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Abstract

Neuroimaging-driven prediction of brain age, defined as the predicted biological age of a

subject using only brain imaging data, is an exciting avenue of research. In this work we

seek to build models of brain age based on functional connectivity while prioritizing model

interpretability and understanding. This way, the models serve to both provide accurate

estimates of brain age as well as allow us to investigate changes in functional connectivity

which occur during the ageing process. The methods proposed in this work consist of a

two-step procedure: first, linear latent variable models, such as PCA and its extensions, are

employed to learn reproducible functional connectivity networks present across a cohort of

subjects. The activity within each network is subsequently employed as a feature in a linear

regression model to predict brain age. The proposed framework is employed on the data

from the CamCAN repository and the inferred brain age models are further demonstrated to

generalize using data from two open-access repositories: the Human Connectome Project

and the ATR Wide-Age-Range.

1 Introduction

The human brain changes during the lifespan of an adult, resulting in robust and reproducible

changes in structure and function [1, 2]. Moreover, there is reason to hypothesize that devia-

tions from the typical brain ageing trajectory may reflect latent neuropathological influences

[3], serving to motivate further research into developing reliable biomarkers derived from

brain imaging data. Such biomarkers could be fundamental in order to better understand and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232296 June 10, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Monti RP, Gibberd A, Roy S, Nunes M,

Lorenz R, Leech R, et al. (2020) Interpretable brain

age prediction using linear latent variable models of

functional connectivity. PLoS ONE 15(6):

e0232296. https://doi.org/10.1371/journal.

pone.0232296

Editor: Carlo Vittorio Cannistraci, Technische

Universitat Dresden, GERMANY

Received: December 4, 2019

Accepted: April 11, 2020

Published: June 10, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0232296

Copyright: © 2020 Monti et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: With respect to the

CamCAN data, the resting state fMRI data was

employed. This can be accessed at: https://

camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.

http://orcid.org/0000-0002-7823-4961
http://orcid.org/0000-0002-4719-2690
https://doi.org/10.1371/journal.pone.0232296
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232296&domain=pdf&date_stamp=2020-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232296&domain=pdf&date_stamp=2020-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232296&domain=pdf&date_stamp=2020-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232296&domain=pdf&date_stamp=2020-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232296&domain=pdf&date_stamp=2020-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232296&domain=pdf&date_stamp=2020-06-10
https://doi.org/10.1371/journal.pone.0232296
https://doi.org/10.1371/journal.pone.0232296
https://doi.org/10.1371/journal.pone.0232296
http://creativecommons.org/licenses/by/4.0/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/


combat age-associated neurodegenerative diseases. To date, early studies have shown success

in the context of traumatic brain injury [4] and schizophrenia [5].

Due to the significant potential benefits associated with brain-imaging driven biomarkers

for age, there have been many statistical models proposed for healthy brain ageing. These mod-

els vary in complexity as well as in the class of neuroimaging data employed. One of the earliest

demonstrations was that of [6], who employed voxel-based morphometry to demonstrate the

structural changes which occur during healthy ageing. More recently, a wide range of sophisti-

cated machine learning methods have been employed [7, 8, 9]. [4] employed Gaussian process

regression to predict the biological age of subjects using structural neuroimaging data, demon-

strating that such a model was able to accurately predict brain age. The resulting model was

subsequently applied to subjects with traumatic brain injury (TBI), where the associated resid-

uals (difference between predicted and true biological age) were shown to be significantly

larger for subjects with TBI as compared with healthy subjects; the associated model consis-

tently predicted subjects with TBI to be older, possibly a result of accelerated atrophy. This

work was further extended by [10], who employed convolutional neural networks to obtain

improved performance. In related work, [11] employ kernel regression with an application to

the early identification of Alzheimer’s disease.

While the vast majority of the literature has employed structural imaging modalities, there

are also numerous examples of where functional imaging has been utilized. A pertinent exam-

ple is [12], who employ resting-state fMRI together with support vector machines (SVMs) in

order to accurately classify subjects as being either children (ages 7-11 years old) or adults

(ages 24-30 years old). Furthermore, they observe an overall decrease in network connectivity

as subjects mature. In related work, [13] identify ageing-driven changes in functional connec-

tivity, highlighting decreased connectivity within the default mode network and the somato-

motor network. Subsequently, [14] categorized the changes in functional connectivity that

occur with healthy ageing in terms of various network measures.

More generally, the study of functional connectivity is itself an exciting avenue of modern

neuroscientific research which has shown great potential for improving our understanding of

the human brain function and architecture [15]. By way of example, changes in functional

connectivity have been related to various neuropathologies such as Parkinson’s disease [16]

and Alzheimer’s [17] as well as conditions such as Autism [18]. Recently, the changes in func-

tional connectivity induced by ageing have begun to be studied. Initial studies have reported

significant differences in the connectivity between younger and older subjects using resting-

state fMRI [14]. Moreover, results appear to suggest there are important changes that occur in

the connectivity not just between regions but also at the level of entire networks. However,

despite recent advances, a holistic understanding of the relationship between healthy ageing

and the associated changes in functional connectivity is still missing.

In this work we seek to build robust models of brain age based on the functional connectiv-

ity of individuals. This serves to combine the two prominent avenues of neuroscientific

research: brain age prediction and analysis of functional connectivity. In particular, the meth-

ods presented in this work have two principal objectives:

1. To demonstrate that measures of functional connectivity can reliably be employed as fea-

tures in machine learning models of brain age. To this end we build and validate models

using three large open-source datasets: the Cambridge Center for Ageing and Neurosci-

ence (CamCAN), the Human Connectome Project (HCP) and the ATR Wide-Age-Range

datasets.

2. We further wish to interpret and inspect the proposed models in order to gain further

insights into the changes in functional connectivity associated with ageing. This calls for the
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use of parsimonious and simple predictive models together with features whose relation-

ship with functional conncetivity is clearly understood.

