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Combining topologically-protected chiral light transport and laser amplification gives rise to
topological lasers, whose operation is immune to fabrication imperfections and defects, uncov-
ering the role of topology in a novel nonlinear non-Hermitian regime. We study a topological
laser based on the photonic Haldane model with selective pumping of chiral edge modes de-
scribed by saturable gain. We investigate elementary excitations around the mean-field steady
state and their consequences for the coherence properties. In particular, we show that the hy-
bridization of chiral edge modes gives rise to long-lived elementary excitations, leading to large
phase fluctuations in the emitted light field and a decrease of light coherence. In contrast to
topologically trivial lasers, the lifetime of elementary excitations is robust against disorder in
topological lasers. However, the lifetime strongly depends on the edge-mode dispersion around
the lasing frequency. As a result, the lifetime can be reduced by orders of magnitude for lasing
of different edge modes, leading to a suppression of phase fluctuations and larger coherence of
the emitted light. On the other hand, amplitude fluctuations and the second-order autocorrela-
tion function are moderately increased at the same time.
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1. INTRODUCTION

Topological photonics has made rapid strides in the past years
[1], investigating effects of gain and loss on the topology of
photonic energy bands [2–4], topology in synthetic dimensions
[5–8]as well as the interplay of topology and nonlinear optics
phenomena [9]. Lasing in topological photonic structures has
recently attracted a lot of attention not only because it allows
studying topology in a novel nonlinear non-Hermitian regime
but also because topological structures can offer a new design
of laser devices. First, lasing of zero-dimensional edge modes
has been demonstrated in one-dimensional photonic arrays [10–
12]. These pioneering works have been followed by experi-
ments reporting lasing of one-dimensional chiral edge modes in
two-dimensional photonic arrays [13–16]. In a two-dimensional
array, lasing of a single edge mode extending over the whole
edge of the photonic array has been demonstrated [14]. The
single-mode laser operation is robust against on-site disorder in
contrast to topologically trivial laser arrays [17]. For this reason,
topological lasers are a promising candidate for highly-efficient
lasers with a robust emission spectrum. The rich dynamics of
topological lasers are subject to current theoretical investigation

[18, 19]. However, the theory for coherence properties of topo-
logical lasers, which would be relevant for recent experiments
demonstrating stable laser operation [14], has been still missing.

One essential characteristic of lasers is their large temporal
coherence of the emitted light field, which is required for practi-
cal applications [20]. The coherence is fundamentally limited by
the phase diffusion of the light field caused by the intrinsic noise
due to spontaneous emission [21]. Phase diffusion leads to a fi-
nite linewidth of the emitted light field, which, in the absence of
other noise sources, is determined by the Schawlow-Townes for-
mula [22]. In realistic lasers, the coherence of the emitted light is
affected by the dynamics of gain medium as well as the presence
of multiple lasing modes, leading to an additional broadening
of the laser linewidth [23]. In this manuscript, we study how
the coherence of the light field emitted by a topological laser is
affected by the elementary excitations around the mean-field
steady state, which are excited by intrinsic noise. To focus on the
effects of the elementary excitations, we neglect the dynamics of
the gain medium assuming the gain medium instantaneously
responds to the dynamics of the light field.

We consider the Haldane model based on a two-dimensional
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Fig. 1. Mean-field steady state of topological laser. (a) The honeycomb photonic array with photon tunneling described by the
Haldane model pumped in the blue region. The color scale shows the mean-field steady state occupations |c̄j|2 of local optical sites.
(b) Unit cell of the Haldane model consisting of the sublattice A (gray points), the sublattice B (black points), the nearest-neighbor
hopping with a real tunneling t1 and the next-nearest-neighbor hopping with a complex amplitude t2eφjk . (c) Band structure of
the passive Haldane model (no gain no loss) with bulk modes (black lines), topological band gap (orange region) and topological
edge modes (blue lines) for an infinite strip with zig-zag edges. (d) The overlap pm of the mean-field steady-state solution with
normal modes e(m) of the passive system (no gain no loss) for the mode with frequency Ω/t1 = 0 lasing. (Parameters: t2/t1 = 0.15,
φ = π/2, γ/t1 = 0.01, g/t1 = 0.05, N = 61)

photonic array pumped along the edge. On the mean-field level
neglecting quantum and thermal fluctuations in the laser, we
obtain lasing of a single edge mode. Depending on initial con-
ditions, lasing of edge modes with different lasing frequencies
can be achieved as it was described in Ref. [19]. We take fluc-
tuations into account using nonlinear semiclassical Langevin
equations. We linearize the Langevin equations around the
mean-field steady-state solution to study elementary excitations.
We consider weak gain and loss in comparison to the coupling
of optical sites in the array and a moderate size of the array such
that the frequency separation of edge modes is larger that the
linewidth of these modes. This regime is relevant for recent ex-
periments on arrays of micron-scale ring resonators [14, 24]. We
study how normal modes of elementary excitations are formed
from the normal modes of a passive system, which does not
experience either gain or loss. We show that the hybridization
of edge modes gives rise to long-lived elementary excitations,
which lead to large phase fluctuations and a decreased coherence
of the emitted light field. The emergence of long-lived elemen-
tary excitations is not a unique feature of topological lasers as
they generically appear in laser arrays with a linear frequency
dispersion. However, the fact that the long-lived elementary
excitations in a topological laser are formed from topological
edge modes makes them robust against disorder. We show that,
in contrast to long-lived elementary excitations in a trivial laser,
the life-time and the oscillation frequency of these topological
long-lived elementary excitations are robust against moderate
on-site disorder. The lifetime of elementary excitations strongly
depends on the dispersion of edge-mode frequencies around the
lasing frequency. Any deviation from a linear dispersion leads
to a detuning for normal modes of elementary excitations, which
can obstruct their hybridization and, as a consequence, reduce
their lifetime. For lasing at frequencies, which do not lie in the
middle of the passive-system band gap, the deviation from a
linear dispersion is sufficient to reduce the lifetime of elementary
excitations by at least one order of magnitude. This leads to a
large suppression of phase fluctuations and an increase of light
coherence. On the other hand, amplitude fluctuations of the

emitted light field are increased resulting in a moderately larger
second-order autocorrelation function. We confirm our results
by numerical simulations of full Langevin equations, which take
nonlinear noise dynamics into account.

2. MODEL

We consider an array of optical sites, whose complex ampli-
tudes cj, j = 1, ..., N, are described by the semiclassical Langevin
equations

i
d
dt

cj =

νj − iγ + i
Pjg

1 + |cj |2
Isat

 cj +
N

∑
k=1

Hjkck + Qjjcj,in, (1)

where h̄ = 1, νj are the frequencies of the optical sites, the
Hamiltonian Hjk describes the coupling of these sites, and N is
the number of the optical sites in the array. Intrinsic optical losses
lead to a decay at rate γ. Incoherent pumping of optical sites
is described by a saturable gain g, where Isat is the saturation
intensity. We allow for a spatial pump profile where Pj = 1
for pumped sites and Pj = 0 for not pumped sites. Incoherent
pumping is associated with intrinsic noise due to spontaneous
emission at rate q, which is the dominant source of fluctuations
at the pumped sites. At sites without pumping, the dominant
source of fluctuations is shot noise at rate 2γ. Both intrinsic noise
due to spontaneous emission and shot noise can be described
by Gaussian white noise 〈cj,in(t)c∗k,in(t

′)〉 = δjkδ(t− t′) with a
correlation matrix QQ†, where Q is a diagonal matrix, Qjk =

δjk

[√
2γ(1−Pj) +

√
qPj

]
, and δjk is the Kronecker delta.

