magnetized NSs, here we
appropriately adopt them for typical B-WD structure
properties.
The magnetic field decay in magnetars with surface fields

between 1014 and 1016 G was studied, using an appropriate
cooling model by Heyl & Kulkarni (1998) and by solving the
decay equation

B

t
B

t t t

d

d

1 1 1
, 10

Ohm Amb Hall

⎜ ⎟
⎛
⎝

⎞
⎠

( )= - + +

where tAmb denotes the ambipolar diffusion timescale. Because
we consider strongly magnetized WDs with central fields of
about 1014 G, comparable to the surface fields of magnetars, we
assume that the magnetic fields in magnetars and B-WDs both
undergo similar decay mechanisms. Muslimov et al. (1995)
showed that Hall drift is not expected to be a direct cause of
magnetic field decay in WDs because it conserves the total
magnetic energy. However, in the presence of magnetic
turbulence, Hall drift can twist the field lines and thence
enhance ohmic dissipation (Goldreich & Reisenegger 1992).
To model and compare the relative contributions from these
different processes, we consider two separate cases: (a) when
only ohmic dissipation occurs for both the surface and central
magnetic fields; and (b) while Bs continues to evolve over tOhm,
Hall drift determines the B0 evolution until the central field
drops to about 1012 G, below which ohmic dissipation sets in.

4.3. B-WD Cooling

The cooling evolution of nonmagnetized WDs has been
investigated in detail with theoretical attempts to model the
degenerate core as the primary energy source (Mestel 1952;
Mestel & Ruderman 1967). The thermal energy is radiated

Table 2
The Effect of Magnetic Field B on the Mass–Radius Relation for Luminosity L = 10−4 Le

R/1000 km (Bs, B0)/G Tc/10
6 K ρc/10

6 g cm−3 ρ*/10
6 g cm−3 R*/1000 km M/Me

2.0 (107, 1013) 4.51 2234 0.0007 1.997 1.382
(109, 1013) 4.58 2240 0.0007 1.997 1.382
(107, 1014) 4.34 2919 0.0005 1.998 1.865
(109, 1014) 4.26 2927 0.0006 1.996 1.865

6.0 (107, 1013) 5.04 24.94 0.0007 5.958 0.958
(109, 1013) 4.96 24.71 0.0006 5.958 0.958
(107, 1014) 4.89 26.87 0.0005 5.967 1.081
(109, 1014) 4.83 26.58 0.0005 5.952 1.086

12.0 (107, 1013) 6.53 0.837 0.0012 11.446 0.374
(109, 1013) 6.60 0.856 0.0011 11.412 0.377
(107, 1014) 6.33 0.893 0.0011 11.468 0.394
(109, 1014) 6.52 0.962 0.0012 11.253 0.409

20.0 (107, 1013) 8.22 0.070 0.0015 16.261 0.164
(109, 1013) 8.41 0.064 0.0014 16.275 0.166
(107, 1014) 8.39 0.099 0.0013 16.045 0.167
(109, 1014) 8.58 0.126 0.0015 15.852 0.182

Note. The surface field Bs and fiducial field B0 are defined as in Equation (4).
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away gradually over time in the observed luminosity from the
surface layers as the star evolves. Tutukov & Yungelson (1996)
computed the cooling curves for low-mass WDs, starting as
luminous stars, until their crystallization stage after about
10 Gyr. Because most of the electrons occupy the lowest
energy states in a degenerate gas, the thermal energy of ions is
the only significant energy source that can be radiated. The
degenerate electrons in the interior of B-WDs have large mean
free path, which leads to high thermal conductivity and
therefore uniform temperature. The isothermal interior is
covered by the nondegenerate surface layers, which transport
the energy flux outward by photon diffusion.

The interface location between the nondegenerate surface
layers and the degenerate interior is obtained by equating the
pressure from both sides, as done in Equations (5) and (7) for
the weak- and strong-field cases, respectively. The luminosity
is related to the interface temperature as L∝ T7/2/κ (Shapiro &
Teukolsky 1983), where the opacity κ depends on the field
strength (see Section 3). The uniform interior temperature is
then computed for a given luminosity, composition, and mass
of the B-WD. The rate at which the thermal energy of ions can
be transported to the surface and thence be radiated depends on
the specific heat (Shapiro & Teukolsky 1983) and is given by

L
d

dt
c dT

Am

M

T

K
2 10 erg s , 11v

6
7 2

⎛
⎝

⎞
⎠

( ) ( )ò= - = ´ m



where cv≈ 3kB/2 is the specific heat at constant volume, mμ is
the proton mass, and A is the atomic weight. Given an initial
luminosity and temperature T0 at time t0, the final temperature
T at time t after cooling is obtained by directly integrating
Equation (11) as