Throughout this paper, we put forward the thesis that for the potential impact of functional

connectivity assessment to be met (i.e., in terms of developing powerful biomarkers) the

research community needs to develop robust methods for data-analysis which can combine

both supervised and unsupervised models of functional connectivity analysis. Instead of

tweaking existing statistical methods, it is imperative to develop methods which are intuitive,

interpretable, and insightful from a neurophysiological perspective. Such models must utilise

as much experimental information as possible in order to investigate the factors which affect

functional connectivity.

To further motivate our thesis, one should consider that most experiments to date operate

on data from a single laboratory, or class of experiment which limits the generality of any

obtained results. Such concerns have been recently recognised, particularly within the context

of brain ageing [19, 20], and have given rise to multi-laboratory collaborations with data-shar-

ing becoming more common. However, it is still highly unlikely that all subject features (and

how these are measured) will be comparable across different experimental environments.

Thus while data-sharing has seen much progress, it could be argued that the impact of these

endeavours is still to come, and to achieve this, we need to develop methods which can com-

bine information from across disparate, but informative experiments.

To this end we proceed in a two-step framework. First, we seek to learn robust features

which summarize properties of functional connectivity across a cohort of subjects in an unsu-

pervised manner. Due to our focus on interpretability, we focus on linear latent variable mod-

els, such as principal component analysis (PCA), independent component analysis (ICA) and

their generalizations. The benefit of employing latent variable models such as PCA is that we

may interpret the latent variables in terms of activity within functional connectivity networks,

as proposed by [21] (see also Fig 2 below). Second, once features have been obtained in an

unsupervised manner, they are subsequently used to predict brain age using standard linear

regression models. We deliberately restrict ourselves to simple linear classifiers as they can be

easily interrogated, allowing us to explicitly understand how each feature contributes to the

predicted brain age. An overview of our two-stage approach is provided in Fig 1.

The remainder of this manuscript is organized as follows: in Section 2 we first review linear

latent variable models and their implications for functional connectivity analysis. We then

present our proposed two-step procedure. Experimental results, studying synthetic as well as

real resting-state fMRI data, are presented in Section 3.

2 Materials and methods

We focus our analysis on resting-state fMRI time series data which is collected across a cohort

of N subjects. For the ith subject, it is assumed we have access to fMRI measurements over p
fixed regions of interest, denoted by XðiÞ 2 Rp, as well as the subjects age, aðiÞ 2 Rþ. Through-

out this work we approximately model the fMRI data for each subject with a stationary multi-

variate Gaussian distribution, XðiÞ � N ð0;SðiÞÞ, where S(i) denotes the covariance for subject i.
Each entry in S(i) denotes the covariance between any pair of regions, which serves to define a

measure of the functional connectivity [22]. As such, it follows that S(i) encodes a functional

connectivity network over p regions where edges encode the marginal dependence structure.

The goal of the proposed methods is to learn interpretable and robust models to predict the

biological age, a(i), of subjects given information relating only to their functional connectivity.

To achieve this, we propose a two-step framework. Our approach first employs linear latent

variable models in order to model high-dimensional connectivity matrices using a reduced
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number of latent variables. We interpret such variables as corresponding to functional connec-

tivity networks, allowing us to describe patterns in connectivity as being composed of various

distinct networks. We note that such a two-step approach has previously been employed in the

context of brain age prediction [11, 9]. However, as far as we are aware, this is the first work to

directly interpret the role of linear latent variable models, such as PCA, as learning the relevant

functional networks. This work thereby provides a clear motivation and interpretation for

such a two-stage strategy.

Fig 2. Figure demonstrating the relationship between linear latent variable models, such as PCA and its

extensions, to inferred networks. We highlight how introducing various structural constraints on the loading matrix,

W, improves interpretability of such models.

https://doi.org/10.1371/journal.pone.0232296.g002

Fig 1. Pipeline for estimating networks, factor loadings, and predictive model for biological brain age. Inferred

factors W 2 Rp�k
describe networks which are reproducible across the entire population, the subject-specific factor

loadings gðiÞl are then used to predict brain age. Once the factor loadings are estimated as above, using one experimental

data-set (we use CamCAN data in our experiments), we can then assess how these factors perform for brain age

prediction on completely held-out data-sets; we demonstrate how the model generalizes well using HCP and ATR

Wide-Age-Range datasets.

https://doi.org/10.1371/journal.pone.0232296.g001
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In Section 2.1 we discuss the various latent variable models employed, and highlight how

introducing assumptions such as non-negativity can help further improve interpretability of

results. We also discuss theoretical benefits associated with such assumptions. We then discuss

the how the features (i.e., functional networks) inferred by the latent variable models may be

used to build linear models for brain age.

2.1 Linear latent variable models for functional connectivity: PCA and its

extensions

In this section we outline the linear latent variable models employed in the unsupervised learn-

ing stage of the proposed framework. We begin by discussing principal component analysis

(PCA), a well-established technique for dimensionality reduction [23]. The common deriva-

tion for PCA poses it as an optimization problem seeking to learn the linear projection which

maximizes explained variance within the projected space [24]. However, PCA can also be

derived as inference under a simple linear latent variable model, which posits that observations

XðiÞ 2 Rp are generated as a linear projection from low-dimensional latent variables, ZðiÞ 2 Rk

[25]. When both observations and latent variables are taken to follow a multivariate Gaussian

distributions we obtain the following generative model for observed data:

ZðiÞ � N ð0;GðiÞÞ ð1Þ

XðiÞjZðiÞ ¼ zðiÞ � N ðWzðiÞ; vðiÞIÞ ð2Þ

where GðiÞ 2 Rk�k is a diagonal matrix and vðiÞ 2 Rþ denotes measurement noise. Eqs (1) and

(2) serve to highlight how PCA can be seen as a low-rank model for the covariance matrix; by

marginalizing over latent variables we obtain:

SðiÞ ¼WGðiÞWT þ vðiÞI; ð3Þ

implying that the loading matrix, W, captures low-rank covariance structure. Learning the

associated loading matrix, W, proceeds via maximizing the log-likelihood over observations

across all N subjects:

L ¼
XN

i¼1

p log 2pþ log det SðiÞ þ trðSðiÞ
� 1
KðiÞÞ; ð4Þ

where S(i) is as defined in Eq (3) and K(i) denotes the sample covariance matrix for the ith sub-

ject. In the context of PCA, the maximization is performed subject to the constraint that W be

orthonormal,

Ŵ ¼ arg max
W:WTW¼I

fLg; ð5Þ

and a closed-form solution is obtained via eigendecomposition.

