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Genome-wide meta-analysis of iron status
biomarkers and the effect of iron on all-cause
mortality in HUNT
Marta R. Moksnes 1✉, Sarah E. Graham 2, Kuan-Han Wu 3, Ailin Falkmo Hansen1,

Sarah A. Gagliano Taliun 4,5, Wei Zhou 6,7, Ketil Thorstensen8, Lars G. Fritsche 9,10,

Dipender Gill 11,12,13,14, Amy Mason 15, Francesco Cucca16,17, David Schlessinger18, Gonçalo R. Abecasis 10,

Stephen Burgess15,19, Bjørn Olav Åsvold 1,20,21, Jonas B. Nielsen1,2,22,23, Kristian Hveem1,21,26,

Cristen J. Willer 1,2,5,24,26 & Ben M. Brumpton 1,21,25,26✉

Iron is essential for many biological processes, but iron levels must be tightly regulated to

avoid harmful effects of both iron deficiency and overload. Here, we perform genome-wide

association studies on four iron-related biomarkers (serum iron, serum ferritin, transferrin

saturation, total iron-binding capacity) in the Trøndelag Health Study (HUNT), the Michigan

Genomics Initiative (MGI), and the SardiNIA study, followed by their meta-analysis with

publicly available summary statistics, analyzing up to 257,953 individuals. We identify 123

genetic loci associated with iron traits. Among 19 novel protein-altering variants, we observe

a rare missense variant (rs367731784) in HUNT, which suggests a role for DNAJC13 in

transferrin recycling. We further validate recently published results using genetic risk scores

for each biomarker in HUNT (6% variance in serum iron explained) and present linear and

non-linear Mendelian randomization analyses of the traits on all-cause mortality. We find

evidence of a harmful effect of increased serum iron and transferrin saturation in linear

analyses that estimate population-averaged effects. However, there was weak evidence of a

protective effect of increasing serum iron at the very low end of its distribution. Our findings

contribute to our understanding of the genes affecting iron status and its consequences on

human health.
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Iron is essential for a variety of physiological processes in the
human body, but excess iron is toxic. Iron overload is asso-
ciated with a wide range of health problems, including liver

damage, type 2 diabetes, cardiovascular disease, and neurode-
generative diseases such as Alzheimer’s disease1–3, while long-
term iron deficiency causes anemia, which can disrupt cognitive
function and the immune system4–6. Because of the damaging
effects of both deficiency and overload, iron metabolism is tightly
regulated7.

Iron is bound, transported, and delivered around the body by
the transferrin glycoprotein8, while the main intracellular iron
storage, ferritin, provides a long-term reserve of iron for the
formation of hemoglobin and other heme proteins9–11. Serum
iron, serum ferritin, transferrin saturation percentage (TSP), and
the total iron-binding capacity (TIBC) of transferrin are bio-
chemical measurements that are commonly used together to
assess an individual’s iron status12. Both high and low TSP have
been associated with an increased mortality risk in observational
studies13–16, although the underlying pathophysiologic mechan-
isms are unclear.

Mutations in various iron metabolism genes can cause both iron
deficiency and overload17–19. Genetic variants in the transferrin
gene, TF, and in the homeostatic iron regulator gene, HFE, have
been estimated to account for about 40% of genetic variation in
transferrin levels20. A recent genome-wide association study
(GWAS) meta-analysis21 of serum iron, ferritin, TSP, and TIBC
from Iceland, UK, and Denmark reported 46 novel loci associated
with at least one of these biomarkers, implicating proteins involved
in iron homeostasis. Identifying additional genetic loci associated
with iron status could further increase our understanding of
pathophysiologic mechanisms underlying dysregulated iron levels.
Furthermore, genetic variants from the most recent study21 could
improve existing genetic risk scores (GRS) that have been widely
used to assess the causal associations of iron status on a range of
outcomes using Mendelian Randomization22–27 (MR). However,
the new GRSs have not yet been validated in an independent study.
Further, despite the observed damaging effects of both very high
and very low iron stores, no previous MR studies have investigated
the shape of the associations between genetically proxied iron
status biomarkers and mortality. By validating the most recent
genetic risk scores and using MR in an independent study
(HUNT), we provide robust and novel insights into the causal
associations between iron status biomarkers and all-cause mortal-
ity, particularly regarding non-linear relationships.

