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Abstract

Background: Identifying key “driver” mutations which are responsible for tumorigenesis is critical in the
development of new oncology drugs. Due to multiple pharmacological successes in treating cancers that are caused
by such driver mutations, a large body of methods have been developed to differentiate these mutations from the
benign “passenger” mutations which occur in the tumor but do not further progress the disease. Under the
hypothesis that driver mutations tend to cluster in key regions of the protein, the development of algorithms that
identify these clusters has become a critical area of research.

Results: We have developed a novel methodology, QuartPAC (Quaternary Protein Amino acid Clustering), that
identifies non-randommutational clustering while utilizing the protein quaternary structure in 3D space. By
integrating the spatial information in the Protein Data Bank (PDB) and the mutational data in the Catalogue of Somatic
Mutations in Cancer (COSMIC), QuartPAC is able to identify clusters which are otherwise missed in a variety of proteins.
The R package is available on Bioconductor at: http://bioconductor.jp/packages/3.1/bioc/html/QuartPAC.html.

Conclusion: QuartPAC provides a unique tool to identify mutational clustering while accounting for the complete
folded protein quaternary structure.

Background
Cancer, one of the most costly and heterogenous diseases,
is ultimately caused by a build up of somatic mutations
within oncogenes or tumor suppressors [1]. Typically,
oncogenic mutations result in an increase of gene out-
put or a destabilization of the the resulting protein while
mutations within tumor suppressors lead to a reduction
of gene activities that promote apoptosis or cell cycle reg-
ulation. Due to the relative ease of disrupting protein
function as compared to restoring it, significant phar-
macological progress has been made towards inhibiting
oncogenic mutations as shown by [2–4]. Combined with
the theory of oncogene addiction, that a small subset of
so called driver genes result in runaway cellular replica-
tion and that the selective targeting of these genes can
have a large impact on tumorigenesis [5, 6], the identifica-
tion of such driver genes becomes critical due to the large
translational benefit in the pharmacological space.
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Due to the medicinal and biological importance of
identifying these driver mutations, a large ensemble
of methodologies have been developed. One popular
approach is based on the hypothesis that driver mutations
have a higher frequency of non-synonymous mutations
when compared to the background mutation rate [7, 8].
Relatedly, several studies have shown that somatic muta-
tions cluster within protein kinases [6, 8–10] and that
these clusters may be a sign of positive selection for pro-
tein function and thus targets for therapeutic intervention
[11, 12]. Such frequency based approaches at identifying
driver mutations are often further augmented by account-
ing for a variety factors such as normalizing for gene
length [13], accounting for tumor type and varying back-
ground mutation rates [13, 14], as well as considering
the ratio of nonsynonymous (Ka) to synonymous (Ks)
mutations [15].
In addition to the above methods, several machine

learners have been designed to determine the impact of
a specific mutation. For example, CHASM [16] endeav-
ors to classify between driver and passenger mutations
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while Polyphen-2 [17] attempts to determine if a muta-
tion is damaging or benign. Overall, the machine learn-
ing approaches utilize a large set of “features” such as
sequence, size and polarity of the substituted residues,
as well as whether the mutation occurred in a conserved
region [18]. These features are used to build a set of rules
which are then used to score each mutation. The value of
the score then determines how detrimental is the muta-
tion or is used to classify the mutation into a particular
category, for example “driver” versus “passenger”. While
some classifiers are designed to handle a large feature
space, others are optimized to use only a subset of these
features. For instance, SIFT only considers the degree
of evolutionary conservation when determining whether
an amino acid substitution affects protein function [19].
Once the feature set has been determined, a variety of
statistical learners such as Random Forests [20], Support
Vector Machines [21] and Bayesian Networks [22] are
then used to build the model.
Although all of the above methods have shown success

in determining whether a mutation is harmful, they nev-
ertheless have limitations as well. Machine learners for
example often require several sources of information that
must be periodically updated, often at significant expense.
Approaches that rely upon differentiating between the
frequency of Ka to Ks over the entire gene may fail if
selection only occurs upon a small region of the gene.
Similarly, approaches such as those proposed by [14] lose
accuracy if the background mutation rate can not be
precisely calculated. Other algorithms, such as those pro-
posed by [13, 15] do not distinguish between activating
and non-activating mutations.
Using the hypothesis that activating mutations cluster

in functionally significant protein regions, [23–26] have
developed several approaches to identify mutational clus-
tering. Ye et al. [23] created Non-Random Mutational
Clustering (NMC) by testing against the null hypothe-
sis that non-synonymous amino acid mutations are dis-
tributed uniformly along the polypeptide. However, the
algorithm is based upon order statistics and thus con-
siders the protein as a linear sequence of amino acids
without taking protein structure into account. To that end,
iPAC [24] and GraphPAC [25] extended NMC to account
for protein tertiary structure. While both approaches
remapped the protein to one dimensional space before
identifying clustering, iPAC utilized a global remap-
ping via Multidimensional Scaling (MDS) while Graph-
PAC employed a local remapping via a graph theoreti-
cal approach. While both of these methods considered
the protein tertiary structure when identifying clustering,
they nevertheless required a remapping to one dimension
which resulted in information loss. As such, SpacePAC
[26] performed a simulation based analysis to identify
clustering directly in 3D space. Despite the success of the

above methods, they nevertheless only consider up to the
protein tertiary structure and do not account for the large
complexes that the protein subunits create in vivo when
performing biological functions.
In this article, we extend the work done by iPAC,

