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Abstract 

In the non-local spin valve (NLSV) geometry, four-terminal electrical Hanle effect measurements have 

the potential to provide a particularly simple determination of the lifetime (𝜏𝑠) and diffusion length (𝜆𝑁) 

of spins injected into non-magnetic materials. Recent work, however, has demonstrated that traditional 

models typically used to fit such data provide an inaccurate measurement of 𝜏𝑠 in ferromagnet/non-

magnetic metal (FM/N) devices with low interface resistance, particularly when the separation of the 

source and detector contacts is small. In the transparent limit, this shortcoming is due to the back-

diffusion and subsequent relaxation of spins within the FM contacts, which is not properly accounted for 

in standard models of the Hanle effect. Here we have used the separation dependence of the spin 

accumulation signal in NLSVs with multiple FM/N combinations, and interfaces in the diffusive limit, to 

determine 𝜆𝑁 in traditional spin valve measurements. We then compare these results to Hanle 

measurements as analyzed using models that either include or exclude spin sinking. We demonstrate 

that differences between the spin valve and Hanle measurements of 𝜆𝑁 can be quantitatively modelled, 

provided that both the FM contact-induced isotropic spin-sinking and the full three-dimensional 

geometry of the devices, which is particularly important at small contact separations, are accounted for. 

We find, however, that considerable difficulties persist, in particular due to the sensitivity of fitting to 

the contact interface resistance and the FM contact magnetization rotation, in precisely determining 𝜆𝑁 

with the Hanle technique alone, particularly at small contact separations. 

†Corresponding author: lao24@cam.ac.uk 

PACS No’s:  72.25.Ba, 72.25.Mk, 85.75-d, 72.25.Rb 

  



2 
 

By separating charge and spin currents, the non-local spin valve (NLSV) provides a means to probe 

spin injection and relaxation while minimizing complications from charge current-based effects.1–3 In the 

NLSV geometry, the four-terminal electrical Hanle effect, which probes spin precession about an 

orthogonal magnetic field, in principle provides a simple measurement of the lifetime, 𝜏𝑠, of spins 

injected into non-magnetic (i.e. para- or diamagnetic) metals (N) or semiconductors (SC). Such 

measurements have proven accurate in NLSVs with tunnel barrier ferromagnet (FM)/N contacts, in 

which spin relaxation occurs predominantly within the N or SC channel. Indeed, 𝜏𝑠 is typically extracted 

by fitting the oscillatory perpendicular field-dependence of the Hanle spin accumulation signal (“Hanle 

curves”) using a 1-D solution of the spin-precession-diffusion equation, considering spin relaxation only 

within the N or SC.4 Recent studies however, using both graphene and Ag channels,5–8 have shown that 

with low spin resistance (i.e. diffusive) contacts this approach breaks down, with deviations being 

particularly noticeable when the FM contact separation (d) is small relative to the spin diffusion length, 

𝜆𝑁 = √𝜏𝑆𝐷, where 𝐷 is the electron diffusivity. In this regime, Hanle curves at different d can no longer 

be fit using a single 𝜏𝑆. Instead, the fits yield lifetimes that not only appear to be d-dependent, but are 

also substantially smaller than the true 𝜏𝑠.  

A general consensus has emerged that in metals this discrepancy is predominantly due to a spin 

sinking effect, i.e., additional spin relaxation when injected spins diffuse back into the FM contacts.5–7,9,10 

In materials such as graphene the situation is more complex. Although spin sinking dominates in 

diffusive contacts, at finite interface resistance additional mechanisms, such as relaxation from 

adsorbates11 and other contact-induced relaxation sources12, have been found to mask the intrinsic spin 

lifetime. For all cases, the effect of spin sinking is negligible when high spin resistance tunnel contacts 

are employed but becomes significant in the diffusive contact regime. A number of works have 

attempted to model this FM contact-induced spin sinking,3,6,9,10 the extent of which is determined by the 

ratio of the spin resistances of the channel, 𝑅𝑁 (or 𝑅𝑆𝐶), to that of the FM injector/detector, 𝑅𝐹𝑀
𝑖𝑛𝑗/𝑑𝑒𝑡

=

𝑅𝐹𝑀 + 𝑅𝐼. Here, the channel spin resistance RN = ρNλN/wNtN with 𝜌𝑁, 𝑤𝑁 , 𝑡𝑁 the channel resistivity, 

width, and thickness; RFM = ρFMλFM/wFMwN represents the intrinsic FM spin resistance with 𝜌𝐹𝑀, 𝑤𝐹𝑀 , 𝜆𝐹𝑀 

the FM resistivity, contact width, and spin diffusion length; and 𝑅𝐼 is the contact interface resistance. 

Each model differs in its specific treatment of spin sinking, considering either longitudinal3 (neglecting 

sinking of the spin component orthogonal to the FM magnetization), isotropic9,13 or anisotropic6 sinking. 

Overall, such models successfully capture the enhancement of the effective spin relaxation rate as 𝑑 

decreases; however, each predicts considerably different behavior at small 𝑑. Quantitatively assessing 
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the role of any of these proposed mechanisms using Hanle measurements alone has been difficult. 

Clearly, in the diffusive limit the shape of the Hanle curve is no longer solely determined by 𝜏𝑠, and 

becomes sensitive to a number of additional parameters, including 𝑅𝑁, 𝑅𝐹𝑀 and 𝑅𝐼. The impact of the 

different sinking mechanisms, and therefore the accuracy of each model, remains unclear. In addition to 

this uncertainty, effects such as finite device size and the rotation of the FM contact magnetization 

under an applied field also play a critical role in determining the overall Hanle curve shape.  

In this paper we demonstrate that the Hanle effect in four-terminal diffusive contact NLSVs can be 

successfully modeled if isotropic spin-sinking is included. Our simulations also show how the full 3D 

character of these devices, particularly the finite thickness of the spin channel, must be accounted for in 

the limit 𝑑 < 𝜆𝑁. By first fitting the 𝑑-dependent decay of the NLSV spin accumulation signal, explicitly 

accounting for spin sinking,14 we obtain an unambiguous value of 𝜆𝑁, with which we compare the 

diffusion length extracted from Hanle measurements. To quantify any discrepancy between NLSV and 

Hanle measurements, we explicitly define this Hanle diffusion length as an effective one, 𝜆𝑒𝑓𝑓 (with 

𝜆𝑒𝑓𝑓 = √𝜏𝑒𝑓𝑓𝐷). Throughout this paper, 𝜆𝑒𝑓𝑓 will refer to the spin diffusion length as determined by 

fitting Hanle data (either experimental or simulated) to a particular model. We consider several such 

models, starting with the traditional Hanle analysis in which spin sinking is neglected completely. 