Following [21] it is possible to interpret each column of W as encoding functional networks

or “eigenconnectivities”. While the loading matrix, W, is shared across all subjects, each diago-

nal entry of G(i) denotes the extent to which the associated network is expressed in subject i.
This allows us to study connectivity as being composed of various distinct networks, resulting

in significant benefits from the perspective of interpretability. We can further unpack Eq (3) as

PLOS ONE Interpretable brain age prediction using linear latent variable models of functional connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0232296 June 10, 2020 5 / 25

https://doi.org/10.1371/journal.pone.0232296


follows (see also Fig 2 below):

SðiÞ ¼
Xk

j¼1

gðiÞj WjW
T
j þ vðiÞI; ð6Þ

where Wj denotes the jth column of W and we write gðiÞj to denote the jth diagonal entry of the

matrix GðiÞ 2 Rk�k
. As such, we may interpret each Wj as encoding the jth network and gðiÞj as a

measure of activity within the corresponding network in the ith subject.

There exist several extensions to the model described in Eqs (1) and (2), the prime example

being factor analysis which allows the variances in Eq (2) to vary across dimensions. Recently,

several extensions have been proposed where constraints such as non-negativity are intro-

duced with the goal of improving the interpretability of results [26, 27, 28]. The motivation

behind such methods stems from the fact that interpreting and visualizing PCA-based net-

works becomes very challenging, particularly in high-dimensions. Challenges arise from the

fact that each principal component will correspond to a weighted sum of BOLD activities

across all observed regions. As such, it is often difficult to identify which regions are the princi-

pal contributors to a certain principal component (and hence functional network) without

applying ad-hoc post analysis. Furthermore, it is possible that some entries in the principal

components may be negative, which further complicates the interpretation from the perspec-

tive of functional connectivity analysis.

The aforementioned issues can be mitigated via the introduction of non-negativity con-

straints on the loading matrix, W. This ensures that each principal component corresponds

only to a weighted positive sum of activity over all brain regions. As such, the principal compo-

nent can be directly interpreted as the contribution of each region to each functional network.

Furthermore, the introduction of non-negativity will often yield sparsity in the sense that

many of the entries of the principal components will be exactly zero [27]. It follows that such

sparsity further facilitates the interpretation of the corresponding networks. From an optimi-

zation perspective, the loading matrix is inferred by maximizing the original log-likelihood

objective, with the additional non-negativity constraint:

Ŵ ¼ arg max
W:W�0

fLg: ð7Þ

It is important to note that the orthonormality constraint has been dropped in Eq (7), mak-

ing the associated optimization problem less challenging. However, the combination of non-

negativity and orthonormality, as enforced in [29], leads to several desirable properties. First,

the loading matrix W has at most one non-zero entry per row. This implies that we may inter-

pret the columns of W as encoding membership to k non-overlapping networks or clusters.

Another very important benefit of introducing non-negativity and orthonormality constraints

is that the matrix W is uniquely defined and identifiable. This is not the case in standard factor

analytic models, where W is only identifiable up to an arbitrary rotation [30, 25]. Given that

throughout this work we will directly interpret the columns of the loading matrix, W, as

encoding functional connectivity networks, the lack of identifiability in PCA and factor analy-

sis models is a significant limitation. We refer to the model presented in [29] as Modular Hier-

archical Analysis (MHA). The associated optimization problem therefore becomes:

Ŵ ¼ arg max
W:WTW¼I and W�0

fLg: ð8Þ

MHA can therefore been seen to address the two important limitations of traditional mod-

els such as PCA and factor analysis; first that the presence of negative values in the loading
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matrix complicates the interpretation of such matrices (addressed via the use of non-negativity

constraints) and second is the fact that the latent variables are rotationally invariant (addressed

via the further introduction of orthogonality). A further limitation of models such as PCA and

factor analysis is that they implicitly assume latent variables must be uncorrelated. In many

cases, especially when such models are applied on data relating to a cohort of subjects, such an

assumption will not be valid, implying the associated generated models are misspecified. In

contrast, MHA is able to identify and recover components even when they are uncorrelated.

This is an important theoretical advantage, as MHA continues to enjoy the same identifiability

properties even in the presence of correlated latent variables, and practical advantage, as we

demonstrate in this work. Finally, we note that in the context of fMRI data, MHA corresponds

to an intuitive generative model whereby latent variables capture the activity within each func-

tional network. The optimization of Eqs (5), (7) and (8) is discussed in S1 Appendix. Further-

more, we provide both Python and R code to implement MHA in S1 Code.

Moreover, we note that model introduced by [26], termed Modular Connectivity Factoriza-

tion (MCF), shares many similarities with MHA. In fact, both methods introduce non-negativ-

ity and orthonormality over the loading matrix, W. The fundamental difference, however, is

that MCF is not associated with a linear latent variable model, and instead parameters are

inferred as follows:

Ŵ ¼ arg max
W:WTW¼I and W�0

XN

i¼1

trðSðiÞKðiÞÞ2
( )

; ð9Þ

where S(i) is defined as in Eq (6) and K(i) is the empirical covariance for the ith subject. A

related approach was also proposed by [31].

Finally, it is important to note that whilst identifiability can be obtained via the combina-

tion of non-negativity and orthonormality, as is the case with the MHA model, it can also be

obtained by relaxing the assumed distribution over latent variables, as is the case with indepen-

dent component analysis (ICA) models. Formally, ICA is also a linear latent variable model,

however, latent variables are no longer assumed to follow a Gaussian distribution [32]. While

the relaxation of the Gaussianity assumption complicates the associated optimization, which

must now be solved using gradient descent methods and accounting for the presence of multi-

ple local optima due to the non-convex objective function [33], ICA has been widely employed

in the study of functional connectivity [34, 35]. Moreover, we note that the “spatial” version

of ICA used in fMRI reverses the roles of latent variables and loadings, which means that it is

actually looking at the non-Gaussianity or sparsity of what we call here the loadings, corre-

sponding to spatial patterns. Fig 2 provides a visualization of the benefits obtained by intro-

ducing each of the aforementioned constraints. In particular, we note that it is the

combination of non-negativity together with orthonormality which yields interpretable and

identifiable networks. We empirically validate such claims by applying all of the aforemen-

tioned models to synthetic and real fMRI datasets below.

