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Abstract

Unsupervised machine translation—i.e.,
not assuming any cross-lingual supervi-
sion signal, whether a dictionary, transla-
tions, or comparable corpora—seems im-
possible, but nevertheless, Lample et al.
(2018a) recently proposed a fully unsu-
pervised machine translation (MT) model.
The model relies heavily on an adversar-
ial, unsupervised alignment of word em-
bedding spaces for bilingual dictionary in-
duction (Conneau et al., 2018), which we
examine here. Our results identify the lim-
itations of current unsupervised MT: un-
supervised bilingual dictionary induction
performs much worse on morphologically
rich languages that are not dependent mark-
ing, when monolingual corpora from dif-
ferent domains or different embedding al-
gorithms are used. We show that a simple
trick, exploiting a weak supervision sig-
nal from identical words, enables more ro-
bust induction, and establish a near-perfect
correlation between unsupervised bilingual
dictionary induction performance and a pre-
viously unexplored graph similarity metric.

1 Introduction

Cross-lingual word representations enable us to
reason about word meaning in multilingual con-
texts and facilitate cross-lingual transfer (Ruder
et al., 2018). Early cross-lingual word embedding
models relied on large amounts of parallel data
(Klementiev et al., 2012; Mikolov et al., 2013a),
but more recent approaches have tried to minimize
the amount of supervision necessary (Vulić and
Korhonen, 2016; Levy et al., 2017; Artetxe et al.,
2017). Some researchers have even presented un-
supervised methods that do not rely on any form

of cross-lingual supervision at all (Barone, 2016;
Conneau et al., 2018; Zhang et al., 2017).

Unsupervised cross-lingual word embeddings
hold promise to induce bilingual lexicons and ma-
chine translation models in the absence of dictio-
naries and translations (Barone, 2016; Zhang et al.,
2017; Lample et al., 2018a), and would therefore
be a major step toward machine translation to, from,
or even between low-resource languages.

Unsupervised approaches to learning cross-
lingual word embeddings are based on the assump-
tion that monolingual word embedding graphs are
approximately isomorphic, that is, after removing a
small set of vertices (words) (Mikolov et al., 2013b;
Barone, 2016; Zhang et al., 2017; Conneau et al.,
2018). In the words of Barone (2016):

. . . we hypothesize that, if languages are used to
convey thematically similar information in similar
contexts, these random processes should be approx-
imately isomorphic between languages, and that
this isomorphism can be learned from the statistics
of the realizations of these processes, the mono-
lingual corpora, in principle without any form of
explicit alignment.

Our results indicate this assumption is not true in
general, and that approaches based on this assump-
tion have important limitations.

Contributions We focus on the recent state-
of-the-art unsupervised model of Conneau et al.
(2018).1 Our contributions are: (a) In §2, we show
that the monolingual word embeddings used in
Conneau et al. (2018) are not approximately iso-
morphic, using the VF2 algorithm (Cordella et al.,
2001) and we therefore introduce a metric for quan-
tifying the similarity of word embeddings, based
on Laplacian eigenvalues. (b) In §3, we identify cir-
cumstances under which the unsupervised bilingual

1Our motivation for this is that Artetxe et al. (2017) use
small dictionary seeds for supervision, and Barone (2016)
seems to obtain worse performance than Conneau et al. (2018).
Our results should extend to Barone (2016) and Zhang et al.
(2017), which rely on very similar methodology.
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Figure 1: Nearest neighbor graphs.

dictionary induction (BDI) algorithm proposed in
Conneau et al. (2018) does not lead to good perfor-
mance. (c) We show that a simple trick, exploiting
a weak supervision signal from words that are iden-
tical across languages, makes the algorithm much
more robust. Our main finding is that the perfor-
mance of unsupervised BDI depends heavily on all
three factors: the language pair, the comparability
of the monolingual corpora, and the parameters of
the word embedding algorithms.

