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Abstract: We describe the anomaly structure of an composite Higgs model in which

the SO(5)/SO(4) coset structure of the minimal model is extended by an additional, non-

linearly-realized U(1)η. In addition, we show that the effective lagrangian admits a term

that, like the Wess-Zumino-Witten term in the chiral lagrangian for QCD, is not invariant

under the non-linearly realized symmetries, but rather changes by a total derivative. This

term is unlike the Wess-Zumino-Witten term in that it does not arise from anomalies. If

present, it may give rise to the rare decay η → hW+W−Z. The phenomenology of the

singlet in this model differs from that in a model based on SO(6)/SO(5), in that couplings

to both gluons and photons, arising via anomalies, are present. We show that while some

tuning is needed to accommodate flavour and electroweak precision constraints, the model

is no worse than the minimal model in this regard.
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1 Introduction

In recent years, theorists have devoted much attention to models in which the electroweak

hierarchy problem is solved by postulating that the Higgs boson arises as a composite

pseudo-Goldstone boson of some new, TeV-scale strong dynamics [1–3].

If this is really what happens in Nature, then it is interesting to ask how we might

go about figuring out what the underlying UV dynamics is, given our current rather poor

theoretical understanding of strongly-coupled dynamics.

One way in which may we may do so is via triangle anomalies, which are not renor-

malized and so, if present in the UV, must be reproduced in the IR, either by massless

fermions or by terms involving the pseudo-Goldstone bosons. Such anomalies are not only

not renormalized, but they are also topological in nature. This means that by measuring

them in the IR, we may gain concrete information about the UV dynamics. The classic

example, of course, is in QCD, where the measurement of the decay rate π0 → γγ (which

arises via the electromagnetic anomaly [4, 5]) enables us to infer that Nc = 3.

In order to make such spectacular inferences, one must be lucky enough to have a

low-energy lagrangian that admits a non-trivial anomaly structure. The minimal, and by

far the most popular, composite Higgs model, based on SO(5)/SO(4) [6] does not feature

anomalies. However, the ‘next-to-minimal’ model based on SO(6)/SO(5) [7], which is just

as good from the phenomenological point of view, does. Compared to the minimal model,

it features only an additional electroweak singlet scalar, which couples to electroweak gauge

bosons via a single SO(6)3 triangle anomaly.
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Here we wish to describe yet another model, based on SO(5)×U(1)/SO(4). It is just

as minimal as the SO(6)/SO(5) model, in the sense that it features only an additional

electroweak singlet scalar. But it turns out to have a much richer anomaly structure, with

several novel features.

A first novel feature is that there are now 3 distinct triangle anomalies, which give rise,

at leading order, to couplings of the singlet to both gluons and electroweak bosons.

A second novel feature is that the higher-order structure of the anomalous effective

action is not unique. Indeed, we exhibit two solutions to the Wess-Zumino consistency

conditions. As far as we are aware, this phenomenon has not been observed before in the

literature on sigma models.

A third novel feature is that the effective lagrangian admits a term that is not invariant,

but rather changes by a total derivative, under the non-linearly realized symmetries. Such

a term is much like the Wess-Zumino-Witten (WZW) term in the chiral lagrangian of

QCD, which allows processes violating a putative internal symmetry under which Goldstone

bosons change sign, such as K + K → 3π [8, 9]. But there is one noteworthy distinction

between the WZW-like term presented here and WZW term in QCD. In the latter, the

presence of the anomaly implies the presence of the WZW term, in the sense that the

low-energy effective action reproducing the anomaly reduces to the WZW term when the

gauge fields vanish. In the model presented here, this is not so. This phenomenon is

also, we believe, unknown in the sigma-model literature. The WZW-like term is also of

phenomenological interest, in that it may lead to a rare decay of the singlet via η →
hW+W−Z.

The outline is as follows. In the next Section, we present the pattern of symmetry

breaking and sketch the concomitant anomalies. We then present a full discussion of the

anomaly structure and the WZW-like term in §3. In §4, we describe the couplings to

fermions and the implications for flavour physics. In §5, we discuss the form of the scalar

potential that is induced by the couplings to gauge fields and fermions. We conclude in §6.

Two more technical discussions are relegated to appendices.

2 The model

We wish to consider composite Higgs models based on a homogeneous space G/H that

feature triangle anomalies.1

The minimal model [6], based on SO(5)/SO(4) (or SO(5)/O(4) with custodial protec-

tion of Z → bb [11]), features no triangle anomalies. The ‘next-to-minimal’ model based on

SO(6)/SO(5) [7] does, however, feature triangle anomalies. Indeed the Goldstone bosons

transform as the 5-d irrep of SO(5), which, on restriction to the SO(4) subgroup, yields

both a 4-d irrep (viz. the Higgs field) and a singlet. Moreover, since SO(6) is locally iso-

morphic to SU(4), we have the possibility of an SU(4)3 triangle anomaly.2 This anomaly

1See [7, 10] for earlier discussions of anomalies in composite Higgs models.
2Since H5

dR(SO(6)/SO(5)) = H5
dR(S5) = R, there is also a possible WZW term. As explained in the

next sections, H5
dR denotes the fifth de Rham cohomology group.
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leads to an interaction, at leading order, of the form 1
16π2

η
f (g22WµνW̃

µν −g21 BµνB̃µν), with

neither a coupling to gluons nor to photons [12].

The absence of a coupling to photons in this model is something of a group-theoretical

accident, in that there are couplings to ZZ, γZ, and WW . But the absence of a coupling to

gluons looks, at first sight, to be a generic problem in a composite Higgs model, given that

the rôle of the new strong dynamics is to break the electroweak symmetry, independently of

the SU(3)C dynamics. In fact, this is not so, since a consequence of partial compositeness

is that the new strong sector must be charged under SU(3)C [13]. So it seems quite plau-

sible that the elementary fermions of the UV theory could generate an anomaly involving

SU(3)C .

One way to get couplings of the singlet to both electroweak gauge bosons and to gluons

via anomalies is to include both SU(3)C and SU(2)L or U(1)Y in some simple subgroup of

G. But such a strategy will lead to additional coloured Goldstone bosons, with potentially

dangerous phenomenological implications.3 A safer, and simpler, strategy is to modify the

minimal model by adding a non-linearly realized U(1)η factor, such that the symmetry

breaking pattern in the strong sector becomes

G

H
=
SU(3)C × SO(5)× U(1)X × U(1)η

SU(3)C × SO(4)× U(1)X
, (2.1)

where U(1)X denotes the usual U(1) needed in composite Higgs models to give the correct

hypercharge assignments to SM fermions. This model features an additional SM singlet

compared to the minimal composite Higgs model. We remark that, unlike the SO(6)/SO(5)

model, this coset space allows for two distinct decay constants, f and fη, associated with

the Higgs boson and the η, respectively. We assume henceforth that these are generated

by the same strong dynamics, and hence are of the same order of magnitude.

Let us now consider the possible triangle anomalies in this model. As we shall see

in §3, triangle anomalies in G are admissible only if they vanish on restriction to H.

Thus, our model admits 3 possible sources of triangle anomalies, namely SU(3)2C U(1)η
and SO(5)2 U(1)η anomalies, and anomalies involving U(1)η and U(1)X .

The leading contributions to the resulting low-energy effective action arise at dimension-

5, taking the form

Leff =
1

16π2
η

fη
(c3 g

2
3 GµνG̃

µν + c5(g
2
2WµνW̃

µν + g21BµνB̃
µν) + c1g

2
1BµνB̃

µν), (2.2)

where the coefficients are real, but otherwise arbitrary (corresponding to the freedom to

arbitrarily choose the U(1)η irreps of fermions in the UV theory that contribute to the

anomaly).

3 Anomalies and WZW-like terms

We now discuss the anomaly structure of the model in more detail, together with the

phenomenological consequences. Let us begin with a general discussion. A theory with

internal global symmetry group G may be anomalous, in the sense4 that there is no way to

3Such states may also have desirable phenomenological implications, however [14, 15].
4We consider only triangle anomalies here.
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regularise the theory such that the divergences of 3-point functions of conserved currents

are all vanishing. Such anomalies are not renormalized and must be reproduced at all

energies, with consequences for low-energy physics.