We focus on the Haldane Hamiltonian Ĥ = t1 ∑n.n. ĉ†
j ĉk +

t2 ∑n.n.n. eiφjk ĉ†
j ĉk based on a honeycomb array (see Fig 1b) in-

cluding the nearest-neighbor hopping with a real amplitude t1
and the next-nearest-neighbor hopping with a complex ampli-
tude t2eiφjk [25, 26]. φjk = φ for hopping in the directions shown
by green arrows in Fig 1b and φjk = −φ in the reverse direc-
tions, where φ is the Haldane flux. In Fig. 1c, we plot the band
structure of the passive Haldane model (black lines) for no gain
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and no loss in the photonic array. For φ 6= 0, π, the time-reversal
symmetry of the system is broken and a topological band gap
opens (orange region). Cutting the array in a form of an infinite
strip, chiral edge modes (blue lines) appear at the boundaries
of the array. Frequencies of the chiral edge modes lie in the
topological band gap.

3. MEAN-FIELD STEADY STATE

We first find steady states of the mean-field dynamical equa-
tions for optical amplitudes, which are obtained by omitting
stochastic terms in the Langevin equations (1). We consider a
finite array depicted in Fig. 1a, where optical sites in the blue
region are pumped. We assume that gain and loss are weak in
comparison to the hopping amplitudes, i.e. g, γ� t1, t2. In this
regime, lasing of a single topological edge mode is achieved,
which was theoretically shown in Ref. [17] and experimentally
demonstrated in Ref. [14]. In Fig. 1d, we show the overlap

pm = |∑N
j=1 c̄∗j e(m)

j |/
√

∑N
j=1 |c̄j|2 of the mean-field steady state

solution c̄j with the normal modes e(m) of the passive system
(no gain no loss). Depending on the initial conditions, one of the
edge modes wins the gain competition. Since all edge modes
extend across the whole pump region, a single edge mode sat-
urates gain at all pumped optical sites and prevents lasing of
other edge modes. As a result, the overlap of the mean-field
steady state with a single edge mode is close to unity and the
overlaps with the remaining passive-system normal modes is
very small. Lasing of different edge modes leads to different las-
ing frequencies and different steady-state distributions of optical
phases θ̄j along the edge of the array (see Fig. 2a and 2b). How-
ever, the occupation of optical sites, |c̄j|2, (see Fig. 1a) is almost
identical for lasing of any edge mode, since all edge modes have

very similar spatial profile |e(m)
j |

2. The mean-field dynamics of

complex amplitudes cj/
√

Isat and the mean-field steady state
c̄j/
√

Isat are independent of the absolute scaling Isat.

4. ELEMENTARY EXCITATIONS

In this section, we describe elementary excitations around the
mean-field steady state. We show how the normal modes of ele-
mentary excitations are formed from the passive-system normal
modes.

To study elementary excitations around the mean-field steady

state, we decompose optical amplitudes cj =
(

c̄j + δcj

)
e−iΩt

into the mean-field steady-state solution c̄j and a modulation
δcj, where Ω is the frequency of the lasing mode. Considering
small modulations around the mean-field steady state, we derive
linear Langevin equations

i
d
dt

 δc

δc∗

 = D

 δc

δc∗

+Q

 cineiΩt

c∗ine−iΩt

 , (2)

where D is the dynamical matrix for elementary excitations
around the mean-field steady state, Q = Q⊗ σz and σz is the
Pauli matrix. The dynamical matrix

D = H+A =

H−Ω 1 0

0 −H∗ + Ω 1

+ i

 Γ ∆

∆∗ Γ

 (3)

can be decomposed into the Hermitian part H and the anti-
Hermitian part A, where Hjk is the Hamiltonian of the passive

system, 1 is the N × N identity matrix,

Γjj = −γ +
Pj g(

1 + |c̄j |2
Isat

)2 , ∆jj = −
Pj g

c̄2
j

Isat(
1 + |c̄j |2

Isat

)2 , (4)

and Γjk = ∆jk = 0 for j 6= k. The dynamical matrix depends only
on rescaled mean-field optical amplitudes c̄j/

√
Isat. As a result,

elementary excitations do not depend on the absolute scaling,
Isat, of the mean-field optical amplitudes.

For elementary excitations, the number of normal modes is
doubled compared to the number of the passive-system normal
modes. The dynamical matrix D exhibits the following sym-
metry XDX = −D∗, where X = 1⊗ σx and σx is the Pauli
matrix. Due to this symmetry, the complex frequencies ε(α),
α = 1, ..., 2N, of elementary excitations are purely imaginary or

appear in pairs
(

ε(α), ε̃(α)
)

, where ε̃(α) = −
(

ε(α)
)∗

.
We first diagonalize the Hermitian part H by switching to

the basis of passive-system normal modes E (m)
p = e(m) ⊗ (1, 0)T

and Ẽ (m)
p =

(
e(m)

)∗
⊗ (0, 1)T , where e(m), m = 1, ..., N, are

eigenmodes of H. The eigenfrequencies of the Hermitian part
are directly formed from the passive-system eigenfrequencies

ωm , giving rise to two branches ε
(m)
p = ωm −Ω and ε̃

(m)
p =

−ωm + Ω. The anti-Hermitian part

Ã = i

 Γ̃ ∆̃

∆̃∗ Γ̃∗

 (5)

introduces coupling between passive-system normal modes,
where Γ̃ = U† Γ U, ∆̃ = U† ∆ U∗. Columns of the transforma-
tion matrix U are eigenmodes e(m). Due to the anti-Hermitian
coupling, the passive-system normal modes hybridize.