2 How similar are embeddings across
languages?

As mentioned, recent work focused on unsuper-
vised BDI assumes that monolingual word embed-
ding spaces (or at least the subgraphs formed by
the most frequent words) are approximately isomor-
phic. In this section, we show, by investigating the
nearest neighbor graphs of word embedding spaces,
that word embeddings are far from isomorphic. We
therefore introduce a method for computing the
similarity of non-isomorphic graphs. In §4.7, we
correlate our similarity metric with performance on
unsupervised BDI.

Isomorphism To motivate our study, we first
establish that word embeddings are far from
graph isomorphic2—even for two closely re-

2Two graphs that contain the same number of graph ver-
tices connected in the same way are said to be isomorphic. In
the context of weighted graphs such as word embeddings, a

lated languages, English and German, and us-
ing embeddings induced from comparable corpora
(Wikipedia) with the same hyper-parameters.

If we take the top k most frequent words in En-
glish, and the top k most frequent words in German,
and build nearest neighbor graphs for English and
German using the monolingual word embeddings
used in Conneau et al. (2018), the graphs are of
course very different. This is, among other things,
due to German case and the fact that the translates
into der, die, and das, but unsupervised alignment
does not have access to this kind of information.
Even if we consider the top k most frequent En-
glish words and their translations into German, the
nearest neighbor graphs are not isomorphic. Fig-
ure 1a-b shows the nearest neighbor graphs of the
top 10 most frequent English words on Wikipedia,
and their German translations.

Word embeddings are particularly good at cap-
turing relations between nouns, but even if we con-
sider the top k most frequent English nouns and
their translations, the graphs are not isomorphic;
see Figure 1c-d. We take this as evidence that
word embeddings are not approximately isomor-
phic across languages. We also ran graph isomor-
phism checks on 10 random samples of frequent
English nouns and their translations into Spanish,
and only in 1/10 of the samples were the corre-
sponding nearest neighbor graphs isomorphic.

Eigenvector similarity Since the nearest neigh-
bor graphs are not isomorphic, even for frequent
translation pairs in neighboring languages, we want
to quantify the potential for unsupervised BDI us-
ing a metric that captures varying degrees of graph
similarity. Eigenvalues are compact representations
of global properties of graphs, and we introduce
a spectral metric based on Laplacian eigenvalues
(Shigehalli and Shettar, 2011) that quantifies the
extent to which the nearest neighbor graphs are
isospectral. Note that (approximately) isospectral
graphs need not be (approximately) isomorphic,
but (approximately) isomorphic graphs are always
(approximately) isospectral (Gordon et al., 1992).
Let A1 and A2 be the adjacency matrices of the
nearest neighbor graphs G1 and G2 of our two
word embeddings, respectively. Let L1 = D1−A1

and L2 = D2−A2 be the Laplacians of the nearest
neighbor graphs, where D1 and D2 are the corre-
sponding diagonal matrices of degrees. We now

weak version of this is to require that the underlying nearest
neighbor graphs for the most frequent k words are isomorphic.



compute the eigensimilarity of the Laplacians of
the nearest neighbor graphs, L1 and L2. For each
graph, we find the smallest k such that the sum of
the k largest Laplacian eigenvalues is <90% of the
Laplacian eigenvalues. We take the smallest k of
the two, and use the sum of the squared differences
between the largest k Laplacian eigenvalues ∆ as
our similarity metric.

∆ =

k∑
i=1

(λ1i − λ2i)2

where k is chosen s.t.

min
j
{
∑k

i=1 λji∑n
i=1 λji

> 0.9}

Note that ∆ = 0 means the graphs are isospec-
tral, and the metric goes to infinite. Thus, the higher
∆ is, the less similar the graphs (i.e., their Lapla-
cian spectra). We discuss the correlation between
unsupervised BDI performance and approximate
isospectrality or eigenvector similarity in §4.7.

