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ABSTRACT 
 

Understanding and predicting acute pulmonary exacerbations  
in adults with cystic fibrosis  

 
Dr Emem-Fong Ukor 

 
 
Cystic fibrosis (CF) is the most common, inherited, life-limiting, multi-system disorder 

among the Caucasian population. Disease arises from mutations in the cystic fibrosis 

trans-membrane conductance regulator (CFTR) gene. In the lung, defective protein 

leads to the accumulation of thick viscid mucus, depletion and acidification of the 

airway surface liquid and impairment of the normal muco-ciliary clearance 

mechanisms, providing a permissive environment for chronic infection and 

progressive airway damage.  

Pseudomonas aeruginosa is a versatile, Gram-negative opportunistic human 

pathogen with a predilection for establishing chronic infection in the CF lung. Its 

extraordinary capacity to cause infections is due to its vast repertoire of secreted and 

cell-associated virulence determinants, which are subject to a complex regulatory 

network of intracellular and intercellular signals.  

Acute pulmonary exacerbations (APE), are the main cause of morbidity and mortality 

in CF. Despite their clinical significance, the mechanisms that trigger these events are 

poorly understood. In this dissertation, I investigate whether home monitoring for 

changes in patient physiology and symptoms was feasible and could permit advanced 

detection of an APE. I additionally concentrated on whether temporal fluctuations in 

the behaviour and structure of established P. aeruginosa populations within the CF 

lung may trigger APEs, and whether such changes could function as a bacterial 

biomarker(s) and be correlated with home monitored data to facilitate APE diagnosis 

and prompt initiation of treatment.  

 

First, I conducted a single-centre, pilot study (TeleCF) of 15 adults with CF in order to 

determine whether daily home monitoring of a single sputum bacterial biomarker (P. 

aeruginosa exotoxin A [PEA]) along with several clinical parameters might provide 

advanced warning of an APE. Home monitoring was well tolerated and provided high 

resolution data on physiological and biomarker changes preceding, during and 
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following antibiotic therapy for an APE. On its own, PEA did not prove an effective 

biomarker for early detection of APEs in adults with CF, but the study did provide proof 

of concept for the application of home-monitoring and sputum profiling for bacterial 

biomarkers to inform further work.	
 

Next, I collected longitudinally sampled sets of 95 isolates per sputum sample from 9 

adults with CF before, during and after antibiotic treatment for an APE. Isolate 

populations were analysed for a series of phenotypic traits associated with P. 

aeruginosa virulence to determine whether changes in phenotype composition were 

related to exacerbation onset. I also investigated for differences in phenotype 

composition between isolate populations of the P. aeruginosa Liverpool epidemic 

strain (LES), Manchester epidemic strain (MES) and local non-epidemic strains. I 

found strong evidence for the uncoupling of the traditional quorum sensing (QS) 

regulatory hierarchy in CF isolates, with the rhl subsystem playing a more dominant 

role in virulence expression in certain strain types. Importantly, no link was found 

between APEs and the emergence of a particular sub-population of morphotypic or 

phenotypic variants. 

 

Finally, I conducted a multicentre UK-based study (SMARTCARE) of 147 adults with 

CF to assess the acceptability and feasibility of daily monitoring of symptoms and 

physiology using novel sensor technology and mobile phones. Linked-anonymised 

data were analysed using machine learning (ML) methods to define the profile of APEs 

and predict their onset. Survey patient feedback confirmed that home monitoring was 

easy to do and helped patients track their health over time. Unsupervised machine 

learning analysis uncovered the typical signal profile of an APE and revealed three 

distinct classes of APE. We developed an ML predictive classifier that can detect an 

impending APE on average 11 days earlier than current clinical practice. 

 
This work has contributed greater insights into the day-to-day variation in symptoms 

and physiology prior to, during and following periods of APE in adults with CF. It has 

confirmed the important role for home monitoring in CF care delivery and highlighted 

the power of machine learning methods when applied to high frequency data to 

advance our understanding of APEs in adults with CF. 
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1.      INTRODUCTION 
 
 
1.1  Cystic fibrosis  

Cystic fibrosis (CF) is an inherited, life-limiting, multi-systemic disorder which affects 

over 90 000 individuals worldwide (1). It is recognised as the most common life-limiting 

genetic condition to affect individuals of northern European descent, with an incidence 

rate of around 1 in 3000 live births in Europe, North America and Australasia (2,3). 

However, in the last two decades, epidemiological studies based on data from 

emerging patient data registries in South America, Africa, the Middle East, Turkey and 

Asia, have confirmed that the disease is more prevalent than previously thought 

among populations of non-European descent (4).  

 

In the UK, approximately 10 000 individuals are currently living with CF, with around 

200 - 300 new cases diagnosed each year (5). Diagnosis is made with a positive sweat 

test (sweat chloride > 60 mmol•L-1), DNA mutation analysis and cystic fibrosis-typical 

electrophysiology (1). In the UK, the majority of cases are identified in the neonatal 

period, particularly since the implementation of newborn screening (the Guthrie 

heelprick test) in 2007. However, a small proportion of people living with CF are 

diagnosed in adulthood. For example, 15 people aged over 16 years were diagnosed 

with CF in the UK in 2018 (5).  

 

Over the last six decades, significant advances in disease understanding, diagnosis, 

symptomatic treatments, and the coordination of care through dedicated multi-

disciplinary health-care teams have led to substantial improvements in survival (1,6). 

In the UK, a child born with CF between 2014 and 2018 will have a median predicted 

life expectancy of 47 years of age (5). This represents a remarkable leap from the 

1960s where the median survival was less than 5 years of age (7).  With more people 

with CF surviving into adulthood, the adult CF population in the UK has surpassed the 

number of paediatric cases and is expected to continue to rise, reflecting the changing 

demographic of the CF population in many developed countries (8,9). Population 

forecasts based on European CF Society patient registry data provided by 16 

countries, including the UK, estimate the CF adult population to rise by 75% between 

2010 and 2025 (10). This growth in the ageing CF population will necessitate an 

increase in resources and CF service capacity to meet demands and poses a growing 
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challenge for adult services in many countries (10). Furthermore, the recent arrival of 

mutation-specific modulator therapies; medications which target the basic cellular 

defect caused by CF-causing gene mutations, heralds a transformative era in CF care 

(3,9). One which will likely alter greatly the natural history of this disease for those born 

with CF today, as well as for a significant subset of the CF population already living 

with the disease (Figure 1.1). 

 
 

 

 

 

1.1.1  Genetics 

CF is an autosomal recessive monogenetic disorder. A landmark discovery in 1989 

confirmed that disease results from possession of a loss-of-function mutation in each 

allelic copy of the cystic fibrosis trans-membrane conductance regulator (CFTR) gene, 

located on the long arm of chromosome 7 (11–13). This gene encodes for the 1480 

amino acid CFTR protein, an ABC-transporter class, cyclic adenosine 

monophosphate-dependent anion channel located at the plasma membrane of 

Figure 1.1. Significant advances in CF care and accompanying improvements in median 

life expectancy. Figure adapted from the Cystic Fibrosis Trust UK website (5). Accessed July 

2020. 
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epithelial cells and other cell types (14).  

 

Over 2 000 genetic variants have been identified in the CFTR gene to date (15). The 

most prevalent of which is the three base-pair deletion of phenylalanine at position 

508 (Phe-508del or F508del), found in approximately 80% of people with CF 

worldwide (9). Approximately 40% of these individuals carry two copies of the F508del 

allele whilst a similar proportion of individuals carry one F508del allele combined with 

another loss-of-function mutation (15). Notably, only 360 of the genetic variants are 

classified as pathogenic in the CFTR2 database and account for the genetic mutations 

found in more than 96% of all patients with CF of northern European ancestry (15). 

 

CFTR variants may cause impairment in gene translation; protein expression, 

trafficking, function and stability at the apical cell membrane; or a combination of these 

abnormalities (6,16). Traditionally, on the basis of their impact on CFTR function and 

production, these mutations have been grouped into six classes (17). More recently, 

with the advent of CFTR modulator therapies, an alternate classification has been 

proposed by Marson et al. that splits Class I into Class IA and Class IB, to better 

accommodate for not only the CFTR defect and clinical disease severity, but also the 

possibility of precision medicine therapy (Figure 1.2) (17). However, although helpful, 

this classification system has been criticised as over simplistic, since multiple cellular 

processes may be affected by the same CFTR variant (e.g., F508del mutation belongs 

to Class II but also leads to defects associated with Class III and Class VI mutations) 

(6,9,18). 

 

Class I mutations lead to an absence of functional CFTR protein at the apical plasma 

membrane and are caused primarily by the presence of nonsense, frameshift 

mutations and mRNA splicing mutations (19). Class II mutations (which include 

F508del) cause abnormal CFTR protein processing and trafficking to the cell surface, 

with most of the protein degraded in the proteasome (4). Class III mutations lead to 

normal localisation of CFTR at the plasma membrane but the ion channel’s opening 

time is severely disrupted due to impaired activation of the gating mechanism by cyclic 

AMP (20). Class IV mutations cause reduced conductance (e.g., flow) of chloride and 

bicarbonate ions through the CFTR channel, but trafficking to the cell membrane is 

normal (4). Class V mutations are often splicing mutations and lead to a reduced  
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amount of normal CFTR protein reaching the plasma membrane (21). Class VI 

mutations lead to conformationally unstable CFTR protein that is prematurely recycled 

from the plasma membrane and degraded in lysosomes (21). 

 

Class I, II and III mutations are associated with minimal or absent CFTR function and 

confer a more severe (or classical) disease phenotype (1). Class IA and Class IB 

mutations share the same functional outcome (e.g., absence of the CFTR protein), but 

Class IA mutations are not amenable to pharmacotherapy (17). Class IV, V and VI 

mutations are considered residual function mutations and are associated with milder 

(typically pancreatic-sufficient) disease phenotypes (1). 

 

1.1.2 Airway pathophysiology 

The CFTR protein plays an important and complex role in normal physiology. Its main 

function is to provide a pathway for the transport of anions (e.g., chloride and 

bicarbonate) across the apical membrane of epithelial cells (which line multiple 

organs, including the lung, pancreas, intestines, liver, sweat glands and the vas 

deferens) (22,23). CFTR also interacts with other ion channels and transporters, such 

as the epithelium sodium channel (ENaC; also known as the amiloride-sensitive 

sodium channel), which together regulate the hydration of secretions and mucins in 

the airway (24). CFTR expression has also been found in non-epithelial cells, including 

Figure 1.2. CFTR mutations and therapeutic strategies in the traditional classification 

system and the proposed classification by Marson, Bertuzzo and Ribeiro. Figure adapted from 

Marson et al., 2016 (17). 
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cells involved in immune function such as platelets, neutrophils, macrophages, and 

lymphocytes (25–28). CFTR dysfunction in these bone-marrow derived cells is thought 

to further exacerbate the pathophysiological changes seen in the CF lung (29).   

 

The primary outcome of defective or absent CFTR in epithelial cells, regardless of 

organ or tissue, is impaired transepithelial chloride and bicarbonate secretion and 

impaired inhibition of the ENaC (30). This leads to disruption of ion and fluid 

homeostasis and a lowering in pH at the apical surface (3). With the exception of the 

sweat gland (where CFTR dysfunction hampers recovery of salt from sweat), 

abnormal CFTR function leads to dehydration and acidification of mucosal surfaces, 

resulting in thick, viscous secretions that cause progressive obstruction of luminal 

compartments and ducts; the hallmark pathological process in CF-associated disease 

(24,31,32).   

 

In the airway, the epithelial surface (composed mainly of ciliated cells) is covered by 

an airway surface liquid (ASL) consisting of two layers, a periciliary layer (PCL) and 

an overlying mucus layer (33). The mucus layer acts as a physical barrier, trapping 

inhaled pathogens and particles. The periciliary layer, a membrane-tethered mucin gel 

that is more densely packed than the overlying mucus layer, acts as a lubricant surface 

to facilitate ciliary beating and promote clearance of mucus out of the airway (34). The 

hydration status of the ASL is a key determinant of muco-ciliary clearance efficiency, 

(the first line of defence against aerial pathogens) (35). Regulation of ASL volume is 

mediated via CFTR, which determines the mass of salt in the ASL, and consequently, 

the osmotic gradient for fluid secretion into the luminal space (22). The ASL also 

contains a number of peptide and protein antimicrobials, which are key components 

of the innate immune response to inhaled microbes (36). 

 

In the CF airway, the net physiological impact of aberrant CFTR chloride/bicarbonate 

secretion and unopposed ENaC-mediated sodium and water absorption is reduction 

in the ASL volume and airway surface pH (37,38). Depletion of the ASL leads to hyper-

concentration of the mucus layer which in turn causes a rise in the osmotic pressure 

of the mucus layer. The resultant osmotic gradient drives water out of the PCL, causing 

compression of the PCL and cilia, and leading to failure of the normal muco-ciliary 

clearance mechanisms (34,39). Changes in ASL pH, due to impaired cAMP-
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dependent HCO3- secretion by mutant CFTR and unopposed H+ secretion by ATP12A, 

is proposed to lead to diminished activity of many antimicrobials (37,40). Impaired 

bicarbonate secretion may also play an important role in the formation of dehydrated 

and hyper-viscous mucus, independent of its impact on airway surface pH (41). 

Evidence in favour of this hypothesis comes from studies in the CF mouse intestine 

which have shown that failure of CFTR-mediated bicarbonate secretion leads to 

abnormally folded mucin molecules, with impaired rheology and reduced 

transportability, leading to further exacerbation of mucus stasis and plugging (42). 

 

It remains cause for debate whether airway inflammation arises as a direct 

consequence of CFTR dysfunction, or rather in response to airway infection. Initial 

observational studies in CF piglets had suggested an indirect causal link between 

reduced airway surface pH and the development of CF lung disease - via impaired 

bacterial killing leading to promotion of airway inflammation (37). However, more 

recently, a study by Shultz et al. comparing ASL in children with and without CF found 

no difference in ASL pH, calling into question the pathogenic role of ASL acidification 

(43).  But, subsequent work by Simonin et al. on bronchial epithelial cell cultures 

(obtained post-mortem from patients with and without CF) showed further evidence 

for delayed bacterial clearance as a consequence of ASL acidification (40). 

Discordances in the results of these studies may be attributed to differing methodology 

and models used, and clearly further work is needed to clarify the differences found.  

 

Of note, emerging evidence from observational studies in infants and preschool 

children with CF and animal models with CF-like lung disease, suggests that mucous 

plugging alone (as a primary consequence of CFTR dysfunction), may trigger sterile 

inflammation and play a critical role in the pathogenesis of early lung disease, 

independent of the onset of bacterial infection (44,45). However, mechanistic 

understanding of the link between mucous plugging and sterile inflammation in early 

CF lung disease is still poor. One proposed mechanistic pathway may be via activation 

of IL-1 signalling in response to cytokine release from airway epithelial cells that have 

sustained hypoxic injury in mucus-obstructed airways (46).  

 

Nonetheless, the complex interplay of all these factors (ASL dehydration, hyper-

concentration of mucus, diminished bicarbonate secretion and impaired muco-ciliary 
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clearance) initiates and maintains a permissive environment for recurring 

polymicrobial infections. Eventually, chronic endobronchial infection (frequently multi-

drug resistant), persistent and excessive airway inflammation, muco-obstruction and 

bronchiectatic lung damage (e.g., irreversible abnormal dilatation of affected 

segmental and subsegmental bronchi) is established (47). The exaggerated 

inflammatory response is characterised by raised airway concentrations of neutrophil-

derived proteases such as neutrophil elastase, neutrophil extracellular traps, reactive 

oxygen species such as hydrogen peroxide and pro-inflammatory cytokines such as 

interleukin-8. Neutrophil-derived proteases further exacerbate the CF basic defect 

through several functions: degradation of residual CFTR, proteolytic cleavage of 

inhibitory peptide segments leading to activation of the ENaC (contributing to hyper-

reabsorption of sodium), degradation of antimicrobials and anti-proteases, and 

promotion of mucin secretion and pro-inflammatory signalling - adding to mucus 

adhesiveness and retention within the airways (16,48–52). Over time, progressive 

respiratory insufficiency ensues, ultimately culminating in respiratory failure and 

premature death.  

 

1.1.3 Clinical manifestations of CFTR dysfunction   

Clinical disease expression in CF varies widely and correlates poorly with CFTR 

genotype (53). This is best exemplified by individuals homozygous for F508del 

mutation who display a broad spectrum of disease, with heterogeneity in the number 

of organ systems involved, and the degree of severity and rate of progression of 

disease (21). Such variation in disease expression highlights differential tissue CFTR 

expressivity and sensitivity, as well as the importance of additional influences in 

determining disease severity beyond CFTR genotype; including genetic modifiers, 

environmental exposures and stochastic factors (54). For example, evidence from twin 

studies have shown that genetic modifiers play a predominant role in the age of 

establishment of airway infection with Pseudomonas aeruginosa (P. aeruginosa), the 

age of onset of diabetes and the development of intestinal obstruction (55–57).  

 

At birth, neonates with CF are identified for further screening on the basis of a heel-

prick test which confirms elevated levels of circulating immunoreactive trypsinogen 

caused by pancreatic ductal blockage, autodigestion, and leakage of digestive 

enzymes into the systemic circulation (58). Up to 20% of CF neonates may present 
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with meconium ileus (bowel obstruction) as a consequence of reduced fluid and 

bicarbonate secretion in the gut, whilst pancreatic exocrine function is absent in more 

than 90% of cases (58,59). Other organ pathologies typically evolve and persist after 

birth. 

 

The ‘classical’ CF phenotype is characterised by progressive lung disease, exocrine 

pancreatic insufficiency associated with malnutrition and poor growth, hepatobiliary 

and intestinal manifestations, male infertility resulting from obstructive azoospermia 

and, as a diagnostic marker, elevated sweat chloride concentration; due to the inability 

to recover salt from sweat (1,60).  However, non-classical presentations have also 

been defined. These manifestations often involve single-organ disease and are 

referred to as CFTR-related disorders, in recognition of CFTR dysfunction in 

individuals who do not meet key diagnostic criteria (e.g., with two CFTR mutations, at 

least one of which is not clearly categorised as a CF-causing mutation), such as an 

elevated sweat chloride (60). Such disorders include, congenital bilateral absence of 

the vas deferens, idiopathic chronic and acute recurrent pancreatitis, diffuse 

bronchiectasis, rhinosinusitis and sclerosing cholangitis (23). Most of these individuals 

are pancreatic sufficient. 

 

1.1.4 CF lung disease 

Pulmonary disease secondary to progressive pulmonary obstruction, chronic 

endobronchial bacterial infection and endobronchial inflammation accounts for the 

greatest morbidity and mortality in individuals with CF (61,62). Hence, much of the 

focus of research in the CF domain is targeted at minimising the respiratory sequelae 

of CFTR dysfunction. 

 

At birth, the lungs of newly diagnosed infants with CF appear free from infectious 

pathogens and inflammation (63–65).  However, signs of pulmonary involvement are 

evident from within the first few months of life with bronchoalveolar lavage sampling 

of the lower airways confirming the presence of raised inflammatory cells in the 

absence of bacterial infection (64). Infant lung function tests are abnormal by age 3 

months, with CT scan evidence of structural lung damage present in one third of 

children with CF by 3 years of age (66–69). Typically, bronchiectasis develops in the 

upper lobes but eventually progresses to involve the entire lung (16).   
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1.1.4.1  Bacterial airway infection 

Bacterial infection of the lower airways often occurs shortly after birth in CF infants 

(70). Initial airway infection episodes are intermittent but over the course of months to 

years, chronic infection becomes established, highlighting the complex relationship 

between microbial adaptation and the evolving host. Evidence from microbiologic 

studies and CF registry data reveal a characteristic set of micro-organisms causing 

infection of the CF airways with the prevalence of these different pathogens varying in 

an age-dependent fashion (5,71) (Figure 1.3). Typically, non-typeable Haemophilus 

influenzae (H. influenzae) and Staphyloccocus aureus (S. aureus) are common in 

infancy and early childhood with P. aeruginosa predominating from adolescence 

onwards (72). Early infection with P. aeruginosa is usually intermittent. However, over 

half of individuals with CF will develop chronic pseudomonal infection (which persists 

indefinitely) by their mid-twenties (5,73). The decreased prevalence in P. aeruginosa 

infection seen after the age of 35 is thought to probably reflect a survivor effect, as the 

mortality risk is higher in individuals with P. aeruginosa infection (74).  Over recent 

years, several emerging opportunistic pathogens have been isolated from CF sputum 

at increased frequency and have been associated with significant lung infection, such 

as Stenotrophomonas maltophilia, Ralstonia, Pandoraea species, Achromobacter 

species, methicillin-resistant S. aureus (MRSA) and nontuberculous mycobacteria 

(NTM) (75,76). By comparison, the overall prevalence of Burkholderia cepacia 

complex organisms, notorious for its association with nosocomial outbreaks in the mid-

1980s and a high mortality rate, has fallen worldwide in response to improved infection 

control measures (77,78).  

 

1.1.4.2 Treatment strategies 

The management of CF pulmonary disease is critical to long-term survival and centres 

around an arduous daily routine of treatments targeted at preserving lung function, 

and treating and preventing acute pulmonary exacerbations (79). A comprehensive 

review of this topic is beyond the scope of this work but is available elsewhere (9,79–

81). With the exception of CFTR modulator therapy, maintenance treatments for CF 

pulmonary disease are tailored toward mitigating the downstream consequences of 

CFTR dysfunction. As such, they aim to restore ASL and muco-ciliary clearance, 

reduce excessive airway inflammation and limit infection burden (82).  
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1.1.4.2.1 Targeting the secondary effects of CFTR dysfunction 

Maintenance treatments commonly include mucolytics and sputum hydrators, airway 

clearance therapies, anti-inflammatories and inhaled antibiotics (81). Nebulised 

agents, such as dornase alpha (DNase) and hypertonic saline, improve the visco-

elastic properties of sputum and assist with muco-ciliary clearance (83,84). Both 

DNase and hypertonic saline have been shown to reduce the rate of decline in lung 

function, improve quality of life and reduce exacerbations (83,84).  Regular, good 

quality airway clearance is part of recommended care worldwide, despite limited 

evidence for their long-term benefit (79,80).  

 

Several medications have been investigated as anti-inflammatory agents, including 

inhaled corticosteroids, systemic steroids, high dose ibuprofen, leukotriene 

antagonists and macrolide antibiotics (e.g., azithromycin) (85–89). However, results 

have either been underwhelming, or long-term use limited by concerns over possible 

adverse effects (85,88,90–92). Azithromycin, is the only agent in wide use and is part 

of best practice care (79,80). It has been shown to reduce exacerbations and improve 

Figure 1.3. Age-specific prevalence of common respiratory pathogens in CF in 2018. 

NTM:  Nontuberculous mycobacteria, MRSA: methicillin resistant S. aureus. Figure adapted 

from the UK Cystic fibrosis Patient Registry, 2018 Annual Data Report (5). 
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the health status of patients, with the effect greater in patients chronically infected with 

P. aeruginosa (93,94). These benefits are thought to be secondary to its anti-

inflammatory and immunomodulatory effects, as well as a possible impact on the 

virulence factors of P. aeruginosa (95). However, the exact mechanism remains poorly 

defined.  

 

Health outcomes are improved with eradication attempts of initial bacterial infection, 

particularly in the case of P. aeruginosa (96). Once eradication therapy fails and 

chronic P. aeruginosa infection is diagnosed, inhaled anti-pseudomonal antibiotic 

treatments form part of standard care (79,80). These agents have been shown to 

improve lung function and reduce pulmonary exacerbation rates, with the best 

evidence being for inhaled tobramycin (97). 

 

1.1.4.2.2 Targeting the defective CFTR protein 

In the last decade, the introduction of CFTR modulator therapy into the treatment 

armamentarium for CF has been transformative and led to remarkable clinical 

outcomes for individuals with CF (9). Discovered through high-throughput drug 

discovery programs, these small molecules are mutation-specific corrective agents 

which improve epithelial CFTR function and expression (31). However, it is not yet 

known if they also restore the function of mutant CFTR expressed in phagocytes and 

other immune cells which regulate airway inflammation (29).  

 

Five main groups have been defined, depending on their effects on mutant CFTR: 

potentiators, correctors, stabilisers, read-through agents and amplifiers (9). To date, 

one potentiator compound (which increases mutated CFTR activity at the cell surface) 

and three corrector agents (which improve altered protein processing and trafficking 

to the cell surface), have been approved (either as single, dual or triple combination 

therapy) for clinical use worldwide (98–103). Yet, challenges still remain to ensure 

equitable access to these costly new treatments for the 90% of individuals with CF 

who carry genes amenable to CFTR modulator therapy, including those with the most 

common gene mutation (F508del) (3). 

 

1.1.5 Infection control 

Patient-to-patient transmission has been well described for several CF-associated 
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pathogens, such as certain highly transmissible strains of P. aeruginosa and B. 

cepacia complex, MRSA and Mycobacterium abscessus complex (104–112). 

Acquisition of all of these organisms is associated with poor clinical outcomes (6). 

Outbreaks have been traced to inpatient stays and clinic visits to CF centres or social 

events involving several individuals with CF (109,111–113). Of concern is growing 

evidence that transmission can occur not only by direct (e.g., patient to patient) but 

also by indirect (e.g., airborne transmission) routes (105,111,114). Accordingly, 

infection control guidelines have been developed and widely adopted by CF centres 

to lessen the risk of cross-infection to individuals with CF, including education, strict 

cohorting policies for inpatient and clinic settings based on sputum microbiology, hand 

and cough hygiene, the use of personal protective equipment by staff (e.g., gloves, 

gowns) and individuals with CF (e.g., masks), equipment and environmental cleaning 

and disinfection practices (115–117). Although these practices have reduced the 

prevalence of epidemic B. cenocopacia and P. aeruginosa infections, many are based 

on a low level of evidence (1). In addition, implementation has not been without 

considerable impact on the lives of individuals with CF and strain on existing hospital-

based infrastructure (117–121). 

 

With the evolving demographic, clinical characteristics and personal needs of 

individuals with CF, an important challenge to care providers remains how to evolve 

accordingly, whilst maintaining health outcomes. Of note, strategies to reduce 

treatment burden and improve adherence have recently been highlighted as important 

clinical research priorities in a recent survey of the CF community (122). In the last 

decade, advances in digital technology and wearable sensors have driven interest in 

the use of home-based monitoring (reviewed in Home monitoring to detect acute 

pulmonary exacerbations in CF 1.6.3) as a means to address these priorities, with a 

potential to reduce routine clinic visits for some individuals with CF, enhance self-

monitoring; clinician decision making and peer-to-peer support, whilst mitigating cross-

infection concerns. 

 

1.2 Acute pulmonary exacerbations in CF 

CF lung disease is clinically characterised by recurrent, periodic worsening in 

respiratory symptoms and signs (e.g., cough, sputum production and lung function) 

from an otherwise stable baseline (123). Respiratory deterioration is often associated 
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with systemic symptoms (e.g., fatigue and low appetite) due to an acute phase 

inflammatory response (123–125). These episodes, termed acute pulmonary 

exacerbations (APE), remain one of the most important clinical events experienced by 

individuals with CF (124).  In the short term, depending on the severity of the episode, 

some individuals with CF may require time off school or work. This can, depending on 

the frequency, impact adversely on educational and career endeavours (1). Several 

key studies have underscored the longer-term clinical impact of these events, 

demonstrating associations with an acceleration in lung function decline, a higher 

mortality risk, increased health-care costs and a reduction in health-related quality of 

life (126–131). Moreover, their prevalence has been shown to increase with age and 

severity of lung disease, further emphasising their role in driving disease morbidity and 

mortality (132).  

 

Antibiotics, administered either intravenously or orally, are considered a mainstay of 

treatment (133,134). Nonetheless, 25% of individuals with CF will fail to recover to 

within 90% of their baseline lung function following an APE, despite aggressive 

treatment with intravenous antibiotics (135). Of note, factors associated with failure to 

recover lung function include delays to re-assessment of baseline lung function, and 

larger falls from baseline FEV1 before treatment initiation - providing support for closer 

monitoring to assist earlier detection and prompt treatment of exacerbation events 

(126).  

 

1.2.1 Pathophysiology of APE 

Despite their frequency and clinical significance, a clear understanding of the 

pathophysiological mechanisms that trigger an APE continues to elude investigators. 

Current consensus opinion, largely driven by observations of clinical improvement with 

antimicrobial therapy, is that these events are triggered by a shift in the balance 

between host defence mechanisms and the predominant chronic airway pathogen(s) 

(136–139). Yet, strong mechanistic evidence for this is lacking. As the dominant 

conventional CF pathogen, much investigation has focused on pulmonary 

exacerbations in individuals chronically infected with P. aeruginosa. An early study 

proposed clonal expansion of the persisting pseudomonal strain from the biofilm 

reservoir, rather than acquisition of new bacterial strains (140). Studies demonstrating 

falls in bacterial sputum density following antibiotic treatment for an APE favoured this 
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hypothesis (136–138,141–143). However, subsequent studies demonstrated no 

increase in bacterial sputum density within the airway prior to or at the onset of an 

APE (144–148). Moreover, falls in bacterial density previously noted with antibiotic 

treatment have since been shown to be transient and not predictive of enhanced 

clinical outcomes (e.g., improvement in lung function) (147,148). 

 

Respiratory viruses (e.g., rhinovirus, respiratory syncytial virus, parainfluenzae, 

influenza, adenovirus, coronavirus and coxsackie/echovirus) have been associated 

with an increased risk of APE (149–151). Rhinovirus infection in addition, has been 

shown to liberate planktonic P. aeruginosa from biofilms in vitro, which illicit a stronger 

inflammatory response than their biofilm dwelling counterparts (152). This has led 

several authors to hypothesise whether a change in sputum bacterial density may be 

linked to viral respiratory tract infections. Conflicting results have been reported. Wark 

et al. investigated 17 adults with CF, the majority of whom were chronically infected 

with P. aeruginosa (153). They found a small increase in sputum bacterial density in 

association with viral-associated APEs.   However, in a more recent study by Chin et 

al. of 35 adults with CF and chronic P. aeruginosa infection, viral infections were not 

associated with significant changes in bacterial density at the time of an APE when 

compared to non-viral-associated APEs (148).  

 

Ambient air pollution has also been linked to APEs in individuals with CF (154,155). In 

a landmark epidemiological study combining the US CF National Registry to the US 

Environmental Protection Agency Aerometric Information Retrieval System Goss et 

al.  demonstrated that annual average exposure to particulate material was associated 

with an increased risk of APE (154). Their findings have been supported by more 

recent work showing a significant association between residential proximity to major 

roadways, exposure to ambient concentrations of ozone, nitrogen dioxide and 

particulate matter less than 10 µm in diameter (PM10) and an increased frequency of 

APEs (156,157). 

 

In the last two decades, the increased use of culture-independent molecular 

techniques (e.g., 16S ribosomal RNA gene sequencing) has enriched profiling of the 

CF airway microbiome and revealed the presence of new microbial species co-existing 
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with conventional, culture-detected CF pathogens (62,158,159). Across several 

studies common newly detected genera include obligate anaerobes (e.g., Prevotella, 

Veillonella, and Fusobacterium) and facultative anaerobes (e.g., Streptococcus, 

Rothia, Actinomyces, Gemella and Granulicatella) (159,160).  These findings have led 

to investigation of microbial community composition peri-exacerbation to determine 

whether short-term shifts in the structure of the CF microbiota may drive APEs. 

However, thus far, the CF microbiota has been found to be relatively stable through 

periods of exacerbation and antibiotic treatment, providing no new insights into the 

causal mechanisms for APEs (160–165).  

 

Changes in phenotypic expression of biofilm-associated bacteria may drive APEs. 

Biofilm-dwelling bacteria employ cell-density-dependent intercellular communication 

(quorum sensing [QS]) to coordinate expression of several genes, including those 

associated with virulence (166). Early work exploring microbial factors in APE initiation 

revealed the presence of P. aeruginosa exoproteins in CF sputa only at times of 

exacerbation in adults chronically infected with P. aeruginosa (167). This suggested 

an increase in bacterial virulence during acute exacerbations. The subsequent 

discovery of anaerobic biofilm formation in chronic CF lung infection led investigators 

to speculate whether transient fluctuations in bacterial growth mode, through 

occasional blooms of pro-inflammatory, planktonic bacterial cells from relatively inert 

biofilm populations, might trigger worsening in clinical symptoms necessitating 

antibiotic treatment (168–171). Data from clinical trials have confirmed a reduction in 

APE risk using macrolides (with neither bacteriostatic nor bactericidal activities against 

P. aeruginosa). Furthermore, in vitro studies have suggested that these agents, at 

sub-inhibitory concentrations, can compromise expression of certain bacterial 

characteristics, including P. aeruginosa QS, motility and exoproducts (93,172,173). 

Taken together, these findings provide support for the theory that short-term 

fluctuations in bacterial phenotypic expression (rather than density) may be significant 

in APE pathogenesis. However, to date, studies investigating this hypothesis have 

been hindered by either profiling too few phenotypes, low sampling depths, small 

patient numbers, or few timepoints independent of changes in clinical state, potentially 

hindering detection of a microbial signal linked to APE initiation (174–184). 
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1.2.2 Defining a CF exacerbation 

To date, no consensus has been reached as to what diagnostic criteria constitutes an 

APE, although the terminology has been in common use since the mid-1980s (185–

187). At present, diagnosis relies heavily on patient-reported changes in baseline 

symptoms and accompanying declines in spirometric parameters (188). However, 

individuals with CF invariably experience day-to-day symptom variation.  

 

Several factors have hampered development of an APE definition, not least the poorly 

understood day-to-day variation in symptoms, the absence of a reliable biomarker and 

variations in admission and treatment criteria between different CF centres 

(133,185,189,190). Existing diagnostic criteria have been derived from empirical data 

and proposed largely to facilitate inclusion criteria for treatment studies or as outcome 

measures to assess the clinical efficacy of new therapeutic interventions 

(83,95,132,191–193). For example, most clinical trials employ the definition proposed 

by Fuch’s et al. for the rhDNase trials (Table 1.1) (83). These operational definitions 

have been centred around the clinician’s decision to treat for a change in a variable 

combination of patient-reported symptomology, laboratory tests (especially 

spirometry) and clinical assessment (186). Common to several of these published 

definitions are changes in four specific parameters: increased cough, change in 

purulence or volume of sputum, lung function decline and weight loss 

(83,132,191,192). Despite their use, the accuracy and precision of these existing 

criteria are yet to be validated. Nonetheless, given the acknowledged inter-clinician 

 

Table 1.1.  Fuch’s diagnostic criteria for an acute pulmonary exacerbation (83). 

Treatment with IV antibiotics for any 4 of the following 12 signs or symptoms: 

1. Change in sputum 7. Anorexia or weight loss 

2. New or increased haemoptysis 8. Sinus pain or tenderness 

3. Increased cough 9. Change in sinus discharge 

4. Increased dyspnoea 10. Change in chest examination 

5. Malaise, fatigue or lethargy 11. â in lung function by ≥ 10% from a 

previously recorded value 

6. Temperature > 38ºC 12. Radiographic changes of chest 

infection 
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variability in exacerbation diagnosis and management (194), it is clear that treatment-

defined exacerbation definitions lack specificity and therefore have limited use in the 

development of standardised approaches to care and the provision of meaningful 

comparative criteria for research purposes.   

 

In spite of their limitations, systematic examination of components of these diagnostic 

research criteria by several groups has suggested that patient-reported symptoms, 

rather than clinical examination and laboratory values, were more predictive of a 

pulmonary exacerbation (132,185,195,196). In all of these studies, increased cough, 

increased sputum volume or purulence, reduced appetite, weight loss and reduced 

exercise tolerance were some of the signs and symptoms most predictive of a 

pulmonary exacerbation (125). However, inter-patient variability in the perception of, 

and therefore the reporting of, exacerbation-related symptoms and signs is well 

recognised, not least because early symptoms of APE-onset for adults with CF are 

often focused on subjective measures (e.g., how they are feeling) (197). Moreover, 

the symptom descriptors used may vary according to the severity of an individual’s 

underlying CF disease (e.g., “tiredness” for individuals with mild disease versus 

“fatigue” for those with more advanced disease) (197). Individuals with CF also face a 

daily onerous burden of treatment and are often reluctant to seek treatment early or 

attend clinic appointments for declining health, to the detriment of long-term fitness 

and wellbeing. It is likely, therefore, that decisions to report deteriorations in health lag 

considerably behind the first physiological signs or symptoms of illness, hindering 

early intervention and contributing to further lung damage.  

 

Alongside inter-clinician and inter-patient heterogeneity in APE recognition, McCourt 

et al. have highlighted the lack of agreement in perspectives between CF health 

professionals and adults with CF as to what signs and symptoms are the most 

important indicators of an APE (123). Indicators rated highly by CF health 

professionals (e.g., inflammatory markers, respiratory rate, oxygen saturation, chest 

X-ray changes) were often rated lower by individuals with CF who prioritised subjective 

measures of an APE (e.g., a change in breathlessness, sputum production, cough and 

wellbeing) (123). It is worth noting that despite a different hierarchy of importance the 

indicators common to both groups were a reduction in lung function, increased 

breathlessness, increased sputum production and increased coughing. These 
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observations contribute to a growing evidence base that support patient-reported 

outcome measures (PROMS); standardised sets of questions on health status 

completed by patients without clinician interpretation of responses (500), as more 

sensitive to change than clinician-derived measures. Of these, the CFRSD-CRISS (CF 

Respiratory Symptom Diary/Chronic Respiratory Infection Symptom Score) is the only 

exacerbation-specific symptom score recently validated for use in people with CF 

aged ³ 12 years (501,502). Nonetheless, work by McCourt et al. suggests that 

progression towards a unifying set of criteria that defines an APE may not be feasible, 

nor indeed most helpful. Rather, it may be more useful to identify a patient-specific 

combination of symptoms and signs that, when altered for a sustained period of time, 

constitutes a deviation from that individual’s “stable” baseline and could be used to 

identify an APE. The challenge, however, is in establishing what is typically an 

undocumented daily baseline, against which occurrence of an APE can be detected. 

Again, here (in addition to the potential benefits highlighted previously in Infection 

control 1.5.3), the CF research community is looking at the use of home monitoring of 

symptoms and lung function as a potential strategy to better understand daily symptom 

variation and to enable examination of relationships between symptoms and 

physiological variables that can facilitate earlier detection of APEs in CF (198).  

 

1.2.3 Detecting APEs using home monitoring 

Telemedicine (or Telehealth) can be broadly defined as the use of information and 

communication technologies to deliver medical information, clinical care, education 

and services over a distance to improve the health of patients and their communities 

(199,200). Interactions may occur either asynchronously or in real-time (199). 

Telemedicine services encompass two sub-categories: technology dedicated to 

communication between health professionals (e.g., teleradiology) and technology 

used between health professionals and patients (201). Telemonitoring (or home 

monitoring) falls into the latter category and uses remote patient monitoring 

technologies, including telephones, smartphones, health-related mobile applications 

and connected wearable devices (mHealth), with or without audio-visual connections, 

to transmit patient symptom and physiological data in order to enable diagnosis, 

follow-up and/or treatment remotely (199,200,202).  
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The use of home monitoring to detect adverse health trends in individuals with CF is 

not a new concept. However early methods of home monitoring were reliant on the 

use of paper diaries to record symptoms and physiology (203–205). One of the earliest 

such studies was conducted in the mid-1980s by Finkelstein et al. who investigated 

the implementation of a home monitoring program for individuals with CF (203,206). 

In this study, 122 children and 51 adults with CF were asked to record their daily 

symptoms and physical measurements (weight, vital capacity, quiet breathing and 

resting pulse rate) using written diaries collected on a weekly basis over a two-year 

period. One-hundred and eleven participants completed the study. Diary data was 

manually collated into a research database within 48 hours of receipt. Despite the 

potential time and resource burden, the home monitoring program was found to be 

feasible and acceptable, with 80% compliance among participants. Notably, 

compliance was promoted through feedback letters, between-visit telephone and 

written contact and the discussion of home monitoring graphs during clinic visits. 

Subsequently, these investigators carried out a nonconcurrent cohort study on 50 

individuals with CF. Twenty-five participants were selected randomly from the group 

that used home monitoring and were compared to twenty-five age- and gender-

matched participants who had not taken part in home monitoring. The aim was to 

determine if daily diary recording and self-monitoring alone, in the absence of any 

therapeutic intervention, resulted in a change in clinical outcomes (physical or 

psychological health, lung function or growth). Participants were followed for 4 years 

(207). Importantly, close home monitoring and diary record keeping was not found to 

have a negative impact on patient health (207).  

 

Since these initial studies there has been rapid advances in telecommunication tools, 

not least the broad adoption of internet and web-based technologies, improved 

affordability and access to high-speed, high-bandwidth telecommunication networks 

and the invention of devices capable of more efficient capture and transmission at a 

distance of health-related data in digital form (208). Surprisingly, when compared to 

other chronic diseases such as heart failure, diabetes or COPD (209–211), there have 

been relatively few telemonitoring studies in CF and evidence for their efficacy has 

been mixed (198,212–219). Moreover, Cox et al. conducted a systematic review in 

2012 of the use of telehealth in CF (n = 8) and concluded that despite being feasible 

and acceptable to individuals with CF, there was an insufficient evidence base from 
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which to draw firm conclusions about the benefits of telemedicine applications for 

individuals with CF (217).  

 

To date, prior studies in CF evaluating interventions for the early detection of 

pulmonary exacerbations have been relatively small, focused on a limited number of 

home-monitored parameters [such as spirometry (213–216), oxygen saturation (214) 

and symptoms (213–216)] and used fairly simple statistical cut-offs as triggers to 

detect exacerbation events (198,215,220,221). Moreover, adherence rates have 

varied widely across the studies (10-59%), often attributed to either technical 

difficulties or an increased burden of reporting associated with the home monitoring 

intervention (200). For example, Bella et al. conducted a non-randomised study 

assessing the use of telehomecare in an adult population at an Italian CF centre (214). 

Thirty individuals with CF were assigned to record daily symptoms, spirometry and 

overnight oxygen saturation whereas matched controls received usual care. Symptom 

data was transmitted via e-mail. Physiological data was collected on a digital multi-

channel recorder and transmitted twice weekly via a non-digital, landline, cable 

modem to a dedicated study server.  Monitoring was completed for a minimum 

duration of seven months. The drop-out rate for the intervention group was high (43%) 

with participants failing to comply with the minimum requirements for data submission.  

Investigators proposed that the added burden of the intervention to a participant’s 

usual treatment schedule was a likely explanation for the significant drop-out rate, 

although qualitative feedback was not sought from participants (214). A 4.5-year 

analysis of this longitudinal study was recently undertaken by Murgia et al. (221). 

During the follow-up period, participants were contacted if they met intervention criteria 

for an exacerbation based on a decline in FEV1 (> 10% compared to the previous value 

recorded in stable clinical conditions) or nocturnal oxygen saturation (< 90% of the 

maximum, or a reduction in the mean, or an increase of > 5% in the detection time 

(T90) spent below an oxygen saturation of 90%). Interestingly, a significantly lower 

decline in lung function was observed in the group undertaking home monitoring (221).  

 

In another non-randomised study, Sarfaraz et al. conducted a feasibility study of once-

daily electronic remote monitoring of symptoms and lung function for early 

identification of pulmonary exacerbations in a cohort of adults with CF (n = 51) (213). 

The remote monitoring system consisted of a mobile-enabled personal digital 
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assistant (PDA) to record symptoms (cough, sputum, breathlessness and fatigue) and 

lung function. Monitoring occurred over a 6-month period and data was automatically 

transmitted from the PDA to a study website.  Exacerbations were defined as either 

device-identified (recorded when the submitted data met any of the following criteria: 

1) at least one point increase in three symptom scores over three consecutive days; 

2) > 10% decrease in FEV1 alone over three consecutive days; or 3) at least one point 

increase in two symptom scores, plus ≥ 10% decreased in FEV1 over three 

consecutive days) or patient-defined (symptoms without fulfilment of criteria for a 

device-identified event). However again, adherence to monitoring was poor with only 

a third (37%) of participants providing frequent enough measures to form a baseline 

to explore the natural history of the disease. This was largely due to technical issues 

encountered when operating the device. Nonetheless, despite these short-comings, 

the authors reported that 75% of the exacerbations captured had a “prodromal” phase 

in which one or more symptoms (rather than lung function) worsened in the two weeks 

prior to identification of the exacerbation (213). 

 

More recently, in an observational cohort study, van Horck et al. assessed the use of 

electronic home monitoring to detect APEs in forty-nine children with CF recruited from 

three CF centres in the Netherlands (216). In this one-year study, an exacerbation was 

established in one of two ways: first according to criteria used in the Early 

Pseudomonas Infection Control (EPIC) trial (222) (Table 1.2) and second, when the 

clinician determined a course of antibiotics was necessary based on the clinical 

symptoms expressed. Monitoring involved thrice weekly recording of lung function and 

symptoms (cough, sputum and breathlessness). Data stored on the home monitor was 

transmitted to a secure web-based portal weekly. Three participants did not use the 

monitor (two due to technical issues and one before using the home monitor). 

Adherence, defined as completion of 70% of the maximum number of requested home 

measurements over one year, was high (75%). Of note, the authors found an increase 

in symptoms as early as 4 weeks prior to the diagnosis of an APE being made. 

 

In adults with CF, a recent large, multicentre, randomised controlled trial (the early 

intervention in cystic fibrosis exacerbation (eICE) trial) was conducted to assess 

whether electronic home monitoring of lung function and symptoms would facilitate 

earlier detection of APE and result in a slower decline in lung function over 12 months 
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compared with usual care (215). Two-hundred and sixty-seven adults with CF took 

part and the proposed study duration was one year. Participants used home-based 

spirometers and completed the CFRSD via the Viasys AM2 device (CareFusion, 

Yorba Linda, CA) to identify exacerbations. The home monitoring system triggered 

participants to seek clinical review for a potential APE whenever FEV1 declined greater 

than 10% from baseline or two or more of eight symptom scores (using the CFRSD) 

 

Table 1.2. EPIC trial definition for a pulmonary exacerbation (222). 

Major criteria (One finding alone establishes the presence of an exacerbation) 

1. Decrease in FEV1 of ≥ 10% from best baseline within the past 6 months, 

unresponsive to beta-2 agonist 

2. Oxygen saturation < 90% on room air or ≥ 5% decline from previous 

baseline 

3. New lobar infiltrate(s) or atelectasi(e)s on chest radiograph 

4. Haemoptysis (more than streaks on more than one occasion in past week) 

Minor criteria (Two findings plus duration criteria, in the absence of major criteria) 

1. Increased work of breathing or respiratory rate 

2. New or increased adventitial sounds on lung exam 

3. Weight loss > 5% of body weight or decrease across 1 major percentile in 

weight percentile for age in past 6 months 

4. Increased cough 

5. Decreased exercise tolerance or level of activity 

6. Increased chest congestion or change in sputum 

Duration (Required with two minor criteria, in the absence of major criteria) 

Duration ≥ 5 days or significant symptom severity 

 

worsened from baseline. Despite more protocol-defined exacerbations detected in the 

home monitoring cohort, the study was stopped prematurely as earlier detection of 

APEs did not result in a slower decline in lung function. Moreover, adherence with 

twice weekly data transmission was very low (19%) with participants encountering 

considerable technical issues with the home monitoring system. This finding (in line 

with previous home monitoring trials in CF) clearly highlighted the need to streamline 

the remote monitoring system in order to lower the burden of monitoring to the patient. 
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The authors also suggest that the study’s negative primary outcome may reflect a 

suboptimal choice in APE threshold identifiers, acknowledging that (in the absence of 

a consensus definition for an APE) an alternate combination of cut-offs may have led 

to different results.  However, it still remains unclear how best to determine an accurate 

composite measure of symptoms and signs for early detection of an incipient 

exacerbation.  

 

1.3 Machine learning as a tool to examine home monitoring data 

The CF home monitoring studies reviewed in Section 1.2.3 have shown that with 

continued innovations in home monitoring technologies, the collection of increasingly 

larger and more complex, longitudinal datasets is possible (223). These big datasets, 

however, have revealed the limitations of classical statistical approaches to yield 

actionable knowledge that can drive progress on identifying and predicting APEs at 

the individual level (224,225). In general, classical statistical models deal poorly with 

high-dimensional data due to their underlying assumptions. Therefore, they may fail 

to uncover complex interactions between variables which may be concealed within the 

data and which cannot easily be expressed as a mathematical equation (226,227). 

Consequently, assisted by the availability of faster computation and cloud data 

storage, there has been a push within the respiratory community to leverage data 

science techniques (e.g., data mining, machine learning (ML) methods and predictive 

analytics) to discover useful associations, patterns and trends for prediction and 

explanation within big data (228–230).  

 

Artificial intelligence is a broad interdisciplinary field which draws on computer science, 

mathematics and philosophy, among others (231). It involves the use of computer 

systems to imitate human cognition and intelligent behaviours, such as thinking, 

reasoning, and learning, in order to solve complex problems in the way an expert might 

- by careful consideration of the evidence to reach reasoned decisions (227). However, 

one key advantage over the human expert is that systems driven by artificial 

intelligence can both observe and rapidly analyse an almost infinite number of inputs 

(232).  

 

Machine learning is an artificial intelligence technique (232). It broadly refers to an 

algorithmic framework that can enable new knowledge discovery (e.g., identify hidden 
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groups or associations between key variables) while facilitating inductive inference 

and providing a setting to explain and predict particular outcomes from observed data 

(226,233). Machine learning algorithmic models process data and improve on 

performing specific tasks autonomously, by pattern recognition and learning from the 

data they see, rather than through explicit computer programming by a human expert 

(234,235).  

 

Machine learning algorithms can be divided into two main classes: unsupervised 

learning and supervised learning (236). Unsupervised learning supports features 

extraction - algorithms that seek patterns from an unlabelled set of input data, with the 

goal being to group the data based on their inherent features, rather than on a targeted 

outcome (235). A large part of the strength of ML comes from unsupervised learning 

which facilitates the learning of new associations from hidden (or latent) aspects of the 

data, that often have not been considered before (231,237).  These hidden aspects 

often reflect non-linear relationships between many of the input variables. For 

example, this method has been used to identify novel phenotypes of sepsis (238). In 

contrast, supervised learning algorithms are trained with a labelled dataset of inputs 

and a paired known output, with the aim being to learn how to process the inputs in 

order to reproduce the related output (235). For example, the model may be trained to 

associate a person’s characteristics (e.g., sex, weight, age) to a certain outcome (e.g., 

onset of hypertension within five years). The fully trained algorithm can then be tested 

on a given set of inputs, without their associated outcomes. The algorithm’s predictions 

on the testing set can then be compared to their known outcomes to determine the 

model’s predictive performance, and generalisability (239).   

 

The use of ML within the field of respiratory medicine is rapidly expanding (236). 

Examples include integration of ML for prediction of lung cancer prognosis, risk of 

hospital admissions with COPD and thoracic imaging analysis to improve diagnostic 

accuracy (240–243). Machine learning offers a promising solution to the challenge of 

analysing high-dimensional data collected by home monitoring devices. However, as 

yet, this powerful analytic technique has not been applied to datasets collected from 

individuals with CF. 
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1.4  Detecting APEs in non-CF lung disease using home monitoring 

Acute exacerbations in asthma and COPD, as in CF, are significant events with a 

negative impact on health status, hospitalisations and readmissions, and disease 

progression (244,245). Home monitoring has also been studied in these conditions, 

as a means to promote self-management, improve disease control, increase quality of 

life and prevent hospital admissions (226). In 2013, Nimmon et al. conducted a critical 

review of telehealth interventions for the management of COPD and asthma, using 

evidence collated from eleven systematic reviews published between 2001 and 2011 

(246). The authors concluded that home monitoring showed potential as a patient 

management approach, supporting early identification of deteriorations in patient 

condition and symptom control. However, the authors cautioned that evidence for the 

magnitude of clinical impact was lacking. Reasons given for this included the poor 

quality of studies, unclear definitions of disease, wide variation in monitoring methods, 

small sample sizes and short study durations.  Moreover, several studies have 

highlighted the poor performance of conventional algorithms (e.g., threshold values 

assigned to trigger an alert when a deterioration in patient status occurs) for detecting 

exacerbations (247–249). These findings have been corroborated in more recent 

systematic reviews (250,251). The lack of concrete symptoms and signs to distinguish 

stability from periods of exacerbation in asthma and COPD has made development of 

early detection systems based on home monitoring data challenging (252).  