Because the effects of spin sinking are not properly accounted for in the traditional Hanle analysis, 𝜆𝑒𝑓𝑓 

in this case will always be smaller than 𝜆𝑁, with the suppression most marked at the smallest 

separations. We find that modelling including only isotropic contact-induced spin sinking accounts for 

this phenomenon, with no need to invoke additional relaxation mechanisms such as anisotropic spin 

sinking6 or surface relaxation.15–18 By comparing experiments and 3D simulations to various 1-D models 

over a significant range of parameter space, we have also assessed the difficulties in determining 𝜆𝑁 

using Hanle measurements alone. In particular, the considerable sensitivity of the Hanle curve shape to 

𝑅𝐼, as well as to rotation of the FM contact magnetization, make the determination of 𝜆𝑁 highly 

imprecise at small 𝑑/𝜆𝑁. Although spin sinking is important at all contact separations, we find that 

deviations at small 𝑑 (less than the spin diffusion length) can only be accounted for by using a 3D model 

that incorporates the full device geometry. The increased accuracy of these 3D simulations relative to 

1D is traced back to the non-zero channel thickness and finite contact size, which must be accounted for 

in order to avoid overestimation of the diffusive spin current flowing into the FM source or detector as 

𝑑 → 0. This consideration will become increasingly important as lateral device dimensions shrink 

further, and future experiments begin to probe this regime. 
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We first present results from experimental measurements of the non-local spin accumulation signal 

as a function of both contact separation 𝑑 and applied field 𝐻. The inset to Fig. 1b shows the 

experimental geometry and contact configuration employed. The FM contacts are shown in red and the 

N channel in gray. Devices with Fe, Ni80Fe20 and Co FM electrodes (99.95 % purity) and Al and Cu 

channels (99.999 % purity) were investigated. We note that these source purities do not necessarily 

reflect the ultimate composition, due to potential contamination during deposition16 and to FM/N 

interdiffusion.19 The devices were fabricated using electron beam lithography and a suspended resist 

mask. Multi-angle electron-beam evaporation under ultra-high vacuum (base pressure 10-10 Torr) was 

used to deposit the FM and N sequentially without breaking vacuum. Nominally, 𝑡𝑁 = 200 nm, 𝑤𝑁 = 

150 nm, 𝑡𝐹𝑀 = 16 nm, 𝑤𝐹𝑀
𝑖𝑛𝑗

= 160 nm (injector) and 𝑤𝐹𝑀
𝑑𝑒𝑡 = 110 nm (detector), and the measured 5 K 

resistivity (𝜌) values were: 𝜌𝐴𝑙 = 2.5 µΩcm, 𝜌𝐶𝑢 = 0.8 µΩcm, 𝜌𝐹𝑒 = 13 µΩcm, 𝜌𝑁𝑖𝐹𝑒 = 30 µΩcm and 

𝜌𝐶𝑜 = 19 µΩcm. For all devices, 𝑅𝐹𝑀 𝑅𝑁⁄ ≤ 𝑂(0.1) at all 𝑇. Probing 𝑅𝐼 directly through 3-terminal 

measurements, we establish 𝑅𝐼 < 𝑅𝑁 for our devices, meaning that they operate in the diffusive limit. 

We note, however, as is typically the case for all-metallic devices,20 that only an upper limit of 

𝑅𝐼 ≤ 𝑂(𝑅𝐹𝑀) may be placed on contact transparency due to finite current spreading  (see the 

Supplementary Information of Ref. 19).  

In the non-local geometry, a spin-polarized bias current, 𝐼, injected from one FM generates a 

diffusive pure spin current in the N channel between the two FMs. The trans-impedance (𝑅𝑁𝐿 = 𝑉𝑁𝐿/𝐼) 

then provides a direct measure of the spin accumulation at the FM detector a distance d along the 

channel, dependent on the relative FM orientation. Figs. 1a and b show the evolution of 𝑅𝑁𝐿 under in-

plane (𝐻∥) and out-of-plane (OOP; 𝐻⊥) magnetic fields, for an Fe/Al NLSV with 𝑑 = 1 µm at 𝑇 = 5 K. As is 

typical, an H-independent background has been removed, in this case -632 µΩ.21,22 As shown in Fig. 1a, 

using 𝐻∥ to switch between parallel (P) and anti-parallel (AP) configurations of the two FMs provides the 

non-local spin accumulation signal, Δ𝑅𝑁𝐿 = 𝑅𝑃 − 𝑅𝐴𝑃. The gray arrows illustrate the evolution of 𝑅𝑁𝐿 

with 𝐻∥, starting from negative saturation. By reversing the direction of 𝐻∥ once the AP state is reached, 

we measure 𝑅𝐴𝑃 at zero field, avoiding changes in the signal due to rotation of the FMs in finite 𝐻∥. For 

𝐻⊥ (Fig. 1b) a damped oscillation is observed for 𝑅𝑃(𝐻⊥) and 𝑅𝐴𝑃(𝐻⊥), due to spin precession, which is 

convolved with the finite 𝜏𝑠 and a temporal distribution associated with spin diffusion (the Hanle 

effect1,4). As 𝐻⊥ increases, the in-plane spin accumulation is supressed, and 𝑅𝑃(𝐻⊥) approaches 

𝑅𝐴𝑃(𝐻⊥).  At fixed separation, the widths of these Hanle curves increase with decreasing 𝜏𝑠. In metals, 
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𝜏𝑠 is typically short (of order 10 ps) and so the curves are wide (often > 10 kOe). By fitting such curves, 

𝜏𝑒𝑓𝑓 (and therefore 𝜆𝑒𝑓𝑓) may be extracted, which is non-trivially related to 𝜏𝑠, as discussed above.  

At large fields, 𝐻⊥ causes the magnetization of the FMs to rotate OOP, reducing the in-plane 

component. Eventually, when 𝐻⊥ ≥ 𝐻𝐾 (the OOP anisotropy field), both FMs are oriented OOP, there is 

no precession, and 𝑅𝑁𝐿(𝐻⊥) = 𝑅𝑃(𝐻⊥) = 𝑅𝐴𝑃(𝐻⊥), regardless of the initial contact preparation, as 

seen in Fig. 1b. Using Δ𝑅𝑁𝐿(𝐻⊥) = 𝑅𝑃(𝐻⊥) − 𝑅𝐴𝑃(𝐻⊥), as opposed to 𝑅𝑃(𝐻⊥) or 𝑅𝐴𝑃(𝐻⊥) alone, 

removes the contribution from the OOP spin accumulation generated by the perpendicular component 

of the contact magnetization. We note, however, that this procedure does not account for the reduction 

in the in-plane spin accumulation as a result of the magnetization rotation. It is therefore preferable to 

choose a system in which the effects of magnetization rotation are as small as possible. Considering all 

of these factors, Fe/Al is an ideal FM/N combination for Hanle measurements, particularly at small 𝑑. 

The relatively long 𝜏𝑠 in Al (~40 ps at 5 K for our devices) means that the Hanle curve is relatively narrow 

(of order 1 kG), while the large saturation magnetization (and therefore 𝐻𝐾) of Fe ensures a sufficiently 

wide field range over which 𝑅𝑁𝐿 can be probed before the contact rotation becomes significant. 

To assess the suppression of 𝜆𝑒𝑓𝑓 by spin sinking in the contacts quantitatively, we first use NLSV 

measurements of Δ𝑅𝑁𝐿(𝑑), carried out with an in-plane field, to extract 𝜆𝑁(𝑇). As 𝑑 increases, Δ𝑅𝑁𝐿 

decays approximately exponentially on the length scale 𝜆𝑁, as shown for Fe/Al devices at various 𝑇 in 

Fig. 2a. The deviation from simple exponential behavior at small 𝑑 is expected, due to the 

aforementioned spin sinking at the FM contacts. This is described by an analytical solution based on the 

Valet-Fert formulation of the 1-D spin diffusion model:23  

𝛥𝑅𝑁𝐿 = 4
𝛼2

(1 − 𝛼2)2

𝑅𝐹𝑀
𝑖𝑛𝑗

 𝑅𝐹𝑀
𝑑𝑒𝑡

𝑅𝑁

exp (−
𝑑
𝜆𝑁

)

[1 +
2𝑅𝐹𝑀

𝑖𝑛𝑗

(1 − 𝛼2)𝑅𝑁
] [1 +

2𝑅𝐹𝑀
𝑑𝑒𝑡

(1 − 𝛼2)𝑅𝑁
] − exp (−

2𝑑
𝜆𝑁

)