We now discuss the coupling of modes, E (m)
p and Ẽ (n)p , from

the two different branches due to the off-diagonal blocks ∆̃ and

∆̃∗ of the dynamical matrix. The coupling between modes E (m)
p

and Ẽ (n)p is described by the 2× 2 dynamical matrix

D̃(m,n) =

ωm −Ω 0

0 −ωn + Ω

+ i

Γ̃mm ∆̃mn

∆̃∗nm Γ̃nn

 , (6)

if their frequencies are isolated from the rest of the passive-
system spectrum, i.e. |ωm/n + ωq − 2Ω| � |∆̃m/nq|, |ωm/n −
ωq| � Γ̃m/nq for all q 6= m, n. The frequencies of the edge modes
in the band gap of the passive system satisfy this condition for
moderate system sizes and for t1, t2 � g, γ as considered in
this manuscript. Diagonalizing the 2× 2 dynamical matrix, we
obtain complex frequencies of hybridized modes

ε
(m,n)
± = ω̄mn − iΓ̄mn ±

1
2

√
(δωmn + iδΓmn)

2 − 4|∆̃mn|2, (7)

where ω̄mn = (ωm −ωn) /2, δωmn = ωm + ωn − 2Ω, Γ̄mn =
−
(
Γ̃mm + Γ̃nn

)
/2, and δΓmn = Γ̃mm − Γ̃nn. The real parts of

complex frequencies correspond to oscillation frequencies and
the imaginary parts of complex frequencies correspond to decay
rates or amplification rates. The real part and the imaginary

part of the complex frequencies ε
(m,n)
± are shown in Figs. 2e and

2f, respectively, as a function of the detuning δωmn. One can
see that due to the anti-Hermitian coupling of passive-system
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Fig. 2. Elementary excitations for lasing of different edge modes. (a) and (b) Mean-field steady-state distribution of optical phases
along the top edge of the photonic array for the lasing frequency Ω/t1 = 0 and Ω/t1 = 0.25, respectively. (c) and (d) Complex
spectrum of elementary excitations with band gap (orange region), bulk modes (black points) as well as edge modes (blue points)
for the lasing frequency Ω/t1 = 0 and Ω/t1 = 0.25, respectively. Gray and blue lines show the splitting in imaginary parts of
complex frequencies due to the hybridization of bulk modes and edge modes, respectively. (e) and (f) Real part and imaginary part,
respectively, of complex frequencies ε± for two hybridized modes as a function of the detuning δω for different values of the decay-
rate difference δΓ/∆̃ = 0.02 (full lines), δΓ/∆̃ = 0.6 (dashed lines) and δΓ/∆̃ = 2 (dot-dashed lines). (Parameters: (a-d) t2/t1 = 0.15,
φ = π/2, γ//t1 = 0.01, g/t1 = 0.05, N = 61; (e) and (f) ω̄/∆̃ = 0, Γ̄/∆̃ = −2)

normal modes, the real parts of the complex frequencies are

attracted to each other, Re
(

ε
(m,n)
+ − ε

(m,n)
−

)
< |δωmn|. On the

other hand, the imaginary parts of the complex frequencies
split. This is an example of level attraction, which is a general
concept appearing in various physical platforms [27–29]. For

2Γ̄mn >
√

δΓmn + 4|∆̃|2, both hybridized modes decay as the
imaginary parts of the complex frequencies are negative. The
splitting in the imaginary parts of the complex frequencies is
large for small detunings δω leading to a slowly-decaying mode
and a fast-decaying mode. For a large detuning |δωmn| � |∆̃mn|,
the hybridization is negligible and the frequencies of uncoupled

modes ε
(m,n)
+ ≈ ωm −Ω + iΓ̃mm as well as ε

(m,n)
− ≈ −ωn + Ω +

iΓ̃nn are recovered.
The hybridization of two edge modes from the two different

branches described by the 2× 2 dynamical matrix D̃(m,n) will be
shown in the next section to have important consequences for
the complex spectrum of elementary excitations.

5. SPECTRUM OF ELEMENTARY EXCITATIONS

We now investigate the complex spectrum of elementary excita-
tions in the regime t1, t2 � g, γ. In Fig. 2d, we plot the complex
spectrum of elementary excitations for lasing of the edge mode
with the frequency Ω/t1 = 0.25. This spectrum reveals generic
features of elementary excitations in topological lasers.

Normal modes of elementary excitations are formed from
either bulk modes (black points) or edge modes (blue points) of
the passive system. In the regime t1, t2 � g, γ, the oscillation
frequencies (real parts of complex frequencies) of elementary
excitations are predominantly determined by the eigenfrequen-
cies of the Hermitian part H, which consists of two branches

ε
(m)
p = ωm −Ω and ε̃

(m)
p = −ωm + Ω formed from the passive

system frequencies ωm. These two branches are shifted in re-
spect to each other by the lasing frequency Ω. Since the lasing

frequency lies in the passive-system band gap, the band gaps of
the two branches overlap, giving rise to a band gap in the spec-
trum of elementary excitations (orange region in Fig. 2d). The
band gap in the spectrum of elementary excitations represents a
range of frequencies, within which no bulk modes are excited
by elementary excitations. As the lasing frequency Ω/t1 = 0.25
does not lie in the middle of the passive-system band gap, the
band gaps of the two branches overlap only partially. As a result,
the band gap in the spectrum of elementary excitations is smaller
than that of the passive system.

All imaginary parts of complex frequencies are negative (ex-
cept from a single frequency with a vanishing imaginary part
discussed later) confirming the stability of the steady state. For
moderate system sizes that we consider here, |ωm −ωn| � g, γ
for all m 6= n and edge-mode frequencies ωm lying in the band

gap of the passive system. As a result, every edge mode E (m)
p

can significantly hybridize only with a single mode Ẽ (n)p from
the other branch and their coupling is described by the 2× 2
dynamical matrix (6). Due to the large spatial overlap of edge
modes in the pumped region Pj, the coupling |∆̃mn| between
edge modes overcomes the detuning of their passive-system
frequencies |δωmn|. This leads to a large hybridization of edge
modes and to a distinctive splitting in the imaginary parts of
their complex frequencies (blue lines in Fig. 2d).

Two passive-system normal modes formed from the lasing

mode e(l) are always degenerate at frequency ε
(l)
p = ε̃

(l)
p =

0. The hybridization of these two modes gives rise to a non-

decaying mode with the complex frequency ε
(l,l)
+ = 0 and a

fast-decaying mode with the complex frequency ε
(l,l)
− = −2iΓ̄ll

(see Appendix B for more details). These non-decaying and fast-
decaying excitations correspond to undamped fluctuations in
the phase of the lasing mode and largely-damped fluctuations
in the amplitude of the lasing mode, respectively, which are
characteristic for a laser driven above threshold [21].
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Note that the hybridization of edge modes E (m)
p and E (n)p from

the same branch is negligible because the detuning of passive-
system frequencies |δωmn| = |ωm − ωn| is always larger than
the coupling term |Γ̃mn| between these modes.

Since couplings ∆̃nm and Γ̃nm between bulk modes are small,
the hybridization of bulk modes is typically also negligible.
Complex frequencies of non-hybridized bulk modes (black
points in Fig. 2d) acquire imaginary parts Im ε(m) ≈ −γ and
Im ε̃(m) ≈ −γ due to the diagonal term Γ̃mm ≈ −γ in the anti-
Hermitian part of the dynamical matrix.

Note that for the value of the Haldane flux φ = π/2, a small
hybridization of bulk modes occurs for lasing at the frequency
Ω/t1 = 0 (see Fig. 2c), because bulk modes are pairwise de-
generate due to the symmetry, S H S = −H∗, of the passive-
system Hamiltonian H, where S is a unitary and S2 = 1 (see
Appendix C for more details). However, the splitting in imag-
inary parts of complex frequencies for bulk modes is small in
comparison to the splitting for edge modes and the hybridization
of bulk modes does not appear for other values of the Haldane
flux φ 6= π/2 or for other lasing frequencies Ω/t1 6= 0.