2.2 Predicting brain age using functional network activity

The previous section outlined the various flavours of latent variable models which can be

employed in order to learn functional networks across a cohort of N subjects. The aforemen-

tioned models allow us to decompose observed functional connectivity patterns as a linear

sum of networks encoded by the columns of the loading matrix, W. While the loading matrix

is shared across all subjects (indicating the same networks are present across all subjects), the

extent to which they contribute to the observed covariance of the ith subject is denoted by the

diagonal entries of G(i), as stated in Eq (6).
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We now consider the task of predicting the biological brain age, a(i), using inferred func-

tional connectivity networks as features. In the interest of interpretability we limit ourselves to

linear regression models of the form:

aðiÞ ¼
Xk

j¼1

bjg
ðiÞ
j þ �

ðiÞ: ð10Þ

Recall that gðiÞj corresponds to the jth diagonal entry of the matrix G(i). As such, the proposed

models will essentially seek to predict the biological age of subjects by considering activity

within each inferred functional network. In the case of the ith subject, the observed activity in

network j is quantified by gðiÞj 2 Rþ. In practice, we will seek to quantify the activity of various

functional networks on unseen subjects, defined to be subjects whose data was not employed

to estimate loading matrix, W. We note that due to the orthonormality of W, together with Eq

(6), we may estimate gðiÞj for data from unseen subjects, denoted by i�, as follows:

ĝ ði
�Þ

j ¼WT
j Ŝ

ði�ÞWj � vði�Þ: ð11Þ

We note that Eq (11) requires the observation noise, v(i�). This is not a concern for all subjects

whose data is employed during the unsupervised learning of the latent variables, as parameters

v(i) are inferred alongside loading matrix, W. However, the primary goal of this work is to

build predictive models which can generalize to unseen subjects. In this context, an estimate of

the observation noise, v(i�), can be obtained as follows:

v̂ði�Þ ¼ tr Ŝði�Þ � WTŜði
�ÞW: ð12Þ

Although the class of models considered in Eq (10) may be considered amongst the simplest

supervised regression models, they yield several important benefits when seeking to under-

stand both the estimated parameters as well as the contribution of each of the features. In par-

ticular, each βj corresponds to the regression coefficient summarizing the (linear) relationship

between the activity of the jth network and biological age, conditional on all remaining net-

works. As such, if certain regression coefficients are deemed to be insignificant, we may con-

clude that the associated network is invariant during healthy ageing.

2.3 Hyper-parameter selection

The proposed two-stage estimation framework requires the input of only one hyper-parame-

ter: the dimensionality of latent variables k. In the context of PCA and factor analysis, this

hyper-parameter directly corresponds to the number of principal components or factors

inferred, and a wide literature exists for tuning such a parameter [23]. One of the advantages

of the latent variable models presented in Section 2.1 is that they each correspond to probabi-

listic models whose likelihood can be directly evaluated. As such, a logical choice to tuning

hyper-parameter k is to directly maximize the log-likelihood over held out data.

In order to effectively perform hyper-parameter tuning as well as quantify the generaliza-

tion performance of the proposed method, data was split into training, validation and test

datasets as follows:

• First, a subset of subjects were held out as test data. As such, we obtain two datasets:

XðiÞ1:n; aðiÞ
n o

i2Strain
and XðiÞ1:n; aðiÞ

n o

i2Stest

where Strain, Stest� {1, . . ., N} denote the non-overlapping sets of training and test subjects
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respectively. Recall N is the number of subjects present and we write XðiÞ1:n to denote the n
observations available for the ith subject.

• Training data is further split into training and validation datasets on a subject-by-subject

basis.

Splitting the data in this manner allows for effective hyper-parameter tuning, using training

and validation datasets, as well as for generalization performance to be measured using test

dataset which corresponds to unseen subjects.

2.4 Experimental data

The data employed in this manuscript corresponds to resting-state fMRI data taken from three

distinct open-access repositories. There were small variations in the resting-state functional

MR image acquisition for each of the repositories considered: CamCAN [38], Human Connec-

tome Project [37], and the ATR Wide Age Range [38]. The pre-processing employed on each

dataset was as follows:

• CamCAN: This dataset was pre-processed by us. Data was motion corrected, spatially

smoothed with a 5mm FWHM Gaussian kernel, registered into MNI152 standard space

using FLIRT [39] via a skull-stripped high-resolution T1 image and resampled to 4x4x4mm

voxel sizes. Each high resolution T1 image was segmented into grey and white matter and

cerebrospinal fluid using SPM Dartel [40]. Mean timecourses for cerebrospinal fluid and

white matter as well as 6 motion parameters were linearly filtered from each voxel to reduce

non-neural noise.

• HCP: We used the pre-processed resting-state fMRI data from a random subset of healthy

participants. Notably, the pipeline involved FIX ICA-based noise reduction process [40], to

remove individual sources of physiological, non-physiological and motion related noise. Full

details of the pre-processing pipeline can be found at https://www.humanconnectome.org/

study/hcp-young-adult/document/extensively-processed-fmri-data-documentation.

• ATR: We used the preprocessed data. The pre-processing pipeline notably included regress-

ing out the global grey matter signal as well as signals from cerebrospinal fluid and white

matter, to remove sources of spurious variation

All three pre-processed fMRI datasets were subsequently processed as follows: a cortical

parcellation based on resting-state functional connectivity analyses [42] was used to define 264

distinct 10mm diameter regions of interest (ROIs). The fMRI time course averaging across all

voxels within each ROI was extracted. These 264 average time courses were then used in subse-

quent analyses. Full details are provided here https://bicr-resource.atr.jp/var/www/webapp/

bicrresource/bicrresource/staticfiles/pdf/Methods.pdf.

