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Abstract
Purpose of Review To provide a focused update on recent advances in positron emission tomography (PET) imaging in vascular
inflammatory diseases and consider future directions in the field.
Recent Findings While PET imaging with 18F-fluorodeoxyglucose (FDG) can provide a useful marker of disease activity in
several vascular inflammatory diseases, including atherosclerosis and large-vessel vasculitis, this tracer lacks inflammatory cell
specificity and is not a practical solution for imaging the coronary vasculature because of avid background myocardial signal. To
overcome these limitations, research is ongoing to identify novel PET tracers that can more accurately track individual compo-
nents of vascular immune responses. Use of these novel PET tracers could lead to a better understanding of underlying disease
mechanisms and help inform the identification and stratification of patients for newly emerging immune-modulatory therapies.
Summary Future research is needed to realise the true clinical translational value of PET imaging in vascular inflammatory
diseases.
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Introduction

Inflammation is the cause or consequence of many cardiovas-
cular diseases. In particular, inflammation is central to the
pathogenesis of atherosclerosis [1], the most common cause
of myocardial infarction and ischaemic stroke. Large-vessel
vasculitis (LVV) is another important vascular inflammatory
disease, which is associated with progressive arterial injury
and accelerated coronary atherosclerosis.

Non-invasive imaging is a key component of the diagnostic
and disease-monitoring pathways for these cardiovascular in-
flammatory diseases. While echocardiography, CT, MRI, and
nuclear perfusion imaging are first-line non-invasive cardiac
investigations, positron emission tomography (PET) imaging
of inflammation can also play an important clinical role.
Moreover, advances in cardiovascular PET imaging research
and technology, including hybrid PET/MRI and total body
PET, may open new clinical translational avenues in the near
future.

In atherosclerosis, vascular inflammation detected by PET
may serve as a marker of high-risk plaques or overall height-
ened disease activity. This approach could be particularly im-
portant in the post CANTOS (Canakinumab Anti-
inflammatory Thrombosis Outcome Study) [2••] and
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COLCOT (Colchicine Cardiovascular Outcomes Trial) [3••]
era, either as a means of testing drug efficacy in clinical trials
or identifying and stratifying groups of individuals whowould
most benefit from novel anti-inflammatory therapies.
Moreover, while PET imaging is already an established tech-
nique for diagnosis of LVV, further research is needed to
evaluate its role for tracking therapy responses and identifying
individuals with residual or refractory disease that require
treatment escalation.

This article aims to provide a focused update on recent
research relating to PET imaging of vascular inflammation
in atherosclerosis and LVV. Specifically, we will highlight
three key areas of ongoing research that may be the most
clinically relevant in coming years:

i) Evaluation of novel PET tracers for imaging specific
components of the vascular immune response

ii) Use of PET imaging in the clinical trials pipeline to gain
early insights about drug efficacy

iii) Investigation of PET imaging for identification and
stratification of high-risk patients for emerging immu-
nomodulatory therapies.

18F-FDG PET Imaging of Vascular
Inflammation

PET “tracers” are ligands or molecules of interest that are
labelled with positron emitting radionuclides, allowing them
to be localised in the body after injection by the detection of
gamma rays, the by-product of annihilation events occurring
when a positron encounters an electron. While PET is ex-
tremely sensitive, it has poor spatial resolution, and hence,
integrated PET scanners are used to co-register PET images
with CT or MRI for accurate anatomical localisation. The
great advantage of PET as a molecular imaging technique lies
in its ability to target specific pathologic features or processes
of interest.

18F-fluorodeoxyglucose (FDG) is the most commonly used
PET tracer, both in clinical practice and research relating to
vascular inflammation. As a radiolabelled glucose analogue,
18F-FDG is taken up by all metabolically active cells that rely
on glucose as a substrate, including macrophages and other
inflammatory cells (e.g. neutrophils and lymphocytes).
Stemming from the initial proof-of-principle study to evaluate
18F-FDG for imaging carotid artery inflammation [4], a surfeit
of studies have confirmed the utility of this tracer in athero-
sclerosis imaging. Indeed, numerous studies have confirmed a
strong correlation between 18F-FDG uptake and histological
markers of macrophage density in atherosclerotic plaques, as
well as clinical, biochemical, and gene expression markers

related to inflammation. This topic has been comprehensively
reviewed elsewhere [5, 6].