Here, we identify 123 loci associated with iron status, by
combining three approaches: (i) genome-wide association studies
of variants deeply imputed from the TOPMed reference panel28

in the Trøndelag Health Study (HUNT)29 and the Michigan
Genomics Initiative (MGI), as well as variants imputed from a
cohort-specific reference panel in SardiNIA30 (ii) association tests
with genotyped coding variants selected from low-coverage (5×)
whole-genome sequencing in HUNT, (iii) genome-wide meta-
analyses of HUNT, MGI, SardiNIA and summary statistics from
deCODE, Interval and the Danish Blood Donor Study (DBDS)21.
The analyses included up to 257,953 individuals (57% females,
43% males) with measured iron status biomarkers. We evaluate
the variance explained by previously published variants for serum
iron, serum ferritin, TSP and TIBC in HUNT. Furthermore, we
use the genetic variants for the iron status biomarkers to estimate
the average causal effect of a population shift in the biomarker
distributions on all-cause mortality (the population-averaged
effect), and investigate the shape of the causal relationships using
non-linear MR. We find evidence of an average harmful effect of
increasing serum iron and transferrin saturation in the general
population, but also weak evidence of a protective effect of
increasing serum iron at the very low end of its distribution.

Results
Discovery of genetic loci associated with iron status. We
identified 123 genetic loci associated (p-value <5 × 10−8) with at
least one iron related biomarker (Tables 1–2, Supplementary
Data 1, Supplementary Figs. 1–4, and Supplementary Note 1) in
genome-wide association meta-analyses of the iron status bio-
markers in six cohorts: HUNT, MGI, SardiNIA, deCODE,
Interval and DBDS (Supplementary Data 2). To the best of our
knowledge, 66 of these loci were novel for any iron status bio-
marker, while 57 had been reported for at least one of the bio-
markers in previous studies. Additionally, among the 57 known
iron status loci, 12 loci were for the first time associated with one
or more additional biomarkers, further emphasizing the role of
these loci in iron-related biological processes. Among the 62
unique index (lowest p-value) variants in novel iron status loci
that had been imputed in more than one study, 49 had consistent
directions of effects across all the analyzed studies. We also
identified three novel missense variants associated with at least
one biomarker among the variants ascertained from low-pass
whole genome sequencing and selected for targeted genotyping in
HUNT (Supplementary Data 3).

Genes in several associated loci coded for proteins with
established functions in iron homeostasis (TF [transferrin])
SLC25A37 [mitoferrin-1], SLC25A28 [mitoferrin-2], SLC11A2
[divalent metal-transporter 1] and SLC40A1 [ferroportin-1], HFE
[homeostatic iron regulator], TFRC [transferrin receptor], TFR2
[transferrin receptor 2], HAMP [hepcidin], ERFE [erythrofer-
rone], HMOX1 [heme oxygenase], IREB2 [iron responsive
element binding protein 2], EPAS1 [endothelial PAS Domain
Protein 1] and TMPRSS6 [transmembrane serine protease
6])7,31–33 Four of the loci that had not been reported for iron
status biomarkers in previous GWAS studies, contained known
iron related genes (SLC25A28, HMOX1, IREB2, and EPAS1),
providing additional confidence in the reported associations.
With exception of HAMP and TFR2, these genes were the nearest
gene to the index variant in the locus.