3 Unsupervised cross-lingual learning

3.1 Learning scenarios

Unsupervised neural machine translation relies on
BDI using cross-lingual embeddings (Lample et al.,
2018a; Artetxe et al., 2018), which in turn relies
on the assumption that word embedding graphs are
approximately isomorphic. The work of Conneau
et al. (2018), which we focus on here, also makes
several implicit assumptions that may or may not be
necessary to achieve such isomorphism, and which
may or may not scale to low-resource languages.
The algorithms are not intended to be limited to
learning scenarios where these assumptions hold,
but since they do in the reported experiments, it is
important to see to what extent these assumptions
are necessary for the algorithms to produce useful
embeddings or dictionaries.

We focus on the work of Conneau et al. (2018),
who present a fully unsupervised approach to align-
ing monolingual word embeddings, induced using
fastText (Bojanowski et al., 2017). We describe the
learning algorithm in §3.2. Conneau et al. (2018)
consider a specific set of learning scenarios:

(a) The authors work with the following lan-
guages: English-{French, German, Chinese,
Russian, Spanish}. These languages, except

French, are dependent marking (Table 1).3 We
evaluate Conneau et al. (2018) on (English to)
Estonian (ET), Finnish (FI), Greek (EL), Hun-
garian (HU), Polish (PL), and Turkish (TR) in
§4.2, to test whether the selection of languages
in the original study introduces a bias.

(b) The monolingual corpora in their experiments
are comparable; Wikipedia corpora are used,
except for an experiment in which they in-
clude Google Gigawords. We evaluate across
different domains, i.e., on all combinations of
Wikipedia, EuroParl, and the EMEA medical
corpus, in §4.3. We believe such scenarios are
more realistic for low-resource languages.

(c) The monolingual embedding models are in-
duced using the same algorithms with the
same hyper-parameters. We evaluate Con-
neau et al. (2018) on pairs of embeddings
induced with different hyper-parameters in
§4.4. While keeping hyper-parameters fixed
is always possible, it is of practical interest to
know whether the unsupervised methods work
on any set of pre-trained word embeddings.

We also investigate the sensitivity of unsuper-
vised BDI to the dimensionality of the monolin-
gual word embeddings in §4.5. The motivation for
this is that dimensionality reduction will alter the
geometric shape and remove characteristics of the
embedding graphs that are important for alignment;
but on the other hand, lower dimensionality intro-
duces regularization, which will make the graphs
more similar. Finally, in §4.6, we investigate the
impact of different types of query test words on
performance, including how performance varies
across part-of-speech word classes and on shared
vocabulary items.

3.2 Summary of Conneau et al. (2018)
We now introduce the method of Conneau et al.
(2018).4 The approach builds on existing work on
learning a mapping between monolingual word em-
beddings (Mikolov et al., 2013b; Xing et al., 2015)
and consists of the following steps: 1) Monolin-
gual word embeddings: An off-the-shelf word
embedding algorithm (Bojanowski et al., 2017) is
used to learn source and target language spaces X

3A dependent-marking language marks agreement and
case more commonly on dependents than on heads.

4https://github.com/facebookresearch/
MUSE

https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE


and Y . 2) Adversarial mapping: A translation
matrix W is learned between the spaces X and Y
using adversarial techniques (Ganin et al., 2016).
A discriminator is trained to discriminate samples
from the translated source space WX from the tar-
get space Y , while W is trained to prevent this.
This, again, is motivated by the assumption that
source and target language word embeddings are
approximately isomorphic. 3) Refinement (Pro-
crustes analysis): W is used to build a small bilin-
gual dictionary of frequent words, which is pruned
such that only bidirectional translations are kept
(Vulić and Korhonen, 2016). A new translation
matrix W that translates between the spaces X and
Y of these frequent word pairs is then induced by
solving the Orthogonal Procrustes problem:

W ∗ = argminW ‖WX − Y ‖F = UV >

s.t. UΣV > = SVD(Y X>)
(1)