T TK K 2.406 10 s, 125 2
0

5 2 34( ) ( ) ( )t- = ´- - -

where τ= t− t0 is the WD age.
Although convection can aid faster cooling with a more

efficient energy transport, its effect has been shown to be insigni-
ficant in a first-order approximation (Lamb & Van Horn 1975;

Fontaine & Van Horn 1976). This is due to the fact that
convection only influences the cooling time once the base of the
convection zone reaches the degenerate thermal energy reservoir
and couples the surface to the reservoir. However, this is the case
only for significantly lower surface temperatures than we
consider here. Tremblay et al. (2015) recently showed that
convective energy transfer can be significantly impeded once the
magnetic pressure dominates over the thermal pressure. It is
important to note that, for simplicity in the calculations here, we
have assumed self-similarity of the cooling process over the
entire evolution of theWD. However, a more detailed calculation
of nonmagnetized WD cooling has shown that this might not
strictly be the case (Hansen 1999).
In the case of magnetized WDs, the relevant parameter

affecting the state of the ionic core and therefore its thermo-
dynamic properties is b= ωB/ωp, where Bw =ZeB Mc˜ and pw =

Z e n M4 2 2p ~
are the ion cyclotron and plasma frequencies,

respectively, Z is the atomic number, M̃ is the mass of the nuclei,
n is the ion number density, and e is the electronic charge. The
effect of a magnetic field on the ionic core is expected to be strong
when the cyclotron frequency is comparable to or larger than the
lattice Debye frequency for which b 1. Baiko (2009) studied
the effect of magnetic fields on ionic lattices and showed that
there is an appreciable change to the specific heat only when
b? 1 except when T= θD (Debye temperature). For the
magnetic field configurations that we consider here b� 1 and
the interface temperature is comparable to θD. Hence, we assume
a specific heat model that is the same as that for nonmagnetized
WDs despite the magnetic fields. The effect of magnetic fields on
the phonon spectrum of ions in conventional systems has been
studied and found to be generally weak (Holz 1972).

4.4. Results

Table 3 lists the luminosities and masses corresponding to
WD radii 2000 R/km 20,000 for initial B= (109, 1014)G
at time t= 0 and t = 10 Gyr. The top entry for each radius is for
time t= 0, and the bottom two entries list the corresponding

Figure 4. Left panel: the variation of density as a function of radius is shown for WDs with varying magnetic fields B = (107, 1013) G (blue), B = (107, 1014) G
(green), B = (109, 1013) G (red), and B = (109, 1014) G (black). Right panel: the variation of temperature as a function of radius is shown for the same field
configurations as in the left panel. The luminosity is set as 10−4 Le for all these results.
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quantities after cooling for t= 10 Gyr, also accounting for
simultaneous magnetic field dissipation. We consider two
possibilities for the field decay: (a) ohmic dissipation
dominates for the entire evolution, and (b) Hall drift is the
primary field decay mechanism until B0 drops below 1012 G,
when ohmic dissipation sets in. Based on the B-WD structure
parameters (see Equations (8) and (9)), we find that the fraction
of time tHO/τ, when the Hall drift dominates, falls significantly
with increasing stellar radius. Consequently, the magnetic field
decays considerably more because the faster ohmic dissipation
process turns out to be critical for much of the cooling
evolution. As a result of the field decay and simultaneous
cooling over 10 Gyr, the luminosity-adjusted limiting B-WD
masses are found to be substantially lower than their t= 0

counterparts—particularly for the smaller-radius stars. We
find that the mass–radius relations practically merge for
R 6000 km WDs. Furthermore, the inferred luminosities are
also much less suppressed for the intermediate-radius WDs
with 6000 R/km 12,000. Although the limiting masses for
small B-WDs (with R≈ 2000 km) drop to about 1.5Me
compared to 1.9Me without evolution, the majority of these
systems still remain practically hidden throughout their cooling
evolution because of their strong fields and correspondingly
low L, outside the observable range.
Figure 5 shows the effect of the evolution of B-WDs on

their mass–radius relations, including both the magnetic field
decay and thermal cooling effects. The luminosities are
varied with the magnetic fields such that the B-WD masses

Table 3
The Effects of Magnetic Fields on the B-WD Luminosity in Order for the Magnetized Mass–Radius Relation to Match with the Nonmagnetized Relation