However, it is also clear that in certain scenarios, signifi-
cant contributions to vascular PET signals arise from non-
macrophage glucose metabolising cells that may or may not
be part of the inflammatory response. Moreover, because of
avid physiological uptake of 18F-FDG by cardiac myocytes,
coronary imaging is precluded in up to 50% of patients with
this tracer despite the use of stringent myocardial suppression
protocols [7, 8]. For these reasons, alternative PET tracers for
imaging vascular inflammation are being actively sought.

Novel PET Tracers for Imaging Atherosclerosis

In atherosclerosis, the search for PET tracers for imaging in-
flammation and related pathophysiological processes was ini-
tially focused on identifying high-risk or “vulnerable” athero-
sclerotic plaques. However, given the low positive predictive
value of individual vulnerable plaque detection for prediction
of future clinical events, the focus has now shifted towards
identifying high-risk patients who may have a high burden of
inflamed, vulnerable plaques. The histological features of
high-risk plaques include a thin fibrous cap; high macrophage
density; a large lipid-rich, necrotic, and hypoxic core; “spotty”
microcalcification; and neo-angiogenesis. While several non-
invasive and invasive imaging techniques are capable of iden-
tifying markers associated with histological findings of high-
risk plaques, 18F-FDG PET is the most widely studied method
for detecting plaque inflammation [9].

Novel tracers for atherosclerosis imaging, of which many
have been repurposed from oncology imaging, can be broadly
categorised into those targeting inflammatory cells and those
targeting adjunctive atherosclerotic processes. Some of the most
promising approaches for imaging atherosclerosis-related vas-
cular inflammation with PET to date are highlighted below. A
more extensive list covering the range of PET tracers tested for
vascular inflammation imaging is provided in Table 1.

Tracers for Imaging Inflammatory Cells

Inflammatory cells such as macrophages, which are funda-
mental to the pathogenesis of atherosclerosis, can be identified
by various cell-surface markers or receptors. These markers
have been utilised as imaging targets for several classes of
PET tracers examined in atherosclerosis.

The translocator protein (TSPO) receptor is situated in the
outer mitochondrial membrane and is highly expressed in ac-
tivated cells of the mononuclear phagocyte lineage. In a study
of 32 patients who underwent PET imaging with the TSPO
radioligand 11C-PK11195, culprit carotid plaques associated
with stroke or transient ischaemic attack where highlighted by
the tracer [10]. In this study, 11C-PK11195 signals were
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Table 1 Novel tracers for vascular inflammation imaging

Tracer Molecular target/
mechanism

Cellular target Biological process

Atherosclerosis
Tracers for imaging inflammatory cells
11C-PK11195 [10]
18F-FEDAA1106 [11]
18F-FEMPA [12]
18F-GE-180 [13]

TSPO Activated macrophages Inflammatory cell recruitment/activity

68Ga-DOTATATE
[14, 18, 19]

64Cu-DOTATATE [20, 21]
68Ga-DOTANOC [18]
18F-FDR-NOC [18]
68Ga-DOTATOC [21, 22]

SST2 and other
somatostatin receptor
sub-types

Predominantly
“pro-inflammatory” M1
macrophages

‘’

68Ga-pentixafor [23–28] CXCR4 Leukocytes, including
monocytes/macrophages and
lymphocytes

‘’

64Cu-DOTA-DAPTA-comb
nanoparticles [30]

CCR5 Monocytes/macrophages ‘’

64Cu-DOTA-ECL1i [31, 32] CCR2 Monocytes/macrophages ‘’
64Cu-DOTA-vMIP-II [29]
64Cu-vMIP-II-comb

nanoparticles [33]

Chemokine receptors
(multiple)

Monocytes/macrophages ‘’

18F-FOL [34] Folate receptor β Macrophages ‘’
68Ga-NOTA-MSA [35]
18F-FDM [36]
64Cu-MMR and 68Ga-MMR

nanobodies [37]

Mannose receptor Predominantly “reparative” M2
macrophages

‘’

18F-fluorothymidine [38] Thymidine analogue Multiple cell types
(Cellular proliferation marker)

‘’

18F-fluoromethylcholine [39–41]
11C-choline [42]

Choline analogues Multiple cell types (markers of
phospholipid metabolism)

‘’