One consequence is a consistency condition on the possible pattern of symmetry break-

ing at low energy: if a subgroup H ⊂ G is linearly realized at low energy, then H must be

anomaly free. The reason [16] is that we could perturb the theory in an arbitrarily small

way by gauging the whole of G, but choosing the gauge coupling to be arbitrarily small.

If there were anomalies in H, the gauge bosons in H could get masses via a loop diagram

formed out of two anomalous vertices, implying that H could not be linearly realised.

Once this restriction has been taken into account, it can be shown that the remaining

anomalies can be reproduced satisfactorily at low-energies by Goldstone boson contribu-

tions [17] and an explicit formula for the anomalous contribution to the low-energy effective

action for a reductive homogeneous space G/H can be found (see also [18]). As in [17], in

this Section we employ the langauge of differential forms and omit normalization factors,

giving the result only for the special case of a symmetric space, which is sufficient for our

needs. The formula is most conveniently written in the fully-gauged case; the result for

gauging a subset F ⊂ G can be obtained by setting the corresponding gauge fields to zero

in the formula.5 Let g and h be the Lie algebras of G and H. Since G/H is reductive and

symmetric, ∃ a split, g = h+ k, such that [h, k] ⊆ k and [k, k] ⊆ h, together with an ‘internal

parity’ automorphism of g given by h → h and k → −k. Letting A be a g-valued 1-form

representing the gauge fields and letting the coset representative be eξ, with ξ ∈ k, we have

that

W [ξ, A] =
∑
±

∫ 1

0
dt

∫
d4xc±tr[ξG±[At]], (3.1)

where At = etξ(A+ d)e−tξ =⇒ Ft = etξFe−tξ, c± are arbitrary coefficients and

G+[A] = 3F 2
h + F 2

k − 4(A2
kFh +AkFhAk + FhA

2
k) + 8A4

k, (3.2)

G−[A] =
3

2
(FhFk + FkFh − FkA2

k −AkFkAk −A2
kFk). (3.3)

Here, G± are the positive/negative eigenstates with respect to the internal parity and

the subscripts h and k denote projections onto the corresponding subspaces, such that

Fh = dAh +A2
h +A2

k, Fk = dAk +AhAk +AkAh.

The action (3.1) is unique in the sense that it is the only action which vanishes when

the Goldstone bosons vanish and whose anomaly is given by δαΓ =
∑
± c±trαG±[A] [18].

But it is not unique in the sense that the anomaly can take many forms, corresponding to

the addition of local counterterms to the effective action. (For a counterexample, it suffices

to choose H = 0, for which any form G[A] for the anomaly is reproduced by the effective

action Γ =
∫ 1
0 dt

∫
x trξG[At].) The action (3.1) is the one obtained by starting from the

canonical form of the anomaly (which is symmetric with respect to G) and subtracting a

5We caution the reader that the symmetry group of the resulting theory is not G, even at the classical

level, but rather is the normalizer of F in G [19].
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counterterm that enforces the vanishing of the anomaly on H [17]. Hadronic data suggest

that this is the option chosen by the strong interactions, but we are unaware of an argument

that it is the only consistent option.

Even though its raison d’être is to reproduce anomalies that arise due to gauging, (3.1)

may not vanish in the limit that gauge fields vanish. In that limit, we obtain

W [ξ, 0] =

∫ 1

0
dt

∫
d4xc+tr[ξ(etξde−tξ)4k]. (3.4)

Such a term, which contains an undifferentiated Goldstone boson at leading order is not

invariant under a G transformation, but rather changes by a total derivative. We will

call such non-invariant lagrangian terms ‘WZW terms’, in honour of their prototype in

the chiral lagrangian. It was shown in [20] that for compact G in d = 4, and for field

configurations in the trivial fourth homotopy class,6 such terms are in 1-1 correspondence

with the generators of the fifth de Rham cohomology group of G/H.

We caution the reader that not all such terms can arise from effective actions repro-

ducing triangle anomalies. By way of a counterexample, consider the homogeneous space

SU(2) × SU(2)/U(1), where the U(1) is included in one of the SU(2)s. This space is

equivalent as a smooth manifold to S3 × S2 and a straightforward generalization of the

arguments presented below shows that H5
dR(S3 × S2) = R. Thus, there is a WZW term

in this case, but since SU(2) has no triangle anomalies, it cannot arise from reproducing

them.7

Composite Higgs model anomalies

For the SO(5)×SU(3)×U(1)×U(1)/SO(4)×SU(3)×U(1) model, it is straightforward to

show that the effective action (3.1) reduces, at leading order, to (2.2). For SU(3)2U(1) and

the anomalies involving U(1)s, there are no higher-order corrections to the effective action.

There are, however, higher-order corrections for the SO(5)2U(1) anomaly, the detailed

calculation of which we relegate to Appendix B. The next-to-leading order corrections

arise at dimension 7, up to which order the effective action is given, in the operator basis

of [21], by∫
c5η(W iW i +B2 − 16

9f2
(H†H(W iW i +B2) + 2H†σiHW iB)) + . . . , (3.5)

where W i and B are the field strength 2-forms and f is the non-linear scale.

These corrections to the leading-order action appear to constitute a definite prediction

of the model, once c5 has been determined from measurements at leading-order. Unfortu-

nately, the issue of non-uniqueness discussed above now rears its ugly head. Indeed, it is

easy to check that the the leading-order action (2.2) alone also provides a solution of the

Wess-Zumino consistency conditions that vanishes on SO(4) and so is, ceteris paribus, just

as good a candidate for the anomalous action. It corresponds to a regularization of the

6As usual, we identify spacetime, with fields thereon tending to a constant value at infinity, with S4.
7Moreover, since π4(S3×S2) = Z/2, one cannot use Witten’s trick to write the WZW term as an integral

over a 5-disk in this case.
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SO(5)2U(1) anomaly such that it is appears entirely in the U(1) symmetry, whereas our

action corresponds to an anomaly that is symmetric with respect to the broken generators

in U(1) and SO(5). Whether there exist yet more consistent effective actions is an open

question.

The two anomalous effective actions that we have found differ structurally only in

their higher-order terms. But this does not mean that the non-uniqueness is phenomeno-

logically inconsequential. Indeed, different choices of regulator for the anomaly lead to

different values of the coefficient of the leading order term. In particular, the coefficient

that corresponds to an anomaly that is symmetrized amongst all three currents is 1
3 that of

the coefficient that corresponds to the anomaly that is contained wholly in a single current.

So the resolution of the non-uniqueness issue will be crucial, if we want to make inferences

about the UV structure of the theory (in particular its fermionic representation content),

using experimental data.

Even if this non-uniqueness can be resolved, one should also bear in mind that the

couplings of the Goldstone bosons to SM fermions will also generate loop contributions to

the couplings in the anomalous effective action.

The WZW term

There is a possible WZW term in the model, as we can see by computing H5
dR(SO(5) ×

U(1)/SO(4)). Recalling that SO(n+1)/SO(n) and Sn are equivalent as smooth manifolds,

we thus have that H5
dR(SO(5) × U(1)/SO(4)) = H5

dR(S4 × S1) = H4
dR(S4) ⊗ H1

dR(S1) '
R⊗R ' R (where we used the Künneth formula and the fact that H i

dR(Sn) vanishes unless

i = 0 or i = n, in which case it is isomorphic to R). Thus, the theory admits a WZW term.

We may easily find the form of the WZW term, at least for field configurations that

correspond to the trivial class of the fourth homotopy group. These may be written [20]

as the integral over a 5-ball, whose boundary is the spacetime S4, of a G-invariant 5-form,

whose existence is guaranteed by the the non-vanishing fifth de Rham cohomology group.8

For G/H ' S4 × S1 it is just the product of the usual volume forms on the hyperspheres.

At leading order in the fields, we can integrate over the 5-ball to get∫
S4

εijklηdh
idhjdhkdhl, (3.6)

where hi are co-ordinates in the neighbourhood of the identity on S4.9 In SU(2) × U(1)

language, the LO WZW term is ηdH†σidHdH†σidH.

As expected, the leading order term is invariant under the linearly-realized subgroup

SO(4) and changes by a total derivative under a shift of the Goldstone bosons, correspond-

ing to an infinitesimal SO(5)× U(1) transformation.

As we see in Appendix B, the WZW term does not arise from (3.1), which vanishes

when the gauge fields vanish. Thus, unlike in QCD, the WZW term and the anomaly are

independent, at least for this choice of regularization of the anomaly.