This step can be used iteratively by using the new
matrix W to create new seed translation pairs. It
requires frequent words to serve as reliable anchors
for learning a translation matrix. In the experiments
in Conneau et al. (2018), as well as in ours, the iter-
ative Procrustes refinement improves performance
across the board. 4) Cross-domain similarity lo-
cal scaling (CSLS) is used to expand high-density
areas and condense low-density ones, for more ac-
curate nearest neighbor calculation, CSLS reduces
the hubness problem in high-dimensional spaces
(Radovanović et al., 2010; Dinu et al., 2015). It
relies on the mean similarity of a source language
embedding x to itsK target language nearest neigh-
bours (K = 10 suggested) nn1, . . . , nnK :

mnnT (x) =
1

K

K∑
i=1

cos(x, nni) (2)

where cos is the cosine similarity. mnnS(y) is
defined in an analogous manner for any target lan-
guage embedding y. CSLS(x, y) is then calcu-
lated as follows:

2cos(x, y)−mnnT (x)−mnnS(y) (3)

3.3 A simple supervised method
Instead of learning cross-lingual embeddings com-
pletely without supervision, we can extract inex-
pensive supervision signals by harvesting identi-
cally spelled words as in, e.g. (Artetxe et al., 2017;

Smith et al., 2017). Specifically, we use identi-
cally spelled words that occur in the vocabularies
of both languages as bilingual seeds, without em-
ploying any additional transliteration or lemma-
tization/normalization methods. Using this seed
dictionary, we then run the refinement step using
Procrustes analysis of Conneau et al. (2018).

4 Experiments

In the following experiments, we investigate the
robustness of unsupervised cross-lingual word
embedding learning, varying the language pairs,
monolingual corpora, hyper-parameters, etc., to
obtain a better understanding of when and why
unsupervised BDI works.

Task: Bilingual dictionary induction After the
shared cross-lingual space is induced, given a list
of N source language words xu,1, . . . , xu,N , the
task is to find a target language word t for each
query word xu relying on the representations in
the space. ti is the target language word closest
to the source language word xu,i in the induced
cross-lingual space, also known as the cross-lingual
nearest neighbor. The set of learned N (xu,i, ti)
pairs is then run against a gold standard dictionary.

We use bilingual dictionaries compiled by Con-
neau et al. (2018) as gold standard, and adopt their
evaluation procedure: each test set in each language
consists of 1500 gold translation pairs. We rely on
CSLS for retrieving the nearest neighbors, as it con-
sistently outperformed the cosine similarity in all
our experiments. Following a standard evaluation
practice (Vulić and Moens, 2013; Mikolov et al.,
2013b; Conneau et al., 2018), we report Precision
at 1 scores (P@1): how many times one of the
correct translations of a source word w is retrieved
as the nearest neighbor of w in the target language.

4.1 Experimental setup
Our default experimental setup closely follows the
setup of Conneau et al. (2018). For each language
we induce monolingual word embeddings for all
languages from their respective tokenized and low-
ercased Polyglot Wikipedias (Al-Rfou et al., 2013)
using fastText (Bojanowski et al., 2017). Only
words with more than 5 occurrences are retained
for training. Our fastText setup relies on skip-gram
with negative sampling (Mikolov et al., 2013a) with
standard hyper-parameters: bag-of-words contexts
with the window size 2, 15 negative samples, sub-
sampling rate 10−4, and character n-gram length



Marking Type # Cases

English (EN) dependent isolating None
French (FR) mixed fusional None
German (DE) dependent fusional 4
Chinese (ZH) dependent isolating None
Russian (RU) dependent fusional 6–7
Spanish (ES) dependent fusional None

Estonian (ET) mixed agglutinative 10+
Finnish (FI) mixed agglutinative 10+
Greek (EL) double fusional 3
Hungarian (HU) dependent agglutinative 10+
Polish (PL) dependent fusional 6–7
Turkish (TR) dependent agglutinative 6–7

Table 1: Languages in Conneau et al. (2018) and
in our experiments (lower half)

Unsupervised Supervised Similarity
(Adversarial) (Identical) (Eigenvectors)

EN-ES 81.89 82.62 2.07

EN-ET 00.00 31.45 6.61
EN-FI 00.09 28.01 7.33
EN-EL 00.07 42.96 5.01
EN-HU 45.06 46.56 3.27
EN-PL 46.83 52.63 2.56
EN-TR 32.71 39.22 3.14

ET-FI 29.62 24.35 3.98

Table 2: Bilingual dictionary induction scores
(P@1×100%) using a) the unsupervised method
with adversarial training; b) the supervised method
with a bilingual seed dictionary consisting of iden-
tical words (shared between the two languages).
The third columns lists eigenvector similarities be-
tween 10 randomly sampled source language near-
est neighbor subgraphs of 10 nodes and the sub-
graphs of their translations, all from the benchmark
dictionaries in Conneau et al. (2018).