GraphPAC and SpacePAC to consider protein quater-
nary structure when identifying mutational clusters. This
approach allows us to detect clusters that become appar-
ent only when there are multiple polypeptide chains in
the complex. For example, statistically significant clus-
ters in structures 1SUV, 2GRN and 2YDR are identified
only when the entire protein complex is considered (see
‘Sections iPAC identifies new proteins with clustering’,
‘GraphPAC identifies new proteins with clustering’,
and ‘SpacePAC identifies new proteins with cluster-
ing’). Furthermore, QuartPAC detects additional muta-
tional hotspots in proteins known to have clustering and
thus expands the repertoire of pharmacological targets
that can be investigated.We also evaluate the performance
of QuartPAC when identifying mutations that are classi-
fied as damaging or driver mutations by PolyPhen-2 and
CHASM, respectively. In all, by accounting for the highest
level of protein complexity, we are able to discern clusters
that are otherwisemissed by algorithms that only consider
the protein tertiary structure.

Methods
TheQuartPAC methodology consists of three main parts.
The first part obtains the mutational and structural
data for each subunit in the quaternary complex (see
Section ‘Obtaining mutational & structural data’). The
next step is to reconcile the quaternary protein struc-
tural information with the mutational data so that the
correct mutation is mapped onto the proper amino acid
(see Section ‘Reconciling structural andmutational data’).
The final step is to run the underlying clustering algorithm
on the reconciled quaternary structure (Section ‘Identifying
mutational clusters’). For this manuscript, we executed the
algorithms presented in iPAC, GraphPAC and SpacePAC
in order to identify statistically significant clusters. The
software allows the user to specify which clustering algo-
rithms they want to utilize. Lastly, although not part of the
QuartPAC process, we correct for the multiple compari-
son penalty as we test many structures for clustering (see
Section ‘Multiple comparison adjustment for structures’).
We also note that we use the term “cluster” and “hotspot”
interchangeably throughout this manuscript.

Obtaining mutational & structural data
The 70th version of the COSMIC database, the most
recent as of when this article was drafted (available via
http://cancer.sanger.ac.uk/cosmic), was used to retrieve
the mutational data. In order for us to include a muta-
tion in our analysis, it first needed to meet several criteria.

http://cancer.sanger.ac.uk/cosmic
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First, only nonsynonymous missense mutations that were
classified as a “confirmed somatic variant” or “Reported in
another sample as somatic” were retained. Next, as all the
clustering algorithms test against the null hypothesis that
mutations are randomly and uniformly distributed along
the polypeptide chain, in order to avoid selection bias,
only mutations fromwhole genome or whole gene screens
were kept. Further, as multiple studies often report or use
the same mutational data from a single cell line, all the
mutations were screened in order to remove duplicate
mutations and avoid double counting specific variants.
Finally, the gene on which the mutation occurred must
of been properly labeled with a Uniprot Accession Num-
ber [27]. This allowed us to correctly match the muta-
tion to the protein structure in the PDB (see “COSMIC
Query.docx” in Additional file 1 for the entire SQL query).
The structural information was accessed from the PDB

by cross-referencing the uniprots from the COSMIC
database against those for which quaternary structural
information was available. Since multiple structures are
often available for the same protein subunits (or a sub-
set of the same subunits), all relevant structures with
matching Uniprot Accession Numbers were kept and a
multiple comparison adjustment applied afterwards (see
Section ‘Multiple comparison adjustment for structures’).
In addition, as every amino acid is comprised of several
atoms, the (x,y,z) coordinates of the α-carbon atom were
used to represent amino acid positions. As shown in [25],
using other backbone atoms such as the amide nitrogen or
main chain carbonyl carbon is possible but has minimal
effect. For a full listing of the 2267 structures considered
for analysis, see Additional file 2: Structure files.xlsx in
Supplementary materials.
We note that while each PDB entry was used once and

only once in each analysis, proteins present in multiple
PDB entries are analyzed multiple times. As a given pro-
tein can adopt different structures due to a variety of
factors, such as variations in the amino acid sequence or
the presence of other bound proteins or cofactors, it is
important to consider all possible structures. Indeed, one
specific structure may be the one that provides insight
into the oncogenic process while the other structures do
not. However, should only one structure per protein be
considered our results would be even more significant as
the multiple comparison penalty (see Section ‘Multiple
comparison adjustment for structures’) would be reduced.