3 Results

In this section we present a range of experimental results involving both synthetic and real

resting-state fMRI datasets. Throughout this section, we contrast the performance of the vari-

ous linear latent variable models presented in Section 2.1. In particular, we study the perfor-

mance across the following methods: factor analysis (FA), PCA, non-negative PCA [27], MCF

[26] and MHA [29] as well as ICA. In the case of ICA, we first employ PCA as a dimensionality

reduction before employing the FastICA algorithm proposed by [43]. The implementations

available in Scikit Learn were employed for Factor Analysis, PCA and ICA [44].
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We first present results using synthetic data in Section 3.1. These simulation experiments

serve as a numerical validation of the proposed two-stage procedure. Experiments relating to

brain age prediction from resting-state fMRI data are subsequently presented in Section 3.2.

3.1 Synthetic data experiments

In this section we evaluate the performance of the proposed two-stage estimation framework

using synthetic data. To this end, we generate artificial data whose properties approximately

match those which are frequently reported in fMRI studies. The objective is then to quantify

which of the linear latent variable models presented in Section 2.1 are able to both robustly

recover the associated loading matrix, W, as well as learn the relevant factors which serve as

accurate predictors of brain age on unseen subjects. Synthetic data was then generated in

order to satisfy Eqs (1), (2) and (10). This is achieved as follows:

• First, we randomly generated a factor loading matrix, W 2 Rp�k
, which satisfied the con-

straints of both non-negativity and orthonormality. The reason for introducing both con-

straints is that we will seek to quantify how reliably each latent variable model can recover

W, and it is therefore imperative to ensure we generate W from an identifiable model (see

discussion in Section 2.1). In order to achieve this a dense matrix, W, was sampled with each

entry following a uniform distribution over the interval [0, 1]. Subsequently, for each row

only the entry with the largest value was retained with all other entries set to zero. Finally,

the norm of each column was set to one.

• Second, the factor loadings for the ith subject, gðiÞ 2 Rk
, were randomly generated as follows:

gðiÞj � N ð2:5; 1:0Þ; for j ¼ 1; . . . ; k

with all negative samples being discarded.

• The regression coefficients, b 2 Rk
, were drawn uniformly at random from the interval [0,

10].

• Finally, we are able to randomly generate observations and ages for each subject as follows:

XðiÞ � N ð0;WGðiÞWT þ vðiÞÞ; ð13Þ

aðiÞ � N ðbTgðiÞ; �Þ: ð14Þ

Recall that GðiÞ 2 Rk�k is a diagonal matrix consisting of entries gðiÞj .

We note that the choices for sampling distributions of both the factor loadings, g(i), as well

as the regression coefficients, β, are necessarily somewhat heuristic. However, care was taken

to ensure the implied distributions over subject ages approximately matched the empirical dis-

tributions observed within the CamCAN repository.

We note that throughout experiments we consider the performance of each method whilst

varying two distinct factors: the number of observations per subject, n, and the number of

training subjects, N. Furthermore, throughout simulations we fix the dimensionality of obser-

vations to be p = 50 and the number latent factors to be k = 5.

Given artificial data generated as described above, we look to quantify the performance of

each of the linear latent variable models using the following two metrics:

1. Accurate recovery of the loading matrix, W. This is quantified in terms of the squared error

between the true loading matrix and the estimated loading matrix.
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2. Accurate brain age prediction over unseen subjects. In line with other literature, this is quan-

tified in terms of the mean absolute error between true and predicted brain ages [11, 8].

3.1.1 Synthetic data results. We begin by considering the performance of each linear

latent variable model as the number of observations per subject, n, increases for a fixed num-

ber of training subjects, N = 25. The results are presented in Fig 3. We note that both in terms

of recovery of the loading matrix, W, as well as in terms predicting the ages over unseen sub-

jects, the introduction of regularity constraints, be they in the form of non-negativity, ortho-

normality or non-Gaussianity or sparsity (as in ICA), leads to improvements.

We also study the performance of the various latent variable models when the number of

training subjects, N, increases and the number of observations is fixed at n = 100 per subject.

These results are presented in Fig 4. In terms of recovery of the loading matrix, W, we again

observe that introducing regularity constraints leads to significant improvements. In terms of

Fig 3. Simulation results for recovery of the true loading matrix (left panel) and prediction of brain age for unseen

subjects (right panel) as the number of observations per subject, n, increases. We note that the introduction of

regularity constraints (e.g., non-negativity or orthonormality) on the loading matrix leads to improvement in

performance.

https://doi.org/10.1371/journal.pone.0232296.g003

Fig 4. Simulation results for recovery of the true loading matrix (left panel) and prediction of brain age for unseen

subjects (right panel) as the number of training subjects, N, increases. We note that the introduction of regularity

constraints (e.g., non-negativity or orthonormality) on the loading matrix leads to improvement in performance.

https://doi.org/10.1371/journal.pone.0232296.g004
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predictions over unseen subjects (as shown in the right panel of Fig 4), the improvements due

to the introduction of regularity conditions begin to fade as the number of training subjects

increases. In particular, beyond a certain number of training subjects (approximately 25 in the

case of these experiments), the improvement in out-of-sample predictions begins to plateau.

3.2 Resting-state fMRI data experiments

While the previous section presented results relating to synthetic data, here we present experi-

mental results where the proposed two-step procedure is applied to three open-source resting-

state fMRI datasets. The datasets considered correspond to the Cambridge Center for Ageing

and Neuroscience (CamCAN) repository, the Human Connectome Project (HCP) repository,

and the ATR Wide-Age-Range repository. The purpose of employing three distinct datasets

is to effectively measure the generalization performance of the proposed approach on unseen

data. As such, data from the HCP and Wide-Age-Range repositories was not employed during

any of the model training and instead used exclusively as unseen test data. It is important to

note that in addition to significant inter-subject variability [45], fMRI data also suffers from

the presence of several other well-documented issues such as variable scanner performance or

noise [46, 47, 48]. As such, validating the performance of the proposed brain age prediction

models in this way will provide a more realistic measure of their generalization performance.