3-6. All embeddings are 300-dimensional.
As we analyze the impact of various modeling

assumptions in the following sections (e.g., domain
differences, algorithm choices, hyper-parameters),
we also train monolingual word embeddings us-
ing other corpora and different hyper-parameter
choices. Quick summaries of each experimental
setup are provided in the respective subsections.

4.2 Impact of language similarity

Conneau et al. (2018) present results for several
target languages: Spanish, French, German, Rus-
sian, Chinese, and Esperanto. All languages but Es-
peranto are isolating or exclusively concatenating
languages from a morphological point of view. All
languages but French are dependent-marking. Ta-

ble 1 lists three important morphological properties
of the languages involved in their/our experiments.

Agglutinative languages with mixed or double
marking show more morphological variance with
content words, and we speculate whether unsuper-
vised BDI is challenged by this kind of morpholog-
ical complexity. To evaluate this, we experiment
with Estonian and Finnish, and we include Greek,
Hungarian, Polish, and Turkish to see how their
approach fares on combinations of these two mor-
phological traits.

We show results in the left column of Table 2.
The results are quite dramatic. The approach
achieves impressive performance for Spanish, one
of the languages Conneau et al. (2018) include in
their paper. For the languages we add here, perfor-
mance is less impressive. For the languages with
dependent marking (Hungarian, Polish, and Turk-
ish), P@1 scores are still reasonable, with Turkish
being slightly lower (0.327) than the others. How-
ever, for Estonian and Finnish, the method fails
completely. Only in less than 1/1000 cases does a
nearest neighbor search in the induced embeddings
return a correct translation of a query word.5

The sizes of Wikipedias naturally vary across
languages: e.g., fastText trains on approximately
16M sentences and 363M word tokens for Spanish,
while it trains on 1M sentences and 12M words for
Finnish. However, the difference in performance
cannot be explained by the difference in training
data sizes. To verify that near-zero performance in
Finnish is not a result of insufficient training data,
we have conducted another experiment using the
large Finnish WaC corpus (Ljubešić et al., 2016)
containing 1.7B words in total (this is similar in
size to the English Polyglot Wikipedia). However,
even with this large Finnish corpus, the model does
not induce anything useful: P@1 equals 0.0.

We note that while languages with mixed mark-
ing may be harder to align, it seems unsupervised
BDI is possible between similar, mixed marking
languages. So while unsupervised learning fails
for English-Finnish and English-Estonian, perfor-
mance is reasonable and stable for the more similar
Estonian-Finnish pair (Table 2). In general, un-
supervised BDI, using the approach in Conneau
et al. (2018), seems challenged when pairing En-

5We note, though, that varying our random seed, perfor-
mance for Estonian, Finnish, and Greek is sometimes (approx-
imately 1 out of 10 runs) on par with Turkish. Detecting main
causes and remedies for the inherent instability of adversarial
training is one the most important avenues for future research.



glish with languages that are not isolating and do
not have dependent marking.6

The promise of zero-supervision models is that
we can learn cross-lingual embeddings even for
low-resource languages. On the other hand, a simi-
lar distribution of embeddings requires languages
to be similar. This raises the question whether we
need fully unsupervised methods at all. In fact, our
supervised method that relies on very naive supervi-
sion in the form of identically spelled words leads
to competitive performance for similar language
pairs and better results for dissimilar pairs. The fact
that we can reach competitive and more robust per-
formance with such a simple heuristic questions the
true applicability of fully unsupervised approaches
and suggests that it might often be better to rely on
available weak supervision.