Reconciling structural andmutational data
As the residue numbering in the PDB database does not
match the canonical residue numbering in the COSMIC
database, a reconciliation is required in order to map the
mutational data to the structural data. Similar to iPAC,
GraphPAC and SpacePAC, a pairwise alignment was
performed as detailed in [28]. Should the user so desire, a

manual alignment is also possible. For full details on the
pairwise alignment algorithm, consult the iPAC package
available on Bioconductor (http://www.bioconductor.org/
packages/release/bioc/html/iPAC.html). Successful align-
ment was obtained on 2156 quaternary protein struc-
tures for which applicable uniprot information was
available. Structures for which there were fewer than
two mutations were labeled as blank (since no cluster-
ing was possible). Refer to “Methodology Results.xlsx”
in Additional file 3 for a full listing of the 2156 struc-
tures that had a successful alignment and were statistically
analyzed.

Identifying mutational clusters
The underlying approach for QuartPAC is that it per-
forms each of the clustering approaches specified in iPAC,
GraphPAC and SpacePAC but on the quaternary protein
structure. As such, the complexity of the methodology
presented here stems from correctly handling the folded
structure of the protein subunits when they come together
to form a macromolecule. We describe briefly each of the
clusteringmethodologies below and refer the reader to the
original manuscripts for further details.

iPAC
The iPAC methodology remaps the protein from R

3 → R

by minimizing the stress function defined as:

σ1 =
√√√√∑

i,j
[
f (δi,j) − di,j(X)

]2
∑

i,j d2i,j(X)
(1)

In the equation above, δi,j represents the distance
between the α-carbon atoms of residues i and j in R

3 and
di,j(X) represents the distance between the residues in the
lower dimensional space X. In our case, X is the line, R.
Finally, f is used when the original space is not a metric
space. Since the protein is in R

3, we simply have f to be
the identity function. The denominator of the expression
is used to ensure that the remapping is the same regardless
of the units used to measure distance.
By performing a global minimization of σ1, all pairwise

R
3 distances are preserved, as best as possible, when the

protein is mapped to R. Once in the lower dimensional
space, the position of every mutation is utilized to build
order statistics as shown in Fig. 1.
Once the order statistics are calculated, a cluster is

found between two mutations if Pr(X(k) − X(i)) ≤ α for a
significance level α where X(i),X(k) represent the i-th and
k-th mutations, respectively, along the reordered amino
acid sequence. Typically, α is set to be 5% (as is the case
for this manuscript as well as for [24–26]), but can be set
to whatever level of statistical significance is desired by the

http://www.bioconductor.org/packages/release/bioc/html/iPAC.html
http://www.bioconductor.org/packages/release/bioc/html/iPAC.html
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Fig. 1 Order statistic construction. Suppose there are a total of seven mutations over three samples of the same protein. The protein is N amino
acids long and the number in each box represents the amino acid position. A star above the box signifies a non-synonymous mutation. X(i) = j then
signifies that the i-th mutation occurred on residue j [24]

study authors. This probability is then calculated for all
pairwise mutations and an appropriate multiple compari-
son adjustment is applied. For the purposes of this paper,
a conservative Bonferroni multiple comparisons method
was applied to account for all intra-protein comparisons.

GraphPAC
GraphPAC functions similarly to iPAC in that it also
hinges on a mapping from R

3 → R. However, Graph-
PAC performs a local minimization by only considering
nearby residues when projecting down onto the lower
dimensional space. For instance, as shown in Fig. 2, the
iPAC methodology will allow for residues in Domain C to
have an effect on the final position of residues in Domain
A and vice versa. However, utilizing the GraphPAC
approach, only nearby residues will effect the remapping
process.
To achieve this “local-based” reordering,GraphPAC uti-

lizes a graph theoretic algorithm. Specifically, the algo-
rithm sets every residue to be a vertex and all vertices are
then connected to one another forming a complete graph.
The weight on the edge between vertices i and j is set to
be equal to the Euclidean distance between amino acids i
and j in R

3. A heuristic approach is then used to solve the
traveling salesman problem in order to find the shortest
Hamiltonian path through the protein. In particular, we
attempt to heuristically identify the permutation π that
solves:

min
π

n∑
i=1

d(i,π(i)) (2)

where π(i) represents the amino acid that follows residue
i on a path through the protein. While there are many
heuristic solutions to the TSP, the problem is NP-hard and
there is no known solution that can be solved in poly-
nomial time. However, as shown by [25], the results are
remarkably consistent no matter what heuristic approach
is used.