R/1000 km t/Gyr tHO/τ Bs/G B0/G L/Le MB=0/Me M/Me

2.0 0 109 1014 10−16 1.378 1.865

10 0 4.58 × 108 4.58 × 1013 10−16 1.377 1.478
1 5.83 × 1013 10−16 1.542

4.0 0 109 1014 10−16 1.204 1.470

10 0 2.78 × 108 2.78 × 1013 10−12 1.201 1.218
0.224 3.71 × 1011 3 × 10−7 1.201

6.0 0 109 1014 10−16 0.956 1.074

10 0 1.65 × 108 1.65 × 1013 10−8 0.951 0.951
6.89 × 10−2 1.86 × 1011 2 × 10−6 0.951

8.0 0 109 1014 10−12 0.709 0.762

10 0 9.86 × 107 9.86 × 1012 2 × 10−6 0.699 0.699
2.28 × 10−2 1.04 × 1011 7 × 10−6 0.699

10.0 0 109 1014 10−12 0.512 0.527

10 0 6.02 × 107 6.02 × 1012 8 × 10−6 0.496 0.496
9.72 × 10−3 6.18 × 1010 10−5 0.496

12.0 0 109 1014 7 × 10−8 0.376 0.376

10 0 3.69 × 107 3.69 × 1012 10−5 0.354 0.354
4.88 × 10−3 3.75 × 1010 10−5 0.354

14.0 0 109 1014 2 × 10−6 0.286 0.286

10 0 3.06 × 107 3.06 × 1012 10−5 0.262 0.262
2.22 × 10−3 3.08 × 1010 10−5 0.262

16.0 0 109 1014 4 × 10−6 0.228 0.228

10 0 2.00 × 107 2.00 × 1012 10−5 0.204 0.204
1.34 × 10−3 2.01 × 1010 10−5 0.204

18.0 0 109 1014 5 × 10−6 0.190 0.190

10 0 1.87 × 107 1.87 × 1012 10−5 0.165 0.165
7.75 × 10−4 1.88 × 1010 10−5 0.165

20.0 0 109 1014 7 × 10−6 0.164 0.164

10 0 2.97 × 107 2.97 × 1012 10−5 0.138 0.138
3.70 × 10−4 2.98 × 1010 10−5 0.138

Note. The initial field at t = 0 is kept fixed at B = (109, 1014) G for all the radii listed here. The topmost entry for each radius is for the initial time t = 0, whereas
the bottom two entries list the corresponding parameters for t = τ = 10 Gyr after including the cooling rate and magnetic field decay over time. While we evaluate the
magnetic fields assuming that ohmic dissipation is the dominant process for the top entries of τ = 10 Gyr, for the bottom entries we assume that Hall drift is
the primary process until the field parameter B0 decays to ∼1012 G, below which ohmic dissipation dominates.
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can match those obtained for the nonmagnetized WDs. We
do not show the results for the Hall drift decay because they
essentially overlap with the ohmic dissipation results. For
the B= (0, 0) case, we find that the mass–radius relation is
shifted slightly more toward the Chandrasekhar result, due to
the cooling evolution, and the mass limit remains
unchanged. In the case of B= (109, 1014) G, even though
the limiting mass ∼1.9Me at small radius turns out to be
much larger than the Chandrasekhar limit of 1.4Me (also see
Table 3), we find that it is lowered considerably to ∼1.5Me
primarily as a result of magnetic field decay and also thermal
cooling over t= 10 Gyr.

The left panel of Figure 6 shows the radial variation of the
matter density for the same cases as shown in Figure 5 and
R= 10,000 km, while the right panel shows the temperature
profiles for the corresponding cases. We find that the matter
density at the core is slightly suppressed in the presence of
strong B and also as a result of the evolutionary processes. As
the total stellar energy is conserved at t= 0, an increase in the
magnetic energy has to be compensated by a similar decrease
in the gravitational energy and hence the central density ρc.
Once the field decays and L declines owing to cooling, the
central density adjusts itself to be slightly lower in order to
balance the loss of magnetic and thermal energies with time.
From the right panel of Figure 6, we see that the temperature
Tc within the degenerate core is smaller for larger fields. This
is expected, as the luminosity needs to be suppressed more in
order to have the total stellar energy fixed. However, owing
to the appreciable field decay over t= 10 Gyr, the luminosity
increases by more than an order of magnitude. As the
degenerate core volume is greater for magnetized WDs with a
larger R*, the temperature gradient dT/dr within the
envelope turns out to be considerably smaller for B-WDs
than their nonmagnetized counterparts.

5. STARS Results

In this section, we describe the grid of numerical models that
we have produced and analyzed in order to investigate,
compare, and validate the analytical results described in
Sections 2, 3, and 4. In Section 2, we have described the
considerations made to self-consistently obtain the structural
properties of magnetized WDs. These were used to produce a
set of nonmagnetic results to validate our results in the context
of the existing literature. In Section 3, we have described the
effects of the magnetic field on the mass–radius relations and
the thermal properties of B-WDs. We have also described in
detail the differences in our methodology and results between
the weak- and strong-field cases. In Section 4, we have
described the effects of strong magnetic fields on the observed
luminosities of magnetized WDs. In particular, we have
described the phenomenon of luminosity suppression, cooling,
and field decay in B-WDs.