Protein-altering variants in meta-analysis loci. We identified 32
protein-altering single nucleotide polymorphisms (SNPs) in the meta-
analysis, which were either index variants or variants in strong linkage
disequilibrium (LD) (R2 > 0.8 or D’= 1.0) with an index variant
(Supplementary Data 1). In addition to SNPs known to be related to
diseases such as hemochromatosis, atransferrinemia or iron deficiency
anemia19,34–38, and variants that had previously been reported for at
least one of the iron traits21,39, we identified 11 protein-altering var-
iants in novel iron status loci (Supplementary Data 4): rs9427398
(FCGR2A), rs2437150 (SPRTN), rs1047891 (CPS1), rs41274050
(A1CF), rs1935 (JMJD1C), rs3742049 (COQ5), rs4149056 (SLCO1B1),
rs2070863 (SERPINF2), rs883541 (WIPI1), rs1800961 (HNF4A) and
rs738409 (PNPLA3). In known iron status loci, we further identified
eight protein-altering variants not previously reported for any of the
analyzed iron traits: rs367731784 (DNAJC13), rs3812594 (SEC16A),
rs34376913 (C9orf163), rs445520 (SLC11A2), rs28929474 (SER-
PINA1), rs737700 (C16orf71), rs77542162 (ABCA6) and rs34654230
(RCN3).

Custom genotyped variants in HUNT: Protein-altering var-
iants in iron status loci. Among the targeted candidate variants
in HUNT identified by sequencing and clinical studies, we
identified three additional, novel protein-altering variants (Sup-
plementary Data 3) that were not included in the meta-analyses,
and which were associated with iron status biomarkers. These
were located in NRM (rs374815811), HLA-DRB5 (rs701884), and
TFR2 (chr7:100629337:A:T, GRCh38).
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Heritability and genetic correlation of iron status markers. We
estimated the respective narrow-sense SNP heritability (variance
explained, Vg/Vp ± 1 standard error) of serum iron (0.15 ± 0.01),
TIBC (0.43 ± 0.01) and TSP (0.21 ± 0.01) in HUNT using
Genome-wide Complex Trait Analysis (GCTA)40. We found
pair-wise genetic correlations between 11% and 75% (Supple-
mentary Data 5) for the four iron status biomarkers using LD
Score Regression41 with the meta-analysis summary statistics.
The TSP phenotype was derived from the serum iron and TIBC
measurements, giving rise to the two strongest genetic correla-
tions. The weakest correlation (iron vs TIBC) did not reach
nominal significance (p-value = 0.35).

Functional mapping. We used Bayesian colocalization analysis to
identify 86 unique pairs of GWAS loci and cis-expression quantita-
tive trait locus (cis-eQTL) signals that showed sufficient overlap in at
least one tissue to be consistent with a shared causal variant for the
gene expression and the iron status biomarker (Supplementary
Data 6). We found associations in a range of tissues which high-
lighted genes with established roles in iron metabolism (TF [posterior
probability of a common causal variant, PP4= 0.96], TMPRSS6
[PP4= 0.82], ERFE [PP4= 0.97–0.98], IREB2 [PP4= 0.80],
SLC40A1 [PP4= 0.79–0.96])17,31. Additionally, our results con-
firmed previously reported genes (DUOX2 [PP4= 0.76], HBS1L
[PP4= 0.98], IL6R [PP4= 0.81–0.82], SLC25A37 [PP4= 0.85], ABO
[PP4= 0.97], RNF43 [PP4= 0.99])21,39, and identified novel genes
interacting with previously reported genes, for example DUOXA242.

Several iron status loci were also colocalized with cis-eQTL signals for
genes in the major histocompatibility complex (MHC) other than
HFE43, as well as with transcription regulators44–46, additional
transporter proteins47,48 and transferases49,50.

Using Data-driven Expression Prioritized Integration for
Complex Traits (DEPICT)51 we found an enriched (false
discovery rate [FDR] < 0.05) expression of ferritin associated
genes in the urogenital system, digestive system, and the hemic
and immune system (Supplementary Data 7). Serum iron, TSP,
and TIBC associated genes were not enriched in any tissue types
at FDR < 0.05, however, the strongest enrichment for genes in all
three traits were found in liver tissue, and particularly in
hepatocytes (TSP, TIBC). The top ten genes per trait when
prioritized based on similarity between the associated (p-value <
5 × 10−8) loci, included known iron regulatory genes (TFR2,
HAMP, TFRC, and SLC40A1), genes in which we had identified
protein-altering variants (IL6R, F5, GCKR, DUOX2, SERPINA1,
ABCA6, and SLCO1B1), genes we found in the colocalization
analysis (DUOXA2, IL1RN, and SLC25A37), as well as genes
predicted to have iron ion binding and heme binding properties
in gene ontology analyses (CYP3A43, CYP3A5)52 (Supplementary
Data 8). Finally, we used DEPICT and found gene sets enriched
with iron status associated genes (Supplementary Data 9). All the
top ten gene sets enriched with iron associated loci and seven
with TSP associated loci reached FDR < 0.05: One iron associated
gene set, and five TSP associated gene sets were related to the liver
(including abnormal liver physiology and gene sets related to
metabolic processes), but also to inflammation (acute-phase