6. LONG-LIVED ELEMENTARY EXCITATIONS

We now discuss long-lived elementary excitations, which occur
in the Haldane model for lasing at a frequency lying in the
middle of the passive-system band gap (vicinity of Ω/t1 = 0 for
φ ≈ π/2).

In Fig. 2c, we plot the complex spectrum of elementary exci-
tations for lasing at the frequency Ω/t1 = 0, which lies in the
middle of the passive-system band gap. Long-lived elementary
excitations with decay rates, which are orders of magnitude
smaller than any other energy scale in the system (γ, g, t1 and
t2), appear due to a large hybridization of edge modes. The very
slow decay of long-lived elementary excitations leads to an ultra
slow relaxation of the topological laser towards the mean-field
steady state, which was numerically observed in Ref. [19]. In
contrast to lasing at the frequency Ω/t1 = 0, decay rates of
slowly-decaying modes are comparable to γ for the lasing at the
frequency Ω/t1 = 0.25 (see Fig. 2d).

To understand the dependence of the spectrum for elemen-
tary excitations on the selection of a lasing edge mode, we
can expand the edge-mode frequencies ωm = Ω + v1 (m− l) +
v2 (m− l)2 + O

(
(m− l)3

)
around the lasing frequency Ω,

where the index l labels the lasing mode. For |v1| � |v2|, the fre-
quency of edge mode m is close to the frequency of edge mode
2l −m from the other branch of passive-system normal modes

and their detuning is δωm(2l−m) = 2v2 (m− l)2 +O
(
(m− l)4

)
.

If the nonlinear coefficient |v2| and, as a consequence, also the de-
tuning δωm(2l−m) are small compared to the coupling |∆̃m(2l−m)|
between the edge modes, the edge modes significantly hybridize
giving rise to a large splitting in the imaginary part of the com-
plex frequencies, see Eq. (7) and Fig. 2f. On the other hand, if
the nonlinear coefficient |v2| is comparable to or larger than the
coupling |∆̃m(2l−m)|, the resulting detuning δωm(2l−m) obstructs
the hybridization and the splitting in the imaginary parts of
edge-mode frequencies is reduced.

For the Haldane model, the dispersion of edge-mode frequen-
cies is linear in the middle of the passive-system band gap for
any φ 6= 0, π. As v2 is very small for lasing at a frequency lying
in the middle of the passive-system band gap, long-lived ele-
mentary excitations, whose decay rate is orders of magnitude
smaller than any other energy scale in the system (γ, g, t1 and

t2), appear for any value of the Haldane flux. This can be seen in
Fig. 3c, where we plot the smallest decay rate minα 6=η |Im ε(α)|
(index η labels the non-decaying mode) as a function of the las-
ing frequency Ω for different values of the Haldane flux. On the
other hand, for lasing at any frequency, which does not lie in the
middle of the passive-system band gap, the nonlinear coefficient
v2 is large enough to give rise to a considerable detuning of edge
mode frequencies compared to the coupling of edge modes. The
hybridization of edge modes is then obstructed and the smallest
decay rate is comparable to γ, see Fig. 3c.

Long-lived elementary excitations are not unique to topolog-
ical lasers. They generically appear in one-dimensional arrays
if the dispersion of the passive frequencies is linear around the
lasing frequency, see Appendix D for more details. However,
in contrast to topological lasers, long-lived elementary excita-
tions in topologically trivial lasers are sensitive to disorder. Even
moderate disorder in the on-site frequencies νj can obstruct or
enhance the hybridization of the passive-system normal modes,
leading to a large change in the decay rate of the long-lived
elementary excitations as well as in their oscillation frequency,
see Appendix G. On the other hand, long-lived elementary ex-
citations in a topological laser (φ 6= 0, π) are robust against
moderate on-site disorder. Their decay rate is only marginally
affected and thus it remains orders of magnitude smaller than
γ in the presence of disorder (see Appendix F for more details).
The oscillation frequency of long-lived elementary excitations
is unaffected by the disorder. The long-lived elementary excita-
tions are robust against disorder since they appear due to the
hybridization of topological edge modes, which are protected
against disorder as long as disorder is not strong enough to close
the topological band gap [17, 24].

In general, long-lived elementary excitations appear due to
the hybridization of edge modes for any topological model with
a linear dispersion of edge-mode frequencies. The lifetime of
elementary excitations can be suppressed by selecting a lasing
frequency around which the dispersion of edge-mode frequen-
cies is no longer linear. The long-lived elementary excitations
will be shown in the next section to have crucial consequences
for light coherence.

7. COHERENCE PROPERTIES

We now discuss coherence properties of topological lasers and
how they are influenced by long-lived elementary excitations,
investigating the emission spectrum of pumped optical sites and
the second-order autocorrelation function.

We start by studying the autocorrelation of complex optical
amplitudes 〈cj(t)c∗j (t + ∆t)〉. The dominant contribution in this
autocorrelation is determined by phase fluctuations δθj, where

cj =
(

C̄j + δC
)

ei(−Ωt+θ̄j+δθj) and c̄j = C̄jeiθ̄j (see Appendix E
for more details). The amplitude fluctuations δCj are negligible
in comparison to the large mean-field occupation C̄2

j [21]. Am-
plitude fluctuations δCj and phase fluctuations δθj are linearly
related to the fluctuations of complex amplitudes δcj and δc∗j as
well as to the normal modes of elementary excitationsδC

δΘ

 =WN , (8)

where δΘj = C̄j δθj, the vector N contains the complex ampli-
tudes of the normal modes andW is the transformation matrix.
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Fig. 3. Coherence properties of topological laser. (a) and (b) Optical spectrum of a pumped optical site lying at the edge of the
topological array for lasing at the frequency Ω/t1 = 0 and at the frequency Ω/t1 = 0.25, respectively. Linearization of Langevin
equations around the mean-field steady state (black line) and numerical simulations of nonlinear Langevin equations (purple line).
The orange region shows the band gap in the spectrum of elementary excitations. (d) and (e) Second-order autocorrelation function
of a pumped optical site lying at the edge of the topological array for lasing at the frequency Ω/t1 = 0 and at the frequency Ω/t1 =
0.25, respectively. Linearization of Langevin equations around the mean-field steady state (black line) and numerical simulations
of nonlinear Langevin equations (green line). (c) Smallest decay rate of elementary excitations minα 6=η |Im ε(α)| as a function of the
lasing frequency Ω for Haldane flux φ = π/2 (squares), φ = π/2.25 (circles) and φ = π/2.5 (diamonds). (f) Equal-time second-
order autocorrelation function g(2)(0) as a function of the lasing frequency Ω for Haldane flux φ = π

2 (squares), φ = π
2.25 (circles)

and φ = π
2.5 (diamonds). (Parameters: t2/t1 = 0.15, γ/t1 = 0.01, g/t1 = 0.05, Isatγ/q = 25; (a), (b), (d) and (e) φ = π/2)

This allows us to express the autocorrelations of complex optical
amplitudes

〈cj(t)c∗j (t + ∆t)〉 ≈ C̄2
j eiΩ∆t−|∆t|/τc

+ ∑
α 6=η

nα|W(j+N)α|2 ei(Re ε(α)+Ω)∆t+Im ε(α) |∆t| (9)

in terms of the complex frequencies of elementary exci-
tations ε(α) and the occupations nα = 1

2|Im ε(α) |
(
RR†)

αα

of the corresponding normal modes, where τc =
2C̄2

j |W(j+N)η |−2/
(
RR†)

ηη is a coherence time, the index η la-

bels the non-decaying mode, andRR† = 1
2W−1QQ† (W−1)†

is the correlation matrix for the normal modes (see Appendix E
for a detailed derivation).