4.3 Impact of domain differences
Monolingual word embeddings used in Conneau
et al. (2018) are induced from Wikipedia, a near-
parallel corpus. In order to assess the sensitivity of
unsupervised BDI to the comparability and domain
similarity of the monolingual corpora, we repli-
cate the experiments in Conneau et al. (2018) using
combinations of word embeddings extracted from
three different domains: 1) parliamentary proceed-
ings from EuroParl.v7 (Koehn, 2005), 2) Wikipedia
(Al-Rfou et al., 2013), and 3) the EMEA corpus in
the medical domain (Tiedemann, 2009). We report
experiments with three language pairs: English-
{Spanish, Finnish, Hungarian}.

To control for the corpus size, we restrict each
corpus in each language to 1.1M sentences in to-
tal (i.e., the number of sentences in the smallest,
EMEA corpus). 300-dim fastText vectors are in-
duced as in §4.1, retaining all words with more than
5 occurrences in the training data. For each pair
of monolingual corpora, we compute their domain
(dis)similarity by calculating the Jensen-Shannon
divergence (El-Gamal, 1991), based on term distri-
butions.7 The domain similarities are displayed in
Figures 2a–c.8

We show the results of unsupervised BDI in Fig-
ures 2g–i. For Spanish, we see good performance
in all three cases where the English and Spanish

6One exception here is French, which they include in their
paper, but French arguably has a relatively simple morphology.

7In order to get comparable term distributions, we translate
the source language to the target language using the bilingual
dictionaries provided by Conneau et al. (2018).

8We also computed A-distances (Blitzer et al., 2007) and
confirmed that trends were similar.

corpora are from the same domain. When the two
corpora are from different domains, performance
is close to zero. For Finnish and Hungarian, perfor-
mance is always poor, suggesting that more data
is needed, even when domains are similar. This is
in sharp contrast with the results of our minimally
supervised approach (Figures 2d–f) based on iden-
tical words, which achieves decent performance in
many set-ups.

We also observe a strong decrease in P@1 for
English-Spanish (from 81.19% to 46.52%) when
using the smaller Wikipedia corpora. This result
indicates the importance of procuring large mono-
lingual corpora from similar domains in order to
enable unsupervised dictionary induction. How-
ever, resource-lean languages, for which the unsu-
pervised method was designed in the first place,
cannot be guaranteed to have as large monolingual
training corpora as available for English, Spanish
or other major resource-rich languages.

4.4 Impact of hyper-parameters

Conneau et al. (2018) use the same hyper-
parameters for inducing embeddings for all lan-
guages. This is of course always practically possi-
ble, but we are interested in seeing whether their ap-
proach works on pre-trained embeddings induced
with possibly very different hyper-parameters. We
focus on two hyper-parameters: context window-
size (win) and the parameter controlling the num-
ber of n-gram features in the fastText model (chn),
while at the same time varying the underlying algo-
rithm: skip-gram vs. cbow. The results for English-
Spanish are listed in Table 3.

The small variations in the hyper-parameters
with the same underlying algorithm (i.e., using skip-
gram or cbow for both EN and ES) yield only slight
drops in the final scores. Still, the best scores are
obtained with the same configuration on both sides.
Our main finding here is that unsupervised BDI
fails (even) for EN-ES when the two monolingual
embedding spaces are induced by two different al-
gorithms (see the results of the entire Spanish cbow
column).9 In sum, this means that the unsuper-
vised approach is unlikely to work on pre-trained
word embeddings unless they are induced on same-

9We also checked if this result might be due to a lower-
quality monolingual ES space. However, monolingual word
similarity scores on available datasets in Spanish show perfor-
mance comparable to that of Spanish skip-gram vectors: e.g.,
Spearman’s ρ correlation is ≈ 0.7 on the ES evaluation set
from SemEval-2017 Task 2 (Camacho-Collados et al., 2017).
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(a) en-es: domain similarity
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(b) en-fi: domain similarity
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(c) en-hu: domain similarity
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(d) en-es: identical words
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(e) en-fi: identical words
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(f) en-hu: identical words
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(g) en-es: fully unsupervised BLI
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(h) en-fi: fully unsupervised BLI