         (1), 

where 𝛼 is the FM current polarization. Here 𝑅𝐹𝑀
𝑖𝑛𝑗

 and 𝑅𝐹𝑀
𝑑𝑒𝑡 are different because of the different sizes 

of the two contacts. Because Eq. 1 explicitly accounts for longitudinal spin sinking, fitting Δ𝑅𝑁𝐿(𝑑) 

provides a direct means to measure 𝜆𝑁. Note that here 𝛼(𝑇), 𝜆𝐹𝑀(𝑇) and 𝜆𝑁(𝑇) are unknowns, while 

𝜌𝑁(𝑇) is determined from four-point measurements on the tested NLSVs, and 𝜌𝐹𝑀(𝑇) is measured on 

nominally identical FM nanowires. As discussed previously,19 the existence of three unknowns means 

that either 𝛼(𝑇) or 𝜆𝐹𝑀(𝑇) should be constrained. However, because 𝜆𝑁 is determined predominantly 
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by the 𝑑 dependence of Δ𝑅𝑁𝐿 alone, the extracted value is insensitive to the particular constraints 

chosen for 𝛼 and 𝜆𝐹𝑀.19 Shown as solid lines in Fig. 2(a) are fits for the particular case where 𝜆𝐹𝑀 is fixed 

at 4 nm19 (using the phenomenological relationship between 𝜌𝐹𝑀 and 𝜆𝐹𝑀 as observed in ref. 24), 

resulting in the 𝜆𝑁(𝑇) shown in Fig. 2c (open squares). Significantly, 𝜆𝑁(𝑇) is monotonic, saturating at  

700 nm at low T. This monotonic temperature dependence is characteristic of Al channels. Dilute local 

moments from interdiffused 3d transition metals are not supported in Al, and thus the recently 

demonstrated Kondo-related suppression of spin accumulation at low 𝑇 does not occur (see Ref. 25). In 

contrast to 𝜆𝑁, the value of 𝛼 determined from fitting depends sensitively on the particular constrained 

values of 𝑅𝐹𝑀 and 𝜆𝐹𝑀, as well as any interfacial resistance 𝑅𝐼 that is present. Due to this 

interdependence it is not possible to uniquely ascertain a value for all three parameters (𝑅𝐹𝑀, 𝜆𝐹𝑀, and 

𝑅𝐼) from NLSV measurements alone. We note, however, that consistency between the Hanle and NLSV 

measurements (see Figures 2 and 3) can be found for 𝛼(𝑇 = 5 𝐾)~ 0.3, 𝜆𝐹𝑀 = 4 nm, and 𝑅𝐼 = 7𝑅𝐹𝑀. 

We will return to the relative values of 𝑅𝐼 and 𝑅𝐹𝑀 below. 

With 𝜆𝑁(𝑇) established from the spin valve measurements, we now compare it to 𝜆𝑒𝑓𝑓(𝑇, 𝑑) as 

determined from Δ𝑅𝑁𝐿(𝐻⊥). Since 𝜆𝑁 is obtained directly from Δ𝑅𝑁𝐿(𝑑), this represents an 

unambiguous quantity with which to compare 𝜆𝑒𝑓𝑓. We emphasize again that this 𝜆𝑒𝑓𝑓 is an effective 

diffusion length obtained from fitting Hanle curves with the typical integral expression,26 in which the 

spin current flowing into the FM contacts is ignored (this assumption would be appropriate for tunnel 

barrier contacts). In this limit: 

Δ𝑅NL(𝐻⊥) = S0 ∫ ∫ ∫
1

√4𝜋𝐷𝑡
exp−

(𝑥inj−𝑥det)
2

4𝐷𝑡
cos(𝜔L𝑡) exp (−

𝑡

𝜏eff
)  𝑑𝑡 𝑑𝑥det 𝑑𝑥inj 

∞

0

𝑑+𝑤FM
det

𝑑

0

−𝑤FM
inj  (2), 

where 𝜔𝐿 is the Larmor frequency (𝜔𝐿  =  𝛾𝐵, with 𝛾 the gyromagnetic ratio and B the magnetic flux 

density), and 𝑆0 is a normalization factor determined by the zero-field signal. The experimental data in 

Fig. 2b (colored points) show Δ𝑅𝑁𝐿(𝐻⊥) for various 𝑑 at 𝑇 = 5 K, for the same Fe/Al NLSVs shown in Fig. 

2a. The data are normalized to the 𝐻⊥ = 0 values for ease of comparison. Also, although data were 

taken for both positive and negative 𝐻⊥ (Fig. 1b), only the symmetric component, 

Δ𝑅𝑁𝐿,𝑠𝑦𝑚 = [Δ𝑅𝑁𝐿(𝐻⊥) + Δ𝑅𝑁𝐿(−𝐻⊥)] 2⁄ , is shown. The experimental curves are observed to narrow 

with increasing 𝑑. This occurs because as 𝑑 increases the mean spin transit time from injector to 

detector increases, creating a larger average precessional angle, and thus greater modulation of Δ𝑅𝑁𝐿 

for a given 𝐻⊥. For fitting, the reduction of the in-plane spin component due to rotation of the FM 

contacts OOP is taken into account by multiplying the integrand in Eq. 2 by (1 − (𝐻⊥ 𝐻𝐾⁄ )2), which 
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assumes coherent rotation in the presence of a purely uniaxial anisotropy. Here, 𝐻𝐾 is the shape 

anisotropy field of the contacts, which is calculated numerically using the saturation magnetization 

𝜇0𝑀𝑠 = 2.1 T and the FM nanowire dimensions.27 Only 𝜏𝑒𝑓𝑓 and 𝑆0 are free parameters in the fits; 𝐷(𝑇) 

is determined from the measured 𝜌𝑁(𝑇) using the Einstein relation, 𝜌𝑁(𝑇)−1 = 𝑁(𝐸𝐹)𝐷(𝑇)𝑒2, with 

𝑁(𝐸𝐹) the density of states at the Fermi level and 𝑒 the electronic charge.  For large separations, d, for 

which well-defined lobes of opposite sign appear in the Hanle curves, this value of D is essentially the 

same as that which would be obtained by making it a fitting parameter. At small separations, however, it 

is not possible to determine D and 𝜏𝑠 independently from the Hanle curves alone. In the case of 

conventional metals, where screening is effective, there is no a priori reason to expect the spin and 

charge diffusion constants to differ, and so constraining D using the Einstein relation is preferable to 

making it a free parameter in Hanle fits.28 Because 𝐷(𝑇) is constrained by experiment, variations in 

𝜆𝑒𝑓𝑓(𝑇) directly reflect changes to the best-fit value of 𝜏𝑒𝑓𝑓 alone. Because Eq. 2 does not account for 

spin sinking, we anticipate 𝜆𝑒𝑓𝑓 < 𝜆𝑁 at all 𝑑, with the effect being most pronounced as 𝑑 → 0. Fig. 2c 

shows the fit results for 𝜆𝑒𝑓𝑓(𝑇) = √𝜏𝑒𝑓𝑓𝐷 for various 𝑑, directly comparing to 𝜆𝑁 (fitted curves at 𝑇 = 

5 K are shown in Appendix A). The substantial underestimation of 𝑁 as 𝑑 decreases (particularly below 

1500 nm) confirms the qualitative expectation. To further emphasize the above, Fig. 2b also shows the 

predicted Hanle curves from Eq. 2 (solid lines), assuming 𝜆𝑒𝑓𝑓 = 𝜆𝑁 (i.e. 𝜏𝑒𝑓𝑓 = 𝜏𝑆). Below 𝑑 = 1500 

nm (~ 2𝜆𝑁) the experimental data and the predictions without accounting for spin sinking differ 

greatly29. 