The optical spectrum Scj (ω) is the Fourier transform of the
autocorrelation 〈cj(t)c∗j (t + ∆t)〉. The light field emitted by opti-
cal sites is proportional to the complex amplitudes of the optical
sites as described by input-output formalism [21]. As a result,
the emission spectrum is proportional to the optical spectrum
Scj (ω). The optical spectrum of a pumped optical site located
at the edge of the array is shown in Figs. 3a and 3b for lasing at
the frequency Ω/t1 = 0 and Ω/t1 = 0.25, respectively. We find
a good quantitative agreement between the optical spectrum
determined from the linearized Langevin equations (black lines),
see Eq. (9), and the optical spectrum obtained from numerical
simulations (purple line) of the nonlinear Langevin equations
(1). The ensemble average 〈cj(t)c∗j (t + ∆t)〉 can be replaced by a
time average for a steady-state laser operation.

For lasing at both frequencies, the optical spectrum contains
a central peak at the lasing frequency corresponding to the first
term in Eq. (9). Undamped fluctuations in the phase of the
lasing mode associated with the non-decaying normal mode of
elementary excitations lead to a phase diffusion of light field,
giving rise to a Lorentzian shape of the central peak with a
linewidth 2/τc [21]. The linewidth is proportional to the strength
of fluctuations q as well as inversely proportional to the number
of pumped sites and the occupation of the pumped optical site
C̄2

j . The linewidth is approximately constant for lasing of any
edge mode. Small deviations in the linewidth occur due to
moderate discrepancies in the spatial profile |Wjα|2 of individual
edge modes.

For lasing at the frequency Ω/t1 = 0 lying in the middle
of the passive-system band gap, the optical spectrum contains
also satellite peaks (see Fig. 3a). The satellite peaks appear due
to the incoherent population of normal modes for elementary
excitations, corresponding to the terms on the second line of
Eq. (9). The occupation nα of normal modes for elementary
excitations is inversely proportional to the decay rate |Im ε(α)|
and proportional to the strength of noise q. As a result, long-
lived elementary excitations with a very small decay rate are
largely populated giving rise to the satellite peaks in the optical
spectrum. This large incoherent population of normal modes for
elementary excitations leads to large phase fluctuations in the
emitted light field decreasing its coherence.

Since elementary excitations are not dependent on the ab-
solute scaling, Isat, of the mean-field steady-state solution, the
occupation of normal modes nα does not depend on the mean
number of photons in the lasing mode n̄. As a result, the height
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of the satellite peaks is also independent of the the mean number
of photons in the lasing mode n̄.

Our results show that large phase fluctuations and the de-
creased light coherence of emitted light field persist even when
moderate on-site disorder is introduced (see Appendix F). This
is due to the robustness of edge modes and their frequencies
against disorder. As a result, long-lived elementary excitations
with a very small decay rate and a large occupation nα of the
corresponding normal modes occur even if moderate on-site
disorder is considered.

On the other hand, the incoherent population of elemen-
tary excitations and corresponding phase fluctuations can be
suppressed by selecting a different lasing frequency. As it was
shown in the previous section, the lifetime of elementary excita-
tions is reduced by at least one order of magnitude for lasing at a
frequency, which does not lie in the middle of the passive-system
band gap, see Fig. 3c. As a result, the incoherent population of
elementary excitations and the corresponding satellite peaks in
the optical spectrum are suppressed (see Fig. 3b) leading to a
larger coherence of emitted light than for Ω/t1 = 0.

The second-order autocorrelation function g(2)j describes cor-
relations in the intensity of emitted light at different times [21].
For a laser, it is desired that these intensity correlations vanish

corresponding to g(2)j = 1. The second-order autocorrelation
function is determined by amplitude fluctuations [21]

g(2)j (∆t) =
〈cj(t)cj(t + ∆t)c∗j (t + ∆t)c∗j (t)〉
〈cj(t)c∗j (t)〉〈cj(t + ∆t)c∗j (t + ∆t)〉

= 1 +
4

C̄2
j
〈δCj(t)δCj(t + ∆t)〉+O

(
1

C̄4
j

)
. (10)

Amplitude autocorrelations 〈δCj(t)δCj(t + ∆t)〉 can be ex-
pressed in terms of normal modes’ correlations (see Ap-

pendix E). The second-order autocorrelation function g(2)j (∆t)
for a pumped optical site located at the edge of the array is
shown in Figs. 3d and 3e for lasing at the frequency Ω/t1 = 0
and Ω/t1 = 0.25, respectively. We compare the results deter-
mined from the linearized Langevin equations (black line) to nu-
merical simulations (green line) of the nonlinear Langevin equa-
tions (1). The ensemble average 〈cj(t)cj(t + ∆t)c∗j (t + ∆t)c∗j (t)〉
can be replaced by a time average for a steady-state laser opera-
tion.

For lasing at both frequencies, the equal-time second-order

autocorrelation function g(2)j (0) is close to unity as expected
for a laser, which is driven well above threshold. With the
time difference ∆t, g(2)j (∆t) decays to unity at time comparable
to 1/γ. This shows that amplitude fluctuations correspond to

fast-decaying elementary excitations. We can see that g(2)j (0)

and temporal oscillations of g(2)j (∆t) are larger for lasing at the
frequency Ω/t1 = 0.25 than for lasing at the frequency Ω/t1 = 0
lying in the middle of the band gap.

In Fig. 3f, we plot g(2)j (0) as a function of the lasing frequency
Ω for different values of the Haldane flux. One can see that
g(2)j (0) is, in general, moderately larger for lasing at a frequency
which does not lie in the middle of the band gap for all values
of the Haldane flux. This shows that lasing at these frequencies
leads to moderately larger amplitude fluctuations.

8. EXPERIMENTAL PARAMETERS

We estimate parameters of our model (1) to be relevant for re-
cent experiments [14]. Typical parameters for arrays of coupled
microring resonators are the decay rate γ ∼ 1 GHz and the hop-
ping amplitude t1 ∼ 100 GHz with a feasible ratio γ/t1 ∼ 0.01
[24]. Based on the Haldane model (see Fig. 1a) with the group ve-
locity of edge modes vg/t1 ∼ 1 (in units of the lattice constant),
we can estimate that the frequency separation |ωm −ωn| ∼ γ, g
of edge modes m 6= n is comparable to their linewidth γ and
gain g for a total number of microring resonators N ∼ 104. For
N ∼ 100 (as implemented in Ref. [14]), |ωm −ωn| � g, γ. As a
result, each edge mode can distinctively hybridize only with one
edge mode from the other branch of passive-system frequencies
as the anti-Hermitian coupling to all other modes is negligible
compared to their large frequency separation.