Table 2 Novel loci associated with the iron status biomarker ferritin in a genome-wide association meta-analysis.

rsID-Alt Effect SE P-value MAF Nearest gene(s) Consequence N Studies

rs477190-A −0.02 0.003 1.3E−08 0.404 FAM43B;CDA 257,953 H;M;dC;I;D
rs604126-G 0.02 0.004 2.7E−08 0.314 BCL2L11;MIR4435-2HG 257,953 H;M;dC;I;D
rs17050272-A 0.02 0.003 1.1E−09 0.417 LINC01101;GLI2 257,953 H;M;dC;I;D
rs17707216-A 0.04 0.007 2.2E−08 0.076 ZSWIM2;CALCRL 257,953 H;M;dC;I;D
rs553656123-A 0.11 0.020 1.1E−08 0.008 NBEAL2 257,953 H;M;dC;I;D
rs142350264-I −0.04 0.007 1.7E−09 0.098 BSN 246,139 dC;I;D
rs6822746-A −0.02 0.004 6.3E−09 0.317 SRD5A3-AS1;TMEM165 257,953 H;M;dC;I;D
rs4865796-A 0.02 0.004 6.4E−09 0.319 ARL15 257,953 H;M;dC;I;D
rs79694859-A 0.05 0.009 3.2E−09 0.046 PDE4D 257,953 H;M;dC;I;D
rs35107257-A 0.04 0.008 1.1E−08 0.058 OCLN 257,953 H;M;dC;I;D
rs970079-G −0.02 0.003 7.0E−09 0.463 RGMB 257,953 H;M;dC;I;D
rs35486885-G −0.06 0.008 5.2E−12 0.038 HLA-DQB2;HLA-DOB 257,953 H;M;dC;I;D
rs13215052-A −0.03 0.005 5.7E−09 0.111 TFEB 257,953 H;M;dC;I;D
rs189899297-A 0.02 0.004 4.7E−08 0.263 ATP6V0D2;SLC7A13 246,139 dC;I;D
rs681099-C −0.02 0.003 1.7E−08 0.455 EIF3E 255,619 M;dC;I;D
rs72775768-T −0.02 0.004 4.2E−09 0.259 INPP5E 257,953 H;M;dC;I;D
rs9423600-G 0.02 0.004 4.8E−08 0.268 LINC02561;UCN3 257,953 H;M;dC;I;D
rs704017-G −0.02 0.003 2.6E-08 0.378 ZMIZ1-AS1 257,953 H;M;dC;I;D
rs17112021-G 0.02 0.004 2.0E−10 0.275 NKX2-3;SLC25A28 257,953 H;M;dC;I;D
rs7102016-T 0.02 0.003 3.4E−08 0.444 SBF2 257,953 H;M;dC;I;D
rs10750215-T 0.02 0.004 1.5E-08 0.417 MIR100HG;UBASH3B 257,953 H;M;dC;I;D
rs9512463-C −0.02 0.004 4.8E−09 0.226 GPR12;USP12 257,953 H;M;dC;I;D
rs28715334-T 0.02 0.004 6.4E−09 0.203 SLC7A8 257,953 H;M;dC;I;D
rs764195359-G −0.30 0.051 2.6E−09 0.002 MGA 255,619 M;dC;I;D
rs11634990-C −0.03 0.005 2.0E−09 0.170 IREB2 257,953 H;M;dC;I;D
rs62074125-C 0.02 0.004 3.8E−08 0.288 WNT3 257,953 H;M;dC;I;D
rs2952290-A −0.02 0.004 1.9E−08 0.214 PRKAR1A R2= 0.84 w/

missense
257,953 H;M;dC;I;D

rs141253118-A −0.12 0.023 4.6E−08 0.005 NOTCH3;EPHX3 255,619 M;dC;I;D
rs2595586-G −0.02 0.003 2.2E−08 0.414 ATRN 257,953 H;M;dC;I;D
rs6088374-C −0.04 0.005 1.9E−16 0.169 LINC00028;HM13 255,619 M;dC;I;D
rs540828131-G −0.16 0.026 1.3E−09 0.007 HMOX1 255,619 M;dC;I;D