SpacePAC
Unlike iPAC and GraphPAC, SpacePAC attempts to iden-
tify clustering directly in R

3 by identifying the one, two
and three non-overlapping spheres that cover the great-
est number of mutations possible at different sphere radii
lengths. This statistic is then compared to simulated val-
ues in order to come up with a p-value. As described in
[26], the specific procedure is:

• Let s be the number of spheres we consider;
s ∈ {1, 2, 3}.

• Let r be the radius considered. Here we consider,
r ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Ångstroms.

• Simulate T(≥ 1000) distributions of mutation
locations over the protein structure. Specifically, for
each simulation, every mutation is randomly assigned
to a residue i where 1 ≤ i ≤ N and N is the total

Fig. 2 In this cartoon protein, the residues in domain A will be visited by the traveling salesman before any of the residues in Domain B or C. Thus
the residues in domains B and C do not impact the remapping of domain A to R. Under iPAC however, every amino acid affects every other amino
acid’s final position [25]
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number of residues in the protein quaternary
structure.

Next, let Xi,s,r represent the number of mutations cap-
tured in simulation i (where i = 0 represents the observed
data), s ∈ {1, 2, 3} represents the number of spheres used
and r represents the radius of each sphere. Then for a
given {s, r} combination,

μs,r = mean
1≤i≤T

{Xi,s,r}, (3)

σs,r = std. dev.
1≤i≤T

{Xi,s,r} (4)

Zi = max
s,r

{(Xi,s,r − μs,r)/σs,r} (5)

Once the normalized statistics Zi are calculated, the p-
value is estimated as 1 − (∑

1Z0>Zi

)
/T . Thus per every

run of the simulation, there is only one p-value necessary
to identify the statistical significance of up to s hot spots.
A visual layout of the calculation of this statistic is shown
in Fig. 3. It is also worth noting that given n positions and
m spheres, there are

(n
m
)
sphere orientations possible that

must be checked under a brute force approach. See [26]
for a more efficient approach, which is utilized in the anal-
ysis for this manuscript, that nevertheless identifies the
globally optimum solution.

Multiple comparison adjustment for structures
A multiple comparison adjustment was made to account
for considering the 2156 successfully aligned protein quater-
nary structures. As multiple structures may be comprised
of the same protein subunits, a Bonferroni adjustment
was too conservative and an FDR approach was per-
formed. Namely, a rough FDR (rFDR) [29] approach,
which approximates the standard FDR methodology [30],
was employed due to the large number of potentially
positively correlated tests. For this paper, the cutoff was:

rFDR = α

(
k + 1
2k

)
(6)

where k = 2156, the total number of structures in
the study. Using an α = 0.05, the rFDR ≈ 0.025012.
To be conservative, we rounded down and deemed all
clusters with a p-value less than or equal to 0.025 to
be significant. Further, for the rest of this manuscript
we may refer to iPAC and GraphPAC as the “pairwise”
approaches as they require a multiple comparison adjust-
ment for each pair of mutations while SpacePAC does
not.

Results and discussion
Of the 2156 structures considered, if blanks are removed1,
approximately 1–5% of the structures are identified to
have clustering only when the protein quaternary struc-
ture is considered. Furthermore, approximately 1–3% of
the structures are identified to have clustering only when
the protein tertiary structure is considered. For the vast
majority of structures, both the tertiary and quaternary
algorithms are concordant in whether they identify at
least one statistically significant cluster in the structure.
The results of each algorithm cross-classified by ter-
tiary versus quaternary classification are shown in Fig. 4
below.
For structures that were identified under only the ter-

tiary methodologies, it is likely that the significant clusters
were close to the adjusted p-value threshold and when the
entire protein complex was considered the additionalmul-
tiple comparison penalty was high enough to negate the
statistical significance. As such, if a quaternary structure is
available, it would be statistically preferable to use in order
to reduce potential false positives. For a detailed compari-
son of which structures were identified by the tertiary and
quaternary methods, see “Quaternary vs Tertiary.xlsx” in
Additional file 4.
In Fig. 5, we consider the correlation between each of

these methods on a per structure basis. Because cluster
counts are not directly comparable between SpacePAC
and the other two approaches, we applied a nominal clas-
sification of three categories: 1) clustering detected, 2) no

Fig. 3 Statistic construction. Here we consider up to three spheres (s ∈ {1, 2, 3}) and radii of either 3 or 9 Å. The first step is to calculate μ and σ over
each column and then a normalized statistic Zi,s,r = Xi,s,r−μs,r