The dominant source of noise is the spontaneous emission
at rate q ∼ 100 GHz [30]. A typical circulating power in the
lasing mode of a single microring resonator is Pc ∼ 1 mW which
corresponds to a typical number of photons n̄ ∼ 103 in the
lasing mode [30]. We conclude that our model with Isatγ/q ∼ 10
describes an experimentally-relevant relative strength of noise
compared to the number of photons in the lasing mode.

9. CONCLUSIONS

We have demonstrated that long-lived elementary excitations,
which emerge due to the hybridization of topological edge
modes, lead to large phase fluctuations and a decrease in the
coherence of the emitted light field. In contrast to long-lived
elementary excitations in a trivial laser, the decay rate and the os-
cillation frequency of long-lived elementary excitations in a topo-
logical laser are robust against disorder. Even though we focus
in our manuscript on the Haldane model, long-lived elementary
excitations appear for any topological model if the dispersion
of edge-mode frequencies is approximately linear around the
lasing frequency. Our results for the Haldane model show that
the deviation from a linear dispersion around lasing frequen-
cies, which do not lie in the middle of the passive-system band
gap, is sufficient to obstruct the hybridization of edge modes.
As a result, the lifetime of elementary excitations is reduced
by orders of magnitude and the phase fluctuations are largely
suppressed. On the other hand, this leads to a moderate increase
of amplitude fluctuations and the second-order autocorrelation
function. However, the second-order autocorrelation function
still remains close to unity. In the future, different topological
models can be studied to provide insight into how elementary
excitations in topological lasers are affected by the presence of
several topological band gaps supporting edge modes with op-
posite chirality [1], a pseudospin degree of freedom in pseudo
quantum spin Hall systems [24, 31] or topological lasing in syn-
thetic dimensions [7].

APPENDIX A: LINEARIZATION OF LANGEVIN EUQA-
TIONS

We now derive the linear Langevin equations (2) for elementary
excitations around the mean-field steady state. To this end we
substitute the decomposition of the complex optical amplitude

cj =
(

c̄j + δcj

)
e−iΩt into the full nonlinear Langevin equations

(1). Omitting second- and higher-order terms in optical modula-
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tions δcj, we obtain the linearized Langevin equations

i
d
dt

δcj =−Ωδcj +
N

∑
k=1

Hjkδck + iΓjjδcj + i∆jjδc∗j + Qjjcj,ineiΩt,

(A1)

i
d
dt

δc∗j =Ωδc∗j −
N

∑
k=1

H∗jkδc∗k + i∆jjδcj + iΓjjδc∗j −Qjjc∗j,ine−iΩt,

(A2)

where

Γjj = −γ +
Pj g(

1 + |c̄j |2
Isat

)2 , ∆jj = −
Pj g

c̄2
j

Isat(
1 + |c̄j |2

Isat

)2 , (A3)

and we used that−iγ + i
Pjg

1 + |c̄j |2
Isat

 c̄j +
N

∑
k=1

Hjk c̄k = 0. (A4)

(A1) and (A2) can be written in form of a matrix equation (2).

APPENDIX B: NON-DECAYING MODE

Here we discuss the hybridization of two passive-system normal
modes which are formed from the lasing mode, giving rise to
the non-decaying mode. We label the lasing mode by the index
l. Since ωl = Ω, the pair of passive-system normal modes is

degenerate ε
(l)
p = ε̃

(l)
p = 0 leading to a large hybridization of

the pair. The lasing mode coincides with the mean-field steady-

state solution e(l)j ≈ c̄j eiϕ/
√

n̄, where n̄ is the mean number of
photons in the lasing mode and ϕ is an arbitrary phase. This
gives

Γ̄ll = ∆̃ll e2iϕ = g
N

∑
j=1

Pj

|c̄j |4
Isat n̄(

1 + |c̄j |2
Isat

)2 , (B1)

and δΓll trivially vanishes. Using also ω̄ll = 0 and δωll = 0,
we see from Eq. (7) that the hybridization of this mode pair
gives rise a non-decaying mode with the complex frequency

ε
(l,l)
+ = 0 and a fast-decaying mode with the complex frequency

ε
(l,l)
− = −2iΓ̄ll .

APPENDIX C: HALDANE FLUX φ = π/2

The value of the Haldane flux φ = π/2 represents a special case
because the Hamiltonian H of the passive system then exhibits
the following symmetry S H S = −H∗, where S is a unitary
matrix and S2 = 1. The unitary transformation S introduces
the phase shift π between the two sublattices of the Haldane
model, i.e. cj → cj for sublattice A and cj → −cj for sublattice
B. Due to this symmetry, the spectrum of the passive system
consists of a zero frequency and frequency pairs (ωm, ωm̃), ωm̃ =
−ωm. As a result, all passive-system normal modes are pairwise
degenerate for Ω/t1 = 0 leading to the hybridization of all
degenerate pairs described by the 2× 2 dynamical matrix D̃(m,m̃),
see Eq. (6). As the unitary S introduces only a local phase shift,

|e(m)
j | = |e

(m̃)
j | leading to Γ̄mm̃ = Γ̃mm = Γ̃m̃m̃ and δΓmm̃ = 0.

Using also δωmm̃ = 0, the complex frequencies of hybridized

modes are ε
(m,m̃)
± = ωm + i

(
Γ̄mm ± |∆̃mm̃|

)
. Since the coupling

∆̃mn between bulk modes is small, the hybridization leads to

a small splitting in imaginary parts of complex frequencies for
bulk modes (gray lines in Fig. 2c). On the other hand, the large
coupling of edge modes leads to a large splitting in the imaginary
parts of complex frequencies (blue lines in Fig. 2c).

APPENDIX D: ONE-DIMENSIONAL LASER ARRAY

In this appendix, we discuss how long-lived elementary exci-
tations generically appear in one-dimensional laser arrays. We
consider a one-dimensional array with N optical sites, whose
complex amplitudes are described by the Langevin equations (1).
All optical sites in the one-dimensional array are pumped, i.e.
Pj = 1 for all j. We do not consider any particular Hamiltonian
Hjk. We only assume periodic boundary conditions cN+j = cj,
that νj = ν = const, and that the Hamiltonian Hjk is translation-
ally invariant, i.e. that the Hamiltonian is invariant under the
transformation cj → cj+R for any integer R. In this case, the
passive-system normal modes are plane waves with complex
amplitudes Nm = 1√

N ∑N
j=1 eijmcj. The index m represents a

quasi-momentum and it spans values m = 2π
N , 4π

N , ..., 2π. The
mean-field equations of motion (omitting stochastic terms in the
Langevin equations) for the complex amplitudes Nm are

i
d
dt
Nm = (ωm − iγ)Nm +

N

∑
j=1

i g
N ∑n eij(m−n)Nn

1 + ∑n,o e−ij(n−o)NnN ∗o /Isat
,

(D1)
where ωm is the oscillation frequency of the normal mode Nm.
These mean-field equations of motion have a stationary solution

N̄m = δml

√
NIsat

(
g
γ − 1

)
e−iϕ corresponding to the lasing of a

single mode l, where ϕ is an arbitrary phase. Note that a sta-
tionary solution exists for any normal mode l lasing. Switching
back to the basis of local optical modes, the stationary optical

amplitudes are c̄j =

√
Isat

(
g
γ − 1

)
e−i(jl+ϕ).