EN:EP EN:Wiki EN:EMEA
Training Corpus (English)

0

10

20

30

40

50

60
BL

I:
P@

1

0.24 0.11 0.00.11

6.68

0.00.0 0.0 0.45

(i) en-hu: fully unsupervised BLI

Figure 2: Influence of language-pair and domain similarity on BLI performance, with three language pairs
(en-es/fi/hu). Top row, (a)-(c): Domain similarity (higher is more similar) computed as dsim = 1− JS,
where JS is Jensen-Shannon divergence; Middle row, (d)-(f): baseline BLI model which learns a linear
mapping between two monolingual spaces based on a set of identical (i.e., shared) words; Bottom row,
(g)-(i): fully unsupervised BLI model relying on the distribution-level alignment and adversarial training.
Both BLI models apply the Procrustes analysis and use CSLS to retrieve nearest neighbours.

or comparable-domain, reasonably-sized training
data using the same underlying algorithm.

4.5 Impact of dimensionality
We also perform an experiment on 40-dimensional
monolingual word embeddings. This leads to re-
duced expressivity, and can potentially make the
geometric shapes of embedding spaces harder to
align; on the other hand, reduced dimensionality
may also lead to less overfitting. We generally

see worse performance (P@1 is 50.33 for Spanish,
21.81 for Hungarian, 20.11 for Polish, and 22.03
for Turkish) – but, very interestingly, we obtain
better performance for Estonian (13.53), Finnish
(15.33), and Greek (24.17) than we did with 300 di-
mensions. We hypothesize this indicates monolin-
gual word embedding algorithms over-fit to some
of the rarer peculiarities of these languages.



English
(skipgram, win=2, chn=3-6)

Spanish Spanish
(skipgram) (cbow)

== 81.89 00.00
6= win=10 81.28 00.07
6= chn=2-7 80.74 00.00
6= win=10, chn=2-7 80.15 00.13

Table 3: Varying the underlying fastText algorithm
and hyper-parameters. The first column lists differ-
ences in training configurations between English
and Spanish monolingual embeddings.

en-es en-hu en-fi

Noun 80.94 26.87 00.00
Verb 66.05 25.44 00.00
Adjective 85.53 53.28 00.00
Adverb 80.00 51.57 00.00
Other 73.00 53.40 00.00

Table 4: P@1× 100% scores for query words with
different parts-of-speech.

4.6 Impact of evaluation procedure
BDI models are evaluated on a held-out set of query
words. Here, we analyze the performance of the
unsupervised approach across different parts-of-
speech, frequency bins, and with respect to query
words that have orthographically identical coun-
terparts in the target language with the same or a
different meaning.

Part-of-speech We show the impact of the part-
of-speech of the query words in Table 4; again on a
representative subset of our languages. The results
indicate that performance on verbs is lowest across
the board. This is consistent with research on dis-
tributional semantics and verb meaning (Schwartz
et al., 2015; Gerz et al., 2016).

Frequency We also investigate the impact of the
frequency of query words. We calculate the word
frequency of English words based on Google’s Tril-
lion Word Corpus: query words are divided in
groups based on their rank – i.e., the first group
contains the top 100 most frequent words, the sec-
ond one contains the 101th-1000th most frequent
words, etc. – and plot performance (P@1) relative
to rank in Figure 3. For EN-FI, P@1 was 0 across
all frequency ranks. The plot shows sensitivity to
frequency for HU, but less so for ES.

Homographs Since we use identical word forms
(homographs) for supervision, we investigated

20
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Word frequency rank

en-es
en-hu

Figure 3: P@1 scores for EN-ES and EN-HU for
queries with different frequency ranks.