5.1. Implementation and Method

In order to investigate the analytical prescription described in
the previous sections, here we explore a set of numerical stellar
evolution models using a modified version of the STARS stellar
evolution code (Eggleton 1971). The EOS solving subroutine
STATEF.F is modified appropriately to include the prescriptions
of Gupta et al. (2020) (also see Bhattacharya et al. 2018a, who
initiated this venture). This involves computing B at each
calculation shell and then computing the magnetic contribution
to the pressure and density. For large fields such that
B/1012 G� T/106 K, the opacity is expected to be dominated
by the field-dependent Potekhin’s opacity rather than the usual
Kramers’s opacity. Hence, alongside our usual tabulated
opacity κtab, which includes both OPAL opacities for the
envelope (Iglesias & Rogers 1996) and electron conduction
(Itoh et al. 1983), we evaluate Potekhin’s opacity κB as
discussed in Section 3. The overall opacity is then computed by
summing the tabulated opacity and the Potekhin opacity in
inverse as 1/κtot= 1/κtab+ 1/κB.
In order to compute the magnetic field in our calculations,

we choose the profile described by Equation (4). It should be
noted that the default field profile used here can be
appropriately modified to achieve any desired parameterization
within the STARS code. The numerical routine STATEF.F
receives as input the density at a given mesh point in the
model and computes the magnetic field. The magnetic
contribution to the density is then computed as ρB=
B2 / 8πc2 and that to the pressure as PB= B2 / 8π. The
magnetic pressure and density contributions are added to the
current model mesh point pressure and density, before the
subroutine continues to compute the remaining thermodynamic
quantities. The κtab opacity computations are then completed
before κB is computed and added in inverse to the tabulated
opacity. This allows for the opacity to be computed in a self-
consistent manner rather than switching from Kramers’s
opacity, or Itoh et al. (1983) style electron conduction opacity,
to κB at specific B and T.
To model strongly magnetized and super-Chandrasekhar

WDs, we use the STARS code to generate a zero-age main-
sequence star with M= 3Me and Z= 0.02. The star is then
evolved up to the asymptotic giant branch stage until its
carbon–oxygen core has grown to about 0.6Me. At this point,
the chemical evolution of the star is halted and an artificial

Figure 5. The effect of magnetic field on the WD luminosity set to match with
the nonmagnetized mass–radius relation. The results are shown for B = (0, 0)
at initial time t = 0 (green circles), B = (0, 0) at t = 10 Gyr (blue diamonds),
B = (109, 1014) G at t = 0 (orange triangles), and B = (109, 1014) G at
t = 10 Gyr (magenta crosses). The time evolution results are obtained after
including B-WD cooling evolution and field dissipation processes. For the
magenta curve, we only show the ohmic dissipation results because the results
with Hall drift decay practically overlap with them (see Table 3 for the specific
luminosities).
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mass-loss mechanism is enabled to strip the outer envelope
until a CO WD with a thin helium atmosphere is formed. The
computation of B is then enabled once the model in question
has relaxed and been allowed to proceed along its cooling
track. Setting a particularly large B (in terms of a large Bs, a
large B0, or both) typically requires the field parameters to be
increased in stages to allow the model to relax. The residual
mass can then be directly added or removed in order to produce
a model WD of any desired mass.

5.2. Model Results

We use the STARS evolution code with the modifications
described to create a grid of B-WD models with a range of
masses and field parameters. We use our grid of models to
investigate qualitatively the B-WD mass–radius relationship at
different fields, with the objective of numerically validating our
analytical models. In Table 4, we list the central temperature,
central density, and radius for each of our fixed mass numerical
models and for each set of field configurations. In all cases, the
models are allowed to cool until the luminosity has reached
L= 10−4 Le. Furthermore, the stellar composition is held fixed
and equivalent to the description in Section 2. Unlike in our
analytical models, we do not consider separate core and
envelope regions but instead allow for the cooling to occur
naturally in the numerical models with no explicit prescription.
It is not trivial to produce numerically stable B-WD models
with arbitrary field configurations with STARS, so we limit the
range of field configurations as opposed to our analytical
treatment.