We linearize the full Langevin equations (1) around the sta-

tionary mean-field solution cj =
(

c̄j + δcj

)
e−iΩt obtaining the

linearized Langevin equations (2), where Ω = ωl . The dynam-

ical matrix D is given by Eq. (3), where Γjj = −γ + γ2

g = −γ̄,

∆jj = −γ̄e−2i(jl+ϕ), and Γjk = ∆jk = 0 for j 6= k. Switch-
ing to the basis of passive-system normal modes, we diagonal-
ize the Hermitian part H of the dynamical matrix. Since the
passive-system normal modes are plain waves, the matrix ele-
ments of the anti-Hermitian part Ã can be explicitly evaluated,
Γ̃mm = −γ̄, ∆̃m(2l−m) = −γ̄e−2iϕ, and Γ̃mn = ∆̃m(2l−n) = 0 for
m 6= n. The diagonal block Γ̃ describes decay of the normal
modes at rate γ̄. The off-diagonal block ∆̃ describes the coupling
of passive-system normal modes whose quasi-momenta m and n
satisfy the condition m + n = 2l. Since this condition is satisfied
only for mode pairs (m, 2l −m), the coupling of passive-system
normal modes is exactly described by the 2× 2 dynamical matrix
D̃(m,2l−m) given by Eq. (6). The complex spectrum of elementary
excitations is exactly determined by the eigenvalues of the 2× 2
dynamical matrix

ε
(m,2l−m)
± = ω̄m(2l−m) − iγ̄± 1

2

√
δω2

m(2l−m)
− 4γ̄2, (D2)

ω̄m(2l−m) =
1
2 (ωm −ω(2l−m)), δωm(2l−m) = ωm + ω2l−m − 2Ω.

The spectrum of elementary excitations in the one-
dimensional laser array depends only on the dispersion of
the passive system frequencies ωm. If |δωm(2l−m)| > 0 for all
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m 6= l, lasing of a single mode l is a stable steady state as all

Im ε
(m,2l−m)
± < 0 except from the non-decaying mode ε

(l,l)
+ = 0.

We can expand the dispersion of passive-system frequencies

ωm = Ω + v1 (m− l) + v2 (m− l)2 +O
(
(m− l)3

)
around the

lasing frequency Ω. If higher order terms in the expansion
are negligible, the detuning between modes m and 2l − m is

δωm(2l−m) = 2v2 (m− l)2 +O
(
(m− l)4

)
. If the nonlinear co-

efficient v2 is sufficiently small such that |v2|(m− l)2 � γ̄ for

m close to l, the complex frequencies are ε
(m,2l−m)
+ ≈ ω̄m −

i v2
2

2γ̄ (m− l)4 and ε
(m,2l−m)
− ≈ ω̄m − i

[
2γ̄− v2

2
2γ̄ (m− l)4

]
corre-

sponding to slowly-decaying modes and fast-decaying modes,
respectively. For a small nonlinear coefficient v2, the decay
rate of the slowly-decaying modes can be orders of magnitude
smaller than any other energy scale in the system g, γ, ωm, lead-
ing to long-lived elementary excitations.

Long-lived elementary excitations generically appear in one-
dimensional laser arrays if the dispersion of the passive-system
frequencies ωm is linear around the lasing frequency.

APPENDIX E: CORRELATIONS OF AMPLITUDE AND
PHASE FLUCTUATIONS

Here, we provide details about how the optical spectrum and
the second-order autocorrelation function are derived and how
they are related to the normal modes of elementary excitations.

It is convenient to study noise in terms of amplitude and
phase fluctuations, due to the U(1) symmetry of the mean-field
dynamical equations, cj → cj eiϕ, where ϕ is an arbitrary overall
phase. The coherence properties of a laser driven well above
threshold are directly determined by the correlations in ampli-
tude fluctuations and phase fluctuations [21]. Amplitude fluctu-
ations δCj and phase fluctuations δθj are linearly related to the
fluctuations of complex amplitudes δcj and δc∗j

δCj =
e−iθ̄j δcj + eiθ̄j δc∗j

2
, δθj =

e−iθ̄j δcj − eiθ̄j δc∗j
2iC̄j

, (E1)

where c̄j = C̄jeiθ̄j . This relation can be described by the linear
transformation δC

δΘ

 = T

 δc

δc∗

 , (E2)

where δΘj = C̄j δθj. The linearized Langevin equations around
the mean-field steady-state for the amplitude and phase fluctua-
tions are

i
d
dt

δC

δΘ

 = T DT −1

δC

δΘ

+
i√
2
Q

Cin

Θin

 , (E3)

where Cin and Θin describe real-valued Gaussian white noise,
with following correlations 〈Cj,in(t)Ck,in(t′)〉 = δjkδ(t − t′),
〈Θj,in(t)Θk,in(t′)〉 = δjkδ(t− t′), and 〈C̄j,in(t)Θk,in(t′)〉 = 0. Am-
plitude and phase fluctuations are linearly related to the normal
modes of elementary excitationsδC

δΘ

 =WN , (E4)

whereW = VT , columns of the matrix V are the normal modes
of elementary excitations E (α) described in Sec. 4 and the vector

N contains the complex amplitudes of these normal modes.
Non-equal-time phase and amplitude autocorrelations can be
expressed in terms of normal modes’ correlations

〈δCj(t)δCj(t + ∆t)〉 =
2N

∑
α,β=1

Wjα〈Nα(t)N ∗β (t + ∆t)〉W†
βj, (E5)

〈
[
δθj(t)− δθj(t + ∆t)

]2
〉

=
1

C̄2
j

2N

∑
α,β=1

W(j+N)α〈|Nα(t)−Nβ(t + ∆t)|2〉W†
β(j+N). (E6)

The correlations of normal modes are

〈Nα(t)N ∗β (t + ∆t)〉 =
i
(
RR†)

αβ(
ε(β)

)∗
− ε(α)

eiε(α)∆t, ∆t < 0, (E7)

〈Nα(t)N ∗β (t + ∆t)〉 =
i
(
RR†)

αβ(
ε(β)

)∗
− ε(α)

ei(ε(β))
∗
∆t, ∆t > 0, (E8)

for all normal modes α and β except from the autocorrelation of
the non-decaying mode, i.e. for α = β = η and ε(η) = 0. Note
that the non-decaying mode is related only to phase fluctuations.
As a result, the relevant autocorrelation of the non-decaying
mode is

〈|Nη(t)−Nη(t + ∆t)|2〉 =
(
RR†

)
ηη
|∆t|. (E9)