3.2.1 CamCAN repository results. Resting-state fMRI data was collected from a total of

647 subjects from the CamCAN repository. Subject ages ranged from 18 to 88 years of age

(average age of 54.31±18.56, 318 males and 329 females). The CamCAN dataset was employed

as the principal dataset in the proposed two-step procedure, implying that it was employed to

learn both the functional network structure in the unsupervised learning stage and the linear

regression models in the supervised learning stage. As such, the data was split into training,

validation and test subsets as described in Section 2.3.

Step 1: Unsupervised functional network inference. The first stage of the proposed framework

involves the estimation of reproducible functional connectivity networks via the use of the var-

ious linear latent variable models discussed in Section 2.1. The number of functional networks

inferred corresponds directly to the dimensionality of latent variables, which is determined by

hyper-parameter k. As each linear latent variable model can be interpreted as a probabilistic

model, we select hyper-parameter k by maximizing the log-likelihood over the validation data-

set. This resulted in the choice of k = 5 when the loading matrix was restricted to be both non-

negative and orthonormal, as proposed by [26] and [29]. While it is possible that the choice of

hyper-parameter may vary across distinct latent variable models (e.g., for PCA or factor analy-

sis), we choose to keep the choice of k fixed across all models as this facilitates model compari-

son and interpretation of results.

The left panel of Fig 5 visualizes the results when the MHA linear latent variable model was

employed (Figures produced using the plot glass brain function from the nilearn
python module [49]). We note that, as discussed in Section 2.1, the MHA linear latent variable

model effectively clusters regions into sub-networks via the introduction of non-negativity

and orthonormality constraints. As such, each plot in the left panel of Fig 5 visualizes spatially

remote brain regions which have been clustered together, indicating that these regions share

strong positive correlations. We note that these correlations (i.e., edges in a network) are omit-

ted for clarity in Fig 5. The results demonstrate that the inferred networks are spatially homo-

geneous and symmetric across both hemispheres. Furthermore, many of the inferred networks

correspond to widely reported networks and regions: network 1 captures the default model

network (DMN) and network 2 overlaps with the salience network, while networks 3 and 4

correspond to a higher-level visual network and the somatomotor network respectively. For
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comparison, we include equivalent plots for all other latent variable models considered in visu-

alized in Fig 6, presented in the Supplementary Material. We note that alternative methods,

such as PCA, which did not enforce the combination of both non-negativity and orthonormal-

ity, yielded results which were visibly less clustered and more difficult to interpret.

The right panel of Fig 5 visualizes the correlation between the activity of each network (as

defined in Eq (11)) with the age of each subject. For networks 1-3 we observe a significant neg-

ative correlation between the activity and age, suggesting that ageing induces a drop in activity

of such networks. These results are in line with related research on ageing induced differences

in functional connectivity. In particular, the decrease in activity of the DMN (network 1), has

been widely reported [19, 50, 51].

Step 2: Supervised training of brain age prediction models. Recall that the overall objective of

the proposed framework was build interpretable models of biological brain age. To this end,

the features recovered from linear latent variable models where employed as features in a lin-

ear regression framework to predict the brain age of each subject. In particular, the five distinct

the linear latent variable models detailed in Section 2.1 where employed to learn reproducible

sub-networks parameterized by a loading matrix, W 2 Rp�k
. The activity within each

Fig 5. Left panel: Inferred networks as recovered when non-negativity and orthonormality constraints are introduced

over the loading matrix, W. Networks are spatially consistent and symmetric. Right panel: visualization of network

activities against subject age demonstrating (mostly negative) linear trends with healthy aging.

https://doi.org/10.1371/journal.pone.0232296.g005
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functional network, defined as in Eq (11), was subsequently employed as features to predict

biological age using linear regression.

We note that the CamCAN repository, as well as HCP and ATR repositories, each con-

tained over a hundred subjects each. This is in contrast to typical fMRI studies, where the sam-

ple size is often in the range of 20 to 30 subjects [52, 48]. Furthermore, recall that the goal of

experiments presented are to quantify performance on unseen resting-state fMRI data with a

view to providing an indication of how each of the linear latent variable models employed

would perform in a typical fMRI study. As such, throughout the remainder of this section we

report the performance, in terms of mean absolute error, over random subsets of 30 subjects

from each repository. This corresponds to a form of bootstrapping, where we average results

over a random sample of possible cohorts. In practice, we report results over 1000 random sub-

sets of 30 subjects for each of the three repositories considered.

Fig 7 visualizes the mean absolute error on unseen test data for various choices of

k 2 {2, . . ., 10}. We note that the combination of linear regression with the use of non-

negativity and orthonormality constraints, as advocated by both the MCF and MHA models,

Fig 6. Inferred networks using alternative linear latent variable models. In the case of models such as PCA and

factor analysis, networks were obtained by thresholding entries of W so only non-negative entries considered.

https://doi.org/10.1371/journal.pone.0232296.g006

Fig 7. Mean Absolute Error (MAE) performance for a varying number of networks, as determined by k (x-axis),

on unseen test data from CamCAN. We note that the combination of non-negativity and othonormality (MHA and

MCF) yields competitive results across a wide range of k.

https://doi.org/10.1371/journal.pone.0232296.g007
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leads to competitive performance over a range of choices of k. In particular, such algorithms

out-perform both non-negative PCA and PCA, suggesting that the introduction of such con-

straints serves to improve the predictive properties of the model. Moreover, we note that Fig

7 indicates the presence of a bias-variance trade-off that is often encountered in supervised

learning whereby performance on unseen test data begins to deteriorate as the number of

parameters (in our case k) increases beyond a certain value.