To facilitate quantitative comparisons, Fig. 3b shows 𝜆𝑒𝑓𝑓/𝜆𝑁 vs. the reduced separation, 𝑑/𝜆𝑁. 

Each dataset shown with closed symbols represents a tested NLSV device with the indicated 𝑑 value, 

while the open symbols and lines are modelling/simulation results that will be discussed below. 

Experimental data are shown for two sets of devices (closed blue or red symbols). As 𝑇 increases, 𝜆𝑁 

decreases (Fig. 2c), and thus, by varying 𝑇, we obtain a range of 𝑑/𝜆𝑁 for each measured device. From 

Fig. 3b a clear trend emerges, with a near monotonic drop in 𝜆𝑒𝑓𝑓/𝜆𝑁 as 𝑑/𝜆𝑁 decreases. Note that the 

gray band shown around 𝜆𝑒𝑓𝑓 𝜆𝑁⁄ = 1 indicates the size of the systematic errors in 𝜆𝑁 and 𝐷 arising 

from the NLSV fitting described above. This error follows primarily from uncertainty in the measured 

device parameters, e.g., 𝜌𝑁, 𝑡𝑁 and 𝑑, combined with the limitations in the precision of fits over only 3 

decades in Δ𝑅𝑁𝐿 (limited by the practicalities of measuring sub-nV signal sizes at large separations). This 

systematic error is the dominant uncertainty when comparing 𝜆𝑒𝑓𝑓/𝜆𝑁 values. (Errors bars from fitting 

𝜆𝑒𝑓𝑓 are in fact small, approximately the data point size.) As all data from a device set (blue or red 
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symbols) use the same values of 𝜆𝑁(𝑇) and 𝐷(𝑇), any error in either quantity will cause a systematic 

shift of the entire set. The apparent lateral shift in the data of Fig 2c for different device batches, as well 

as the fact that 𝜆𝑒𝑓𝑓 apparently exceeds 𝜆𝑁 in some cases, are consistent with the magnitude of this 

systematic error.  

Having presented experimental results on the underestimation of 𝜆𝑁 due to spin sinking, we now 

turn to modelling these observations. Several approaches have investigated the effect of spin sinking on 

Hanle curves, in particular considering precession-diffusion in 1-D.3,6,9–13  We do so here by solving the 

steady-state spin drift-diffusion equation with precession,30 considering the full device geometry: 

𝜕𝑝⃗

𝜕𝑡
= 𝐷∇2𝑝⃗ −

𝑝⃗

𝜏𝑠
+ 𝜔⃗⃗⃗𝐿 × 𝑝⃗  + 𝐺⃗(𝑟) = 0, (3) 

where the spin polarization 𝑝 is defined on a three-dimensional grid of cells, each 55 x 25 x 25 nm3, with 

total dimensions 7.7 𝜇m long, 𝑤𝑁 = 150 nm wide, and 𝑡𝑁 = 200 nm thick. This is shown schematically in 

Fig. 3a. The Larmor frequency vector 𝜔⃗⃗⃗𝐿 is parallel to the applied field, and the source term 𝐺(𝑟) is set 

to a non-zero constant only in the cells just above the ferromagnetic injector. Neumann boundary 

conditions are applied, so that no spin current flows through the boundaries of the system. We assume 

that the spin current flowing into the FMs from the N channel is determined by the parallel spin 

resistances of N and FM, and that the spin current flowing into the FMs is equivalent to an additional 

source of spin relaxation in the boundary cells at the FM/N interface (see Fig. 3a). This mapping allows 

the Neumann boundary condition to be maintained without including the FM explicitly. We note that 

such boundary conditions are equivalent to assuming isotropic spin sinking in a 1-D model. In other 

words, the spin sinking current is presumed to be independent of the orientation of the spins in the 

boundary cells. In steady state, the total relaxation rate in a cell must be equal to the total spin current 

flowing into that cell, and so this treatment of spin sinking is equivalent to defining a total relaxation 

rate:  

 𝑓𝑠
∗ =

1

𝜏𝑠
[1 +

𝜌𝑁𝜆𝑁

𝜌𝐹𝑀𝜆𝐹𝑀
(
𝜆𝑁

Δ𝑧
)] ≈

𝜌𝑁𝜆𝑁
2 

𝜌𝐹𝑀𝜆𝐹𝑀Δ𝑧

1

𝜏𝑠
,  (4) 

in the cells above the detector ferromagnet, where Δ𝑧 is the cell thickness. A derivation of Eq. (4) is 

provided in Appendix B. Hence the spin relaxation time in these boundary cells is 𝑓𝑠
∗−1, while it is simply 

𝜏𝑠 everywhere else. At 𝑇 = 5 K, 𝜏𝑠,𝐴𝑙 = 42 ps, giving 𝑓𝑠
∗ = 24 ps-1, and so the cells above the FM are 

nearly ideal spin sinks. The spin drift-diffusion equation is evolved forward in time until a steady-state is 

reached, and the detected spin accumulation is determined by averaging the projection of the spin 
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polarization over the detector boundary cells. This process is repeated at each 𝐻⊥ to generate a Hanle 

curve. The effect of FM rotation is accounted for in an identical manner as in the fits using Eq. 2, i.e., the 

in-plane polarization is reduced by coherent rotation under the combined effects of the applied field 𝐻⊥ 

and the anisotropy field 𝐻𝐾 . 

By modelling Δ𝑅𝑁𝐿(𝐻⊥) in the above manner, we construct a series of numerical Hanle curves which 

may then be fitted using Eq. 2 to extract 𝜆𝑒𝑓𝑓/𝜆𝑁 for each separation. We emphasize that this method 

explicitly accounts for finite contact size and channel thickness, as well as the fact that any spins that 

diffuse into the open channel are not absorbed by the FM contacts. This is distinct from 1D treatments, 

where spins reaching the end of the channel are entirely sunk by the FMs. Our approach, however, 

considers no additional spin relaxation mechanisms e.g., anisotropic transverse spin relaxation6 ( the 

dependence of the spin sinking current on the orientation of the spin polarization in the boundary cells) 

or relaxation at either the N/vacuum or N/substrate interfaces.15–17 The open black squares in Fig. 3b 

show the results obtained using this method, with the dashed line providing a guide to the eye. 

Comparing with the experimental data, one sees a systematic overestimation of the spin sinking effect 

from modelling. We account for this phenomenologically by including a finite interface resistance-area 

product, 𝑅𝐼𝐴𝐼 , which is added in series to 𝜌𝐹𝑀𝜆𝐹𝑀 in Eq. 4 in an identical manner to its consideration in 

the 1-D models, i.e. 𝜌𝐹𝑀𝜆𝐹𝑀 → 𝑅𝐼𝐴𝐼 + 𝜌𝐹𝑀𝜆𝐹𝑀. In assessing the overall agreement between the model 

and experiment, we consider the previously mentioned systematic error in 𝜆𝑒𝑓𝑓/𝜆𝑁, as represented by 

the gray band in Fig 3(b,c). This band arises as all data in the figure rely on the same values of 𝜆𝑁 and 𝐷; 

any error in their estimation will thus produce a systematic shift for all experimental points. As both 

quantities are experimentally determined, they suffer from any limitations in the accuracy of a number 

of parameters. One feasible mechanism by which a shift could occur is from estimating 𝐷. As it is 

determined using 𝜌𝑁, any overestimation of channel cross-sectional area (e.g., due to a non-square wire 

cross-section) consequently causes a systematic underestimation of 𝐷. To a good approximation, this 

systematic error will cause an underestimation of 𝜏𝑠 in fitting across all devices, meaning that the data 

will be shifted along the 𝑦-axis. By varying 𝑅𝐼𝐴𝐼, and considering such a potential shift, we find closer 

agreement between experiment and modelling for 𝑅𝐼 ~ 7 𝑅𝐹𝑀 (𝑅𝐹𝑀
𝑖𝑛𝑗/𝑑𝑒𝑡

= 8 𝑅𝐹𝑀), shown as the open 

black circles in Fig. 3b. In particular, this value of 𝑅𝐼 reproduces the approximately 50% suppression of 