8Unfortunately, this trick does not work for a general field configuration, because the fourth homotopy

is π4(S4 × S1) ' π4(S4)⊕ π4(S1) ' Z⊕ {e} ' Z 6= 0.
9This term was also singled out in [22], but for different reasons.
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The WZW term is in fact the leading-order term coupling all 5 Goldstone bosons

to each other. This can be seen by forming lagrangian invariants of the sigma model

in the usual way out of the objects dη and eξde−ξ, which transform as adjoints under

H. By Lorentz invariance, all terms involve an even number of derivatives. Terms with

no derivatives are forbidden by the non-linearly realized symmetry, while terms with two

derivatives are forbidden, because such a term must take the form ∂µη tr eξ∂µe
−ξ = 0. A

possible term with 4 derivatives takes the form ∂µη tr (eξ∂νe
−ξ)(eξ∂σe

−ξ)(eξ∂ρe
−ξ). Since

SO(5) is free of triangle anomalies, the trace term must be antisymmetric in its 3 entries

and so a non-vanishing Lorentz-invariant can be obtained only by contracting with εµνσρ,

such that we can revert to the language of differential forms. We have that eξde−ξ =

dξ + 1
2 [ξ, dξ] + . . . , such that the leading order term involving all Goldstone bosons takes

the form 3
2dηtrdξdξ[ξ, dξ]. We need this to be non-vanishing when each ξ corresponds to a

distinct Goldstone boson and one easily check using the basis in (B.11) that this is not so.

To explore the physics of the WZW term, we first gauge the SM subgroup. Since

this is a subgroup of H, under which the WZW term transforms linearly, we may fol-

low the usual prescription of promoting derivatives to covariant derivatives, obtaining

ηDH†σiDHDH†σiDH.

Being of high dimension, the WZW leads to small contributions to low-energy physics.

They may, nevertheless, be observable at a future high-precision collider, if sufficiently

exotic. As an example, by the Goldstone boson equivalence theorem and by the anti-

symmetry in the fields, the WZW term leads, after electroweak symmetry breaking, to a

coupling involving η, h,W+,W−, and Z and hence a possible decay mode η → hW+W−Z.

We remark that, whilst the WZW term is the leading order term coupling all 5 Gold-

stone bosons to one another, this does not necessarily imply that it gives the dominant con-

tribution to this decay mode. Indeed, once we switch on the gauging and other symmetry-

breaking couplings, we may well get contributions to this decay at lower orders, albeit

paying the price of small, symmetry breaking couplings instead.

Discrete symmetries and Z → bb

As we have already remarked, the fact that SO(5) × U(1)/SO(4) is a symmetric space

means that the Lie algebra possesses the ‘internal parity’ automorphism h → h, k → −k.
The terms in the effective action giving rise to production and decay of the η are odd under

this, so it could only be a symmetry of the dynamics if it were accompanied by a spatial

inversion. In any case, the internal parity is broken in the vacuum by the Higgs VEV.

A more desirable symmetry to have, perhaps, is one that protects the decay rate for

Z → bb [11]. In the minimal model based on G = SO(5), this is achieved by enlarging the

linearly-realized subgroup from SO(4) to O(4).10 The same enlargement could, of course,

10In fact, if we wish to include matter fields in the theory in spinor representations, then we should

consider not SO(5) but rather its universal cover Sp(2). As described in [23], the relevant homogeneous

spaces without and with custodial protection of Z → bb are Sp(2)/(Sp(1) × Sp(1)) and Sp(2)/(Sp(1) ×
Sp(1) o Z2), where the homomorphism in the semi-direct product maps the non-trivial element in Z2 to

the outer automorphism of Sp(1) × Sp(1) that interchanges the two Sp(1)s. The homogeneous spaces are

homeomorphic to SO(5)/SO(4) and SO(5)/O(4), respectively, and the discussion given here can be carried
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be carried out in the model described here, but it has the consequence that the WZW term

is forced to vanish. Indeed, the usual action of SO(5) on R5 gives rise to transitive actions

on both S4 (included in R5 as the set of points equidistant from the origin) and RP 4 (given

as the set of lines through the origin in R5 and which we may also think of as the sphere

with antipodal points identified). The stability subgroup in the former case is isomorphic

to SO(4), while in the latter case it is O(4). Thus SO(5)/SO(4) is homeomorphic to S4,

while SO(5)/O(4) is homeomorphic to RP 4. Now, H4
dR(RP 4) vanishes,11 as do its other

de-Rham cohomology groups (excepting of course H0
dR), and so the Künneth formula tells

us that with O(4) included in this way, H5
dR(SO(5) × SO(2)/O(4)) = 0, such that there

can be no WZW term.

The WZW term may, however, be resurrected by changing the inclusion of the custodial

O(4) in G. To understand this, it is useful to see more explicitly why the leading-order

WZW term is forbidden in the standard implementation. To this end, choose co-ordinates

(h, 1) on the unit 4-sphere included in R5 in the neighbourhood of the stability point (0, 1).

The stability group of the sphere is then {

(
O+ 0

0 +1

)
}, where O+ is any 4x4 orthogonal

matrix of determinant +1, and hence is isomorphic to SO(4). But if we identify antipodal

points, (−h,−1) ∼ (h, 1), then the stability subgroup is enhanced to {

(
O± 0

0 ±1

)
}, where

O− is any 4x4 orthogonal matrix of determinant ±1, and hence is indeed isomorphic

to O(4), as we claimed earlier. Now, under the action of an element of O(4) that is

disconnected from the identity, (h, 1) → (O−h,−1) ∼ (−O−h,+1). Thus the putative

leading-order WZW term, which is proportional to εijklh
ihjhkhl is sent to (−1)4detO− =

−1 times itself, and is not invariant under such transformations. But the leading order

WZW term should be invariant under O(4) and so must vanish.

Clearly, we can resurrect the WZW term, at least at leading order, by arranging for the

O(4) custodial group to be included in G in such a way that the action of elements in O(4)

disconnected from the identity also sends η → −η. To achieve this, set G = SO(5)×O(2)

and let H be the subgroup

{(

(
O+ 0

0 +1

)
,

(
1 0

0 1

)
), (

(
O− 0

0 −1

)
,

(
1 0

0 −1

)
)} (3.7)

H is still isomorphic to O(4), but now the action of elements in O(4) disconnected from

the identity sends η → −η. We conjecture therefore that H5
dR 6= 0 in this case, such that

there is a WZW term.

over straightforwardly.
11The reason for this is that the volume form on S4, which is given by the pull-back to S4 via the inclusion

map i : S4 → R5 of the form
∑4
i=1(−1)ixidx1 . . . dx4 (where in the ellipsis we omit dxi), is not identical at

antipodal points; this is consistent with the non-orientability of RP 4.
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Mixing Parameter Value

εq1 = λ3εq3 1.15× 10−2 εq3
εq2 = λ2εq3 5.11× 10−2 εq3

εu1 = mu
vgρ

1
λ3εq3

5.48× 10−4/(gρε
q
3)

εu2 = mc
vgρ

1
λ2εq3

5.96× 10−2/(gρε
q
3)

εu3 = mt
vgρ

1
εq3

0.866/(gρε
q
3)

εd1 = md
vgρ

1
λ3εq3

1.24× 10−3/(gρε
q
3)

εd2 = ms
vgρ

1
λ2εq3

5.29× 10−3/(gρε
q
3)

εd3 = mb
vgρ

1
εq3

1.40× 10−2(gρε
q
3)

ε`1 = εe1 =
(
me
gρv

)1/2
1.67× 10−3/g

1/2
ρ

ε`2 = εe2 =
(
mµ
gρv

)1/2
2.43× 10−2/g

1/2
ρ

ε`3 = εe3 =
(
mτ
gρv

)1/2
0.101/g

1/2
ρ

Figure 1. Partial compositeness mixing parameters and values. The input running masses of the

SM particles are taken at the renormalisation scale of 1 TeV, with v = 174 GeV.