In Table 4, we present a number of trends in Tc, ρc, and R for
a range of mass and magnetic field. As expected, the B-WD
radius decreases with M, as shown in Figure 3 and Table 2. For
models of the same mass, R increases very slightly as a
function of the magnetic field, until field parameter B0= 1014 G
is reached, at which point R increases significantly, consistent
with our analytical expectation from Section 3. Here the central
density ρc is not the density in the core but rather the density
attained at the central calculation point in our model. This is
equivalent to our core and envelope analytical approach

described in Tables 2 and 3. The central temperature Tc is
also computed in a similar manner to that in Section 3. As
expected, ρc increases rapidly with an increase in M. However,
ρc drops marginally once the threshold field B0≈ 1014 G is
reached. This results from a corresponding reduction in R. The
comparison of ρc for a given R with the analytical models
presented in Table 2 clearly indicates that the central density
does in fact increase as the field increases, with a sharp rise in
the density as the critical B0 is reached. This is in line with our

Figure 6. Left panel: the variation of density is shown as a function of radius for the same cases as in Figure 5 and R = 10,000 km. Right panel: the variation of
temperature with radius is shown for the same cases as Figure 5 and R = 10,000 km. The corresponding luminosities are listed in Table 3.

Table 4
The Effect of Magnetic Field B on the Numerical Mass–Radius Relation as

Computed with the STARS Code for Luminosity L = 10−4 Le

M/Me (Bs, B0) G Tc/10
6 K ρc/10

6 g cm−3 R/1000 km

0.08 (0, 0) 5.22 0.0242 23.307
(107, 1012) 5.23 0.0242 23.342
(107, 1013) 5.28 0.0241 23.950
(106, 1014) 5.42 0.0224 24.498

0.15 (0, 0) 4.17 0.1036 16.810
(107, 1012) 4.17 0.1036 16.818
(107, 1013) 4.35 0.1031 16.982
(106, 1014) 4.40 0.0957 17.395

0.25 (0, 0) 3.37 0.3293 13.425
(107, 1012) 3.38 0.3293 13.426
(107, 1013) 3.51 0.3285 13.475
(106, 1014) 3.55 0.2991 13.850

0.45 (0, 0) 2.76 1.4330 10.240
(107, 1012) 2.74 1.4330 10.239
(107, 1013) 2.84 1.4300 10.255
(106, 1014) 2.85 1.2380 10.658

0.62 (0, 0) 2.46 3.7650 8.533
(107, 1012) 2.47 3.7670 8.530
(107, 1013) 2.47 3.7580 8.538
(106, 1014) 2.53 3.0420 9.012

Note. Here Tc and ρc represent the temperature and density, respectively,
computed at the central calculation point at the time step where the model
reaches L = 10−4 Le on its cooling curve.
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earlier expectation that ρc must increase to compensate for the
increased magnetic pressure as the field increases.

In Figure 7, we validate the mass–radius relations described
by our analytical model in Figure 3. As before, the effect of
increasing B on the mass–radius relation is analogous to
increasing L. This corresponds to an equivalent star earlier on
its WD cooling curve. Rather than specifying a WD radius and
then inferring its mass, it is more reasonable to base our
numerical grid on fixed masses and then compute R. It should
be noted that the numerical models here are not computed for a
fixed luminosity but at the time when the models have cooled
to the point where the code no longer converges. This is owing
to the limitations of the EOS utilized in the STARS code at low
temperatures and high densities. The radii of these models at
low temperatures are almost entirely independent of luminos-
ity. This is expected, as the thermal pressure support in all of
these models is negligible compared to degeneracy pressure
support and the magnetic pressure support. The three curves
representing B0= 0, B0= 1012 G, and B0= 1013 G almost
completely overlap throughout. This is due to the fact that
the magnetic pressure contribution only becomes comparable
to the degeneracy pressure contribution for the highest field
strength. This reflects the same trend observed at fixed
luminosity in Table 4.

We obtain results that are in good agreement with our
analytical formalism, and the magnitude of B0 dictates the
shape of the mass–radius curve. For stronger fields, specifically
with a larger B0, the mass–radius relation deviates from the
zero/low-field relation, with the deviation increasing at
larger masses. In particular, for B= (107, 1014)G, we obtain
super-Chandrasekhar WDs with limiting mass ∼1.9Me. As
anticipated, the radii inferred from our numerical models are
not exactly equal to those computed analytically. The EOS for
our numerical models is computed with the standard solver in
STARS, and this essentially differs from the purely analytical
estimates. We also include the effects of neutrino losses
in our numerical models. The neutrino cooling effect may
cause nonnegligible energy losses from the cores of very hot
and/or dense WD stars. Based on the prescription given by