𝜆𝑒𝑓𝑓/𝜆𝑁 at small 𝑑 that is observed experimentally. Note that such an increase in 𝑅𝐼 would be difficult 

to detect in direct ‘3-terminal’ measurements of the contact resistance. Furthermore, a contact 

resistance in this range maintains the condition 𝑅𝑁 > 𝑅𝐼 , 𝑅𝐹𝑀. Consistency between the NLSV and Hanle 
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approaches can be found with 𝑅𝐼 = 7 𝑅𝐹𝑀, 𝛼 ≈  0.3, and  𝜆𝐹𝑀 = 4 nm, values that are comparable to 

literature results24,31,32. As a further comment regarding 𝑅𝐼, it should be noted that values of 𝑅𝐼~ 𝑅𝐹𝑀 

are invariably found for metal-metal interfaces, with 𝑅𝐼𝐴𝐼 in the range of ~1 fΩm2 readily observed for 

many FM/N. Indeed the observed value of 3.5 fΩm2 here is in very good agreement with values found in 

other Fe/Al spin valves33, where 𝑅𝐴𝐹𝑒/𝐴𝑙  was observed to be 4.1 ± 0.3 fΩm2. In general, a non-zero 𝑅𝐼𝐴𝐼 

should not, in itself, be considered a signature of a ‘non-ideal’ device, but rather a property of the 

interface itself.    

As further evidence for the origin of the underestimation of 𝜏𝑠 in Hanle analyses which ignore spin 

sinking, in Fig. 3c we plot 𝜆𝑒𝑓𝑓/𝜆𝑁 vs 𝑑 for multiple FM/N combinations. By virtue of the fact that the 

spin resistances 𝑅𝐹𝑀 are much smaller than 𝑅𝑁 for each combination, the data all follow a similar trend. 

This confirms expectations, as well as the general origin of the underestimation: Spin diffusion into FMs 

is greatest in NLSV devices with substantial spin resistance mismatch between the contacts and the N 

channel. Clearly, the spin resistance mismatch in the devices shown here is small compared to that of 

e.g., FM/graphene NLSVs,5,7,8 and hence the effect is less pronounced. Despite this, the suppression is 

measurable in the metallic case, and follows the expected trend for all materials combinations tested.  

Although our 3-D simulations account for the observed trends in 𝜆𝑒𝑓𝑓, it is nevertheless instructive 

to compare with previous models that account for spin sinking. Doing so highlights the difficulties 

inherent in extracting 𝜏𝑠 from Hanle measurements alone in the all-metallic, diffusive contact regime. 

We consider three particular cases: Spin transport in the presence of longitudinal3 (no transverse), 

isotropic9,13 or anisotropic sinking.6 In principle, using such models to fit either the experimental data or 

3-D numerical simulations, with appropriately constrained 𝑅𝐼 𝑅𝑁⁄ , should result in 𝜆𝑒𝑓𝑓 = 𝜆𝑁 for all 𝑑. 

We consider first the case where only the longitudinal component of the spin accumulation (i.e., the 

component parallel to the contact magnetization) is considered to be sunk by the FM, as assumed in 

Ref. 3.  In this model, the transverse spin accumulation within the N remains unaffected by the presence 

of low spin resistance contacts. Ignoring sinking of the transverse spin accumulation and using a 1-D 

model with only longitudinal sinking, which we refer to as the longitudinal model, the Hanle curve 

width, and in-particular the zero-crossing point of the curve (when the spin accumulation has, on 

average, precessed through an angle 𝜋 2⁄ ), is found to be independent of the degree of spin sinking. Fig. 

4a illustrates this fact, showing normalized Hanle curves generated from such a model (𝑑 = 2 µm, 𝜆𝑁 = 

733 nm, 𝐷 = 14.8 µm2/ns; parameters appropriate for our devices at 5 K), demonstrating this 
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independence. For comparison, the modelled isotropic sinking curve for identical conditions (𝑅𝑁/

𝑅𝐹𝑀
𝐼𝑛𝑗/𝐷𝑒𝑡

= 32) is also shown in Fig. 4a using filled circles. As was identified in Refs 6,29, and observed 

here in both experiment and simulation, substantial widening of the Hanle curve occurs in the limit of 

diffusive interfaces. As such, it is impossible to fit the observed curves using this longitudinal model, 

because the field at which the zero crossing occurs in the model is fixed, in complete disagreement with 

the experimental data of Fig. 2b. If this is ignored, however, Fig. 4b shows parameters extracted from an 

attempt to fit the simulated data considering only longitudinal sinking. The data are shown for various 

values of 𝑅𝐹𝑀
𝑖𝑛𝑗/𝑑𝑒𝑡

, constrained to the same value in both the simulation and longitudinal spin sinking 

model. When spin sinking is appreciable, i.e., when 𝑅𝑁 𝑅𝐹𝑀
𝑖𝑛𝑗/𝑑𝑒𝑡⁄ > 1, this method results in a systematic 

underestimation of 𝜆𝑁 at intermediate separations, and so 𝜆𝑒𝑓𝑓 is found to decrease with decreasing 

𝑑/𝜆𝑁. At small 𝑑/𝜆𝑁, however, the average spin transit time is short enough that little field-induced 

precession occurs, and the Hanle curve no longer crosses zero. In this limit, little transverse spin 

accumulation exists for all 𝐻⊥, and so the Hanle curves are largely insensitive to transverse sinking. 

Consequently, at small 𝑑/𝜆𝑁 the longitudinal model (which neglects transverse spin sinking) more 

accurately reflects experiment than at large separations, where the transverse spin accumulation 

becomes significant. For this reason, a characteristic (but completely artificial) minimum develops in 

𝜆𝑒𝑓𝑓(𝑑), which increases towards 𝜆𝑁 as 𝑑/𝜆𝑁 → 0.    

We next consider the case of isotropic spin sinking. To establish an expression for Δ𝑅𝑁𝐿(𝐻⊥) we 

follow the treatment of refs 9,13, obtaining an analytical form for 1-D spin diffusion in the limit of 

transparent interfaces: 

Δ𝑅𝑁𝐿(𝐻⊥) = Re

[
 
 
 
 

4𝛼2

(1 − 𝛼2)2

𝑅𝐹𝑀
𝑖𝑛𝑗

 𝑅𝐹𝑀
𝑑𝑒𝑡

𝑅𝜔
 

exp (−
𝑑
𝜆𝜔

)

(1 +
2

1 − 𝛼2

𝑅𝐹𝑀
𝑖𝑛𝑗

𝑅𝜔
)(1 +

2
1 − 𝛼2

𝑅𝐹𝑀
𝑑𝑒𝑡

𝑅𝜔
) − exp (−

2𝑑
𝜆𝜔

)
]
 
 
 
 