89Zr-modified dextran
nanoparticles [43],
18F-Macroflor [45]

Internalized by
phagocytic myeloid
cells

Predominately
monocytes/macrophages

‘’

Tracers for imaging adjunctive atherosclerotic processes
68Ga-Fucoidan [46]
64Cu-DOTA-anti-P-selectin

antibodies [47]

P-selectin Endothelial cells Endothelial cell activation and margination of
circulating monocytes and other inflammatory
cells

18F-4V [48]
64Cu-VCAM nanobody [37]

VCAM-1 Endothelial cells ‘’

64Cu-LOX nanobody [37] LOX-1 receptor for
oxidised LDL

Endothelial cells, also
macrophages and smooth
muscle cells

Uptake of oxidised LDL,
also inflammatory cell recruitment/activity

89Zr-LA25 [49] Oxidation-specific
epitopes

n/a (by-products of LDL
oxidation)

LDL oxidation

89Zr-HDL nanoparticles [50] High-density lipoprotein
(HDL)

Macrophages Cholesterol transport

18F-ML-10 [51] Cell membrane
fragments

Multiple cell types Cellular apoptosis,
especially of smooth muscle cells

1818F-NaF [8] Hydroxyapatite n/a Microcalcification
18F-HX4 [53]
18F-FMISO [54, 55]
62Cu-ATSM [56]

n/a (hypoxia markers) n/a Hypoxia

18F-fluciclatide [57]
18F-Galacto-RGD [58, 59]
18F-Flotegatide [60]

Integrin αvβ3 Activated endothelial cells, also
macrophages

Neo-angiogenesis, also inflammatory cell
recruitment/activity

64Cu-DOTA-C-ANF [61]
DOTA-CANF-comb nanoprobe

[62]

Natriuretic clearance
receptors

Endothelial cells and vascular
smooth muscle cells

Neo-angiogenesis

18F-florbetaben [63]
18F-flutemetamol [64]

Amyloid n/a Amyloid within plaque
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confirmed in macrophage-rich plaque areas when examined
histologically [10]. Other TSPO tracers that have potentially
lower non-specific binding than 11C-PK11195 and are less
affected by genetic polymorphisms leading to variable recep-
tor binding affinity are being investigated [11–13].

Upregulation of somatostatin receptor subtype-2 (SST2)
occurs in activated macrophages. Initial preclinical studies
performed in mice, and retrospective analyses of imaging data
from patients who underwent PET imaging as part of onco-
logic work-up, suggested that the SST2 PET ligand 68Ga-
DOTATATE could be useful for imaging vascular inflamma-
tion [14–18]. In a subsequent prospective clinical study of 42
patients with atherosclerosis, 68Ga-DOTATATEwas found to
accurately localise macrophage-related inflammation in ath-
erosclerotic plaques when compared with histological and
gene expression analyses. Unlike 18F-FDG, low physiological
myocardial binding of this tracer permitted reliable analysis of
the coronary vasculature [19•](Fig. 1a). Another study, of
64Cu-DOTATATE, also found this tracer to be useful for
identifying carotid artery inflammation in patients with tran-
sient ischaemic attack and identified an association with gene
expression of markers in macrophages [20]. Several other
clinical somatostatin receptor binding tracers have also been
examined for use in atherosclerosis imaging [18, 21, 22].

The C-X-C motif chemokine receptor type 4 (CXCR4) is
expressed on the surface of several cell types involved in
atherosclerosis, including macrophages and lymphocytes.
68Ga-pentixafor binding has been observed in macrophage-
rich excised carotid atherosclerotic plaques [23]. Increased
arterial 68Ga-pentixafor PET signals have also been associated
with the presence of clinical cardiovascular risk factors [24].
In a clinical study of 37 patients who underwent 68Ga-
pentixafor PET after stent-based reperfusion for ST segment
elevation myocardial infarction, PET signals were increased
in culprit compared with non-culprit lesions [25•] (Fig. 1b).
Other studies have also confirmed the utility of this tracer for
atherosclerosis imaging [26–28].

PET tracers targeted at C-C chemokine receptor type 5
(CCR5), type 2 (CCR2), and other immune cell chemokine
surface receptors have been evaluated in animal models of
vascular injury and atherosclerosis [29–32]. In one study,
the feasibili ty of imaging 8 chemokine receptors

simultaneously was tested using targeted nanoparticles [33].
Folate receptor β and the mannose receptor are other promis-
ing macrophage receptor targets that have been examined in
preclinical studies [34–37].