 

Recently, data mining and ML approaches have been applied to asthma and COPD 

telemonitoring datasets to address the task of developing more accurate, clinically 

reliable, early predictors of acute exacerbations (226).  However, a 2016 systematic 

review of the use of predictive algorithms for exacerbations in home monitoring studies 

of individuals with COPD and asthma concluded that models with good clinical 

reliability have yet to be defined and remained an important goal for the future 

development of telehealth in chronic respiratory conditions (226). Sanchez-Morillo et 

al. identified 20 studies (16 COPD, 4 asthma) which met inclusion criteria (where home 

telemonitoring was involved, the algorithms used to detect episodes were described 

and results on the performance of algorithms for the automatic prediction and/or 

detection of respiratory exacerbations were presented) (226). In the majority of the 

studies (n = 12) a simplistic strategy was employed for early detection of 

exacerbations, consisting of a basic decision rule based on assigning threshold values 
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to the collected parameters. In the remaining studies (n = 8), ML techniques were 

applied.  Of note, the authors did highlight that the ML predictive models provided 

encouraging results whilst, by comparison, the conventional threshold-based 

algorithms showed poor performance. Many of the underpinning algorithms behind 

these models still need to be validated in larger samples of patients, for longer periods 

of times and with well-established protocols. Nonetheless, there is encouraging 

evidence from this work in individuals with asthma and COPD that identification and 

prediction of acute exacerbations in respiratory conditions, using home monitored data 

may be within reach using ML approaches.  

 

1.5 Detecting APEs in CF using bacterial sputum biomarkers  

The clinical presentation of APEs in CF is broad, varying from an increase in cough 

frequency without a change in lung function to significant falls in lung function with 

accompanying breathlessness and potential respiratory failure (186). In the absence 

of a consensus diagnostic definition, the need remains for a reliable, clinically relevant 

biomarker(s) that can objectively reflect the onset of an APE and advance our 

understanding of the mechanisms that drive APEs and their relationship to airway 

inflammation and lung function decline (190,253). Moreover, the discovery of such a 

biomarker(s) would offer the opportunity to initiate therapies promptly, thereby 

circumventing irreversible loss of lung function. 

 

Ideal biomarkers for APE detection should be able to be measured from samples that 

can be easily collected from individuals with CF. Sputum (in comparison to blood, 

urine, bronchoalveolar lavage samples) is a rich, non-invasive and direct source of the 

by-products of lower airway inflammation and infection (such as inflammatory cells, 

pro-inflammatory cytokines, mucin, bacteria and bacterial metabolites), and is readily 

sampled from the majority of adults with CF (254). Moreover, previous studies have 

confirmed that expectorated sputum provides an accurate measure of infection in the 

CF airway (255–257). To date, sputum biomarker studies have largely focused on 

investigating host-derived biomarkers of pulmonary inflammation, mainly for use as 

outcome measures in clinical trials assessing new therapies or disease progression 

(258–260). Some of these biomarkers (e.g., calprotectin, neutrophil elastase, IL-8, and 

myeloperoxidase) have also been investigated to monitor for APEs. However, findings 

have been inconsistent, with both positive and negative results reported for the same 
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biomarker (141,261–265). Importantly, certain authors have argued that host-derived 

inflammatory biomarkers are likely to be limited in their predictive power, as changes 

in their levels are likely to occur only once upregulation in the inflammatory response 

has been established during an APE (1,189). Therefore, there remains a need to 

identify biomarkers that are linked to triggers that upregulate the inflammatory 

response, in order to more accurately detect APE onset. 

 

In the setting of chronic bacterial infection (usually with P. aeruginosa) in the CF 

airway, alternate approaches may be to measure changes in airway bacteria number 

or bacterial products in sputum. Mechanistically, it has been postulated that 

upregulation of the immune response may be triggered by secretion of specific 

bacterial compounds (associated with virulence behaviour) into the airways, or in 

response to the presence of bacterial cells in the airways (189,266). However, when 

bacterial sputum density has been determined through the course of an APE, changes 

in bacterial load have not been shown to be predictive of an APE (147).  

 

Several substances associated with P. aeruginosa virulence (e.g., exotoxins, 

pyocyanin, pyoverdine and QS signals) have been detectable from CF sputum using 

various analytical techniques such as immunochemistry, spectrophotometry, mass 

spectrometry and whole cell reporters (167,267–271). Yet, few studies have been 

published on microbial-derived biomarkers for APE detection. In the early 1990s 

Grimwood et al. demonstrated an increased concentration of P. aeruginosa 

exoenzymes (Exotoxin A, exotoxin S, elastase, total protease and phospholipase C) 

in sputum collected during an APE from 17 hospitalised patients compared with 17 

stable controls with CF (267). The same authors also demonstrated a fall in 

exoenzyme concentrations following antibiotic treatment in a separate prospective 

study of 9 hospitalised patients with CF. Shortly after, Jaffer-Bandjee et al. examined 

secretion of P. aeruginosa exoenzymes (elastase, Exotoxin A and alkaline protease) 

during one or several exacerbation periods (29 in total) in 18 hospitalised patients with 

CF (167). Three of the patients were also studied during inter-exacerbation periods 

(when they were admitted for digestive disease). A significant fall in exoprotein levels 

was observed following antibiotic treatment in the majority of exacerbation episodes 

with negligible levels detected during the 3 inter-exacerbation periods studied (167). 

In order for a biomarker to be useful in predicting the onset of an APE, a consistent 
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change in the level between periods of clinical stability and decline (not just following 

initiation of treatment) must be demonstrable (189). Evidence from these earlier 

studies by Grimwood et al. and Jaffer-Bandjee et al. suggests that a microbial signal 

may be present prior to APE onset. In addition, combining several biomarkers to 

augment the significance of association with an APE has been proposed previously, 

which may be more useful than assessing single markers alone (190). However, this 

has yet to be confirmed.  

 

Microbial-derived biomarkers in sputum (with particular emphasis on the traditional CF 

pathogen, P. aeruginosa) present a promising means to enrich APE diagnosis and 

prediction in CF and warrants further investigation. Furthermore, the potential to 

integrate novel sputum biomarker assays with innovative home monitoring technology 

offers an exciting opportunity to enhance self-management and clinical decision-

making for individuals with CF.  

 

1.6 Pseudomonas aeruginosa  

P. aeruginosa is a stress-resilient Gram-negative organism. It is an aerobic to 

facultative anaerobic, rod-shaped bacterium which belongs to the bacterial family 

Pseudomonadacea (272). The organism is widely distributed in terrestrial and aquatic 

environments (273). P. aeruginosa strains possess a large genome (between 5.5 and 

7Mbp within the species) which approaches the size and complexity of lower 

eukaryotes (274–276). The large genome size is primarily the result of a highly 

conserved (inter-clonal sequence diversity of 0.5 - 0.7%) core genome which encodes 

many regulatory genes involved in sensing environmental signals, controlling 

expression of virulence factors, metabolism and resistance mechanisms (277,278). Its 

genomic diversity results mainly from the presence of a highly variable accessory 

genome, consisting of integrated islands, transposons, bacteriophages, or IS-

elements that are distributed through the core genome at certain loci (regions of 

genomic plasticity) to form a mosaic-like structure (276,277,279,280). These 

accessory elements enable P. aeruginosa to acquire genetic material from different 

sources (including other species or genera) by horizontal gene transfer 

(transformation, conjugation and transduction), nucleotide substitution, insertions of 

transposons and bacteriophages (277). P. aeruginosa prefers to grow in aerobic or 

microaerobic environments (281). However, it is remarkably versatile, due to a 
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combination of its large genome, accessory elements and vast array of regulatory 

systems. These properties make it capable of competitively thriving in diverse 

ecological niches and maintaining a metabolically flexible lifestyle (276,280).  

However, the same properties that confer ecological success have allowed P.  

aeruginosa to excel as an opportunistic human pathogen, with the means to cause 

various, often overwhelming, acute infections (e.g., pneumonia, bloodstream 

infections), mostly in the setting of compromised host defences (282). Remarkably, 

this same pathogen is capable of causing chronic infections that persist in the host 

over time, such as is seen in the lungs of individuals with CF. This capacity to establish 

chronic infection results as a consequence of dynamic and complex host-pathogen 

interactions, where P. aeruginosa persists without causing overwhelming injury, and 

where host defences fail to eradicate the organism (278).  

 

1.6.1  P. aeruginosa infection in CF 

Of the characteristic set of microbes known to infect the lungs of individuals with CF 

in an age-dependent fashion (reviewed in section 1.5.1), P. aeruginosa remains the 

most noteworthy, causing chronic airway infection in up to 80% of adults with CF (283). 

Its persistence in the CF airways is classically associated with poorer survival and an 

accelerated rate of lung function decline (284–288). Given these major clinical 

implications, early, aggressive treatment of incident infection (in an attempt at 

eradication), is an agreed standard of care (79,289). In part this strategy, coupled with 

improved infection control measures, has seen a gradual decrease in the overall 

prevalence of P. aeruginosa chronic infection in CF over the past two decades 

(290,291). 

 

Currently, there is no consensus definition to distinguish early, intermittent P. 

aeruginosa infection from chronic infection (292). Whilst there is broad agreement that 

persistent P. aeruginosa growth on repeated airway sampling is characteristic, the 

proportion/number of positive samples, the sampling interval and the clinical context 

may differ between CF specialist centres, in accordance with local guidelines 

(292,293). Where available, serum Pseudomonas IgG antibody levels (e.g., strongly 

positive or a rising trend) may be useful to assist with differentiation between early and 

chronic infection stages, particularly in the case of inadequate airway sampling (294–
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296).  

 

Despite the lack of a universally accepted definition, certain criteria have been applied 

in the CF clinical and research settings, particularly in paediatric studies (297,298). 

Arguably, the most well-known of these is the Leeds criteria, which is solely dependent 

on standard microbiological results (299). These criteria define chronic P. aeruginosa 

infection as > 50% of months with cough swabs/sputum cultures in the preceding 12 

months that were positive for P. aeruginosa (299). Of note, a recent real-world study 

by Hoo et al. highlighted some important concerns with its use (293). The study 

compared clinicians’ decision with the Leeds criteria in three adult CF centres in the 

UK. The authors found consistency in decision-making by clinicians across the 

different centres and that clinicians did not always agree with the Leeds criteria. 

Furthermore, where disagreement occurred, clinical decision-making was found to be 

more sensitive in the diagnosis of P. aeruginosa chronic infection because clinicians 

assimilated other relevant information (such as information on strain type, proportion 

of negative cough swabs versus sputum samples) in their decision-making (293,300).  

 

1.6.1.1 Acquisition  

A lack of clarity still exists around the aetiology and individual risk factors for first 

acquisition of P. aeruginosa in CF (301). Several paediatric studies have drawn links 

to seasonal, meteorological and geographical differences in acquisition. A higher 

incidence rate of first acquisition has been observed in the summer and autumn 

months and in urban environments, whereas an earlier age of acquisition has been 

associated with warmer annual ambient temperatures (301–304). Given its ubiquitous 

presence in the natural world, initial acquisition of P. aeruginosa is thought likely to 

occur from environmental reservoirs (305). This conclusion is supported by genetic 

fingerprinting studies in children with CF which show that early infecting strains are 

nonclonal and genotypically resemble those found in the natural environment (306).  

 

Acquisition may also occur via patient-to-patient transmission and several multi-drug-

resistant “epidemic” strains have been identified, most prominently in the UK but also 

in Australia and the US (recently reviewed in detail by Parkins et al.) (113). Epidemic 

strains are clonal strains (genetically identical to a common ancestor) that exist among 

a local CF population (113). The Liverpool epidemic strain (LES) is the most prevalent 
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epidemic strain of P. aeruginosa, infecting approximately 11% of individuals with CF 

in the UK (307). It is also notable as the only epidemic clone to be found inter-

continentally (North America and Europe) and is unique for very high rates of antibiotic 

resistance which facilitate its persistence in the CF airway, transmissibility and 

virulence behaviour (308). Two other transmissible strains are known to circulate in 

the UK: the Manchester epidemic strain (MES) and the Midlands-1 strain (108,309). 

The MES was first reported in 2001 in the Manchester Adult CF Clinic (108). This 

clone, unlike the Midland’s-1 strain, is also significant for its high antibiotic resistance 

and association with increased CF morbidity (e.g., higher exacerbation frequency, 

admission rates and acute treatment burden) (108,310).  

 

1.6.1.2 Establishment of chronic infection  

Upon entering the CF airway, initial infecting P. aeruginosa strains encounter a hostile, 

heterogenous and stressful environment (311).  Proposed challenges include osmotic 

stress due to highly viscid mucus (311), nutritional availability (312,313), other resident 

microbes (competing for resources or contributing to P. aeruginosa mortality) (62), 

bacteriophages (314), oxidative and nitrosactive stresses due to host immune 

responses (leading to increased mutation rates due to increased DNA damage) 

(315,316) and, sublethal concentrations of antibiotics. In this setting, and for reasons 

not entirely understood, early, recurrent and intermittent infection (which is susceptible 

to antibiotic treatment) is inevitably superseded by the establishment of intractable 

chronic infection (305). The transition to chronic infection is accompanied by a 

fundamental shift in the gene expression profile of P. aeruginosa in response to the 

host environment. These genotypic changes, determined by mutation and selection, 

enable the organism to adapt and manifest persistent and resistant phenotypes that 

distinguish chronic isolates from their early-infecting counterparts (which are non-

mucoid, free-living, fast growing and relatively antibiotic-susceptible) (321) (Figure 

1.4).  

 

Individuals with CF are usually chronically infected with a single strain type of P. 

aeruginosa, although in some instances several unrelated strains can transiently or 

even permanently, coinfect the same individual (113,179). In a landmark study, Smith 

et al. examined two P. aeruginosa strains collected from a chronically infected 

individual with CF, 7.5 years apart, using whole genome sequencing (179). The  
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authors determined that the later isolate had acquired 68 mutations, a higher 

proportion of which were non-synonymous. Comparable findings were observed when 

analysing candidate genes from similarly paired isolates from 29 other CF patients. 

This led the authors to conclude that over the course of chronic P. aeruginosa infection 

there is evolution toward a dominant clone that, through clonal expansion, leads to 

emergence of populations of subclones characterised by expression of a chronic 

phenotype that is typically less virulent (e.g., less inflammatory and cytotoxic) and 

more resistant to antibiotic treatment than the initial infecting strains. Some of these 

characteristic “CF-evolved” phenotypes (described in further detail below) include 

conversion to mucoidy, formation of slower-growing small colonies on agar (small 

colony variants), loss of flagella-dependent motility, biofilm formation, increased 

auxotrophy, down-regulation of QS and subsequent loss of QS-regulated virulence 

factors such as secreted proteases and the siderophore pyoverdine 

(177,179,323,324).  

 

However, it is now well established that clonal populations of P. aeruginosa residing 

Figure 1.4. The characteristic time course of the development of chronic P. aeruginosa 

infection of the CF lung. Adapted with permission from Bouvier et al., 2016 (322). 
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in the CF airway display greater heterogeneity in the expression of virulence-

associated determinants than previously suspected (121,271,325–328). Moreover, 

evidence suggests that this phenotypic diversity is dynamic, with substantial 

fluctuations seen among clinical isolates within a single sputum sample and between 

sputum samples collected from the same individual over time (121,271,326,327).  

However, whether (in the setting of chronic P. aeruginosa infection) CF exacerbation 

onset correlates with the short-term emergence of more virulent clonal sub-

populations of P. aeruginosa remains to be confirmed.   

 

1.7  P.  aeruginosa adaptive and virulence-associated phenotypes in chronic 

infection of the CF lung 

 

1.7.1 Morphology variants 

During early intermittent P. aeruginosa infection, the non-mucoid (e.g., environmental 

wild-type) colony morphotype predominates in the bacterial population. However, 

during the process of adaptation to the stressful CF lung environment mutations in the 

regulatory gene, mucA (which encodes the anti-sigma factor MucA) are commonly 

acquired (329). These mutations lead to loss of sequestration of the stress-responsive 

AlgT/U sigma factor to the inner membrane, allowing binding to RNA polymerase and 

unopposed expression of the alginate biosynthetic genes (329). The consequent 

overproduction of alginate, a secreted exopolysaccharide, characteristically marks the 

transition to chronic infection, with the emergence of mucoid colony variants. Alginate 

overproduction is regulated at two levels: 1) post-translationally, as a response to 

stress (e.g., antibiotics, iron limitation, host responses) or 2) genetically (from 

spontaneous chromosomal mutations) (330,331). Alginate contributes to the 

pathogenesis of P. aeruginosa in several ways, including enhancing biofilm formation 

and providing a protective capsule around the bacterium that impedes host immune 

responses (e.g., complement-mediated killing and phagocytic killing by macrophages 

and neutrophils) (74,305) and oxidative damage from oxygen free radicals (332). 

 

Small colony variants (SCVs) are another distinctive colony morphotype associated 

with chronic P. aeruginosa infection in CF (333). These slow-growing isolates are 

typically described to take more than 48 h to appear on culture plates and exhibit small 

colonial diameters ranging between 1 and 3 mm (74). SCVs exhibit additional unique 



  

  34 

features that favour P. aeruginosa pathogenesis, including an enhanced capacity to 

form biofilms (e.g., auto-aggregation in liquid culture and hyper-adherence to 

surfaces), a reduction in flagellar motility, upregulation of type III secretion 

components (which mediates secretion of exotoxins into the host cell) and increased 

antibiotic resistance (334). SCVs have also been reported to exhibit reversion into fast-

growing morphotypes with regained antibiotic susceptibility following several 

passages in antibiotic-free medium in vitro (323). It has therefore been postulated that 

more resistant SCVs may emerge under the selection pressure of antibiotic therapy. 

Furthermore, when the selection effect weans, fast-growing revertants may arise and 

increase bacterial load, ultimately culminating in an exacerbation episode (323). 

However, prospective studies have yet to explore this hypothesis further. 

 

The molecular mechanisms underlying the SCV morphotype in clinical P. aeruginosa 

isolates are not yet understood. However, SCVs are strongly associated with elevated 

levels of cyclic-di-GMP (a bacterial second messenger that regulates transition 

between motile/virulent and sessile/biofilm lifestyles in a wide range of species) (335), 

as well as increased production of Pel and Psl exopolysaccharides (336). To date, 

loss-of-function mutations in regulatory genes such as wspF, yfiR, fleQ and rsmA 

(which favour increased cyclic-di-GMP production) have been commonly identified in 

CF-evolved P. aeruginosa isolates (335,337–339). 

 

1.7.2 Quorum sensing  

Quorum sensing, a bacterial communication system that enables the coordinated 

expression of multiple genes and microbial social behaviour in a cell density-

dependent manner, plays a critical role in the pathogenesis of P. aeruginosa (340). 

Quorum sensing depends on the synthesis, release and groupwide response to a 

critical threshold of extracellular signalling molecules called autoinducers (AIs) (341). 

Accumulated AIs activate their cognate receptors to induce or repress the 

transcriptional expression of numerous target genes in response to environmental 

stimuli (342,343).  

 

P. aeruginosa possesses three linked canonical QS systems (Las, Rhl and PQS), with 

a hierarchical network of control mediating integration of multiple cross-signals 

between the QS signalling pathways (for detailed reviews see Williams and Camara, 
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and also Lee and Zhang) (282,343,344). These QS systems control the expression of 

genes mainly involved in virulence factor production, motility, the switch from 

planktonic to sessile growth mode, biofilm development, antibiotic resistance 

mechanisms and the adjustment of metabolic pathways for stress responses 

(343,345) (Figure 1.5).  

 

 
 

 

 

 

The Las system consists of two proteins; LasI and LasR.  LasI catalyses synthesis of 

its specific AI, N-acyl-homoserine lactone (AHL) signal molecule N-3-oxo-dodecanoyl-

L-homoserine lactone (3OC12-HSL, OdDHL), that docks with LasR and in turn binds 

to the promoter of regulated genes (346,347). The Rhl system has its own specific AI 

synthase, RhlI, which synthesises N-butanoyl-L-homoserine lactone (C4-HSL, BHL), 

which partners with its cognate transcriptional regulator, RhlR (348,349). Microarray 

data suggest that 6 to 12% of all chromosomal genes of P. aeruginosa are regulated 

by the LasIR and RhlIR QS systems (342).  

 

Figure 1.5. Schematic representation of the three QS signalling networks in P. aeruginosa 

and their corresponding regulons. Arrows indicate positive regulation. Perpendicular lines 

indicate negative regulation. Adapted with permission from Lee and Zhang et al., 2015 (343). 
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The two AHL QS systems interact with a third non-AHL QS system, which is mediated 

by the 2-alkyl-4-quinolone (AQ) AI signalling molecules 2-heptyl-3-hydroxy-4-

quinolone [Pseudomonas quinolone signal (PQS)] and its biosynthetic precursor 2-

heptyl-4quinolone (HHQ) (350). PQS and HHQ bind to PqsR (also called MvfR) to 

regulate transcription of the pqsABCDE operon and expression of the PQS synthesis 

genes. PqsR is itself regulated by LasR-OdDHL (351–353). The pqs operon 

pqsABCDE, together with pqsH, codes for HHQ and PQS production. PqsE, however, 

is not required for AQ biosynthesis but is necessary for expression of PQS-dependent 

virulence determinants, expression of RhlR-activated genes and biofilm formation 

(354,355). Regulation of the QS network is further complicated by the existence of 

other regulators such as the global regulators; Vfr and GacA, and the repressors; 

RsaL, QscR and MvaT and the sigma factors RpoS and RpoN (345).  

 

The Las system regulates several secreted virulence factors including alkaline 

protease, exotoxin A and LasA, as well as creating a positive feedback loop by 

inducing lasI. LasIR also induces the Rhl system and RhlR has been shown in turn to 

upregulate the expression of lasI (356). The Rhl system regulates a large regulon of 

genes, including those encoding virulence factors such as rhamnolipids, elastases, 

stationary phase sigma factor (rpoS), type I and II lectins (lecA, lecB), hydrogen 

cyanide and pyocyanin (357). Some of these genes are also members of the 

LasR:OdDHL regulon. The PQS system produces multiple small molecules, which are 

involved in antibiotic resistance, cytochrome inhibition, virulence (e.g., exoenzymes, 

lectins, siderophores (pyochelin and pyoverdine) and phenazines) (350,358–360), and 

intercellular communication. The RhlR regulon overlaps with the LasR regulon, for 

example the promoter of lasB, which encodes for elastase, has binding sites for both 

LasR and RhlR, with LasR showing the strongest lasB activation (342). Similarly, many 

of the genes regulated by PQS are also regulated by the two AHL signals and their 

cognate receptors (357,361). In addition to controlling virulence, QS also has a role in 

regulating biofilm formation in P. aeruginosa (362). 

 

Much of our understanding of the sophisticated QS systems used by P. aeruginosa 

comes from extensive investigations on the laboratory strain, PAO1 (346,347). In this 

context, the Las system is often described as the master regulator of the QS hierarchy. 

However, many QS-dependent virulence factors are mainly activated by RhlR-BHL. 



  

  37 

Moreover, lasR mutants are commonly isolated from the lungs of CF patients 

chronically infected with P. aeruginosa (177,179,363,364).  

 

1.7.3 P. aeruginosa virulence determinants 

P. aeruginosa possesses an impressive collection of virulence factors which, along 

with its genetic and metabolic flexibility, contribute to the bacterium’s broad pathogenic 

potential.  Included among these are an array of secreted (e.g., proteases, toxins, 

pigments, extracellular polysaccharides, siderophores and rhamnolipids) and cell-

associated factors (e.g., pili, flagellum and lipopolysaccharide). These virulence 

factors enable the bacterium to manipulate and evade host defence strategies in order 

to initiate and establish infection. The specific virulence factors relevant to this body of 

work, are described in further detail below. 

 

1.7.3.1 Proteases and toxins 

Most of the proteases and toxins secreted by P. aeruginosa are secreted via the Xcp 

type II secretion system (T2SS), one of the organism’s five (type I, II, III, V, VI) 

secretory systems (365). P. aeruginosa secretes several extracellular proteolytic 

enzymes which include alkaline protease (AprA), elastase A (LasA/staphylolysin), 

elastase B, (LasB/pseudolysin/elastase), large exoprotease (LepA), MucD, protease 

IV (PIV), P. aeruginosa aminopeptidase and Pseudomonas small protease (366).  P. 

aeruginosa proteases are particularly notable for their role in facilitating invasion and 

necrosis of host tissue (including lung surfactant proteins A and D involved in 

opsonisation and macrophage function) (367–369). In addition, they are involved in 

the modulation of host inflammatory responses through their interaction with a diverse 

range of host molecules (see Hoge et al. (367) for a more detailed review), including 

the destruction of surface receptors on neutrophils leading to impairment of 

chemotaxis, phagocytosis and the oxidative burst.  

 

Of all the secreted proteases, elastase B is generally the most abundant. It has several 

properties that distinguish it as one of the major virulence enzymes of P. aeruginosa, 

including its broad substrate specificity, ability to degrade elastin (a major component 

of connective tissue that is resistant to hydrolysis by most proteases), 

immunoglobulins and complement proteins, disrupt epithelial tight junctions, and 

reduce endothelial integrity. Elastase A (also called staphylolysin due to its ability to 
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cleave the pentaglycine bonds in the peptidoglycan of S. aureus) is the second 

elastase secreted by P. aeruginosa. It degrades several glycine-rich proteins 

(367,374). It exhibits limited intrinsic elastolytic activity whilst significantly enhancing 

the elastinolytic activity of other proteases, including that of LasB (374).   

 

Alkaline protease, secreted via the type I secretory system (T1SS), degrades host 

complement proteins and fibronectin (375). It has, in addition, been shown to interfere 

with flagellin signalling, enabling P. aeruginosa to avoid immune detection (376). 

Alkaline protease exhibits a broad substrate range but is not as potent as elastase B 

and has no elastolytic activity. 

 

The type II secreted Exotoxin A is produced by most P. aeruginosa strains that cause 

clinical infections (377). Exotoxin A is responsible for local tissue damage, bacterial 

invasion and (possibly) immunosuppression via inhibition of host protein synthesis. 

 

Synthesis of the elastases A and B, alkaline protease and exotoxin A is under QS 

control with LasR-OdDHL regulating expression of lasB, lasA, aprA and toxA (378). 

LasB transcription, in addition, is reliant on PQS and activation of the PQS system, 

with inactivation of PQS signal shown to cause a reduction in elastolytic activity in vitro 

(379). Furthermore, BHL has been shown to act synergistically with PQS to induce 

lasB expression, with greater expression levels observed in the presence of both 

signalling molecules than with either signal alone (380). 

 

Exoprotein-deficient isolates are commonly isolated from CF patients chronically 

infected with P. aeruginosa (381). These observations are also supported by the 

frequent identification of lasR variants in chronic CF isolates, leading to speculation 

that these virulence factors play less of a role in chronic infection of the CF airway. 

However, curiously, there is also evidence indicating that CF-evolved P. aeruginosa 

strains produce higher levels of secreted virulence factors (e.g., elastase, exotoxin A 

and alkaline protease) at times of exacerbation, suggesting that dynamic fluctuations 

in virulence factor expression may be important in triggering periods of APE 

(167,271,325).  
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1.7.3.2 Flagella- and pilus-mediated motility 

P. aeruginosa synthesises a single polar flagellum and several shorter polarly 

localised Type 4 pili (T4P) (382). These proteinaceous extracellular appendages are 

readily detectable by the host immune system and therefore are potent activators of 

the immune response to P. aeruginosa infection (383). They play a significant role in 

P. aeruginosa pathogenesis, being essential factors in biofilm formation and a major 

means of cell motility (382). Flagella-mediated swimming motility is understood to be 

required for initiation of biofilm formation through facilitation of adhesion to airway 

mucins (384). Once attached, twitching motility, a form of surface translocation 

mediated by T4P, promotes further development of biofilm architecture. This occurs 

through mediation of cell migration and aggregation which enables the formation of 

microcolonies within the mature biofilm (385,386). P. aeruginosa also uses flagella-

based swarming motility but this form of motility will not be discussed further here. 

 

In P. aeruginosa, flagellar biosynthesis and assembly is under the control of a highly 

complex, four-tiered, transcriptional regulatory cascade which coordinates the 

expression of approximately 50 genes (for a detailed review see Dasgupta et al.) 

(387).  FleQ is considered the master regulator protein of this cascade. It belongs to 

the top tier of the pathway and is needed for the expression of all known flagellar 

genes with the exception of fliA (388). 

 

A large number of genes are also involved in T4P biosynthesis and function. Among 

them are the genes encoding the main structural subunit (pilA or pilin), the leader 

peptidase (pilD), other proteins required for pilus assembly and twitching motility and 

at least three regulatory systems, including the two-component sensor regulator pilSR 

and algR/fimS and a complex chemosensory system (pilGHIJK, chpABCDE) (389). 

 

In addition, cyclic-di-GMP plays a key role in the regulation of flagellar and T4P 

biosynthesis, which in turn influence biofilm formation (390). Binding of cyclic-di-GMP 

to the transcriptional regulator FleQ downregulates flagellar biosynthesis. 

Consequently, c-di-GMP-bound FleQ converts into a potent transcriptional activator of 

the exopolysaccharide synthesis genes, favouring biofilm formation (391). Cyclic-di-

GMP, in addition, positively regulates T4P assembly at the cell poles when bound to 

FimX, which again promotes biofilm development (392). 
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Twitching motility has also been linked to the las and rhl QS systems in P. aeruginosa. 

Work by Beatson et al. demonstrated that although twitch motility is unaffected by 

mutations in the genes encoding the las and rhl QS systems, existing mutations in 

these genes can lead to specific secondary mutations in other significant regulatory 

genes that affect twitching motility, such as vfr and algR (389). Furthermore, there is 

some evidence to suggest that flagellin and alginate production are inversely regulated 

via the alternative sigma factor AlgT, which upregulates alginate biosynthesis and 

downregulates flagella-mediated motility (through inhibition of fleQ) (388,393). 

 

Loss of flagella- and pilus-based motility is observed almost exclusively in isolates 

from CF patients chronically infected with P. aeruginosa (324,383,394). Repression of 

motility phenotypes may enable P. aeruginosa to evade clearance by phagocytosis in 

vivo, conferring a survival advantage in the CF lung (324,395).  

 

1.7.3.3 Siderophores 

Iron is essential for bacterial growth and required for P. aeruginosa virulence and 

survival in the CF lung (396). Iron acquisition is made difficult for the bacterium by the 

poor solubility of the ferric form (which dominates in aerobic environments) and 

sequestration of iron intracellularly in heme-containing compounds, or in fluids, by 

iron-binding proteins such as lactoferrin and transferrin (396). Iron concentrations in 

the CF lung correlate with the amount of inflammation and tissue damage and vary 

between 2 and 130 µM.  Of note, work by Hunter et al. has shown that the relative 

balance of ferric and ferrous iron alters with the progression of CF lung infection (397). 

Over time soluble ferrous iron dominates in the increasingly more 

microaerobic/anaerobic environment of the CF lung.  However, and for reasons still 

unclear, P. aeruginosa growth and biofilm formation under anaerobic conditions 

demands higher concentrations of ferric iron than otherwise expected, underscoring  

the importance of siderophore-mediated iron acquisition (398). 

 

P. aeruginosa has evolved several strategies (recently reviewed by Cornelis and 

Dingemans) to aide iron acquisition for growth and pathogenesis (399). The most 

common of which is the production of low-molecular-mass, iron-chelating molecules 

termed siderophores (400). Siderophores are secreted by the bacterium, under iron-
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limiting conditions, into the extracellular environment. Here they chelate ferric iron and 

return it to the cell via specific receptor proteins at the bacterial surface. The two major 

siderophores secreted by P. aeruginosa are pyoverdine and pyochelin (which has a 

lower iron-binding affinity) (401,402). Iron-loaded pyoverdine and pyochelin are taken 

up by the outer membrane receptors FpvA and FptA, respectively (403). P. 

aeruginosa, in addition, has the ability to utilise siderophores from other 

pseudomonads as well as other bacterial and fungal species (siderophore piracy) 

(396,399,404). Although this has yet to be determined, this feature likely confers a 

selective advantage in the polymicrobial environment of the CF lung. 

 

Pyoverdine synthesis is dependent on the expression of the pyoverdine biosynthetic 

genes which are activated by the alternative sigma factor, PvdS. Expression of the 

PvdS gene is in turn controlled by the iron-sensing repressor protein Fur (405). 

Pyochelin upregulates its own biosynthesis and uptake genes by activating the 

AraC/XylS-family transcriptional regulator PchR (406). 

 

In addition to its iron-scavenging properties, pyoverdine plays a key role in several 

other important activities that enhance P. aeruginosa virulence and pathogenesis. 

Pyoverdine, upon binding to its outer membrane cognate receptor, is capable of not 

only regulating its own production (by activating the pyoverdine biosynthetic genes), 

but also activating the expression of genes that encode two extracellular virulence 

factors: exotoxin A and PrpL protease (405,407). Pyoverdine has also been 

demonstrated to be necessary for proper development of non-alginate biofilms in vitro, 

under iron-limiting conditions (408). The exact mechanism, however, is not yet known, 

although work by Banin et al. indicate that a functional iron uptake system is required 

(408).  

 

Quorum sensing, in addition, likely plays a role in siderophore production through the 

activity of PQS. Purified PQS, by its ability to chelate and sequester extracellular ferric 

iron, can activate the expression of genes involved in the regulation (pvdS) and 

biosynthesis of pyochelin (pvdA) and pyoverdine (pvdE) in vitro, suggesting a possible 

role for PQS in pyoverdine-mediated uptake in vivo (359). 
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Siderophores have been detected in sputum samples from CF individuals chronically 

infected with P. aeruginosa with a previous study reporting a strong correlation 

between pyoverdine levels and P. aeruginosa bacterial load (409). However, the 

relationship between pyoverdine levels and periods of acute exacerbation is less clear. 

 

1.7.3.4 Rhamnolipids 

Rhamnolipids are a class of secondary metabolites secreted by P. aeruginosa (410). 

Previous work indicates that these amphiphilic surface-active compounds play an 

important role in the spatial differentiation of biofilm architecture, although the exact 

mechanisms are not fully understood (411). Rhamnolipids are necessary for initial 

microcolony formation in the early development of biofilms and in the late stages aid 

structural development that depends on cell migration (412,413). They play a role in 

alteration of the hydrophobicity of the cell and the detachment and dispersal of cells 

from the biofilm (especially from the centre of the microcolonies) (414,415). There is 

also evidence for rhamnolipids participating in the maintenance of open-channel 

formation within the biofilm (through modulating cell-to-cell and cell-to-surface 

interactions), which aids nutrient dispersion and metabolic waste removal around the 

microcolonies (416).  

 

Rhamnolipid production is directly regulated by the rhl system which coordinates 

rhamnolipid synthesis via the rhlAB-encoded rhamnosyltransferase. The rhlAB operon 

is transcriptionally and post-transcriptionally regulated by several factors, often linked 

to the QS system. For example, rhamnolipid synthesis is upregulated at the 

transcriptional level by the pqs system through activation of the rhlIR operon. 

Furthermore, rhamnolipid biosynthesis also seems to be influenced by nutritional and 

environmental cues (417). Rhamnolipid expression is upregulated under iron-limiting 

conditions and is associated with increased surface-associated motility (twitching and 

swarming) and the formation of flat unstructured biofilms (418). However, most of 

these regulatory mechanisms are not completely understood (419). 

 

Rhamnolipids have been previously detected in sputum from patients chronically 

infected with P. aeruginosa, with the highest concentrations reported to correlate with 

periods of acute exacerbation (420). They have been shown to have direct effects on 

host immune cells, including inducing lysis of polymorphonuclear leukocytes and 
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inhibition of macrophage phagocytic responses (421). They have also been shown to 

be necessary for P. aeruginosa to invade respiratory epithelial cells during acute 

infection.  It is plausible to consider, therefore, whether rhamnolipid-mediated 

dispersal of P. aeruginosa cells from the biofilm may contribute to initiation of these 

significant clinical events. 

 

1.7.3.5 Biofilm formation 

Much of our current insights into the molecular basis for the regulation of biofilm 

formation have been recently reviewed by Moradali et al. and Faure et al (278,282). 

Only summary aspects are outlined here. 

 

CF-evolved P. aeruginosa biofilms are highly organised, structured communities 

composed of aggregations or tight microcolonies of bacteria (predominantly attached 

to one another inside mucus, and not to the epithelial surface of the lung) surrounded 

by a matrix of extracellular polymeric substances (EPS) (282,315,422). The ability to 

phenotypically switch between a free-floating (planktonic) and a sessile (biofilm) 

lifestyle is a major survival adaptation for P. aeruginosa (282). This dynamic transition 

is mediated through multiple and overlapping regulatory networks which include the 

RetS/GacS sensor pathway (278). Cellular levels of cyclic-3´5´-diguanylic acid (cyclic 

di-GMP) play a critical role in the post-transcriptional regulation of this phenotypic 

switch, with increased levels triggering EPS production while inhibiting flagellar and 

type IV pilus-mediated motility. Conversely, low levels of cyclic di-GMP promote biofilm 

dispersal (411). 

 

Formation of biofilm is also intricately linked to QS, although the exact mechanisms 

by which this occurs are not yet known (390,423). QS-regulated genes encoding 

secreted exoproducts (e.g., Pel and Psl exopolysaccharides, rhamnolipids and 

phenazines) have been shown to be critical to biofilm development and maturation, 

with QS-deficient variants observed to display poorly developed biofilms in vitro 

(168,362,424). The biofilm matrix is a relatively oxygen and nutrient limited 

environment and functions to protect the bacteria dwelling within from the hostile 

surrounding environment (e.g., dehydration, reactive oxygen species) (382). However, 

host responses to P. aeruginosa biofilms are complex with biofilms capable of eliciting 

either less (such as in the case of reduced activation of complement in the absence of 
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functional flagellar) or more robust immune responses than their planktonic 

counterparts. 

 

The key components of the P. aeruginosa biofilm matrix are the secreted 

exopolysaccharides; Psl (polysaccharide synthesis locus), Pel (pellicle formation 

locus) and alginate. Alginate production is not critical for biofilm formation (425). Psl 

promotes cell surface adherence (the first step of biofilm formation), whereas Pel plays 

a major role in promoting cell-cell interactions important for self-aggregation (426). 

Other important functional components of the biofilm include the proteins CdrA and 

extracellular DNA (eDNA), which reinforce the structural scaffold of the biofilm matrix 

(390,427).  

 

P. aeruginosa cells in biofilm growth mode exhibit slower growth rates compared to 

their planktonic counterparts. This may be a consequence of a reduced ability to move 

to aerobic regions (in the absence of flagellar-mediated motility), where aerobic growth 

gives the advantage of a faster growth rate (428). The difference in physiology in these 

two growth modes contributes to differences in cellular metabolism, transcription and 

expression of protein profiles (429,430). The specific environmental cues that trigger 

biofilm development along a particular pathway remain unknown (390). Furthermore, 

there is growing recognition that P. aeruginosa lifestyle strategies are more flexible 

than previously thought. That is to say, some functions typically associated with 

planktonic/early infection cells are also found within biofilms, and vice versa (431). In 

line with this thinking, it has been postulated that short-term shifts between planktonic 

and biofilm growth modes of P. aeruginosa biofilm populations within the CF lung may 

play a part in triggering exacerbation episodes (278). However, evidence for this 

remains elusive. 

 

1.7.3.6 Auxotrophy 

Auxotrophic isolates lack the ability to synthesise one or more specific metabolites 

necessary for growth and, in the case of P. aeruginosa, may fail to grow on minimal 

media (74,313). Amino acid biosynthesis is metabolically costly (432). In the CF lung 

high concentrations of free amino acids have been documented (433). It is not yet 

clear whether these sputum amino acids are of host or microbial origin (434). 

Nevertheless, in this setting, auxotrophic P. aeruginosa variants frequently arise, 
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suggesting a fitness advantage over their prototrophic counterparts (435).  

 

Methionine, leucine and arginine auxotrophs are most frequently reported among 

chronic CF isolates of P. aeruginosa (435–437). Furthermore, a growth advantage on 

phenylalanine over parental strains has been reported among P. aeruginosa clonal 

isolates harbouring mutations in the lasR gene (184). Related non-synonymous 

mutations in the biosynthetic pathways for some of these amino acids have been 

recently identified (438). However, attempts to assign causality for the observed 

phenotypes have failed due to the complex nature of the regulatory networks 

controlling metabolism (313).  

 

Auxotrophic isolates have been reported to be less susceptible to antibiotic treatment 

than their prototrophic counterparts (437). Intriguingly, in this early study by Taylor et 

al., an increased prevalence of auxotrophs in CF sputum collected during periods of 

APE was reported. However, more recent work by Forthergill et al. failed to observe a 

similar trend (325). 

 

1.8 Aims and objectives 

The broad aim of this dissertation is to gain a better understanding of the relationship 

between changes in microbial factors, patient physiology and symptoms during 

periods of acute respiratory decline. The interaction between these factors was 

examined to determine if a change in one or more could predict for APEs in adults with 

CF. Specifically, this dissertation is focused on addressing the following interrelated 

questions: 

 

1. Can signals from home monitoring of patient physiology and symptoms be 

combined with a single sputum biomarker to predict for APE onset? 

 

2. Can high-frequency home monitored data of patient physiology and symptoms 

be used to better understand the changes preceding APE onset? If so, can 

home monitoring signals be used to predict APE onset? 
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3. Do changes in the phenotypic profile of clonal populations of P. aeruginosa 

trigger APEs? 

 

The objectives are: 

 

1. To retrospectively analyse data on home monitored physiology, symptoms and 

a sputum biomarker (Exotoxin A) for evidence of an early signal of APE onset. 

This data was collected from 15 adults with CF who took part in the clinical pilot 

study, TeleCF. 

 

2. To design, implement and analyse the outcomes of a multi-centre, feasibility 

and acceptability study (SMARTCARE) of home monitoring in an adult CF 

population, using novel Bluetooth sensors and smart technology. 

 
 

3. To analyse data collected in two home monitoring clinical studies, TeleCF and 

SMARTCARE, using ML techniques [as part of a study undertaken at Microsoft 

Research (Cambridge) and the Laboratory of Molecular Biology (Cambridge)] 

in order to understand and characterise changes in patient physiology and 

symptoms leading up to an APE and, if possible, identify a predictive signal for 

APE. 

 

4. To complete detailed in vitro phenotyping of 4408 P. aeruginosa clonal isolates 

for six phenotypic traits associated with virulence in P. aeruginosa. These 

isolates were harvested from longitudinal sputum samples collected before, 

during and after an APE, from 9 adults with CF (who took part in TeleCF). 

 
 

5. To characterise the relationships between phenotypic profiles displayed by 

these co-varying P. aeruginosa clonal isolates before, during and after an APE 

using bioinformatic analyses, in order to determine if a microbial signal is 

associated with APEs. 
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2. GENERAL METHODS 
 

The general methods are described in this section. Specific methods are detailed in 

the relevant chapters. 

 

2.1 Study Population 

To investigate changes in symptoms and physiology, as well as changes in phenotypic 

traits in P. aeruginosa clonal isolates within the CF airway, before, during and after 

periods of APE I studied a pre-defined population of adult CF patients in two clinical 

studies - TeleCF and SMARTCARE.   

 

Shared inclusion and exclusion criteria between both clinical studies are detailed 

below. Specific criteria for each study are listed in the relevant chapters.  

 

Individuals met inclusion criteria if they were aged 18 years or older, had a confirmed 

diagnosis of CF based on genetic testing and/or abnormal sweat chloride levels (cut-

off threshold > 60 mmol•L-1), and were willing and able to provide daily home 

monitoring data. 

 

Potential participants were excluded if they were unable to provide written informed 

consent or were unable to provide regular sputum samples. 

 

2.2 Ethical Considerations 

All protocols involving new data acquisition in participants received Royal Papworth 

Hospital NHS Foundation Trust research approval and favourable ethical opinions 

from the local ethics committee – REC references 12/EE/0462 (TeleCF) and 

14/EE/1244 (SMARTCARE). Ethical approval documents for both studies are included 

in Appendix 0.  

 

Trials were conducted in keeping with recommendations for good clinical practice 

including the declaration of Helsinki. 

 

Written informed consent was obtained from all participants. Collection and storage of 

sputum samples for analysis in future studies was covered by the ethics approval. 
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2.3 Trial Protocols 

Individual trial protocols are detailed in the relevant chapters.  

 

Both home monitoring trials were conducted over a period of six months. The trials 

were not conducted at the same time of the year and participants were recruited into 

each trial on a rolling basis. During the trial period I requested that participants collect 

daily measures for a set of pre-defined clinical symptoms and signs using several 

devices linked to a home monitoring system.  

 

The pre-defined clinical symptoms and signs I selected for home monitoring were both 

subjective (participant-reported) and objective (device-detected), and were based on 

clinical experience, supervisor consultation and a review of relevant literature 

(reviewed in Section 1.6.2). The monitoring parameters were: 1) Weight (kg), 2) 

physical activity (step count), 3) lung function (measured as forced expiratory volume 

in one second [FEV1]), 4) transcutaneous pulse oximetry (reported as the percentage 

saturation of arterial haemoglobin by oxygen [SpO2] and heart rate in beats/minute 

[bpm]), 5) a 10-point scale of wellness (reported as worst ever (1/10) to best ever 

(10/10) and 6) a 10-point scale of cough quality [reported as worst ever s (e.g., chronic) 

(1/10) to best ever (e.g. none) (10/10)]. At the time of conduction of this work, no 

PROM had been validated for daily use in CF to assess for acute changes in 

symptoms. Both unvalidated symptom scores were therefore developed specifically 

for this work, following patient and clinician feedback, and were designed to reflect 

within-subject acute change in day-to-day perception of cough intensity and general 

wellbeing from their normal baseline. Similar symptom scores have been used in 

asthma for the evaluation of daily symptom control (503, 504). 

 

I requested that participants record their daily data in a pre-defined sequence to 

minimise confounding of resting-state measures (e.g., heart rate) by effort-dependent 

measures (e.g., lung function). This order differed marginally for each study and is 

therefore listed in the relevant chapters. Although I encouraged participants to 

complete data entry for all measures within the same time interval, no specific time of 

day was set for data collection. I requested that participants perform three lung 

function attempts, with the best of the three attempts recorded by the monitoring 

application, in accord with the British Thoracic Society (BTS) criteria (439). 
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I also requested that participants provide a daily sputum sample (for future biomarker 

studies) which was stored for collection in a dedicated home freezer with an average 

temperature between -18 and -20ºC, as indicated by the manufacturer’s specifications. 

 

Both trials were non-disruptive to routine clinical practice, therefore data collected 

during the trial was not routinely reviewed during the trial period and was not used to 

inform/influence the participant’s disease management.  

 

2.4  Sputum collection, processing and storage 

Participants were instructed to collect expectorated sputum samples following their 

usual chest clearance routine in sterile, dated, link-anonymised 50 mL falcons and 

store them immediately in a dedicated home freezer (average temperature as 

documented in Trial Protocols 2.3). 

 

Participants were instructed to bring their batched sputum samples in cooler bags with 

ice packs to the study centre, anytime they attended clinic. These samples were then 

stored for further analysis at -80ºC. 

 

I undertook all sputum processing at the microbiology research laboratory at Royal 

Papworth Hospital (Cambridge, UK). Sputum samples were stored long-term in the 

Royal Papworth Hospital Tissue bank. 

 

I completed Materials Transfer Agreements (MTA) for transfer of any biological 

research material (e.g., sputum samples) between organisations in accordance with 

Intellectual Property Law. A template of the MTA form is included in Appendix 1. 

 

2.5 Definition of an acute pulmonary exacerbation 

In the absence of a consensus definition (reviewed in Defining a CF exacerbation 

1.2.2) I defined an APE pragmatically as the need to initiate either oral or intravenous 

antibiotic treatment for a deterioration in a participant’s respiratory status.  

 

2.6 Statistical analysis 

The statistical analyses performed are outlined in the relevant chapters. 
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3. TeleCF: Investigating the use of home monitoring and single biomarker  

profiling in CF sputum to predict for acute pulmonary exacerbations 

 

Summary: 

Acute pulmonary exacerbations are the main cause of morbidity in patients with cystic 

fibrosis. Home based monitoring for APE might ensure prompt detection and initiation 

of therapy which could potentially result in better long-term lung health. We therefore 

sought to assess whether daily home monitoring of a single sputum bacterial 

biomarker and clinical parameters might provide advanced warning of an APE.  

  

On a daily basis for a 6 months period, 15 adults with CF were asked to collect sputum 

samples, undertake home-based telemetric physiological monitoring (of FEV1, PEF, 

heart rate, saturations, weight, activity) and complete wellness and cough diaries 

electronically. Sputum samples were retrospectively analysed for levels of P. 

aeruginosa exotoxin A (PEA) and complete datasets were examined to evaluate which 

parameters best predicted APE. 

   

Patient compliance with home monitoring was excellent. A number of combinations of 

physiological parameters may allow early, pre-symptomatic detection of APE. In a 

subgroup of patients, relative changes in PEA may also predict APE.	
  

In this single centre pilot study, home monitoring was acceptable to patients, provided 

unprecedented temporal resolution of clinical parameters and allowed analysis of 

sputum biomarker changes preceding an APE and during antibiotic therapy. PEA did 

not prove an effective biomarker for early detection of APEs in adults with CF. 	
 

Statement of contribution:  

I carried out all clinical data collection, data analysis and interpretation.  Sputum 

processing, storage and Exotoxin A enzyme-linked immunosorbent assays (ELISA) 

were completed by Karen Brown (Floto Lab). 
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3.1 INTRODUCTION 

 

Early detection and treatment of APEs are a key priority in CF care due to their 

undisputed significance in disease progression and unfavourable impact on quality of 

life and survival outcomes (reviewed in Acute pulmonary exacerbations in CF, Section 

1.2) ((126–128,130). Triggers for these events are still ill-defined, and therefore 

reliable diagnostic biomarkers remain elusive (124,188). Yet, it is generally accepted 

that microbial drivers play a significant role in pathogenesis (reviewed in 

Pathophysiology of APE, Section 1.2.1) (136–139). Improvement in symptoms and 

lung function following antibiotic treatment has been observed, despite studies failing 

to demonstrate significant changes in bacterial density with treatment 

(133,134,147,148). This observation has led to speculation that changes in factors 

related to bacterial virulence, rather than number, may be responsible for initiating 

APEs, and that these compounds may be detectable in sputum prior to the onset of 

symptoms. (reviewed in Detecting APEs in CF using bacterial sputum biomarkers, 

Section 1.5). 

 

In the absence of predictive biomarkers for APE onset, clinical decisions around 

diagnosis and treatment initiation are heavily dependent on patient-reported 

symptoms associated with, most commonly, a corresponding fall in lung function 

measured in the clinic (6,188).  It is, however, likely that APEs begin sometime before 

individuals with CF present for assessment and treatment (reviewed in Defining a CF 

exacerbation, Section 1.2.2). Yet, the ability to more accurately determine the onset 

of clinical decline remains a challenge, largely as diagnosis is dependent on a change 

in status from a perceived, and usually unrecorded, baseline. The lack of a means to 

easily capture day-to-day variations in clinical stability has further hindered our 

understanding of the nature of APEs and the search for predictive biomarkers. 

 

I hypothesised that if APEs are triggered by a change in pseudomonal virulence 

behaviour I could anticipate a change in one of the organism’s secreted exoenzymes 

(Exotoxin A), assayed in sputum, prior to initiation of antibiotic treatment for an APE. 

Similarly, these periods of clinical decline should be associated with objective changes 

in physiology and symptoms that could be readily captured using daily home 

monitoring. 
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I selected Exotoxin A as a candidate sputum biomarker because, in contrast to other 

exoenzymes secreted by P. aeruginosa, levels assayed from isolates sub-cultured 

from frozen stocks have been shown to remain stable over time when compared to 

levels derived from their fresh parent strains (505). Furthermore, a commercially 

available serological assay was accessible for ease and standardisation of screening. 

 

The data analysed in this chapter was generated through the clinical study, TeleCF. 

The study also generated a foremost sputum biobank for later detailed examination of 

the dynamic changes in phenotypic composition of populations of P. aeruginosa clonal 

isolates in relation to APEs, to determine if this might prove predictive of APE onset 

(examined in Chapter 4). 

 

 

3.2 METHODS 

 

3.2.1 Study design and participants 

TeleCF was a single-centre, observational, exploratory pilot study (ClinicalTrials.gov 

number NCT01877707). National Ethical approval was obtained from the National 

Research Ethics Service (NRES) Committee of Hertfordshire, UK (REC 12/EE/0462). 

The study design was peer reviewed by the Cambridge Centre for Lung Infection 

(CCLI) and the Cambridge Institute for Medical Research (CIMR). 

 

In addition to the inclusion and exclusion criteria previously described in General 

Methods, Section 2, participants were eligible for enrolment into TeleCF if they fulfilled 

the following inclusion criteria: to be aged 18 years and over; have had at least two 

APEs in the 12 months prior to screening; have evidence of chronic airway infection 

with P. aeruginosa. I defined chronic P. aeruginosa airway infection as the persistent 

growth of P. aeruginosa in sputum (³ 2 positive sputum cultures at least one week 

apart) following anti-pseudomonal antibiotic eradication therapy with a combination of 

four weeks of nebulised treatment and four to six weeks of oral therapy and (if 

needed)/or two weeks of intravenous therapy followed by twelve weeks of nebulised 

treatment, in accordance with local guidelines. We excluded participants if they had 
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fewer than two APEs within 12 months of screening or had airway co-infection with 

non-tuberculous mycobacteria. 

 

All participants were recruited from the adult CF centre at Royal Papworth Hospital in 

England (Cambridge, UK). The study was funded by a competitive Small Business 

Research Initiatives scheme (SBRI) grant from Health Enterprise East (HEE). 