, (5) 

with 𝜆𝜔 = 𝜆𝑁/√1 + i 𝜔𝐿𝜏𝑠 and 𝑅𝜔 = 𝜌𝑁𝜆𝜔/𝑤𝑁𝑡𝑁. The spin resistances 𝑅𝐹𝑀
𝑖𝑛𝑗

 and 𝑅𝐹𝑀
𝑑𝑒𝑡 of the FM 

injector and detector include the interface resistance 𝑅𝐼 in the same manner adopted for Eq. 1. We note 

that when 𝐻⊥ = 0, Eq. 5 is in fact identical to Eq. 1. For comparison with both 3-D modelling and 

experimental data, the black stars and open triangles in Fig. 3b indicate the extracted 𝜆𝑒𝑓𝑓/𝜆𝑁 from 

fitting curves generated by Eq. 5 [for the cases 𝑅𝐹𝑀
𝐼𝑛𝑗/𝐷𝑒𝑡

= 𝑅𝐹𝑀 (stars) and 𝑅𝐹𝑀
𝐼𝑛𝑗/𝐷𝑒𝑡

= 8𝑅𝐹𝑀 (open 

triangles)] to a tunnel barrier model (i.e., Eq. 2). As would be anticipated, given that both account for 
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spin sinking in a similar manner, there is very close agreement between the 3-D simulation and the 1-D 

model for most 𝑑 values. A slight systematic offset is observed in the 𝑅𝐼 = 0 data, which is likely 

associated with the approximations made in establishing Eq. 4. There is, however, a notable departure 

between 3D and 1D for 𝑑 𝜆𝑁⁄ < 1. In particular, the 𝑑-dependence proposed in Ref. 9 implies that 

𝜆𝑒𝑓𝑓 → 𝜆𝑁𝑅𝐼/𝑅𝑁 (<0.1 𝜆𝑁) in the zero d limit, which is clearly not the case in 3-D (see Fig. 3b). The 

increase in 𝜆𝑒𝑓𝑓 at low 𝑑 between the 1D and 3D models can be attributed to the finite values of 𝑡𝑁 and 

𝑤𝐹𝑀. In devices where 𝑡𝑁 is an appreciable fraction of 𝜆𝑁, there is a sufficiently large volume of N above 

the contacts to “source” the spin current that is drawn at the interface. Even as 𝑑 → 0, the average 

relaxation rate in the channel is not overwhelmed by the spin sinking effect, and the degree of spin 

sinking is therefore significantly smaller than in the 1-D case. From this observation we see that when 𝜆𝑁 

is comparable to 𝑡𝑁, 1-D models may drastically overestimate the spin sinking effect at small 𝑑 . In the 

limit  𝑑 𝜆⁄ ≫  1,  the thickness of the channel is irrelevant, and the suppression of 𝜆𝑒𝑓𝑓 relative to 𝜆𝑁 is 

determined entirely by the ratio of the spin current drawn by the FM relative to the integral of the spin 

relaxation rate between the contacts. Only at small d does the channel thickness become relevant. 

Experimentally, as we remain in the regime where 𝑑 ∼ 𝜆𝑁, this departure from the ideal 1-D case is not 

observed. However, we predict that as the contact separation in metallic devices is decreased below 

those achieved in this study and other previous work, the full 3-D character of the channel will need to 

be considered. We note that in NLSVs based on 2-D materials (e.g., graphene) the condition 𝑡𝑁 ≪ 𝜆𝑁 

makes the 1-D approach of Ref. 9 appropriate at all separations.      

To emphasize the overall challenge in accurately modelling experimental Hanle curves in the 

diffusive limit, we next demonstrate the sensitivity of 𝜆𝑒𝑓𝑓 to errors in the FM spin resistance. To 

illustrate this point, which applies regardless of the particular model used, we first generate a series of 

Hanle curves, at various 𝑑, using Eq. 5. These model data are generated for the case of 𝜆𝑁 = 733 nm, 

𝜌𝐹𝑀𝜆𝐹𝑀 = 0.52 fΩm2, 𝐷 =  14.8 𝜇m2 (appropriate for our devices at T = 5 K) with 𝑅𝐼 = 0, i.e., in the 

ideal transparent limit. These results correspond to an ideal case in which 𝜆𝑁, 𝑅𝐼 and 𝜌𝐹𝑀𝜆𝐹𝑀 are known 

exactly. We then attempt to re-fit the model data, again using Eq. 5, in a manner similar to that which 

would be applied when fitting the results of an actual experiment in which 𝑅𝐼 and/or 𝜌𝐹𝑀𝜆𝐹𝑀 are not 

known precisely. We assume some experimental estimate of the degree of spin sinking has been made, 

either through calculation or direct measurement of 𝜌𝐹𝑀𝜆𝐹𝑀 and 𝑅𝐼𝐴𝐼. Because both are combined in 

series to give the total FM spin resistance, used to set 𝑅𝐹𝑀
𝑖𝑛𝑗

  and 𝑅𝐹𝑀
𝑑𝑒𝑡 in Eq. 5, it is sufficient for a single 

RA product, 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡, to be defined for this estimate: 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡 = 𝜌𝐹𝑀𝜆𝐹𝑀 + 𝑅𝐼𝐴𝐼. The deviation 
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between 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡 and 𝜌𝐹𝑀𝜆𝐹𝑀 is the systematic error in the estimate of FM spin sinking. Fixing 

𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡  leaves only 𝜏𝑒𝑓𝑓 as a free parameter. In this case, 𝜆𝑒𝑓𝑓 represents the best-fit value of the 

diffusion length in the N from fitting the model data to Eq. 5. Fig. 5a displays the extracted 𝜆𝑒𝑓𝑓/𝜆𝑁 for 

various values of 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡/𝜌𝐹𝑀𝜆𝐹𝑀. As expected, when 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡  = 𝜌𝐹𝑀𝜆𝐹𝑀 (green triangles), the fit 

reproduces the model data exactly and 𝜆𝑁 is faithfully extracted (𝜆𝑒𝑓𝑓 𝜆𝑁⁄ =  1). The most important 

feature of Fig. 5a, however, is the dramatic change in 𝜆𝑒𝑓𝑓 when 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡 deviates from 𝜌𝐹𝑀𝜆𝐹𝑀 by only 

a small amount. Although Eq. 5 reproduces the correct value of 𝜆𝑁 for large 𝑑, a considerable 

discrepancy arises at small 𝑑, with 𝜆𝑒𝑓𝑓 diverging from 𝜆𝑁. The extent of the discrepancy is highly 

dependent on the assumed value of 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡. In particular, the sensitivity to 𝑅𝐼𝐴𝐼 in these FM/NM 

devices means that even modest (approximately ± 10 %) errors in contact resistance can greatly alter 

the extracted value of 𝜏𝑒𝑓𝑓 when fitting, particularly when spin sinking is appreciable. This in turn causes 

considerable under- or over-estimation of 𝜆𝑁. In practice, the variations in 𝑅𝐼 are probably the most 

significant factor influencing the dispersion in 𝜆𝑒𝑓𝑓 among samples prepared in different growths.   

The impact of such deviations in 𝑅𝐼 must be taken in the context of the magnitude of spin sinking 

effects. Naturally, substantial 𝑅𝐼 (i.e., 𝑅𝐼 ≫ 𝑅𝑁) will greatly reduce many of the difficulties highlighted, 

and in this limit uncertainties in 𝑅𝐼 will not impact the extracted 𝜆𝑁 appreciably. However, if 𝑅𝐼 is small, 

such that spin sinking is still appreciable (as is still the case when 𝑅𝐼𝐴𝐼~10 𝜌𝐹𝑀𝜆𝐹𝑀 for all-metallic 

devices), deviations in this value can still cause considerable discrepancies in 𝜆𝑁. As shown in Fig 5b for 

𝑅𝐼𝐴𝐼 =10 𝜌𝐹𝑀𝜆𝐹𝑀, the magnitude of this impact is surprisingly large, even in the case where 𝑅𝐼 > 𝑅𝐹𝑀. 