Other approaches for imaging inflammation include PET
tracers such as 18F-f luorothymidine (FLT), 18F-
fluoromethylcholine, and 11C-choline, which provide markers
of cellular proliferation and phospholipid metabolism
[38–42]. In one study of 10 consecutive stroke patients sched-
uled for carotid endarterectomy, 18F-fluoromethylcholine up-
take was higher in symptomatic carotid arteries than the con-
tralateral asymptomatic side and was significantly correlated
with the degree of CD68 macrophage staining in endarterec-
tomy specimens [41].

Radiolabelled nanoparticles, such as modified dextrans,
which are directly internalised by myeloid phagocytic cells
have also been successfully imaged using PET [43–45].

Tracers for Imaging Adjunctive Atherosclerotic
Processes

Endothelial activation and margination of circulating mono-
cytes and other inflammatory cells occur at an early state in the
pathogenesis of atherosclerosis. P-selectin and vascular cell
adhesion protein-1 (VCAM-1) are endothelial cell adhesion
molecules involved in this process, which have been targeted
by experimental PET tracers in preclinical studies [37, 46–48].

PET tracers have also been tested in preclinical atheroscle-
rosis models for imaging cholesterol transport, markers of low-
density lipoprotein (LDL) oxidation, and apoptosis, which lead
to the formation of lipid-rich necrotic cores [37, 49–51].

Microcalcification is another important feature of athero-
sclerosis, which is associated with vulnerable plaques. Arterial
microcalcification that is below the resolution of a CT scanner
can be visualised by 18F-NaF, which binds to exposed hy-
droxyapatite. This tracer has been extensively evaluated for
use in atherosclerosis imaging in recent years [52]. In a pro-
spective clinical trial of 80 patients with myocardial infarction
or stable angina, 18F-NaF was able to better differentiate cul-
prit from non-culprit coronary arterial plaques than 18F-FDG
and showed increased signals in stable lesions with high-risk
plaque features confirmed by intravascular ultrasound [8].

Table 1 (continued)

Tracer Molecular target/
mechanism

Cellular target Biological process

Large vessel vasculitis
11C-PK11195 [75, 76] TSPO Activated macrophages Granuloma formation,

also inflammatory cell recruitment/activity
68Ga-DOTATATE [77]
18F-FET-βAG-TOCA [77]

SST2 receptors Predominantly
“pro-inflammatory” M1
macrophages

‘’

  119 Page 4 of 11 Curr Cardiol Rep          (2020) 22:119 



Hypoxia is a feature of the lipid-rich necrotic core within
plaques and contributes to angiogenesis in atherosclerosis. In
two prospective clinical studies of patients with carotid artery
disease who underwent PET imaging with either 18F-HX4 or
18F-FMISO for measuring hypoxia, tracer uptake was in-
creased in relation to carotid plaques identified by MRI and
symptomatic carotid lesions, respectively [53, 54]. In both

studies, strong correlations were observed between PET
markers of hypoxia and carotid arterial 18F-FDG uptake,
supporting prior data showing that hypoxia augments 18F-
FDG uptake in atherosclerotic plaques. Preclinical research
performed using 18F-FMISO and another hypoxia tracer,
62Cu-ATSM, in rabbit models of atherosclerosis is also con-
sistent with these findings in patients [55, 56].

Fig. 1 PET imaging of vascular inflammation in atherosclerosis and
large-vessel vasculitis. a CT coronary angiography (left panel), 68Ga-
DOTATATE (centre panel), and 18F-FDG (right panel). PET/CT
imaging in a patient with non-ST segment myocardial infarction due to
a culprit left anterior descending artery lesion (arrow). While there is
increased 68Ga-DOTATATE (SST2) PET signal arising from the culprit
coronary artery, accurate coronary 18F-FDG image interpretation is
precluded by diffuse background myocardial tracer uptake.
(Reproduced from: Tarkin JM, et al. J Am Coll Cardiol 2017; 69:1774–
1791; doi: https://doi.org/10.1016/j.jacc.2017.01.060; Creative
Commons user licence https://creativecommons.org/licenses/by/4.0/)
[19•]. b Coronary angiography (left panel) and 68Ga-pentixafor
(CXCR4) PET/CT imaging (right panel) showing avid tracer uptake in
a culprit left anterior descending artery lesion (arrow) of a patient with
acute myocardial infarction. (Reproduced from: Derlin T, et al. J Nucl