Active8rlives (Aseptika Ltd), the software provider for the telemonitoring system, had 

no role in the study design, analysis or interpretation of the data.  

 

3.2.2 Participant recruitment, screening and enrolment 

We identified eligible participants through screening the Centre’s clinical database for 

patients who were chronically infected with P. aeruginosa.  Individuals who met criteria 

were contacted by the Centre’s research coordinators. Participants who were 

interested in taking part received patient information letters explaining the study 

protocol and were followed-up with a telephone call to confirm willingness to enrol. All 

participants were consented and enrolled into the study between January 2013 and 

November 2013. 

 

Participants were withdrawn from the study if they withdrew consent or passed away 

within the first month of the study or if they were unable to record more than one month 

of telemonitoring data during the course of the study. However, if a participant 

withdrew consent or passed away more than one month into the study period, I 

included their demographic and telemonitoring data for comparison with those of the 

patients who remained in the study. 

 

3.2.3 Home monitoring system and equipment 

Telemonitoring was completed with home monitoring devices that were available 

commercially. We supplied participants with home monitoring devices, a 3G-enabled 

PC lap-top computer, a portable 3G mobile broadband dongle for ease of data upload, 

50ml falcons for sputum collection and a rucksack for transport. The devices used in 

this study are illustrated in Figure 3.1.  
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Study participants received training in use of their study equipment via a structured 

user training session. We also provided them with a step-by-step instruction manual 

at study inclusion.  

 

The software platform to upload data from monitoring devices was purchased by 

Activ8rlives. Data recorded on the home monitoring devices were automatically 

uploaded to the study PC laptop via a USB port connection. Symptom scores were 

completed within the Activ8rlives PC application (Figure. 3.2). Data from the 

telemonitoring system was automatically downloaded to a secure web-based 

application for review by the research team. Study participants were not blinded to 

their own datasets. Direct technical support and additional training during the course 

of the study was provided by Active8rlives (Aseptika Ltd). Data entry was monitored 

by Active8rlives (Aseptika Ltd). Contact was made with the research team if a            

Figure 3.1. Home monitoring devices used in the TeleCF study. These devices were 

commercially available through Activ8rlives®. (A) Step counter, (B) electronic weigh scales, 

(C) digital peak flow meter, (D) pulse oximeter. 
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participant omitted to upload data for several days; following which, the participant 

would be contacted to encourage participation. 

 

3.2.4  Home monitoring protocol 

Participants performed home monitoring and sputum collection as detailed in Trial 

Protocols, Section 2.3.  They were instructed to collect and log their data in the 

following order: 1) weight (kg), 2) physical activity (step count), 3) lung function (FEV1), 

4) Pulse rate (bpm) and oxygen saturation (%), 5) a 10-point scale of wellness 

[reported as “worst ever” (1/10) to “best ever” (10/10)] and 6) a 10-point scale of cough 

quality [reported as “worst ever” (1/10) to “best ever” (10/10)]. Note that the scale 

terminology used for the 10-point symptom scores was pre-assigned by the app 

developer. 

 

In order to minimise the added time imposition incurred from daily home monitoring 

Figure 3.2.  Activ8rlives upload touchscreen for the PC application 
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clear instructions and regular support from the research team were provided to 

participants to ensure optimal efficiency with home monitoring. 

 

3.2.5  Clinical data  

Demographic information was collected at study inclusion by the research nurses. In 

addition, for each participant, I collected clinical data on the following variables through 

retrospective review of case notes: 

 

1. Clinical characteristics (CFTR sequencing results; presence of pancreatic 

insufficiency, CF-related liver disease, CF-related diabetes; macrolide therapy 

use (azithromycin), inhalation therapy use (antibiotic, hypertonic saline and/or 

dornase alpha), oral steroid use). 

2. Antibiotic requirement during the study period (oral and intravenous). 

3. Dates of hospital admission for APEs. 

4. Dates of clinic encounters. 

5. Positive sputum microbiology during the study period. 

6. Hospital-based C-reactive protein measurements during the study period. 

7. Hospital-based lung function measurements (FEV1 in litres and percent of 

predicted) during the study period. 

 

3.2.6 Compensation 

Participants received a £1 per day incentive for completion of daily sputum collection 

and data upload and were given the option to retain all study equipment at the end of 

the study. 

 

3.2.7 Clinical samples 

Exotoxin A concentrations were measured from daily sputum samples which fell 

approximately 3 days, 7 days or 14 days before the start of antibiotic treatment for an 

APE. In most cases, participants had not received antibiotics in the 14 days prior to 

day -14 (e.g., 28 days prior to the start of the exacerbation). All samples met this 

criterion, with the exception of: APE 2 for participant K1, APE 2 and 3 for participant 

K2, APE 2 for participant K3 and APE 3 for participant K4, where, in each case, a 

course of antibiotics finished 11, 13, 9, 9 and 13 days prior to day -14 respectively.  
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In addition, Exotoxin A levels were calculated from daily sputum samples which fell 

from the first day following a course of antibiotic treatment for an APE to approximately 

-3 days, -7 days and -14 days from the start of antibiotic treatment for the next APE.  

Of the 39 exacerbation periods captured in this study, sputum samples taken at the 

required timepoints were only available in 19 of the exacerbation episodes. For 1 of 

the 39 episodes, samples were not available for analysis of the 3-day and 7-day period 

leading up to antibiotic treatment for an exacerbation (APE 1 for participant K7).   

 

3.2.8 Exotoxin A detection 

ELISA-based extraction of Exotoxin A from stored daily sputum samples was 

completed by Karen Brown (research scientist, Floto Lab). Reagents used in this study 

are summarised in Table 3.1. 

 

Table 3.1.  List of reagents for P. aeruginosa Exotoxin A ELISA 

Reagent Conditions 

Solubilisation Solution 4 mM TCEP HCl (1.14 mg/mL) 

0.1% Pluronic F127 in 0.5 M guanidine 

Anti-PEA-Biotin CJ 1.5 µg/mL, 4ºC 

Anti-PEA-HRP CJ 2.0 µg/mL, 4ºC 

SureBlue reserve 4ºC 

HCl 1 M 

1x wash buffer 50 mL 20x wash buffer  

950 mL distilled water 

 

Frozen sputum samples were thawed to room temperature and 100 µl aliquots of each 

sample were mixed with an equal volume of solubilisation solution. Samples were then 

vortexed and incubated at 37ºC in a shaking incubator at 210 rpm. The samples were 

vortexed again and 50 µL aliquots, in duplicate, were added to the Streptavidin-coated 

96-well assay plate (40 samples per plate). Frozen standard curve solutions were 

thawed and vortexed. Aliquots of 50 µL of each standard curve solution were then 

added to the assay plate, in duplicate. Aliquots of 100 µL of 1.5 µg/mL anti-PEA-Biotin 

CJ were added to each well. The assay plate was then incubated at 37ºC and 1000 

rpm in a shaking incubator for 1 hour.  
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A short wash was performed with distilled water in a plate washer. Excess wash 

solution was tapped off the plate and 100 µL aliquots of 1.5 µg/mL anti-PEA-Biotin CJ 

was added to each well. The plate was then re-incubated in the shaking incubator 

under the same conditions (37ºC ,1000 rpm, 1 hour). 

 

A second short wash was performed and excess wash solution was tapped off the 

plate. Aliquots of 100µL of SureBlue reserve were added to each well. Following 

incubation at 37ºC and 1000 rpm in a shaking incubator for 10 minutes, 100 µL of 1 M 

HCl was added to each well.  

 

Exotoxin A concentration (ng/mL) was quantified by measuring absorbance at 405 nm  

using a Clariostar (BMG Labtech) plate reader then multiplying the result by 2 (dilution 

factor). 

 

3.2.9 Statistical analyses 

I performed statistical analyses using Microsoft Excel for Mac version 16.27 (Microsoft, 

Redmond, WA, USA), Prism 6.0 (Graphpad Software Inc, San Diego, CA, USA) for 

Mac OS X and RStudio version 1.1.456 (RStudio Inc, Boston, MA, USA) 

 

I have expressed descriptive statistics of the baseline characteristics of participants 

as mean (standard deviation [SD]), median (interquartile range (IQR), minimum and 

maximum) or mode for numerical variables and as number (percentage) for 

categorical variables. No attempt was made to substitute missing data. 

 

I compared non-parametric data using unpaired Mann-Whitney signed rank tests for 

comparison of differences between median Exotoxin A concentrations in sputum taken 

from participants chronically infected with epidemic versus non-epidemic strains of P. 

aeruginosa and Kruskal-Wallis test for comparison of multiple groups. 

 

I used unpaired Mann-Whitney signed rank tests to compare differences in median 

Exotoxin A concentrations obtained from sputum samples collected during clinical 

stability and prior to an APE for each participant. Differences between multiple groups 
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were assessed using the one-way Analysis of Variance (ANOVA) test for parametric 

data and the Kruskal-Wallis test for non-parametric data. 

 

Comparisons for differences in variables between periods of non-exacerbation and 

prior to initiation of antibiotic therapy, across all participants, were assessed using 

Wilcoxon’s matched paired test for non-parametric data and the paired t-test for 

parametric data. The variables included, lung function, weight, heart rate, oxygen 

saturations, activity, cough and wellness score and Exotoxin A concentration. 

 

I examined relationships for correlation between continuous and discrete variables 

using Pearson’s correlation coefficient for parametric data and Spearman’s Rho for 

non-parametric data. These variables included lung function, weight, heart rate, 

oxygen saturations, activity, cough and wellness score and Exotoxin A concentration. 

 

I assessed for agreement between in-clinic and home-based spirometric data using a 

Bland-Altman analysis (440) of same-day in-home and in-clinic FEV1 (% predicted). 

 

All statistical tests were two-tailed and a p value of £ 0.05 was considered statistically 

significant. 

 

 

3.3 RESULTS 

  

3.3.1 Participants 

We screened sixty-five potential participants for inclusion in TeleCF (Figure 3.3). Of 

these, fourteen were ineligible and five declined to participate. We enrolled sixteen 

participants, with fifteen participants completing six months of home monitoring. 

Baseline demographic and clinical characteristics of all fifteen participants are detailed 

in Table 3.2 and summarised in Table 3.3. The mean age of the cohort was 30 years; 

more men participated (60%) and almost half of the participants (47%) were 

homozygous for the F508del mutation. The majority of the study population (87%) had 

at least moderately impaired lung function with an FEV1 below 70% of predicted. The 

nutritional status of the cohort was good, as reflected by the mean BMI of 22. The 
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majority of participants were taking inhaled antibiotic therapy (87%), with just over half 

of participants (53%) receiving long-term macrolide therapy with azithromycin. Nearly 

two thirds of the participants had a co-existing diagnosis of CF-related diabetes. 

Although all participants were chronically infected with P. aeruginosa, just over half 

(53%) were infected with an epidemic strain, with the majority of that cohort (75%) 

chronically infected with the Liverpool epidemic strain (LES) and the remainder with 

the Manchester epidemic strain (MES). 

 

 
 

Figure 3.3. Screening, enrolment and follow-up of the TeleCF study participants. 
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Participant Age Gender Genotype I Genotype II FEV1 (% 

predicted) 

at study 

entry 

Chronic 

infection 

with 

epidemic 

strain of PA 

BMI 

at 

study 

entry 

APE episodes during 

the study period  

(n = 39) 

APE episodes 

analysed here 

(n = 20) 

CFRD CFLD PI 

K1 31 Female R117H 4326delTC 45.6 MES 29.5 4 2 No No No 

K2 23 Male F508del F508del 45.6 LES 22.4 5 3 Yes Yes Yes 

K3 32 Female G85E Q207X 50.4 No 18.2 4 3 Yes No Yes 

K4 21 Female F508del c.3889dupT 34.7 No 21.1 3 2 No Yes Yes 

K5 33 Female F508del p.Leu1254X 51 LES 23.8 3 1 No No Yes 

K6 24 Male F508del G542X 47.9 No 21.7 3 3 Yes No Yes 

K7 52 Female F508del F508del 72.9 LES 25 2 2 No No Yes 

K8 28 Male F508del F508del 84.7 No 26.8 1 0 Yes Yes Yes 

K9 36 Male F508del c.1766+1A->G 14.1 LES 17 3 1 Yes No Yes 

K10 38 Male F508del F508del 26 No 21 1 0 Yes Yes Yes 

K11 34 Male F508del F508del 32 LES 20 2 1 IGT No Yes 

K12 35 Male F508del 621+1G->T 24.2 No 22.9 2 2 Yes No Yes 

K13 26 Male F508del F508del 53.3 No 20.8 1 0 Yes No Yes 

K14 24 Male F508del 3752G/A 59.7 MES 19.5 2 0 No No Yes 

K15 19 Female F508del F508del 53.3 LES 19.5 3 0 Yes No Yes 

 

 

 

FEV1: forced expiratory volume in 1 second, PA: P. aeruginosa, BMI – body mass index, APE: acute pulmonary exacerbation, CFRD: cystic fibrosis-related diabetes, 

CFLD: cystic fibrosis related liver disease, PI: pancreatic insufficiency, MES: Manchester epidemic strain, LES: Liverpool epidemic strain, IGT: impaired glucose tolerance 

Table 3.2 TeleCF study participant information 

61  
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 Long-term medications Hospital encounters and antibiotic use 

during the study period  Antibiotic therapy Corticosteroids Mucolytics 

Participant Macrolide Col 

inh 

Tob 

inh 

Azli 

inh 

Tob/Col 

inh (alt. 

months) 

Tob/Azli 

inh (alt. 

months) 

Col/Azli 

inh (alt. 

months) 

Mero 

inh 

Oral Inhaled DNase HTS Admissions 

for APE  

IP 

days 

Clinic 

visits  

Antibiotic 

days  

K1 Yes No No No No Yes No No No Yes No Yes 1 17 9 59 

K2 No No Yes No No No No No Yes Yes No Yes 1 44 7 80 

K3 No No No No No No Yes No No Yes Yes No 0 0 15 59 

K4 Yes No No No No No No Yes No Yes No Yes 0 0 9 36 

K5 No No No No No Yes No No No Yes No Yes 3 26 5 41 

K6 No No Yes No No No No No No Yes No No 3 41 3 41 

K7 No No No Yes No No No No No Yes No No 0 0 8 40 

K8 Yes No Yes No No No No No No No No No 0 0 4 9 

K9 
Yes No No No No No No No No Yes Yes No 2 36 5 43 

K10 Yes No No No Yes No No No No Yes Yes Yes 0 0 4 2 

K11 No No No No No Yes No No Yes Yes No No 4 63 4 58 

K12 Yes No No Yes No No No No Yes Yes No No 2 20 4 20 

K13 No No No No Yes No No No No Yes No No 2 19 3 33 

K14 Yes No No No No No No No Yes Yes No Yes 0 0 6 30 

K15 Yes No No No No Yes No No No Yes No Yes 3 44 3 44 

Col inh: Colomycin inhaled, Tob inh: Tobramycin inhaled, Azli inh: Aztreonam inhaled, Mero inh: Meropenem inhaled, Tob/Col (alt. months): tobramycin/colomycin inhaled 

on alternating months, Tob/Azli (alt. months): tobramycin/aztreonam inhaled on alternating months, Col/Azli (alt. months): Colomycin/Aztreonam inhaled on alternating 

months, DNase: Dornase alpha, HTS: hypertonic saline, APE: acute pulmonary exacerbation, IP: inpatient 

Table 3.2 (cont.) 

62 
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Table 3.3. Summary of baseline characteristics of participants in the TeleCF study 

Characteristic TeleCF cohort (n = 15) 

Age (yr) at screening – mean ± SD 30 ± 8.1 

Female sex - no. (%) 6 (40) 

Genotype – no. (%)  

F508del homozygous 7 (47) 

F508del heterozygous 6 (40) 

Other 2 (13) 

Percentage of predicted FEV1 – mean ± SD 46 ± 5.1 

Subgroup – no. (%)  

< 40% 5 (33) 

³ 40 to < 70% 8 (53) 

³ 70 to < 90% 2 (13) 

³ 90% 0 (0) 

BMI – mean ± SD 22 ± 3.2 

Chronic epidemic P. aeruginosa infection – no. (%) 8 (53%) 

Number of treatment-defined APE – median (IQR) 3 (2.0-3.0) 

  

Prescribed medications – no. (%)  

Inhaled antibiotic 13 (87) 

Inhaled bronchodilator 14 (93) 

Inhaled hypertonic saline 7 (47) 

Dornase alfa 4 (27) 

Azithromycin 8 (53) 

Prednisolone 4 (27) 

Pancreatic insufficiency – no. (%) 15 (94) 

CF-related diabetes – no. (%) 9 (60) 

CF-related liver disease – no. (%) 4 (27) 

 

 
FEV1: forced expiratory volume in 1 second, BMI: Body mass index, APE: acute pulmonary 

exacerbation, CF: cystic fibrosis 
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3.3.2 Hospital encounters for usual clinical care 
Current consensus guidelines for CF Standards of Care in the UK recommend clinical 

review of stable CF patients at least every 2-3 months (441). The frequency of clinic 

attendance for the study participants was greater than two- to three-monthly (median 

5 visits, range 3 – 15 visits) during the 6-month study period, reflecting a less clinically 

stable cohort. A total of 89 clinic visits were documented during the study period with 

50 (56%) of these visits linked to either initiation of oral or intravenous antibiotics for a 

deterioration in baseline respiratory health, or to follow-up whilst on antibiotic 

treatment. I did not find a correlation between the severity of baseline lung function 

(FEV1 percent of predicted) and frequency of clinic visits (Spearman r = - 0.05, p = 

0.82). 

 

Participants received treatment for APEs either in the inpatient or outpatient setting. 

Twenty-one (51%) of these treatment episodes required admission to hospital for all 

or part of the treatment episode. The total number of hospital-bed days linked to these 

admissions was 395. 

 

Participants who were admitted to hospital tended to receive a longer course of 

treatment with the average hospital stay extending over two weeks (median 17 days, 

range 0 – 50 days). Although there was a trend toward a weakly negative correlation 

between severity of baseline lung function (FEV1 % predicted) and length of hospital 

admission, this relationship did not meet statistical significance (Spearman r = -0.33, 

p = 0.19). 

 
3.3.3 Frequency of treatment-defined episodes of APE 
The majority of participants (80%) experienced at least two APEs during the study 

period, with just over half (53%) of the participants experiencing three or more APEs 

over their time in the study (Figure 3.4). 
 

Of the 39 APE periods experienced by the 15 participants, 2 participants (K14 and 

K15) did not provide sufficient sputum samples for Exotoxin A detection. Thirty-five of 

these APE episodes were treated with intravenous antibiotic therapy, whilst the 

remaining four episodes were treated with oral antibiotics alone. Antibiotic courses 

were administered for a period of two weeks. In participants with a high APE frequency  
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during the study period, I acknowledge the uncertainty in determining whether each 

treatment-defined episode was reflective of a new APE versus a continuation of the 

previous. However, a minimum of three to four weeks between treatment courses was 

typically observed. 

 

3.3.4  Home monitoring data capture and analysis of recordings 
Of the 15 participants who completed the TeleCF study, a total of 2698 days of home 

monitoring was recorded, out of a possible 2700.  

 

The proportion of total study days for which each participant completed a 

measurement for an individual parameter is summarised in Figure 3.5. Nine 

participants (60%) completed each home measure daily for at least 80% of the time 

they were enrolled in the study. The parameter which participants provided the least 

daily data for was weight (range 4 - 99% of total study days). One participant was 

unable to provide a daily measure on any of the home monitoring parameters for at 

least 80% of the time they were enrolled in the study. No lung function data was 

available from participant K9. 

Figure 3.4.  Distribution of treatment-defined pulmonary exacerbations during the TeleCF 

study. The total number of APE during the study period was determined for each participant. 

An APE was defined based on the initiation of antibiotic therapy (intravenous or oral) for a 

deterioration in respiratory status. The majority of participants (n = 13), experienced 2 or more 

APEs during the 6-month study period. Only 4 APE episodes were treated with oral antibiotics: 

two participants with 2 APEs and two participants with 4 and 5 APEs during the study period. 
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3.3.4.1 Lung function  
The mean lung function for each participant during the study period, measured either 

on the clinic spirometer or with their home monitoring device, is shown in Figure 3.6. 

For some participants, I observed large variations between average lung function 

 
 

 

 

 

Figure 3.5. Summary of home monitoring frequency for each participant according to 

home-measured variable. The colour bar indicates the percentage of the total study days for 

which an individual parameter was completed by the participant. 

Figure 3.6. Comparison of average lung function [FEV1 (% predicted)] for each participant 

over the study period, derived from in-clinic spirometry (black bars) and in-home measures 

(white bars). The data is presented as mean ± SD. Dashed lines indicate thresholds for severity 

of lung function impairment. FEV1 (% predicted) < 40% = severe impairment (red) and FEV1 (% 

predicted) ³ 40 to < 70% predicted = moderately severe impairment (blue). Participant K9 did 

not record any lung function at home. 
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measured at home when compared to that measured in the clinic. I therefore 

compared agreement between lung function recorded at home against lung function 

measured during clinic attendance on the same day by performing a Bland-Altman 

analysis. This revealed that home FEV1 measurements tended to be lower by 

approximately 5% of predicted and, furthermore, the limits of agreement covered a 

wide range (-7.5, 18.23). This suggested that the in-home device may either 

underestimate or overestimate FEV1 by substantial amounts (Figure 3.7). This may 

reflect user technique (as lung function is effort-dependent) and/or reflect differences 

between the two devices. 

 

                  
 

 

 
 
 
 
3.3.4.2 Weight 
The average body mass index (BMI) for each participant, derived from their home 

measurements for weight during the study is shown in Figure 3.8. The majority of 

participants (73%) maintained a BMI within the healthy weight range (18.5 – 24.9) over 

the 6-month study period. 

 

Figure 3.7.  Comparison of clinic and home measurements for FEV1 obtained on the same 

day on 74 occasions for 15 participants. The difference between clinic and home 

measurements is on the y axis and the average of clinic and home measurements is on the x 

axis. The blue dashed line indicates the mean difference for all data points and the red dashed 

lines indicate the limits of agreement (upper line: mean +2SD, lower line: mean -2SD). 

 



  

  68 

      
 

 

 
 
 

3.3.4.3 Heart rate and oxygen saturation 
The mean heart rate and oxygen saturation for each participant over the course of the 

study is shown in Figure 3.9. Of note, participant K4’s data varied widely for oxygen  

saturation, with several measurements falling outside of the normal physiological (e.g., 

SpO2 >100%) or expected clinical range. 

 

Furthermore, in comparison to the other participants, a notable lack in heart rate 

variability around the mean was also observed for the same participant. Taken 

together, these observations suggested a malfunctioning device as both heart rate 

and oxygen saturation are recorded on the same device. Therefore, heart rate (n = 

174) and oxygen saturation (n = 174) measures for participant K4 were omitted from 

further analyses due to poor reliability. 
 
3.3.4.4 Activity  
The median number of steps recorded for each participant during the study is shown 

in Figure 3.10. Of note, no validation data for its use as a measure of step count in 

free-living conditions was available for the consumer-wearable activity tracker used in  

Figure 3.8 Average BMI for each participant over the study period. The data is presented 

as mean ± SD. The dashed red lines indicate the boundaries of the healthy weight range for 

BMI which falls between 18.5 and 24.9. Four participants had a BMI outside of the healthy 

range, with one participant classed as over-weight and two classed as underweight. 
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Figure 3.9. Average heart rate and oxygen saturation for each participant over the study 

period. (A) Heart rate (bpm). (B) Oxygen saturation (SpO2, %). The data is presented as mean 

± SD. The wide variability seen in the SpO2 measures for participant K4 suggest a 

malfunctioning device with several measures falling outside acceptable clinical and 

physiological parameters. Given that heart rate and oxygen saturation were measured on the 

same device, these measures for participant 4 were excluded from further analyses due to a 

lack of reliability (n = 118 respectively). 

 

Figure 3.10.  Activity levels (recorded in steps) for each participant through the study period. 

Each box encloses 50% of the data; median values are displayed as lines within the boxes. 

The tops and bottoms of the boxes mark the limits of ± 25% of the variation. The lines extending 

from the top and the bottom of each box mark the minimum and maximum values within the 

dataset. Activity levels varied widely between participants.  

A B 
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this study. The participant with the lowest baseline lung function in the cohort was also 

the least active (participant K9, 908 steps a day, range 107 to 3551) whilst the 

participant with the best lung function was the most active (participant K8, median 

9830 steps a day, range 538 to 16161). 

 

3.3.4.5 Symptom scores 
Symptom scores for cough and wellness did not fluctuate greatly, with most 

participants’ scores varying by either +1 or -1 around their median values (Figure 

3.11). 

 

 

 
 

 

 
 
 

3.3.5 Correlations between Exotoxin A, lung function, frequency of 
exacerbations and markers of systemic inflammation 

Exotoxin A was detected in all sputum samples collected. Significant variation in 

sputum Exotoxin A concentrations was observed between participants with median 

values ranging from 0.4 ng•mL-1 to 12.5 ng•mL-1(Kruskal-Wallis test, p < 0.0001) 

(Figure 3.12). 

 

To ascertain whether clinical markers known to be associated with CF disease severity 

Figure 3.11.  Variation in symptoms scores between participants. A) Cough score (B) 

Wellness score. Data is presented as median and interquartile range. Median values are 

displayed as symbols. The lines extending from the top and the bottom of each symbol mark 

the limits of ± 25% of the variation.  

A B 
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(e.g., baseline lung function, frequency of APEs) and degree of systemic inflammatory 

response at time of APE (e.g., CRP) were significantly associated with variation in 

Exotoxin A, I performed a correlation analysis. I did not identify significant relationships  

between either FEV1 percent of predicted (Spearman r = -0.08, p = 0.4335) or CRP 

(Spearman r = -0.04, p = 0.6335), nor between frequency of exacerbations (Spearman 

r = 0.28, p = 0.3094) and Exotoxin A. 

 

I next sub-divided the participants according to chronic infection with either an 

epidemic (MES or LES) or a non-epidemic strain type of P. aeruginosa to investigate 

for differences between the groups. I did not identify a difference in levels of Exotoxin 

A between the two groups (Mann-Whitney test, p = 0.0782) (Figure 3.13A). However, 

further comparison after sub-division of the epidemic cohort into MES- and LES-

infected participants identified a statistically significant difference between groups, 

with Exotoxin A levels notably higher in participants chronically infected with the LES 

(Kruskal-Wallis test, p = 0.043) (Figure 3.13B). Although, the small number of 

Figure 3.12.  Exotoxin A concentration in sputum for each participant over the study 

period. Exotoxin A concentration was quantified in daily sputum samples provided by each 

participant. Median values are marked in blue. The top and bottom error bars in red mark 

the limits of ± 25% of the variation. Significant between-participant variability in median 

Exotoxin A concentrations was observed (Kruskal-Wallis test, p < 0.0001) 
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participants in this analysis constrains the drawing of broader inferences from these 

findings. 

 

3.3.6 Correlations between Exotoxin A and home measures 
To investigate for correlations between changes in the microbial biomarker Exotoxin 

A and home measures, I first generated line graphs for each participant’s home 

monitoring daily data. This revealed a large and complex dataset, with substantial daily 

variation in physiological and symptom measures. In contrast to the discrete measures 

taken at clinic visits, daily collected home monitoring data provided a far more detailed, 

longitudinal overview of an individual’s physiology and symptoms during periods of 

clinical stability and exacerbation. A representative example of a single participant’s 

data capture through the 6-month study period is shown in Figure 3.14. Of note, when 

all APE episodes were assessed in aggregate, I observed deviations in several home 

measures around periods of antibiotic treatment for APE, suggesting possible 

correlations with APE onset. 

 

Next, in order to identify any significant relationships between the seven home 

monitoring measures and Exotoxin A, I performed a correlation matrix (Figure 3.15). I  

 

Figure 3.13. Comparison of median Exotoxin A concentration in sputum (A) between 

participants chronically infected with an epidemic strain of P. aeruginosa and those infected 

with a non-epidemic strain or (B) between participants chronically infected with a non-epidemic 

strain, the MES or the LES of P. aeruginosa. Data is presented as median and interquartile 

range. There was a statistically significant difference found between the three groups (Kruskal-

Wallis test, p = 0.0443) 
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Figure 3.14.  Representation of a single participant’s daily data capture for each home 

monitoring parameter across the 6-month study. Green bars represent antibiotic 

treatment courses and correspond to each acute pulmonary exacerbation event. 

Deviations in several of the home measures were observed before and after each 

antibiotic course. 

 
 

 

Participant K3 
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did not identify any relationships between Exotoxin A and any of the home monitoring 

parameters. However, FEV1 (percent of predicted) was modestly positively correlated 

with symptom scores, with better lung function associated with fewer symptoms 

(cough: Spearman r = 0.49, wellness: Spearman r = 0.5, p < 0.00001). 

 

Not surprisingly, I identified a strong positive correlation between cough and wellness 

symptom scores (Spearman r = 0.91, p < 0.00001). I also identified a positive, albeit 

weak, correlation between activity and each of the symptom scores (cough: Spearman 

r = 0.27, wellness: Spearman r = 0.29, p < 0.00001) and between activity and FEV1 

(percent of predicted) (Spearman r = 0.27, p < 0.00001). 

 

Figure 3.15. Correlation matrix of variable-variable associations as determined by 

Spearman correlation coefficient. Blue indicates a strong positive correlation between any 

given pair (Spearman coefficient closer to 1). Red indicates a strong negative correlation 

between any given pair (Spearman coefficient closer to -1). White indicates no correlation 

between pairs (0). Correlations were significant if r > 0.35 and p ≤ 0.05 (*). ns = not significant, 

** =p < 0.001, **** = p < 0.00001. 
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3.3.7 Changes in Exotoxin A and home measures prior to the start of antibiotic 
treatment for an APE 

I next investigated for evidence of a significant change in Exotoxin A levels prior to the 

initiation of antibiotic treatment for an APE. I did this by calculating, for the sample set 

as a whole, the median Exotoxin A levels for the 3-day, 7-day and 14-day period prior 

to the initiation of antibiotic therapy for an APE. I also calculated the median Exotoxin 

A levels for the start day (0-day) of antibiotic therapy. I included 20 out of a possible 

39 pre-exacerbation periods in the 14-day analysis. However, I only included 19 pre-

exacerbation periods in the 3-day and 7-day analyses, respectively, due to insufficient 

sputum samples available for exotoxin detection from participant K7 during these time 

periods. I excluded five pre-exacerbation periods (two from participant K14 and three 

from participant K15) as sputum samples were not provided for Exotoxin A detection 

by these participants during the TeleCF study. I also excluded a further eight pre-

exacerbation periods (one each from participants K1, K2, K4, K5, K8, K9, K10 and 

K11 respectively) because these periods fell outside of Day 1 of the TeleCF study 

period. Finally, I excluded six pre-exacerbation periods (one each from participants 

K1, K2, K3, K5, K9 and K13) due to less than 28 days elapsing between antibiotic 

treatment courses for APE.  

 

The median Exotoxin A concentrations calculated for the 14-day, 7-day, 3-day and 0-

day intervals prior to initiation of antibiotic therapy for an APE were 2.2 (0.8-6.7) ng•mL-

1, 2.4 (0.8–8.4) ng•mL-1, 2.1 (0.7–7.0) ng•mL-1 and 2.2 (0.9-14.9) ng•mL-1 respectively. 

Accordingly, I did not find a statistically significant difference in median Exotoxin A 

levels between these intervals leading up to antibiotic treatment for an APE (Kruskal-

Wallis test, p = 0.8338).   

 

Similarly, I did not identify a statistically significant difference in the median or mean 

values for the seven home monitoring measures between any of the four intervals prior 

to starting antibiotic treatment for an APE (Table 3.4). 

 

3.3.8 Changes in Exotoxin A and home measures between non-exacerbation 
periods and prior to initiation of antibiotic treatment for an APE 

I next investigated for significant changes in either Exotoxin A or any of the home 

measures between periods of clinical stability (non-exacerbation) and 1) 14-days, 2)  
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Table 3.4. Comparison of home monitored measures prior to starting antibiotic 

treatment for an APE. 

Home 
measure 

 Interval prior to antibiotic treatment for an APE (days)  
p value 

 14 7 3 0  

FEV1 (% 

predicted)  

- mean 

 

40 ± (12.2) 39 ± (12.8) 38 ± (13.8) 41 ± (12.2)  0.8554 

Weight (kg)  

- mean 

 
61 ± (9.7) 60 ± (9.8) 60 ± (9.8) 62 ± (9.8)  0.9105 

Activity (steps) 

- median 

 4596 (2105 

– 7386) 

4498 (1622 

– 7090) 

4134 (1397 

– 5942) 

5035 (3597 

– 6697) 

 
0.3830 

HR (bpm)  

- mean 

 
89 ± (10.6) 89 ± (10.9) 90 ± (11.8) 86 ± (10.6)  0.7229 

O2 saturation 

(%) - mean 

 
94 ± (1.4) 94± (1.6) 95 ± (1.6) 94 ± (1.6)  0.9010 

Wellness score 

- median 

 
4 (3 – 5) 4 (3 – 5) 3 (3 – 5) 4 (3 - 5)  0.2416 

Cough score  

- median 

 
4 (3 – 6) 4 (3 – 5) 3 (3 – 5) 4 (2 – 6)  0.4288 

 
 
 
 
 

7-days and 3) 3-days prior to initiation of antibiotic therapy for an APE. The period of 

non-exacerbation that was used for comparison with each of the three pre-

exacerbation periods prior to treatment initiation varied in duration and I defined this 

pragmatically as, the period starting from the end of a course of antibiotics received 

for an APE, to the start of either the 3-day (S1), 7-day (S2) or 14-day (S3) interval prior 

to antibiotic initiation for a subsequent APE. In three cases (APE1 for participants K6, 

K7 and K12), the previous antibiotic course fell outside of the first day of the TeleCF 

study for that participant. However, as more than 28 days had elapsed between the 

study start date to the first course of antibiotics for an APE, samples collected from 

the study start date up until the first antibiotic course for an APE were included in this 

analysis. 

Differences between continuous variables were examined with one-way ANOVA for 

parametric data and Kruskal-Wallis test for non-parametric data. APE: acute pulmonary 

exacerbation, FEV1: Forced expiratory volume in 1 second, HR: heart rate. Differences are 

significant if p ≤ 0.05. 
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I did not find a statistically significant difference for the whole cohort in median 

Exotoxin A concentrations measured during periods of non-exacerbation and either 

the 3-day (Wilcoxon matched pairs test, p = 0.8203), 7-day (Wilcoxon matched pairs 

test, p = 0.1055) or 14-day (Wilcoxon matched pairs test, p = 0.3008) period prior to 

starting antibiotics for an APE (Figure 3.16).  

 

  
 

 

    

 

 

 
 
 
 
 
 

Next, I performed a similar analysis for each of the seven home monitored measures.  

Home measurement data was unavailable from participant K12 for several variables 

(heart rate, oxygen saturation, cough and wellness scores) for the 14-day period prior 

to an APE due to missed measures. Likewise, data was unavailable for weight in the 

Figure 3.16.  Comparison of Exotoxin A concentrations during clinical stability and prior to 

initiation of antibiotic treatment for an APE. Each pair of points represents a single subject’s 

data and were handled as paired samples. Median Exotoxin A concentrations were compared 

between either the 14-day, 7-day and 3-day periods prior to initiation of antibiotic therapy for 

an APE and a period of clinical stability. This variable period of clinical stability was defined as 

the period starting from the end of a course of antibiotics received for an APE, to the start of 

either the 3-day, 7-day or 14-day interval prior to antibiotic initiation for a subsequent APE. A 

statistically significant difference was not found between Exotoxin A concentrations during 

periods of clinical stability compared with prior to initiation of antibiotics for an APE. Differences 

are significant if p ≤ 0.05. (†) Insufficient samples for Exotoxin A detection were available from 

participant K7, for this analysis.  
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3-day and 14-day period prior to an APE for participant K11, and for lung function in 

the 3- , 7-, or 14-day period prior to exacerbation for participant K9. Heart rate and 

oxygen saturation data was excluded from participant K4’s dataset, for reasons 

previously discussed in Heart rate and oxygen saturation, Section 3.3.4.3. 

 

I identified a statistically significant difference between periods of non-exacerbation 

and prior to initiation of treatment for an APE for two of the home measures: lung 

function (FEV1 percent of predicted) and cough score. For lung function, this difference 

was observed when comparing values during non-exacerbation with either the 7-day 

or 14-day period prior to treatment initiation for an APE (Wilcoxon matched pairs test, 

p = 0.0357 and p = 0.0447 respectively) (Figure 3.17).  

 

 
 

 

 

 

 

 

 

 

 

Figure 3.17. Comparison of lung function (FEV1 % predicted) during clinical stability and 

prior to initiation of antibiotic treatment for an APE. Each pair of points represents a single 

subject’s data and were handled as paired samples. Mean values for FEV1 % predicted were 

compared between either the 14-day, 7-day and 3-day periods prior to initiation of antibiotic 

therapy for an APE and a period of clinical stability. This variable period of clinical stability 

was defined as the period starting from the end of a course of antibiotics received for an 

APE, to the start of either the 3-day, 7-day or 14-day interval prior to antibiotic initiation for a 

subsequent APE. A statistically significant difference was found between mean FEV1 % 

predicted during periods of clinical stability compared with 7-days and 14-days prior to 

initiation of antibiotics for an APE. Differences are significant if p ≤ 0.05. (†) No measures 

were available from participant K9 for this analysis. 
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For cough score this difference was noted when comparing values during non-

exacerbation with either the 7-day or 3-day period prior to treatment initiation for an 

APE (Wilcoxon matched pairs test, p = 0.0313 and p = 0.046 respectively) (Figure 

3.18). 

        
 

 

 

 

 

 

 

 

 

 

 

3.3.9 Within-participant variation in Exotoxin A and home measures before 
treatment for an APE  

I next sought to investigate whether Exotoxin A and/or home measures changed 

significantly, and consistently, between antibiotic treatment episodes for APE within 

the same participant.  

 

Figure 3.18. Comparison of cough score during clinical stability and prior to initiation of 

antibiotic treatment for an APE. Each pair of points represents a single subject’s data and 

were handled as paired samples. Median values for cough score were compared between 

either the 14-day, 7-day and 3-day periods prior to initiation of antibiotic therapy for an APE 

and a period of clinical stability. This variable period of clinical stability was defined as the 

period starting from the end of a course of antibiotics received for an APE, to the start of either 

the 3-day, 7-day or 14-day interval prior to antibiotic initiation for a subsequent APE. A 

statistically significant difference was found between median cough score during periods of 

clinical stability compared with 3-days and 7-days prior to initiation of antibiotics for an APE. 

Differences are significant if p ≤ 0.05. 
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To determine this, I calculated the median/mean values of the variables in the 3-day, 

7-day and 14-day period prior to each APE and compared these to the median/mean 

values in the preceding period of non-exacerbation, as previously defined in Section 

3.3.8. 

 

For ease of reporting, I have assigned the following abbreviations: the period from the 

preceding course of antibiotics for an APE up to 3 days before antibiotics for the next 

APE is designated as S1, the period from the preceding course of antibiotics for an 

APE up to 7 days before antibiotics for the next APE is designated as S2 and the 

period from the preceding course of antibiotics for an APE up to 14 days before 

antibiotics for the next APE is designated as S3.  I will also refer to the period including 

S1 and the 3 days prior to antibiotic initiation as interval-1, the period including S2 and 

the 7 days prior to antibiotic initiation as interval-2 and the period including S3 and the 

14 days prior to antibiotic initiation as interval-3. For this analysis I have only included 

data from participants K1, K2, K3, K4 and K6, who each experienced at least three 

complete treatment-defined APEs within the study period (Figure 3.19). I took this 

decision in order to facilitate comparison of changes between sequential treatment-

defined APEs. I excluded heart rate and oxygen saturation from this analysis, as they 

have previously been shown to have minimal correlation with any of the other variables 

in the correlation analysis. 

 

For participant K1, comparison of the median/mean values of the variables for the 

three intervals before APE2 and APE3 only revealed statistically significant differences 

in mean FEV1 percent of predicted in interval-1 (p = 0.0167) and interval-2 (p <0.0001) 

prior to APE2, and in median wellness score in interval-2 (p = 0.0079) prior to APE2. 

 

For participant K2, I found statistically significant differences in three variables prior to 

APE2: mean FEV1 percent of predicted (interval-2 and interval-3, p = 0.0180 and 

0.0385 respectively), median cough score (interval-1, interval-2 and interval-3, p = 

0.0304, 0.0449 and 0.0034 respectively) and median wellness score (interval-3, p = 

0.0076). Similarly, prior to APE3, I found statistically significant differences in two 

variables: median Exotoxin A (interval-2, p = 0.0294) and mean FEV1 percent (interval-

2 and interval-3, p = 0.0011 and 0.0309 respectively). For APE4, I found statistically 

significant differences in three variables: mean FEV1 percent (interval-3, p = 0.0061),  
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Figure 3.19. Sampling periods for the 5 participants included in the analysis of within-participant variation in Exotoxin A and home measures 

(FEV1 % predicted, weight, cough score, wellness score and activity) prior to initiation of antibiotic treatment for an APE. Median/mean values 

for each of the variables were calculated for the 3-day (red line), 7-day (orange line) and 14-day (blue line) periods prior to antibiotic (Abx) 

treatment for an APE, and compared with median/mean values in the period extending from the preceding course of antibiotics to either 3-day 

(S1), 7-day (S2) or 14-day (S3) prior to antibiotics starting, respectively, for each inter-treatment period that fell within the study period. The 

green bars represent antibiotic treatment courses. Inter-treatment periods shorter than 21 days were excluded from this analysis. 

81 
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 cough score (interval-2, and interval-3, p = 0.0193 and <0.0001 respectively) and 

median wellness score (interval-3, p <0.0001). 

 

For participant K3, I found a statistically significant difference in median cough scores 

in each of the three intervals, prior to all three of the APEs examined – APE2: interval-

1, p = 0.0311; interval-2, p = 0.0003; interval-3, p = 0.0156; APE3: interval-1, p = 

0.0099; interval-2, p = 0.0004; interval-3, p <0.0001, and APE4: interval-1, p = 0.0077; 

interval-2, p = 0.0042; interval-3, p <0.0001. In addition, I found statistically significant 

differences in two other variables in each of the three intervals prior to APE2: mean 

FEV1 percent of predicted (interval-1, interval-2 and interval-3, p = 0.0059, 0.0032 and 

0.0236 respectively) and median wellness score (interval-1, interval-2, and interval-3, 

p = 0.0056, 0.0008 and 0.0051 respectively). Furthermore, I found a statistically 

significant difference in median activity in interval-1 (p = 0.0305) and interval-3 (p = 

0.0275) prior to APE2. For interval-2 and interval-3 prior to APE3, I found a statistically 

significant difference in the median wellness score (p = 0.0001 and <0.0001 

respectively). In addition to the cough score, I also found statistically significant 

differences in three more variables prior to APE4: median Exotoxin A (interval-3, p = 

0.0334), mean FEV1 percent (interval-3, p = 0.0307), and median wellness score 

(interval-1, p = 0.0013; interval-2, p <0.0001; interval-3, p = <0.0059). 
 

For participant K4, I found a statistically significant difference in median cough scores 

in all three intervals prior to APE2: interval-1, p = 0.0298; interval-2, p <0.0001; 

interval-3, p <0.0001. In addition, I found statistically significant differences in three 

other variables prior to APE2: mean FEV1 percent of predicted (interval-2 and interval-

3, p = 0.0329 and 0.0015 respectively), median wellness score (interval-2, and 

interval-3, p = 0.0168 and <0.0001 respectively) and median activity level (interval-2, 

and interval-3, p = 0.0124 and <0.0001 respectively). Finally, prior to APE4, I found a 

statistically significant difference in only one variable for interval-2: mean FEV1 percent 

of predicted (p = 0.0059). 

 

For participant K6, I found a statistically significant difference in mean FEV1 percent of 

predicted (interval-3, p = 0.0003) and median wellness score (interval-2, p = 0.002) 

prior to APE2. In addition, I found a statistically significant difference in the 

mean/median values of four variables prior to APE4: median Exotoxin A (interval-2  
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and interval-3, p = 0089 and 0.0047 respectively), mean FEV1 percent of predicted 

(interval-1 and interval-2, p = 0.0003 and 0.0020 respectively), median cough score 

(interval-1, p = 0.0077; interval-2, p = 0.0066; interval-3, p <0.0001) and median 

wellness score (interval-1, p = 0.0028; interval-2, p = 0.0024; interval-3, p <0.0001). 

 

Taken together, these observations suggest that symptom scores, particularly cough 

score, change significantly in the period prior to treatment for an APE. Often, 

accompanying changes in FEV1 percent of predicted are observed, although this 

change is less consistent between sequential APE events within the same participant. 

Furthermore, although significant differences in Exotoxin A and activity levels were 

observed these changes were very infrequent and not consistent between sequential 

APE events. 

 
 
3.4 DISCUSSION 
 

Unlike most Gram-negative bacteria, P. aeruginosa is able to secrete a variety of 

virulence factors into the extracellular milieu, among them Exotoxin A. Secretion of 

Exotoxin A enables tissue adherence and facilitates tissue damage for nutritional 

supply and dissemination (442). Previous studies have confirmed the presence of 

Exotoxin A in CF sputum (167). Furthermore, several authors have demonstrated that 

in CF patients chronically infected with P. aeruginosa and hospitalised for APE, 

exoprotein levels (Exotoxin A, elastase and alkaline protease) in sputum fall during 

and after antibiotic treatment (167,267). Therefore, it would seem plausible that 

Exotoxin A levels may likewise vary between periods of clinical stability and prior to 

antibiotic treatment initiation.  

 

For the purposes of this study, the start of an APE was defined as a decision to initiate 

antibiotic therapy in response to a deterioration in respiratory symptoms. Given that 

changes in Exotoxin A levels likely precede patient-reported symptoms, a two-week 

period prior to initiation of antibiotic therapy was selected as this seemed reasonable 

to detect changes in Exotoxin A levels. Daily home monitoring of lung function, weight, 

heart rate, oxygen saturation, activity levels, cough and wellness scores were 

undertaken alongside sputum assessment of Exotoxin A levels. 
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This is the first study investigating changes in Exotoxin A levels prior to initiation of 

antibiotic treatment for an APE. Furthermore, this is the first study to combine home 

monitoring of physiological and symptom measures to enable objective establishment 

of periods of clinical stability and exacerbation, against which to analyse, the utility of 

a potential microbial biomarker to predict for the onset of APE. 

 

The results from this single-centre study have enabled the following conclusions to be 

drawn. First, in contrast to previous work (443), poor correlations were found between 

Exotoxin A and markers of systemic inflammation (e.g., CRP) and CF disease severity, 

specifically severity of baseline lung function impairment and frequency of APEs. 

Second, significantly higher Exotoxin A levels were observed in patients chronically 

infected with the LES. This observation provides additional evidence in support of the 

hypervirulent phenotype associated with the LES and is in keeping with previous work 

describing overproduction of other secreted virulence factors (e.g., pyocyanin) by the 

LES (444). Third, median Exotoxin A levels do not change significantly two weeks, 

one week or three days prior to the initiation of antibiotics for an APE. Furthermore, 

Exotoxin A levels did not vary significantly between APE episodes within the same 

individual, suggesting that this single virulence factor is not likely to be responsible for 

triggering APEs and consequently has poor utility as a microbial biomarker to detect 

for APE onset.  

 

In general, home monitoring using USB-enabled devices and a home personal 

computer for data transmission proved successful, with the majority of patients 

providing a high number of recordings across all the devices for the duration of the 

study. However, the study was incentivised which may have influenced retention rates. 

In addition, the number of participants in this study was small further limiting an 

assessment of acceptability and feasibility. Nonetheless, the large dataset of home-

monitored measures collected in this study provided, for the first time, detailed 

resolution of the day-to-day variation in physiology and symptoms during periods of 

stability and decline for an individual with CF. However, despite observation of falling 

trends in several measures prior to treatment initiation for an APE no consistent 

change in any single home measure was identified prior to an APE. Still, in some 

individual participants, significant changes in some home measures, most consistently 

symptom scores and lung function, in the period prior to antibiotic treatment were 
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seen. These findings suggest that home monitoring of physiology and symptom scores 

may have potential to detect declining trends in lung health prior to presentation in the 

clinic. However, given the complexity of the dataset, with a combination of day-to-day 

variation in measures and occasional missing data points reducing the signal-to-noise 

ratio in the measurements, more advanced data analytics on a larger sample of 

participants will need to be undertaken to better understand the relationships between 

physiology, symptoms and APE.  

 

This study, however, has limitations in its methodology that should be taken into 

account when interpreting these findings. It presents data from a single specialist 

centre with a small sample size. Furthermore, only individuals chronically infected with 

P. aeruginosa were included due to the nature of the biomarker under investigation, 

therefore limiting the generalisability of the home monitoring findings to the wider CF 

population. In addition, no assessment of user experience with regards to daily home 

monitoring was conducted, thereby limiting recommendations on feasibility and 

acceptability to the wider CF population. This study only analysed changes in the 

variables in the two-week window prior to antibiotic initiation for APE. Moreover, it was 

not possible to determine with certainty the start date for an APE, independent of the 

initiation of antibiotic treatment. Therefore, it remains possible that changes in both 

bacterial behaviour and host response precede this arbitrary cut-off, limiting the scope 

of the conclusions that can be drawn from the data. Finally, we only analysed a single 

bacterial marker. However, given the complex inter-relationships between virulence 

determinants associated with P. aeruginosa, investigation of a panel of biomarkers 

may yield more promising results. An appreciation of the limitations highlighted in this 

study has informed the rest of the work discussed in this dissertation. 
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4. Investigation of changes in the phenotypic composition of clonal 
populations of P. aeruginosa as a trigger for APE onset in adults with CF. 

 
Summary: 
P. aeruginosa isolates from chronic CF lung infections exhibit diverse phenotypic 

profiles. We hypothesised that changes in the phenotypic composition of P. 

aeruginosa clonal populations may be responsible for triggering APEs in CF. 

 

Sequential sputum samples, provided over a 6-month period, were collected from 9 

adults with CF before, during and after antibiotic treatment for an APE. Sets of 95 

isolates per sputum sample were analysed for a series of phenotypic traits associated 

with P. aeruginosa virulence. We also investigated for differences in phenotypic 

composition between isolate populations of the P. aeruginosa LES, MES and local 

non-epidemic strains. 

 

We characterised 6 traits (morphotype, auxotrophy, exoproduct secretion, motility, 

biofilm formation and QS AI production for a total of 4408 isolates. Most isolates lacked 

production of OdDHL, the cognate AI for LasR, the QS master regulator. Yet, typically 

LasR-regulated phenotypes were not predictably lost. Moreover, rhl signalling was 

preserved in two thirds of the isolates. LES isolates displayed significantly less 

phenotypic variation compared to MES and non-epidemic isolates. No significant 

change in the phenotype composition of P. aeruginosa isolate populations was 

observed in relation to exacerbation periods.  

 

These findings provide further evidence for ‘re-wiring’ of the traditional QS regulatory 

hierarchy in CF isolates, with the rhl subsystem playing a more central role in virulence 

expression in certain strain types. Importantly, APEs could not be linked to the 

emergence of a particular sub-population of morphotypic or phenotypic variants. 
 
Statement of contribution:  

I carried out all clinical data collection, experiments, analyses and interpretation in this 

chapter, barring multi-locus sequence typing which was carried out by Dr Sam Kidman 

(PhD, Parkhill Lab), who also provided invaluable bioinformatic training and support. 
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4.1 INTRODUCTION 
 

The opportunistic, Gram-negative bacterium P. aeruginosa (reviewed in P. 

aeruginosa, Section 1.6) is considered the archetypal pathogen of the CF airway. It is 

often associated with intermittent airway infection during childhood. However, 

recalcitrant endobronchial infection becomes established (in most cases) by late 

adolescence, despite early aggressive antibiotic eradication strategies (445–448). The 

association between recurrent pulmonary exacerbation and prevalent P. aeruginosa 

culture positivity on respiratory sampling has consolidated the bacteria’s position as a 

leading cause of increased morbidity and mortality in the CF population (124). Yet still, 

the mechanisms by which resident P. aeruginosa trigger dynamic worsening in 

respiratory status among individuals with CF remains unclear. 

 

Genotypic evolution of P. aeruginosa during chronic infection is accompanied by the 

acquisition and expression of certain pathoadaptive phenotypic traits that distinguish 

CF-evolved isolates from the initial infecting environmental strain (reviewed in P. 

aeruginosa adaptive phenotypes and virulence determinants in chronic CF infection, 

Section 1.7). Early genetic studies, albeit based on small numbers of sequential 

isolates, suggested that this adaptation favoured selection for phenotypic traits 

consistent with a down-regulation or alteration in virulence expression (176,179,449). 