Itoh et al. (1983), we model the neutrino losses that become
significant once T� 107 K and ρ� 1010 g cm−3 in the stellar
matter. While no L= 10−4 Le model is hot enough for these
losses to occur, as listed in Table 4, many of these models
would have had sufficiently hot cores at other points on their
cooling curves for neutrino losses to occur.
Next, we investigate the results presented in Section 3.3,

which suggest the possibility of obtaining super-Chandrasekhar
WDs provided that the central magnetic field and B0 are
sufficiently large. Using our modified STARS code, we compute
the highest stable mass model for a range of field configura-
tions. Our results are summarized in Table 5 and are consistent
with the Chandrasekhar mass limit being retained for
B0 1013 G, while allowing for the existence of super-
Chandrasekhar B-WD models for larger B0. We consider a
surface field Bs= 107 G for the WD models with B0= 1014 G.
Regardless, the limiting mass obtained for (Bs, B0)= (107,
1014)G with STARS is in perfect agreement withM≈ 1.865Me
for (Bs, B0)≈ (107−9, 1014)G from the analytical results
presented in Table 2. This supports our earlier finding that Bs

has no appreciable effect on the mass–radius relation.
Table 2 and the left panel of Figure 4 have shown the results

for analytical computation of the density variation as a function
of B-WD radius. As stated, we expect the central density for
WDs with stronger fields to be larger in order to compensate
for the additional magnetic pressure. Figure 8 shows the
numerical validation of the same trend for two mass models,
i.e., for M= 0.55Me and M= 1.6Me, with varying field
configurations. At first sight, the numerical results appear to be
inconsistent with our earlier analytical prediction that ρc should
increase to compensate for increased PB as field increases.
However, it should be noted that the analytical computations
are performed with a fixed radius, whereas our equivalent
numerical models are generated assuming a fixed mass. For the
super-Chandrasekhar WD models in the right panel of Figure 8
withM= 1.6Me, we cannot investigate the lower field cases as
in the left panel of that figure, as there are no solutions for
lower values of B0; hence, we elect to investigate field
configurations with higher values of B0 instead, in an attempt to
elucidate a trend in density profiles for these models. We find
that for M= 1.6Me and L= 10−2.5 Le the radius and density
profiles of the model are very strongly dependent on the value
of B0. As B0 increases from 1014 to 1014.3 to 1014.5 G, the radius
of the model expands from ≈3500 to ≈6000 to ≈8000 km,
while the central density falls considerably from ≈3×
108 g cm−3 to ≈2× 107 g cm−3 over the range of values
considered for B0. This is good confirmation that for these
models the total pressure is dominated by the degeneracy
pressure and magnetic pressure, with thermal support being

Figure 7. The effect of magnetic field on the mass–radius relation of highly
magnetized WDs for B = (0, 0) (blue circles), B = (107, 1012) G (orange stars),
B = (107, 1013) G (green crosses), and B = (107, 1014) G (red plus signs).
Unlike in Table 4, we do not compute these numerical models at a fixed
luminosity, but rather at the stage where they have already cooled down to the
point such that the code fails to converge further.

Table 5
The Maximum Attainable B-WD Mass Computed for the STARS Models as a

Function of Magnetic Field Parameters (Bs, B0)

(Bs, B0)/G ρc/10
6 g cm−3 R/1000 km Max Mass/Me

(0, 0) 2210 2.1177 1.4397
(107, 1011) 2257 2.1196 1.4358
(107, 1012) 2280 2.1227 1.4358
(107, 1013) 2295 2.1240 1.4373
(107, 1014) 2260 2.1412 1.8703

Note. The central density and B-WD radius are listed for the corresponding
cases.
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negligible, as expected, and that the density structure and radii
of the models are largely functions of the value of B0 alone.
Hence, a model’s radius is a function of its magnetic field
parameters and its mass at a fixed luminosity. Therefore, the
M= 0.55Me model with a larger central field has a larger
radius and hence a lower mean density. If we compare
the central density of the model, rather than just the relative
order, our numerical results are indeed consistent with the
analytical results for R= 10,000 km WDs, with central density
ρc≈ 2.2× 106 g cm−3 obtained for B= (107, 1014)G.

In relation to the results presented in the right panel of
Figure 4, we show the variation of the temperature as a function
of the radius in Figure 9. In particular, we choose the same
mass models and magnetic field configurations as in Figure 8.
The analytical models have suggested that the core temperature

is primarily determined by the luminosity and is largely
unchanged with variation in magnetic field. In good agreement
with this prediction, we find here that the core temperatures of
models with masses M= 0.55Me and M= 1.6Me are in fact
largely unchanged with varying magnetic field. The small
difference in central temperatures with magnetic field between
these numerical models is a result of the difference in radius
and hence in the mean density across the models. In the super-
Chandrasekhar case, however, the radii, central temperatures,
and central densities of the models are very highly dependent
on the field configuration. This is, in part, a consequence of the
pressure support no longer being dominated by degeneracy
pressure, but rather by both magnetic and degeneracy
pressures. Hence, we observe that in the super-Chandrasekhar
case the density and temperature profiles, as well as the radii of