Med Mol Img 2018; 45:1934–1944; doi.org/10.1007/s00259-018-4076-
2; Creative Commons user licence https://creativecommons.org/licenses/
by/4.0/) [25•]. c 11C-PK11195 (TSPO) PET/CT imaging in a patient with
active giant cell arteritis showing increased tracer uptake (arrows).
(Reproduced from: Pugliese F, et al. J Am Coll Cardiol 2010;56(8):
653–61. doi: https://doi.org/10.1016/j.jacc.2010.02.063, with
permission from Elsevier) [76]. d MR angiography (left panel) showing
a chronic left subclavian stenosis (arrow) in a patient with treatment-
resistant Takayasu arteritis. In this patient, 18F-FET-βAG-TOCA
(SST2) PET/MRI demonstrates increased tracer signal in the affected
vessels (asterisks). (Reproduced from: Tarkin JM, Circ Cardiovasc
Imaging 2020;13(6):e010389; doi: https://doi.org/10.1161/
CIRCIMAGING.119.010389, with permission from Wolters Kluwer
Health Inc.) [77]

Curr Cardiol Rep          (2020) 22:119 Page 5 of 11   119 

https://doi.org/10.1016/j.jacc.2017.01.060
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jacc.2010.02.063
https://doi.org/10.1161/CIRCIMAGING.119.010389
https://doi.org/10.1161/CIRCIMAGING.119.010389


It may also be possible to image neo-angiogenesis relating to
high-risk atherosclerotic plaques by targeting integrins, such as
αvβ3,with PET ligands. Integrinαvβ3 is expressed by activated
endothelial cells, as well as macrophages. In a study of 46 pa-
tients with atherosclerosis who underwent PET imaging with the
αvβ3 tracer 18F-fluciclatide, uptake of this tracer in the aorta was
higher in patients with myocardial infarction than stable angina
andwas correlatedwithmeasures of aortic atherosclerotic burden
[57]. Other αvβ3-targeted tracers that have been evaluated for
use in atherosclerosis include 18F-Galacto-RGD and 18F-
Flotegatide [58–60]. The imaging of natriuretic clearance recep-
tors, which in atherosclerosis are upregulated in endothelial cells
as well as vascular smooth muscle cells, has also been tested in
preclinical studies [61, 62].

Amyloid ß peptides represent another potential atheroscle-
rosis imaging target, as these peptides exist within human
atherosclerotic plaques. Vascular deposition of amyloid ß is
associated with inflammatory changes in the vessel wall and
microvasculature and could contribute to the known link be-
tween cardiovascular disease and Alzheimer’s disease. The
feasibility of amyloid PET imaging in carotid arterial athero-
sclerosis has been demonstrated using 18F-florbetaben and
18F-flutemetamol [63, 64].

Novel PET Tracers for Imaging Large-Vessel
Vasculitis

LVV comprises a group of chronic, systemic granulomatous
diseases, including giant cell arteritis and Takayasu arteritis,
which lead to progressive injury of the aorta and its main
branches, affecting the organs and limbs supplied. The use of
18F-FDG PET to confirm the diagnosis of active LVV in the
extracranial vessels is well-established in clinical practice and
supported by international guideline recommendations [65–67].
Indeed, a meta-analysis of 298 patients from 9 studies showed
that 18F-FDGPET demonstrated a pooled sensitivity of 88% and
specificity of 81% for diagnosis of LVV [68]. However, it is
important to note that the diagnostic accuracy of 18F-FDG PET
for LVV is significantly reduced after high-dose steroids which
are given for more than 3 days [69]. Although the use of 18F-
FDG for the detection of temporal arteritis in GCA or coronary
involvement in Takayasu arteritis is often hampered by back-
ground tracer uptake from the brain andmyocardium, respective-
ly, a study of 64 patients found 18F-FDG PET to be accurate for
biopsy-proven temporal arteritis [70]. As well as confirming the
diagnosis, 18F-FDG PET imaging reveals the distribution of af-
fected arteries and can identify areas of pre-stenotic disease to
prompt early intervention.