Locus index variants with alternate allele/indel (rsID-Alt, I= insertion). Effect size and direction (Effect) with standard error (SE) and functional consequence (correlation R2 reported if index variant is
strongly correlated (R2 > 0.8) with a missense variant) given for the alternate variant. Minor allele frequency (MAF), sample size (N), studies: HUNT (H), MGI (M), deCODE (dC), Interval (I), SardiNIA
(S), DBDS (D). See Supplementary Data 1 for further details.
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response, decreased leukocyte cell number), coagulation (coagu-
lation factor protein-protein interaction networks) and neurode-
velopment (abnormal myelination). The top ten gene sets
enriched with ferritin and TIBC associated loci included
decreased circulating iron levels, decreased spleen iron levels,
gene sets related to red blood cells (decreased hemoglobin,
decreased hematocrit, erythrocyte homeostasis, and differentia-
tion), as well as liver fibrosis and liver inflammation. However,
these gene sets did not reach FDR < 0.05. We identified the 1%
top-ranked genes per trait based on both physical distance to the
associated genetic variants and functional similarity to other
associated genes (Supplementary Data 10–13) using Polygenic
Priority Scores (PoPS)53. The prioritized genes included the main
known iron regulatory genes, several genes that were nearest to
the meta-analysis index variants, and novel genes in which we
identified protein-altering variants (WIPI1, SERPINF2, and
HNF4A), further supporting a role for these genes in iron biology.

Phenome-wide association study (PheWAS) of biomarker loci.
In total, 105 of the meta-analysis index variants were sig-
nificantly associated (p-value < 2.3 × 10−7) with at least one
additional disease phenotype (‘phecode’54), blood biomarker, or
continuous trait in the UK Biobank. Of the 1473 phenotypes
tested, 129 were significantly associated with at least one variant
(Supplementary Data 14–19). The associations spanned
numerous biological domains, but most associations were
within the hematopoietic (615 variant-trait associations),
endocrine/metabolic (303 variant-trait associations), and
digestive (243 variant-trait associations) domains. The strongest
(p-values < 1 × 10−300) and most numerous associations were
seen for red blood cell-related traits (hemoglobin concentration,
mean corpuscular hemoglobin, mean corpuscular volume, red
blood cell distribution width, red blood cell count, hematocrit
percentage, mean reticulocyte volume), where we found asso-
ciations with variants in HFE (rs1800562, rs144861591, and
rs79220007), TMPRSS6 (rs855791, rs2076085), HBS1L;MYB
(rs9399136, rs56293029), LINC002283;LINC002260 (rs218264),
HK1 (rs17476364) and IKZF1 (rs12718598). The strongest
associations also included associations between ‘disorders of
iron metabolism’ and the HFE variants (rs1800562,
rs144861591 and rs79220007), platelet related traits (platelet
count, platelet crit, mean platelet volume) and variants in
HBS1L;MYB (rs9399136, rs56293029) and REEP3 (rs10740134),
direct and total bilirubin and the SLCO1B1 variant rs2900478,
alkaline phosphatase and rs10740134 (REEP3), rs186021206
(ASGR2;ASGR1) and rs9987289 (LOC157273), C-reactive pro-
tein and rs2228145 (IL6R) and rs35945185 (LEPR;PDE4B), sex
hormone-binding globulin (SHBG) and rs10740134 (REEP3),
glycated hemoglobin (HbA1c) and rs17476364 (HK1), and tri-
glycerides and rs1260326 (GCKR), rs112875651, rs28601761
and rs2954027 (TRIB1;LINC0086). Overall, all GRSs for the four
iron status biomarkers were associated with disorders of
mineral metabolism, in particular iron metabolism, as well as
with red blood cell-related traits and other blood composition
measures, lipid-related measurements, direct and total bilirubin,
and HbA1c (Fig. 1 and Supplementary Data 17–19). Several
GRSs were associated with anemias (iron, ferritin, TSP) and
coagulation defects (ferritin, TSP), the GRS for TIBC was
associated with liver cirrhosis without mention of alcohol, and
the GRS for ferritin was associated with chronic non-alcoholic
liver disease, and with phlebitis and thrombophlebitis. Finally,
some of the GRSs were also associated with other continuous
traits and biomarkers, including markers related to liver damage
(iron, TSP, ferritin) and SHBG (iron, TSP), which is associated
with liver iron overload55.