As mentioned previously, the choice of k = 5 was selected in by maximizing log-likelihood

over a validation dataset (i.e., in an entirely unsupervised manner—data regarding subject ages

was not considered). Fig 8 visualizes the performance on the unseen test dataset for the specific

choice of k = 5, for all possible choices of linear latent variable models. The results indicate that

as additional constraints are introduced to the loading matrix, the generalization capabilities

of the models also improve. As such, MCF and MHA, which introduce the most stringent con-

straints corresponding to both non-negativity and orthonormality, obtain the best generaliza-

tion performance. We also note that ICA is also competitive. Moreover, non-negative PCA,

which relaxes the requirement for orthonormality, is the next most competitive latent variable

model. Finally, PCA and factor analysis, which relax all the aforementioned constraints, obtain

the worst generalization performance.

3.2.2 Transfer onto HCP and ATR Wide-Age-Range repositories. The results of Sec-

tion 3.2.1 provide a measure of performance, in terms mean absolute error in predicted

brain age, within a large-scale resting-state fMRI dataset. However, it is widely accepted that

in addition subject-specific noise, there are several other significant contributors to noise

in fMRI data: these include issues related to scanner noise and frequency of acquisition

of images [46, 47, 48]. As a result, in order to thoroughly verify the generalization perfor-

mance of the proposed methods, we employ resting-state fMRI data from the HCP and ATR

Wide-Age-Range repositories. We note that data from the aforementioned repositories was

employed only for testing purposes, as such it was not employed to learn the network struc-

ture across subjects, nor to tune the parameters of the linear regression models. For a sum-

mary of the characteristics of HCP and ATR Wide-Age-Range datasets see Fig 9 and S1

Table in the Supplementary Material.

Prediction of biological age on both the HCP and ATR Wide-Age-Range repositories was

performed as follows: First, the loading matrix, Ŵ was employed to obtain estimated activity

within each network, as detailed in Eqs (11) and (12). Subsequently, predictions of biological

age were obtained using Eq (10). At each stage both Ŵ and b̂ are the parameters inferred

using the CamCAN dataset (i.e., there was no fine-tuning of parameters). As a result, perfor-

mance on both HCP and ATR Wide-Age-Range datasets provide a robust measure of generali-

zation performance to entirely unseen data.

Fig 8. Mean Absolute Error (MAE) performance on unseen testing data from CamCAN repository when the

dimensionality of latent variables is fixed to k = 5 (implying we infer 5 networks). We note that as regularity

constraints are introduced, in particular non-negativity and orthonormality, predictive performance improves.

https://doi.org/10.1371/journal.pone.0232296.g008
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Results on the HCP data are provided in Fig 10. As expected, the mean absolute errors are

larger for each of the distinct latent variable models when compared to the results of on the

CamCAN dataset (Fig 8), which will be partially the result of varying scanner noise and image

acquisition properties. Importantly we note that, as with the CamCAN dataset, there once

again a relationship between the introduction of additional constraints (in the form of non-

negativity, orthonormality or non-Gaussianity) and generalization performance. As before,

methods such as PCA and factor analysis which do not introduce any constraints had the

weakest performance as well as the largest drop in performance.

The HCP results presented above serve to partially validate the predictive models trained

using the CamCAN dataset. However, one significant limitation of the HCP dataset is that sub-

ject ages only range from 22 to 37 years of age. This is particularly relevant in the context of

brain age biomarkers, as many neurodegenerative diseases of interest will be associated with

advanced ages. As a result, we further validated the generalization capabilities of the proposed

Fig 9. Histogram visualizing age distribution for each of the repositories employed. We note that the CamCAN

dataset has the widest range of all repositories considered, validating its use as a the primary dataset in our study.

https://doi.org/10.1371/journal.pone.0232296.g009

Fig 10. Mean Absolute Eerror (MAE) performance on unseen data from HCP repository. Results are broadly

consistent with performance on the CamCAN data, indicating good generalization. We note that the introduction of

non-negativity or orthogonality constraints leads to improved generalization. The number of functional networks was

k = 5.

https://doi.org/10.1371/journal.pone.0232296.g010
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brain age prediction models on the ATR Wide-Age-Range dataset, which had subjects ranging

from 20 to 70 years of age. Results, presented in Fig 11 are consistent with results on the Cam-

CAN and HCP datasets, again indicating that the introduction of constraints non-negativity

and orthonormality constraints improves generalization performance.

3.3 Extension to non-independent latent variable models

The results presented above employ linear latent variable models where the inferred latents are

assumed to be independent. This is clearly stated in the generative model considered in Eq (1)

where the covariance of latent variables, G(i), is assumed to be diagonal. Note that in the case of

PCA, factor analysis and MHA, since latent variables are assumed to be multivariate Gaussian,

the fact the covariance is diagonal implies the latent variables are independent. However, such

an assumption will often fail in practice, implying that the empirical covariance structure over

latent variables will not be diagonal. In this section we seek to exploit this by directly introduc-

ing the off-diagonal entries of the latent variable covariances, G(i), as features in our linear

regression models for biological age. As such, whilst Eq (10) considered a linear model where

only the diagonal entries of each G(i) were employed to predict biological ages of each subject,

we now consider linear regression models of the following form:

aðiÞ ¼
Xk

j¼1

X

l�j

bjl gjl
ðiÞ þ �ðiÞ: ð15Þ

Note that in Eq (15) we employ the full upper triangular entries of the covariance matrix

as features. This is equivalent to vectorizing the covariance matrix and removing duplicate

entries due to symmetry. As such, whilst k features were employed in Eq (10), we now con-

sider a linear models with
� k

2
Þ features; many of which will seek to predict the biological age

of individuals based on the off diagonal entries of each G(i). It is important to note that the

model presented in Eq (10) is a special case of Eq (15).

As in Section 3.2, we proceed in a two-stage approach whereby we first estimate the loading

matrices for the various linear latent variable models employed and subsequently train linear

regression models using the full vectorized covariance matrix as features.