4 Couplings to fermions and flavour violation

We now discuss the couplings of the η singlet to SM fermions. We postulate that the SM

fermion Yukawa couplings are generated via the paradigm of Partial Compositeness (PC)

[24]. The basic assumption is that elementary states f i (where f ∈ {QL, uR, dR, LL, eR}
and i is the family index) couple linearly to fermionic operators Ofi of the strong sector:

LPC = gρε
q
i O

q
iQ

i
L + gρε

u
i O

u
i u

i
R + gρε

d
i O

d
i d
i
R + gρε

`
i O

`
iL

i
L + gρε

e
i O

e
i e
i
R + h.c.

We simplify the description of the strong sector as in [25], assuming a single strong coupling

gρ, and a single mass scale mρ. The linear mixing parameters εai are taken to be hierarchical

in order to reproduce the pattern of masses and mixing of the SM fermions. In particular,

it can be shown that the Yukawa couplings of up and down quarks and of charged leptons

are given by

Y U
ij ∼ gρε

q
i ε
u
j , Y D

ij ∼ gρε
q
i ε
d
j and Y E

ij ∼ gρε`iεej . (4.1)

Throughout this Section, we use the symbol ∼ to indicate a relation that holds up to an

unknown O(1) complex coefficient whose value is determined by the unknown strong sector

dynamics. As in [15, 26], a viable choice of the mixing parameters is given in Fig. 1. We

remark that we have tacitly assumed, for simplicity, that every elementary field fai couples

to a single operator of the strong sector. In that case, it is easy to derive the coupling of the

goldstone boson η to the fermions f i. Indeed, it is enough to replace f i → f i exp
(
i
√
2

fη
η Zfi

)
in the EFT of the usual composite Higgs model based on SO(5)×U(1)X , where Zfi is the

U(1)η charge. As we shall see in §5, there is a price to be paid for this assumption, namely
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that one then requires an additional source of explicit U(1)η breaking in the model in order

to generate a potential for the singlet. We expect, however, that relaxing this assumption

will lead to comparable bounds.

Without specifying the details and quantum numbers of the composite operators under

SO(5)×U(1)X , integrating away the heavy sector at the scale mρ and keeping the leading

term in H/f and η/fη, we get (in complete generality) that

Lyuk = −Y U
ij HQ

i
Lu

j
R

[
1 + i

√
2

fη
η
(
ZQiL

− Z
ujR

)]
+ h.c. (4.2)

−Y D
ij H

cQ
i
Ld

j
R

[
1 + i

√
2

fη
η
(
ZQiL

− Z
djR

)]
+ h.c. (4.3)

−Y E
ij H

cL
i
Le

j
R

[
1 + i

√
2

fη
η
(
ZLiL
− Z

ejR

)]
+ h.c. (4.4)

The Yukawa couplings are specified in a basis where the SM fields have specific charge

assignments under U(1)η. The Yukawa matrices are diagonalised by bi-unitary transfor-

mations:

Ŷ U = LUY
UR†U =

1

v
diag(mu,mc,mt) (4.5)

Ŷ D = LDY
DR†D =

1

v
diag(md,ms,mb) (4.6)

Ŷ E = LEY
ER†E =

1

v
diag(me,mµ,mτ ) . (4.7)

The expected size of the entries of these unitary matrices are linked to the mixing param-

eters in the following way

(LU )ij ∼ (LD)ij ∼ min

(
εqi
εqj
,
εqj
εqi

)
(RU )ij ∼ min

(
εui
εuj
,
εuj
εui

)
(RD)ij ∼ min

(
εdi
εdj
,
εdj

εdi

)
(4.8)

and similarly for the leptonic sector.

Rewriting the lagrangian in the mass basis and replacing the Higgs doublet with its

VEV, one may deduce the flavour- and CP-violating couplings of the η to SM fermions:

Lyuk ⊃ −
∑

ui,uj=u,c,t

Yuiujη ūiPRuj −
∑

d,dj=d,s,b

Ydidjη d̄iPRdj −
∑

`i,`j=e,µ,τ

Y`i`jη
¯̀
iPR`j + h.c.

The typical size of the induced flavor violating Yukawa couplings depends on the structure

dictated by partial compositeness and by the U(1)η charge assignment of the different

fields. It is easy to show that

Yuiuj = i

√
2 v

fη

[
LU ẐQLL

†
U ŶU + ŶURU ẐURR

†
U

]
ij

(4.9)

Ydidj = i

√
2 v

fη

[
LDẐQLL

†
DŶD + ŶDRDẐDRR

†
D

]
ij

(4.10)

Yeiej = i

√
2 v

fη

[
LEẐLLL

†
EŶE + ŶEREẐERR

†
E

]
ij

(4.11)
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The Ẑ matrices are diagonal and contain the Z-charges of the fields; in particular we have

defined Ẑf ≡ diag(Zf1 , Zf2 , Zf3).

With these expressions in hand, let us consider to what extent the suppression pro-

vided by the partial compositeness ansatz is sufficient to protect the model from dangerous

flavour- and CP-violating contributions to physical observables.

If we assume the ‘worst-case scenario’ of an anarchic charge assignment (Zf i = O(Z)

for every field f i = {QiL, uiR, diR, LiL, E
j
R}), we obtain couplings of the following sizes:

(Y U
η )ij ≡ Yuiuj ∼ gρε

q
i ε
u
j

√
2v

fη
Z =

√
2v

fη
Z

 6.3× 10−6 6.8× 10−4 9.9× 10−3

2.8× 10−5 3.0× 10−3 4.4× 10−2

5.4× 10−4 6.0× 10−2 0.87

(4.12)

(Y D
η )ij ≡ Ydidj ∼ gρε

q
i ε
d
j

√
2v

fη
Z =

√
2v

fη
Z

 1.4× 10−5 6.1× 10−5 1.6× 10−4

6.3× 10−5 2.7× 10−4 7.1× 10−4

1.2× 10−3 5.3× 10−3 1.4× 10−2

(4.13)

(Y E
η )ij ≡ Yeiej ∼ gρε`iεej

√
2v

fη
Z =

√
2v

fη
Z

 2.8× 10−6 4.1× 10−5 1.7× 10−4

4.1× 10−5 5.9× 10−4 2.5× 10−3

1.7× 10−4 2.5× 10−3 1.0× 10−2

(4.14)

These couplings are subject to phenomenological constraints. Bounds derived from flavour

and CP violating processes induced by the exchange of the η boson can be found in

the model independent analysis of [27]. We translate these into bounds on the combi-

nation Z
fη

, as reported in Fig. 2. It is clear from these results that, in order to pass

the bounds imposed by observables involving the first two families of quarks, we need

Z
(

fη
700 GeV

)−1 ( Mη

750 GeV

)−1
. 10−2. The values of Z and fη are unknown and depend

on the details of the strongly coupled sector. However, the most natural expectation is

that fη ∼ f and Z ∼ 1, because the composite Higgs and the composite η are generated

from the same strong dynamics. If this is the case, an extra source of flavour protection is

required. An easy fix to this problem is to assume that the η PNGB couples to flavour in

a universal way. More specifically, we can impose that Zf i = Zf for i = {1, 2, 3}. In this

case the η and the Higgs boson couplings to fermions are aligned in each sector, such that

(Y U
η )ij = iδij

mU
i

fη
(ZQL − ZuR) mU

i = {mu,mc,mt} (4.15)

(Y D
η )ij = iδij

mD
i

fη
(ZQL − ZdR) mD

i = {md,ms,mb} (4.16)

(Y E
η )ij = iδij

mE
i

fη
(ZLL − ZeR) mE

i = {me,mµ,mτ} (4.17)

All the flavour and CP problems are solved, since this pattern is flavour diagonal.12 It is,

moreover, rather predictive. Indeed the η, like the Higgs, couples predominantly to the

third generation. This could have important implications for the production and decay

mechanisms of the singlet, as we now discuss.