The dominant contribution in the autocorrelation of complex
optical amplitudes reads

〈cj(t)c∗j (t + ∆t)〉 ≈ C̄2
j eiΩ∆t e−〈[δθj(t)−δθj(t+∆t)]

2〉/2, (E10)

where amplitude fluctuations are neglected, since they are small
in comparison to the large mean-field occupation C̄2

j [21]. Using

Eq. (E6), we express 〈
[
δθj(t)− δθj(t + ∆t)

]2
〉 in terms of cor-

relations in the normal modes of elementary excitations (E7),
(E8) and (E9) to derive the optical spectrum Eq. (9) in the main
text, where we neglect correlations between different normal
modes 〈|Nα(t)−Nβ(t + ∆t)|2〉 for α 6= β. Only long-lived ele-
mentary excitations have significant contribution to the optical
spectrum due to their large occupation nα. Since the correspond-
ing normal modes are formed from edge modes, they have a
large detuning in the real parts of complex frequencies, which
suppresses the correlations between different normal modes
〈|Nα(t)−Nβ(t + ∆t)|2〉 for α 6= β.

Similarly, we can express the second-order autocorrelation
function (10) in terms of correlations in the normal modes of
elementary excitations.

APPENDIX F: DISORDER

Here we study effects of a moderate on-site disorder on the
spectrum of elementary excitations and long-lived elementary
excitations. We consider lasing at a frequency, which lies in the
middle of the passive-system band gap. The on-site disorder is
represented by a Gaussian distribution of on-site frequencies νj
with a zero mean value and a standard deviation σ. We consider
a moderate disorder with the standard deviation σ smaller than
the size of the passive-system band gap 6

√
3t2 sin φ but larger

than the decay rate γ and gain g.
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Fig. F1. Effects of moderate disorder. (a) Complex spectrum of
elementary excitations for 30 disorder realizations (brown and
gray crosses) for Ω/t1 ≈ 0 compared to complex spectrum
of elementary excitations without disorder with band gap (or-
ange region), bulk modes (black points) as well as edge modes
(blue points) for the lasing frequency Ω/t1 = 0. Purple and
blue lines show the splitting in imaginary parts of complex
frequencies due to the hybridization of bulk modes and edge
modes, respectively. (b) Optical spectrum of a pumped optical
site lying at the edge of the topological array for a single dis-
order realization and for lasing at the frequency Ω/t1 = 0.01.
Linearization of Langevin equations around the mean-field
steady state (black line) and numerical simulations of non-
linear Langevin equations (purple line). The orange region
shows the band gap in the spectrum of elementary excitations.
(Parameters: (a) and (b) t2/t1 = 0.15, φ = π/2, γ/t1 = 0.01,
g/t1 = 0.05, σ/t1 = 0.1; (b) Isatγ/q = 25, Ω = 0.01)

We compare the spectrum of elementary excitations for 30
disorder realizations and the spectrum of elementary excitations
without disorder in Fig. F1a. The large hybridization of edge
modes with frequencies close to the lasing frequency leads to
long-lived elementary excitations with a very small decay rate
for all disorder realizations (brown crosses). This shows the
robustness of long-lived elementary excitations against disor-
der. The incoherent occupation nα of the corresponding slowly-
decaying normal modes is large even in the presence of moder-
ate on-site disorder and it leads to satellite peaks in the optical
spectrum, see Fig. F1b.

APPENDIX G: LONG-LIVED ELEMENTARY EXCITA-
TIONS IN A TRIVIAL LASER

We now study long-lived elementary excitations in a trivial laser
based on the Haldane model. We focus on the effects of disorder
on the long-lived elementary excitations and we compare them
to the effects of disorder on long-lived elementary excitations in
a topological laser studied in Appendix F.

We introduce the Haldane mass term M in the Hamiltonian

Ĥ = M ∑
j

µj ĉ†
j ĉj + t1 ∑

n.n.
ĉ†

j ĉk + t2 ∑
n.n.n.

eiφjk ĉ†
j ĉk, (G1)

which is a staggered on-site potential with µj = 1 for sites in
sublattice A and µj = −1 for sites in sublattice B [25]. For |M| >
3
√

3t2| sin φ|, a trivial band gap opens. For this topologically-
trivial phase, the finite-size array depicted in Fig. 1a has trivial
edge modes, whose energies lie within the bulk bands. On the
mean-field level, we observe single-mode lasing of a trivial edge
mode. We plot the spectrum of elementary excitations (black
points) in Fig. G1a for the lasing frequency Ω/t1 = 1.03. For
this lasing frequency, long-lived elementary excitations whose
decay rates are one order of magnitude smaller than any other

Fig. G1. Effects of moderate disorder in a trivial laser based
on the Haldane model compared to a topological laser. (a)
Complex spectrum of elementary excitations in a trivial laser
for 30 disorder realizations (gray crosses) and for the lasing
frequency Ω/t1 ≈ 1 compared to complex spectrum of
elementary excitations without disorder (black points) for
Ω/t1 = 1.03. Purple lines show the splitting in the imaginary
parts of complex frequencies due to the hybridization of triv-
ial edge modes. (b) The complex frequency with the smallest
imaginary part minα 6=η |Imε(α)| for each disorder realization
(30 in total), for a trivial laser with Ω/t1 ≈ 1 (gray crosses) as
well as for the topological laser with Ω ≈ 0 (brown crosses).
(Parameters: (a) and (b) t2/t1 = 0.15, γ/t1 = 0.01, g/t1 = 0.05,
σ/t1 = 0.1; (a) and (b) gray crosses φ = 2π/3, M/t1 = 0.8; (b)
brown crosses φ = π/2, M/t1 = 0 )

energy scale in the system (γ, g, t1 and t2) appear due to a large
hybridization of trivial edge modes. This is analogous to the
long-lived elementary excitations in a topological laser due to
the hybridization of topological edge modes discussed in Sec. 6.

For moderate on-site disorder, the single-mode lasing is still
stable. We compare the spectrum of elementary excitations (gray
crosses) for 30 disorder realizations and the spectrum of elemen-
tary excitations without disorder (black points) in Fig. G1a. The
decay rate of elementary excitations with small oscillation fre-
quencies varies strongly in each disorder realization. For some
disorder realizations, the hybridization of trivial edge modes is
obstructed and the decay rate of the corresponding elementary
excitations increases by one order of magnitude. This can be
seen in Fig. G1b where we plot the complex frequency (gray
crosses) with the smallest imaginary part minα 6=η |Imε(α)| for
each disorder realization. In contrast to the long-lived elemen-
tary excitations in a trivial laser, the long-lived elementary ex-
citations in a topological laser are robust against disorder, see
Appendix F. In the topological laser, the smallest decay rate
of elementary excitations only moderately changes depending
on each disorder realization and the corresponding oscillation
frequency is unchanged, see brown crosses in Fig. G1b.
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NOTE ADDED

During the final stage of this project, a preprint [32] appeared,
investigating coherence properties of topological lasers. Their
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numerical analysis of topological lasing in arrays of large sizes
complements our study of topological lasing reported here.
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