Fig 12 visualizes the MAE error on unseen test data as a function of the dimensionality of

latent variables, k. We note that for all choices of k the reported errors are smaller than those

reported in Fig 7. This provides empirical evidence that the off-diagonal entries of the latent

variable covariances are discriminative features for brain age prediction, and therefore can

be seen as evidence that models which assume diagonal covariance structure over latents are

Fig 11. Mean Absolute Error (MAE) performance on unseen data from ATR Wide-Age-Range repository. Results

are broadly consistent with performance on the CamCAN data, indicating good generalization. Further, as with the

HCP data, we note that the introduction of non-negativity or orthogonality constraints leads to improved

generalization. The number of functional networks considered was k = 5.

https://doi.org/10.1371/journal.pone.0232296.g011
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misspecified. Fig 13 provides further visualizations in the case where k = 5. We note that

the MHA model performs competitively, this is to be expected as this model directly accom-

modates the possibility of non-independent latent variables [29]. Moreover, we note that

MHA performs particularly well when the number of networks is small (when dimension

of latent variables, k, is less than or equal to 5), which is useful when we wish to prioritize the

Fig 12. Mean Absolute Error (MAE) performance for a varying number of networks, as determined by k (x-axis),

on unseen test data from CamCAN when latent variables are no longer assumed to have an isotropic covariance

structure and the full vectorized covariance is employed as features in the linear regression models. We note that

MHA is able to directly accommodate such a scenario and hence is competitive for all choices of latent variable

dimension, k.

https://doi.org/10.1371/journal.pone.0232296.g012

Fig 13. Mean absolute error (MAE) performance on unseen testing data from CamCAN repository when the

dimensionality of latent variables is fixed to k = 5 (implying we infer 5 networks). Note that latent variables are no

longer assumed to have an isotropic covariance structure and the full vectorized covariance is employed as features in

the linear regression models.

https://doi.org/10.1371/journal.pone.0232296.g013
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interpretability of results. Finally, the performance of various methods, as depicted in Fig 12,

shows similar trends as in Fig 7; there is once again a bias-variance trade-off associated with

the choice of k and the introduction of non-negativity or non-Gaussianity constraints (as in

MCF or ICA) leads to improved generalization performance. Finally, whilst Fig 12 only shows

generalization performance to unseen subjects from the CamCAN cohort, we also present

results for generalization performance to brain age prediction on the HCP and ATR Wide-

Age-Range datasets in Figs 14 and 15 of the Supplementary Material.

4 Conclusion

It is widely accepted that ageing has pronounced effects on the functional architecture of the

human brain [14, 9]. In the current study we have presented and validated a two-stage frame-

work through which to train interpretable and robust models of biological brain age based on

functional connectivity. In particular, the proposed framework first employs linear latent vari-

able models to uncover reproducible networks which are present throughout a cohort of sub-

jects. A variety of such latent variable models are considered many of which extend PCA by

introducing constraints such as non-negativity over the loading matrix. Our experiments sug-

gest that whilst PCA is a natural candidate for dimensionality reduction, and can be inter-

preted as recovering latent eigenconnectivities, the introduction of constraints such as non-

negativity can serve to greatly improve both interpretability and predictive performance.

While ICA improves on PCA by introducing spatial sparsity, we found that MHA as well as

MCF lead to better results, especially in the case of a small number of networks. Reasons for

Fig 14. Mean Absolute Error (MAE) performance on unseen data from HCP repository. Results are broadly

consistent with performance on the CamCAN data, indicating good generalization. We note that the introduction of

non-negativity or orthogonality constraints leads to improved generalization. The number of functional networks was

k = 5.

https://doi.org/10.1371/journal.pone.0232296.g014

Fig 15. Mean absolute error (MAE) performance on unseen data from ATR Wide-Age-Range repository. Results

are broadly consistent with performance on the CamCAN data, indicating good generalization. Further, as with the

HCP data, we note that the introduction of non-negativity or orthogonality constraints leads to improved

generalization. The number of functional networks considered was k = 5.

https://doi.org/10.1371/journal.pone.0232296.g015
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this improvement include using a combination of non-negativity and orthogonality that leads

to disjoint networks, as well as explicit modelling of connectivity between the components.

Given inferred functional networks and their activations we train linear predictive models

of biological brain age where in the interest of interpretability we deliberately restrict ourselves

to linear models. This allows us to directly interrogate the effects of each functional network

on the predicted brain age (as shown in Fig 5). In line with other results in the literature, we

find a decrease in activation in the default mode network, salience network and higher-level

visual network as biological age increases.

The proposed two-stage framework is first validated on the data from the CamCAN reposi-

tory and subsequently further applied to two further open-access repositories: the HCP and

ATR Wide-Age-Range repositories. The use of data from two additional repositories serves

to provide a clear empirical indication of the generalization capabilities of the proposed

approach. This is especially relevant in the context of fMRI data, where artefacts such as scan-

ner noise can often cause significant challenges [48].

We note that the brain age prediction errors presented in this work are not competitive

with alternative methods which are based on alternative imaging modalities, such as structural

imaging data [53, 10]. This is to be expected for two reasons. First, the imaging modality

employed in this work, resting-state fMRI data, is both noiser and likely to be less age-indica-

tive than structural measures. Second, in this work we deliberately restrict ourselves to build-

ing simple yet interpretable models of brain age. As such, we restrict ourselves to consider only

linear classifiers as these allow for clear model interpretation and interrogation, while noting

that the use of more expressive models (e.g., nonlinear models) in the second stage should nat-

urally lead to improved performance.

Furthermore, it is important to note that whilst this work demonstrates the feasibility of

functional connectivity driven models of biological brain age, all subjects included in these

studies were healthy. As such, whilst such models could eventually be employed to develop

biomarkers, further experimentation and validation will be required in future. Moreover, an

avenue for further research would be to consider performing classification instead of regres-

sion in the second stage of the proposed method. Whilst a natural task would be to discrimi-

nate between healthy controls and subjects with some neuropathology, such an approach

could also be employed in the context of task-based fMRI as well as to study changes in func-

tional connectivity induced by various distinct tasks [54] or neuropathologies [55, 56]. In par-

ticular, task-based fMRI has been widely reported as displaying non-stationary functional

connectivity structure [57, 58, 59, 60]. As such, seeking to discriminate between various cogni-

tive tasks, for example as considered by [61], [62], [63, 64], could be an exciting future applica-

tion. Moreover, while in this work we have considered linear latent variable models such as

PCA, future work could consider alternative latent variable modes such as latent position

graphs [65] and causal models [66, 67, 68].
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