12There remain, however, sub-dominant flavour violating contributions from possible derivative operators,

analogous to those described in [28].
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Bound on Yf,f ′ Observable Z
(

fη
700 GeV

)−1 ( Mη

750 GeV

)−1
√

Re[(Ysd)2],
√

Re[(Yds)2] < 1.3× 10−4
(

Mη

750 GeV

)
∆mK < 5.9√

Re[(YsdY
∗
ds] < 4.6× 10−5

(
Mη

750 GeV

)
∆mK < 2.1√

Im[(Ysd)2],
√

Im[(Yds)2] < 3.4× 10−6
(

Mη

750 GeV

)
εK < 0.15√

Im[(YsdY
∗
ds] < 1.6× 10−5

(
Mη

750 GeV

)
εK < 5.2× 10−2√

Re[(Ycu)2],
√

Re[(Yuc)2] < 3.3× 10−4
(

Mη

750 GeV

)
xD < 1.4√

Re[YcuY ∗uc] < 3.9× 10−5
(

Mη

750 GeV

)
xD < 0.17√

Im[(Ycu)2],
√

Im[(Yuc)2] < 4.0× 10−5
(

Mη

750 GeV

)
(q/p)D, φD < 0.17√

Im[YcuY ∗uc] < 4.0× 10−5
(

Mη

750 GeV

)
(q/p)D, φD < 2.0× 10−2√

Re[(Ybd)2],
√

Re[(Ybd)2] < 4.1× 10−4
(

Mη

750 GeV

)
∆md < 7.3√

Re[YbdY
∗
db],
√

Re[(Ybd)2] < 1.4× 10−4
(

Mη

750 GeV

)
∆md < 2.4√

Im[(Ybd)2],
√

Im[(Ybd)2] < 2.3× 10−4
(

Mη

750 GeV

)
sin 2β < 4.1√

Im[(Ybd)Y
∗
db] < 7.6× 10−5

(
Mη

750 GeV

)
sin 2β < 1.4

|(Ybs)|, |(Ysb)| < 1.7× 10−3
(

Mη

750 GeV

)
∆ms < 0.91√

|YbsY ∗sb| < 5.7× 10−4
(

Mη

750 GeV

)
∆ms < 0.31

Figure 2. Constraints on η couplings to SM fermions (first column) derived from low energy

precision observables (second column). The limits on Z
fηMη

are presented in the third column.

In the narrow width approximation the prompt η production at the LHC can be

expressed in terms of the relevant decay widths

σ(pp→ η) =
1

Mη s

∑
P

CPP (Mη, s) ΓPP , (4.18)

where
√
s is the center of mass energy of the collider and CPP (Mη, s) parametrise the

relevant parton luminosities. In our framework the relevant partons to be taken into

account are expected to be the gluons (if the associated anomalous term in Eq.(2.2) is

present) and the bottom quarks. The explicit expressions for the partial widths are given

by

Γ(η → gg) = c23
α2
s

8π3
M3
η

f2η
, (4.19)

Γ(η → bb̄) =
3Mη

8π
(Y D
η )233. (4.20)

The mechanism of partial compositeness allows also to predict the dominant decay mode

to be into top-quarks if mη > 2mt. Depending on the value of the mass of the PNGB,
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phase space could be important and the expression for the decay width in this channel is

given by

Γ(η → tt̄) =
3Mη

8π
(Y U
η )233

(
1− 4m2

t

m2
η

)3/2

. (4.21)

The large coupling of η with the heaviest fermion allows for its production at LHC in

association with top quarks. A recent analysis from the ATLAS collaboration [29], using

data at
√
s = 13 TeV, leads to the following bound:

σ(pp→ η + tt)×Br(η → tt) . O(10−1) pb (4.22)

for a mass of the PNGB mη < 1 TeV.

We conclude this section noticing that the simple flavour structure that we have just

described, while guaranteeing immunity from flavour problems, does not allow one to gen-

erate a scalar potential (and hence a mass) for the singlet from fermionic couplings. As we

discuss in the next Section, to do so requires that at least one of the elementary fermions

in the partial compositeness scenario mixes with multiple strong-sector operators. Even

if one tries to do so in a way that is as safe as possible (for example by allowing the

right-handed up quarks to couple to strong-sector operators with just two values of the

U(1)η charge), one ends up re-introducing flavour-violation in the right-handed up sector

at a level comparable to that obtained with anarchic charge assignments in Fig. 2, which

is itself comparable to that obtained in the minimal composite Higgs model. Thus, if one

wishes to generate the scalar potential from fermionic couplings, it would seem that either

a mild tuning or some kind of flavour-alignment mechanism (such as those advanced in

[30]) is required.

5 The scalar potential

Since the η singlet is protected by a shift symmetry, its mass and non-derivative interactions

must be proportional to U(1)η-breaking couplings. The elementary fermion couplings to

the strong sector are the main source of such global symmetry violations, and the η singlet

then obtains a potential via the same Coleman-Weinberg mechanism that radiatively gen-

erates the pseudo-Goldstone Higgs potential at one loop. This must originate from fermion

couplings, since no potential is generated by gauge couplings in the absence of anoma-

lies, because U(1)η commutes with the rest of G.13 The particular form of the symmetry

breaking from Yukawa couplings is, in general, model-dependent.

To illustrate the mechanism in a minimal phenomenological model, we take an elemen-

tary top-right coupling to two strong-sector operators with different U(1)η charges such

that the symmetry is explicitly broken by a collective mechanism.14 The doubling of the

13In the presence of anomalies and without other sources of U(1)η-breaking, the η plays the role of an

electroweak axion. The resulting contributions to its mass are thus completely negligible compared to those

considered here.
14This is in contrast to various composite Higgs models where the top right is a fully composite state.
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top-right operator is necessary to break the U(1)η symmetry, since with only one operator,

we can restore it by assigning a suitable U(1)η charge to the elementary fermion.

The simplest realisation of the model is to extend the minimal composite Higgs with the

elementary fermions qL, uR, and dR uplifted to a spinorial representation of SO(5), under

which the corresponding composite operators Oq,Ou1 ,Ou2 and Od transform. Summing

implicitly over three flavours, the relevant Lagrangian terms may be written as

L ⊃ gρεqqLOq + gρε
u1uROu1 + gρε

u2uROu2 + gρε
ddROd + h.c. . (5.1)

We see that if one of the two top-right couplings is set to zero then a U(1)η symmetry may

be restored. The doubling of the corresponding uR operator thereby provides a collective

mechanism for breaking the symmetry. The elementary fermions embedded in complete

spinorial representations of SO(5) decompose as 4 = (2,1)+(1,2) under SU(2)L×SU(2)R.

By completing the representation with spurious fermions they can be represented by fields

transforming under this symmetry as

Ψq =

(
qL
0

)Zq
1
6

, Ψu1 =

 0(
uR
0

)
Zu1

1
6

, Ψu2 =

 0(
uR
0

)
Zu2

1
6

, Ψd =

 0(
0

dR

)
Zd

1
6

,

where the superscript Z represents the U(1)η charges and the subscript is the U(1)X charge

assigned by requiring Y = T 3
R + X. We have set to zero the non-dynamical spurions that

complete the SU(2)L (SU(2)R) representation in the upper (lower) two components of the

multiplet, though they are formally required to restore the global SO(5) symmetry.

The Coleman-Weinberg effective potential may be derived by writing the most general

SO(5)×U(1)X×U(1)η-invariant effective action then setting the spurions to zero to recover

the effective Lagrangian, as detailed in Appendix A. The quadratic terms in the background

of the Higgs and singlet are then responsible for the one-loop effective action. Assuming

real CP-conserving form factors, we obtain for the third-generation qL = (tL, bL), tR sector,

in momentum space,

L = qL/p [Πq
0(p) + Πq

1(p)ch] qL

+ tR/p
[
Π12

0 (p) + Πu12
0 (p)c12η −

(
Π12

1 (p) + Πu12
1 (p)c12η

)
ch
]
tR + h.c.

+ qL [Mu1
1 (p)Uq1 +Mu2

1 (p)Uq2] shH
ctR + h.c. , (5.2)

where Hc ≡ iσ2H with H the usual complex Higgs doublet and

Urs ≡ e
i
√
2

fη
(Zr−Zs)η

= crsη + isrsη .

We have also defined ch ≡ cos (h/f), sh ≡ sin (h/f), crsη ≡ cos
(√

2(Zr − Zs)η/fη
)
, and

srsη ≡ sin
(√

2(Zr − Zs)η/fη
)
, with h ≡

√
haha, a = 1, 2, 3, 4. The Π0,1,M1 functions are

form factors that encapsulate effects from strong dynamics. The resulting potential is

detailed in Appendix A with the leading-order approximation found to be of the form

V (h, η) '
(
α+ α12c

12
η

)
ch −

(
β + β12c

12
η

)
s2h , (5.3)
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where α, β, α12, and β12 are coefficients related to momentum integrals of the π0,1,M1 form

factors. Thus, the resulting potential is almost identical to that obtained in the minimal

model in [6], but with the coefficients replaced by α, β → α+ α12c
12
η , β + β12c

12
η .