σs,r
for each cell. Then the maximum is taken over each row, specificallymaxs,rZi,s,r , to

obtain Z0, . . . , Z1000. One minus the percentage of cases where Z0 ≥ Zi , for i ∈ {1, . . . , 1000}, is the p-value of our observed statistic Z0. As 1000
simulations were run, if Z0 > Zi ∀i, a p-value < 1.00E − 03 is reported [26]
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Fig. 4 A cross-classification of the structures that were successfully aligned by each method after removing blanks. The colors represent the
algorithm used to identify clustering: iPAC, GraphPAC or SpacePAC. An incremental count for “3D only” or “4D only” represents that at least one
statistically significant cluster was found only when the tertiary or quaternary structure was considered, respectively. An incremental count for
“Both” or “Neither” signifies that the results were concordant regardless of whether the tertiary or quaternary structure was considered
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number inside the circle is the value for Cramer’s V between the twomethods. We note that all the values are statistically significant at the 5% α-level
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clustering detected and 3) blank. Cramer’s V [31], was
then used to calculate the correlation coefficient between
each approach. For reference, Cramer’s V=

√
χ2/n

min(k−1,r−1)
where χ2 is the statistic from Pearson’s Chi-Squared Test,
k is the number of columns, r is the number of rows,
and n is the grand total number of observations of pairs
(Ai,Bi). Here, Ai = 1 represents whether structure i had
a statistically significant cluster under method A (other-
wise Ai = 0) and Bi represents whether structure i had a
statistically significant cluster under method B (otherwise
Bi = 0). For the purposes of this manuscript, as we are
comparing all six pairwise methods over the 2156 struc-
tures, k = 2 and r = 2156 for every pairwise-algorithmic
comparison.

Figure 6 below presents a per structure view compar-
ison between the two methods when the structures are
considered in decreasing lexicographic order. We believe
that a hierarchical reordering of the structures is not
appropriate in this case due to the fact that we once
again consider only the trinary outcome of “clustering”,
“no clustering” and “blank”. However, from Fig. 6, it
is clear that for many structures, what is considered a
“blank” becomes a result with “no clustering” when the
larger quaternary structure is considered. This is due to
the case that when all the subunits in the quaternary
structure are considered, it is more likely to observe at
least two mutations. As such, the structure is no longer
considered to be blank and whether there is clustering
or not can now be determined. As can be seen from
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Fig. 6, this pattern of “blanks” being converted to “no
clustering” is consistent for all three methods: iPAC,
GraphPAC and SpacePAC. Please see Additional file 5
“Trinary Outcomes.xlsx” for the specific details for each
structure.
Table 1 shows the top five statistically significant struc-

tures found by each of the spatial methods when consid-
ering quaternary structure. As can be seen from the table,
while there is significant overlap, there are differences
between the algorithms in regards to which structures are
identified. This is analogous to when the tertiary struc-
ture is considered and suggests that while one should look
at the quaternary structure as opposed to the tertiary
structure, looking at the macromolecule does not make
one of the spatial approaches perform significantly bet-
ter. Refer to “Methodology Results.xlsx” in the Additional
file 3 for a full listing of all 2156 structures along with
the clustering results when tertiary and quaternary struc-
tures are considered. While it is outside the scope of this
paper to go through every protein structure identified
to have clustering individually, we note that many of the
complexes that we identify when we consider quaternary
structure have biological implications. For example, struc-
ture 2YDR contains the TP53 subunit, one of the most
common tumor suppressors that has been implicated in
a large variety of human cancers [32–34]. Alternatively,
structure 4MNQ from Table 1 contains the HLA class I
histocompatibility antigen which plays a significant func-
tional role in the immune system and has recently been

Table 1 Summary of the top five most statistically significant
structures for each method when using the quaternary structure

P-value

Structure iPAC GraphPAC SpacePAC

2YDR 1.89E-13 6.27E-18 <0.001

1SUV 2.39E-06 1.57E-05

3W14 4.57E-06

1DTW 5.22E-06

1U5B 2.22E-05

3V8X 1.49E-05

4MNQ 1.48E-04

1QVO 1.60E-04 <0.001

1I5K <0.001

3B13 <0.001

1A9W 0.002

A blank entry in position (i, j) denotes that methodology j did not find that structure
to be statistically significant. We note that if a structure had n total mutations, then
the pairwise methodologies of iPAC and GraphPAC calculate n(n−1)

2 comparisons,
one for each pair of mutations. Therefore, the p-values shown for iPAC and
GraphPAC are shown post a Bonferroni correction. For SpacePAC, as 1000
simulations were run for each structure, the minimum possible p-value we can
report is p < 1.00E − 03. Please see [26] for more details

associated with lung cancer [35]. In Sections iPAC iden-
tifies new proteinswith clustering, GraphPAC identifies
new proteins with clustering and SpacePAC identifies
new proteins with clustering, we cover three representa-
tive structures in further detail.
Next, we considered the performance by iPAC, Graph-