Spelling Meaning en-es en-hu en-fi

Same Same 45.94 18.07 00.00
Same Diff 39.66 29.97 00.00
Diff Diff 62.42 34.45 00.00

Table 5: Scores (P@1 × 100%) for query words
with same and different spellings and meanings.

whether these are representative or harder to align
than other words. Table 5 lists performance for
three sets of query words: (a) source words that
have homographs (words that are spelled the same
way) with the same meaning (homonyms) in the
target language, e.g., many proper names; (b)
source words that have homographs that are not
homonyms in the target language, e.g., many short
words; and (c) other words. Somewhat surpris-
ingly, words which have translations that are ho-
mographs, are associated with lower precision than
other words. This is probably due to loan words
and proper names, but note that using homographs
as supervision for alignment, we achieve high pre-
cision for this part of the vocabulary for free.

4.7 Evaluating eigenvector similarity

Finally, in order to get a better understanding of
the limitations of unsupervised BDI, we correlate
the graph similarity metric described in §2 (right
column of Table 2) with performance across lan-
guages (left column). Since we already established
that the monolingual word embeddings are far from
isomorphic—in contrast with the intuitions motivat-
ing previous work (Mikolov et al., 2013b; Barone,
2016; Zhang et al., 2017; Conneau et al., 2018)—
we would like to establish another diagnostic met-
ric that identifies embedding spaces for which the
approach in Conneau et al. (2018) is likely to work.
Differences in morphology, domain, or embedding
parameters seem to be predictive of poor perfor-
mance, but a metric that is independent of linguistic



Figure 4: Strong correlation (ρ = 0.89) between
BDI performance (x) and graph similarity (y)

categorizations and the characteristics of the mono-
lingual corpora would be more widely applicable.
We plot the values in Table 2 in Figure 4. Recall
that our graph similarity metric returns a value in
the half-open interval [0,∞). The correlation be-
tween BDI performance and graph similarity is
strong (ρ ∼ 0.89).

5 Related work

Cross-lingual word embeddings Cross-lingual
word embedding models typically, unlike Conneau
et al. (2018), require aligned words, sentences, or
documents (Levy et al., 2017). Most approaches
based on word alignments learn an explicit map-
ping between the two embedding spaces (Mikolov
et al., 2013b; Xing et al., 2015). Recent approaches
try to minimize the amount of supervision needed
(Vulić and Korhonen, 2016; Artetxe et al., 2017;
Smith et al., 2017). See Upadhyay et al. (2016) and
Ruder et al. (2018) for surveys.

Unsupervised cross-lingual learning Haghighi
et al. (2008) were first to explore unsupervised
BDI, using features such as context counts and or-
thographic substrings, and canonical correlation
analysis. Recent approaches use adversarial learn-
ing (Goodfellow et al., 2014) and employ a discrim-
inator, trained to distinguish between the translated
source and the target language space, and a gener-
ator learning a translation matrix (Barone, 2016).
Zhang et al. (2017), in addition, use different forms
of regularization for convergence, while Conneau
et al. (2018) uses additional steps to refine the in-
duced embedding space.

Unsupervised machine translation Research
on unsupervised machine translation (Lample et al.,
2018a; Artetxe et al., 2018; Lample et al., 2018b)
has generated a lot of interest recently with a

promise to support the construction of MT systems
for and between resource-poor languages. All unsu-
pervised NMT methods critically rely on accurate
unsupervised BDI and back-translation. Models
are trained to reconstruct a corrupted version of
the source sentence and to translate its translated
version back to the source language. Since the cru-
cial input to these systems are indeed cross-lingual
word embedding spaces induced in an unsupervised
fashion, in this paper we also implicitly investigate
one core limitation of such unsupervised MT tech-
niques.

6 Conclusion

We investigated when unsupervised BDI (Conneau
et al., 2018) is possible and found that differences
in morphology, domains or word embedding algo-
rithms may challenge this approach. Further, we
found eigenvector similarity of sampled nearest
neighbor subgraphs to be predictive of unsuper-
vised BDI performance. We hope that this work
will guide further developments in this new and
exciting field.
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