The potential has extrema occuring at s12η = 0 =⇒ c12η = ±115 and ch = −1
2
α±α12
β±β12 .

As is usual in composite Higgs models, we find that with O(1) values for the coefficients,

v ∼ f is expected and so a slight tuning is needed to obtain the required suppression of

the the weak scale for compatibility with electroweak precision tests.

There is no mixing between the Higgs and η, so no risk of running into bounds from

existing observations in the Higgs sector. The non-vanishing second derivatives are given

by

∂V

∂η2
= ∓ 1

f2η
(α12ch + β12s

2
h) (5.4)

∂V

∂h2
= − 1

f2
[(α± α12)ch − 2(β ± β12)c2h] =

2

f2
(β ± β12)s2h =

2

f2
v2

f2
(β ± β12) (5.5)

Thus, once we have tuned the electroweak vev to be small compared to f , we will also

obtain a corresponding suppression of the Higgs mass-squared, exactly as one finds in [6].

The mass of η, however, is unsuppressed, so we obtain a hierarchy of scales, of parametric

size v/f (assuming fη ∼ f) between the η mass and either the electroweak scale or the

mass of the Higgs boson.

An identical conclusion is reached if we instead embed the elementary fermions in

the fundamental, 5-d representation of SO(5), as we describe in Appendix A. (In this

case, as we discuss in Appendix 3, we can also protect the ZbLbL coupling by a custodial

symmetry.) The hierarchy of scales is, in fact, generic, and follows from the fact that the

scalar potential is an even function of h. Indeed, with V (h, η) = f(h2, η), we obtain that

∂V ∂h2 = 4v2∂f/∂h2|v, at an electroweak-symmetry-breaking minimum. One can also see

that any mixing between the mass eigenstates of the singlet and the Higgs will also be v/f

suppressed.

Although this hierarchy of scales is generic, it may be affected by the well-known

difficulty (see e.g. [31] for a comprehensive discussion) of accommodating a Higgs mass as

low as 125 GeV in composite Higgs models, given the size of contributions to the Higgs

potential from top quark loops. If the required additional suppression is an accidental

tuning, then we expect no corresponding suppression in the η mass. But if it is achieved

by the presence of light top partners that cut off all contributions to the scalar potential,

then one should find a corresponding suppression of the η mass.

6 Conclusion

Composite Higgs models remain viable possibilities for solving the electroweak hierarchy

problem. Here we introduced the most minimal extension of the coset structure allowing a

non-trivial anomaly structure and discussed the details of the low-energy action reproducing

15We remark that a vacuum with c12η = −1 does not imply spontaneous violation of CP , because CP

sends η → −η and because physics is periodic in the argument of the cosine.
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the anomalies. We showed that there can be higher-order corrections, beyond dimension 5,

to the action reproducing the SO(5)2U(1) anomaly, but also pointed out that the effective

action is not unique. We also showed that the structure of the coset space admits a

possible Wess-Zumino-Witten term, by which we mean a term in the effective lagrangian

which is not invariant under the non-linearly realized symmetries, but rather shifts by a

total derivative. Unlike in QCD, this term is not contained in the anomalous effective

action that we consider. If present, the term leads to an exotic phenomenological signature

in the form of the singlet decay η → hW+W−Z.

The discussion of the anomaly structure in this specific model highlights three ques-

tions that it would be interesting to resolve in models based on a general coset space,

G/H. Firstly: is there a way to resolve the non-uniqueness issue of the low-energy anoma-

lous effective action? Secondly: do Wess-Zumino-Witten terms that are not required to

reproduce triangle anomalies have some other purpose? Thirdly, is there an elegant way

to write the Wess-Zumino-Witten term for coset spaces whose fourth homotopy group is

non-vanishing?

The anomaly-induced production and decays of the singlet may induce flavour violation

of its couplings to fermions and we have shown how they can be kept under control without

fine-tuning if the η couples in a flavour-universal way through the mechanism of partial

compositeness. For natural O(1) charge assignments, this pattern of coupling predicts a

large decay width through the tt final state.

We also showed how the potential for the PNGB Higgs and singlet can be generated by

elementary fermion couplings to the strong sector that break the global symmetry, though

this requires a slight departure from the flavour-universal pattern of couplings, because of

the need for a collective breaking mechanism to give mass to the singlet. We find that the

singlet mass is naturally unsuppressed relative to the Higgs mass and electroweak scale,

thus requiring no additional tuning beyond the usual ones needed for a small electroweak

scale and light Higgs mass in composite models. Since the form of the potential contains

no mixing between the Higgs and the singlet there are no further bounds from the Higgs

sector.

Should the Higgs arise as a pseudo-Nambu-Goldstone boson, it will be imperative to

determine the new strong sector responsible for it. Given our current limited understanding

of strongly-coupled theories, the anomaly structure, if present, may be crucial in gaining

some insight as to the nature of the underlying UV dynamics. We hope that the model

described here, or some variant thereof, may be useful in this regard.
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A Scalar potential computations

Higgs-singlet potential in the extension of the MCHM4

The elementary fermions are uplifted to a 4 of SO(5), which decomposes as 4 = (2,1) +

(1,2) under SU(2)L×SU(2)R. The most general SO(5)×U(1)X×U(1)η-invariant effective

action up to quadratic order can then be written in momentum space as

L =
∑

r=q,u1,u2,d

Ψr/p
[
Πr

0(p) + Πr
1(p)Γ

iΣi

]
Ψr +

{
Ψu1/p

[
Πu12

0 (p) + Πu12
1 (p)ΓiΣi

]
U12Ψu2 + h.c.

}
+

∑
r=u1,u2,d

{
Ψq

[
M r

0 (p) +M r
1 (p)ΓiΣi

]
UqrΨr + h.c.

}
, (A.1)

where the pseudo-Goldstone singlet η and Higgs doublet ha = (h1, h2, h3, h4) are given here

by

Σi =
sh
h

(
h1, h2, h3, h4, h

ch
sh

)
Urs = e

i
√
2

fη
(Zr−Zs)η

= crsη + isrsη , (A.2)

We recall the definitions h ≡
√
haha, ch ≡ cos (h/f), sh ≡ sin (h/f), crsη ≡ cos

(√
2(Zr − Zs)η/fη

)
,

and srsη ≡ sin
(√

2(Zr − Zs)η/fη
)
. Explicit expressions for the SO(5) gamma matrices Γi

can be found in Ref. [6]. The Π(p),M(p) functions are form factors that encapsulate

information from the strong sector.

Setting to zero the non-dynamical spurions that complete the Ψ representation, we

obtain the quadratic terms in the Lagrangian for the third generation qL = (tL, bL), tR
sector,

L = qL/p [Πq
0(p) + Πq

1(p)ch] qL + tR/p [Πu1
0 + Πu2

0 − (Πu1
1 + Πu2

1 ) ch] tR

+ tR/p [Πu12
0 −Πu12

1 ch]UZ1−Z2tR + h.c.

+ qL
(
Mu1

1 UZq−Zq +Mu2
1 UZq−Z2

)
shĤ

ctR + h.c. , (A.3)

where Hc ≡ iσ2H and H is the complex Higgs doublet. Assuming real CP-conserving form

factors, this becomes

L = qL/p [Πq
0(p) + Πq

1(p)ch] qL

+ tR/p
[
Π12

0 (p) + Πu12
0 (p)c12η −

(
Π12

1 (p) + Πu12
1 (p)c12η

)
ch
]
tR + h.c.