Figure 8. Left panel: the variation of density as a function of radius is shown for B-WDs with varying magnetic fields B = (0, 0) G (blue), B = (107, 1012) G (orange),
B = (107, 1013) G (green), and B = (106, 1014) G (red). Each model has a mass M = 0.55 Me and has been allowed to cool to a luminosity of L = 10−4 Le. This
model is essentially equivalent to those computed analytically in Figure 4. Right panel: the variation of density as a function of radius is shown as in the left panel, but
for a super-Chandrasekhar model mass of M = 1.6 Me with varying magnetic fields B = (107, 1014) G (blue), B = (107, 1014.3) G (orange), and B = (107, 1014.5) G
(green). Each model has been allowed to cool to a luminosity of L = 10−2.5 Le. This larger luminosity was required as a result of the simulation’s EOS encountering
difficulties at lower temperatures. Naturally, a certain minimum value of B0 is required to produce a super-Chandrasekhar model; hence, we have no models
corresponding to the lower field models in the 0.55 Me model.

Figure 9. Left panel: the variation of temperature as a function of radius is shown for B-WDs with varying magnetic fields B = (0, 0) G (blue), B = (107, 1012) G
(orange), B = (107, 1013) G (green), and B = (106, 1014) G (red). These models are essentially equivalent to the analytical models presented in Figure 4. The mass is
fixed at M = 0.55 Me for each model, so the radius varies as a function of the magnetic field, as in Figure 7. For each field configuration, the model has been allowed
to cool until it reaches L = 10−4 Le. Right panel: the variation of temperature as a function of radius is shown as in the left panel, but for a super-Chandrasekhar model
mass of M = 1.6 Me with varying magnetic fields B = (107, 1014) G (blue), B = (107, 1014.3) G (orange), and B = (107, 1014.5) G (green). As in Figure 8, each model
has been allowed to cool to a luminosity of L = 10−2.5 Le.
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the models, are highly dependent on the field structure. Our
numerical models further demonstrate that the radial temper-
ature gradient dT/dr within the surface layers of each model
falls as the magnetic field increases.

5.3. Summary of Simulation Results

We have produced a novel set of modifications to the STARS
code based on our magnetic field prescription (see Equation (4))
in order to compute a grid of numerical models of highly
magnetized WDs. This methodology has allowed us to validate
qualitatively the analytical results, from Section 3 in particular.
A qualitative approach is necessary because we cannot trivially
fix the B-WD radius within the STARS framework and are rather
restricted to fixing the mass to generate models that are
essentially analogous to our analytical models. We have
determined, as we had analytically, that the effect of the surface
field Bs is not significant, while the central magnetic field and
hence B0 can significantly affect the B-WD mass–radius relation.
This is confirmed because the mass M≈ 1.87Me computed
analytically for (Bs, B0)= (109, 1014)G is in very close
agreement with the mass M≈ 1.89Me inferred from our
numerical models for (Bs, B0)= (107, 1014)G, i.e., despite the
two-order-of-magnitude difference in the surface magnetic fields
between the two cases. In Table 5, we have demonstrated that
stable numerical models of highly magnetized super-Chandra-
sekhar WDs can be created provided that the central magnetic
field is sufficiently large.

6. Summary and Conclusions

Sufficiently strong magnetic fields can alter the EOS of
electron-degenerate matter to yield super-Chandrasekhar
B-WDs with masses that can be as high as M≈ 2.6Me, even
in the absence of rapid rotation (see Das & Mukhopadhyay
2012, 2013; Subramanian & Mukhopadhyay 2015). Besides
elevating the limiting mass of WDs, strong fields can also
impact the thermal characteristics of the underlying compact
star and thereby its observed properties. Bhattacharya et al.
(2018a) studied the luminosity suppression in B-WDs with
B 1012 G, assuming that the interface properties are essen-
tially similar to their nonmagnetized counterparts, to demon-
strate that their cooling rates are significantly attenuated for
such strong magnetic fields. Subsequently, Gupta et al. (2020)
improved on this preliminary analytical model by removing the
assumption of fixed interface parameters that was initially
considered for WDs with a preassigned mass. They further
derived the mass–radius relation and the stellar structure
properties within both nondegenerate and degenerate regions of
the B-WD.