Only in the limit 𝑅𝐼𝐴𝐼 ≫ 10 𝜌𝐹𝑀𝜆𝐹𝑀 do these variations become significantly smaller than the 𝑅𝐼 = 0 

scenario discussed. This is most readily seen in Fig 5c, where 𝜆𝑒𝑓𝑓/𝜆𝑁 is shown as a function of 𝑅𝐼𝐴𝐼 for 

𝑑 = 𝜆𝑁 and 𝜌𝐹𝑀𝜆𝐹𝑀 = 0.52 fΩm2. These data are obtained in an identical manner to that of Figs. 5a and 

b: an estimated interface resistance is used, in this case fixing 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡 = 𝑅𝐹𝑀𝐴𝐼 + 2 𝑅𝐼𝐴𝐼 (i.e., 

miscalculating 𝑅𝐼 by a factor of two). The data show substantial underestimation of 𝜆𝑁 when 𝑅𝐼𝐴𝐼 is 

comparable to 𝜌𝐹𝑀𝜆𝐹𝑀, as would naively be anticipated. What is perhaps surprising, however, is the 

extent to which underestimation occurs even at what may be considered much higher values of 𝑅𝐼𝐴𝐼 

(𝑅𝐼𝐴𝐼~10𝜌𝐹𝑀𝜆𝐹𝑀). 

Finally, we discuss the case of anisotropic spin sinking, as recently introduced in Ref. 6. Anisotropic 

sinking accounts for the different spin currents drawn by the FM for spins in the N that are polarized 

longitudinally or transverse with respect to the FM magnetization. The two distinct mechanisms account 

for the uncorrelated spin-flip scattering events which relax the longitudinal accumulation, and the 
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(typically shorter) precessional relaxation of the transverse spins. The degree of transverse sinking is 

parameterized by the transverse FM spin resistance, or, alternatively, the interfacial spin mixing 

conductance 𝐺↑↓. As anticipated, complete agreement exists between such a treatment and Eq. 5 in the 

limit of isotropic spin sinking, i.e., when longitudinal and transverse lifetimes are identical, so that 

𝐺↑↓ = 1/2𝜌𝐹𝑀𝜆𝐹𝑀. Although some degree of anisotropy in the spin sinking rate is anticipated,34–39 our 

results can be fit successfully without the inclusion of an anisotropic term, and we therefore do not 

include the additional parameter in our 3-D simulations. We emphasize that although such anisotropic 

sinking effects are in principle more easily observed at smaller separations, the sensitivity to systematic 

errors in 𝜆𝑁, d, 𝑅𝐹𝑀 and 𝐻𝐾, in addition to the limitations of 1-D modelling in the small d regime, make 

the existence of an anisotropic contribution difficult to establish for FM/N NLSVs. This is particularly true 

when one considers the fact that the measured 𝐺↑↓ values are comparable to 1/𝐴𝐹𝑀𝑅𝐹𝑀 for the FM/N 

combinations studied here.6,40,41 In summary, although a separate transverse spin sinking term can be 

added, as suggested by the authors of Ref. 6, we find that there is no need to do so in the current case.  

As one further point of consideration, we note that the difficulties with fitting discussed here are 

further compounded by the finite FM contact anisotropy 𝐻𝐾. As 𝑑 → 0, the Hanle curve widens to the 

point that it extends beyond 𝐻𝐾. At these magnetic fields the Hanle curve shape becomes extremely 

sensitive to the rotation of the FMs OOP. Without measuring both 𝑅𝑃 and 𝑅𝐴𝑃, while also knowing the 

precise field dependence of the magnetization rotation, the resulting systematic error in fitting 

experimental Hanle curves for 𝑑 ≪ 𝜆𝑁 precludes the determination of 𝜆𝑁 with reasonable precision. For 

the FM/N combinations studied here, the Hanle curve width becomes an appreciable fraction of 𝐻𝐾 for 

𝑑 <  500 nm, setting the lower limit of 𝑑 for an acceptable measurement of 𝜏𝑠. We therefore do not 

consider curves generated at smaller separations and believe a similar limitation applies to other studies 

of metallic lateral spin valves. 

In conclusion, we have demonstrated, by exploring the dependence of non-local measurements on 

contact separation, the effect of contact-induced spin sinking in lateral spin valves. The spin sinking 

effect leads to an underestimation of 𝜆𝑁 as determined from Hanle measurements in all-metallic 

devices. Although sinking is present at all separations, the underestimation is most pronounced when 

𝑑 < 𝜆𝑁, resulting in a monotonic decrease (with decreasing 𝑑) of the effective diffusion length extracted 

from Hanle measurements. The observed trends are reproduced over the separations probed using 

models that consider isotropic spin sinking. Our 3-D simulations show that the effective diffusion length 

does not tend to 𝜆𝑁𝑅𝐹𝑀/𝑅𝑁 as the 𝑑 → 0  limit is reached, as anticipated from 1-D modelling, but 
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instead saturates at a considerably larger value. More generally we find that the sensitivity of spin 

sinking models to interface resistance, FM contact magnetization rotation, and other device parameters, 

produces significant systematic errors when fitting Hanle curves, particularly when 𝑑 < 𝜆𝑁. This 

highlights the difficulties of using such a method to determine 𝜆𝑁 in all-metallic devices. The most 

reliable values of 𝜆𝑁 are obtained from measurements of the magnitude of Δ𝑅𝑁𝐿(𝑑), extending out to 

separations of several diffusion lengths. Conversely, using Hanle or NLSV measurements to probe 𝑅𝐹𝑀 

reliably will require experiments in the limit  𝑑 ≪ 𝜆𝑁 in order to be sensitive to spin sinking effects. 
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Figures  

 

Figure 1. (color online) a) In-plane magnetic field, H||, dependence of the non-local resistance, RNL, for a 

d = 1 𝜇m Fe/Al NLSV at T = 5 K. Indicated are the parallel (RP) and antiparallel (RAP) non-local resistances 

and the spin accumulation signal, ΔRNL = RP - RAP. Gray arrows show the evolution of H|| from negative to 

positive saturation. b) Out-of-plane magnetic field, H⊥, dependence of RNL for the same d = 1 μm, Fe/Al 

NLSV at T = 5 K. Inset: Schematic of NLSV geometry. A field-independent background of -0.632 mΩ has 

been subtracted from a) and b).  
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Figure 2. (color online) a) Dependence of ΔRNL on separation 𝑑 for various T in Fe/Al NLSVs. Solid lines 

are fits to the 1-D spin diffusion model discussed in the text. b) ΔRNL(H⊥) for various d at T = 5 K, 

normalized to ΔRNL(H⊥= 0 Oe). Data are taken for both positive and negative 𝐻⊥.  The symmetric 

component, Δ𝑅𝑁𝐿,𝑠𝑦𝑚 = [Δ𝑅𝑁𝐿(𝐻⊥) + Δ𝑅𝑁𝐿(−𝐻⊥)] 2⁄ , is shown. Solid lines show the predicted 

ΔRNL(H⊥) based on a 1-D analytical Hanle model, not accounting for back-diffusion of spins into the FMs. 

c) 𝜆𝑁(T) from NLSV ΔRNL(d) measurements (open black squares), compared to effective values (𝜆𝑒𝑓𝑓(T)) 

extracted from Hanle curves obtained on the same devices [the same batch as used for (a)] 
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Figure 3. (color online) a) Schematic illustrating the approach to 3D modelling, with the 3D grid showing 

the discretization of the sample. Only the volume in the vicinity of the FM contacts is shown. The red 

cells are the FM. The blue cells are those in which the spin relaxation rate in N is modified, as described 

in the text. b) λeff/λN vs. reduced separation d/λN in Fe/Al NLSVs. Data are shown for six d values at 

various T, the closed blue and red symbols denoting the two batches of devices tested. Black open 

squares and open circles indicate results from our 3D modelling including spin sinking in the FMs, with 