However, despite apparent pathoadaptive trait conservation in chronic infection, 

several studies have since reported broad phenotypic diversity in both clonal isolates 

from within the same patient and between clonal populations from different CF patients 

(177,271,325,326,444,450,451). Moreover, the phenotypic variation described by 

these authors has challenged the traditional concept of a reduction in virulence 

expression over time, suggesting that this model may be an oversimplification 

(174,334,452). Of interest, studies focused on changes in single phenotypic traits have 

proposed a link between bacterial behaviour and exacerbation states 

(167,267,444,453). This raises the possibility that the transition to APE (on a 

background of chronic airway infection) may arise as a consequence of the emergence 

of sub-populations of phenotypic variants expressing traits conducive to inducing 

acute exacerbations. 
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To date, few studies have endeavoured to characterise the nature of short-term 

variations in phenotypic expression of clonal populations of P. aeruginosa within the 

CF lung before, during and after transient worsening in clinical state needing 

intervention with antibiotic treatment.  Prior studies have been limited by either low 

sampling depths (174–181,184) or small patient numbers, profiling of few timepoints 

(177,178,180–182) independent of changes in clinical state, assessment of limited 

phenotypes (121) or focus on single transmissible strains (121,271,325,326). This has 

hindered generalisability and lead to underestimation of population diversity and a 

failure to demonstrate correlations between phenotypic behaviour and APE.  

 

In this work I propose to describe, in detail, the dynamic short-term changes in in vitro 

phenotypic diversity of both epidemic and non-epidemic clonal populations of P. 

aeruginosa through acute periods of clinical instability in nine adults with CF. I also 

aim to determine whether these changes in bacterial behaviour are reliable markers 

for the onset of APEs. 

 

 

4.2 MATERIALS AND METHODS 

 
4.2.1 Source of reagents 
All reagents used in this study were of analytical grade and were sourced from Sigma-

Aldrich, UK, unless otherwise stated.  

 
4.2.2 Bacterial strains, preparation and maintenance 
 
4.2.2.1 Clinical strains 
I used clinical data on antibiotic treatment administration to identify periods of APE for 

nine patients who took part in the TeleCF study, previously described in Chapter 3. 

These nine patients were chronically infected with P. aeruginosa and had provided 

daily sputum samples over the six-month duration of the home monitoring study. 

These samples had been collected and stored as described in Sputum collection, 

processing and storage, Section 2.4.  
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I selected sputum samples, in relation to time from initiation of antibiotics for an APE 

(Figure 4.1). Where available, sputum samples were selected in sets of three, linked 

to one antibiotic treatment episode. A minimum of two samples were selected in 

relation to each antibiotic treatment episode. Sputum samples were not available to 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.1. Timeline of sputa collection from 9 adult patients with CF. Samples were selected 

from the TeleCF sputum bank; a repository of frozen sputum samples collected daily over a 6-

month period from adults with CF who took part in the TeleCF home monitoring study. Sputum 

samples were selected in sets of three (blue shaded boxes) in relation to one antibiotic treatment 

episode (in green) where possible: 1) a non-exacerbation sample (e.g., 7-14 days before 

initiation of antibiotic treatment for an APE), 2) an exacerbation sample (e.g., Day 0 of antibiotic 

initiation up to 5 days on treatment and 3) a recovery sample (e.g., 7-14 days following antibiotic 

therapy). Exceptions (*) were made to the criterion for the selection of exacerbation samples in 

four cases (see text). Sampling timepoints, in days from the start of the study, are noted on the 

upper axis whilst antibiotic stop and start timepoints are noted on the lower axis. Where possible, 

exacerbation samples were collected prior to initiation of antibiotic treatment (†), however, this 

was not the case for 9 out of 19 exacerbation samples. 
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complete a set of three for the following reasons: 1) a sample was not produced in the 

required time period, 2) samples had been analysed for the TeleCF study or 3) the 

sample yielded minimal colony growth after culture. The first sample of the set of three 

was taken to represent a period of non-exacerbation and was selected 7-14 days 

before initiation of antibiotic treatment for an APE. The second sample was selected, 

where possible, prior to starting antibiotic treatment (Day 0 up to 5 days on treatment) 

and was representative of a period of peak exacerbation (in terms of symptoms). I 

made exceptions to this criterion on four occasions: APE1 for patients K1, K4, K9 and 

K14, where, in each case, a course of antibiotics had commenced 9, 12, 7 and 10 

days prior to sampling respectively. The third sample was selected 7-14 days after 

completion of antibiotic treatment and was taken to represent a period of recovery 

following antibiotic treatment. The sampling period for each set of samples related to 

one antibiotic treatment episode that was no longer than six weeks from first to last 

sample in the set.  

 

I selected a total of 14 non-exacerbation, 19 exacerbation and 14 recovery samples 

from the TeleCF sputum bank. These samples were defrosted to room temperature, 

treated with equal volume 0.1% dithiothreitol, vortexed, incubated at room temperature 

for 15 mins then vortexed again to homogenise. Samples were handled under sterile 

conditions in a Class II Microbiological safety Cabinet. 

 

I streaked processed sputum samples to purity and grew them on Pseudomonas 

selective agar base prepared plates with cetrimide and sodium nalidixate supplement 

(PCN agar; Oxoid). I incubated plates at 37°C for 48-72 h, to allow for the growth of 

slow-replicating and small colony variants.  

 

Where possible, I harvested 95 single colonies from each sputum sample and selected 

colonies to proportionally represent all morphotypes present within each sputum 

sample.  Two exacerbation samples yielded less than 95 colonies, one from patient 

K3 (n = 61) and one from patient K9 (n = 72). I arrayed the single colonies into a 96 

deep well microplate containing 1 mL cetrimide broth and incubated the microplates 

statically at 37°C for a further 6 h to increase cell density. I recovered a total of 4408 

pseudomonal strains from 47 sputum samples (Figure 4.2).   
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Figure 4.2.  A breakdown of the number of APEs per patient, number of sputum samples 

(NE = non-exacerbation, E = exacerbation and R = recovery) per APE, and the number of 

clinical isolates per patient that were recovered for this study. Where possible, 95 isolates of 

P. aeruginosa were harvested from each sputum sample, with the exception of one 

exacerbation sample from patient K3 and from patient K9 (*), which yielded 61 and 72 isolates 

respectively. Missing samples, highlighted in black, were either due to inadequate sputum for 

processing or minimal colony growth. A total of 4408 pseudomonal clonal strains were 

collected from 47 sputum samples. Note, two exacerbation samples were taken from patient 

K7, but these samples were considered to be part of the same continued exacerbation as the 

first exacerbation sample was collected whilst the patient was taking oral antibiotics and the 

second was taken prior to transitioning to intravenous antibiotics. 

 

Clinical 
isolates (n) 
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To confirm that each isolate was P. aeruginosa, I re-streaked each of the 4408 

harvested strains to purity and grew them again on PCN plates at 37°C for 48-72 h. I 

then picked single colonies and re-arrayed them into 96-deep-well microplates (one 

microplate per initial sputum sample) containing 1 mL cetrimide broth. Following static 

incubation at 37°C for 6 h, the strains were stored at -80°C in 25% (v/v) glycerol 

solution for long-term storage, to minimise potential for adaptation to the lab 

environment. Serial in vitro passage was limited to avoid inducing phenotype changes. 

 

I grew overnight cultures statically at 37°C in 96-well microplates containing 100 

µL/well of cetrimide broth, unless otherwise stated. 

 

4.2.2.2 Laboratory strains and plasmids 
Laboratory bacterial strains and plasmids used in this study are listed in Table 4.1.  

 

Table 4.1. Laboratory bacterial strains and plasmids  
Strain Description Reference 

P. aeruginosa 

PAO1 Wild-type Stover, et al., 2000 

(274) 

PpqsA::lux Bioluminescent reporter for 

HHQ/PQS, pqsA promoter 

fused to luxCDABE and 

inserted into a neutral site 

in the chromosome of 

pqsA mutant 

Fletcher, et al., 2007 

(454) 

E. coli 

JM109 (pSB1142) 

 

 

Bioluminescent reporter for 

OdDHL, contains lasR and 

promoter of 

lasI::luxCDABE, TcR 

Wang, et al., 2007 

 (506)  

JM109 (pSB536) Bioluminescent reporter for 

BHL, ahyRI’’::luxCDABE, 

CbR 

Swift, et al., 1997  

(455) 
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Unless otherwise stated, I grew P. aeruginosa and E. coli laboratory strains in Luria 

Broth (LB) at 37°C for 24 h. 

 

I supplemented media with antibiotics when required: 10 µg/mL tetracycline for JM109 

pSB1142 and 50 µg/mL carbenicillin for JM109 pSB536.  

 

For short-term-storage (up to one week), I streaked cells from frozen glycerol stocks 

to form single colonies on 1.5% (w/v) agar, incubated overnight and kept at 4°C.  

 

I grew overnight cultures in 10 mL screw-cap universal tubes or 50 mL falcon tubes 

inoculated from a single bacterial colony. I grew overnight cultures at 37°C for 12-16 

h on a rotating drum or on a shaking platform at 200 rpm.  

 

4.2.3 Media and solutions 
Media and solutions used in this study are listed in Table 4.2. I carried out sterilisation 

of media, solutions and glassware by autoclaving at 121°C for 20 min prior to use, 

unless otherwise specified. I filter-sterilised the following growth factors using 0.22 µm 

syringe filters (Millipore): L-asparagine, L-cysteine, L-glutamic acid, L-tryptophan, L-

tyrosine and diaminopimelic acid (DAPA). I prepared all media using deionised water, 

unless otherwise stated. Plates were poured and either used immediately or stored at 

4°C for no more than a week prior to use, unless otherwise stated. Antibiotics were 

stored at -20°C. Growth factors were stored at 4°C. 

 

4.2.4 Phenotypic screening assays 
All phenotypic assays (described below) were performed by myself. I received short-

term assistance from a laboratory assistant to facilitate mass production of certain 

stock solutions and media, and completion of the protease degradation, motility and 

biofilm formation assays. However, for each of the 4408 strains analysed, all 

phenotypes were assigned by myself. For each set of 95 isolates screened, the P. 

aeruginosa laboratory strain, PAO1, was used as a positive control for all assays, 

unless otherwise stated. I analysed each isolate for six phenotypic traits: colony 

morphology (8 features), metabolism (auxotrophy to 30 growth factors), exoproduct  
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Table 4.2. Composition of media and stock solutions 

Media/Solution Components 

Growth media 
Luria Broth (LB) (Formedium, Hunstanton, 

UK) 

10 g/L Tryptone  

5 g/L Yeast extract  

5 g/L NaCl  

 

Dissolve 20 g in 1 L 

Cetrimide Broth  16 g/L Gelatin peptone  

10 g/L Casein hydrolysate  

10 g/L Potassium sulphate  

1.4 g/L Magnesium chloride  

0.2 g/L Cetrimide  

10 mL/L Glycerol  

 

Dissolve 37.6 g of the dry components in 1 L 

Pseudomonas CN Selective Agar (Thermo 

Fisher Scientific Oxoid, ready-prepared 

plates, Basingstoke, UK) 

16 g/L Gelatin peptone  

10 g/L Casein hydrolysate  

10 g/L Potassium sulphate  

1.4 g/L Magnesium chloride  

0.2 g/L Cetrimide 

0.015 g/L Sodium nalidixate 

11 g/L Agar 

  

10 mL/L Glycerol  

Solid Agar LB in 1.5% (w/v) Bacto agar (Becton 

Dickinson) 

Auxotroph pool assay 

Growth factor Stock Solutions 10 mg/mL 
L-Asparagine 

L-Cysteine (Melford) 

L-Glutamic Acid 

L-Tryptophan 

L-Tyrosine 

L-Histidine 

L-Glutamine 

5 mg/mL 
Adenosine (0.1 M HCl) 

Guanosine (0.3 M HCl) 

Thymine  

Uracil 
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Table 4.2. (cont.) Composition of media and stock solutions 

Auxotroph pool assay (cont.) 
Growth factor Stock Solutions 

(cont.) 

10 mg/mL 
L-Leucine 

L-Serine 

L-Isoleucine 

L-Methionine (Duchefa) 

L-Lysine 

L-Threonine 

L-Aspartic Acid 

L-Valine 

L-Alanine 

L-Arginine 

L-Proline 

L-Phenylalanine (0.01 M HCl) 

Glycine 

300 µg/mL 

DAPA 

 

50 µg/mL 
Pyridoxine 

Pantothenate 

Nicotinic Acid 

 

1 µg/mL 
Thiamine 

Biotin 

 

5x M9 salts solution stock 56.4 g/L 5x M9 salts (Scientific Laboratory Supplies, 

Nottingham, UK) 

M9 Minimal Agar 200 mL/L 5x M9 Salts  

20 mL/L 20% (w/v) glucose 

2 ml/L 1 M MgSO4 (Fisher Scientific, Loughborough, UK) 

0.1 mL/L 1 M CaCl2 

1.5% (w/v) Bacto agar 

Pool Plate Stock solutions  

(10 mL) 

 

Mix together equal volumes of each growth factor stock 

solution: 

Pool 1:  

Adenosine, Histidine, Phenylalanine, Glutamine, 

Thymine, Pyridoxine 

Pool 2:  

Guanosine, Leucine, Tyrosine, Asparagine, Serine, 

Nicotinic Acid 

Pool 3: 

Cysteine, Isoleucine, Tryptophan, Uracil, Glutamic Acid, 

Biotin 

Pool 4: 

Methionine, Lysine, Threonine, Aspartic Acid, DAPA 
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Table 4.2. (cont.) Composition of media and stock solutions 

Pool Plate Stock solutions  

(10 m) (cont.) 

 

Pool 4 (cont.): 

Pantothenate 

Pool 5: 

Thiamine, Valine, Proline, Arginine, Glycine, Alanine 

Pool 6: 

Adenosine, Guanosine, Cysteine, Methionine, Thiamine 

Pool 7: 

Histidine, Leucine, Isoleucine, Lysine, Valine 

Pool 8: 

Phenylalanine, Tyrosine, Tryptophan, Threonine, Proline 

Pool 9: 

Glutamine, Asparagine, Uracil, Aspartic Acid, Arginine 

Pool 10: 

Thymine, Serine, Glutamic Acid, DAPA, Glycine 

Pool 11: 

Pyridoxine, Nicotinic Acid, Biotin, Pantothenate, Alanine 

Protease degradation assays 

Skim Milk Agar 50 g/L Tryptic Soy agar  

2% (w/v) Skim Milk (Marvel) 

Gelatin Agar 30 g/L gelatin  

13 g/L nutrient broth (Melford) 

1.6% (w/v) Bacto agar 

Motility assays 

Swim Agar 20 g/L LB 

0.3% (w/v) Bacto agar 

Twitch Agar 20 g/L LB 

1.5% (w/v) Bacto agar 

Siderophore (Schwyn-Neilands) assay 

Chrome azurol S (CAS) stock 

solution 

1.21 g/L Chrome azurol S (Fluka) in water 

Fe stock solution 1 mM FeCl3 

10 mM HCl 

Hexadecyltrimethylammonium 

bromide (HDTMA) stock 

solution 

1.825 g/L HDTMA 
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Table 4.2. (cont.) Composition of media and stock solutions 

Siderophore (Schwyn-Neilands) assay (cont.) 
M9 salts stock solution (pH 7.0) 30 g/L KH2PO4,  

50 g/L NaCl 

100 g/L NH4Cl 

10% Casamino acids solution 

(CAS)(100 mL) 

10 g casamino acids 

3% (w/w) 8-hydroxyquinoline in equal volume chloroform 

solution 

Piperazine-N, N’-bis (2-

ethansulfonic acid) (PIPES) 

buffer (pH 6.8) 

0.1 M PIPES (Melford)  

CAS-HDTMA (Blue Dye) stock 

solution 

500 mL/L CAS stock solution 

100 mL/L Fe stock solution 

400 mL/L HDTMA stock solution 

Stored in plastic container (foil wrapped) 

CAS agar (1 L) 750 mL/L PIPES buffer 

1.5% (w/v) Bacto agar 

100 mL/L M9 salts  

30 mL/L 10% casamino acids  

10 mL/L 20% (w/v) glucose  

1 mL/L 1M MgCl2 

1 mL/L 100mM CaCl2  

100 mL/L Blue Dye solution 

Rhamnolipid (Siegmund-Wagner) assay 

Proteose-peptone-glucose-

ammonium salts (PPGAS) 

medium (pH 7.2) 

0.698 g/L NH4Cl 

1.491 g/L KCl 

14.537 g/L Trizma Base 

0.394 g/L MgSO4 

1% (w/v) Proteose peptone (Difco) 

0.5% (w/v) glucose 

1.5% (w/v) Bacto agar (Formedium) 

Cetyl trimethylammonium 

bromide (CTAB) 
200 µg/mL CTAB  

5 µg/mL Methylene Blue 

Biofilm formation assay 

MgSO4 stock solution (100ml) 1 M MgSO4•7H2O 

FeSO4 stock solution (100ml) 2.5 g/L FeSO4 
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Table 4.2. (cont.) Composition of media and stock solutions 
Biofilm formation assay (cont.) 
CAS stock solution (100ml) 20% (w/v) Casamino acids 

5x M63 medium 68 g/L KH2PO4 

10 g/L (NH4)2SO4 

2.5 mg/L FeSO4•7H2O 

M63 minimal medium 200 mL 5x M63 medium 

10 mL 20% (w/v) glucose 

5 mL 20% (w/v) Casamino acids 

1 mL 1 M MgSO4•7H2O 

 

production (gelatinase, caseinase, siderophore and rhamnolipid), motility (swimming, 

twitching), biofilm formation and QS autoinducer (OdDHL, BHL and PQS) production. 

Due to the large number of isolates screened, phenotypic assays were chosen for 

reproducibility and ease of adaptation to a high through-put manner. 
 
4.2.4.1 Morphotype screening 
To determine colony morphotype cells I streaked cells from frozen glycerol stocks of 

the clinical strains to form single colonies on Pseudomonas selective agar base with 

cetrimide and sodium nalidixate supplement (PCN agar; Oxoid) and incubated at 37°C 

for 48-72 h. As previously described (with some modifications) (456), I assigned colony 

morphotype by visual inspection and description of eight identifiers: Pigmentation, 

mucoidy, colony lucency, surface texture, size, margin regularity, autolysis and 

surface sheen (Table 4.3). I defined each morphotype was as a unique combination 

of these identifiers with size being used to distinguish small colony variants. 

 

4.2.4.2 Microplate QS bioassay 
I examined production of the QS signal molecules OdDHL, BHL and PQS, as 

previously described, with some modifications (454,455). I quantified the AHLs in the 

cell supernatant using the two lux reporter strains; JM109 (pSB114) for OdDHL and 

JM109 (pSB536) for BHL. I quantified PQS using the lux reporter strain; PpqsA::lux. 
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Table 4.3. Features used to classify colony morphology of the clinical isolates 

Class Sub-class 
Pigmentation White 

Green 
Yellow 
Orange 
Tan 

Mucoidy Mucoid 
Non-mucoid 

Colony lucency Opaque 
Translucent 

Surface texture Smooth 
Rough 

Size* Small 
Large 

Margin regularity Smooth 
Irregular 

Autolysis Halo 
No halo 

Surface sheen Iridescence 
No iridescence 

 

 
 
 
 

In summary, I grew each clinical strain in 800 µL of buffered LB at 37°C for 24 h. I 

collected crude supernatants from planktonic stationary cultures by centrifugation at 

4000 rpm for 15 min at room temperature. I co-incubated aliquots of 100 µL from the 

supernatants statically at 37°C for 3-5 h with 100 µL of overnight culture of JM109 

pSB536, JM109 pSB1142 or PpqsA::lux reporter strains in Grenier Cellstar® black, 96 

well, polystyrene, flat micro-clear bottom microplates. I measured the bioluminescence 

of individual wells as relative light units with the Fluostar Omega (BMG Labtech) 

microplate reader. I quantified AHL and AQ levels by comparison with dilutions of 

synthetic standards. The experiments for each QS signalling molecule were performed 

in duplicate. 

 

*Colonies were considered small if colonial diameter was £ 3mm after growth on 

Pseudomonas selective agar base with cetrimide and sodium nalidixate supplement (PCN 

agar; Oxoid) and incubated at 37°C for 48-72 h. 
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4.2.4.3  Protease degradation assays 
I detected caseinase activity (dependent mainly on LasB protease, alkaline protease 

and proteinase IV) was by spotting aliquots (5 µL) of overnight culture onto skim milk 

plates (457). I incubated plates at 37°C for 48 h before identifying protease activity by 

the formation of clearing zones around the colony growth due to casein hydrolysis. I 

scored protease activity qualitatively as either absent, low (halo diameter £ 1 cm) or 

high (halo diameter ³ 1 cm). 

 

I measured gelatinase activity (dependent mainly on LasA protease) in a similar 

manner, except that I spotted aliquots (3 µL) of overnight cultures on to gelatin agar 

plates and incubated the plates for 24 h (374). I identified protease activity by 

visualising proteolytic clearing zones, formed by gelatin hydrolysis, after flooding the 

plates with saturated ammonium sulphate solution. I scored protease activity 

qualitatively as either absent, low (halo diameter £ 1 cm) or high (halo diameter ³ 1 

cm). 

 
4.2.4.4  Modified Schwyn-Neilands assay for siderophore activity 
I achieved siderophore detection using chrome azurol S (CAS) indicator plates as 

previously described, but with a few modifications (458,459). Briefly, I spotted 5 µL 

aliquots of overnight strain culture onto CAS plates and incubated at 37°C for 48 h. I 

assessed siderophore production by visualisation of an orange/burgundy-coloured 

halo formation around the colony growth, due to the removal of Fe3+ from the chrome 

azurol S/iron(III)/hexadecyltrimethylammonium bromide complex by the chelating 

action of the siderophores secreted by the iron-starved bacterial colony. I classified 

production as absent, low (halo diameter £ 1 cm) or high (halo diameter ³ 1 cm). 

  

4.2.4.5 Modified Siegmund-Wagner assay for rhamnolipid activity 
I detected extracellular rhamnolipid production using methylene blue agar plates 

containing the surfactant cetyltrimethyl ammonium bromide (CTAB), prepared by 

modifying a previously described protocol (460–462). I supplemented proteose 

peptone-glucose-ammonium salts (PPGAS) medium with 0.02% CTAB and 0.0005% 

methylene blue and solidified with 1.5% Bacto agar. In the presence of CTAB, the 

cationic dye methylene blue formed an insoluble complex with the anionic rhamnolipid 
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molecules causing the formation of a dark blue precipitate around the colony growth. 

I spotted aliquots of 5 µL from the overnight strain culture onto the rhamnolipid plates 

and incubated at 37°C for 48 h.  Plates were then kept at room temperature for at least 

24 h until visualisation of the blue halos, indicating biosurfactant production. I classified 

rhamnolipid production as absent, low (halo diameter  £ 1 cm) or high (halo diameter 

³ 1 cm). 

 

4.2.4.6 Motility assays 
I assessed swimming (flagellar-based) and twitching (pili-based) motilities as 

described previously but with modifications (463). I poured, cooled and inoculated 

swim plates on the same day. I inoculated plates with 5 µL of overnight strain culture 

using a plastic disposable pipette tip that gently pierced the surface of the agar. I 

incubated plates for 8-12 h at 37°C. I assessed swim motility qualitatively by examining 

for the circular haze of growth/turbid zone formed by bacterial cell migration away from 

the point of inoculation. I scored turbid zones as absent, small (halo diameter £ 1 cm) 

or large (halo diameter ³ 1 cm).  

 
I poured twitch plates to a depth of 3-5 mm, cooled and inoculated them on the same 

day. I stab-inoculated plates with cells from overnight strain culture, using sterile 10 

µL pipette tips, through the thin LB agar to the bottom of the assay plate. After 

incubation at 37°C for 48-72 h I visualised a hazy zone of growth at the interface 

between the agar and the polystyrene surface. I examined the ability of the bacteria to 

strongly adhere and form a biofilm on the polystyrene surface, consistent with 

interstitial colony expansion, by staining plates with 0.1% (w/v) crystal violet after 

removal of the agar. I scored twitch motility zones qualitatively as being either absent 

or present.  

 

4.2.4.7 Microplate biofilm formation assay   
I assayed biofilm formation using a method described previously, with some 

modifications (464). In summary, I diluted stationary-phase cultures 1:100 in fresh M63 

minimal medium supplemented with 20% (w/v) glucose and 20% (w/v) casamino acids 

and seeded them into a 96 well polystyrene microplate, with each well containing a 

single isolate. I incubated microplates in static culture for 24 h at 37°C. Culture 
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supernatant and nonadherent cells were then removed and wells washed twice in 

sterile deionised water to remove residual planktonic bacteria. I stained the remaining 

adherent cells with 0.1% (w/v) crystal violet for 10 min at room temperature. I washed 

the wells a further two times and air-dried overnight. I then added one hundred and 

twenty-five microlitres of 30% (w/v) acetic acid to each well and incubated for 10–15 

min to solubilise the biofilm. I quantified crystal violet-stained biomass by measuring 

the absorbance at 595 nm using an EZ Read 400 microplate reader. I performed all 

experiments at least four times on independent biological replicates.  
 
4.2.4.8 Auxotroph pool assay  
I achieved auxotroph detection using an auxotroph screening pool assay adapted from 

a method previously described (465). In summary, small volume inocula of overnight 

culture were replica transferred onto 11 pool plates using a 48-pin microplate 

replicator, with flame sterilisation between each transfer. The enriched minimal agar 

assay plates constituted of M9 minimal salts agar supplemented with 20% (w/v) 

glucose and a pooled combination of growth factors at physiologically relevant 

concentrations.  I observed for growth after incubation at 37°C for 48 - 72h.  

 

I identified auxotrophic variants by growth only on 2 of the 11 pool plates, with both 

plates sharing a common growth factor requirement (Table 4.4). In addition, I identified 

specific auxotrophs as follows: 1) purine mutants – growth on pools 1, 2 and 6 

(requiring adenosine or guanosine) or growth only on pool 6 (requiring adenosine and 

thiamine), 2) pyrimidine mutants – growth only on pool 9, 3) aromatic amino acid early 

biosynthetic pathway mutants – growth only on pool 8, 4) isoleucine and valine 

mutants – growth only on pool 7 and 5) pleiotropic mutants – some mutations may 

cause pleiotropic effects resulting in failure to grow on any pool plate. 

 

Due to the high volume of isolates screened I took a pragmatic approach to omit further 

testing of 1) isolates that grew on only one pool plate of plates 1-11 and 2) isolates 

that grew on more than one, but not all of the pool plates. These isolates were classed 

as 1) ‘single pool growth’ (n = 112, 3% of all isolates), and 2) ‘Multi-pool growth’ (n = 

833, 19% of all isolates) respectively. 
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Table 4.4. Components of enriched minimal Pool Plates. 

Pool 
Plate 

1 2 3 4 5 

6 Adenosine Guanosine Cysteine Methionine Thiamine 

7 Histidine Leucine Isoleucine Lysine Valine 

8 Phenylalanine Tyrosine Tryptophan Threonine Proline 

9 Glutamine Asparagine Uracil Aspartic Acid Arginine 

10 Thymine Serine 
Glutamic 

Acid 
DAPA Glycine 

11 Pyridoxine Nicotinic Acid Biotin Pantothenate Alanine 

 

 

 

 
 
 
 
4.2.5 Computational quantitation of phenotypes 
To enrich the scoring of semi-quantitative phenotypic assays further, I performed 

manual quantification was performed on captured plate images for caseinase, 

gelatinase, swim, twitch and siderophore activity using the software package ImageJ 

(LOCI, University of Wisconsin, USA).  I captured all images under similar lighting 

conditions. 

 

4.2.6 Multi-locus sequence typing of clinical isolates 

Multi-locus sequence type (MLST) profiles for all the clinical isolates were inferred 

from whole genome sequence data assembled for each of the strains as part of a 

separate genomics study undertaken by Dr Sam Kidman (PhD, Parkhill Lab).  

 

In brief, for each isolate, seven conserved housekeeping genes (acsA, aroE, guaA, 

mutL, nuoD, ppsA trpE) were screened for an allele type and sequence type 

assignments completed. Each isolate has an allelic profile, determined by genetic 

polymorphisms in sequences at the loci of the seven genes. Isolates with the same 

allelic profile (7 of 7 alleles) comprise a specific sequence type (ST) (113). 

The components of pools 1 to 5 are listed vertically; the components of pools 6 to 10 are listed 

horizontally. Interpretation of growth on a particular pool plate: If a strain grows on two pool 

plates, the auxotrophic requirement is for the component common to both pools. If a strain 

grows on one pool plate of plates 1 – 10, the strain must require more than one component 

from that pool. If a strain grows only on pool 11, each component of pool 11, must be tested 

individually for growth to identify the auxotrophy. 
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4.2.7 Computational and statistical analysis 
I performed statistical analyses using Microsoft Excel for Mac version 16.27 (Microsoft, 

Redmond, WA, USA) and Prism 6.0 for Mac OS X (Graphpad Software Inc, San 

Diego, CA, USA). I treated phenotypic traits as continuous variables for all traits except 

for auxotrophy, mucoidy, SCV morphotype and rhamnolipids. 

 

Descriptive statistics of colonial morphotypes are expressed as mean (standard 

deviation [SD]) or median (interquartile range (IQR), minimum and maximum) for 

numerical variables and as number (percentage) for categorical variables. No attempt 

was made to substitute missing data. 

 

I examined variations in the frequency of strains detected and phenotypic traits by Chi-

squared (c2) tests or by Fisher’s exact test where the predicted number of subjects in 

each group was less than five. 

 

I determined correlation relationships between functional phenotypes by calculating 

Spearman’s Rho for continuous variables and visualised using the tidyverse, Hmisc, 

corrplot, reshape2, ggplot2, survival, lattice and Formula packages in RStudio Version 

1.1.456 (RStudio Inc, Boston, MA, USA). 

 

I performed principal components analysis (PCA) on quantified phenotype traits using 

the FactoMineR package in Rstudio Version 1.1456 (RStudio Inc, Boston, MA, USA). 

A total of nine phenotypes were included: protease activity (caseinase and gelatinase), 

motility, (swimming and twitching), siderophore production, QS (OdDHL, BHL and 

PQS) and biofilm formation. Isolates with missing data (368/4408 isolates) were 

excluded from analysis.  

 

All statistical tests were two-tailed and a p value of £ 0.05 was considered statistically 

significant. 
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4.3 RESULTS 
 
To characterise the temporal variation in phenotypic composition of clonal isolate 

populations of P. aeruginosa, in relation to clinical state, I performed both qualitative 

and quantitative phenotypic screening studies on 4408 clinical isolates, recovered 

from 47 spontaneously expectorated sputum samples provided by 9 adults with CF. 

These individuals, who were chronically infected with P. aeruginosa, were participants 

in TeleCF, a 6-month home monitoring study previously described in Chapter 3. The 

demographic and clinical characteristics of these 9 patients (K1, K3, K4, K6, K7, K9, 

K11, K14 and K15) are previously detailed in Table 3.2. 

 

In total, 1330 isolates were recovered from 14 non-exacerbation samples, 1748 

isolates from 19 exacerbation samples and a further 1330 isolates from 14 recovery 

samples. At the time of sputum sample selection, results from the ML analysis 

(described in Chapter 5) were not available to enable objective determination of the 

onset of an APE (e.g., independent of a clinical decision to treat with antibiotics for a 

deterioration in respiratory status). Therefore, I pragmatically selected sputum 

samples (as described in Clinical strains, Section 4.2.2.1) in relation to antibiotic 

treatment courses to enable comparison of isolate phenotypes between periods of 

non-exacerbation, acute exacerbation and recovery following antibiotic treatment. 

Previous authors have adopted a similar methodology (183,271,325,326). Initially, the 

sampling timepoints chosen in this study appeared to be independently supported by 

daily home monitoring data. This data revealed, in general, a trend toward lower cough 

scores (reflective of increased cough) coincident with exacerbation samples and a 

comparative improvement in cough scores following antibiotic treatment (Figure 4.3). 

However, on further analysis, I did not identify a statistically significant difference in 

cough scores between the sampling timepoints (Kruskal-Wallis test, p = 0.0743).  

 

MLST allelic profiles and ST assignments of the clinical isolates revealed that each 

patient was infected with a single P. aeruginosa strain type, although some patients 

shared the same strain type (Table 4.5).  

 

Two epidemic strains were identified in this cohort. Patients K1 and K14 were both 

infected with ST217, otherwise known as the MES (108).  
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Figure 4.3. Sputum samples and corresponding cough scores (CS) on the day of sample selection. A 10-point scale was used to assess cough severity, rated 

from worst ever (1/10) to best ever (10/10). Sputum samples were selected in sets of three (blue shaded boxes) in relation to one antibiotic treatment episode (in 

green), where possible. Exacerbation samples are highlighted in red. Non-exacerbation (pre-treatment) and recovery (post-treatment) samples are represented by 

the black bars. Although in general, lower cough scores were associated with exacerbation samples, reflective of worse cough, the difference in cough score 

between the sampling timepoints was not statistically significant (Kruskal-Wallis test, p = 0.0743).  

106 
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Table 4.5. MSLT analysis of P. aeruginosa clinical isolates 

Patient 
Allele Type Sequence 

Type acsA aroE guaA mutL nuoD ppsA trpE 

K1, K14 28 5 11 18 4 13 3 ST217† 

K3, K6 23 143 190 11 3 15 7 ST3307* 

K4 36 5 12 3 4 4 52 ST3308* 

K7, K9, 

K11, K15 
6 5 11 3 4 23 1 ST146‡ 

 

 

 

 

Patients K7, K9, K11 and K15 were all infected with ST146, more commonly known 

as the LES (307).  

 

Patients K3 and K6 both share a genetically identical novel strain. However, this strain 

has not been demonstrated to be readily and frequently transmitted from one 

chronically infected individual to another nor reached a minimum threshold prevalence 

to be considered a potential epidemic strain. 

 

MLST also confirmed contamination with the laboratory strain PAO1 of one 

exacerbation sample (linked to APE1) from patient K1.  The results from these isolates 

(n = 55) were subsequently excluded from this study and phenotypic characterisation 

of the remaining 4353 clinical isolates will now be described. 

 

4.3.1 Morphotypic diversity 
I identified thirty-one unique colony morphotypes in this study following growth of 

isolates on Pseudomonas selective agar base with cetrimide and sodium nalidixate 

supplement (PCN agar; Oxoid) (Figure 4.4). I observed wide variation in morphotypic 

diversity between clonal P. aeruginosa populations from different patients (range 2 -

15 morphotypes per patient) (Figure 4.5). Similarly, variation was also noted in 

morphotypic diversity between coeval isolates, with a median number of colony  

 

(*) denotes a novel strain type identified in this study. (†) and (‡) denote MES and LES 

respectively. Data provided by Dr Sam Kidman (PhD, Parkhill Lab). 
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morphotypes identified within each sputum sample of three (range 1 – 9 morphotypes 

per sample). 

 

Next, to determine if morphotype abundance differed between patients harbouring 

unique strains and those infected with an epidemic clone I compared the median 

number of colony morphotypes between the two groups. I did not identify a significant 

difference between the two groups (Mann-Whitney test, p = 0.3095). However, a 

comparison of the median number of morphotypes per sputum sample between  

Figure 4.4. Relative abundance of colony morphotypes, and the variation observed 

between different clinical states (e.g., during periods of non-exacerbation, exacerbation and 

recovery following antibiotic treatment for an APE) and between different patients. Key: colour-

coded unique colony morphotypes (extended definitions of morphotype assignments are 

found in Table 4.6). 
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patients infected with a unique strain with those infected with the MES or the LES 

identified a significant difference in morphotype frequency per sample between the 

cohorts. There was a lower frequency of colony morphotypes per sample observed in 

patients harbouring the LES strain compared with those infected with a unique or the 

MES (Kruskal-Wallis test, p = 0.0151), as visualised in Figure 4.5. 

 

In addition, I did not identify a significant difference in the morphotype abundance 

during periods of exacerbation compared to periods of non-exacerbation or recovery 

following antibiotic treatment for an APE (Kruskal-Wallis test, p = 0.0607).  Importantly, 

no specific colony morphotype were found to be associated with periods of APE. 

 

As was to be expected, I observed the manifestation of adaptive morphotypes typically 

associated with chronic pseudomonal CF airway infection (e.g., SCVs, mucoid 

phenotype), although the abundance varied widely between patients. ‘Dwarf colony’, 

or small colony variants, typically display colonial diameters ranging between 1-3 mm 

(after 48 h incubation on Pseudomonas selective agar) and have been described to 

confer a selective advantage in vivo (335). Their presence is associated with poorer 

clinical outcomes, particularly increased antimicrobial resistance (323,466). Just over 

one third (35%) of all isolates exhibited the SCV phenotype, however, the prevalence 

was significantly skewed towards patients infected with the LES (Figure 4.6) (c2 test, 

p <0.0001). I did not find a significant difference in the prevalence of SCV morphotype 

between non-exacerbation, exacerbation and recovery isolates (c2 test, p value 

0.6794).  

Figure 4.5. Within-patient and within-sample variation in morphotypic diversity of P. 

aeruginosa clonal strains collected from nine patients with CF. Sputum samples were collected 

at times of non-exacerbation (NE), exacerbation (E), and recovery (R) following antibiotic 

treatment for an APE. Numbers on the X-axis denote samples associated with the same 

antibiotic treatment event (e.g., NE1, E1 and R1 = the non-exacerbation, exacerbation and 

recovery samples associated with the first antibiotic treatment episode for an APE).  LES: 

Liverpool epidemic strain, MES: Manchester epidemic strain. Key: colour-coded unique colony 

morphotypes (extended definitions of morphotype assignment are found in Table 4.6). 
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Table 4.6.  Extended definitions of colony morphotype assignments for P. aeruginosa clinical isolates. 
 
morphotype 
assignment pigmentation mucoidy lucency surface 

texture size margin 
regularity autolysis surface sheen 

gMOHSIe green mucoid opaque smooth non-SCV irregular halo no sheen 

gOHIe green non-mucoid opaque rough non-SCV irregular halo no sheen 

gORIev green non-mucoid opaque rough SCV irregular no halo no sheen 

gOSHs green non-mucoid opaque smooth non-SCV smooth halo no sheen 

gOSsv green non-mucoid opaque smooth SCV smooth no halo no sheen 

OrOSHIev orange non-mucoid opaque smooth SCV irregular halo no sheen 

OrOSHIe orange non-mucoid opaque smooth non-SCV irregular halo no sheen 

OrOSIIe orange non-mucoid opaque smooth non-SCV irregular no halo iridescent 

TOSs tan non-mucoid opaque smooth non-SCV smooth no halo no sheen 

wMOSs white mucoid opaque smooth non-SCV smooth no halo no sheen 

wMOSHs white mucoid opaque smooth non-SCV smooth halo no sheen 

wOHIe white non-mucoid opaque smooth non-SCV irregular halo no sheen 

wORIe white non-mucoid opaque rough non-SCV irregular no halo no sheen 

wMOSHsv white mucoid opaque smooth SCV smooth halo no sheen 

wMOSsv white mucoid opaque smooth SCV smooth no halo no sheen 

wMOSIev white mucoid opaque smooth SCV irregular no halo no sheen 

wOHSs white non-mucoid opaque smooth non-SCV smooth halo no sheen 

wOSs white non-mucoid opaque smooth non-SCV smooth no halo no sheen 

111 
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morphotype 
assignment pigmentation mucoidy lucency surface 

texture size margin 
regularity autolysis surface sheen 

wOSIIe white non-mucoid opaque smooth non-SCV irregular no halo iridescent 

wOSIe white non-mucoid opaque smooth non-SCV irregular no halo no sheen 

wOSIIev white NM opaque smooth SCV irregular no halo iridescent 

wOSIsv white NM opaque smooth SCV smooth no halo iridescent 

wOSvs white NM opaque smooth SCV smooth no halo no sheen 

wMTSs white mucoid translucent smooth non-SCV smooth no halo no sheen 

wMTSsv white mucoid translucent smooth SCV smooth no halo no sheen 

yOHIe yellow NM opaque smooth non-SCV irregular halo no sheen 

yOHIev yellow NM opaque smooth SCV irregular halo no sheen 

yMOSv yellow mucoid opaque smooth SCV smooth no halo no sheen 

yOSs yellow NM opaque smooth non-SCV smooth no halo no sheen 

yOSsv yellow NM opaque smooth SCV smooth no halo no sheen 

NA  Missing score 
 

Table 4.6 (cont).  Extended definitions of colony morphotype assignments for P. aeruginosa clinical isolates. 
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Alginate overproduction and consequent display of the mucoid morphotype is 

considered a classic hallmark of chronic P. aeruginosa CF infection and is associated  

with an increased resistance to various antimicrobial agents (reviewed in Morphology 

variants, Section 1.7.1). The presence or absence of mucoidy in the isolates was 

assessed at isolation on Pseudomonas selective agar base supplemented with 

cetrimide and sodium nalidixate. The prevalence of mucoid phenotype in chronic CF 

Figure 4.6. Relative abundance of SCV morphotype, and the variation observed between 

different clinical states (e.g., during periods of non-exacerbation, exacerbation and recovery 

following antibiotic treatment for an APE) and between different patients. No SCVs were 

identified in the strain collection from patient K4. Furthermore, the prevalence of SCV 

phenotype was found to be significantly higher among LES isolates (black bars) compared 

with their counterparts (c2 test, p <0.0001). 
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isolates has been reported in some studies as high as 30% (181). However, in this 

study, mucoidy was evident in only 16% of all isolates (Figure 4.7). In general, LES 

isolates were non-mucoid, in line with previous reports of a higher prevalence of the 

non-mucoid phenotype in this strain type (121,271,325).  No trend was observed 

among the MES isolates in this study. For example, all isolates from patient K1 were 

identified as non-mucoid, whereas, nearly all (93%) of the isolates from patient K14 

exhibited the mucoid phenotype. 

 

 
 

 

 

 

 

 

Figure 4.7. Relative abundance of mucoid phenotype, and the variation observed 

between different clinical states (e.g., during periods of non-exacerbation, exacerbation and 

recovery following antibiotic treatment for an APE) and between different patients. The 

highest proportion of mucoid isolates were recovered from patient K14 however overall, the 

prevalence of mucoidy expression among all isolates was low (16%), despite this being a 

hallmark of chronic adaptation of P. aeruginosa to the CF airway.  
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Notably, clonal isolates recovered from patient K4 were identified as morphotypically 

distinctive, with the majority (93%) expressing a green surface pigment, in contrast to 

their counterparts from the other patients. Furthermore, none of the K4 isolates were 

identified as SCVs or mucoid, features typically associated with chronic adaptation 

and persistence in the CF lung. This set of morphotypic features may be consistent 

with production of the exoproduct pyocyanin (usually green-hued on yellow-coloured 

plates) alongside colonial features more typically associated with acute (e.g., non- 

mucoid, large colonies) rather than chronic isolates, further highlighting the broad 

variation in colonial morphotypes present among these chronic isolates. 

 

A comparison of the frequency of mucoid isolates recovered either during periods of 

non- exacerbation, exacerbation or following antibiotic treatment for an APE did not 

reveal a significant difference between the three groups (c2 test, p = 0.1161). This 

suggests that the mucoid phenotype is not prevalent during periods of acute 

exacerbation nor is it induced by the application of short-term antibiotic selection 

pressure during treatment episodes for these events. 

 

4.3.2 Characterisation of QS signal production  

Based on in vitro studies, virulence factor production in P. aeruginosa is widely 

understood to be under the control of a set of complex, interconnected QS systems: 

each activated by their own specific cognate autoinducer in response to changes in 

bacterial cell density. Three such systems, the LasIR, RhlIR and PQS systems, have 

been characterised for P. aeruginosa (reviewed in Quorum sensing, Section 1.7.2), 

two of which (LasIR and RhlIR) are activated by the AHLs; OdDHL and BHL, whereas 

the third system (PQS) is mediated by the AQ signal PQS. To investigate the presence 

or absence of QS in these CF isolates I assessed the production of each QS signal 

molecule (OdDHL, BHL and PQS). 

 

In this study, the vast majority (81%) of clinical isolates screened were found to be 

OdDHL-deficient (Figure 4.8A). Based on laboratory studies in “domesticated” strains 

such as PAO1, the las signalling system directs transcriptional activation of the other 

two QS systems in a hierarchical manner (467). However, in the clinical isolates 

studied here, the absence of OdDHL production was not found to confer a loss of  
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activation of either the rhl or pqs systems.  Indeed, a third (30%) of OdDHL-deficient 

isolates were still able to produce BHL alone (Figure 4.8B), whereas a lower proportion 

were able to produce both BHL and PQS together (25%), or PQS alone (17%) (Figure 

4.8C). By comparison, just over half (53%) of all the isolates in the study were PQS-

deficient. PQS-deficient isolates that were still able to produce OdDHL alone were 

extremely rare (n = 13 out of 2290), although a minority (11%) were still able to 

produce OdDHL and BHL together. Strikingly, a significant proportion of PQS-deficient 

isolates retained production of BHL alone (46%). A little over one third (38%) of all 

isolates were BHL-deficient. Very few (n = 13 out of 1634) were able to produce 

OdDHL in the absence of PQS, although the proportion of BHL-deficient isolates 

capable of producing OdDHL and PQS together was still very low (2%). However, a 

significant minority (37%) of BHL-deficient isolates were still able to produce PQS 

alone.  

 

In this work, several clonal populations of P. aeruginosa, recovered from different 

patients, shared a very low prevalence of OdDHL-proficient isolates. Specifically, only 

4%, 9%, 3%, 3% and 5% of isolates collected from patients K1, K3, K4, K6 and K15 

respectively were identified as OdDHL-proficient. This may suggest possession of 

mutations in similar genes involved with OdDHL synthesis among isolates from these 

patients. Moreover, in contrast, greater variation was observed in the prevalence of 

either BHL and PQS production among isolates from these same patients. For 

example, preserved BHL was produced in nearly half (48%) of patient K4’s isolates, 

Figure 4.8. Prevalence of QS signal molecule production among P. aeruginosa isolates 

collected from nine patients with CF. (A) OdDHL, (B) BHL, and (C) PQS production. The 

majority (81%) of clinical isolates were deficient in OdDHL production. 
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whereas PQS production was preserved in a much greater (93%) proportion. Similarly, 

the prevalence of BHL- and PQS-proficient isolates among the isolates from patient 

K6 was 42% and 93% respectively. However, in contrast, among isolates recovered 

from patient K3, the prevalence of BHL-proficient isolates was 40%, whilst the 

proportion of isolates identified as PQS-proficient was only 37%. 

 

Of note, although patient K3 shared a similarly high proportion of QS-deficient isolates 

to patient K1 [47% and 48%, respectively, (Table S1, Appendix 2)], a substantially 

higher proportion (87% versus 23%) of the QS-deficient isolates recovered from 

patient K3 were capable of expressing at least one of the known QS-regulated 

phenotypes, suggesting that QS-regulation in this clonal population may not be 

necessary for the production of phenotypes traditionally considered to be under QS 

control.  

 

In the sub-group of K3 isolates which were found to have preserved QS signal 

production in at least one of the three QS sub-systems investigated, the prevalence of 

BHL and PQS secretion was similarly high (75% and 70% of isolates respectively), 

whereas OdDHL secretion was low (18%), again suggesting the possibility of loss-of-

function mutations affecting lasI in this cohort. 

 

Interestingly, despite isolates recovered from patient K1 and K14 sharing similar 

genetic backgrounds (both are representative of the MES), the overall production of 

QS signal molecules was very different between these two clonal populations. In 

addition to a very low prevalence of OdDHL-proficient isolates, patient K1 also 

harboured the lowest prevalence of PQS-proficient isolates in the study (4%), 

Intriguingly, and despite the marked absence of OdDHL and PQS production, half 

(50%) of the K1 isolates were BHL-proficient, suggesting possible preservation of RhIl 

activity amongst a significant proportion of these isolates. Nonetheless, among this 

sub-group of BHL-producing isolates, QS-regulated phenotypes were maintained in 

only 50% of the cohort. By contrast, patient K14 had a much higher proportion of 

isolates which were OdDHL-, BHL- and PQS-proficient, with a prevalence of 47%, 

86% and 76% respectively.  
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In comparison to the MES clonal populations, the LES clonal populations (from 

patients K7, K9, K11 and K15) shared similar prevalence rates for OdDHL- and BHL- 

producing isolates, with the exception of a comparatively lower frequency of OdDHL-

proficient isolates from patient K15. However, greater variability was observed in the 

prevalence of PQS production (range 20% - 89%) in this cohort (Figure 4.8). 

 

Given the broad variation in QS signal molecule production observed among isolates 

in this study I compared production levels between epidemic and non-epidemic clones 

to assess for significant differences between the two cohorts. Data for the LES and 

MES isolates were combined for these analyses. A higher proportion of epidemic 

clones were found to retain production of OdDHL and BHL compared with the non-

epidemic isolates (c2 test, p <0.0001), whereas a higher proportion of non-epidemic 

isolates were found to be PQS-proficient (c2 test, p <0.0001) (Figure 4.9). Furthermore, 

the difference between the epidemic and non-epidemic strain cohorts was largely 

driven by the LES isolates, with a significant difference also found between LES and 

MES isolates in the prevalence of OdDHL-, BHL- and PQS-proficient isolates (c2 test, 

p <0.0001) (Table 4.7).  

 

Taken together, these observations provided substantial evidence for las-independent 

rhlI and pqsA-E activation among the isolates analysed in this study. Moreover, given 

the signal specificity of OdDHL for its cognate receptor LasR and the low prevalence 

of OdDHL-producing isolates found in the isolate populations from 5 of the 8 patients,  

 
 

 

  

 

Figure 4.9. Differences in QS signal molecule production between epidemic and non-

epidemic clonal isolates of P. aeruginosa. Significant differences were observed between the 

two cohorts with a higher prevalence of OdDHL- and BHL-proficient isolates found in the 

epidemic cohort (c2 test, p <0.0001). However, the proportion of PQS producing isolates was 

notably higher in the non-epidemic cohort (c2 test, p <0.0001). OdDHL: N-3-oxo-dodecanoyl-

homoserine lactone, BHL: N-butanoyl-homoserine lactone, PQS: Pseudomonas quinolone 

signal. 
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Table 4.7. Comparison of the frequency of QS signal-producing isolates among 

LES and MES isolates of CF-evolved P. aeruginosa 

Phenotype 
LES  

(n = 1402) 
MES  

(n = 990) 
p value 

OdDHL secretion 546 (40%) 164 (17%) < 0.0001 
BHL secretion 1287 (92%) 593 (60%) < 0.0001 
PQS secretion 546 (39%) 245 (25%) < 0.0001 

 

 

 

 

I had expected to observe accompanying deficiencies in the production of typically 

LasR-regulated phenotypes (e.g., secreted proteases, PQS production and rhlR-

associated phenotypes) across a significant proportion of this collection of isolates. 

However, this was not the case, as will be described in further detail below. 

 

4.3.3  Frequency of virulence-associated phenotypes 

Virulence-associated phenotypes were measured for all the isolates, including 

phenotypes whose presence or absence is understood to be specific to regulation by 

a particular QS sub-system (e.g the LasA protease (whose activity is reported through 

the gelatinase assay) is controlled by the las system, whereas rhamnolipid production 

is controlled by the rhl system) (374,468). Substantial phenotypic diversity has 

previously been reported in both epidemic and non-epidemic clonal isolates of P. 

aeruginosa from individuals with CF (271,325–327). In line with prior work, striking 

diversity was observed in the frequency of these virulence-associated phenotypes, 

both among clonal isolates collected from the same patient and between clonal 

populations collected from different patients. The prevalence of the various 

phenotypes is summarised in Figures 4.10 and 4.12. In general, greater within-patient 

phenotypic diversity was observed among clonal isolates collected from patients not 

infected with the LES (patients K1, K3, K4, K6 and K14). Furthermore, and in contrast 

to studies carried out with “domesticated” laboratory strains (342), QS-regulated 

phenotypes were not consistently abolished in isolates deficient in LasI-generated 

signal. 

Differences between categorical data were examined with c2 tests. OdDHL: N-3-oxo-

dodecanoyl-homoserine lactone, BHL: N-butanoyl-homoserine lactone, PQS: Pseudomonas 

quinolone signal. 
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4.3.3.1 Protease secretion 

Among MES isolates recovered from patient K1, a very low proportion of caseinase- 

(1%) and gelatinase-producing (5%) strains were identified, suggesting a substantial 

loss of secreted protease activity among this set of isolates. In contrast, 79% and 61% 

of the MES isolates from patient K14 were capable of caseinase and gelatinase 

secretion, respectively. The notable difference in prevalence of protease secretion 

observed between these two clonally-related MES populations is in keeping with their 

Figure 4.10. Variation in the prevalence of virulence-associated phenotypes among clonal 

isolates of P. aeruginosa, collected from nine patients with CF. For phenotypes A-E, the 

isolates are classified as either failing to grow (red), having a negative phenotype (green), 

displaying a low-moderate positive phenotype (blue) or a moderate-high expression of the 

phenotype. For phenotype F, isolates were classified as either having a negative phenotype 

(red), or displaying low-moderate (green) or moderate-high (blue) expression of the 

phenotype. 
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QS signal production profiles (previously described in Characterisation of QS signal 

production, Section 4.3.2).  

 

Among isolates recovered from patients infected with a non-epidemic strain of P. 

aeruginosa (patients K3, K4, K6) wide variations in secreted protease production was 

noted between patients’ isolates. Fifty-two percent and 24% of all isolates recovered 

from patient K3 exhibited proteolytic activity on gelatin and on casein respectively. 