+ qL [Mu1
1 (p)Uq1 +Mu2

1 (p)Uq2] shH
ctR + h.c. , (A.4)

where Π12
0,1 ≡ Πu1

0,1 +Πu2
0,1. Including the SU(2)L gauge field contributions with form factors

Π0 and Π1 as defined in Ref. [6], the resulting Coleman-Weinberg potential generated at
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one loop is given by

V (h, η) = −2Nc

∫
d4p

(2π)4

{
2 log

(
1 +

Πq
1

Πq
0

ch

)
+ log

(
1−

Π12
1 + Πu12

1 c12η
Π12

0 + Πu12
0 c12η

ch

)

+ log

(
1− |Mu1

1 Uq1 +Mu2
1 Uq2|2

p2 (Πq
0 + Πq

1ch)
[(

Π12
0 −Π12

1 ch
)

+ (Πu12
0 −Πu12

1 ch) c12η
]s2h
)}

+
9

2

∫
d4p

(2π)4
log

(
1 +

1

4

Π1

Π0
s2h

)
. (A.5)

Assuming the form factors decrease fast enough with increasing momentum, the logarithm

may be expanded to give the leading-order approximation for the potential,

V (h, η) '
(
α+ α12c

12
η

)
ch −

(
β + β12c

12
η

)
s2h . (A.6)

The coefficients are related to the form factor integrals as

α = 2Nc

∫
d4p

(2π)4

(
Π12

1

Π12
0 + Πu12

0

− 2
Πq

1

Πq
0

)
, α12 = 2Nc

∫
d4p

(2π)4

(
Πu12

1

Π12
0 + Πu12

0

)
,

βV = −
∫

d4p

(2π)4
9

8

Π1

Π0
, β1,2 = 2Nc

∫
d4p

(2π)4

( (
M

u1,2
1

)2
(−p2) (Πq

0 + Πq
1)
(
Π12

0 + Πu12
0 −Π12

1 −Πu12
1

)) ,

β12 = 2Nc

∫
d4p

(2π)4

(
2Mu1

1 Mu2
1

(−p2) (Πq
0 + Πq

1)
(
Π12

0 + Πu12
0 −Π12

1 −Πu12
1

)) ,

with β ≡ βV + β1 + β2.

Higgs-singlet potential in the extension of the MCHM5

The elementary fermions may instead be embedded in the fundamental representation of

SO(5). Such a setup can also be extended to protect the ZbLbL coupling by a custodial

symmetry if we assume that qL is embedded such that it couples to two operators with

different U(1)X charges. The resulting Lagrangian of the effective coupling to the composite

operators can be written as

L = gρε
q1qLOq1 + gρε

q2qLOq2 + gρε
u1uROu1 + gρε

u2uROu2 + gρε
ddROd + h.c. .

The fields transforming under the 5 of SO(5) with non-dynamical spurions completing the
representation (which we again set here to zero) are chosen to be

Ψ1L =
1√
2


−bL
ibL
tL
−itL

0


Zq1

2
3

, Ψ2L =
1√
2


tL
−itL
bL
−ibL

0


Zq2

− 1
3

, Ψ1,2R =


0

0

0

0

uR


Z1,2

2
3

, ΨdR =


0

0

0

0

dR


Zd

− 2
3

.

The superscripts and subscripts denote the U(1)η and U(1)X charges respectively. It might

initially seem that an explicit breaking of U(1)η from qL coupling to two different operators
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will generate a potential for the singlet, thus making the doubling of the top-right couplings

redundant, but it turns out that the unbroken U(1)X symmetry forbids the necessary η

coupling in the effective action. For this reason we minimally extend the top-right sector

as in the previous model and fix Zq1 = Zq2 = Zq.

The most general effective action under SO(5)× U(1)X × U(1)η is then

L =
∑
r=1,2

Ψ
i
rL/p
(
δijΠ̂rL

0 + ΣiΣjΠ̂rL
1

)
Ψj
rL

+
∑

r=1,2,d

ψ
i
rR/p

(
δijΠ̂rR

0 + ΣiΣjΠ̂rR
1

)
Ψj
rR

+

∑
r=1,2

Ψ
i
1L

(
δijM̂1rL

0 + ΣiΣ
jM̂1rL

1

)
UqrΨ

j
rR

+ Ψ
i
2L

(
δijM̂2bL

0 + ΣiΣjM̂2bL
1

)
UqbΨ

j
dR

+Ψ
i
1R/p

(
δijΠ̂12R

0 + ΣiΣjΠ̂12R
1

)
U12Ψ

j
2R

+ h.c.

]
. (A.7)

Setting the non-dynamical spurions to zero to keep the relevant terms for computing the

Coleman-Weinberg effective potential, omitting the bottom contributions, we find

L = qL/p

[
Πq

0 +
1

2
s2h

(
Πq1

1 Ĥ
cĤc

†
+ Πq2

1 ĤĤ
†
)]
qL + uR/p

[
Πu

0 +
1

2
s2hΠu

1

]
uR

+

[
1√
2
chsh

(
M qu1

1 Uq1 +M qu2
1 Uq2

)
qLĤ

cuR + h.c.

]
+ uR/pRe

{(
Πuu

0 +
1

2
s2hΠuu

1

)
U12

}
uR , (A.8)

where

Πq
0 ≡ Π̂1L

0 + Π̂2L
0 , Πq1,q2

1 ≡ Π̂1L,2L
1 , Πu

1 ≡ −2
(

Π̂1R
1 + Π̂2R

1

)
, Πuu

1 ≡ −2Π̂12R
1 ,

Πu
0 ≡ Π̂1R

0 + Π̂2R
0 + Π̂1R

1 + Π̂2R
1 , M qu1,qu2

1 ≡ M̂11L,12L
1 , Πuu

0 ≡ Π̂12R
0 + Π̂12R

1 .

(A.9)

Assuming real form factors with CP conservation, in the unitary gauge this gives for the

top quark sector the quadratic Lagrangian

L = tL/p

[
Πq

0 +
1

2
s2hΠq1

1

]
tL + tR/p

[
Πu

0 + Πuu
0 +

1

2
s2h
(
Πu

1 + Πuu
1 c12η

)]
tR

+

[
1√
2

(
M qu1

1 Uq1 +M qu2
1 Uq2

)
chshtLtR + h.c.

]
. (A.10)

The resulting Coleman-Weinberg potential is

V (h, η) =
9

2

∫
d4p

(2π)4
log

(
1 +

1

4

Π1

Π0
s2h

)
− 2Nc

∫
d4p

(2π)4

 log

(
1 +

1

2

Πq1
1

Πq
0

s2h

)

+ log

(
1 +

1

2

Πq2
1

Πq
0

s2h

)
+ log

(
1 +

1

2

(
Πu

1 + Πuu
1 c12η

)
s2h

Πu
0 + Πuu

0

)

+ log

1−
1
2

∣∣∣M qu1
1 Uq1 +M qu2

1 Uq2

∣∣∣2 c2hs2h
p2
[
Πu

0 + Πuu
0 + 1

2s
2
h

(
Πu

1 + Πuu
1 c12η

)] [
Πq

0 + 1
2s

2
hΠq1

1

]

 , (A.11)
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which may be simplified to the form

V (h, η) '
(
α+ α12c

12
η

)
s2h −

(
β + β12c

12
η

)
c2hs

2
h . (A.12)

B Higher-order contributions to the anomalous effective action

To compute higher-order contributions to the anomalous effective action (3.1) for the

SO(5) × U(1)/SO(4) model, it is useful to consider what happens if we start from some

G/H and add an additional, broken, ungauged, U(1) factor, along with a G2U(1) triangle

anomaly. We thus need to add a Goldstone boson η to the existing Goldstone bosons, ξ,

and to make the replacements At → At − tdη =⇒ Ft → Ft, A
2
t → A2

t .

We observe that η can appear in G± in (3.1) only in the terms (At)k(Ft)h,k(At)k →
(At)k(Ft)h,k(At)k−tdη[(Ft)h,k, (At)k]. Since we must take the trace of this with a Goldstone

boson ξ in G/H in order to get a non-vanishing contribution via the anomaly, and since

the generators in g are orthogonal, the sole such contribution to the action is given by

Γ ⊃ 4c+

∫
tdηtrξ[(Ft)h, (At)k]. (B.1)

In addition, we get contributions where we take terms in G± not involving η, of the form

Γ ⊃
∑
±
c±

∫
ηtrG±[At]. (B.2)

These simplify dramatically. Indeed, orthogonality of generators, together with tr(A2
kFk +

AkFkAk + FkA
2
k) = trA2

kFk = 0, implies that G− = 0. Moreover, since tr(At)
4
k = 0, we

see that there can be no WZW term arising from our anomalous effective action in the

ungauged limit.