However, the utility of 18F-FDG PET for monitoring thera-
peutic response is uncertain. Vascular tracer uptake is observed
in a high proportion of patients with clinically inactive disease, as
demonstrated in an observational study of 56 patients with LVV,

where it may represent vessel wall remodelling, atherosclerosis,
or another process besides active arteritis [71]. A discordance
between clinical disease severity and vascular 18F-FDG uptake
after 6 months of biologic therapy for LVVwas also highlighted
in another study [72]. Moreover, in patients with LVV who
require vascular surgery, peri-prosthetic graft uptake is common-
ly observed and appears unrelated to clinical disease activity, C-
reactive protein (CRP), or risk of subsequent disease progression
[73]. For these reasons, there is a real clinical need for more
specifically targeted PET ligands in the management of LVV
[74].

As a chronic granulomatous disease, macrophages are a key
component of the underlying disease process in LVV. One tracer
that has previously been evaluated for imaging macrophage in-
filtration in LVV is the TSPO ligand 11C-PK11195 [75, 76]. In a
study of 15 patients with clinically suspected active vasculitis or
asymptomatic control subjects, increased 11C-PK11195 arterial
uptake was observed in patients with active disease [76] (Fig.
1c). Macrophage SST2 PET imaging in LVV is the subject of an
ongoing clinical study (clinical trials.gov: NCT04071691), for
which the initial data appear promising. In the first clinical
description of SST2 PET/MRI in patients with Takayasu arteritis
from this ongoing study, 68Ga-DOTATATE and 18F-FET-βAG-
TOCA accurately identified active arteritis in a patient with re-
lapsing disease and another with treatment-resistant disease [77]
(Fig. 1d).

Targeting Specific Components
of the Immune Response

Research into novel PET tracers for imaging vascular inflam-
mation has generated a wealth of encouraging data for a num-
ber of these approaches in atherosclerosis and LVV.
Ultimately, PET imaging provides the opportunity to identify
and characterise vascular lesions by phenotypic markers and
processes relating to underlying inflammatory cell activity.
For example, certain PET tracers are targeted to individual cell
receptors on classically or alternatively activated macrophages
known to be important at various stages in atherosclerotic
plaque formation, rupture, and healing. However, the true se-
lectively of many of these PET tracers for individual inflam-
matory cell types remains unknown. While important insights
have been gained by studies attempting to answer this ques-
tion using in vitro cell lines [78], ex vivo histological compar-
isons, and gene expression data to validate imaging findings,
none of these experimental conditions can accurately replicate
the in vivo environment. This is an important hurdle for future
research in the field, which may be helped by advances in
genomic methods such as single cell RNA sequencing and
spatial transcriptomics. Indeed, the clinical translational value
of novel tracers applied to examine individual components of
the human immune response hinges on an ability to accurately
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understand the molecular and biological basis of PET signals,
in order to apply valid clinical interpretation.

PET Imaging as a Surrogate Marker of Drug
Efficacy in Clinical Trials

PET imaging has been applied in numerous clinical trials to
examine the effects of cardiovascular therapies on vascular wall
inflammation. For example, 18F-FDG PET has been used in the
evaluation of cholesterol-lowering drugs such as statins and
newer therapies that inhibit cholesteryl ester transfer protein,
lipoprotein-associated phospholipase A2 (Lp-PLA2), p38
mitogen-activated protein kinase, and proprotein convertase
subtilisin-kexin 9 (PCSK9) [79–83]. Overall, the results of these
initial PET studies have been consistent with findings of subse-
quent larger clinical outcome trials [84]. For example, in a
randomised placebo-controlled trial, dampening of carotid arteri-
al 18F-FDG signals was observed after treatment with a PCSK9
inhibitor that is known to reduce cardiovascular risk through
intensive low-density lipoprotein lowering, with a neutral effect
on CRP [82]. In another single-arm pilot study, arterial 18F-FDG
uptake was reduced in individuals with treated human immuno-
deficiency virus and established cardiovascular disease or risk
factors following a single injection of the IL-1β antagonist
canakinumab [85]. Moreover, reductions in vascular inflamma-
tion have also been observed in clinical trials of patients treated
for systemic inflammatory diseases associated with increased
cardiovascular risk including diabetes, rheumatoid arthritis, pso-
riasis, and ankylosing spondylitis [86–89]. The results of obser-
vational 18F-FDG PET studies involving drug interventions in
LVV are discussed above.