Interestingly, of this sub-group of protease-proficient isolates, 48% of those active on 

gelatin and 38% of those active on casein were also identified as completely lacking 

in QS signal production, providing potential evidence for QS-independent regulation 

of these phenotypes. For isolates recovered from patient K4, the overall prevalence of 

protease-proficient isolates was higher with 77% and 81% of isolates found to express 

caseinase and gelatinase respectively. By contrast, the frequency of protease-

proficient isolates was comparatively lower among isolates recovered from patient K6, 

with only 34% and 46% of isolates capable of proteolytic activity on casein and gelatin 

respectively.  

 

Little variation in protease-secreting potential was observed among the LES isolates 

with nearly all of the isolates recovered from patients K7, K9, K11 and K15 confirmed 

as proficient in both caseinase and gelatinase production (Figure 4.10A and 4.10B). 

 

4.3.3.2 Siderophore secretion 

The lowest (29%) frequency of siderophore-expressing isolates in this study was 

identified among the K1 isolates, and accompanied the low prevalence of protease- 

and QS-proficient isolates previously described for this cohort. Again, a comparatively 

higher (65%) proportion of siderophore-expressing isolates was identified among 

isolates recovered from patient K14 (also harbouring the MES) and the prevalence 

was similar to that observed among patients infected with a unique strain, with 77%, 

70%, and 79% of isolates identified as siderophore producers from patients K3, K4 

and K6 respectively. 

 

In contrast to the non-LES isolates, siderophore production was maintained in nearly 

all of the LES isolates (range 99 – 100%), recovered from patients K7, K9, K11 and 

K15 (Figure 4.10C). 
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Curiously, a comparison of the halo colour on the siderophore screening plates for the 

K4 isolates with those generated by the other isolates revealed a distinctive halo 

phenotype (Figure 4.11A and 4.11B). Typically, halos generated by isolates in this 

study displayed an orange halo surrounding a central colony (Figure 4.11 C-M), 

consistent with the positive control, PAO1.  

 

 
 

 

 

 

 

 

Figure 4.11.  Screening for siderophore production of CF-evolved clonal isolates of P. 

aeruginosa. Production can be visualised by formation of an orange halo around a 

surrounding colony on CAS indicator plates. Isolates from one (patient K4) of the nine patients 

displayed a distinctive halo pattern (A, B) when compared with siderophore-producing isolates 

from the other patients (C-M). in most cases, siderophore-producing isolates from the same 

patient displayed the same halo phenotype, where this was not the case (e.g., patients K3, 

K4 and K6), representative examples of the prevalent halo phenotypes for that patient are 

included.  
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In contrast, K4 isolates produced yellow halos, either with a surrounding green ring or 

orange ring, with the majority of K4 isolates displaying halos represented in Figure 

4.11A. This might suggest differential production in siderophore type between these 

isolates and their counterparts (from other patients) in this study. 

 

4.3.3.3 Rhamnolipid secretion 

Rhamnolipids are understood to play a significant role in the establishment and 

persistence of chronic P. aeruginosa infection in the CF airway, including the acute 

infiltration of airway epithelia and inhibition of the host’s polymorphonuclear leukocytes 

(469). Yet little has been reported on the presence or absence of this phenotype 

among CF-evolved isolates of P. aeruginosa, including in relation to acute episodes 

of clinical deterioration. 

 

In this study, the prevalence of rhamnolipid-producing isolates varied widely between 

patients (Figure 4.10D). However overall, the majority of patients harboured clonal 

populations that were lacking in rhamnolipid production. Interestingly, two thirds of all 

isolates which failed to produce rhamnolipids were proficient in production of the RhlIR 

signal molecule, BHL. This is somewhat surprising as rhamnolipid production is 

directly regulated by the rhl system (discussed in Rhamnolipids, Section 1.7.3.4). 

Among patients infected with the MES, only 1% of K1 isolates and 10% of K14 isolates 

were identified as rhamnolipid-producers.  

 

Among the patients harbouring non-epidemic isolates, a relatively low prevalence of 

rhamnolipid-producing isolates was identified in two of the three patients, with only 

21% of patient K3’s and 25% of patient K6’s isolates found to be rhamnolipid 

producers. By contrast, a greater proportion (75%) of isolates from patient K4 were 

identified as rhamnolipid-producing. Unexpectedly, half of these rhamnolipid-

producing isolates were found to be lacking in BHL production. 

 

Similarly, among the patients harbouring the LES, a high proportion of isolates from 

two of the four patients were rhamnolipid-producing (79% for patient K7 and 72% for 

patient K9), whereas a low prevalence was observed among isolates from patients 

K11 and K15 (30% and 12% respectively). 
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4.3.3.4 Swim and twitch motility 

Isolates from chronic P. aeruginosa CF infection often display a non-flagellated, non-

motile phenotype (324,470). Consistent with this, most patients in this study harboured 

isolates that lacked both swim (flagellar-based) and twitch (pilus-based) motility 

(Figure 4.10E and 4.10F), with a few exceptions.  

 

Among the isolates recovered from patient K3, 36% exhibited swim motility. 

Unexpectedly, just over half (56%) of these isolates were also found to be lacking in 

production of all 3 QS signal molecules. A high proportion of motile isolates were also 

identified among the strains recovered from patient K14, with 68% and 21% of isolates 

displaying swim and twitch motility respectively. Nearly all (95%) of the swim-proficient 

isolates from patient K14 were observed to exhibit the mucoid phenotype. This was 

somewhat surprising as alginate overproduction is thought to be co-ordinately 

regulated with loss of flagellum expression (via the actions of AlgT) to yield mucoid 

non-motile variants. In addition, previous studies on LESB58 (a laboratory reference 

strain known to cause chronic infection and the earliest available LES isolate) as well 

as on clinical isolates of the LES (including those taken from the non-CF parent of a 

CF patient, who presented with pneumonia) have described this strain to be deficient 

in pilus-based motility (174,452,471). However, 50% of isolates recovered from patient 

K11 were found to exhibit twitch motility. Although swim and swarm motility have 

previously been reported for the LES (452), this the first report of preserved twitch 

motility in the LES.  

 

4.3.3.5. Biofilm formation 

Unexpectedly, given the chronic nature of P. aeruginosa infection in this study, the 

majority of isolates recovered from patients infected with either the MES or a non-

epidemic strain of P. aeruginosa were found to lack surface attachment phenotype (on 

crystal violet staining), with the production of biofilm biomass detected in only 12%, 

5%, 21% and 27% of isolates from patients K1, K3, K6 and K14 respectively. 

Moreover, none of the isolates from patient K4 were found to be biofilm-forming 

(Figure 4.12). In contrast, the prevalence of biofilm-forming isolates among the LES 

cohort was higher, with the exception of isolates from patient K11. Seventy-one  
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percent, 64% and 93% of isolates from patients K7, K9 and K15 respectively, were 

identified as biofilm-forming, whereas only 11% of patient K11’s isolates were 

identified as biofilm producers. In some of these cases, the lack of biofilm formation  

may in part be due to reduced production of rhamnolipids, which have been reported 

to perform several roles in the establishment and maintenance of P. aeruginosa 

biofilms (reviewed in Rhamnolipids, Section 1.7.3.4).  

 

4.3.4 Characterisation and frequency of auxotrophic variants 

CF sputum is rich in amino acids and is capable of supporting the growth of auxotrophs 

(433,434). Prior studies have suggested an important role for arginine metabolism, 

whereas methionine auxotrophs have been associated with APEs, and lasR mutants 

with growth advantages on phenylalanine (184,453,472). In this study, prototrophs 

were identified among isolates recovered from only six of the nine patients with an 

overall prevalence of 23%. No patient was identified to be colonised exclusively with 

prototrophs. Furthermore, the majority (65%) of the prototrophs were identified among 

isolates recovered from patients not infected with the LES (patients K1, K3, K4, K6 

and K14) (Figure 4.13). 

 

Figure 4.12. The prevalence of biofilm-forming isolates among clonal isolates of P. 

aeruginosa collected from nine patients with CF.   
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Pleiotropic mutants, isolates which fail to grow on enriched minimal media, were also 

found to be more prevalent among patients not infected with the LES. Only 4% of 

isolates identified as pleiotropic mutants were found among the LES cohort. The 

majority (70%) were recovered from patient K1 whilst a lower proportion of isolates 

were identified as pleiotropic mutants from patient K3 and K14 (36% and 17% 

respectively).  

 

A third (32%) of the isolates in this study were confirmed as auxotrophic variants, 

defective in the synthesis of a specific growth factor limiting growth on minimal 

medium. A further 19% of isolates were identified as unable to synthesise a 

combination of several factors, either amino acids or certain cofactors, as determined  

by growth on multiple instead of only two of eleven pools (e.g., multi-pool growth) of 

enriched minimal media. A small proportion (3%) of isolates grew on only one (e.g., 

single pool growth) of the eleven enriched minimal media pools, however, I was unable 

to identify which of the growth factors was needed for growth on enriched minimal 

media. Nonetheless, among the third of isolates confirmed as auxotrophs for a specific 

growth factor, the majority (94%) were identified as methionine auxotrophs. The next 

Figure 4.13. Prevalence of auxotrophic mutants among clonal isolates of P. aeruginosa 

collected from nine patients with CF.  



     

      127 

most common single growth factor requirement identified was for aromatic amino 

acids (2%), followed by purine (1%) and pyrimidine (1%).  

 

A significant difference was identified between epidemic and non-epidemic isolates in 

the prevalence of auxotrophic variants, with a higher prevalence of auxotrophs found 

among patients infected with an epidemic strain (c2 test, p <0.0001).  This difference 

was largely due to a significantly higher prevalence of auxotrophs in the LES cohort 

(most of which were methionine auxotrophs) compared with the MES (c2 test, p 

<0.0001).  Among patients not infected with the LES, patient K4 harboured the 

greatest proportion (86%) of auxotrophic variants, of which the majority (97%) were 

again identified as methionine auxotrophs.  

 

4.3.5 A comparison of phenotype abundance between epidemic and non-

epidemic clonal populations of P. aeruginosa 

Given the diversity in composition of virulence-associated phenotypes observed in this 

study I wanted to determine if there were particular phenotypes that might differentiate 

epidemic strains from non-epidemic strains.  

 

When I compared the epidemic strains against the non-epidemic strains, I found 

significant differences between the two groups in terms of the prevalence of 

phenotype-proficient isolates within each group (Table 4.8). A higher frequency of 

isolates proficient in protease production (c2 test, p = 0.0024), twitch motility (c2 test, p 

<0.0001) and biofilm formation (c2 test, p <0.0001), but deficient in flagellar-based 

motility (c2 test, p <0.0001) distinguished the cohort of epidemic isolates from the non-

epidemic isolates. No difference was found between the two cohorts in the prevalence 

of isolates proficient in rhamnolipid or siderophore production (c2 test, p = 0.8945 and 

0.0910 respectively). 

 

Given the clinical significance of epidemic clones, which share notoriety for 

nosocomial transmission and high antibiotic resistance, I wanted to determine whether 

any phenotypes distinguished the LES from the MES isolates in this study. I found that 

the prevalence of several phenotypic traits was significantly different between the two 

cohorts, with the exception of twitch motility (c2 test, p = 0.9445) (Table 4.9). Overall,  
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Table 4.8.  Comparison of the frequency of phenotype-proficient isolates among 

epidemic and non-epidemic isolates of CF-evolved P. aeruginosa. 

Phenotype 
Epidemic isolates 

(n = 2392) 

Non-epidemic 

isolates (n = 1961) 
p value 

Protease secretion 1693 (71%) 1303 (66%) 0.0024 

Siderophore production 1778(74%) 1462 (76%) 0.8945 

Rhamnolipid production 882 (37%) 773 (39%) 0.0910 

Twitch motility 180 (3%) 31(0.2%) < 0.0001 

Swim motility 237(10%) 447 (23%) < 0.0001 

Biofilm formation 1052 (45%) 120 (6%) < 0.0001 

 

 

 

Table 4.9.  Comparison of the frequency of phenotype-proficient isolates among 

LES and MES isolates of CF-evolved P. aeruginosa. 

Phenotype 
LES  

(n = 1402) 
MES  

(n = 990) 
p value 

Protease secretion 1390 (99%) 298 (30%) < 0.0001 

Siderophore production 1389 (99%) 389 (39%) < 0.0001 

Rhamnolipid production 844 (60%) 38 (4%) < 0.0001 

Twitch motility 99 (7%) 81 (9%) 0.9445 

Swim motility 5 (0.4%) 232 (23%) < 0.0001 

Biofilm formation 881 (63%) 171 (17%) < 0.0001 

 

 

 

a higher prevalence of isolates proficient in protease secretion, rhamnolipid and 

siderophore production, swim motility and biofilm formation were found among the 

LES cohort (c2 test, p <0.0001) compared with the MES cohort. 

 

I next examined whether the differences in phenotype prevalence observed between 

the LES and MES cohorts also distinguished the LES from the non-epidemic cohort of 

isolates. Again, the prevalence of isolates proficient in protease secretion, siderophore 

Differences between categorical data were examined with c2 tests.  

Differences between categorical data were examined with c2 tests.  



     

      129 

production, rhamnolipid production, biofilm formation and swim and twitch motility was 

higher in the LES cohort compared with the non-epidemic cohort (c2 test, p <0.0001).  

A similar comparison between the MES and non-epidemic isolates, revealed a lower 

frequency of isolates proficient in protease secretion, siderophore and rhamnolipid 

production among the MES cohort (Table 4.10). However, the very low prevalence of 

all phenotypes among the K1 isolates likely accounts for the significant differences 

observed. Nonetheless, a higher frequency of isolates proficient in biofilm formation 

and swimming motility was observed among the MES isolates compared with the non- 

epidemic cohort. 

 

Table 4.10.  Comparison of the frequency of phenotype-proficient isolates among 

MES and non-epidemic isolates of CF-evolved P. aeruginosa. 

Phenotype 
MES  

(n = 990) 
Non-epidemic 

isolates (n= 1961) 
p value 

Protease secretion 298 (30%) 1303 (66%) < 0.0001 

Siderophore production 389 (39%) 1462 (76%) < 0.0001 

Rhamnolipid production 38 (4%) 773 (39%) < 0.0001 

Twitch motility 81 (9%) 31 (0.2%) < 0.0001 

Swim motility 232 (23%) 447 (23%) 0.3436 

Biofilm formation 171 (17%) 120 (6%) < 0.0001 

 

 

 

4.3.6 Correlations between functional phenotypes  

Despite the broad variation in functional phenotypes observed in this study, several 

relationships between phenotypes were identified (Figure 4.14). In line with previous 

studies, phenotypic traits that are often associated with virulence and early (rather 

than chronic) CF airway infection were correlated (327). These characteristics were 

also found to be inversely related to some, but not all, chronic adaptive phenotypes 

(e.g., biofilm formation, SCV phenotype, mucoidy). Furthermore, variation (e.g., 

stronger or weaker correlations) in the display of these phenotype-phenotype 

relationships was observed between populations of clonal isolates from different 

patients (Figure S1, Appendix 2). 

Differences between categorical data were examined with c2 tests.  
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Figure 4.14. Correlation matrix of phenotype-phenotype associations for all isolates 

as determined by Spearman rank correlation coefficient. Blue indicates strong 

positive correlation between any given phenotype pair (Spearman rank coefficient 

closer to 1) while red indicates strong negative correlation between any given 

phenotype pair (Spearman rank coefficient closer to -1). White indicates no correlation 

between phenotype pairs (0). Correlations were significant if r >0.35 and p <0.05 (*). 

ns = not significant, **** = p <0.00001. SCV: small colony variant, OdDHL: N-3-oxo-

dodecanoyl-homoserine lactone, BHL: N-butanoyl-homoserine lactone, PQS: 

Pseudomonas quinolone signal. 
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OdDHL production was modestly correlated with BHL production (Spearman r = 0.49, 

p <0.00001), whereas PQS production was not associated with production of either of 

the two acyl-homoserine lactones (OdDHL: Spearman r = 0.33, p <0.00001), BHL: 

Spearman r = 0.17, p <0.00001). In general, PQS production correlated poorly with 

the presence/absence of the majority of functional phenotypic traits assessed (p 

<0.00001). 

 

Significant positive correlations were observed between the secreted virulence-

associated phenotypes (e.g., rhamnolipid production, protease activity, siderophore 

production), with the strongest correlations noted between protease activity and 

siderophore production (e.g., of gelatinase: Spearman r = 0.6, p <0.00001, of 

caseinase: Spearman r = 0.69, p <0.00001). Siderophore production was also 

significantly, albeit modestly, correlated with the SCV morphotype (Spearman r = 0.45, 

p <0.00001), biofilm formation (Spearman r = 0.53, p <0.00001) and BHL production 

(Spearman r = 0.41, p <0.00001). Taken together, these associations may suggest 

that isolates adapted to express the SCV morphotype are somewhat more likely to 

maintain iron-scavenging ability via siderophore secretion. Furthermore, these 

siderophore-producing isolates are more likely to maintain phenotypes typically 

associated with virulence and persistence in the CF airway.    

 

Rhamnolipid production was moderately correlated with siderophore (Spearman r = 

0.45, p  <0.00001), gelatinase (Spearman r = 0.51, p  <0.00001) and caseinase 

(Spearman r = 0.5, p <0.00001) production. The overlap in QS regulatory pathways 

influencing both protease and rhamnolipid biosynthesis most likely accounts for this 

relationship. Interestingly, although rhamnolipids have been reported to be of 

importance in the maintenance of established biofilms, biofilm formation was not well 

correlated with rhamnolipid production in this study (Spearman r = 0.31, p <0.00001). 

Similarly, no correlation was identified between mucoid phenotype and biofilm 

formation (Spearman r = - 0.01, p <0.00001). Moreover, mucoid phenotype, which is 

characteristic of chronic pseudomonal infection, was poorly associated with all of the 

secreted virulence factors. 

 

Auxotrophic metabolism was weakly negatively correlated with some virulence-

associated traits, including siderophore production  (Spearman r = - 0.37, p <0.00001), 



     

      132 

and rhamnolipid production (Spearman r = - 0.35, p <0.00001), and was not well 

correlated  with protease secretion (gelatinase: Spearman r = - 0.31, p <0.00001, 

caseinase: Spearman r = - 0.32, p <0.00001). The association between biofilm 

formation (Spearman r = - 0.25, p <0.00001) and auxotrophy was negligible. However, 

of note, biofilm formation was positively correlated with several secreted exoproducts. 

For example, a weak association was observed with gelatinase (Spearman r = 0.37, 

p = 0.0134) and a moderate association with caseinase production (Spearman r = 

0.52, p = 0.0025). Taken together, these relationships may suggest  that acquiring 

defects in cell metabolism may play more of a role in virulence downregulation in P. 

aeruginosa chronic infection than the transition from a planktonic to a sessile lifestyle.  

 

No relationship was observed in this study between swim motility and any of the 

phenotypes assessed. Neither were relationships identified between twitch motility 

and several phenotypes (e.g., biofilm formation, SCV morphotype and auxotrophic 

metabolism) commonly associated with chronicity. In a similar vein, biofilm formation 

also appeared to behave independently of the presence of the mucoid phenotype.  

 

4.3.7 Influence of strain epidemicity on phenotype-phenotype associations  

Given the similarities in phenotypic profiles observed between certain isolate cohorts, 

primarily among the LES isolates but to a lesser extent also among the non-epidemic 

isolates in this study, I examined whether phenotype-phenotype associations differed 

between the LES, MES and non-epidemic clonal populations.  

 

In contrast to the associations identified in the global phenotype-phenotype analysis, 

phenotypes in the LES cohort were typically poorly correlated (Figure 4.15), 

suggesting that most phenotypes behaved independently of each other. Notably, 

siderophore production was no longer well correlated with both virulence-associated 

and adaptive phenotypes. Surprisingly, a moderate negative relationship was 

observed between biofilm production and the SCV phenotype (Spearman r = - 0.43, p 

<0.00001), despite the predominance of both SCV phenotype and biofilm forming 

isolates in the LES cohort. This observation runs contrary to the association of 

enhanced biofilm forming capacity associated with SCVs that has previously been 

reported in the literature (323,334). 
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Figure 4.15. Correlation matrix of phenotype-phenotype associations for the LES 

isolates as determined by Spearman rank correlation coefficient. Blue indicates strong 

positive correlation between any given phenotype pair (Spearman rank coefficient 

closer to 1), red indicates strong negative correlation between any given phenotype 

pair (Spearman rank coefficient closer to -1) and white indicates no correlation 

between phenotype pairs (0). Correlations were significant if r >0.35 and p <0.05 (*). 

ns = not significant, ** = p <0.001. ***p <0.0001, **** = p <0.00001.  SCV: small colony 

variant, OdDHL: N-3-oxo-dodecanoyl-homoserine lactone, BHL: N-butanoyl-

homoserine lactone, PQS: Pseudomonas quinolone signal. 
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In addition, weak associations were found between some of the QS signal molecule 

pairs, with only a significant modest positive correlation observed between OdDHL 

and BHL production (Spearman r = 0.44, p <0.00001). However, no relationship was  

identified between OdDHL and PQS production (Spearman r = 0.33, p <0.00001). Of 

note, for the LES cohort, no relationship was identified between auxotrophic 

metabolism and any of the virulence-associated or persistence-related phenotypes, 

despite the predominance of methionine auxotrophs in this cohort. 

 

In contrast to the LES cohort, a number of positive phenotype-phenotype relationships 

were identified among the MES isolates (Figure 4.16). Correlations identified between 

secreted exoproducts and QS signal molecule production were more consistent with 

traditional QS regulation of these factors. For example, positive associations were 

identified between OdDHL secretion and caseinase (Spearman r = 0.66, p <0.00001), 

or with rhamnolipid production (Spearman r = 0.55, p <0.00001) or with siderophore 

production (Spearman r = 0.71, p <0.00001); BHL secretion with caseinase 

(Spearman r = 0.48, p <0.00001), or with siderophore production (Spearman r = 0.51, 

p <0.00001); and PQS with caseinase (Spearman r = 0.54, p <0.00001) or with 

rhamnolipid production (Spearman r = 0.53, p <0.00001).  Similarly, in keeping with 

their shared regulatory pathways, the production of several secreted exoproducts was 

correlated together. For example, of siderophore production with gelatinase 

(Spearman r  = 0.42, p <0.00001), or with caseinase (Spearman r = 0.69, p <0.00001), 

or with rhamnolipid production (Spearman r = 0.65, p <0.00001). However, QS signal 

production was not well correlated with biofilm formation (e.g., with OdDHL, Spearman 

r = 0.33, p <0.00001; with BHL, Spearman r = 0.12, p <0.00001 or with PQS, 

Spearman r = 0.2, p <0.00001). 

 

Positive correlations were also observed between swim motility and QS signal 

production (with OdDHL, Spearman r = 0.59, p <0.00001; with BHL, Spearman r = 

0.53, p <0.00001, or with PQS, Spearman r = 0.53, p <0.00001). 

 

Correlations between las, rhl and pqs signal molecules was also observed with 

positive associations found between BHL and PQS (Spearman r = 0.68, p <0.00001), 

OdDHL and BHL (Spearman r = 0.58, p <0.00001) and OdDHL with PQS production 

(Spearman r = 0.71, p <0.00001). 
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Figure 4.16. Correlation matrix of phenotype-phenotype associations for the MES 

isolates as determined by Spearman rank correlation coefficient. Blue indicates 

strong positive correlation between any given phenotype pair (Spearman rank 

coefficient closer to 1), red indicates strong negative correlation between any given 

phenotype pair (Spearman rank coefficient closer to -1) and white indicates no 

correlation between phenotype pairs (0). Correlations were significant if r >0.35 and 

p <0.05 (*). ns = not significant, ** = p <0.001. ***p <0.0001, **** = p <0.00001. SCV: 

small colony variant, OdDHL: N-3-oxo-dodecanoyl-homoserine lactone, BHL: N-

butanoyl-homoserine lactone, PQS: Pseudomonas quinolone signal. 
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Interestingly, the production of certain virulence factors was found to be associated 

with the mucoid morphotype in this cohort, with positive correlations identified between  

mucoidy and caseinase (Spearman r = 0.73, p <0.00001), or with gelatinase 

(Spearman r = 0.5, p <0.00001), or with swim motility (Spearman r = 0.53, p <0.00001) 

or with siderophore production (Spearman r = 0.56, p <0.00001). 

 

However, again unexpectedly, mucoid phenotype was poorly associated with biofilm 

formation (Spearman r = 0.26, p <0.0.0001). Although caution must be applied to 

interpretation of these results because mucoidy was assessed via visual inspection 

rather than by quantitation. 

 

In contrast to findings with the LES cohort, auxotrophic metabolism was modestly 

negatively correlated with virulence-associated phenotypes among the MES cohort. 

These observations may suggest a trade-off between metabolic fitness and the 

maintenance of virulence-associated phenotypes among the MES isolates, as 

compared to their LES counterparts. 

 

However, for the non-epidemic cohort of isolates, only five significant phenotype-

phenotype associations were identified (Figure 4.17).  Moderate positive correlations 

were observed between caseinase and gelatinase production (Spearman r = 0.67, p 

<0.00001) and  between swim and twitch motility (Spearman r = 0.67, p <0.00001), 

whereas weaker positive correlations were identified between rhamnolipid and 

gelatinase production (Spearman r = 0.41, p <0.00001), and with caseinase 

production (Spearman r = 0.39, p <0.00001).  In contrast to the MES cohort, gelatinase 

production was also found to be negatively associated with the mucoid morphotype 

(Spearman r = -0.46, p <0.00001).   

 

These observations demonstrate that, in similarity with their LES counterparts, non-

epidemic isolates displayed a considerable degree of phenotype independence. 

Furthermore, the lack of association between QS signal production and 

presence/absence of any of the phenotypes challenges the typical understanding of 

QS-regulated virulence production and further highlights the genetic complexity that 

underpins phenotypic expression in clonal isolates of P. aeruginosa.  
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Figure 4.17. Correlation matrix of phenotype-phenotype associations for the non-

epidemic isolates as determined by Spearman rank correlation coefficient. Blue 

indicates strong positive correlation between any given phenotype pair (Spearman 

rank coefficient closer to 1), red indicates strong negative correlation between any 

given phenotype pair (Spearman rank coefficient closer to -1) and white indicates no 

correlation between phenotype pairs (0). Correlations were significant if r >0.35 and 

p <0.05 (*). ns = not significant, ** = p <0.001. ***p <0.0001, **** = p <0.00001. SCV: 

small colony variant, OdDHL: N-3-oxo-dodecanoyl-homoserine lactone, BHL: N-

butanoyl-homoserine lactone, PQS: Pseudomonas quinolone signal. 

 



     

      138 

4.3.8 Covariation of functional phenotypes in CF-evolved clonal isolates of P.  
aeruginosa 

I next wanted to investigate to what extent the multiple phenotypes in this large dataset 

covaried. To address this I conducted principal component analysis (PCA) on 9 of the 

13 phenotypic traits. The traits selected accounted for QS signal production and 

several virulence-associated factors. Qualitative traits (e.g., SCV morphotype, mucoid 

morphotype, rhamnolipids and auxotrophy) were excluded from this analysis. The first 

two principal components, with eigenvalues greater than 1.3, explained approximately 

54% of the overall variation in the selected phenotypes. PCA did not separate the 

clinical isolates into clusters independent of their patient of origin. However isolates 

from patients K1 and K3 did largely group separately from isolates from patients K7, 

K9, K11 and K15. In addition, tight clustering of several patients’ isolates suggested 

low diversity in phenotype composition within that cluster. The PCA confirmed that 

isolates from patient K14 displayed the greatest phenotypic diversity, with phenotypic 

profiles much more divergent between the strains.  

 

Although the total amount of variation explained by the global PCA was relatively low, 

several relationships could be inferred by the direction of the variable vectors on the 

PCA plot (Figure 4.18). In general, production of the secreted exoproducts (caseinase, 

siderophore and gelatinase)  was strongly associated together, whereas QS signal 

production (OdDHL, BHL and PQS) was positively correlated with the motility 

phenotypes (swim and twitch).  Furthermore, the PCA confirmed that higher 

exoproduct production was associated with a reduction in motility, and, exoproduct 

produciton was largely independent of whether isolates were PQS-secreting. Instead, 

exoproduct production was more closely associated with BHL production.  

 

4.3.9 Differences in phenotype covariation in relation to strain epidemicity 

I also performed separate PCAs on the 9 phenotypes after classifying the isolates 

according to the presence/absence of an epidemic strain type (LES, MES or non-

epidemic), in order to determine whether the phenotypes covaried differently between 

epidemic and non-epidemic clonal populations. Interestingly, plotting of loading biplots 

for the first two principal components, with eigenvalues greater than 1.6, 1.2 and 1.5,   
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 Figure 4.18. Principal component analysis of the nine measured quantitative phenotypic traits. (A) The data points (individual 

isolates) are coloured according to the source patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded 

areas represent the 95% confidence ellipse for each cluster. (B) The first two components (Dim1 and Dim2) and the amount of 

variation (in percent) explained by each principal component is shown on the axis.  
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for the LES, MES and non-epidemic cohorts respectively, revealed some differences 

in phenotype co-occurrence between the groups. 

 

Based on PCA, clustering of phenotypic profiles among the LES isolates did not reveal 

unique groupings, with phenotypic patterns closely shared between isolates from 

different patients (Figure 4.19A). The amount of total variation in the LES  phenotypes 

explained by the the first two principal components of the PCA was very low (40.3%) 

(Figure 4.19B). Nevertheless, the presence of motility and secreted virulence factors 

was tightly associated, which is reflected in the close association of the vectors of 

these variables on the PCA biplot. Interestingly, these traits were negatively correlated 

with biofilm formation, suggesting a tradeoff in production against each other in the 

LES cohort. Furthermore, and consistent with the results from the pairwise 

Spearman’s rank correlation, QS signal production was poorly associated with biofilm 

formation, production of virulence exoproducts and motility in this cohort.   

 

The PCA of the MES-associated phenotypic data, revealed that isolates from patient 

K14 displayed greater diversity in phenotypic profiles than isolates from patient K1. 

This is reflected in the looser clustering of individual isolates from patient K14 on the 

PCA plot (Figure 4.20A). The first two principal components in the PCA explained a 

reasonable amount (66%) of the total variation in the MES-associated dataset (Figure 

4.20B). In contrast to the LES cohort, QS signal production was closely associated 

with swim motility, caseinase and siderophore secretion. Similarly, twitching and 

gelatinase secretion were closely associated although, unlike with the LES isolates, 

these phenotypes were less strongly correlated with siderophore and caseinase 

production. In addition, biofilm formation appeared to be expressed independently of 

protease production and twitching motility. 

 
The PCA of the phenotypic data corresponding to the non-epidemic isolates (from 

patients K3, K4 and K6), revealed that the latent phenotypic expression patterns did 

not differentiate between clonal isolates from different patients (Figure 4.21A). The  

first two principal components explained only 39% of the total variation in the 

phenotypes (Figure 4.21B), which is very low. However, the PCA did show different   
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Figure 4.19. Principal component analysis of the expression profiles for the nine measured phenotypes in the LES isolates, 

collected from patients K7, K9, K11 and K15 (n = 1402). (A) The data points (individual isolates) are coloured according to the 

source patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% confidence ellipse 

for each cluster. (B) The first two components (Dim1 and Dim2) and the amount of variation (in percent) explained by each 

principal component is shown on the axis.  
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Figure 4.20. Principal component analysis of the expression profiles for the nine measured phenotypes in the MES isolates, 

collected from patients K1 and K14 (n = 990). (A) The data points (individual isolates) are coloured according to the source 

patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% confidence ellipse for 

each cluster. (B) The first two components (Dim1 and Dim2) and the amount of variation (in percent) explained by each principal 

component is shown on the axis.  
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Figure 4.21. Principal component analysis of the expression profiles for the nine measured phenotypes in the non-epidemic 

isolates, collected from patients K3, K4 and K6 (n = 1961). (A) The data points (individual isolates) are coloured according to the 

source patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% confidence ellipse 

for each cluster. (B) The first two components (Dim1 and Dim2) and the amount of variation (in percent) explained by each principal 

component is shown on the axis. 
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patterns in co-varying phenotypes compared with the epidemic isolates. Overall, fewer 

of the phenotypes expressed by the non-epidemic isolates covaried together. In 

addition, although strong correlations were observed between commonly co-occuring 

phenotypes (eg. gelatinase with caseinase or swim with twitch motility), variable 

correlations were observed between these phenotypes and QS signal production. For 

example, BHL production was only weakly associated with protease production, and 

the motility phenotypes were negatively correlated with OdDHL production. 

Furthermore, in contrast to the MES isolates, but in accord with  the LES isolates, 

protease production was also inversely correlated with biofilm formation. 

 

4.3.10 Differences in phenotype covariation in relation to antibiotic treatment 
episodes for APE  

I next wanted to determine whether co-variation of selected virulence-associated 

phenotypes differed at times of APE and if so, to what extent. Clonal sub-populations 

expressing, for example, differential QS signalling, invasive exoproducts and 

preserved motility may predominate during clinical decline  compared with periods of 

clinical stability (non-exacerbation) or following recovery after administration of 

antibiotic therapy. To investigate whether this was the case I carried out PCA on all 

isolates, grouped in relation to APE (e.g., non-exacerbation isolates, exacerbation 

isolates and recovery isolates).  

 

PCA confirmed that non-exacerbation isolates (Figure 4.22A) displayed greater 

dispersion in phenotypic profiles compared with exacerbation (Figure 4.22B) and 

recovery isolates (Figure 4.22C). This  suggested reduced diversity in phenotypic 

composition among clonal isolates of P. aeruginosa during periods of exacerbation 

and following recovery. This fall in diversity during periods of exacerbation might reflect 

the emergence of dominant clones with distinct phenotypic profiles better capable of 

inducing acute deteriorations (in the setting of chronic infection) and withstanding 

antibiotic treatment. 

 

However, at least half of the total variation in the phenotypic profiles, explained by the 

PCA for each cohort, was driven by covariation in similar phenotypes. In particular, 

swimming and twitching motilities were strongly correlated together in each of the 

cohorts. Similarly, protease and siderophore production were closely correlated 



       

        

145 

 
     
 
 
 
 

Figure 4.22. Principal component(s) analysis of the expression profiles for the nine measured phenotypes collected from nine CF 

patients during periods of (A) non-exacerbation, (B) acute pulmonary exacerbation and (C) recovery from acute pulmonary 

exacerbation following antibiotic treatment. The data points (individual isolates) are coloured according to the source patient. 

Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% confidence ellipse for each cluster. 

The first two components are shown (Dim1 and Dim2) and the amount of variation (in percent) explained by each principal 

component is shown on the axis. Isolates were not recovered from every period for each participant. Patient K11 did not contribute 

any non-exacerbation isolates and patients K6, K7 and K15 did not contribute any recovery isolates. 
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together whilst neither protease nor siderophore production was well correlated with 

swimming motility in each of the groups. The PCA did not show a separation of 

isolates, based on the emergence of a dominant phenotype cluster, during an APE.  

 

Nonetheless, PCA did highlight some differences in phenotype co-variation between 

non-exacerbation, exacerbation and recovery isolates. Biofilm production was  

associated with production of virulence exoproducts among the non-exacerbation 

isolates, less so among the exacerbation isolates, and not at all among the recovery 

isolates.  Furthermore, the biplots of the non-exacerbation and exacerbation isolates 

showed that the phenotypic profiles of patient K1’s isolates (lacking in production of 

siderophores, proteases, QS signal molecules, motility and biofilm)  contrasted with 

those of isolates from patients K7, K9 and K15 (biofilm forming, protease- and 

siderophore-producing), whereas patient K3, K4 and K6’s isolates shared phenotypic 

profiles which overlapped with isolates from all of the patients. Similarly, the biplot of 

the recovery isolates confirmed shared phenotypic profiles for isolates recovered from 

patients K1, K3, K4 and K14, which were distinct from the phenotypic profiles shared 

by the K9 and K11 isolates. These observations suggested that phenotypic co-

variation might be influenced by strain type. To explore if this was the case I further 

grouped isolates according to the  presence/absence of an epidemic strain type (e.g., 

LES, MES and non-epidemic strains). Exhibition of swimming and twitching motilities 

were excluded from the PCA of the LES exacerbation isolates whereas twitching 

motility was excluded from the PCA for the LES recovery isolates. Exclusion was on 

the basis of a lack of variation in these phenotypes with the majority of isolates 

deficient in the phenotype.  

 

The top two principal components, with eigenvalues greater than 1.7, 1.6 and 1.8, 

explained, respectively, 47.3%, 50.8% and 53.8% of the total variation in phenotypes 

for, the non-exacerbation, exacerbation and recovery LES isolates (respectively).  

Although the PCAs explained a low amount of the total variation in each of the isolate 

groups several interesting correlations were noted.  

 

Among the non-exacerbation LES isolates (Figure 4.23A), the PCA confirmed a tight 

correlation between production of all three QS signalling molecules, with isolates 

exhibiting high OdDHL, BHL and PQS production likely to be low producers of biofilm. 
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In this sub-group, gelatinase production, moreso than motility, was associated with QS 

signal production. In addition, biofilm formation was negatively, albeit weakly, 

correlated with gelatinase activity and high production of QS signal. Interestingly, non-

exacerbation isolates from patient K15 were typically of a “high biofilm and low QS 

signal and exoproduct”  phenotypic profile. This differed from the phenotypic profiles  

of the K7 and K11 non-exacerbation isolates, which tended towards lower biofilm but 

higher QS signal and exoproduct production. Principal component analysis of the 

phenotypes associated with the exacerbation LES isolates (Figure 4.23B) confirmed 

positive correlations between production of all three of the QS signalling molecules. 

However, QS signal production was not well correlated with either siderophore or 

protease secretion in this sub-group.  In addition, biofilm formation was weakly 

negatively correlated with these virulence-associated phenotypes. Overlapping 

clusters on the PCA confirmed that phenotypic profiles were shared among the acute 

LES isolates, irrespective of the patient background. 

 

For the recovery LES isolates, PCA revealed a separation of isolates from patient K9 

and K11 (Figure 4.23C), suggesting that these isolates did not share similar 

phenotypic profiles. In general, K9 recovery isolates were biofilm forming, with 

preserved BHL and OdDHL production. In contrast, K11 isolates were comparatively 

deficient in biofilm formation but proficient in twitch motility, caseinase, siderophore 

and PQS production.   Furthermore, exacerbation and recovery LES isolates showed 

substantially higher phenotypic diversity compared to non-exacerbation LES isolates, 

even though there were some areas of overlap among the exacerbation LES isolates.  

 

Performance of separate PCAs on the MES-associated phenotypes after classification 

by clinical state, revealed that the eigenvalues for the first two principal components 

were greater than 1.6, 0.86 and 1.6 for the non-exacerbation, exacerbation and 

recovery MES isolates respectively. Furthermore, a reasonable amount of the total 

variation in the phenotypes at each clinical period was explained by the first two 

principal components: 60.5%, 79.9% and 61.9% for the non-exacerbation, 

exacerbation and recovery MES isolates respectively (Figure 4.24).
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Figure 4.23. Principal component(s) analysis of the expression profiles of the LES isolates for the nine measured phenotypes 

collected from four CF patients during periods of (A) non-exacerbation, (B) acute pulmonary exacerbation and (C recovery from 

acute pulmonary exacerbation following antibiotic treatment. The data points (individual isolates) are coloured according to the 

source patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% confidence ellipse 

for each cluster. The first two components are shown (Dim1 and Dim2) and the amount of variation (in percent) explained by each 

principal component is shown on the axis. Patient K11 did not contribute any non-exacerbation isolates and patients K7 and K15 

did not contribute any recovery isolates to this analysis. 
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Figure 4.24. Principal component(s) analysis of the expression profiles of the MES isolates for the nine measured phenotypes 

collected from two CF patients during periods of (A) non-exacerbation, (B) acute pulmonary exacerbation and (C) recovery from 

acute pulmonary exacerbation following antibiotic treatment. The data points (individual isolates) are coloured according to the 

source patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% confidence ellipse 

for each cluster. The first two components are shown (Dim1 and Dim2) and the amount of variation (in percent) explained by each 

principal component is shown on the axis. 
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As noted previously, much greater diversity in the composition of phenotypic profiles 

was observed among isolates from patient K14 compared with isolates from patient 

K1 with K1 isolates largely deficient in the phenotypes assessed.  

 

Quorum signal production, siderophore production and swim motility were correlated 

together among the non-exacerbation MES isolates (Figure 4.24A). Similarly,  

protease production was  correlated with twitching motility but these phenotypes co-

varied independently of QS signal production.  

 

In contrast, among the exacerbation MES isolates (Figure 4.24B), although QS signal 

production, siderophore production and swim motility remained well correlated, these 

phenotypes were now positively associated with caseinase production, whereas 

exhibition of twitch motility and gelatinase production co-varied together and were less 

strongly associated with the other phenotypes.  

 

For the recovery MES isolates (Figure 4.24C), PCA confirmed an association between 

biofilm formation and production of QS signal molecules, whilst no correlation was 

found between the presence of these phenotypes and the presence of motility 

phenotypes or gelatinase production.  Siderophore and caseinase production 

remained well correlated, but less so with QS signal production, motility or gelatinase 

production.  

 

Finally, I carried out PCA on the non-exacerbation, exacerbation and recovery isolates 

recovered from patients harbouring a non-epidemic strain of P. aeruginosa. The first 

two principal components of the PCA of the non-exacerbation isolates, with 

eigenvalues greater than 1.7,  explained 43.5% of the total variation in the phenotypes 

(Figure 4.25A). Although this was low, PCA did confirm a positive correlation between 

the motility phenotypes, and between protease secretion and PQS production. A 

negative correlation between high protease secretion and high biofilm production 

could also be inferred. Furthermore, no relationship between protease production and 

either BHL production or motility could be inferred by the PCA.  

 

Principal component analysis on the non-epidemic exacerbation isolates showed 

some differences in the pattern of co-varying phenotypes compared with the non- 
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Figure 4.25. Principal component(s) analysis of the expression profiles of the non-epidemic isolates for the nine measured 

phenotypes collected from three CF patients during periods of (A) non-exacerbation, (B) acute pulmonary exacerbation and (C) 

recovery from acute pulmonary exacerbation following antibiotic treatment. The data points (individual isolates) are coloured 

according to the source patient. Ellipses are drawn to show clusters of patients’ isolates. The shaded areas represent the 95% 

confidence ellipse for each cluster. The first two components are shown (Dim1 and Dim2) and the amount of variation (in percent) 

explained by each principal component is shown on the axis. Patient K6 did not contribute any recovery isolates to this analysis. 
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exacerbation isolates. The first two principal components, with eigenvalues greater 

than 1.8, explained 46.2% of the total variation in the phenotypes (Figure 4.25B). 

Again, the amount of variation in phenotypes explained by the PCA was low. However,  

it did confirm a weakly positive correlation between protease secretion and BHL 

production. Although a negative correlation between biofilm formation and the motility 

phenotypes, as well as between OdDHL, could be inferred, the association was 

relatively weak.  PQS, caseinase and BHL secretion also appeared to be expressed 

independently of the motility phenoptypes.  

 

Principal component analysis on the non-epidemic recovery isolates revealed  further 

differences in co-varying phenoptypes in comparison to the other two cohorts (Figure 

4.25C). The first two principal components, with eigenvalues greater than 1.5, 

explained 42.1% of the total variation in the phenotypes.  Positive correlations were 

confirmed between protease and biofilm production, with isolates stongly expressing 

these phenotypes generally exhibiting weak QS signal production. Furthermore, no 

relationship could be inferred between QS signalling and motility, nor between motility 

and protease production in this subgroup. 

 

 

4.4 DISCUSSION 

 

Substantial phenotypic diversity has previously been described in CF-evolved clonal 

isolates of P. aeruginosa collected from patients chronically infected with this 

organism, however, relatively little is known about the short-term variation in the 

exhibition of phenotypic traits typically associated with P. aeruginosa virulence 

regulation and production, and how such variation may relate to acute periods of 

respiratory deterioration in individuals with CF. Existing studies that account for 

periods of acute exacerbation have focused solely on single strain clonal populations 

(hindering broader strain-strain comparisons) and have been limited either by low 

sampling depth and range of phenotypic traits examined (possibly under-estimating 

the degree of diversity present), or by the study of isolates taken only from a single 

patient (limiting wider generalisability) (121,325,326).  
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In this work, I have endeavoured to address these deficiencies by expanding on the 

depth of sampling, range of phenotypes characterised, study population size and 

distribution of strain types investigated, including accounting for the most prevalent 

strain types both within the UK (LES and MES) and worldwide (LES).  This study, 

therefore, represents the largest such study of comparative phenotypic analyses in 

CF-evolved clonal isolates of P. aeruginosa to date, and offers an expansive picture 

of the inter-relationships between traditionally considered virulence-associated 

phenotypic expression, including QS signalling, and how this may relate to acute 

exacerbation events. My observations provide strong phenotypic evidence for the 

uncoupling of the traditional QS regulatory hierarchy in CF isolates of P. aeruginosa 

with the rhl subsystem playing a more central role in virulence expression in certain 

strain types. Importantly, APEs could not be linked to the emergence of a particular 

sub-population of morphotypic or phenotypic variants. 

 

In line with previous work on the LES, Prairie epidemic strain (PES) and the unique 

strain ST-274, extensive morphotypic diversity was observed both between samples 

from the same patient, and between isolates from different patients (271,325–327). 

However, in this study, comparative analysis of morphotypic variation between 

epidemic (LES and the MES) and non-epidemic clones revealed significantly lower 

morphotype diversity among the LES, with a significant predominance of small colony 

variants in this population. The observation of a reduction in morphotype diversity, 

accompanied by dominance of the SCV colony morphotype, among the LES isolate 

population suggests a selection for and maintenance of this morphotype variant in this 

particular strain. Although attribution of causality is difficult, the association of the SCV 

morphotype with enhanced potential to form biofilm and increased antimicrobial 

resistance, particularly to aminoglycosides, is well recognised and may account for its 

increased prevalence among the LES, a strain notorious for its high antimicrobial 

resistance profile (333,473,474). Nonetheless, this is the first study to report a 

definitive association of this morphotype variant with the LES.  

 

By contrast, despite its description as a pathognomonic trait of chronic P. aeruginosa 

infection in CF, the prevalence of mucoidy, a consequence of alginate overproduction, 

was unexpectedly low in this study. The most plausible explanation for this is the 

instability of the mucoid phenotype outside of the CF lung, particularly during growth 



        

          154 

under anaerobic conditions, with in vitro reversion a commonly described 

phenomenon (475,476). Typically, such mucoid revertants maintain the original 

mutation in mucA, with reversion to the non-mucoid phenotype achieved via 

acquisition of second-site suppressor mutations in genes involved in the regulation of 

alginate biosynthesis, most commonly in algT/U, an alternative sigma factor AlgT/U 

essential for activation of alginate biosynthesis (476,477). In addition to alginate 

overproduction, establishment of chronic P. aeruginosa airway infection is 

phenotypically characterised by a loss of flagellar-based motility (324). Moreover, 

flagellum expression has been shown to be repressed by AlgT in mucoid variants, 

through inhibition of the flagellar regulator fleQ (179,388,393).  However, in this study 

I found substantial evidence for the presence of mucoidy without loss of flagellar-

based motility, predominantly among isolates recovered from patient K14. Either, 

alginate overproduction is insufficient alone to lead to loss of flagellar-based motility, 

or acquisition of secondary site mutations in algT, triggered by variations in 

environmental conditions during high-throughput screening, have led to re-activation 

of flagellar expression in these mucoid variants.  

 

Quorum sensing plays a dominant role in the regulation of P. aeruginosa virulence 

factor production, as evidenced by attenuated virulence of constructed QS-deficient 

mutants in animal studies (166,478). In vitro studies in the laboratory strain PAO1 had 

originally shown the three-system QS regulatory network to operate in a hierarchical 

manner, with the las signalling system on top, controlling activation of the RhlR and 

PQS pathways. However, evidence for the uncoupling of this hierarchical model 

continues to emerge from studies on clinical and environmental isolates. For example, 

the identification of lasR mutants, with preserved expression of LasR-associated 

phenotypes, among P. aeruginosa isolates taken from chronically infected CF patients 

is not uncommon (177,184,363,364,479).  

 

Several findings in this work provide additional evidence in support for a ‘re-wiring’ of 

the traditional model of QS regulation of P. aeruginosa phenotypes in CF-evolved 

isolates. I found a high prevalence of OdDHL-deficient isolates, in line with estimates 

from a previous, albeit much smaller, study (180). A logical assumption from loss of 

OdDHL production is the presence of loss-of-function mutations in lasI. However, in 

contrast to lasR mutants, lasI mutants are rarely reported in association with deficient 
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OdDHL production among CF isolates of P. aeruginosa (180,184). D’argenio et al. has 

shown that absent LasI-generated signal may be consistent with mutations in lasR, 

along with large colony morphotype and iridescent sheen, features that can be masked 

by more severe colony morphotypes such as SCV or mucoidy (184). On the other 

hand, OdDHL-deficient isolates, usually with accompanying loss in BHL production, 

have been described, and associated with mutations in rhlI (with or without mutations 

in lasI) (177). For example, a study by Bjarnsholt et al. examined the lasI and rhlI 

genes of 135 CF-evolved P. aeruginosa isolates deficient in OdDHL production and 

found conservation of the wild-type lasI sequences among all but one of the isolates, 

whilst the vast majority presented mutations in rhlI (363). Intriguingly, these mutations 

in rhlI, in contrast to the study by Wilder et al., were not associated with a loss or 

reduction in BHL production (177). Nevertheless, if impairment of LasR function can 

be inferred from loss of OdDHL production, the majority of the isolates in this study did 

not incur predictable deficiencies in typically LasR-associated phenotypes, in 

agreement with prior reports (177,180,363,364). A likely explanation for the 

maintenance of QS-regulated phenotypes in the absence of functional LasR is 

compensatory activation of LasR-controlled functions by RhlR, given that expression 

of most QS-associated phenotypes is under the influence of both LasR and RhlR 

(467). The recovery of rhlR-mutant P. aeruginosa isolates from chronic infected CF 

lungs is rare and has been described specifically in hypermutable strains (363). In 

contrast, preserved rhl signalling and expression of QS phenotypes in CF isolates 

without functional LasR is frequently reported (177,178,180,364). Furthermore, 

functional studies on both non-CF and CF isolates have provided support for LasR-

independent RhlR activity (356,364). For example, Dekimpe and Deziel showed that 

RhlR activation is only delayed (occurring during stationary phase) in a PA14 lasR 

mutant and that RhlR can initiate production of typically LasR-specific factors, 

including OdDHL and PQS (356).  Later work by Feltner et al. also confirmed LasR-

independent activation of RhlR in CF-evolved P. aeruginosa isolates, although the 

exact mechanism was not identified (364). Certainly, the retention of RhlI-generated 

signal by the majority of isolates in this study, likely in the setting of functional RhlR, 

suggests preferential conservation of this QS pathway thereby underscoring its 

importance in expression of QS-associated virulence determinants among CF-evolved 

P. aeruginosa isolates. Intriguingly, a substantial proportion of isolates were capable 

of producing PQS in the absence of either LasI- or RhlI-generated signal. This 
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observation suggests that in addition to LasR-independent transcriptional activation of 

rhlIR, PqsR-dependent activation of the pqsABCDE operon, required for the synthesis 

of the precursor of PQS, may not require input from the lasI/lasR signalling pathway.  

 

Given the arguments made in favour of RhlI-RhlR in the maintenance of QS-regulated 

phenotypes when functional LasR is absent it must be highlighted that clonal isolates 

from patient K1 distinctly lacked expression of all phenotypes examined, despite a 

significant proportion retaining production of BHL. I considered isolate non-viability as 

an explanation, given that K1 isolates more often failed to grow on different assay 

media in comparison with their counterparts from other patients. However, growth 

failure on all assay media by the same isolate (a surrogate measure for isolate viability 

in the setting of high-throughput screening) was only observed in 13% of K1 isolates. 

Accounting for true loss of parental isolates, a plausible explanation for the marked 

loss in OdDHL and PQS secretion, protease activity, rhamnolipid production and 

biofilm formation observed might be mutations within a global regulator of QS such as 

VqsR (virulence and quorum-sensing regulator). Although constitutively expressed at 

low levels during growth in LB medium, inactivating mutations of vqsR have been 

reported to result in loss of production of acyl-homoserine lactones, impairment of 

proteolytic activity and reduction in rhamnolipid production (480). Furthermore, Juhas 

et al.  reported on iron-independent VqsR regulation of siderophore gene expression, 

with a vqsR mutant also exhibiting down-regulation in both pyoverdine and pyochelin 

biosynthetic genes (480). However, preservation of BHL production in half of the 

isolates runs contrary to QS phenotypic variation associated with mutant VqsR. An 

alternate explanation may be the presence of combined mutations in lasIR and rhlR 

leading to the observed phenotypic characteristics. This may also better account for 

the preservation of BHL production seen in some of the K1 isolates. Work done by 

Dekimpe and Delziel on a PA14 lasR rhlR double mutant demonstrated complete loss 

of proteolytic activity, rhamnolipid and PQS secretion (356). Although siderophore 

secretion was not analysed in their study, it may be expected that loss of PQS in the 

double mutant might lead to secondary reduction in siderophore secretion given the 

role of PQS as a positive regulator of siderophore gene expression. It must also be 

considered that the extreme down-regulation in virulence-associated phenotypes 

observed in the K1 isolates may be a consequence of defects in major metabolic 

biosynthetic pathways, rather than in the QS regulatory system alone. Growth under 
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laboratory conditions may have exploited growth defects secondary to nutritional 

requirements better catered for in vivo. In all cases, confirmatory growth assays and 

accompanying gene sequencing and transcriptome analysis would be useful to 

determine the nature of the genetic determinants impacting on phenotypic expression.   