All in all, we find that the anomalous action can be simplified to

Γ = c+

∫ (
ηtr[3(Ft)

2
h + (Ft)

2
k − 4(At)

2
k(Ft)h] + 4tdηtrξ[(Ft)h, (At)k]

)
. (B.3)

We now consider the contributions of each of the triangle anomalies in turn. For

SU(3)2U(1) and the anomalies involving U(1)s, the effective action just reduces to∫
c3ηtrGG+ c1ηBB (B.4)

to all orders.

Things are somewhat more complicated for the SO(5)2U(1) anomaly. Let us content

ourselves with computing the action at the next-to-leading order. Evidently, we have that

Fk = t[ξ, F ] + . . . (B.5)

Fh = F +
t2

2
[ξ, [ξ, F ]] + . . . (B.6)

Ak = −t(dξ − [ξ, A]) + · · · ≡ −t(Dξ) + . . . . (B.7)
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From which it is clear that the first corrections arise not at dimension 6, but at dimension

7. Explicitly, we find16∫
c5
3
ηtr(3F 2 +

1

2
(F [ξ, [ξ, F ]] + [ξ, [ξ, F ]]F + 2[ξ, F ]2)− 4

3
(Dξ)2F ) +

4

3
dηtrξ[F,Dξ] + . . .

(B.8)

The last term may be integrated by parts, to get∫
4

3
dηtrξ[F,Dξ] =

∫
4

3
ηtr(2(Dξ)2F − ξ[F, [F, ξ]]). (B.9)

Finally, we obtain∫
c5
3
ηtr(3F 2 +

1

2
(F [ξ, [ξ, F ]] + [ξ, [ξ, F ]]F + 2[ξ, F ]2) +

4

3
(Dξ)2F )− 4

3
ξ[F, [F, ξ]] + . . .

(B.10)

To convert this into an explicit formula in terms of SU(2) × U(1) invariant operators in

the basis of [21], we use the basis for so(5) ' sp(2) [7], wherein 17

F =
1

2

(
W iσi 0

0 Bσ3

)
, ξ =

(
0 (HcH)

(HcH)† 0

)
. (B.11)

The only non-vanishing term at next-to-leading order is the last one, for which

trξ[F, [F, ξ]] = H†H(W iW i +B2) + 2H†σiHW iB, (B.12)

where W i and B are the field strength 2-forms.

Putting everything together, we obtain the expression in eq. 3.5.

References

[1] D. B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett.

B136 (1984) 183.

[2] H. Georgi and D. B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B145 (1984)

216.

[3] M. J. Dugan, H. Georgi, and D. B. Kaplan, Anatomy of a Composite Higgs Model, Nucl.

Phys. B254 (1985) 299.

[4] J. S. Bell and R. Jackiw, A PCAC puzzle: π → γγ in the sigma model, Nuovo Cim. A60

(1969) 47–61.

[5] S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177 (Jan, 1969)

2426–2438.

[6] K. Agashe, R. Contino, and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.

B719 (2005) 165–187, [hep-ph/0412089].

16The term multiplied by 1
2

simplifies to [[F 2, ξ], ξ], but we prefer to write it in a form that leaves the Lie

algebra structure manifest.
17We have removed erroneous factors of ±i that appear in [7].

– 21 –

http://xxx.lanl.gov/abs/hep-ph/0412089


[7] B. Gripaios, A. Pomarol, F. Riva, and J. Serra, Beyond the Minimal Composite Higgs Model,

JHEP 04 (2009) 070, [arXiv:0902.1483].

[8] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B37 (1971)

95–97.

[9] E. Witten, Global aspects of current algebra, Nuclear Physics B 223 (Aug., 1983) 422–432.

[10] B. Gripaios, Anomaly Holography, the Wess-Zumino-Witten Term, and Electroweak

Symmetry Breaking, Phys. Lett. B663 (2008) 419–423, [arXiv:0803.0497].

[11] K. Agashe, R. Contino, L. Da Rold, and A. Pomarol, A custodial symmetry for Z b anti-b,

Phys. Lett. B641 (2006) 62–66, [hep-ph/0605341].

[12] B. Bellazzini, R. Franceschini, F. Sala, and J. Serra, Goldstones in Diphotons,

arXiv:1512.0533.

[13] B. Gripaios, Composite Leptoquarks at the LHC, JHEP 02 (2010) 045, [arXiv:0910.1789].

[14] B. Gripaios, A. Papaefstathiou, K. Sakurai, and B. Webber, Searching for third-generation

composite leptoquarks at the LHC, JHEP 01 (2011) 156, [arXiv:1010.3962].

[15] B. Gripaios, M. Nardecchia, and S. A. Renner, Composite leptoquarks and anomalies in

B-meson decays, JHEP 05 (2015) 006, [arXiv:1412.1791].

[16] J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323–379.

[17] C.-S. Chu, P.-M. Ho, and B. Zumino, NonAbelian anomalies and effective actions for a

homogeneous space G/H, Nucl. Phys. B475 (1996) 484–504, [hep-th/9602093].

[18] S. Weinberg, The Quantum Theory of Fields. Cambridge University Press, 2005.

[19] B. Gripaios, Lectures on Effective Field Theory, arXiv:1506.0503.

[20] E. D’Hoker and S. Weinberg, General effective actions, Phys. Rev. D50 (1994) 6050–6053,

[hep-ph/9409402].

[21] B. Gripaios and D. Sutherland, An operator basis for the Standard Model with an added

scalar singlet, arXiv:1604.0736.

[22] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, A. Pomarol, R. Rattazzi,

M. Redi, F. Riva, A. Strumia, and R. Torre, What is the γγ resonance at 750 GeV?, JHEP

03 (2016) 144, [arXiv:1512.0493].

[23] B. Gripaios, T. Mller, M. A. Parker, and D. Sutherland, Search Strategies for Top Partners

in Composite Higgs models, JHEP 08 (2014) 171, [arXiv:1406.5957].

[24] D. B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion

masses, Nucl. Phys. B365 (1991) 259–278.

[25] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, The Strongly-Interacting Light

Higgs, JHEP 06 (2007) 045, [hep-ph/0703164].

[26] B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi, et al., On Partial

Compositeness and the CP asymmetry in charm decays, Nucl.Phys. B867 (2013) 394–428,

[arXiv:1205.5803].

[27] F. Goertz, J. F. Kamenik, A. Katz, and M. Nardecchia, Indirect Constraints on the Scalar

Di-Photon Resonance at the LHC, arXiv:1512.0850.

– 22 –

http://xxx.lanl.gov/abs/0902.1483
http://xxx.lanl.gov/abs/0803.0497
http://xxx.lanl.gov/abs/hep-ph/0605341
http://xxx.lanl.gov/abs/1512.0533
http://xxx.lanl.gov/abs/0910.1789
http://xxx.lanl.gov/abs/1010.3962
http://xxx.lanl.gov/abs/1412.1791
http://xxx.lanl.gov/abs/hep-th/9602093
http://xxx.lanl.gov/abs/1506.0503
http://xxx.lanl.gov/abs/hep-ph/9409402
http://xxx.lanl.gov/abs/1604.0736
http://xxx.lanl.gov/abs/1512.0493
http://xxx.lanl.gov/abs/1406.5957
http://xxx.lanl.gov/abs/hep-ph/0703164
http://xxx.lanl.gov/abs/1205.5803
http://xxx.lanl.gov/abs/1512.0850


[28] K. Agashe and R. Contino, Composite Higgs-Mediated FCNC, Phys. Rev. D80 (2009)

075016, [arXiv:0906.1542].

[29] ATLAS Collaboration, Search for new phenomena in tt final states with additional

heavy-flavour jets in pp collisions at
√
s = 13 TeV with the ATLAS detector, .

ATLAS-CONF-2016-104.

[30] M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011)

108, [arXiv:1106.6357].

[31] G. Panico, M. Redi, A. Tesi, and A. Wulzer, On the Tuning and the Mass of the Composite

Higgs, JHEP 03 (2013) 051, [arXiv:1210.7114].

– 23 –

http://xxx.lanl.gov/abs/0906.1542
http://xxx.lanl.gov/abs/1106.6357
http://xxx.lanl.gov/abs/1210.7114

	1 Introduction
	2 The model
	3 Anomalies and WZW-like terms
	4 Couplings to fermions and flavour violation
	5 The scalar potential
	6 Conclusion
	A Scalar potential computations
	B Higher-order contributions to the anomalous effective action