PAC and SpacePAC when the quaternary structure is
utilized as compared to PolyPhen-2 [17] andCHASM [16].
Both PolyPhen-2 andCHASM utilize a large set of features
when evaluating each mutation while QuartPAC runs
with vastly less a priori information. We note that in order
to do a fair comparison, while the quaternary method-
ologies evaluated each structure, the machine learners
evaluated all the protein subunits in each structure. Thus,
if at least one subunit had a significant finding under
the machine learning methodology, we counted it as a
significant finding for the entire quaternary structure.
Out of the 343 significant structures found by iPAC to
contain mutational clustering when considering quater-
nary structure, PolyPhen-2 identifies 145 (42%) structures
as having damaging mutations while CHASM identifies
78 (23%) structures containing driver mutations when
using the standard FDR of 20%. While GraphPAC identi-
fied 329 structures with significant clustering, PolyPhen-2
identified 131 (40%) structures with potentially damaging
mutations while CHASM identified 89 (27%) structures.
Of the 327 structures identified by SpacePAC as signifi-
cant, 129 (40%) and 74 (23%) structures were identified
by PolyPhen-2 and CHASM respectively. These results are
summarized in Table 2 below.
We note, that in [24–26] the overlap between the

machine learning approaches and the tertiary methodolo-
gies was larger. As themachine learners do not account for
the other subunits in the folded protein structure, they flag
fewer proteins as having damaging mutations due to the
fact they do not leverage the information from the entire
folded protein structure, but rather from one protein sub-
unit. As such, the quaternary methodology may increase
the chances of finding a critical mutational area when used
in conjunction with other machine learning algorithms.
See “Performance Evaluation.xlsx” in Additional file 6 for
a breakout per structure.
Finally, we compared our results to the data in the

OMIM (Online Mendelian Inheritance in Man) [36]. To
do this, we cross-tabulated all the 2156 structures we
considered and identified their matching entries on a per-
gene level in the OMIM database. Each of these genes in
the OMIM database was then classified as a binary “true”
or “false” where “true” signifies that the gene was denoted
to be either causal or related to a disease. This pairing
was completed using the most up-to-date version of the
OMIM database available as of January 16th, 2016. The
results of this analysis, when considering structures found
only by tertiary or quaternary methods, are shown in
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Table 2 This table summarizes how many of the structures identified as having a significant cluster by one of the quaternary
methodologies also had a subunit that had at least one damaging (in the case of Polyphen-2) or driver (in the case of CHASM) mutation

Polyphen-2 CHASM Total flagged
Method Benign Possibly damaging Probably damaging FDR ≤ 0.2 by quaternary approach
(1) (2) (3) (4) (5) (6)

iPAC 198 11 134 78 343

GraphPAC 198 11 120 89 329

SpacePAC 198 11 118 74 327

Column (1) specifies the quaternary methodology used and column (6) denotes how many total structures were flagged using that quaternary approach. Columns (3)-(5)
break out the results by the specific machine learning approach

Table 3 below and further details are available in “OMIM
classification.xlsx” in Additional file 7.
As can be seen from Table 3 there were significantly

more structures found by the quaternary versions of iPAC
andGraphPAC with related OMIM entries. While the dif-
ference was not statistically significant for SpacePAC, that
was mainly due to the fact that SpacePAC had much less
of a discrepancy between structures that were found only
under quaternary and only under tertiary approaches. An
expanded version of this table, which considers structures
found by both tertiary and quaternarymethods combined,
is available in Additional file 7 “OMIM classification.xlsx”
file. Further, we would like to mention two important
observations when analyzing our results in comparison
with the OMIM data. First, it is important to note that
the OMIM database is not all-inclusive; namely there
could very well be genes with hotspots that are onco-
genic but which have not been added to the database
as of yet. Second, the quaternary methodology described
in this manuscript is meant to provide the wet-bench
researcher with additional statistically significant clusters.
While these clusters may be potential therapeutic tar-
gets, final confirmation lies further downstream in the
development process and is beyond the scope of this text.

iPAC identifies new proteins with clustering
Under iPAC, there were 56 structures that were identified
only when considering the protein quaternary structure.
While it is outside the scope of this manuscript to go
through each one in detail, we present an example from

this set. Specifically, we will now consider 1SUV [37], the
structure of human transferrin receptor-transferrin com-
plex. This structure is composed of Transferrin Receptor
Protein 1 (TFR1) as well as the C-lobe and N-lobe of
serotransferrin. Transferrin proteins, which control the
level of free iron, are plasma glycoproteins which are
encoded by the TF gene [38, 39]. Recently, it was shown
that elevated expression of TFR1 contributes to the onco-
genic signaling performed by Sphingosine Kinase 1 (SK1),
which in elevated levels enhances cell survival, prolifera-
tion and can induce neoplastic transformation. Moreover,
by blocking TFR1 with a neutralizing antibody, SK1-
induced abnormal cell growth is inhibited which suggests
that TFR1 presents a potential therapeutic target for SK1-
mediated tumorigenesis [40].
The statistically significant clusters are shown in Table 4

with the clusters referenced by their serial number within
the structure file. We note that in addition to the
oncogenic implications described above, cluster III also
contains mutation G277S in the serotransferrin protein
(Uniprot ID: P02787) which is associated with a reduction
in total iron binding capacity and is a risk factor for iron
deficiency anemia [41].
The structure of 1SUV is shown below in Fig. 7 below

with the boundaries displayed in Table 4 colored in yellow.
We note that had the entire structure not been con-

sidered, no significant clusters are found, signifying that
the biological quaternary unit resulted in more mutations
within close proximity than any one tertiary substructure
alone.