In this paper, we have revisited the physics of luminosity
suppression and its effect on the mass–radius relation for highly
magnetized WDs. We have included the contributions from the
electron-degenerate isothermal core, ideal gas surface layer,
and magnetic field to model the B-WD structure properties by
solving the magnetostatic equilibrium, photon diffusion, and
mass conservation equations. In order to distinguish the
strongly magnetized cases from the weakly/nonmagnetized
cases, we have appropriately amended our treatment of the
radiative opacity, magnetostatic pressure balance, and EOS for
the degenerate core. Although an increase in surface luminosity
results in higher total mass, especially for larger WDs, we have
shown that the Chandrasekhar mass limit is retained for

10−4� L/Le� 10−2. The increase in luminosity for a given
stellar radius leads to a larger ρc and more compact degenerate
interior and hence an increased capacity to hold more mass.
Although Bs has negligible effect on the B-WD mass, B0 affects
the shape of the mass–radius relation by shifting the curve
toward higher masses for stronger fields for a given radius. In
particular, strong fields with B0≈ 1014 G can raise ρc
significantly and yield super-Chandrasekhar WDs with masses
as high as ∼1.87Me.
We have computed the B-WD luminosity necessary in order

to obtain mass–radius relations similar to those for nonmagne-
tized WDs. Provided that the gravitational energy does not vary
significantly, an increase in magnetic energy density needs to
be compensated by a corresponding reduction in thermal
energy, in order to maintain the structural stability of the
B-WD. Nevertheless, we have shown that, even with a
significant reduction in their luminosities, the masses of
smaller-radius B-WDs are not similar to their nonmagnetized
counterparts. In particular, for stars with radii 2000 � R/
km� 6000, the inferred B-WD mass remains considerably
larger, leading to an extended branch in the mass–radius
relation, even for highly suppressed luminosities such that
10−16� L/Le� 10−12. To model the time variation of the
B-WD structure properties, we have also considered the
cooling evolution of these stars in the presence of strong-field
dissipation processes, particularly ohmic dissipation and Hall
drift. As the star gradually evolves over time, its thermal energy
is radiated away in the observed luminosity from the surface
layers. Owing to primarily field decay and also simultaneous
cooling over the typical WD age τ≈ 10 Gyr, the luminosity-
adjusted masses turned out to be significantly lower than their
initial estimates. Even though the limiting B-WD mass is
lowered significantly to 1.5Me compared to 1.9Me at the
initial time, and corresponding initial field B= (109, 1014)G,
the majority of these systems still remain practically hidden
throughout their cooling evolution owing to their strong fields
and consequently low luminosities.
We have also explored a set of stellar evolution models for

B-WDs using a modified version of the STARS code with the
objective of numerically validating our analytical formalism.
For this, we have appropriately modeled the chemical evolution
of the star along its cooling track and included the effects of
energy losses due to neutrino cooling from the cores of very hot
and/or dense WDs. In validation of our analytical approach,
we have found that the limiting mass ∼1.8703Me obtained
with the STARS numerical models is in very good agreement
with M≈ 1.87Me inferred from the analytical calculations for
WDs with strong fields B= (106−109, 1014)G. However, the
results presented in this work argue that the young super-
Chandrasekhar B-WDs may not sustain very large masses over
the course of their entire cooling evolution, and this essentially
explains their apparent scarcity even without the difficulty of
detection owing to their suppressed luminosities.
We have adopted a considerably more generalized frame-

work to improve on the analytical approach presented in our
previous studies (Bhattacharya et al. 2018a; Gupta et al. 2020).
In addition to radiative cooling, we have now incorporated the
effect of convective energy transport through the photon
diffusion equation. To account for the effects of strong
magnetic fields on the magnetostatic pressure balance and
Landau-quantized electron energy states, we have considered
the general relativistic TOV equation and appropriately
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modified the interface condition. Furthermore, we have
included typical neutrino cooling energy losses with STARS
and the dissipation of strong magnetic fields over time.

We have nevertheless made some simplifying physical
assumptions in order to improve our modeling of the B-WD
structure properties. First, we have assumed that the B-WDs are
approximately spherical for B0 1014 G, as demonstrated by
Subramanian & Mukhopadhyay (2015) for toroidally domi-
nated fields. Second, we have adopted a constant radial
luminosity profile Lr= L for our models, as no H burning or
other nuclear fusion reactions occur within the degenerate WD
core. Third, we have used a temperature-independent EOS for
the electron-degenerate pressure (see Gupta et al. 2020 for
physical justification) and uniform B-WD core temperature
(only for the analytical model) owing to the high thermal
conductivity of the degenerate electrons. Lastly, we have
assumed the self-similarity of the cooling process for evolution
over the typical WD age of τ∼ 10 Gyr. Future work can
address the effect of more complicated magnetic field geometry
on the inferred mass–radius relation and the effect of varying
stellar compositions on the B-WD cooling evolution.
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