 

The existence of QS-null variants, isolates deficient in QS signal production but with 

preserved expression of QS-controlled phenotypes, have been recognised for some 

time, yet remain a curious conundrum. Such variants have been previously reported 

among P. aeruginosa isolates recovered from mixed infections (urinary tract, wound 

and lower respiratory infection) or from patients with chronic CF infection suggesting 

these isolates are still capable of causing acute or chronic infection (177,468). One 

common theory proposed for the existence of these QS-null isolates is that such 

variants are “social cheats” and profit from the presence of “common” goods (e.g., 

extracellular autoinducers), produced by the QS-proficient members of the bacterial 

community (177,184). In this study, the overall prevalence of QS-null variants was 

relatively low, with the exception of isolates from patient K3. In this clonal population 

of isolates almost half were identified as QS-null variants. Surprisingly most retained 

siderophore production, and close to half retained swim motility and protease 

production. Curiously, and in contradiction to observations in previous work (177), 

isolates in this study were not recovered from sputum samples containing mixed 

populations of QS-null and QS-proficient isolates, but rather all isolates within the 

same sputum sample were found to be QS-null variants. Whether this reflects 

sampling of specific sub-populations resident in the CF lung at different timepoints 

from within the same patient is not clear.  Initially, I considered failure of the reporter 

bioassay as a plausible explanation for my results. However, signal molecule 

production was maintained by the positive control (PAO1) excluding this possibility. It 

remains intriguing what QS-independent functions could be involved in setting up 

chronic infection in the QS-null isolates seen in this current study and further, what 

genetic mutation(s) may account for the loss of QS signal production observed. 

 

The substantial within-host diversity of virulence-associated phenotypes observed 

across all isolates in this study is in broad agreement with published work 

(177,271,326,327). However, amidst the variation observed, certain phenotypes were 

noted to be globally expressed by all clonal isolates unique to only one patient. This 
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prompted me to speculate as to the potential genetic drivers leading to uniform 

presence/absence of a particular phenotype within a clonal isolate population. For 

example, isolates from patient K4 were distinctive for production of a green colony 

pigment (when grown on PCN agar), yellow medium discoloration resulting from 

siderophore secretion on the CAS assay, a predominance of methionine auxotrophs, 

and absent manifestation of biofilm. It is likely that the green colony pigment expressed 

is due to pyocyanin production, as this phenazine is known to contribute to the green 

colour of P. aeruginosa cultures (481). The production of pyocyanin in turn implies the 

presence of functional RhlR (a positive regulator for both phenazine operons) and 

PqsE (necessary for the induction of each operon), both required for pyocyanin 

production. The lack of biofilm formation may be linked to the high prevalence of 

methionine auxotrophs. This association seems plausible based on work done by 

Joachim et al (482).  In this study the authors examined biofilm formation by wild-type 

PA14 and isogenic methionine auxotrophic mutants grown on M9 agar plates 

containing 30 to 100 µM methionine and Congo red. Congo red staining, indicative of 

biofilm matrix presence, was observed to be dependent on methionine concentration 

in the auxotrophic mutant colonies. Furthermore, biofilm formed by the mutant strains 

in defined medium supplemented with methionine had significantly lower biomass 

compared with the WT and these biofilms easily dispersed when transferred to 

methionine-deficient conditions. However, the exact mechanisms underpinning biofilm 

dependence on methionine availability remain unclear. An alternate explanation for 

the absent biofilm phenotype observed for the K4 isolates may include loss of 

pyoverdine production. I inferred pyoverdine loss from the yellow medium coloration 

produced by siderophore secretion on the CAS agar assay, which contrasted with the 

orange medium coloration produced by the other isolates (including the WT PAO1) in 

this study.  The colour change associated with the CAS assay can be used to 

differentiate which siderophore type is secreted by the organism. P. aeruginosa 

secretes two main iron-scavenging siderophores, pyoverdine and pyochelin, under 

iron-limited conditions. Pyoverdine, as well as activation of its cognate receptor 

(FpvA), has been shown to be necessary for the development of biofilms in vitro, whilst 

pyochelin is not (408). Therefore, it seems plausible that the presence of pyoverdine-

negative mutants among the K4 isolates may also account for the lack of biofilm 

production among this clonal population.  
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This study is the largest comparative phenotypic analysis to date between epidemic 

and non-epidemic isolates local to the UK. Moreover, it is the first study to include for 

comparison, detailed phenotypic characterisation of clonal isolates of the Manchester 

epidemic strain.  Epidemic clones, comprised of the LES and the MES, were more 

likely to exhibit protease activity, produce LasI- and RhlI-generated signal, be motile 

and form biofilm compared with non-epidemic clonal isolates. Moreover, LES isolates 

were distinguished from both MES and non-epidemic isolates by a higher frequency 

of isolates with preserved QS signal production, exoproduct secretion (proteases, 

rhamnolipids and siderophores), biofilm formation and loss of flagellar-based motility. 

Several longitudinal studies, have demonstrated accumulation of mutations in genes 

responsible for these virulence-associated phenotypes, suggesting expression is 

down-regulated in chronic P. aeruginosa infection (174,179,181,184,324,483). 

However, my observations suggest that QS (particularly via RhlI signalling) and QS-

associated phenotypes are largely maintained by the LES during chronic CF airway 

infection. Furthermore, results presented here support observations in prior studies 

which have described an ‘overproduction’ phenotype for pyocyanin and LasA protease 

among some LES isolates (174,444,452). However, as yet, no specific mutation has 

been identified to explain this overproduction phenotype. Nonetheless, taken together, 

my findings imply that the maintenance of QS and the expression of phenotypes under 

QS control in chronic infections of the LES in CF likely contribute towards its enhanced 

potential for transmissibility and persistence within the CF lung. By comparison, MES 

isolates were less distinguishable phenotypically from non-epidemic isolates and 

differed solely on the higher prevalence of isolates with preserved biofilm phenotype 

and swimming motility. This suggests that the initial differences identified between the 

epidemic and non-epidemic isolates were driven predominantly by phenotypic 

features (e.g., genetic configuration) unique to the LES. One important observation 

highlighted by this analysis is that epidemic strains cannot be assumed to be 

phenotypically similar, despite their comparable impact on clinical outcomes. Grouping 

such strains together can falsely ascribe characteristics unique to one strain type to 

the whole cohort and confound efforts to find a useful phenotypic biomarker. 

 

I observed few pairwise correlations between phenotypes across the cohort of LES 

and non-epidemic isolates. Previous studies of clinical LES isolates have 

demonstrated similar observations, and likewise, so has a study of isolates of the PES 
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where phenotypes were shown to be expressed largely independently of each other 

(271,326,452). By contrast, across the set of MES isolates multiple phenotype pairs 

were observed to occur more frequently together in the same isolate than would be 

expected by chance alone. Positive associations were observed between traits 

typically considered to be expressed together due to common regulatory pathways 

(e.g., OdDHL with BHL, rhamnolipids with proteases, OdDHL with proteases, BHL with 

rhamnolipids). These observations are more in line with a study by Clark et al., which 

described co-occurrence of phenotypes typically considered associated with earlier 

rather than chronic P. aeruginosa infection (e.g., secreted exoproducts, motility 

phenotypes) (327). However, Clark’s study (which focused on non-epidemic isolates) 

also described negative associations between phenotypes considered reflective of 

persistent CF P. aeruginosa infection (e.g., biofilm, mucoidy) and those associated 

with earlier/invasive infection, which was not observed in this work.  

 

PCA on this large dataset confirmed several relationships highlighted in the Spearman 

rank analyses but also revealed additional associations between phenotypes which 

differed between the LES, MES and non-epidemic isolates. This work is the first to 

report specifically on correlations between QS signal molecules and a broad range of 

QS-associated phenotypes for the LES and the MES. Notably, for the LES isolates, 

production of all three QS signal molecules was well correlated, but intriguingly, the 

expression of phenotypes normally considered linked via QS (e.g., exoproteases, 

siderophores, biofilm formation, swim and twitch motility) was often independent of QS 

signal release (362,484). I found strong positive correlations between each QS-linked 

phenotype, with the exception of biofilm formation, which was negatively correlated 

with these phenotypes. The trade-offs with biofilm formation were not surprising as 

evidence exists to support a reduction in expression of several of these QS-associated 

phenotypes during chronic P. aeruginosa infection, whereas biofilm formation is 

preserved (177,184,324,483,485). However, it warrants further investigation whether 

acquisition of shared mutational events is responsible for the QS-independent 

expression of phenotypes otherwise understood to be under QS regulation. Certainly, 

my observations highlight that previously described phenotypic correlations based on 

studies of laboratory strains of P. aeruginosa may not accurately reflect the biology of 

CF-evolved isolates. Furthermore, from a clinical perspective, a focus on QS targets 

to manage chronic CF airway infection may prove futile if expression of virulence 
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determinants is uncoupled from QS, particularly in a strain known to be highly 

transmissible. 

 

In contrast, for the MES isolates, phenotypic expression was largely linked with QS 

signal molecule release, with particularly strong associations found between OdDHL, 

BHL, PQS, caseinase and siderophore production and swim motility. It may be that 

phenotypic expression among these MES isolates reflects a much shorter duration of 

clinically defined chronic infection, and that decoupling of QS signal expression from 

target gene expression has not yet occurred. Alternatively, MES isolates may evolve 

towards variants with preserved expression of phenotypes under QS regulation during 

chronic P. aeruginosa infection. If this were the case, such selection may contribute to 

the MES’s ability to spread between patients and persist in the CF airway.  

 

Trade-offs were also found between phenotypes expressed by the non-epidemic 

isolates. These trade-offs are in line with existing evidence in support of both a down-

regulation in expression of several of the phenotypes tested and a transition to BHL-

associated expression of typically LasIR-regulated phenotypes among clinical isolates 

during P. aeruginosa chronic infection (180). For example, motile and protease-

secreting isolates were associated with low production of biofilm whereas protease 

secretion was associated with BHL but negatively correlated with OdDHL. Overall, key 

implications from this analysis are that for the LES, QS activities appear to influence 

the expression of traditionally QS-controlled phenotypes in a non-traditional manner 

to our current understanding of P. aeruginosa biology. However, for the MES neither 

virulence nor QS signal expression appear attenuated during chronic infection. This is 

not the case for non-epidemic isolates, where trade-offs exist between traits typically 

considered persistence-related and virulence-associated.  

 

In this work, I was interested in identifying a dominant phenotypic variant associated 

with periods of acute pulmonary exacerbation. However, as has been demonstrated 

by others, despite the broad range of virulence-associated phenotypes assessed no 

single morphotypic or phenotypic variant distinguished between periods of acute 

pulmonary exacerbation, relative clinical stability or recovery following treatment with 

intravenous antibiotics (325–327). Moreover, even among P. aeruginosa sub-types 

recognised for their shared genetic background and enhanced capacity for 
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transmission, a dominant phenotypic variant was not identified. What is clear from my 

findings is that the emergence of sub-populations of P. aeruginosa phenotypic variants 

which are more active in the expression of QS-regulated virulence determinants is an 

unlikely explanation for the transition from relative clinical stability toward APE. Rather, 

it continues to be apparent that the factors responsible for initiation of an APE are 

likely to be more complex than a change in single-pathogen phenotypic behaviour. In 

line with this thinking, recent studies have highlighted the importance of the non-

classical pathogens comprising the CF microbiome in driving diversification of P. 

aeruginosa populations (486). Moreover, there is growing evidence to support 

characterisation of microbial interactions (the interactome) within the CF lung as more 

effective in identifying key taxa or community functional states which have a stronger 

influence on fluctuations in clinical status, than examination of simple correlations of 

taxa abundance of one or several traditional CF pathogens (507, 508). However, whilst 

inferring complex pathogen-pathogen interaction networks is a crucial step towards 

determining if they drive APEs, the factors influencing these ecological interactions 

must also be taken into account, such as the role of nutrient availability, host-

microbiome dynamics and environmental factors (e.g., antibiotic exposure). How 

these factors interplay and impact on the CF microbiome is not well understood but is 

critical to understanding the degree to which microbiome dynamics are context-

dependent (509), which in turn may facilitate the development of patient-specific 

biomarker signatures and microbial targets for earlier detection and treatment of 

APEs. 

 

I acknowledge several limitations when interpreting the conclusions made in this 

study. As others have highlighted (326,327,487), the use of spontaneously 

expectorated sputum samples may under-estimate the true phenotypic diversity within 

the lung, due to uncertainty regarding the spatial distribution of sampled populations 

within the lung. Nevertheless, more invasive sampling (e.g., bronchoalveolar lavage) 

is impractical for a study of this kind. Moreover, culture-based in vitro phenotyping in 

the manner used in this study cannot adequately replicate the environmental 

conditions present in vivo which therefore may not be a true characterisation of P. 

aeruginosa phenotypic expression. Similarly, the potential for de novo acquisition of 

mutations or selection for particular variants during repeated sub-culturing cannot be 

excluded. Furthermore, it must also be acknowledged that reliance on a treatment-
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defined definition for APE onset may limit detection of significant changes in microbial 

community behaviour prior to the ‘true’ onset of these events. Finally, due to the 

method of high-volume screening adopted, observations have been drawn largely on 

prevalence of expression and not on quantitative output, which may also lead to an 

under-estimation of the degree of phenotypic diversity present within.  

 

Nonetheless this study provides a detailed comparative analysis of the extensive 

phenotypic diversity present in CF-evolved clonal populations of both epidemic and 

non-epidemic P. aeruginosa isolates and how these phenotypes may vary in relation 

to periods of relative clinical stability, acute pulmonary exacerbation and recovery 

following IV antibiotics. 
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5. SMARTCARE: A feasibility analysis of home-monitored physiology and 

symptoms using smart devices in adults with CF to better understand and 

predict for changes preceding acute pulmonary exacerbations 

 

Summary: 

Sudden deteriorations in lung health, termed acute pulmonary exacerbations, are a 

major driver of mortality and morbidity in CF. Advanced identification of impending 

APEs would permit pre-emptive interventions and allow home monitoring to safely 

replace hospital-based physician consultations. 

 

We enrolled 147 adults with CF into a 6-month study of home monitoring based at 

seven UK specialist CF Centres. Subjects were asked to undertake daily 

measurements of lung function, oximetry, pulse rate, weight, and activity (using 

sensors Bluetooth-linked to mobile phones), and provide daily self-reported symptom 

scores of cough frequency and general wellness. Linked-anonymised data were then 

analysed using ML methods to define the profile of APEs and predict their onset.  

 

End of study questionnaires revealed that 92% of participants found home monitoring 

easy to use and 77% found it helpful or very helpful in tracking their health over time. 

Unsupervised ML analysis uncovered the typical signal profile of an APE and revealed 

three distinct classes of APE. We developed an ML predictive classifier that can detect 

an impending APE on average 11 days earlier than current clinical practice. 

 

High frequency home monitoring in CF is feasible, reveals distinct types of APEs, and 

permits accurate prediction of future APEs.  

 

Statement of contribution:  

I was responsible for the study design, study management and data collection. Data 

verification and quality control was completed by myself with help from Damian 

Sutcliffe (PhD student, Floto Lab). I carried out all data analyses and interpretation. 

Machine learning analysis (including figure generation) and model development was 

completed by Damian Sutcliffe.  
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5.1 INTRODUCTION 

 

Increasingly, telehealth solutions have been shown to be an effective means of 

monitoring and managing chronic disease at a distance (488).  Advances in remote 

sensor technologies, data transmission devices and internet-based monitoring 

systems are re-designing the delivery of home-based care. Systematic reviewers have 

judged it as promising for improving the clinical effectiveness of patient care in 

diabetes and respiratory and cardiac disease (209–211). In the CF population 

however, studies to date have been few and of variable quality (198,217–219). 

 

In order to stay well individuals with CF patients must engage in an onerous burden of 

lifelong treatment, punctuated by frequent visits to specialist centres (even when well) 

for reassessment and if needed, intensification of care (441). Clinic visits increase in 

frequency and duration during APEs and may lead to in-patient treatment. The 

disruption to everyday life that ensues for individuals with CF and their carers can lead 

to delays in reporting of declining health, to the detriment of long-term fitness and 

wellbeing (124). 

 

Despite the wide availability of wearable and blue-tooth-enabled sensor devices for 

health tracking, no study has examined their use in CF care as a means to augment 

self-management, detect early deteriorations in clinical state and reduce unnecessary 

contact with the healthcare environment. The potential to mitigate cross-infection risk 

by reducing unnecessary time in hospital is particularly attractive. Data is also lacking 

which describes the daily variation in physiological state for an individual with CF 

during clinical stability, and through the course of an APE. Home-based health 

monitoring can facilitate longitudinal capture of significant information and trends 

about an individual’s health that may be informative for both individuals with CF and 

their care teams alike. 

 

I hypothesised that daily collection of symptom scores and physiologic measures, 

using commercially available sensor devices, would be feasible and enable rapid 

collection of data for analysis using ML techniques. This would enable examination of 

the relationships between symptoms and physiological variables, better 

characterisation of APE patterns and identification of changes in these home-based 
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measures that may be indicative of an impending APE. In addition, this study will 

facilitate the development of a monitoring platform for future work investigating 

whether intervention based on home monitoring data will enable prevention of clinical 

deterioration and thereby preserve health and well-being for individuals with CF. 

 

 

5.2 METHODS 

 

5.2.1 Study design and participants 

The Standardised Multi-Centre Analysis of Remote Monitoring in CF Adult Patients to 

Reduce Pulmonary Exacerbations (SMARTCARE) was a prospective cohort, non-

interventional, feasibility study (ClinicalTrials.gov number NCT02416375). We 

conducted the study in accordance with the protocol which received National Ethical 

approval from the NRES Committee East of England-Norfolk (14/EE/1244) and site-

specific approval and monitoring from each participating Hospital R&D Department. 

 

The study design was peer reviewed and regularly monitored by a trial steering 

committee, which was chaired by myself and was comprised of the principal 

investigator (PI), study investigators from each participating site and the Research 

Director of the Cystic Fibrosis Trust UK. I maintained frequent communication and 

conducted regular meetings to update the sites and receive feedback on progress and 

any site-specific issues, 

 

In addition to inclusion and exclusion criteria previously detailed in General Methods, 

Section 2.0, prospective participants met eligibility criteria if they had a history of at 

least one APE (defined in Definition of an acute pulmonary exacerbation, Section 2.5) 

in the 12 months prior to screening. I excluded participants if they experienced less 

than one acute pulmonary in the 12 months prior to screening or were in receipt of a 

lung transplant. 

 

We received funding for this study from the Cystic Fibrosis Trust UK. A software 

developer (Fat Fractal), was contracted to develop software for the home monitoring 

platform used in this study and had no role in the study design, data collection or 

analysis.  
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5.2.2 SMARTCARE network  

We recruited study participants from seven specialist adult CF centres across England 

(based at Bristol, Royal Brompton, Frimley Park, King’s College, Leeds, Royal 

Papworth and Southampton University Hospitals). Multiple sites were selected on the 

basis of their organisational capability and enthusiasm for participating in this study, 

as well as to enhance generalizability of the study’s results, with particular attention to 

geographic and socio-economic diversity in participants.  

 

The participating sites were responsible for recruiting participants, collection of clinical 

data (detailed in Data collection schedule, Section 5.2.9) and management of all 

clinical queries generated during the course of the study.  

 

A research nurse from each study site was designated “site coordinator” and retained 

primary responsibility for overseeing execution of the study protocol at that site. 

 

Royal Papworth Hospital (Cambridge, UK) was the designated coordinating centre for 

the study and conducted set-up visits, distribution of study equipment and enrolment 

of study participants on to the telemonitoring system.  The Royal Papworth study team 

was responsible for reviewing and managing information from the home monitoring 

system.  

 

5.2.3 Recruitment, screening and enrolment 

Prospective participants were identified by individual site coordinators following review 

of clinical databases and physician notes. Patient information letters detailing the 

study objectives and protocol were sent to eligible participants. Positive responses 

were consented and enrolled into the study between the 3rd of August 2015 and the 

6th of May 2017. 

 

Participants were withdrawn from the study if they withdrew consent. I considered 

participants lost-to-follow-up (LTF) if they failed to complete the study-specific 

questionnaire, despite several attempts by the site coordinator to re-engage the 

participant in the study. If a participant withdrew consent, was lost-to-follow-up or 

passed away during the study period their demographic information was kept for 
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comparison with those for participants who remained in the study and formed part of 

the feasibility analysis. 

  

We excluded participants’ data from the ML analysis if they provided insufficient 

telemonitoring data. Insufficient data was defined as either 1) less than forty days 

duration between the first and last measurement, 2) less than thirty-five days with more 

than one measurement or 3) more than half of the study days with 0 or 1 measure.  

Data exclusion criteria, as described, were defined post hoc following development 

and optimisation of the ML model. Telemonitoring data with few data points (as defined 

above) contributed little information to the development of the ML model. 

 

5.2.4  Home monitoring equipment  

Site coordinators provided participants with all study equipment at study inclusion. 

Participants received the Motorola™ Moto G android smartphone, Vitalograph® blue-

tooth spirometer (lung monitor BT), Nonin 3230 Bluetooth® Smart Fingertip Oximeter, 

Pally™ Smart Wireless scale and the Misfit Flash activity tracker. The specifications 

of each device are listed in Table 5.1. Participants also received a rucksack for 

transportation of their devices, a cooler bag for transportation of sputum samples, 

clinellä anti-microbial wipes for equipment cleaning, nose clips and, if required, a mini-

freezer for temporary storage of sputum samples. 

 

Participants received instruction on use of the study devices and were provided with 

a step-by-step user manual and contact details for technical support. A 

SMARTCARE device tutorial was also recorded on YouTube 

(https://www.youtube.com/watch?v=YU21aB6Z-Bk&feature=youtu.be) to provide 

participants with access to device demonstration and instructions at any time through 

the study. 

 

5.2.5 SMARTCARE home monitoring system: structure and functionality 

The telemonitoring system consisted of an android smartphone application, 

HTML5/Java Script web application and secure central server. This bespoke system 

(described in detail below) was built by the software developer Fat Fractal, as no 

existing commercially available system met the desired requirements for this study. 
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Table 5.1. Features of the home monitoring devices used in the SMARTCARE 

study 
Device Manufacturer features 
Motorola™ Moto G 

 

• Model X1032 

• Android 4.3 

• Bluetooth 4.0 LE 

• 129.9 x 65.9 x 11.6mm 

• 143g 

Vitalograph® lung monitor 

BT 

 

• Model 4000 

• Bluetooth 4.0 LE 

• Display parameters: FEV1, FEV6, FEF25-75 and FEV1/FEV6 

• Sensor: Stator rotor 

• Manufacture-stated accuracy:  better than ± 3% 

• Performance standards: ISO 26782:2009, ISO 23747:2007 

and ATS/ERS 2005  

• Design and manufacture standards: ISO 13485:2003 and FDA 

21CFR820  

• Medical safety standard: Medical Device Directive 93/42/EEC 

Nonin 3230 Bluetooth® 

Smart Fingertip Oximeter 

 

• Bluetooth 4.0 LE 

• Long battery life – up to 2200 spot checks on 2 AAA batteries 

• Manufacturer-stated accuracy: ± 2 digits in the range 70-100% 

for oxygen saturation and ± 3 digits in the range 25-250 BPM 

for heart rate. 

• Design and manufacture standard ISO (Biological evaluation 

of medical devices) 10993-1 

Pally™ Smart Wireless 

scale 

 

• Bluetooth 4.0 LE 

• 3000 measurement storage 

• Battery life – more than 5 years on 4 x AA batteries 

Misfit Flash activity tracker 

 

• Bluetooth 4.0 LE 

• Sensors: 3-axis accelerometer 

• Battery life ~ 6 months  

• Measures: steps, calories, distance, sleep activity 
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5.2.5.1 Smartphone application 

The android application enabled the participant to rapidly collect sensor data daily via 

wireless technology from Bluetooth-enabled monitoring devices. The graphical user  

interface facilitated easy navigation between several views within the application 

including 1) User Login, 2) Home Screen with widgets for navigation to other screens, 

3) Biometrics recording sequence 4) Biometrics history, 5) “Other events” screen and 

6) Help drop-down menu. A series of screen grabs of the user views is illustrated in 

Figure 5.1. The application was also designed with the ability to work “offline”, enabling 

participants to collect data collection from the monitoring devices independent of data 

transmission to the central server.  

 

The user interface of the Biometrics recording sequence screen featured a “traffic light” 

system alongside the widgets for the various measures that needed to be collected 

each day. “Green” indicated successful collection of data and transmission to the 

server, “amber” indicated successful collection of data from the device but pending 

transmission to the server and “red” indicated data was yet to be collected. The order 

of the biometrics list corresponded to the order in which participants had been 

requested to collect their daily data, acting as an aide memoir.  A screen grab of the 

android app’s Biometrics recording screen is shown in Figure 5.2 and illustrates that 

some measures have been collected and transmitted whilst others are still awaiting 

collection.  

 

Manual data entry was only required for three measures: collection of sputum, cough 

and wellness scores (Figure 5.3), significantly simplifying data collection for the study 

participants. 

 

Automatic pairing of the sensor device with the smartphone occurred once the 

participant clicked on the relevant biometric widget on the Biometric recording screen. 

On the subsequent screen the participant would have access to a set of reminder 

instructions on data collection from that sensor. The list of instructions would cycle 

from black to green font once each instruction was completed, reassuring the 

participant that data collection for that biometric measure was proceeding correctly 

(Figure 5.4).   
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Figure 5.1.  Screen views of the graphical user interface for the SMARTCARE android 

application. A) Log In screen, B) Home screen, C) Biometrics recording sequence, D) 

Biometrics History, E) “Other event” recording screen and F) drop-down menu including Help 

menu. 

D E F 

A B C 
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Figure 5.2. Screen grab of the Biometrics recording sequence screen for the 

SMARTCARE application. Alongside each biometric widget was a “traffic light” indicator to 

alert the participant to the status of data collection for the day. “Green” indicates successful 

collection and transmission of data from the sensor to the server, “amber” (not shown) 

indicates successful data collection from the sensor but pending transmission to the server 

and “red” indicates data collection is yet to be completed from the sensor. 

Figure 5.3.  Screen grabs of the recording screens for the biometrics that required manual 

entry within the SMARTCARE application. A) Sputum collection record B) Wellness symptom 

score C) Cough severity symptom score. 

A B C 
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Participants were able to view their longitudinal data within the app as time-series 

charts, with view options of either a week, month or total time in the study. An example 

of the time-series data capture for one participant is shown in Figure 5.5. Once data 

collection was completed from the sensor, the captured value would be displayed for 

the participant to view and accept.  Data stored in the smartphone application was 

automatically transferred to the secure central server whenever the participant was 

connected to a WiFi network. Participants were also able to manually record events 

that may have impacted on their measurements (e.g., missed airway clearance 

sessions) in the “Other Events” screen. 

 

5.2.5.2 Web application 

The HTML5/JS web application was designed to provide the Royal Papworth study 

team and site coordinators with the ability to view (Figure 5.6), analyse and export  

Figure 5.4. Screen grabs of the recording screens within the SMARTCARE application for 

data collection from three of the Bluetooth-enabled devices. (A) Weight (B) Lung function (C) 

Heart rate and oxygen saturation. The instruction list cycles from black to green font as each 

step is completed, reassuring the participant that data collection was proceeding correctly. 

A B C 
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participant data. Registration of study participants onto the web application and access 

to data from all study participants was limited to the Royal Papworth study team. 

Password-permissions enabled site coordinators to only review data from their own 

participants. 

 

Data transfer between the smartphone application, secure backend server and the 

web application was encrypted and link-anonymised in both transmission and rest. 

 

Participant data was able to be exported in .csv format when required for data analysis. 

 

The web-based application was accessible from the registered website name 

www.cftrust.fatfractal.com.  

 

 

Figure 5.5.  Illustration of the time-series graphical representation of one participant’s 

weight measures within the SMARTCARE application. The user interface has the option to 

view cumulative results over one week, one month or the duration of the study to help 

participants identify trends in their personal data. 
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5.2.5.3 Secure central server 

The secure central server enabled participant data from their biometric measurements 

to be stored securely, in line with NHS N3 compliance standards (489), for collation 

and processing. The central server also enforced role-based data access controls in 

line with user identity and role. 

 

 

Figure 5.6. A screen grab of the time-series graphical representation of measures for one 

participant captured by the SMARTCARE web application. Toggle buttons on the user 

interface enabled the user to increase or decrease the view time interval and review trends 

over time. A 10-point scale was used to assess wellness and cough severity, rated from worst 

ever (1/10) to best ever (10/10). 
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5.2.6 Home monitoring protocol 

I requested that participants perform home monitoring and sputum collection as 

detailed in Trial Protocols, Section 2.3.  They were instructed to collect and record 

their data in the following order: 1) weight (kg), 2) Pulse rate (beats/minute) and 

oxygen saturation (%), 3) 10-point scale of wellness [reported as “worst ever” (1/10) 

to “best ever” (10/10)], 4) 10-point scale of cough quality [reported as “worst ever” 

(1/10) to “best ever” (10/10)], 5) lung function (FEV1 in litres) and 6) physical activity 

(step count),  

 

Site coordinators provided first line technical support for issues with the telemonitoring 

system. Unresolved issues were escalated and managed by myself and the Royal 

Papworth site coordinator. Additional technical support was provided by the software 

developer, Fat Fractal. Site coordinators were encouraged to review their own site’s 

telemonitoring data regularly and monitor for adherence. If patients did not enter data 

for more than two weeks, we instructed site coordinators to make contact to encourage 

participation and promote adherence with home monitoring. 

 

The primary adverse event I anticipated with telemonitoring was an increase in patient 

anxiety due to accessibility and intensity of clinical monitoring. I have addressed risk 

mitigation under Usual care guidance, Section 5.2.7.  

 

5.2.7 Usual care guidance  

SMARTCARE was a non-interventional study therefore study site clinicians were 

blinded to the telemonitoring datasets. The anticipation was that participant-driven 

interactions with their clinicians might increase, prompted by access to their monitoring 

data. In order to minimise the risk of undue anxiety generated by access to their 

monitoring data, we instructed participants to address clinical concerns to their CF 

Centre and to respond to changes in their health as they would normally in the 

absence of home monitoring. 

 

Treatment of APEs during the study occurred in accordance with local CF Centre 

guidelines. 
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5.2.8 Study questionnaires 

 

5.2.8.1 SMARTCARE survey 

I created a non-validated study-specific questionnaire to assess participant 

experience, satisfaction, preferences and attitudes of daily home monitoring using 

Bluetooth-enabled devices and smartphone technology. The seventeen survey 

questions were also designed to gauge user feedback on the technical quality of the 

telemonitoring platform and to assess the impact of home monitoring on their QOL 

and self-management. Items were scored either as a frequency response on a 5-point 

scale, a usability rating on a 5-point scale, an impact rating on a 10-point scale, a 

choice rating on a 5-point scale, a helpfulness rating on a 5-point scale or an 

acceptability rating on an 8-point scale. A free-text section provided opportunity for 

feedback on an individual participant’s experience with home monitoring. A copy of 

the SMARTCARE survey is found in Appendix 3. 

 

5.2.8.2 Cystic Fibrosis Questionnaire-Revised (CFQ-R) 

I used a validated disease-specific questionnaire to assess the longitudinally impact 

of home monitoring on health-related quality of life (HRQoL) for the study cohort.  

 

The CFQ-R consists of 35-50 items divided into 7-9 domains (depending on age 

group) which encompass general domains of HRQoL: physical functioning, vitality 

(energy and well-being), emotional functioning, social functioning, role functioning and 

health perceptions (490).  The questionnaire also includes three symptom domains 

specific to CF: body image, eating disturbances, treatment burden and respiratory and 

digestive symptoms.  

 

Items are scored on five distinct 4-point Likert scales. The scores for each HRQoL 

domain range from 0 to 100 with higher scores corresponding to better health. A 

minimal clinically important difference, the smallest clinically relevant change a patient 

can detect, of 4.0 has only been determined in stable patients for the respiratory 

symptom domain (491). A copy of the CFQ-R is found in Appendix 3. 
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5.2.9 Data collection schedule 

I requested study participants complete the CFQ-R (Version 2.0) questionnaire twice 

during the study, at inclusion and on exit from the study. Additionally, at study exit, I 

asked participants to complete the SMARTCARE survey.  

 

I requested site coordinators to prospectively record participant-specific-information 

on: 1) demographics and clinical characteristics (e.g., co-morbidities, medications, 

corticosteroid use), 2) dates and details of antibiotic requirement during the study 

period - the initiation of either oral or intravenous antibiotics to treat a deterioration in 

respiratory status was used to record the occurrence of a clinician-defined APE, 3) 

hospital-based measurement of C-reactive protein during the study period, 4) dates 

and details of hospital admission for APEs, 5) dates and details of out-patient clinic 

visits, 6) positive sputum microbiology during the study period, 7) hospital-based 

measurement of Forced expiratory volume in one second (FEV1 in litres and percent 

of predicted) 8) hospital-based measurement of weight and 9) non-clinic encounters 

and reason(s) for initiation of contact with the medical team. 

 

Data collection was completed via a bespoke web application and stored on an NHS 

N3 network-compliant SQL database. The website was hosted on a server at Royal 

Papworth Hospital. Password-permission access was provided to site coordinators 

and the Royal Papworth study team. User accounts for the site coordinators were 

linked only to their study site. Access to data from all the study sites was only permitted 

to the Royal Papworth study team. 

 

The database was exported in excel format at the end of the study for analysis. 

 

5.2.10 Outcome measures 

I assessed feasibility by a review of enrolment and retention characteristics (e.g., 

number of participants referred, number consented, drop-out rate), acceptability and 

compliance (e.g., survey responses, adherence with monitoring), and analysis of the 

functionality of the telemonitoring system (e.g., sensor functionality, success of data 

upload, frequency of requests for technical support) and data characteristics (e.g., 

duplicate data, missing data, variance in measures). 



        

          179 

A secondary outcome of this work was to be able to better characterise the relationship 

between symptom scores and physiological measures leading up to and during the 

course of an APE by applying ML techniques to gain new insights from the high 

frequency data generated in the SMARTCARE study.  

 

5.2.11 Quality assurance 

Prior to screening the Royal Papworth site coordinator and myself completed a visit of 

each study site to provide set-up support and ensure that the study protocol was able 

to be completed at the study site. During this visit, we demonstrated operation of the 

study equipment, reviewed the study and provided a site file and electronic copy of all 

study documents. 

 

I completed rigorous data checks for consistency and completeness on the data 

entered into the electronic clinical database and the telemonitoring web application at 

the end of the study, with additional data management support from Damian Sutcliffe. 

I referred inconsistencies in the clinical data collection back to the study site and 

updated amendments when received. A detailed description of the management of 

data applied to the home monitoring data is found in Technical quality of the home 

monitoring system, Section 5.3.2.2. 

 

5.2.12 Compensation 

Participants were given £50 as a one-off inconvenience payment for their time and 

effort with the study and had the option of keeping all study equipment at the end of 

the study. Compensation was not contingent on time spent in the study or amount of 

data provided. 

 

5.2.13 Sample size 

Due to a lack of existing data on the application of ML analysis to telemonitoring data 

in CF it was not possible to perform a power calculation to determine sample size for 

this study. We therefore based the sample size on the feasibility of recruitment from 

the pool of potential participants as well as on sample sizes in similar ML-based tasks 

in other conditions (492,493). The sample size target was 200 participants. 
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5.2.14 Statistical analysis 

I performed statistical analyses using Microsoft Excel for Mac version 16.27 (Microsoft, 

Redmond, WA, USA), Prism 6.0 for Mac OS X (Graphpad Software Inc, San Diego, 

CA, USA) and the tidyverse, Hmisc, corrplot, reshape2, ggplot2, survival, lattice and 

Formula packages in RStudio version 1.1.456 (RStudio Inc, Boston, MA, USA).  

 

Descriptive statistics of the baseline characteristics of participants are expressed as 

mean (standard deviation [SD]) or median (interquartile range (IQR), minimum and 

maximum) for numerical variables and as number (percentage) for categorical 

variables. I did not attempt to substitute missing data. 

 

I examined between-study site and between-cohort (grouping based on days of 

recordings completed or impact of home monitoring on anxiety levels) differences for 

continuous variables by one-way analysis of variance (ANOVA) for parametric data, 

Mann-Whitney U-test and Kruskal-Wallis tests for non-parametric data and Chi-

squared (c2) tests for categorical data.  

 

I analysed correlation relationships between continuous and discrete variables by 

Spearman’s Rho for non-parametric data and Pearson’s correlation coefficient for 

parametric data.  

 

I assessed for comparability of in-clinic and home-based spirometric data using a 

Bland-Altman analysis of same-day in-home and in-clinic FEV1 (% predicted) to 

establish the level of agreement between these two measurements (440). 

 

In addition to describing user experiences, satisfaction and use of the home monitoring 

system qualitatively, I compared user experience of home monitoring between survey 

respondents and non-respondents using unpaired two-tailed t-test for parametric data 

and unpaired Mann-Whitney signed rank test for non-parametric data. Categorical 

variables were compared using the Fisher’s exact test.  

 

All statistical tests were two-tailed and a p value of < 0.05 was considered statistically  

significant. 
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5.2.15 Machine learning analysis 

ML analysis was completed by Damian Sutcliffe (PhD student, Floto Lab) using 

telemonitoring data collected from a subset of the study participants (n = 104). Data 

from the remaining study participants (n = 43) was excluded due to either insufficient 

data (defined in Recruitment, screening and enrolment, Section 5.2.3) for the ML tasks 

or because participants withdrew study consent. A total of 147 antibiotic treatment 

episodes were captured for ML analysis of which 97 were used. Fifty records were 

excluded due to the following criteria: 1) less than 15 days with measures in the 40 

days prior to treatment, 2) an average of less than 2 measurements per day or 3) less 

than 35% total data completeness in the data record.  

 

In brief, the onset of each APE was considered a hidden (or latent) variable. An 

unsupervised ML approach (a probabilistic generative model) was used 1) to learn the 

latent variable for each measurement across all the APE periods, 2) to align the 

records of each measurement type (e.g., lung function, weight, heart rate, O2 

saturations, activity, wellness and symptom scores), based on the learnt latent 

variable, for all the APE periods (n = 97) in the dataset, and 3) to learn the average 

profile for each measurement type during an APE (which was also assigned a latent 

profile) (Figure 5.7). Probability distributions of the latent quantities were inferred 

iteratively using an Expectation Maximisation algorithm. In order to generate the 

typical (‘average’) profile of an APE, the model was constrained to allow only one set 

of latent measurement curves to be learnt from the dataset. Subsequently, the model 

was extended to learn multiple sets of latent measurement curves, each 

representative of a different class of APE. For the predictive classifier, a supervised 

ML approach was used, specifically a probabilistic regression classifier. The dataset 

was subdivided and four-fold cross validation was used to train and test the classifier 

model. Twenty percent of the participants’ records were randomly selected at the 

outset and kept back as a final test set for once the model had been fully optimised.  
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5.3 RESULTS 

 

5.3.1 Participants 

We screened 183 potential participants for inclusion in SMARTCARE. Of these, 

nineteen were ineligible and ten declined to participate. One hundred and forty-seven 

participants were enrolled in the study. Three deaths occurred during the course of 

the study. I included data from the remaining 144 participants in the feasibility analysis 

of this study (Figure 5.8). We excluded data from forty-three participants from the ML 

tasks for these reasons: five (3%) participants withdrew their consent, thirty-eight  

Figure 5.7.  An illustration of the desired signal alignment behaviour of the ML alignment 

model using FEV1 data records from 3 participants as an example. We observed differing 

time delays between the start of decline in a home measure (in this example, FEV1) to the 

start of treatment (IVs) between different APEs (A). In order to produce an average APE 

profile, we first need to shift the data for each APE, so that the start of an APE is aligned 

across all FEV1 examples. This is done using an unsupervised ML approach, where the model 

learns the unobserved (e.g., hidden or ‘latent’) variable for the relative start time of an APE. 

(B). The model then averages them (in this illustration for FEV1) to generate the average latent 

profile of an APE despite the variable times to treatment (C). Once the shape of the latent 

change curves for each signal type is learnt, the start of an APE can be marked as the 

consensus inflexion point across all signal types (Figure courtesy of RA Floto). 
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(26%) participants recorded insufficient data (defined in Recruitment, screening and 

enrolment 4.2.3), one of whom passed away during the study period.  

 

Seventy-three (50%) participants completed more than five months of home 

monitoring, of which two thirds (47 out of 73) provided daily data for the full 6 months 

of the study period. Eight (5%) participants completed 4 to 5 months of home 

monitoring, nine (6%) completed 3 to 4 months and thirteen (10%) completed 2 to 3 

months of monitoring. Forty-four (30%) participants completed less than two months 

of data. The average number of measures recorded per day was 6.3 (range 0 – 7). 

One hundred and four (71%) participants provided sufficient data for the ML tasks, 

including two participants who passed away during the course of the study. 

 

Twenty-three of the 43 participants who discontinued home monitoring in the first 

month of the study did not complete the study-specific survey, one of whom had 

Figure 5.8.  Screening, enrolment and follow-up of the SMARTCARE study participants. 

ML: Machine learning. 
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passed away during the course of the study. Of the 57 participants who discontinued 

home monitoring between months 1 and 6, 39 completed the study-specific survey, 

providing feedback on their experience. Of the 47 participants who provided all 6 

months of home monitoring data, only 4 participants did not complete the study-

specific survey. In total, I received survey feedback from 102 (69%) participants and 

this data formed part of the feasibility analysis. 82 (56%) participants provided both 

sufficient data for the machine learning models as well as survey feedback on the 

home monitoring experience.  

 

Demographic and clinical characteristics for the SMARTCARE cohort are summarised 

in Table 5.2. Participants had clinical characteristics broadly representative of the UK  

CF population.  The mean age of the cohort was 31.6 years. Marginally more women 

(56%) took part in the study. Nearly two thirds (62%) of the participants were 

homozygous for the CFTR F508del mutation. Almost half (48%) had moderately 

impaired lung function (FEV1  ³ 40 to < 70 % of predicted), whilst a quarter (25%) of 

the cohort had severely impaired lung function (FEV1 < 40% of predicted). Just over 

half (52%) of the participants had chronic airway infection with P. aeruginosa. The 

majority of participants (86%) were prescribed some form of nebulised mucolytic (e.g., 

dornase alpha, mannitol or hypertonic saline) for airway clearance, with just over half 

(56%) of the cohort also taking an inhaled antibiotic as part of their daily treatments. 

Close to two thirds (59%) of participants were in either part-time or full-time 

employment.  

 

Seven adult CF centres took part in this study with the number of participants recruited 

from each site ranging from eleven to thirty-five.  The clinical characteristics and 

treatment burden at each site are summarised in Table 5.3. A total of 229 antibiotic 

treatment events were captured across all participants during the course of the study. 

Half (48%) of the participants experienced one to two treatment-defined APEs, whilst 

a quarter (24%) experienced between three to six APEs during the study period 

(Figure 5.9). 

 

Of note, only a small minority of participants (7%) were on a CFTR modulator during 

the study period: 3% on monotherapy and 4% on first generation dual therapy. 
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Table 5.2.  Baseline characteristics of the SMARTCARE study population 

Characteristic SMARTCARE (n = 147) 

Age (yr) at screening - mean 31.6 ± 9.3 

Female sex - no. (%) 83 (56) 

Genotype – no. (%)  

F508del homozygous 91 (62) 

F508del heterozygous 48 (33) 

Other 8 (5) 

Percentage of predicted FEV1  

Mean 56.1 ± 21.9 

Subgroup – no. (%)  

< 40% 37 (25) 

³ 40 to < 70% 70 (48) 

³ 70 to < 90% 27 (18) 

³  90% 13 (9) 

Body Mass Index - mean 23± 3.4 

Chronic infection with P. aeruginosa – no. (%) 77 (52) 

CF-related diabetes – no. (%) 61 (41) 

Prescribed medications – no. (%)  

Inhaled antibiotic 93 (63) 

Inhaled bronchodilator 103 (70) 

Inhaled mucolytic 128 (87) 

Azithromycin 72 (49) 

Employment status – no. (%)  

           Fulltime/Part-time work 87 (59) 

CFQ-R treatment domain score at screening - median 44 (33 – 67) 

         FEV1: Forced expiratory volume in 1 second. 
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 Whole Cohort 

(n = 147) 

Royal Papworth 

(n = 35) 

Leeds 

(n = 30) 

Bristol 

(n = 23) 

Southampton 

(n = 16) 

Kings College 

(n = 18) 

Royal Brompton 

(n = 14) 

Frimley 

(n = 11) 
p value 

Age (yr) - mean 32 ± 9.3 32 ± 10 35 ± 9 28 ± 7 29 ± 9 34 ± 9 35 ± 9 27 ± 5 0.0413 

Female sex – no. (%) 83 (56.5) 19 (54.2) 14 (46.7) 14 (60.9) 11 (68.8) 12 (66.7) 6 (42.9) 7 (63.3) 0.6470 

FEV1 (% predicted) - mean  
56.1 ± 21.9 65 ± 21 45 ± 18 62 ± 24 48 ± 22 53 ± 21 57± 16 61 ± 22 0.0060 

Subgroup – no. (%)          

     < 40  37 (25.2) 5 (14.3) 13 (43.3) 6 (26.1) 4 (25.0) 4 (22.2) 2 (14.3) 3 (27.3) 0.1321 

     ³ 40 to < 70 70 (47.6) 17 (48.6) 14 (46.7) 6 (26.1) 9 (56.3) 11 (61.1) 9 (64.3) 4 (36.4) 0.2233 

     ³ 70 to < 90 27 (18.4) 6 (17.1) 2 (6.7) 7 (30.4) 3 (18.8) 2 (11.1) 3 (21.4) 4 (36.4) 0.2305 

     ³ 90 13 (8.8) 7 (20.0) 1 (3.3) 4 (17.4) 0 (0.0) 1 (5.6) 0 (0.0) 0 (0.0) 0.0073 

BMI – mean  23± 3.4 23 ± 3.6 24 ± 4.0 23 ± 2.8 22 ± 3.6 22 ± 3.0 23 ± 2.7 22 ± 2.1 0.6983 

PI – no. (%) 126 (85.7) 32 (91.4) 29 (96.7) 14 (60.9) 11 (68.8) 18 (100.0) 13 (92.9) 9 (81.8) 0.0100 

CFRD – no. (%) 61 (41) 15 (42.9) 13 (43.3) 10 (43.5) 5 (31.2) 5 (27.8) 4 (28.6) 7 (63.6) 0.5035 

          

Antibiotic treatment events – 

median  
1 (0 - 2) 1 (0 – 1.5) 3 (1.3 – 3) 2 (1 – 2) 2 (1 – 3) 0 (0 – 1) 0.5 (0 – 1.8) 1 (0.5 – 1.5) < 0.0001 

Clinic visits - median 5 (3 – 6.5) 6 (4 – 7) 6 (4.2 – 9) 3 (2 – 4.5) 3 (2 – 4.3) 3 (2 – 4) 6 (4.3 – 6.8) 5 (4.5 – 5.5) < 0.0001 

Admissions - median 1 (0 – 2) 0 (0 – 1.5) 2 (1 – 3) 0 (0 – 1) 1.5 (1 – 2) 0 (0 – 1) 0 (0 – 1) 0 (0 – 0.5) 0.0004 

Admission days - median 5 (0 – 21) 0 (0 - 19) 18 (7.8 – 31) 0 (0 – 17) 11.5 (8.8 - 20.3) 0 (0 – 8) 0 (0 – 12.8) 0 (0 – 4.5) 0.0027 

Intravenous antibiotic days - 

median 
17 (0 – 29) 14 (0 – 24) 32 (21 – 46.3) 27 (4 – 28) 26 (14 – 40) 0 (0 – 14) 0 (0 – 18) 14 (6.5 – 19.5) < 0.0001 

          

Inhaled bronchodilator - no. 

(%) 
103 (70.0) 30 (85.7) 17 (56.7) 18 (78.3) 11 (68.8) 10 (55.6) 10 (71.4) 9 (81.8) 0.1209 

Inhaled antibiotic - no. (%) 93 (63.3) 33 (94.3) 16 (53.3) 16 (69.6) 7 (43.8) 9 (50.0) 11 (78.6) 5 (45.5) 0.0005 

Dornase alpha - no. (%) 109 (74.1) 20 (57.1) 29 (96.7) 14 (60.9) 13 (81.3) 15 (83.3) 14 (100) 9 (81.8) 0.0008 

HTS – no. (%) 44 (29.9) 19 (54.3) 3 (10.0) 6 (26.1) 1 (6.3) 10 (55.6) 5 (35.7) 0 (0.0) < 0.0001 

Azithromycin – no. (%) 72 (49.0) 16 (45.7) 8 (26.7) 18 (78.3) 7 (43.8) 8 (44.4) 4 (28.6) 10 (90.9) 0.0004 

Differences between continuous variables were examined with one-way ANOVA for parametric data and Kruskall-Wallis test for non-parametric data. Differences between categorical data were examined with c2 

tests. FEV1: forced expiratory volume in 1 second, BMI: body mass index, PI: pancreatic insufficiency, CFRD: CF-related diabetes, HTS: hypertonic saline. Where relevant, some percentages might not add up to 

100% due to rounding. 

Table 5.3 Comparison of clinical characteristics and treatment burden across each study centre 
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Clinical characteristics between the sites were fairly similar, with a few exceptions. 

There were significant differences in the average lung function (FEV1 % predicted) 

values for participants at each of the study sites (ANOVA, p = 0.0060) (Figure 5.10).  

 

     

 

 

 

 

 

Figure 5.10. Comparison of lung function results between study sites. The data is presented 

as mean (in blue) ± SD (in red). There was a significant difference in mean lung function 

between the study cohorts, with participants from Leeds and Southampton University 

Hospitals, on average, having lower lung function than participants from the other study sites 

(ANOVA, p = 0.0060). SUH: Southampton University Hospital, KCH: King College Hospital, 

RBH: Royal Brompton Hospital, and FPH: Frimley Park Hospital. 

Figure 5.9. Distribution of treatment-defined pulmonary exacerbations across the study 

period.  The total number of APE during the study period was determined for each participant 

(n = 147). An APE was defined based on the initiation of antibiotic therapy (intravenous or 

oral) by the treating clinician for a deterioration in clinical state from baseline.  
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The mean age (ANOVA, p = 0.0413) and pancreatic insufficiency status (ANOVA, p = 

0.0100) of participants also varied significantly between the centres. I also found 

significant differences in treatment burden between the centres, both in acute and 

maintenance treatments, with the Leeds cohort, in general, requiring more admissions 

and intravenous antibiotics than their study counterparts (Table 5.3). 

 
5.3.2. Correlations between home-monitored measures 
I next performed a correlation analysis on the home-measured dataset to identify any 

significant relationships between the physiological variables and symptom scores 

(Figure 5.11). I did not observe a significant association between lung function and 

activity levels (Spearman r = 0.25, p < 0.00001), nor between activity levels and either 

cough or wellness scores (Spearman r = 0.25 and 0.27 respectively, p < 0.00001).  

 

           

 

 

 

 

 

 
 

Figure 5.11. Correlation matrix of variable-variable associations as determined by 

Spearman correlation coefficient. Blue indicates a strong positive correlation between any 

given pair (Spearman coefficient closer to 1). Red indicates a strong negative correlation 

between any given pair (Spearman coefficient closer to -1). White indicates no correlation 

between pairs (0). Correlations were significant if r > 0.35 and p < 0.05 (*). ns = not significant, 

**** = p < 0.00001. 
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Similarly, I did not identify a strong correlation between weight and activity (Spearman 

r = 0.33, p < 0.00001) measures. Lung function was only modestly correlated with both 

cough and wellness scores (Spearman r = 0.44 and 0.46 respectively, p < 0.0001). 

Lung function testing is highly technique- and effort-dependent and measures 

performed in the home setting (without the support of a specialist respiratory 

physiologist) may be more susceptible to these factors influencing correlations with an  

individual’s symptom perception (254). Unsurprisingly, as these two measures are 

likely to be internally consistent, I observed the strongest correlation between the two 

patient-reported measures of cough and wellness (Spearman r = 0.91, p < 0.00001). 

 

5.3.3 Home monitoring feasibility analysis  
 
5.3.3.1 Enrolment rate, retention and participant characteristics 
The median recruitment time across the sites was 7 months (range 6-18 months). The 

recruitment rate at each site was, on average, 3 participants a month. As we expected, 

larger centres were able to recruit more participants into the study. 