Table 3 The p-value represents the results of a one-sided binomial hypothesis test where H0 : p0 = p1 and Ha : p0 > p1 where p0 is
the proportion of structures found that had a corresponding entry in OMIM when using the quaternary version of the method and p1
is the proportion of structures with a corresponding entry in OMIM when using the tertiary version of the method

Quaternary only Tertiary only p-value

Method Num structures Num in OMIM Num structures Num in OMIM

iPAC 56 42 (75%) 33 8 (24%) 4.49 × 10−6

GraphPAC 43 31 (72%) 27 10 (37%) 4.04 × 10−3

SpacePAC 21 11 (52%) 15 5 (33%) 0.214
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Table 4 Clusters identified by iPAC for structure 1SUV

Cluster Residues in cluster Start serial End serial Num. Muts p-value

1 233 12570 14345 7 2.39E-06

2 165 13099 14345 4 1.96E-05

3 98 14345 15138 2 3.44E-05

4 98 11777 12570 2 3.50E-05

5 295 10288 12570 6 1.35E-04

6 494 10531 14345 11 1.77E-04

7 166 11777 13099 5 1.80E-04

8 371 10965 13855 9 2.73E-04

9 438 10965 14345 10 2.97E-04

10 427 11777 15138 9 3.17E-04

11 98 13099 13855 3 3.79E-04

For each cluster we show: 1) the number of residues in the cluster, 2) the beginning
and ending serial number, 3) the number of mutations in the cluster and 4) the
p-value

GraphPAC identifies new proteins with clustering
We now proceed to consider structure 2GRN [42], one
of the 43 structures found to be significant by GraphPAC
only when the quaternary structure is considered. 2GRN
is comprised of two molecules, Ubiquitin-conjugating
enzyme E2I which is coded by UBE2I and Ran GTPase-
activating Protein 1 which is coded by RANGAP1. Protein
ubiquitination is a critical post-translational modifica-
tion where ubiquitin is added to a substrate protein. This
in turn can signal for protein degradation, alter cellular
location as well as prevent or promote protein-protein
interactions [43–45]. RanGAP1 is a GTPase activator,

Fig. 7 The residues at serial numbers 12570, 13099, 14345 and 15138
are labeled and highlighted in yellow. As cluster II is a subset of
cluster I, we have colored the atoms between 12570 and 13099 blue,
the atoms between 13099 and 14345 red and the atoms between
14345 and 15138 purple. The rest of the structure is colored in green

converting the Ras-related nuclear regulatory protein Ran
to its putatively inactive GDP-bound state [46]. Recently,
it has been shown via comparative proteomic analysis that
RanGAP1 is differentially expressed in diffuse large B-
cell lymphoma (DBCL) and that a multikinase inhibitor
induces cell death, hyperphosphorylation and mitotic cell
arrest of RanGAP1 in DLBCL cell lines but not in normal
B and T cells. This suggests a potential biomarker as well
as therapeutic target for aggressive B-cell lymphoma [47].
For this structure there was one statistically signifi-

cant cluster identified in Ran GTPase-activating Protein 1
(UniprotID: P46060) shown in Table 5 and Fig. 8.
It is worth noting that the cluster is nearby amino acid

442 which is phosphorylated at the onset of mitosis and
is associated with RanBP2 regardless of its phosphory-
lation state. As such, the phosphorylation is believed to
potentially effect RanGAP1’s catalytic activity or allow
RanGAP1 to recruit specific SUMO target proteins to
RanBP2’s catalytic domain [48].

SpacePAC identifies new proteins with clustering
Finally, we now consider structure 2YDR [49], one of the
21 structures identified by SpacePAC when considering
the entire protein macromolecule. 2YDR consists of two
protein fragments, one of which is tumor antigen P53
(TP53). TP53 is a well known tumor suppressor involved
in cell cycle regulation and apoptosis [50, 51] and is
responsible for encoding a transcription factor that is acti-
vated in response to cellular stress [52]. The majority of
TP53mutations (over 75%) correspond tomissensemuta-
tions [53], and approximately 30% of all TP53 missense
mutations occur in CpG dinucleotides [54]. TP53 somatic
mutations have been associated with a wide variety of
cancers including acute myeloid leukemia [55], colorec-
tal cancer [56] as well as nonsmall cell lung cancer [57].
Moreover, TP53 germ-line mutations have been shown to
be the underlying cause of Li-Fraumeni syndrome [58], a
rare autosomal dominant hereditary disorder that predis-
poses the individual to cancer.
While clusters involving the TP53 protein were found in

many of our structures when both the quaternary and ter-
tiary structures were considered, the hotspots shown in
Table 6 and Fig. 9 are unique only to the quaternary struc-
ture. Not only have mutations in that region occurred in
sporadic cancers in the case of Li-Fraumeni syndrome, it
is also worth noting that P151S (serial number 4627) is