Other PET tracers that may provide more precise markers of
inflammation than 18F-FDG could have an advantage for track-
ing the effects of cardiovascular therapies longitudinally. 68Ga-
DOTATATE PET is currently being examined for use as an
outcome measure in clinical trials of a PCSK9 inhibitor
(clinicaltrials.gov: NCT04073810) and the diabetic medication
semaglutide (clinicaltrials.gov: NCT04032197). Taking another
approach, in a placebo-controlled study of dual anti-platelet ther-
apywith ticagrelor in patients withmulti-vessel coronary disease,
18F-NaF PET imaging was used to select participants for inclu-
sion on the basis of avid coronary tracer uptake [90•]. Although a
negative study, this work exemplifies a potential role of PET
imaging as a means of enriching high-risk patient populations
in clinical trials before randomisation.

PET Imaging for Identification
and Stratification of High-Risk Patients

As we sit on the brink of a new era of immune-targeted ther-
apies for cardiovascular disease, PET imaging research can

potentially help find new ways to identify patients with resid-
ual on-treatment vascular inflammation who would most ben-
efit from newly emerging therapies. The landmark CANTOS
[2••] and COLCOT [3••] trials established the proof-of-
principle that immunomodulatory therapies can improve clin-
ical outcomes in patients with atherosclerotic cardiovascular
disease. Yet, other trials of anti-inflammatory agents, such as
the Cardiovascular Inflammation Reduction Trial (CIRT)
study of low-dose methotrexate, have not reached the same
conclusion [91]. A key difference between these studies is that
participants in CANTOS were selected on the basis of an
elevated CRP, whereas those enrolled in CIRT had a low
CRP. Compared with CRP, which although easy to measure
represents a downstream marker of systemic inflammation or
infection that is far removed from the affected tissue, PET
imaging can provide a more direct measure of inflammation
arising in the arterial wall.

In this context, PET imaging could either be used to further
stratify select groups of high-risk patients or to help identify
novel valid non-PET markers of inflammation. However, al-
though a link between arterial inflammation and future cardio-
vascular risk identified by 18F-FDG PET can be implied
through its association with clinical risk factors, serum bio-
markers, high-risk plaque features, stroke recurrence, and ma-
jor adverse clinical events in retrospective analyses of large
PET imaging datasets [92–95], definitive prospective clinical
outcome data is awaited. Studies linking increased arterial
18F-FDG uptake with adverse clinical outcomes in patients
with psychological stress and chronic noise exposure provide
further evidence that PET markers of inflammation can help
identify high-risk patients [96, 97].

The prognostic potential of novel PET markers of inflam-
mation and related pathological processes for predicting future
cardiovascular events remains to be determined. A prospec-
tive study of 40 patients with symptomatic peripheral arterial
disease found that PET imaging with both 18F-FDG and 18F-
NaF was excellent for determining risk of restenosis following
percutaneous femoral artery angioplasty [98]. Whether these
findings are also applicable to coronary disease has yet to be
tested. However, a post hoc analysis of prospective observa-
tional data from 293 patients showed that fatal and non-fatal
myocardial infarction occurred only in patients with increased
baseline coronary microcalcification as assessed by 18F-NaF
PET imaging during a 42-month follow-up period. In fact,
18F-NaF PET imaging outperformed both clinical risk scores
and coronary artery calcification scoring on receiver operator
curve analysis in this study and was independently associated
with a 7-fold increased risk in patients with the highest total
coronary 18F-NaF activity [99•]. The ability of coronary 18F-
NaF PET to predict recurrent events in patients with recent
myocardial infarction and multi-vessel coronary disease is the
subject of an ongoing prospective multi-centre clinical trial
(clinicaltrials.gov: NCT02278211).
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Conclusions

Current uses of PET for imaging vascular inflammation in the
clinic are limited. However, in the future, an ability to inter-
rogate key components of vascular immune responses and
systemic inflammatory pathways using PET with 18F-FDG
or novel tracers could help further the understanding of under-
lying disease mechanisms in atherosclerosis and vasculitis and
inform the design or use of newly emerging immunomodula-
tory therapies in high-risk patient populations. Research ef-
forts should continue if these roles are to be realised.
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