 

To assess for explanatory factors that may have influenced study retention and 

compliance with daily home monitoring, I divided participants into four groups based 

on the number of days of recordings that they provided during the study period: 1) 

insufficient (either less than forty days duration between the first and last      

measurement or less than thirty-five days with more than one measurement or more 

than half of the study days with 0 or 1 measure), 2) between 41 and 90 days 3) 

between 91 and 150 days and 4) more than 150 days of home measures. 

 

The participant, treatment burden and home monitoring characteristics of these four 

groups are summarised in Table 5.4. Comparisons between the groups showed 

similarity for most of the features. However, participants’ age (ANOVA, p < 0.0001) 

and BMI (ANOVA, p < 0.0001) may have had an influence on adherence with 

monitoring. Notably, my findings suggest that older participants are more likely to be 

adherent with home monitoring. I did not identify any other associations between home 

monitoring compliance and cohort characteristics, particularly with regards to degree 

of lung function impairment or treatment burden. 
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Table 5.4.  Comparison of participant characteristics, treatment burden and home monitoring activity between cohorts based on number of 

days of recordings provided during the 6-month study period. 

 

 

Insufficient days  

(n = 43) 

41 – 90 days  

(n = 15) 

91 – 150 days 

(n = 17) 

>150 days  

(n = 72) 
p value 

Age (yr) - mean  27.3 ± 7.5 27.0 ± 5.3 31.5 ± 5.8 35.4 ± 10.1 < 0.0001 

Female sex – no. (%) 17 (39.5) 11 (73.3) 11 (64.7) 43 (59.7) 0.0581 

BMI - mean  22.3 ± 2.9 21.6 ± 4.5 23.5 ± 5.1 22.9 ± 2.9 < 0.0001 

FEV1 (% predicted) - mean  54.4 ± 22.1 62.6 ± 23.5 54.3 ± 24.0 56.1 ± 21.0 0.6413 

Subgroup – no. (%)      
     <40  11 (25.6) 2 (13.3) 4 (23.5) 20 (27.8) 0.7046 

     ³ 40 to < 70 20 (46.5) 6 (40) 9 (52.9) 35 (48.6) 0.8983 

     ³ 70 to < 90 11 (25.6) 5 (33.3) 1 (5.9) 10 (13.9) 0.0911 

     ³ 90 1 (2.3) 2 (13.3) 3 (17.6) 7 (9.7) 0.2266 

CFRD – no. (%) 14 (33) 6 (40) 10 (59) 30 (42) 0.3181 

Part-time or full-time employment – no. (%) 24 (56) 10 (66) 7 (41) 45 (63) 0.3741 

      

Intravenous antibiotic days - median  21 (13.5 - 39.5) 14 (0 – 31) 24 (0 – 43.5) 14 (0 – 28) 0.0896 

Inhaled antibiotics and/or mucolytics – no. (%) 37 (86) 15 (100) 17 (100) 66 (92) 0.1894 

      

Measures per day - mean  NA 6.3 ± 1.1 5.9 ± 1.1 6.4 ± 1.1 0.2010 

Differences between continuous variables were examined with one-way ANOVA for parametric data and Kruskal-Wallis test for non-parametric data. Differences 

between categorical data were examined with c2 tests. FEV1: forced expiratory volume in 1 second, BMI: body mass index, CFRD:CF-related diabetes. Where 

relevant, some percentages may not add up to 100% due to rounding. 
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5.3.3.2 Technical quality of the home monitoring system 
115813 recordings were collected across the study period (Figure 5.12). 13608 of 

these recordings were not physiological or symptom measures but rather a record of 

the sputum samples collected during the study.  

 

Empty measurements, which we defined as time-stamped entries with no 

measurement logged, were captured for activity, cough and wellness scores. In total, 

we identified 1308 (1%) empty measurements and these were removed from the 

dataset. A further 122 recordings were excluded due to resting values that were 

outside of the expected physiological range (e.g., FEV1 % predicted < 10% or > 130%, 

O2 saturation < 80% or > 100%, Heart rate < 50 bpm or > 150 bpm or weight < 35kg 

or > 125kg). 

 

We identified repeated measures using the following definitions: Class 1) exact date, 

time and value, Class 2) identical/near identical measures within a short time frame 

(e.g., <12 mins for activity recordings, < 30 mins for non-activity recordings) and Class 

3) multiple measures on the same day. 

       
 

 

Figure 5.12. Data capture for each participant (n = 147) across the study period. Each row 

represents a single participant. The colour bar codes for the number of measures recorded 

on a given day. A maximum of 7 recordings could be made per day: lung function, weight, 

activity (steps), cough score, wellness score, heart rate, O2 saturation. (Figure courtesy of 

Damian Sutcliffe). 
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In total, we identified 4161 (4%) repeated measures. Measurements of Class 1 were 

collapsed to a single measure and duplicates removed. For measurements of Class 

2, we accepted the last chronological measure with the exception of FEV1, where the 

best measure was selected, in line with clinical practice.  We handled Class 3 

measurements by averaging the values to produce a composite single measure for 

that day. 
 

In addition, we excluded recordings that fell outside of the study range. These were 

defined as follows: 1) outlier first measures: recordings taken at the set-up visit 

followed by a gap (up to 3 weeks) before active measuring was commenced by the 

participant and 2) outlier last measures: recordings that continued after a participant 

had exited the study but still persisted to use some of their monitoring devices on an 

adhoc basis. In total, 275 outlier measures for 45 participants and 1802 last measures 

for 56 participants were identified and excluded from the dataset. 

 

Although repeated values occurred at relatively low frequency for the automated 

sensor devices, the activity monitor was comparatively the worst performing of the 

group. Interrogation of the server backend log of the raw activity recordings revealed 

a higher proportion of multi-replicate values (e.g., same time stamp and value) than 

any other sensor. In every case, the server accepted the value with a success status 

code.  It is likely that the re-sending of the same value from the device was secondary 

to a fault in the activity monitor or an issue with network connectivity leading to storage 

and re-transmission of data.  

 

Currently, FEV1 remains the gold standard physiological biomarker for use in 

exacerbation diagnosis in clinical practice. It features in several exacerbation 

definitions in the clinical trial setting (254). Therefore, I evaluated the agreement 

between home-measured FEV1 and in-clinic FEV1 (performed using different 

equipment) by carrying out a Bland-Altman analysis. The comparison of home and 

clinic values recorded on the same day in 99 participants on 327 occasions is shown 

in Figure 5.13. On average, clinic values for FEV1 tended to be slightly higher than the 

home values with a mean difference of 4% of predicted. The wide range for the limits 

of agreement  
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(-11.39, 19.41) suggest that the home measurements may either underestimate FEV1 

by up to approximately 11% of predicted or overestimate FEV1 by up to 19% of 

predicted. Home measurements also tended to under-estimate lung function at higher 

lung function values. 

 

5.3.3.3 User experience of daily home monitoring 
More than two thirds (102, 69%) of participants completed the SMARTCARE survey 

permitting first ever quantitative and qualitative assessment of user experience with 

daily home monitoring in adults with CF. 

 

The clinical characteristics, treatment burden and home monitoring activity between 

survey respondents and non-respondents are compared in Table 5.5. The non-

respondent cohort tended to be younger (unpaired t test, p = 0.0012) and less 

compliant with home monitoring (Fisher’s test, p = 0.0002) and completion of the 

second study questionnaire; the CFQ-R (Fisher’s test, p <0.0001).  Gender, a pre-

Figure 5.13.  Comparison of clinic and home measurements for FEV1 obtained on the same 

day on 327 occasions for 99 participants. The difference between clinic and home 

measurements is on the y axis and the average of clinic and home measurements is on the x 

axis. The blue dashed line indicates the mean difference for all data points and the red dashed 

lines indicate the limits of agreement (Upper line: mean + 2SD), lower line: mean -2SD). 
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Table 5.5.  Comparison of participant characteristics, treatment burden and home monitoring activity between SMARTCARE survey 

respondents and non-respondents. 

 

 
 Respondents (n = 102) Non-respondents (n = 45) p value 

Age (yr) - mean 33.4 ± 9.7 28.0 ± 7.4 0.0012 

Female sex – no. (%) 54 (52.9) 28 (62.2) 0.3682 

BMI - mean 22.9 ± 3.2 22.2 ± 3.9 0.2783 

FEV1 (% predicted) - mean 56.6 ± 22.0 54.9 ± 21.5 0.6530 

CFRD - no. (%) 46 (45.1) 15 (33.3) 0.2068 

Pre-existing anxiety/depression - no. (%) 6 (5.9) 4 (8.9) 0.4954 

Part-time or full-time employment, no. (%) 63 (61.8) 24 (53.3) 0.3664 

CFQ-R treatment domain score available - no. (%) 81 (79.4) 7 (15.6) <0.0001 
Pre-study treatment domain score – mean 48.0 ± 21.7 49.3 ± 25.0 0.8855 

Post-study treatment domain score – mean 45.6 ± 23.9 55.7 ± 14.6 0.2750 

    

Inhaled antibiotics and/or mucolytics - no. (%) 97 40 0.1755 

Intravenous antibiotic days - median 16 (0 - 29) 20 (6 – 38) 0.2440 

    

Insufficient recording days – no. (%) 20 (19.6) 23 (51.1) 0.0002 

Differences between continuous variables were examined with unpaired t test for parametric data and unpaired Mann Whitney signed rank test for 

non-parametric data. Differences between categorical data were examined with Fisher’s tests. FEV1: forced expiratory volume in 1 second, BMI: 

body mass index, CFRD:CF-related diabetes, CFQ-R: Cystic Fibrosis Questionnaire – Revised. 

1 94 
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existing history of depression/anxiety or treatment burden did not differ significantly 

between the two groups. 

 

Of the subset of respondents who were poorly compliant with home monitoring (20 out 

of 102), various reasons were provided for discontinuing monitoring but primary 

reasons cited were: increased time commitment/treatment burden which was harder 

to maintain when unwell and the daily frequency of measurements provoking 

increased anxiety about their health. 

 

 5.3.3.4 User interaction with the home monitoring technology 
I assessed the usability of the home monitoring system by analysis of survey 

responses to the following questions: how easy is the technology to use (Q1), how 

frequently did you contact technical support for help (Q2), how often did you have 

problems measuring data (Q3) and how often did you have problems uploading data 

(Q4). 

 

Survey responses to Q1 and Q2 are summarised in Figure 5.14. Most respondents (> 

90%) found the components of the home monitoring system easy, or very easy, to use 

and did not need to contact technical support for assistance in data collection or 

transmission more frequently than monthly. More than half did not need technical 

support at all with either data collection (53%) or data transmission (69%). 

 

Survey responses to Q3 and Q4 are summarised in Figure 5.15. Comparatively, a 

higher proportion of survey respondents experienced issues with data collection (85%) 

from sensor devices onto the SMARTCARE app than with data transmission (66%) 

from the app to the backend server. Of these sub-groups, respondents most 

commonly experienced data collection problems on a monthly basis (38% of 

respondents) whilst data transmission issues were more frequent, occurring weekly in 

27% of respondents. 

 

5.3.3.5 User perception of impact and ideal frequency of home monitoring  
I assessed the acceptability of daily home monitoring by analysis of survey responses 

to the following questions: to what extent did daily home-monitoring interfere with your 
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A B 

Figure 5.14. Survey responses from participants (n = 102) assessing (A) how easy the telemonitoring system was to use and 

(B) how often they needed technical assistance with collecting or transmitting their home measures. The majority of respondents 

found the technology easy to use and did not require frequent technical assistance to resolve issues with data collection or 

transmission.  
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Figure 5.15. Survey responses from participants (n = 102) assessing (A) how often they encountered problems with data 

collection from their sensor devices and (B) how often they encountered problems with data transmission to the web server. 

A higher proportion of respondents experienced problems with data collection (85%) than with data transmission (66%), 

however overall, data collection problems occurred less frequently with the majority experiencing problems on a monthly basis 

compared with on a weekly basis for data transmission. 

A B 
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usual activities (Q1), how frequently would you like to complete home monitoring? 

(Q2), how helpful did you find it to be able to monitor your breathing, activity and weight 

at home (Q3) and what impact did home monitoring have on your ability to manage 

your health, anxiety levels and quality of life? (Q4). 

 

Half of the respondents (50%) declared that daily home monitoring interfered only 

slightly with their usual activities whilst a further 15% felt that daily home monitoring 

was not an added daily imposition (Figure 5.16A). Of note, spirometry and sputum 

collection were considered most burdensome. Interestingly despite this, the majority 

of respondents (46%) said they would prefer to monitor their health only on a weekly 

basis rather than on a daily basis (Figure 5.16B). A considerable proportion of 

respondents (15%) offered alternate options for frequency of monitoring with the most 

common suggestion being less frequent (e.g., weekly) monitoring when well and 

increased frequency when unwell. However, some participants suggested only 

performing home monitoring when unwell, or no more frequently than thrice weekly, 

whilst others suggested daily monitoring for some measurements (e.g., lung function) 

and less frequent monitoring for others (e.g., weight). 

 

Despite previous studies suggesting poor uptake of home monitoring in CF (reviewed 

in Detecting APEs using home monitoring, Section 1.2.3), the vast majority (77%) of 

survey respondents found home monitoring a helpful activity to do (Figure 5.17A). 

Interestingly, of the subset of respondents (20 out of 102) who provided insufficient 

days of recordings, the majority (75%) still declared that they found it helpful to be able 

to monitor their breathing, activity levels and weight at home. The main reasons 

provided for not continuing with daily monitoring included difficulties balancing daily 

life with remembering to complete regular monitoring and loss or breakage of 

equipment. 

 

Respondents’ perceptions of the impact of home monitoring on their ability to manage 

their own health were very encouraging with more than half (58%) declaring that their 

self-management was made better by being able to monitor their health at home 

(Figure 5.17B). More importantly, only a small minority (5%) felt that their self- 

management was made worse. Furthermore, over a third (37%) of respondents felt 

that their general quality of life was improved by home monitoring. 
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Figure 5.16. Survey responses from participants (n = 102) assessing (A) the impact of daily home monitoring on their usual 

activities and (B) their preferences on the ideal frequency of home monitoring. Most respondents (65%) declared that daily 

home monitoring interfered only slightly, if at all, with their usual activities. However, most (46%) preferred to complete home 

monitoring only on a weekly basis. Alt. daily: Alternate daily 

A B 
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Figure 5.17. Survey responses from participants (n = 102) assessing (A) the helpfulness of being able to monitor their health 

at home and (B) the impact of home-monitoring on their self-management, anxiety levels and quality of life (QOL). The vast 

majority (75%) found it helpful to be able to monitor their breathing, activity and weight at home and most (58%) found that 

home monitoring improved their self-management. Although the majority (73%) of respondents felt that home monitoring either 

improved or had no impact on their anxiety levels, a significant proportion (28%) found that home monitoring made their anxiety 

levels worse. Over a third (37%) of respondents felt that home monitoring contributed to an improvement in their QOL. (*):one 

respondent missed answering this question 
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Although the majority of respondents (46%) did not feel that home monitoring had any 

impact on their overall QOL a small proportion (15 out of 102, 17%) declared that 

home monitoring negatively impacted on their QOL (Figure 5.17B). The main reasons 

provided for this were: 1) technical difficulties (e.g., faulty sensors (with 

inconsistent/unreliable recordings or missed recordings) causing frustration (e.g., with 

having to redo measurements) or in some cases leading to increased anxiety due to 

misleading results and 2) daily frequency of monitoring became tedious over time, 

especially on top of their usual treatment burden. 

 

Increased levels of user anxiety (due to focus on the disease condition and regular 

observation of negative health trends) are anecdotally often cited as a key reason to 

reconsider frequent home monitoring in CF with the possibility that intensive health 

tracking may lead to negative feedback and behaviour change. This study is the first 

to qualify user feedback on this particular issue. Almost a quarter (22%) of 

respondents felt that their anxiety levels were improved by home monitoring whilst half 

(51%) declared that home monitoring had no impact on their anxiety levels. Although 

these results are reassuring, a number of respondents (28%) felt that home monitoring 

made their anxiety levels worse. Discordance between in-home and in-clinic lung 

function results were cited most commonly as a cause for increased anxiety and 

dissatisfaction with the home monitoring process. Comparison of clinical and home 

monitoring characteristics between the three cohorts (e.g., anxiety better, anxiety 

unchanged, anxiety worse) revealed some significant differences between the groups 

with regards to age, the presence of pre-existing anxiety/depression and the 

proportion of respondents who were non-compliant with home monitoring, however of 

note, these differences were not skewed toward the cohort who reported increased 

anxiety from home monitoring (Table 5.6). 

 

5.3.3.6 Change in disease-specific health-related QOL scores with home 
monitoring 

The response rates for the CFQ-R were considerably lower than for the study-specific 

survey, with only eighty-eight (59%) participants completing both pre-and post-

questionnaires to allow for comparison. Of note, two participants from this cohort 

completed the survey despite withdrawing from the study. The mean CFQ-R domain 

scores at study initiation (Pre-CFQ-R) and study end (Post-CFQ-R) and the change in  
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Table 5.6.  Comparison of demographic, clinical and home monitoring characteristics between groups of SMARTCARE survey 

respondents based on the impact of home monitoring on their anxiety levels. 

 Anxiety better  

(n = 22) 

Anxiety unchanged  

(n = 98) 

Anxiety worse  

(n = 28) 
p value 

Age (yr) - mean  37.7 ± 8.2 29.8 ± 8.7 34.0 ± 10.0 0.0004 

Female sex – no. (%) 9 (41) 53 (54) 20 (71) 0.0885 

BMI - mean  23.5 ± 2.1 22.5 ± 3.7 22.7 ± 2.9 0.5128 

FEV1 (% predicted) - mean  46 ± 12.1  57.8 ± 22.9 57.9 ± 22.1 0.0638 

CFRD - no. (%) 12 (54) 35 (73) 14 (50) 0.1549 

Pre-existing anxiety/depression - no. (%) 0 (0) 11 (11) 0 (0) 0.0482 
Part-time or Full-time employment - no. (%) 12 (54) 59 (60) 17 (61) 0.8776 

CFQ-R treatment domain scores available - no. (%) 21 (95) 45 (46) 22 (79) <0.0001 

                Pre - mean  45.4 ± 20.7 51.4 ± 19.2 44.5 ± 26.8 0.3682 

                Post - mean  35.9 ± 25.2 52.9 ± 20.1 44.1 ± 24.5 0.0169 

     

Inhaled antibiotics and/or mucolytics - no. (%) 22 (100) 91 (93) 27 (96) 0.3642 

Intravenous antibiotic days - median 14 (0 – 27.8) 15 (0 – 29) 19 (0 - 38.3) 0.87029 

     

Insufficient recording days – no. (%) 1 (5) 30 (31) 3 (11) 0.0073 

 
  
Differences between continuous variables were examined with one-way ANOVA for parametric data and Kruskal-Wallis test for non-parametric 

data. Differences between categorical data were examined with c2 tests. FEV1: forced expiratory volume in 1 second, BMI: body mass index, 

CFRD:CF-related diabetes.  

202  



        

     203 

scores from baseline are summarised in Table 5.7. Somewhat unexpectedly, given 

the responses obtained from the SMARTCARE survey questions assessing the 

impact of health monitoring on general QOL, the majority of the CFQ-R domain scores 

did not show a statistically significant improvement following home monitoring. 

Furthermore, I identified a significant deterioration in emotional and social functioning 

domain scores. Of the 83 respondents who completed both the SMARTCARE survey 

and CFQ-R, only a minority (14%, 12 out of 83) had declared on the SMARTCARE 

survey that their QOL was made worse by home monitoring.  The discordance 

between survey results may suggest that assessment of impact of home monitoring 

on treatment burden was inadequately addressed by the non-validated tool. In any 

case, this warrants further investigation to clarify if home monitoring is an explanatory 

factor for the deterioration in health-related QOL scores obtained on the CFQ-R. 

 

5.3.3.7 User preferences on home monitoring to replace clinic attendance 

In line with best practice guidelines, individuals with CF must attend clinic on a regular 

basis (at least three- to four-monthly), even when stable (79,80,441). This is often not 

without significant disruption to their everyday lives. Participants were therefore 

assessed on whether they would prefer to use home monitoring rather than attend 

routine clinic visits. Although the combined majority of participants (40%) were 

probably, if not definitely, in favour of replacing clinic attendance with home monitoring, 

the largest single proportion (28%) of respondents were not in favour of doing so 

(Figure 5.18). A key reason given against replacing clinic visits was inaccurate 

recordings or faulty equipment. 

 

5.3.4 Using an ML approach to define the onset of an APE 

In order to better understand the relationships between changes in home monitored 

measures and exacerbation events we applied ML approaches to learn new insights 

from the complex dataset. First, in order to generate a typical (‘average’) profile of the 

rise/fall in home measures in the period preceding treatment for an APE, we needed 

to define the onset of an APE, which we considered a hidden/latent variable.  In the 

absence of a consensus definition for the onset of an APE (reviewed in Defining a CF 

exacerbation, Section 1.2.2) we defined the start of an APE as the point at which a 

change in the home-monitored measures is sustained, eventually culminating in an 

antibiotic treatment course.   
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Table 5.7. Domain scores at study initiation and study end for the CFQ-R 

respondents (n = 88). 

CFQ-R domain 
Pre-study 

(mean, SD) 

Post-study 

(mean, SD) 

D CFQ-R 

(mean, SD) 
p value 

Physical functioning 48 ± 22 47 ± 23 -2 ± 19 0.4371 

Role perception 62 ± 23 62 ± 25 0 ± 18 0.8759 

Vitality 42 ± 19 41 ± 21 -2 ± 20 0.4677 

Emotional functioning 72 ± 18 67 ± 21 -4 ± 17 0.0188 

Social functioning 61 ± 19 56 ± 20 -5 ± 17 0.0056 

Body image 69 ± 25 68 ± 25 -1 ± 23 0.6635 

Eating disturbance 83 ± 21 85 ± 20 2 ± 20 0.4184 

Treatment burden 48 ± 22 46 ± 23 -2 ± 19 0.3904 

Health perception 48 ± 22 45 ± 26 -3 ± 28 0.4184 

Weight 73 ± 32 72 ± 34 -1 ± 36 0.6864 

Respiratory symptoms 51 ± 20 51 ± 20 0 ± 18 0.7505 

Digestive symptoms 78 ± 21 78 ± 19 0 ± 21 0.8181 

 

 

 

                      
 

 

Differences between pre-study and post study CFQ-R domain scores were examined with 

paired t-tests. CFQ-R: Cystic Fibrosis Questionnaire – Revised. D CFQ-R: change in CFQ-R 

domain score over time. 

 

 

Figure 5.18. Survey responses from participants (n = 102) assessing whether they would 

prefer to use home monitoring instead of attending a routine clinic appointment for clinical 

review. More than a quarter (28%) of participants were not in favour of replacing routine clinic 

with home monitoring, however, the majority (40%) were probably, if not definitely, in favour 

of doing so. 
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However, between antibiotic treatment episodes, we observed considerable variation 

in the time from the point of a change in the home-monitored measures to antibiotic 

treatment initiation. An example of this variation is shown in Figure 5.19. 

 

 
 

 

 

 

 

 

 

We applied an unsupervised ML approach, using a probabilistic generative model, to 

learn the latent variable (onset of the APE) for each measurement record across all 

the APE episodes in the dataset. The average value of each measurement type during 

an APE was also assigned a latent profile in the model. Probability distributions for 

these latent quantities were inferred using an iterative algorithm [Expectation 

Maximisation (494)]. From the output of this process, the model was able to align the 

individual records of each measurement type, (accounting for the variations in time to 

treatment initiation from the onset of clinical decline) and generate a typical, temporally 

aligned profile for each measurement type over the period of an average APE (Figure 

5.20). From these inferred APE profiles for each measurement type, we were able to 

determine the start of an APE using the consensus inflexion point across all the 

measurement profiles. This consensus point revealed that all measurement types  

Figure 5.19. Variation in the time to treatment from the onset of a sustained change in home 

measures (illustrated for cough and wellness scores). In a 40-day window prior to starting 

antibiotics, the time from clinical deterioration (e.g., fall in cough and wellness symptom 

scores) to starting antibiotic treatment was longer for one APE episode (A) than for the other 

(B). Cough and wellness scores expressed as percentages with zero = worst ever and 100 = 

best ever) (Figure courtesy of Damian Sutcliffe).  
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began to fall together within a 3-4 day window. Notably, we also observed a transient 

partial recovery around 10 days from the start of an APE (possibly reflective of patient-

driven self-management in order to prevent further decline). This transient partial 

recovery suggests that interventions other than antibiotic treatment may have the 

potential to avert an APE.  However, this partial recovery was then followed by a 

further prolonged decline, with recovery eventually coinciding with starting antibiotic 

treatment. In addition, the start point of the APE (that we determined from the learnt 

latent average change profiles generated by the model) could be mapped back to the 

Figure 5.20. Inferred average profiles of the change in home monitored measures over the 

course of an average APE using an unsupervised ML model. The likely onset of the APE 

(black line) is taken as the consensus inflexion point at which sustained changes (as 

determined by the ML model) in all the measurements begins.  The measurements are 

relatively stable, with some mild daily variation, prior to the onset of the APE. From the start 

of the APE, the start of decline occurs with relatively consistent timings across all 

measurements (e.g., within a 3-4 day window) with an earlier fall observed in FEV1 and O2 

saturations than for the other measures. Larger deviations from baseline were observed for 

the self-reported measures (cough and wellness) than for the device-recorded measures. A 

non-sustained partial recovery in physiology and symptoms was also observed 10 days after 

the APE onset. (Figure courtesy of Damian Sutcliffe).  
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original measurement records to provide a start date label for each APE. The labelled 

dataset could then be used, with a supervised ML approach, to generate a predictive 

model for earlier detection of an APE (discussed in section 5.3.6). 

 

5.3.5 Characterising different types of APEs  

Our initial alignment model inferred a consensus picture of an average APE. We 

wondered, however, whether different types of APEs might exist. To explore this 

possibility, we next extended our model to variously allow for 2, 3, or 4 distinct sets of 

profiles, each representing a different class of APE. We found that we were able to 

classify APEs into three different classes, each exhibiting a unique average profile 

(Figure 5.21): Class 1 (51% of all APEs) was characterised by a synchronous fall in 

all signals interrupted by a transient partial recovery period (similar to the consensus 

profile; Figure 5.20); Class 2 (25% of all APEs) exhibited an early decline in cough and 

wellness alone, followed by a partial interim recovery, and then a fall in all signals; 

while Class 3 (24% of APEs) showed recovery in signals prior to the onset of the APE 

followed by a steep decline in all signals without an interim recovery period. 

 

 
 

 

 

We also investigated for associations between class membership and other clinical 

variables of interest and found that: Class 1 APEs were more commonly associated 

with individuals who were chronically infected with P. aeruginosa (c2 test, p = 0.03) 

(Figure 5.22A); Class 2 APEs were associated with lower C-reactive protein (CRP) at 

the start of intravenous antibiotics (Mann-Whitney U-test, p = 0.03) (Table 5.8) and 

Figure 5.21. Categorisation of acute pulmonary exacerbations into different classes. 

(Figure courtesy of Damian Sutcliffe). 
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with individuals who had fewer treatment courses during the study period (c2 test, p = 

0.006) (Figure 5.22B, Table 5.8); and Class 1 and Class 3 APEs were associated with 

individuals who had a second APE within four weeks of the previous APE (c2 test, p = 

0.04 and p = 0.008 respectively) (Table 5.8). It must, however, be acknowledged that 

it is difficult to be certain if this was a new APE or a continuation of a previous episode. 

 

      
 

 

 

 

 

 

Of note, exacerbation class membership was not associated with stable FEV1, body 

mass index (BMI) or age. Furthermore, we found that some individuals tended to 

experience predominantly only one class of APE, whilst others went through multiple 

types of APE (Figure 5.23). 

 

5.3.6  Using ML to predict for an APE 

Next, we sought to develop a predictive algorithm for the onset of an APE; a function 

that might augment clinical decision support for individuals with CF and their care 

teams. We used the output from our single class alignment model (described in Using 

an ML approach to define the onset of an APE, Section 5.3.4) to label each day in a 

participant’s data record as either occurring during an APE or not.  Days occurring  

Figure 5.22. Associations between exacerbation class and clinical variables of interest. (A) 

Class 1 exacerbations were more commonly found in individuals chronically infected with P. 

aeruginosa (c2 test, p = 0.03). (B) Class 2 exacerbations were more commonly associated with 

individuals who experienced fewer treatment courses over the study period. (c2 test, p = 0.006). 

(Figure courtesy of Damian Sutcliffe). 
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during antibiotic treatment courses (or between two closely associated sequential 

treatment courses) were excluded. Using a supervised ML approach, we employed a 

probabilistic regression classifier and used subsets of the data to iteratively train and 

then test the algorithm (using four-fold cross-validation).  

 

The classifier used features derived from a trailing window of measurements on a 

subset of the data and aimed to predict the exacerbation label for the day following 

the measurement window. We ensured the model had no visibility of future data (to 

simulate the requirement for use in the clinical setting). We defined the true positive 

rate of the classifier as the proportion of APE periods where we correctly identified an 

APE, and the false positive rate was defined as the proportion of the stable periods 

where we incorrectly identified an APE. For each APE episode, we defined early 

warning as the number of days between the first day the prediction exceeded the  

Differences between continuous variables were examined with Mann-Whitney U-test for 

non-parametric data. Differences between categorical data were examined with c2 tests. 

(Table courtesy of Damian Sutcliffe). 

Table 5.8. Comparison of clinical and demographic characteristics between exacerbation 

classes. 
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trigger threshold and the day treatment was administered. We then calculated the 

average over all APE episodes. The classifier performed well, with an area under ROC 

curve of 88.9% (Figure 5.24A), and was able to provide 11 days advance warning of 

an impending APE at a clinically acceptable false positive rate of 22% (Figure 5.24B).  

The false positive rate was deemed clinically acceptable as the consequence would 

be a conversation with the clinical team, at which point an appropriate management 

plan would be initiated (e.g., no further action required). We also examined the relative  

Figure 5.23. Summary of acute pulmonary exacerbation events experienced by participants 

over the course of the study period, colour coded according to exacerbation class (Class 1 in 

green, Class 2 in blue and Class 3 in red). The grey bars denote antibiotic treatment 

immediately following an exacerbation (note, some treatment episodes were not associated 

with exacerbation events due to insufficient data). A summary of the exacerbation types 

experienced by each participant is illustrated in the colour bar on the right-hand side of the 

plot. (Figure courtesy of Damian Sutcliffe). 
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contributions of individual features to the performance of the predictive classifier 

(Figure 5.25) and found that symptom features (predominantly ‘wellness’ rather than 

‘cough’) provided considerable episodic prediction value over the physiological 

measurements (FEV1, O2 saturations, and pulse rate). The classifier performed best 

when both symptom features and physiological features were used together. 

                 
 

 

 

 

 

 

Figure 5.24.  Evaluation of the predictive classifier. (A) ROC plot for the ability of the 

predictive algorithm to accurately detect an APE. (B) Early warning plot of the average time 

from detection of an APE to initiation of antibiotic treatment. (Figure courtesy of Damian 

Sutcliffe). 

Figure 5.25.  Relative contributions of individual features (wellness, cough, FEV1, O2 

saturations, and pulse rate to the performance of the predictive classifier. (Figure courtesy of 

Damian Sutcliffe). The Episodic Prediction Value is a quality measure that rewards high 

predictions for episodes during an exacerbation (e.g., with true labels), and low predictions 

for episodes during stable periods (e.g., with false labels). First, the Average True Prediction 

and Average False Prediction are calculated as the average episodic predictions during true 

and false episodes respectively. The Episodic Prediction Value is the difference between 

them. In grey are the features contributing to each Episodic Prediction Value. (Figure courtesy 

of Damian Sutcliffe). 
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Of note, the predictive performance of the model was nearly as good when using just 

wellness, O2 saturations and pulse rate, which suggests that home monitoring may 

not have to incorporate regular spirometry, which is time consuming, effort dependent 

and can cause discomfort when performed. 

 

 

5.4. DISCUSSION 

 

Cystic fibrosis care has seen remarkable advances over the last five decades that 

have led to major improvements in life expectancy (73). However, for individuals with 

CF this has been accompanied by a high daily treatment burden and regular visits to 

the clinic, even when stable. Periods of ill health, most often triggered by APEs, require 

intensification of treatment and clinical monitoring, which adds to the disruption of 

everyday life and negatively impacts wellbeing (129).  Moreover, delays to recognition 

and treatment of APEs accelerate decline in lung health and adversely affects survival 

outcomes (127).  

 

The rapid advances in digital technology and widespread adoption of connected 

wearable sensor devices and health apps to track and change health behaviours by 

the general population has led the healthcare sector to consider leveraging their use 

for chronic disease management, particularly as a means to enable timely 

personalised care, empower self-management, improve patient outcomes and reduce 

unnecessary healthcare utilisation. In CF, unique scope exists for the application of 

home-based, self-monitoring strategies, including technologically-supported self-

management, earlier detection and treatment of APEs and nosocomial infection risk 

reduction by minimising routine hospital visits when well.  

 

This multi-centre, non-interventional study is the first of its kind to investigate the 

feasibility and acceptability of using digital technology, via commercially available 

Bluetooth-enabled sensor monitoring devices and a smartphone application, to 

complete daily home monitoring in adults with CF. Furthermore, this is also the first 

study to apply ML approaches to high frequency physiological and symptom-based 

data, collected with home monitoring, in order to better understand and identify APEs 

in adults with CF. 
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A key priority of this study was to streamline health monitoring and minimise any 

impact on the existing daily treatment burden for an individual with CF. This was 

achieved with the development of a smartphone- and web-based home monitoring 

system.  The choice of home monitoring parameters was guided by the findings of an 

earlier pilot study (TeleCF) (discussed in Chapter 3) and in keeping with currently used 

measures for the diagnosis of APE in clinical practice. Data collection was simplified 

through use of a unified interface on a smartphone, providing participants with easy 

access to their health data. Data capture was excellent, with a very low percentage of 

missed or repeated measurements logged by the monitoring devices.  

 

Previous criticisms of home monitoring in CF have included concerns regarding the 

reliability and accuracy of electronically monitored home-based lung function in the 

absence of supervision by a dedicated respiratory physiologist (495). Notably, in this 

study, the agreement between in-home and in-clinic spirometry measurements was 

very good, with only a 4% of predicted difference in FEV1 found between the two 

devices. However, there was a tendency for the in-home device to underestimate lung 

function at lower values, with the converse true at higher values. This may be related 

to procedural issues (e.g., poor effort or user technique) in unsupervised recordings 

or to differences between the two instruments. However, by selecting the highest lung 

function measurement for each day, according to BTS criteria, we reduced the impact 

of suboptimal efforts on our analysis. Nonetheless, future use of this system for 

diagnostic and monitoring purposes will need to take this into account, particularly as 

data unreliability was cited as a source for discontinuation and increased anxiety by a 

minority of participants. 

 

This study has demonstrated that daily home monitoring is technically feasible and 

helpful for adults with CF. Users found the smartphone application and monitoring 

devices easy to use and, for the majority, technical issues with the monitoring system 

were infrequent.  Adherence to electronic monitoring in this study was significantly 

better than adherence rates reported in previous CF monitoring studies (203,207), with 

the majority of participants (48%) completing daily measures for at least five months 

of the 6-month study period. Furthermore, older participants were more likely to adhere 

to the monitoring schedule than their younger counterparts. We also did not observe 

any differences in clinical characteristics, including severity of lung function 
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impairment and treatment burden, between participants who adhered to monitoring 

and those that did not. It is likely that the factors influencing adherence to home 

monitoring are not adequately captured by assessment of cohort demographics and 

clinical characteristics, and warrants a more detailed exploration. 

 

Studies evaluating the impact on self-management of health-monitoring using digital 

technologies (such as smartphone applications, health trackers) in CF are lacking.  

However, recent work in asthma and diabetes has demonstrated improvement in 

health outcomes and self-management as a consequence of their application 

(496,497).  This is the first study to report user feedback on the impact of home 

monitoring using newer technologies in adults with CF. The majority of participants 

reported minimal imposition on their day-to-day activities from taking part in daily home 

monitoring with this technology. Furthermore, most considered it helpful to be able to 

track their symptoms and physiology at home as this assisted in their self-

management. Nonetheless, it should be noted that most preferred to reduce the 

frequency of health monitoring to at least weekly, particularly when well. The reasons 

for this were not immediately clear. However, it is likely that it reflects a normal desire 

to minimise the dominance of the disease in an individual’s life when stable. 

 

A common criticism raised against home monitoring by CF clinicians and caregivers 

is that frequent tracking of health measures, in addition to the existing care activities 

that individuals with CF must undertake, may reinforce the presence of CF in their 

lives and may exacerbate or precipitate anxiety or unhelpful health behaviours 

(495,498). These concerns were not borne out in this study. Most participants 

experienced no change in their baseline anxiety levels with some reporting improved 

anxiety levels as a result of home monitoring. Participants who reported such 

improvements tended to be older than those who reported no change. This may 

suggest that for older individuals with CF, anxiety may be more closely related to 

health status whilst for younger individuals the drivers are multifactorial.  

 

Unexpectedly, findings from this study did suggest that daily home monitoring had a 

negative impact on perceptions of social and emotional functioning domains as 

captured by the disease-specific assessment tool; CFQ-R. It is not entirely clear if this 

can be linked to home monitoring and it may be that alternate assessment tools are 
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required to explore these domains further. However, perceptions of treatment burden 

did not change following introduction of home monitoring. Our results contrast with 

that of a similar analysis recently reported by Lechtzin et al (215). In their large-scale, 

randomised, controlled trial, which evaluated the benefits of electronic home 

monitoring of FEV1 and respiratory symptoms in early detection of pulmonary 

exacerbations among adolescents and adults with CF, participants randomised to the 

early intervention arm (twice weekly spirometry and respiratory symptom scores via 

an electronic monitoring system over a 12-month period) received twice as many 

protocol-defined review visits and more treatments than the usual care group, despite 

no association with a slower rate of decline in FEV1.  Furthermore, the intervention 

arm encountered several technical issues during this study. Therefore, not 

unexpectedly, an increased treatment burden was associated with the home 

monitoring intervention. Although our study, as a non-interventional trial, will have a 

lesser impact on treatment burden comparatively, it is noteworthy that technical issues 

were a significant deterrent to adherence in the study by Lechtzin et al., underscoring 

the importance of streamlining technology to simplify care and maintain engagement. 

 

Given the impact of APEs on the survival and wellbeing of individuals with CF, there 

is an urgent need to better characterise the changes that precede APEs in order to be 

able to identify their onset promptly and enable timely intervention. Using 

unsupervised ML methods, this study is the first to report on a characteristic profile of 

the temporal changes in physiology and symptoms associated with an average APE 

in adults with CF. This derived profile enabled us to define an accurate start date for 

an average APE, which provides a label to train ML-based predictive algorithms that 

can be integrated into clinical decision support systems. The average APE profile also 

revealed a characteristic partial recovery after about 10 days from the start of the 

exacerbation. This transient improvement in health may be due to the institution of 

self-management strategies by the individual, such as increased/improved airway 

clearance or adherence with routine medications, to avoid the need for antibiotic 

treatment. This suggests that home monitoring, supported by ML-based algorithms, 

has the potential to enable behaviour change and provide opportunities for non-

antibiotic-based interventions. Extension of our initial alignment model permitted the 

identification of three different classes of APE: Class 1 exacerbations were similar to 

the consensus average profile and associated with chronic P. aeruginosa infection; 
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Class 2 exacerbations showed symptomatic decline prior to falls in lung function 

(possibly as a consequence of an initial upper respiratory tract infection, were 

associated with lower systemic inflammation (as measured by CRP) and more 

prevalent in individuals with low exacerbation frequencies; and Class 3 exacerbations 

were associated with a recent previous APE and a steep clinical deterioration, with no 

interval improvement, possibly due to overwhelming infection. Further work is needed 

to understand whether these exacerbation classes reflect distinct pathological states, 

different intrinsic host responses to lung infection and inflammation, or different 

initiating triggers of exacerbation. Using a supervised ML approach and the output 

from our alignment model, this is the first study to report on a predictive algorithm for 

earlier detection of APEs in adults with CF. Using our predictive model, we identified 

APEs in advance, by around 11 days. If incorporated into a home monitoring platform 

this function offers the potential for early intervention, thereby possibly reducing 

cumulative inflammatory lung damage.  

 

This study has several limitations that may influence the interpretation of our findings. 

First, qualitative feedback on feasibility and acceptability of home monitoring was 

collated only from survey respondents, which may confound conclusions made due to 

selection bias. Survey respondents may be more receptive of the home monitoring 

process overall. Indeed, contrary to expectations that younger participants may be 

more technologically-literate and therefore engage better with the monitoring system, 

non-respondents tended to be younger and less compliant with monitoring. Barriers to 

adherence with treatments are well documented among younger individuals with CF 

therefore further consideration of user priorities in this group would be beneficial to the 

longer-term application of this system. Second, this was a non-interventional study 

therefore no comment can be made on the clinical impact of home monitoring on usual 

clinical outcomes, specifically in terms of its utility in predicting for and minimising 

APEs. Third, no assessment or recommendation can be made on the practical impact 

home monitoring may have on clinical care provision, how it may be received by 

clinicians and the wider CF multi-disciplinary team and how it may be integrated into 

the current models of CF care. Fourth, our smartphone application was developed 

only for an android operating system. Although an android smartphone phone was 

provided to participants during this study, this feature limits its accessibility and 
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potential for integration with other sensor devices that may enhance home monitoring 

capabilities. 

 

Future work in this area will need to focus on determining what the optimum frequency 

of home monitoring is across the parameters assessed in order to minimise treatment 

burden and maintain clinical utility; developing a smartphone application that is device 

agnostic improving accessibility, ensuring that technical issues are overcome, refining 

and testing the predictive algorithm on larger cohorts and assessing its utility against 

current clinical practice; and exploring the cost benefit of integrating home monitoring 

into the clinic setting, and how this may affect clinical interactions (both from the 

perspective of the patient and the clinician) and delivery of best patient care. Currently, 

a large-scale, multi-centre trial (Project Breathe) is underway to address many of these 

questions. 
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6. CONCLUSIONS 
 

6.1  A restatement of the research aims 

Acute pulmonary exacerbations are the primary driver of morbidity and mortality in the 

CF population. This makes understanding what triggers them and developing 

strategies to optimise earlier detection a key priority. Despite their clinical significance 

little is known about what factors precipitate these acute deteriorations in lung health 

from a stable baseline.  

 

The aim of this dissertation was to examine whether fluctuations in the expression of 

certain phenotypic traits by clonal populations of P. aeruginosa, the dominant CF 

airway pathogen, were responsible for triggering exacerbation events. Moreover, 

before this work, very little was known about the changes in physiology and symptoms 

that precede the onset of an APE. Previous studies have tried to address this question 

but were limited by use of analytical techniques that dealt poorly with multi-dimensional 

datasets. This work aimed to apply ML techniques to daily home monitored data of 

patient physiology and symptoms to better understand the changes which precede 

exacerbation onset, and from these new insights, assess for predictive signals that 

may facilitate earlier detection of exacerbation onset.   

 

6.2  Key findings 

 

6.2.1 TeleCF: Investigating the use of home monitoring and single biomarker 

profiling in CF sputum to predict for acute pulmonary exacerbations 

This study was the first to examine CF sputum samples for changes in the levels of, 

Exotoxin A, a secreted P. aeruginosa virulence factor, before, during and after 

antibiotic treatment for an APE. The results confirmed that Exotoxin A alone is an 

unreliable biomarker of exacerbation onset, and, in contrast to earlier studies, does 

not correlate well with CF disease severity or markers of systemic inflammation.  

 

In addition, this prospective, pilot study of 15 participants, was the first to document 

the extent of day-to-day variation in symptoms (cough and wellness) and several 

physiological markers (lung function, oxygen saturation, heart rate, weight, activity 

levels) during illness and health in adults with CF. Whilst analysis suggested there 
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might be signal changes, that would be predictive of exacerbation onset, using a 

combination of home-measured parameters, establishing a robust prediction algorithm 

was not possible using conventional statistical methods due to the complex nature of 

the dataset.   

 

The findings of this study, in the form of an abstract and poster presentation (awarded 

Best Poster presentation), were presented at the 37th European Cystic Fibrosis 

Conference (Gothenburg, Sweden) (499). 

 

6.2.2 Investigation of changes in the phenotypic expression of clonal 

populations of P. aeruginosa as a trigger for exacerbation onset in adults with 

CF. 

This work reported on the phenotypic analysis of the largest collection (n = 4353) of 

longitudinally collected co-eval, P. aeruginosa isolates from chronically infected adults 

(n = 9) with CF. We found no evidence for the emergence of a particular sub-

population of phenotypic variants associated with periods of acute pulmonary 

exacerbation. Specifically, we have shown categorically that the production of QS-

associated regulatory and virulence factors is not significantly associated with these 

events, irrespective of the genetic background (e.g., epidemic versus non-epidemic) 

of the P. aeruginosa clonal population.  

 

This work, in addition, was the first to report on a comparative analysis of differences 

in functional phenotypes between non-epidemic CF isolates of P. aeruginosa and the 

two most prevalent, epidemic CF strains in the UK: the LES and the MES. We reported 

on the first ever characterisation of LES isolates as predominantly, non-motile, small 

colony variants with a greater tendency to retain production of biofilm and QS-

associated virulence factors, in comparison to the MES or non-epidemic isolates.  

 

Quorum sensing is currently understood to play an essential role in the regulation of 

P. aeruginosa virulence factor production, important for the initiation and maintenance 

of infections. Yet, a puzzling observation is that P. aeruginosa isolates collected from 

chronic CF infections appear to frequently lose expression of lasR, commonly 

described as the ‘master regulator’ of the hierarchical QS network. Increasingly, 
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evidence for a ‘re-wiring’ of QS regulatory circuitry in CF-evolved P. aeruginosa 

isolates suggests that the rhlIR system plays an indispensable role (which may 

compensate for loss of LasR activity) in controlling QS activity. In support of these 

observations, this study reported on a very high prevalence (81%) of OdDHL-deficient 

isolates (suggestive of mutations in lasIR) without accompanying deficiencies in 

traditionally LasR-controlled phenotypes (including preserved RhlI-generated signal). 

We also found that although QS-signalling (in particular RhlI-generated signal) and 

QS-associated phenotypes were more likely to be maintained by LES isolates, QS 

signal production was typically independent of the production of QS-associated 

virulence factors. Whether this suggests a decoupling of QS signalling from gene 

transcription in the LES remains to be determined.  

 

6.2.3 SMARTCARE: A feasibility analysis of home-monitored physiology and 

symptoms using smart devices in adults with CF to better understand and 

predict for changes preceding acute pulmonary exacerbations 

The availability and use of new digital technologies (connected wearable monitoring 

devices, web-based and mobile applications) to manage chronic disease at a distance 

is increasing and has been accelerated in the wake of the Covid-19 pandemic. Until 

now, robust, large scale, feasibility and acceptability studies of digital technology-

enabled home monitoring in CF has been lacking. This multi-centre study of 147 

participants was the first to examine the use of blue-tooth-enabled monitoring devices 

and smartphone technology to track daily symptoms and physiology in an adult CF 

population. Moreover, it was the first study to report on user feedback on the home 

monitoring experience, much of which was positive.  

 

The current model of CF care is largely hospital-based with patients having to travel 

to their CF centre for review at least every 2-3months. However, the increasing 

recognition of cross-infection as a risk, further heightened by the SARS-CoV-2 

pandemic, has necessitated the consideration of new ways to limit unnecessary 

hospital contact. Home monitoring, with its potential to be incorporated into video 

clinics, provides a novel means of triaging which patients really need to attend clinic 

for an in-person review. This not only addresses cross-infection risks but improves 

convenience for individuals with CF, enabling a reduction in travel burden and time off 

work and education.  
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These new digital technologies also hold benefits for the CF clinician. Information 

gathering and analysis through home monitoring systems provides an opportunity to 

augment clinical decision-making through enabling more timely identification of 

intervention points (possibly minimising the need for more aggressive therapies), and 

offering real-time feedback on the efficacy of starting new interventions and therapies. 

This can also provide an opportunity to stop ineffective therapies and reduce the 

treatment burden for individuals with CF. 

 

Moreover, through the application of ML approaches to high frequency home 

monitored data, it was possible to characterise, for the first time, a typical profile of the 

changes in physiology and symptoms taking place during an APE. Extending on this 

work, we identified three distinct exacerbation profiles: Class 1 associated with chronic 

P. aeruginosa infection, Class 2 associated with lower systemic inflammation and low 

exacerbation frequency, and Class 3 associated with a recent previous exacerbation. 

It is not yet known whether these distinct classes represent different 

pathophysiological processes, initiating factors or host responses to infection and 

inflammation.  The generation of a typical profile of an average APE also allowed us 

to develop an ML-based predictive model that was able to provide advance warning 

of an APE by around 11 days. Incorporation of this ML-based predictive algorithm for 

APEs into a home monitoring platform could not only support more patient-centred, 

clinical decision-making but also encourage, support and empower responsive self-

management, for the benefit of improved well-being and long-term lung health. 

 

Part of the findings of this work have been submitted for publication [Sutcliffe D, Ukor 

E et al. 2020 Machine learning predicts acute pulmonary exacerbations in cystic 

fibrosis (under review)].  

 

6.3  Future directions 

Future work on home monitoring technologies in CF should build upon the work 

presented here and explore the feasibility of incorporating these systems into routine 

clinical care. Cost benefit analyses and longer-term assessments of the impact on 

health outcomes, health care usage, satisfaction with care and patient-reported quality 

of life will need to be undertaken.   Future studies would also benefit from a mixed-

methods approach in which feedback is sought from both patients and clinicians. This 
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can provide insights into aligning care goals between individuals with CF and their 

care team.  

 

Further work on this large collection of epidemic and non-epidemic CF-evolved P. 

aeruginosa isolates should initially focus on characterising the genetic basis for the 

preservation of traditionally LasR-regulated phenotypes in isolates deficient in las 

signalling. Particular focus should be paid to isolates in whom preferential 

conservation of the rhl signalling system was observed. Combining proteomic and 

metabolomic studies with genotype analysis of this sub-group of isolates may help 

with elucidating whether in vivo QS is RhlR-dependent in chronic CF infections.  

 

If time had permitted, I would have liked to undertake growth rate analysis on this large 

isolate cohort. This would have enriched this phenotypic screen further by providing 

insights on P. aeruginosa fitness. Of interest would have been to further characterise 

the auxotrophic isolates observed. Moreover, comparative evaluation of this subgroup 

of isolates following growth in synthetic CF sputum medium (which more closely 

reflects the in vivo nutritional environment of the CF lung) may have provided helpful 

insights into the nutritional cues that influence cell-cell signalling and P. aeruginosa 

pathogenesis.  

 

Furthermore, if time had permitted, I would have liked to apply the treatment-

independent definition of APE onset learned from the ML analysis to more accurately 

select sputum samples for phenotypic screening. This may have led to the detection 

of significant changes in microbial behaviour prior to the onset of an APE that was 

otherwise missed. 

 

Finally, given the availability of the large sputum biobank generated by the 

SMARTCARE study, of interest may be completion of detailed phenotypic 

characterisation of populations of P. aeruginosa clonal isolates collected from daily 

sputum samples from a single individual with CF over time. Such an analysis, 

combined with genotypic, metagenomic, proteomic or metabolomic analyses may 

provide unique insights into the day-to-day variation in clonal population behaviour 
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and structure of P. aeruginosa in relation to periods of clinical stability and 

exacerbation in the CF lung.  

 

6.4   Closing comments 

For the modern CF population with increasing access to highly effective modulator 

therapies, a majority will experience a dramatic reduction in their respiratory symptom 

burden with consequent stability in baseline health and well-being. This poses 

unexpected challenges as traditional biomarkers of disease stability become less 

sensitivity (e.g., lung function, frequency of APEs) and non-invasive airway microbial 

surveillance is reduced as patients become unable to expectorate sputum. Such 

challenges, not encountered specifically in this work given the very low numbers of 

participants on CFTR modulator therapy, may be addressed in future studies building 

on the progress made in this work.  

 

This work has provided evidence for the feasibility, acceptability and utility of home 

monitoring using digital technologies in adults with CF. It has also applied ML 

approaches to high frequency home monitored data to provide novel insights into the 

changes in symptoms and physiology occurring during the course of an acute 

pulmonary exacerbation. Furthermore, it has shown how ML-based approaches can 

be used to identify and consequently predict for the onset of acute pulmonary 

exacerbations, providing a means to augment clinical-decision making and support 

self-management in CF. With scope to be integrated with validated patient-reported 

outcome measures, opportunity exists to improve on diagnostic paradigms for APEs 

in the face of a potentially changing symptom landscape. Finally, this work has 

revealed strong phenotypic evidence for the uncoupling of the traditional QS 

regulatory circuitry in CF isolates of P. aeruginosa and, given the scale of phenotypes 

and isolates analysed, shown that the emergence of a particular phenotypic variant is 

not a trigger for acute pulmonary exacerbations in adults with CF. 
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APPENDIX 1 

 

 
NRES Committee East of England - Hertfordshire 

Victoria House 
Capital Park 

Fulbourn 
Cambridge 
CB21 5XB 

 
Telephone: 01223 597733  
Facsimile: 01223 597645 

05 December 2012 
 
Dr Andres Floto 
Welcome Trust Senior Clinical Fellow and Honorary Consultant 
Papworth Hospital NHS Foundation Trust 
Papworth Hospital 
Papworth Everard 
Cambridge 
CB23 3RE 
 
 
Dear Dr Floto 
 
Study title: A home-based, rapid and quantitative test for bacterial 

respiratory infections in patients with Cystic Fibrosis, to 
reduce admissions and length of hospital stay and to 
improve healthcare outcomes. 