Table 5 Cluster identified by GraphPAC for structure 2GRN

Cluster Residues in cluster Start serial End serial Num. Muts p-value

1 13 1352 1444 3 5.39E-03

For the cluster we show: 1) the number of residues in the cluster, 2) the beginning
and ending serial number, 3) the number of mutations in the cluster and 4) the
p-value
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Fig. 8 The atoms with serial numbers 1352 and 1444 are labeled and
highlighted in yellow. The amino acids between those two atoms are
shown in blue

associated with squamous cell carcinomas [59]. It is worth
noting that in recent years, significant resources, have
been spent to drug the TP53 pathway in order to arrest
further tumor growth [60–62].

Conclusion
In this manuscript we expand upon several previous
methodologies in order to account for protein quaternary
structure. By utilizing the entire macromolecule that is
comprised of several protein subunits we are able to iden-
tify several structures with statistically significant clusters
that are otherwise missed. Moreover, we demonstrated
several examples where the clusters identified may have
a potential therapeutic benefit and in some cases, are
already currently being targeted by the pharmaceutical
and biotech industries. Furthermore, when considering
individual protein subunits, many structures are blank
in that they don’t have enough mutations to evaluate
whether a cluster exists. As our approach considers the
entire protein molecule, it is often able to classify whether
or not a cluster occurs (even if all the individual subunits
are “blank”) by leveraging mutations over all the subunits
within the quaternary structure. This type of negative
result can provide valuable insight for the wet-lab scien-
tist when screening many compounds to decide which
one requires further evaluation. Finally, although we con-
sider larger structures in this approach, the impact on the
running time of iPAC, GraphPAC and SpacePAC is negli-
gible when compared to analyzing the tertiary structure.
Most structures are analyzed within 10-15 minutes when

Table 6 Clusters identified by SpacePAC for structure 2YDR

HotSpot Sphere center serial Sphere radius (Å) # Mutations

A 4577 3 3

B 4627 3 5

Both hotspots A & B were identified by SpacePAC at an optimal radius of 3Å

Fig. 9 The atoms with serial numbers 4577 and 4627 are labeled and
highlighted in yellow. The amino acids between those two atoms are
shown in blue

the software is run on a consumer desktop with an Intel
i7-2600k processor and 16 GB of RAM.
While utilizing the quaternary structure is a significant

improvement, this methodology is still subject to some
of the same limitations as the tertiary approaches. For
example, our approach does not allow for unequal rates
of mutagenesis in specific genome regions. To help min-
imize the impact of this assumption, we considered only
missense substitution mutations due to the fact that many
insertion and deletion mutations are dependent upon
sequence location. Further research is required in order
account for other genomic mutational hotspots such as
CpG dinucleotides which may have mutational rates that
are 10 times higher than other locations [63]. However, as
most of the clusters identified are similar when consider-
ing the tertiary versus quaternary structures, the impact
of such hotspots is limited as described by [24, 26]. Our
approach also doesn’t account for differences in muta-
tional position due to the type of mutation. For exam-
ple, cigarette smokers often result in lung carcinomas
with transversion mutations [23] while colorectal carci-
noma pathologies often demonstrate transition mutations
[64]. However, KRAS mutations, which are often present
in both of these carcinomas, nevertheless have the vast
majority mutations on residues 12, 13 and 61 for both can-
cers suggesting that the mutation type may only have a
small impact on the uniformity assumption [25]. In all,
while this approach may still be influenced by a variety of
factors that we are unable to account for, it does suggest
that utilizing the quaternary structure is beneficial when
identifying statistical clusters.
In summary,QuartPAC provides a new (and as far as we

are aware, only) tool for researchers to statistically identify
mutational clustering when considering the multi-subunit
quaternary structure. We show that many of the novel



Ryslik et al. BMC Bioinformatics  (2016) 17:137 Page 12 of 13

clusters identified have biological and potentially ther-
apeutic relevance. Moreover, by considering the larger
oligomeric structure, the additional information provided
by the mutations in all the subunits may allow a scien-
tist to definitively rule out a protein structure that would
otherwise not have enough data to be classified, providing
valuable time savings whenmany proteins need to be con-
sidered. Several promising areas of additional research are
self evident such as loosening the requirement that muta-
tions occur uniformly throughout the genome under the
null hypothesis. Also, while we present the results here
using human missense mutational clusters within pro-
teins, the approach can also be directly applied to both
DNA and RNA, as long as the structural data are available.
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