𝑅𝐼 = 𝑅𝐹𝑀 and 𝑅𝐼 = 7 𝑅𝐹𝑀, respectively. Black stars show the 1-D modelling of Maassen et al.9, with 

open triangles showing the case of 𝑅𝐼 = 7𝑅𝐹𝑀. Dashed lines are guides to the eye. c) λeff/λN vs. d for 

various FM/N combinations at T = 5 K. Black open circles again indicate results from our modelling 

including spin sinking. In b) and c) the gray band marks the tunnel barrier limit, the width indicating the 

systematic error in λN from spin-valve measurements of Δ𝑅𝑁𝐿(𝑑). 
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Figure 4 (color online) a) Normalized Δ𝑅𝑁𝐿 vs 𝐻⊥ from a 1-D model assuming only longitudinal spin 

sinking for a 𝑑 = 2 µm Fe/Al NLSV. Curves are shown for 𝑅𝐼/𝑅𝑁 varying from 0.01 to 100. Shown for 

comparison are data from a 3-D simulation assuming isotropic sinking (gray circles). b) 𝜆𝑒𝑓𝑓/𝜆𝑁 

extracted from fitting 3-D simulations using a 1-D longitudinal sinking model for various 𝑅𝐼/𝑅𝑁, using 

identical material parameters and 𝜆𝑁 = 733 nm. 
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Figure 5 (color online) a) and b) 𝜆𝑒𝑓𝑓/𝜆𝑁 extracted from fitting a single set of model data generated 

using the 1-D isotropic sinking model (with 𝜆𝑁 = 733 nm, 𝜌𝐹𝑀𝜆𝐹𝑀 = 0.52 fΩm2). Shown are the cases 

for a) 𝑅𝐼 = 0 and b) 𝑅𝐼 = 5 fΩm2. Each fit is performed using the same model, but while constraining the 

total FM contact spin resistance to various estimated values, 𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡   Estimated values are normalized 

to the true FM spin resistance, 𝑅𝐹𝑀
𝐼𝑛𝑗/𝐷𝑒𝑡

. c) 𝜆𝑒𝑓𝑓/𝜆𝑁 vs 𝑅𝐼𝐴𝐼 extracted using a similar method to a) and 

b) for the case where 𝑑 = 𝜆, 𝜌𝐹𝑀𝜆𝐹𝑀 = 0.52 fΩm2, where a constant overestimation of 𝑅𝐼 is made 

during fitting (𝑅𝑒𝑠𝑡𝐴𝑒𝑠𝑡 = 𝜌𝐹𝑀𝜆𝐹𝑀 + 2𝑅𝐼𝐴𝐼. Dashed lines provide a guide to the eye. 
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Appendix A 

As discussed in the main text, 𝜆𝑒𝑓𝑓 can be determined by fitting the symmetrized Hanle signal 

Δ𝑅𝑁𝐿(𝐻⊥) to Eq. 2, which ignores the back-diffusion of spins into the FM. These fits are shown 

separately here to distinguish them clearly from the solid curves in Fig. 2b, which are the Hanle curves 

that would be expected based on the actual spin diffusion length 𝜆N, as determined from fitting the 

separation dependence of the non-local spin valve signal. 

 

Figure A1 ΔRNL(H⊥) for various d at T = 5 K, normalized to ΔRNL(H⊥= 0 Oe). Data are taken for both 

positive and negative 𝐻⊥; only the symmetric component, Δ𝑅𝑁𝐿,𝑠𝑦𝑚 = [Δ𝑅𝑁𝐿(𝐻⊥) + Δ𝑅𝑁𝐿(−𝐻⊥)] 2⁄ , is 

shown. Solid lines show the fitted curves based on a 1-D analytical Hanle model, not accounting for 

back-diffusion of spins into the FMs. Extracted values of 𝜆𝑒𝑓𝑓 are shown in Fig. 2c of the main text. 

 

Appendix B 

Here we derive Eq. 4 in the main text, which accounts for the spin current flowing into the ferromagnet 

by introducing an enhanced spin relaxation rate 𝑓𝑠
∗ in the simulation cells adjacent to the interface. The 

FM is assumed to occupy the half-space 𝑧 < 0. We assume a spin-dependent electrochemical splitting 

 Δ𝜇 = 𝜇↑ − 𝜇↓ (B1)  

at the interface between N and FM.  This can be related to the spin current 𝑞0  (which has dimensions of 

number per unit area per unit time) flowing into the ferromagnet by  

 𝑞0 = −
Δ𝜇

𝑒2𝑅𝐹𝑀
, (B2) 
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where 𝑒 is the electron charge and 𝑅𝐹𝑀 = 𝜌𝐹𝑀𝜆𝐹𝑀 is the spin resistance of the ferromagnet. Assume a 

cell at the interface has a cross-sectional area 𝐴 and height Δ𝑧. The spin flowing out of this cell into the 

ferromagnet is simply 𝑞0𝐴. The rate of change of the spin accumulation per unit volume in the cell is   

 𝜕(𝑛↑ − 𝑛↓)

𝜕𝑡
=

𝑞0

Δ𝑧
−

𝑛↑ − 𝑛↓

𝜏𝑠
, (B3) 

where the first term on the right-hand side is the contribution from the spin current flowing across the 

interface and the second term is the ordinary spin relaxation within the cell, with 𝜏𝑠 the spin relaxation 

time in the N. The left-hand side of Eq. B3 can be converted to an electrochemical potential splitting 

using 

 
Δ𝜇 = 𝜇↑ − 𝜇↓ = (

𝜕𝜇

𝜕𝑛
) (𝑛↑ − 𝑛↓), (B4) 

so that Eq. B3 can be rewritten as 

 𝜕Δ𝜇

𝜕𝑡
= (

𝜕𝜇

𝜕𝑛
)

𝑞0

Δ𝑧
−

Δ𝜇

𝜏𝑠
= −𝜌𝑁𝐷𝑁

Δ𝜇

Δ𝑧𝑅𝐹𝑀
−

Δ𝜇

𝜏𝑠
, (B5) 

where we have used Eq. B2 and the Einstein relation 𝜕𝜇 𝜕𝑛⁄ = 𝜌𝑒2𝐷.  Using the definition 𝜆𝑁 =

 √𝐷𝑁𝜏𝑆,  

 
𝜕Δ𝜇

𝜕𝑡
= −(

𝜌𝑁𝜆𝑁
2

𝜏𝑠

1

Δ𝑧𝑅𝐹𝑀
+

1

𝜏𝑠
)Δ𝜇 = − [1 + (

𝜌𝑁𝜆𝑁

𝜌𝐹𝑀𝜆𝐹𝑀
) (

𝜆𝑁

Δ𝑧
)]

Δ𝜇

𝜏𝑠
. (B6) 

Equation B6 has the form 

 
𝜕Δ𝜇

𝜕𝑡
= −𝑓𝑠

∗Δ𝜇, (B7) 

where 𝑓𝑠
∗ is the effective spin relaxation rate given in Eq. 4 of the main text. Note that in the tunnel 

barrier case, the spin resistance in the denominator of the second term in brackets is effectively infinite, 

and we would then recover the expected result 𝑓𝑆
∗ = 𝜏𝑠

−1. 

 

 

 

 