REC reference: 12/EE/0462 
IRAS project ID: 110454 
 
Thank you for your letter of 21 October 2012, which we received on 22 November 2012, 
responding to the Committee’s request for further information on the above research and 
submitting revised documentation. 
 
The further information has been considered on behalf of the Committee by the Chair.  
 
We plan to publish your research summary wording for the above study on the NRES website, 
together with your contact details, unless you expressly withhold permission to do so.  
Publication will be no earlier than three months from the date of this favourable opinion letter.  
Should you wish to provide a substitute contact point, require further information, or wish to 
withhold permission to publish, please contact the Co-ordinator Miss Anna Bradnam, 
nrescommittee.eastofengland-norfolk@nhs.net. 
 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above 
research on the basis described in the application form, protocol and supporting documentation 
as revised, subject to the conditions specified below. 
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Ethical review of research sites 
 
NHS sites 
 
The favourable opinion applies to all NHS sites taking part in the study, subject to management 
permission being obtained from the NHS/HSC R&D office prior to the start of the study (see 
"Conditions of the favourable opinion" below). 
 
Non-NHS sites 
 
The Committee has not yet been notified of the outcome of any site-specific assessment (SSA) 
for the non-NHS research site(s) taking part in this study.  The favourable opinion does not 
therefore apply to any non-NHS site at present.  We will write to you again as soon as one 
Research Ethics Committee has notified the outcome of a SSA.  In the meantime no study 
procedures should be initiated at non-NHS sites. 
 
Conditions of the favourable opinion 
 
The favourable opinion is subject to the following conditions being met prior to the start of the 
study. 
 
Management permission or approval must be obtained from each host organisation prior to the 
start of the study at the site concerned. 
 
Management permission ("R&D approval") should be sought from all NHS organisations 
involved in the study in accordance with NHS research governance arrangements. 
 
Guidance on applying for NHS permission for research is available in the Integrated Research 
Application System or at http://www.rdforum.nhs.uk.   
 
Where a NHS organisation’s role in the study is limited to identifying and referring potential 
participants to research sites ("participant identification centre"), guidance should be sought 
from the R&D office on the information it requires to give permission for this activity. 
 
For non-NHS sites, site management permission should be obtained in accordance with the 
procedures of the relevant host organisation.  
 
Sponsors are not required to notify the Committee of approvals from host organisations 
 
It is the responsibility of the sponsor to ensure that all the conditions are complied with 
before the start of the study or its initiation at a particular site (as applicable). 
 
Approved documents 
 
The final list of documents reviewed and approved by the Committee is as follows: 
  
Document    Version    Date    
Covering Letter  From Jane Elliott CF 

R&D Manager  
18 September 2012  

Investigator CV  Rodrigo Andres Floto  28 June 2012  
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Letter of invitation to participant  2  21 November 2012  
Participant Consent Form  2.0  21 November 2012  
Participant Information Sheet  20  21 November 2012  
Protocol  Version 1.0  09 August 2012  
REC application  Submission Code: 

110454/364761/1/516  
18 September 2012  

Response to Request for Further Information from Dr 
Andres Floto 

 21 October 2012  

Summary/Synopsis  Version 1.0  30 July 2012  
 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for Research 
Ethics Committees and complies fully with the Standard Operating Procedures for Research 
Ethics Committees in the UK. 
 
After ethical review 
 
Reporting requirements 
 
The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 
 

 Notifying substantial amendments 
 Adding new sites and investigators 
 Notification of serious breaches of the protocol 
 Progress and safety reports 
 Notifying the end of the study 

 
The NRES website also provides guidance on these topics, which is updated in the light of 
changes in reporting requirements or procedures. 
 
Feedback 
 
You are invited to give your view of the service that you have received from the National 
Research Ethics Service and the application procedure.  If you wish to make your views known 
please use the feedback form available on the website. 
 
Further information is available at National Research Ethics Service website > After Review 
 
12/EE/0462                          Please quote this number on all correspondence 
 
We are pleased to welcome researchers and R & D staff at our NRES committee members’ 
training days – see details at http://www.hra.nhs.uk/hra-training/  
 
With the Committee’s best wishes for the success of this project. 
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Dr Steve Eckersall 
Chair 
 
Email:nrescommittee.eastofengland-norfolk@nhs.net 
 
Enclosures:  “After ethical review – guidance for 
   researchers”  
 
 
 
Email to: 
 
 
Copy to: 

Dr Andres Floto   andres.floto@papworth.nhs.uk 

 
 
Dr Ian Smith  ian.smith@papworth.nhs.uk 

 
Mrs Victoria Stoneman, Papworth Hospital NHS Foundation Trust 
victoria.stoneman@papworth.nhs.uk 
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Consent form  
 Version 2.0 21.11.2012 

1 

 
 
 

PATIENT CONSENT FORM (Home wellness study) 
 
 

TITLE OF STUDY:   A home-based, rapid and quantitative test for  
                                  bacterial respiratory infections in patients with  
                                  cystic fibrosis, to reduce admissions and hospital  
                                  stay length and to improve healthcare outcomes  

 
Name of researcher: Dr Andres Floto 
 
                                   Please initial each box & sign at bottom  

1.  1. I confirm that I have read and understand the ‘Patient Information Sheet’ version 20 
dated 21 November 2012 for the above study and I have had an opportunity to ask 
questions. 

 

2.  I understand that my participation is voluntary and that I am free to withdraw at any 
time, without giving any reason and without my medical care or legal rights being 
affected. 

 

3.  2. If I should withdraw my consent I am willing for my study data to be retained by the 
researchers. 

 

4.  3. I understand relevant sections of my medical notes and data collected during the study 
may be looked at by authorized individuals from the regulatory aurthorites and 
Papworth Hospital NHS Foundation Trust where it is relevant to my taking part in this 
research. I give permission to these individuals to have access to my records. 

 

5.  I understand that if I withdraw from the study at anytime I must return the equipment 
and computer technology to a member of the research team as soon as possible. 

 

6.  I accept that I will be paid £1 per day for each daily set of data/samples that I provide 
in compensation for participating in the study. 

 

7.  4. I agree that I will only use any computer and internet access services provided, for my 
own benefit and so as to take part in this study and not for business purposes.  I also 
agree that the computer and internet access will not be used in breach of UK law.  I 
also agree to using the internet service provided in a fair and reasonable way (ie no file 
sharing or downloading of movies etc) to within a monthly allowance of 1 Gb/month. 

 

8.  5. I consent to the storage of my study-related data for three years after the study has 
finished in accordance with the Data Protection Act 1998. 

 

9.  6. I consent to my sputum samples being stored in the Papworth Hospital Tissue bank at 
the end of the study for use in future research studies which have been authorized by a 
research ethics committee. 

 

10 I agree to take part in the study. 
 

 

 
 

…………………………………  ……………… ……………………………………… 
Name of patient (please print)  Date     Signature 

 
…………………………………  ……………… ……………………………………… 
Researcher (please print)   Date     Signature 
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Patient Information sheet 
 Version 20 (21 November 2012)  Page 1 of 4 

 
 
Patient Information Sheet   
 
Study Title:  A home-based, rapid and quantitative test for bacterial respiratory 

                      infections in patients with cystic fibrosis, to reduce admissions  

                      and hospital stay length and to improve healthcare outcomes 

 
You are being invited to take part in a research study. Before you decide whether to take part, it is 
important for you to understand why the research is being done and what it will involve.  Please 
take time to read the following information carefully. Talk to others about the study if you wish.  
Part 1 tells you the purpose of this study and what will happen to you if you take part. Part 2 gives 
you more detailed information about the conduct of the study.  
Ask us if there is anything that is not clear or if you would like more information. Take time to 
decide whether or not you wish to take part. 
 
PART 1 
 
1. What is the purpose of the study? 
 
The purpose of this study is to find out if we can predict the onset of chest infections in cystic 
fibrosis before they become symptomatic e.g. before you have an increase in sputum, increased 
cough, decrease in lung function or feel unwell. 
 
We wish to measure the levels of substances known as biomarkers which occur in sputum to find 
out how the levels change before, during and after chest infections. We have some evidence which 
shows that levels of biomarkers increase before it is obvious that a chest infection is happening. 
We now wish to gather more evidence to prove that measuring biomarkers is an accurate method 
of predicting the onset of chest infections in cystic fibrosis and whether we can combine this test 
with other home-based assessments of well being.  
 
If the results of this study prove that biomarkers of infection are an accurate way of predicting chest 
infections we are planning to develop a test for patients to use at home as an early warning system 
of a chest infection before the patient starts to feel unwell. The ability to diagnose chest infections 
early could mean that patents are able to start antibiotics much earlier than they currently do and 
thereby reduce the amount of damage to the lungs. 
 
2. Why have I been invited? 
 
You have been chosen because you have cystic fibrosis and are at least 18 years of age and grow 
the bacterium Pseudomonas aeroginosa in your sputum.  
 
3. Do I have to take part? 
 

It is up to you to decide whether or not to take part. If you do, you will be given this information 
sheet to keep and be asked to sign a consent form. You are still free to withdraw at any time 
and without giving a reason. A decision to withdraw or a decision not to take part will not affect 
your medical care or legal rights.  If you choose to withdraw we would like, with your consent, 
to keep your study data.  
 

4. What do I have to do? 
 
 If you agree to take part you will be asked to complete and sign a consent form. The duration of 
your participation in the study will be 6 months; further details are given in section 5 below. 
 
Expenses and payments for any study visits which are additional to your routine clinic or ward 
visits. 



        

     273 

 
 

 
 
 
 

Patient Information sheet 
 Version 20 (21 November 2012)  Page 2 of 4 

We are able to offer an inconvenience payment of £1 for each study day which you complete i.e. 
all data collection and sputum sample. 
 
5. What will happen to me if I take part? 
Whilst you are in the study we will ask you to do the following every day for 6 months: 
 

• Daily Sputum Sample: you will collect a sample of sputum every day to store at home in 
either your own freezer or a mini freezer which we can provide for you. We will ask you to 
bring the sputum samples to your routine clinic appointments to give to a member of the 
research team. We will provide you with a cool box to carry the samples to clinic. 
 

• Peak Flow Measurements: we will provide a hand held device called a spirometer for you to 
measure your peak flow measurements. You will breathe in and then blow out as hard and 
as fast you can into the hand held device. After you have measured your peak flow you will 
attach the spirometer to a lap top computer, which we will provide, to upload the peak flow 
measurement to the research study’s website. 
 

• Pulse Rate and Oxygen Saturation Levels: We will provide you with a small machine, about 
4cm x 2cm, which will have a clip that will fit onto one of your fingers to measure your pulse 
rate and the levels of oxygen in your blood. When the measurement is complete you will 
attach the machine to the lap top computer to upload the measurements to the research 
study’s website 
 

• Activity: We will ask you to wear a step counter, a small device which can be clipped to a 
belt, waistband or carried in a pocket, during the day time. Once a day you will attach it to 
the laptop computer to upload the data to the research study’s website 
 

• Weight: we will ask you to measure your weight every day using the scales which we will 
provide. Once a day you will attach the scales to the lap top computer to upload the 
measurement to the research study’s website 
 

We will provide training, support and all the equipment including a 3G enabled PC lap top for the 
duration of the trial so the data can be transmitted to the study’s website. If you complete the study 
we will let you keep to the laptop. If you choose to keep it you will be responsible for its running 
costs and maintenance. If you decide to withdraw from the study we will ask you to return all the 
equipment including the computer and modem to the research team as soon as possible.  
 
If you are admitted to hospital at any time whilst you are participating in this study please inform a 
member of the research team so we can make appropriate arrangements to collect the above 
measurements and your sputum samples. 
 
Further details about confidentiality are given in part 2 of this information sheet. 
 
6. What are the possible disadvantages and risks of taking part? 

Apart from your time commitment, space for a mini freezer for the duration of this study there 
are no other disadvantages or risks.  

 
 
7. What are the possible benefits of taking part? 
If the results of this study prove that early measurement of biomarkers in sputum and other home-
based test are a useful way of predicting chest infections this could lead to the development of a 
hand held device which future patients could use at home to diagnose the early onset of chest 
infections. 
 
8. What if there is a problem? 
 
Whilst you are in the study, a member of the research team will be available should you have any 
concerns. You may ask for your involvement in the study to stop at any time. 
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Any complaint about the way you have been dealt with during the study or any possible harm you 
might suffer will be addressed. The detailed information on this is given in Part 2.    

 
9. Will my taking part in the study be kept confidential?  
 
 All the information about your participation in this study will be kept confidential.  The details    
are included in Part 2. 
 
10. Contact Details: 
 
 Please contact either Dr Floto 01480 830541 or Judy Ryan on 01480 364116 or 
judy.ryan@papworth.nhs.uk. You will be given 24 hour contact numbers for the research team at 
the start of the study. 
 
 If you have any concerns during the study and wish to speak to an independent person, please    
 contact: The Research and Development Department Tel: 01480 364997. 

 
This completes Part 1 of the Information Sheet. 
If the information in Part 1 has interested you and you are considering participation, please 
continue to read the additional information in Part 2 before making any decision. 
 
 

PART 2  
 
11. What if there is a problem? 
 
If you have a concern about any aspect of this study, you should ask to speak with the researchers 
who will do their best to answer your questions (Dr Floto tel: 01480 830541). If you wish to 
complain formally, you can do this through the NHS Complaints Procedure.  Details can be 
obtained from the Patient Advice and Liaison Service (PALS), Tel: 01480 364896 or 08003899092.  
 
Papworth Hospital NHS Foundation Trust holds insurance policies which apply to this study. If you 
experience harm or injury as a result of taking part in this study, you may be eligible to claim 
compensation without having to prove Papworth Hospital NHS Foundation Trust is at fault. This 
does not affect your legal right to seek compensation.  
 
If you are harmed due to someone’s negligence, then you may have grounds for legal action.  
Regardless of this, if you wish to complain, or have any concerns about any aspect of the way you 
have been treated during the course of this study then you should immediately inform the 
Investigator Dr Floto 01480 830541.  The normal National Health Service complaint mechanisms 
are also available to you.  If you are still not satisfied with the response, you may contact the 
Papworth Hospital NHS Foundation Trust Research Governance Office 01480 36997.   

 
 

12. Will my taking part in this study be kept confidential? 
 
All information about you will be kept strictly confidential and will only be accessed by the research 
team.  Each participant will be allocated a unique study number in order to ensure records and 
stored sputum samples are anonymised. Access to your computer and the study’s website will be 
password protected. All the data which you upload will be stored on the study’s website and not on 
the hard drive of the computer. Only members of the research team will be able to see the data 
which have been saved onto the website. Your study number, records and study data will be kept 
securely and will be stored for 15 years. The custodian for study-related paper records and 
electronic data will be Dr Andres Floto. The procedures for handling, processing, storage and 
destruction of study data are compliant with the Data Protection Act 1998. Responsible individuals 
from Papworth Hospital NHS Foundation Trust or staff from regulatory bodies may need to access 
your medical records. This is to check the research is being performed in accordance with national 
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guidelines. Individuals who monitor for this purpose will be suitable qualified and authorised and 
will not disclose any personal information about you.  
 
 
13. Will my general practitioner be informed of my participation? 
 
We will not inform your general practitioner that you are taking part in this research study. 
 
14. What if relevant new information becomes available? 
 
If any new information on the study medication becomes available which may influence your 
decision to continue in the study you will be told. 
 
15. What happens when the study stops? 
 
We will ask you to return all the study equipment but might be able to allow you to keep the lap top. 
 
16. What will happen to the results of the research study? 
 
Dr Andres Floto in conjunction with the research team will analyse the results of the study. The 
research team plans to publish the results in scientific journals and to present the results at 
scientific meetings. You will not be identified in any report or publication. The data we obtain will be 
stored for three years after we have completed the study. With your permission, your sputum 
samples will  be retained in the Papworth Hospital Tissue Bank for use in future research projects 
which have been approved by a research ethics committee. 

 
17. Who is organising and funding the research?   
 
 Papworth Hospital NHS Foundation Trust has taken on the role of ensuring the study is conducted 
in accordance with the relevant legislation. 
 
Health Enterprise East has provided the funding to conduct this study. 
 
16. Who has reviewed the study?  
 
This study has research ethics approval from the Hertfordshire Research Ethics Committee. 

 
If you decide to participate in this study you will be given a copy of the information sheet and a 
copy of the consent form. 
 
 Thank you for taking time to read this sheet and for considering taking part in this study. 
 
Dr Andres Floto 
Consultant Physician 
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Patient Invitation Letter Page 1 of 1  

Version 2 (Dated 21 November 2012) 

 
[Date] 
 
 
 
 
[Recipient’s name and address] 
 
 
 
 
 
 
 
Dear  [Name] 
 
Re: A Research Study to find out if a home-based, rapid and quantitative test for bacterial 
respiratory infections in patients with cystic fibrosis can reduce admissions and hospital stay 
length and to improve healthcare outcomes 

I’m writing to see if you might be interested in participating in a new research study we’re doing over the next few 
months. 
 
The Papworth Cystic Fibrosis unit is leading a new research study to find out if we are able to predict when chest 
infections are likely to occur before patients become symptomatic. 
 
We are currently recruiting volunteers to participate in this research study and have included the patient 
information sheet (which gives the details of the study) with this letter. If you decide not to take part or withdraw 
from the study this will not affect your legal rights or medical care in any way.  
 
We are able to offer an inconvenience payment to you for the additional time required to conduct some of the 
tests. 
 
If you’re interested in taking part or just want to find out more about this or other CF research projects taking 
place at Papworth, contact Dr. Andres Floto (01480 364763) or Judy Ryan our Research Nurse (01480 364116 / 
judy.ryan@papworth.nhs.uk).  
 
Many thanks and best wishes 
 
Yours sincerely 
 
 
 
Dr Andres Floto               
Consultant in Respiratory Medicine     
 



        

     277 

 
 
 
 

 
NRES Committee East of England - Norfolk 

The Old Chapel 
Royal Standard Place 

Nottingham 
NG1 6FS 

Telephone: 01158839390 

10 December 2014 

 
Professor RA Floto 
Professor of Respiratory Biology, Research Director and Honorary Consultant Physician 
Papworth Hospital NHS Foundation Trust 
Cambridge Centre for Lung Infection 
Papworth Hospital 
Papworth, Everard, Cambridge 
CB23 3RE 
 
 
Dear Professor Floto  
 
Study title: Smart Care - A Standardized Multi-centre Analysis of 

Remote Monitoring in CF Adult patients to Reduce 
pumlmonary Exacerbations 

REC reference: 14/EE/1244 
IRAS project ID: 163484 
 

Thank you for your letter of 24th November 2014, responding to the Committee’s request for 
further information on the above research and submitting revised documentation. 

 

The further information has been considered on behalf of the Committee by the Vice-Chair.  
 
We plan to publish your research summary wording for the above study on the HRA website, 
together with your contact details. Publication will be no earlier than three months from the 
date of this favourable opinion letter.  The expectation is that this information will be published 
for all studies that receive an ethical opinion but should you wish to provide a substitute 
contact point, wish to make a request to defer, or require further information,  please contact 
the REC Assistant, Tad Jones, NRESCommittee.EastofEngland-Norfolk@nhs.net. Under very 
limited circumstances (e.g. for student research which has received an unfavourable opinion), 
it may be possible to grant an exemption to the publication of the study.  

 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above 
research on the basis described in the application form, protocol and supporting documentation 
as revised, subject to the conditions specified below. 
 
 
Conditions of the favourable opinion 
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The favourable opinion is subject to the following conditions being met prior to the start of the 
study. 
 
Management permission or approval must be obtained from each host organisation prior to the 
start of the study at the site concerned. 
 

Management permission ("R&D approval") should be sought from all NHS organisations 
involved in the study in accordance with NHS research governance arrangements.  
Guidance on applying for NHS permission for research is available in the Integrated Research 
Application System or at http://www.rdforum.nhs.uk.   

 

Where a NHS organisation’s role in the study is limited to identifying and referring potential 
participants to research sites ("participant identification centre"), guidance should be sought 
from the R&D office on the information it requires to give permission for this activity. 
 
For non-NHS sites, site management permission should be obtained in accordance with the 
procedures of the relevant host organisation.   
Sponsors are not required to notify the Committee of approvals from host organisations 
 

Registration of Clinical Trials 
 

All clinical trials (defined as the first four categories on the IRAS filter page) must be registered 
on a publically accessible database. This should be before the first participant is recruited but no 
later than 6 weeks after recruitment of the first participant. 

There is no requirement to separately notify the REC but you should do so at the earliest 
opportunity e.g. when submitting an amendment.  We will audit the registration details as part of 
the annual progress reporting process. 
  
To ensure transparency in research, we strongly recommend that all research is registered but 
for non-clinical trials this is not currently mandatory. 
  
If a sponsor wishes to request a deferral for study registration within the required timeframe, 
they should contact hra.studyregistration@nhs.net. The expectation is that all clinical trials will 
be registered, however, in exceptional circumstances non registration may be permissible with 
prior agreement from NRES. Guidance on where to register is provided on the HRA website.   
 

It is the responsibility of the sponsor to ensure that all the conditions are complied with 
before the start of the study or its initiation at a particular site (as applicable). 
 

 

Ethical review of research sites  
NHS sites 

 

The favourable opinion applies to all NHS sites taking part in the study, subject to management 
permission being obtained from the NHS/HSC R&D office prior to the start of the study (see 
"Conditions of the favourable opinion" below). 
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Non-NHS sites 

 
Approved documents  
The final list of documents reviewed and approved by the Committee is as follows: 
Document   Version   Date   

Covering letter on headed paper [REC letter of response]  1.0  30 December 2014  

GP/consultant information sheets or letters [Smartcare GP Letter]  Version 1.0  26 October 2014  

IRAS Checklist XML [Checklist_31102014]    31 October 2014  

IRAS Checklist XML [Checklist_01122014]    01 December 2014  

Letters of invitation to participant [Smartcare Participant Invitation 
Letter]  

Version 2.0  26 December 2014  

Non-validated questionnaire [Smartcare Patient Survey]  Version 1.0  26 October 2014  

Other [Summary CV (Research Nurse)]  Version 1.0  31 October 2014  

Participant consent form [Smartcare Participant Consent Form]  Version 2.0  26 December 2014  

Participant information sheet (PIS) [Smartcare Participant 
Information Sheet]  

Version 2.0  26 December 2014  

REC Application Form [REC_Form_01122014]    01 December 2014  

Research protocol or project proposal [Smartcare Study Protocol]  Version 2.0  26 December 2014  

Summary CV for Chief Investigator (CI) [Summary CV (CI)]  Version 1.0  31 October 2014  

Summary CV for student [Summary CV (EU)]  Version 1.0  29 October 2014  

Validated questionnaire [B-IPQ Survey (Smartcare)]  Version 1.0  26 October 2014  

Validated questionnaire [CFQ-R ]  Version 2.0  26 December 2014  

 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for Research 
Ethics Committees and complies fully with the Standard Operating Procedures for Research 
Ethics Committees in the UK. 
 

After ethical review 
 

Reporting requirements 
 

The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 
 

• Notifying substantial amendments 
• Adding new sites and investigators 
• Notification of serious breaches of the protocol 
• Progress and safety reports 
• Notifying the end of the study 

 
The HRA website also provides guidance on these topics, which is updated in the light of 
changes in reporting requirements or procedures. 
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User Feedback 
 
The Health Research Authority is continually striving to provide a high quality service to all 
applicants and sponsors. You are invited to give your view of the service you have received and 
the application procedure. If you wish to make your views known please use the feedback form 
available on the HRA website: 
http://www.hra.nhs.uk/about-the-hra/governance/quality-assurance/    
 
HRA Training 
 
We are pleased to welcome researchers and R&D staff at our training days – see details at 
http://www.hra.nhs.uk/hra-training/   
 
 
14/EE/1244                          Please quote this number on all correspondence 
 
With the Committee’s best wishes for the success of this project. 
 
Yours sincerely 
 

 
Dr Robert Stone 
Vice Chair 
 
Email:NRESCommittee.EastofEngland-Norfolk@nhs.net 
 
Enclosures:  “After ethical review – guidance for 
   researchers” [SL-AR2] 
 
Copy to: Dr Victoria Stoneman, Papworth Hospital NHS Foundation Trust 
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NRES Committee East of England - Cambridgeshire and Hertfordshire 

Royal Standard Place 
Nottingham 

NG1 6FS 
 

Tel: 0115 8839435 
Fax: 0115 8839294 

 
 
25 June 2015 
 
Dr Emem-Fong Ukor  
Clinical Research Fellow 
Cambridge Centre for Lung Infection 
Papworth Hospital NHS Foundation Trust 
Papworth Everard 
Cambridge 
CB23 3RE 
 
Dear Dr Ukor 
 
Study title: Smart Care - A Standardized Multi-centre Analysis of 

Remote Monitoring in CF Adult patients to Reduce 
pumlmonary Exacerbations 

REC reference: 14/EE/1244 
Amendment number:  
Amendment date: 25 June 2015 
IRAS project ID: 163484 
 
Thank you for your letter of 25 June 2015, notifying the Committee of the above amendment. 
 
The Committee does not consider this to be a “substantial amendment“ as defined in the 
Standard Operating Procedures for Research Ethics Committees.  The amendment does 
not therefore require an ethical opinion from the Committee and may be implemented 
immediately, provided that it does not affect the approval for the research given by the R&D 
office for the relevant NHS care organisation. 
 
Documents received 
 
The documents received were as follows: 
 
Document   Version   Date   
GP/consultant information sheets or letters  3.0  14 June 2015  
Letters of invitation to participant  4.0  14 June 2015  
Notice of Minor Amendment    25 June 2015  
Other [Patient Instruction Manual]  1.0  17 June 2015  
Participant consent form  5.0  14 June 2015  
Participant information sheet (PIS)  5.0  14 June 2015  
Research protocol or project proposal  4.0  14 June 2015  
 
Statement of compliance 
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The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees and complies fully with the Standard Operating Procedures for 
Research Ethics Committees in the UK. 
 
14/EE/1244:    Please quote this number on all correspondence 
 
Yours sincerely 

 
Miss Georgia Copeland  
REC Manager 
 
Email: nrescommittee.eastofengland-cambsandherts@nhs.net 
 
Copy to: Dr Victoria Stoneman, Papworth Hospital NHS Foundation Trust 

 
Professor RA Floto 
Professor of Respiratory Biology, Research Director and Honorary 
Consultant Physician 
Papworth Hospital NHS Foundation Trust 
Cambridge Centre for Lung Infection 
Papworth Hospital 
Papworth, Everard, Cambridge 
CB23 3RE 
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Consent form  
Version 5.0 14 June 2015 1 

 
PATIENT CONSENT FORM (Home-monitoring study) 

 
TITLE OF STUDY:    A multi-centre feasibility study of remote monitoring in adult CF patients

  
 
Name of researcher: Professor Andres Floto 

 
Please initial each box & sign at bottom 

1.  1. I confirm that I have read and understand the ‘Patient Information Sheet’ 
version 5.0 dated 14 June 2015 for the above study and I have had an 
opportunity to ask questions. 

 

2.  I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason and without my medical 
care or legal rights being affected. 

 

3.  2. If I should withdraw my consent I am willing for my study data to be 
retained by the researchers. 

 

4.  3. I understand that authorized individuals from the regulatory authorities and 
Papworth Hospital NHS Foundation Trust may look at relevant sections of 
my medical notes and data collected during the study where it is relevant to 
my taking part in this research. I give permission to these individuals to have 
access to my records. 

 

5.  4. I agree that I will only use the smartphone and data allowance provided, for 
my own benefit and so as to take part in this study and not for business 
purposes.  I also agree that the smartphone and data allowance will not be 
used in breach of UK law.  I also agree to using the Internet service provided 
in a fair and reasonable way (e.g. no file sharing or downloading of movies) 
to within a pre-defined monthly allowance. 

 

6.  5. I consent to my sputum samples being appropriately stored at the end of 
the study for future analysis. 

 

7.  6. I consent to the storage of my study-related data, which is in accordance 
with the Data Protection Act 1998. 

 

8.  7. I agree to collect my data and use the study devices as per instructed.   

9.  8. I agree to my GP being informed of my participation in the study.   

10.  I agree to take part in the study. 
 

 

 
……………………………………………..  ………………   ……………………………………………… 
Name of patient (please print)  Date    Signature 

 
……………………………………………..  ………………   ……………………………………………… 
Researcher (please print)   Date    Signature 
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Patient Information Sheet   
 
 
 
Study Title:  A multi-centre feasibility study of remote monitoring in adult CF patients 

 
You are being invited to take part in a research study. Before you decide whether to take part, it is 
important for you to understand why the research is being done and what it will involve.  Please 
take time to read the following information carefully. Talk to others about the study if you wish.  
 
Part 1 tells you the purpose of this study and what will happen to you if you take part.  
 
Part 2 gives you more detailed information about the conduct of the study.  
 
Ask us if there is anything that is not clear or if you would like more information. Take time to 
decide whether or not you wish to take part. 
 
 
PART 1 
 
1. What is the purpose of the study? 
 
The purpose of this study is to find out if we can use remote monitoring of breathing, weight and 
activity to keep individuals with CF at home as much as possible. 
  
The first step is to check that we can record lung function, oxygen saturations, activity, sleep, 
temperature, weight and symptoms using home-monitoring equipment with a smartphone to 
transmit the information back to the CF Centre. The information obtained during this study will not 
change how you are looked after, but will allow us to develop a software program that will work out 
what the signals are that predict when a chest infection is going to happen, that is, before you have 
an increase in sputum, increased cough, drop in lung function or feel unwell. 
  
This should allow us, in the future, to let patients who are stable stay at home and not come to 
clinic for review if they don’t need to. At the same time, we hope to predict when patients are about 
to become ill and start treatment earlier to hopefully keep lungs healthier for longer. 
 
We also wish to measure the levels of substances known as biomarkers, which occur in sputum, to 
find out how the levels change before, during and after chest infections. We have some evidence 
that shows that levels of biomarkers increase before it is obvious that a chest infection is 
happening. We now wish to gather more evidence to determine which biomarkers can provide an 
accurate method of predicting the onset of chest infections in cystic fibrosis and investigate 
whether we can combine this test in the future with other home-based assessments of well being. 
  
2. Why have I been invited? 
 
You have been invited to participate because you have cystic fibrosis, are at least 18 years of age 
and have experienced at least one acute pulmonary exacerbation (chest infection) in the last 12 
months.  
 
3. Do I have to take part? 
 
It is up to you to decide whether or not to take part. If you do, you will be given this information 
sheet to keep and be asked to sign a consent form. You are still free to withdraw at any time and 
without giving a reason. A decision to withdraw or a decision not to take part will not affect your 
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medical care or legal rights.  If you choose to withdraw we would like, with your consent, to keep 
your study data.  

 
4. What do I have to do if I agree to take part? 
 
If you agree to take part you will be asked to complete and sign a consent form. The duration of 
your participation in the study will be 6 months.  
 
Whilst you are in the study we will ask you to do the following every day for 6 months: 
 

• Weight: we will ask you to measure your weight using a set of scales that we will provide. 
Once a day you will transmit the data via Bluetooth to the smartphone, to upload the data to 
the research study’s website 
 

• Pulse Rate and Oxygen Saturation levels: we will provide you a small machine, about 4cm 
x 2 cm, which will have a clip that will fit on one of your fingers to measure your pulse rate 
and the levels of oxygen in your blood. When the measurement is complete you will 
transmit the data via Bluetooth to the smartphone to upload the data to the research study’s 
website. 

 
• Daily Sputum Sample: you will collect a sample of sputum to store at home in either your 

own freezer or a mini freezer, which we can provide for you. We will ask you to bring the 
sputum samples to your routine clinic appointments to give to a member of the research 
team. We will provide you with a cool box to carry the samples to clinic. 

 
• Wellness and Cough scores: we will ask you to score (1) how well you are feeling and (2) 

the quality of your cough on a scale from 1 (worst ever) to 10 (best ever). You will be able 
to record your scores on the study-specific App that you can access on the smartphone. 
The data will be transmitted to the research study’s website. 

 
• Lung function test: we will provide a hand-held device called a spirometer for you to 

measure your lung function. You will breathe in and then blow out as hard and as fast you 
can into the hand-held device until your lungs are empty. After you have measured your 
lung function you will transmit the data via Bluetooth to a smartphone, which we will 
provide, to upload the measurements to the research study’s website. 

 
• Activity: we will ask you to wear a slim-line wristband during the daytime. Once a day you 

will transmit the data via Bluetooth to the smartphone, to upload the data to the research 
study’s website. 

 
 

We will provide training, support and all the equipment above, including a 4G-enabled smartphone 
for the duration of the trial so the data can be transmitted to the study’s website. You will be 
allowed to keep the SIM free smartphone and the home-monitoring devices when you complete 
the study. If you choose to keep the devices you will be responsible for their running costs and 
maintenance. If you are admitted to hospital at any time whilst you are participating in this study 
please inform a member of the research team so we can make appropriate arrangements to collect 
the above measurements and your sputum samples. 
 
We will also ask you to complete two questionnaires (one at the beginning and the end of the study 
and the other only at the end) to help us collect feedback from you on the impact of taking part in 
this study. 
 
Further details about confidentiality are given in part 2 of this information sheet. 
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5. What are the possible disadvantages and risks of taking part? 
 
Apart from your time commitment and space for a mini freezer for the duration of this study there 
are no other disadvantages or risks.  
 
 
6. What are the possible benefits of taking part? 
 
If the results of this study prove that home-based monitoring of physical signs and symptoms of 
health is possible and acceptable to patients with CF, we may be able to reduce the time you 
spend attending hospital when you are stable.  
 
If we can also discover which biomarkers in sputum, when measured early in combination with 
home-based monitoring, are a useful way of predicting chest infections this could lead to the 
development of a hand-held device and software program which future patients could use at home 
to diagnose early the onset of chest infections. The results of this analysis will not have any impact 
on your routine clinical care during this study.  
 
7. What if there is a problem? 
 
Whilst you are in the study, a member of the research team will be available should you have any 
concerns. Technical support will also be available to you both during working and after hours. You 
may ask for your involvement in the study to stop at any time. 
 
Any complaint about the way you have been dealt with during the study or any possible harm you 
might suffer will be addressed. The detailed information on this is given in Part 2.    

 
8. Will my taking part in the study be kept confidential?  
 
All the information about your participation in this study will be kept confidential.  The details are 
included in Part 2. 
 
9. Contact Details: 
 
Please contact [insert site-specific details]. You will be given 24-hour contact numbers for the 
research team at the start of the study. 
 
 If you have any concerns during the study and wish to speak to an independent person, please   
contact: The Patient Advice Liaison Services Tel: [xxx insert site-specific details]. 

 
This completes Part 1 of the Information Sheet. 
If the information in Part 1 has interested you and you are considering participation, please 
continue to read the additional information in Part 2 before making any decision. 
 
 

PART 2  
 
10. What if there is a problem? 
 
If you have a concern about any aspect of this study, you should ask to speak with the researchers 
who will do their best to answer your questions [insert site-specific Lead PI]. If you wish to 
complain formally, you can do this through the NHS Complaints Procedure.  Details can be 
obtained from the Patient Advice and Liaison Service (PALS), Tel: [xxx insert site-specific 
details].  
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Every reasonable effort will be made to prevent any injury that could result from this research.  If 
you believe you have an injury that is directly related to your participation in the study, you should 
inform the study doctor.  
 
If you are harmed due to someone’s negligence, then you may have grounds for legal action for 
compensation against [insert site-specific details], but you may have to pay your legal costs.  
The normal National Health Service complaints mechanisms will still be available to you.  
Regardless of this, if you wish to complain, or have any concerns about any aspect of the way you 
have been treated during the course of this study then you should immediately inform the [insert 
site-specific Lead PI].   
 
11. Will my taking part in this study be kept confidential? 
 
All information about you will be kept strictly confidential and will only be accessed by the research 
team.   If you join the study you will be allocated a unique study number in order to ensure records 
and stored sputum samples are linked-anonymised. Access to your smartphone and the study’s 
website will be password-protected. All the data which you upload will be stored in encrypted form 
on the study’s website and saved onto a secure NHS-approved web-based site. Only members of 
the research team will be able to access this data, Authorised personnel from Papworth Hospital 
NHS Foundation Trust or staff from regulatory bodies may need to access your medical records 
and the study data for quality control and audit purposes.  
 
Your study number, records and study data will be kept securely for 15 years. The procedures for 
handling, processing, storage and destruction of study data are compliant with the Data Protection 
Act 1998.  
 
12. Will my general practitioner be informed of my participation? 
 
With your consent, your General Practitioner (GP) will be informed about your participation in the 
study.  We would do this to ensure that we and your GP can best manage your overall healthcare 
and this can be done by providing written information about the study to your GP. 
 
13. What if relevant new information becomes available? 
 
If any new information on the study devices, or related monitoring technology becomes available 
which may influence your decision to continue in the study you will be informed. 
 
14. What happens when the study stops? 
 
On completion of the study you will be able to keep the SIM free smartphone and the home-
monitoring devices.. If you chose to keep the devices for personal use you will be responsible for 
their running costs and maintenance. 
 
15. Expenses and payments 

 
On completion of the training period for the study we are able to offer you a one -off inconvenience 
payment of £50.00 for your time and effort with this study.  
 
16. What will happen to the results of the research study? 
 
The Chief Investigator in conjunction with the research team will analyse the results of the study. 
The research team plans to publish the numerical results in scientific journals and to present the 
results at scientific meetings. You will not be identified in any report or publication. The data we 
obtain will be stored for a maximum of 15 years after we have completed the study. With your 
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permission, your sputum samples will be prepared and stored in a freezer with a unique study 
number to protect your identity. Your name will not be attached to the samples.  

 
17. Who is organising and funding the research?   
 
Papworth Hospital NHS Foundation Trust has taken on the role of ensuring the study is conducted 
in accordance with the relevant legislation. 
 
The Cystic Fibrosis Trust UK has provided the funding to conduct this study. 
 
16. Who has reviewed the study?  
 
This study has research ethics approval from the NRES Committee East of England-Norfolk. 

 
If you decide to participate in this study you will be given a copy of the information sheet and a 
copy of the consent form. 
 

Thank you for taking time to read this sheet and for considering taking part in this study. 
 
 
 
Professor Andres Floto (Chief Investigator) 
Consultant Physician 
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<<Date>> 
 
 
 
<<Name of participant>> 
<<Address>> 
<<City, Postcode>> 
 
 
 
RE:  A multi-centre feasibility study of remote monitoring in adult CF patients 
 
 
Dear <<Name>>, 
 
We are delighted to inform you of a new research study being undertaken in patients with cystic 
fibrosis. 
 
We are writing to see if you would consider participating in a new innovative research study using 
blue-tooth technology home-based monitoring devices to detect the early onset of chest infections 
in order to guide antibiotic treatment, with the aim of reducing time spent in hospital for patients 
with cystic fibrosis.  
 
This is a multi-centre UK study lead by Professor Andres Floto, with Papworth Hospital Adult Cystic 
Fibrosis Centre as the lead site.  There are another six leading Adult Cystic Fibrosis Centres in the UK 
participating in this study and your centre (insert centre name) is one of them. The Cystic Fibrosis 
Trust is funding this study. 
 
We are aiming to recruit a total of 200 male and female Cystic Fibrosis patients that are 18 years of 
age or older from the seven study centres.   
 
Your participation in the study will be approximately six months, during which time you will be 
expected to collect daily, via Bluetooth-enabled devices the following: 
 

• Pulse rate and oxygen saturation   
• Spirometry (breathing) measurements 
• Weight 
• Physical Activity  
• Wellness and cough scores 

 
You will also be expected to provide daily sputum samples. 

 
This linked-anonymised data will then be transmitted from the Bluetooth-enabled devices, via a 
Smartphone, to a secure NHS approved web-based site, to be analyzed.  
 
If you feel you may be interested in participating in this study and would like to know more about 
this project, please telephone / email:  (insert site specific details).  
 
By asking for more information this does not in any way commit you to participating in this study 
and if you decide not to take part or withdraw from the study this will not affect your legal rights or 
medical care in any way. 
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If you are interested in participating we are happy to provide further written information to you in a 
detailed Patient Information Sheet about the study for you to consider.   
 
We would like to thank you for considering this study and we look forward to hearing from you. 
 
Yours sincerely,  
 
 
(Site-specific Lead PI) 
 
Consultant Physician  
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Papworth Hospital NHS Foundation Trust 

MATERIAL TRANSFER AGREEMENT 
 

THIS AGREEMENT is made on                            BETWEEN: 

 

(1) FRIMLEY HEALTH NHS FOUNDATION TRUST (“the Trust”) 

(2) PAPWORTH HOSPITAL NHS FOUNDATION TRUST of Papworth Everard, Cambridge 

CB23 3RE  (“the Recipient”) 

 

WHEREAS the Trust agrees to supply to the Recipient certain tissues (or tissue derivatives) and in 

consideration of such supply the Recipient has agreed to comply with the terms of this Agreement. 

 

(1) Supply of Tissues 

 

1.1 The Trust agrees to supply the following tissues (or tissue derivatives) (“sputum”) to the 

Recipient, for a period of two (2) years (the “Term”) from the date of execution: 

 

List of Tissues 

Sputum 

 

1.2 Risk in the Tissues shall pass to the Recipient who should have either: 

1.2.1 project specific ethical approval for the use of such tissue according to a REC approved research 

protocol OR 

1.2.2 generic ethical approval for the use of such tissue according to a Trust approved research 

protocol and REC approved conditions OR 

1.2.3  an appropriate HTA licence for the storage of such tissues. 

 

1.3 The Trust represents that all Tissues supplied under the terms of this agreement have been 

obtained in compliance with all relevant UK laws and guidelines. 

 

1.4 The Tissues shall be used by the Recipient for the following project “SmartCare”: 
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Project Title: SmartCare: A Standardized Multi-centre Analysis of Remote 
Monitoring in CF Adult Patients to Reduce Pulmonary 
Exacerbations 
 

Project Description A UK based prospective cohort study investigating the feasibility and 
acceptability of remote monitoring in an adult CF population, and its 
potential to detect the onset of pulmonary exacerbation before patient-
reported symptoms 
 

Names of Investigators: Prof A. Floto 

Name of any Project 
Collaborators outside the 
Recipient: 

1. Cystic Fibrosis Trust UK 
2. Microsoft Research  
3. Papworth Hospital NHS Foundation Trust  
4. King’s College Hospital NHS Foundation Trust  
5. Leeds Teaching Hospitals NHS Trust  
6. Royal Brompton & Harefields NHS Foundation Trust 
7. Southampton University Hospital NHS Trust  
8. University Hospitals Bristol NHS Foundation Trust  

 
 

1.5 Recipient will own all rights; title and interest in Project results, and the Trust will retain the   

right to use Project results for research purposes only. 

 

1.6 If applicable, the recipient shall supply to the Trust a copy of the REC application for project 

specific approval and a copy of the letter of approval.       

 

2 Obligations of the Recipient 
2.1 The Recipient shall not transfer or sell all or part of the Tissues to any third party.  It shall be the 

responsibility of the Recipient to ensure that the investigators and collaborators referred to 

above, comply with the terms of this Agreement in all respects as though they were parties to it. 

 

2.2 The Recipient shall ensure that the Tissues are used only for the purposes of the Project and not 

otherwise.  The Recipient shall seek authorisation from the Trust in writing, before using the 

Tissues or any part of the Tissues for a purpose other than the specified Project and shall not use 

such Tissues for such additional purposes without the prior written consent of the R&D Unit at 

and appropriate regulatory approvals. 

 

2.3 The Recipient represents that its use of the Tissues will be in compliance with all applicable UK 

laws and regulations. 
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2.4 The Recipient shall comply with all reasonable instructions of the Trust concerning the 

treatment, storage, transport and care of the Tissues.  The Recipient shall be responsible for 

organising and arranging the collection of the Tissues from the Trust, provide appropriately 

labelled containers, packaging and storage medium and arrange their safe transport to the 

Recipient’s premises or other location for the purposes of the Project.  

 

2.5 The Recipient shall at all times keep the Tissue safe and secure and shall use reasonable 

endeavours to prevent the theft of or unauthorised use or interference with the Tissues. 

 

2.6 (a) If the Recipient commits any material breach of the terms of this Agreement or becomes 

insolvent or has a receiver, administrator or administrative receiver appointed of its undertaking, 

then:  

(b) If the Trust for any reason believes that the Tissues are in jeopardy or otherwise in its 

absolute discretion thinks fit, subject to prior notification of Recipient and reasonable discussion 

between the parties of steps to address any such concerns within 60 days of notification thereof, 

then:  

 

the Trust  shall be entitled to terminate this Agreement by not less than thirty (30) days written 

notice to the Recipient, whereupon the Recipient’s entitlement to possession of the Tissues 

shall terminate.   

 

2.7 The Recipient undertakes to keep confidential all information about the Trust and its operations 

which it learns by reason of this agreement save for information which is in the public domain 

otherwise than by reason of a breach of this clause by the Recipient. 

 

2.8 The Recipient shall reimburse to the Trust all reasonable costs and expenses incurred by the 

Trust for this transfer as set out in Annex A.   

 

2.9 That NHS Foundation Trust shall be acknowledged as the source of the Tissues in any 

publication or presentations resulting from work on the samples provided by the Trust. 

 

3. Disclaimer 
3.1 The Trust gives no warranty or assurance of any kind to the Recipient or any third party that the 

Tissues are free from infection (including, without limitation, HIV, hepatitis B or tuberculosis).  

No warranty (statutory or otherwise) or representation is given by the Trust that the Tissues are 

of any particular quality or fit for any particular purpose.  It shall be the sole responsibility of the 
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Recipient to ensure that the Tissues are of satisfactory quality, free from infection and fit for the 

purpose of carrying out the Projects (or any other purpose).  

 

3.2 In no event shall the Trust be liable for any use by the Recipient or Recipient Investigators or 

Project Collaborators of the Tissues transferred under this Agreement.  The Recipient shall 

ensure that all appropriate precautions are taken by its employees and any other persons coming 

into contact with the Tissue. No liability is accepted by the Trust to the Recipient or any third 

party for any loss, claim, damage or liability, of whatsoever kind or nature, due to or arising 

from the use, handling, storage or disposal of the Tissues by the Recipient, except when caused 

by the gross negligence or wilful misconduct of the Trust. 

 

4. General 
 
4.1 If any provision of this agreement is found by any court, tribunal or administrative body of 

competent jurisdiction to be wholly or partly illegal, invalid, void, voidable, unenforceable or 

unreasonable, it shall to the extent of such illegality, invalidity, voidness, voidability, 

unenforceability or unreasonableness to be deemed severable.  The remaining provisions of this 

agreement and the remainder of such provision shall continue in full force and effect. 

 

4.2 Failure by the Trust in enforcing or partially enforcing any provision of this agreement will not 

be construed as a waiver of any of its rights under this agreement.  Any waiver by the Trust of 

any breach of, or any default under, any provision of this agreement will not be deemed a waiver 

of any subsequent breach or default and will in no way affect the other terms of this agreement. 

 

4.3 The parties to this agreement do not intend that any term of this agreement will be enforceable 

by virtue of the Contracts (Right of Third Parties) Act 1999 by any person that is not a party to 

it. 

 

4.4 This agreement sets out the entire understanding between the parties in relation to its subject 

matter and supersedes any prior agreements (written or oral) between the parties. 

 

4.5 English law shall govern the formation, existence, construction, performance, validity and all 

aspects of this agreement.  The parties shall submit to the exclusive jurisdiction of the English 

courts. 

 

SIGNATURES ON NEXT PAGE 
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Signed for any on behalf of Papworth Hospital NHS Foundation Trust 

 

 

Signed: Signed: 
 
Name: Name: 
 
Date:  Date: 
 

 

Signed for any on behalf of add recipient details 

 

 

Signed:  
 
Name:  
     
Date:   

 

 

List of Documents Reviewed by Papworth Hospital NHS Foundation Trust: 
 

Document Version Date 

Study Protocol 2.0 26/11/14 

Patient invitation letter 2.0 26/11/14 

Patient information sheet 2.0 26/11/14 

Patient Consent Form 2.0 26/11/14 

GP information letter 1.0 26/10/14 

SmartCare Patient Survey 2.0 26/11/14 

Validated Questionnaire (CFQ-R) 2.0  

REC Approval letter  10/12/14 
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APPENDIX 2 
 
Table S1. Proportion of QS-null clonal P. aeruginosa isolates per patient. 
 
Patient K1 K3 K4 K6 K7 K9 K11 K14 K15 

QS-null 

isolates (%) 
48 47 5 3 5 2 7 6 11 

 

 

 

 
 

 

 

The proportion of isolates within each patient’s collection of clonal strains that failed to secrete 

any of the three QS molecules assayed (OdDHL, BHL or PQS) but were still able to express 

traditionally QS-associated phenotypes. 

Figure S1. Correlation matrix of phenotype-phenotype associations for each patient’s set of 

isolates, as determined by Spearman rank correlation coefficient. Blue indicates strong 

positive correlation between any given phenotype pair (Spearman rank coefficient closer to 

1), red indicates strong negative correlation between any given phenotype pair (Spearman 

rank coefficient closer to -1) and white indicates no correlation between phenotype pairs (0). 
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APPENDIX 3 

SMARTCARE PATIENT SURVEY 
 

1. How did you find using the monitoring devices?  

Very easy 
� 

Easy 
� 

Neutral 
� 

Difficult 
� 

Very Difficult 
� 

 
2. How did you find using the smartphone?  

Very easy 
� 

Easy 
� 

Neutral 
� 

Difficult 
� 

Very Difficult 
� 

 
3. How did you find using the Smartcare app?  

Very easy 
� 

Easy 
� 

Neutral 
� 

Difficult 
� 

Very Difficult 
� 

 
4. How often did you have problems with measuring results?  

Never 
� 

Daily 
� 

Weekly 
� 

Monthly 
� 

Less than 
monthly 
� 

 
5. How often did you have problems with uploading results?  

Never 
� 

Daily 
� 

Weekly 
� 

Monthly 
� 

Less than 
monthly 
� 

 
6. How often did you have to contact someone for help with measuring results?  

Never 
� 

Daily 
� 

Weekly 
� 

Monthly 
� 

Less than 
monthly 
� 

 
7. How often did you have to contact someone for help with uploading results?  

Never 
� 

Daily 
� 

Weekly 
� 

Monthly 
� 

Less than 
monthly 
� 

 
8. If you had to contact someone for help measuring or uploading results, how did you 

find this process?  

Very easy 
� 

Easy 
� 

Neutral 
� 

Difficult 
� 

Very difficult 
� 

 
9. To what extent did daily home-monitoring interfere with your usual activities?  

Not at all 
� 

Slightly 
� 

Somewhat 
� 

Moderately 
� 

Extremely 
� 

 



        

     299 

 
10. Please score the tests on a scale of 1 to 8 (1 = most acceptable, 8 = unacceptable) in 

terms of acceptability to perform (Tests may have the same score)? 

�Weight 

�Sputum collection 

�Oximetry (heart rate & oxygen saturation) 

�Wellness Score 

�Cough score 

�Spirometry (lung function) 

�Activity/Sleep and Temperature Monitor  

�

�
11. What impact has home-monitoring had on your quality of life? 

          
0            1   2     3        4          5             6 7    8     9         10 
Worse     No impact                    Better 
 

12. Ideally, how frequently would you like to do home-monitoring?  

Daily 
� 

Every other day 
� 

Weekly 
� 

Monthly 
� 

Other 
� 

 
If other, please specify 
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------- 
 

13. How helpful did you find being able to monitor your breathing, activity and weight at 

home?  

Very helpful 
� 

Helpful 
� 

Neutral 
� 

Unhelpful 
� 

Completely unhelpful 
� 

 
14.  What impact has home-monitoring had on your anxiety levels? 

          

0            1   2     3        4          5             6 7    8     9         10 
More Anxiety    No impact              Less Anxiety  
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15. What impact has home-monitoring had on your ability to cope with managing your 

health?  

 
          

0          1   2     3        4           5             6 7    8     9         10 
Worse     No impact                                      Better 
 

16. Given the choice, would you prefer to use home-monitoring rather than attend 

routine clinic?  

Definitely 
� 

Probably 
� 

Undecided 
� 

Possibly 
� 

Definitely not 
� 

 
17. Please let us know if you had any specific comments about your experience of doing 

home-monitoring. 

----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------- 

 
 

Thank you for your answers! 
 

 