Linear Mendelian randomization. The linear MR (ratio of
coefficients method) indicated an increased mortality risk with
increased serum iron and TSP, with the point estimates sug-
gesting that an increase of 1 standard deviation (SD) in both
serum iron (1 SD= 6.3 µmol L−1) and TSP (1 SD= 11.3 per-
centage points) would lead to an increased risk of mortality of 7%
(Table 3). The estimates for ferritin and TIBC were not statisti-
cally significant, however the point estimates for a 1 standard
deviation increase in serum ferritin (1 SD= 46 µg L−1) and TIBC
(1 SD= 9.2 µmol L−1) were a 7% increase and 4% decrease in
mortality, respectively (Table 1). The estimate for ferritin was also
very imprecise.

Non-linear Mendelian randomization. To investigate a poten-
tial non-linear causal association between iron status and all-
cause mortality, we used GRSs as instruments for serum iron
(F-statistic = 3,618, R2= 0.06), TIBC (F-statistic = 8,373,
R2= 0.129), TSP (F-statistic = 6811, R2= 0.107) and ferritin
(F-statistic = 37.81, R2= 0.015) in a non-linear MR analysis
and estimated the shape of the associations between the
genetically predicted traits and all-cause mortality (Fig. 2 and
Supplementary Data 20–23). The median follow-up time was
23.6 years. After performing a statistical test for whether the
best-fitting non-linear model of degree 1 fitted the data better
than a linear model (p-values: 0.50, 0.09, 0.24, and 1 for iron,
ferritin, TIBC, and TSP respectively), we generally did not find
strong statistical evidence supporting a non-linear relationship
over a linear one for the associations between any of the
genetically proxied iron traits and all-cause mortality. However,
the point estimates for serum iron did follow a J-shape, with a
negative slope at very low levels of serum iron and a constant
positive slope above 10 µmol L−1. The point estimates were
however imprecise at the tails of the distribution. The other
analyses indicated a lower risk at higher TIBC and lower TSP
and ferritin levels, with a weak indication (p-value= 0.09) of a
non-linear effect for ferritin. Post hoc sensitivity analyses using
genetic instruments that were consistent with systemic iron
status (increased iron, ferritin, and TSP, and decreased TIBC)
rather than just representing a single biomarker, gave similar
results (Supplementary Fig. 5).

Discussion
We performed the largest GWAS meta-analysis to-date of iron
status biomarkers and identified 123 genetic loci (78 novel for at
least one biomarker) associated with iron status biomarkers,
including 19 novel protein-altering variants. Although 78 loci
were classified as novel for at least one of the tested biomarkers,
many of them had known associations with the other tested
biomarkers. Further, a high number of the loci were associated
with red blood cell indices both in the current and previous
studies56,57, thereby strengthening our confidence in the role of
these loci in iron homeostasis. The strong associations with red
blood cell indices are in line with the findings from previous
studies21,39. Because iron traits are biologically linked, we might
expect to find the same loci associated with several of the tested
traits, as seen for loci with established roles in iron homeostasis
(e.g., HFE, TF, and TMPRSS6). We confirmed the genetic simi-
larity between iron status biomarkers by observing a high genetic
correlation of 75% between serum iron and TSP, which is
expected for dependent variables. However, most of the loci for
TIBC and ferritin were specific for those traits, which was
reflected by lower genetic correlations between some of the
measured biomarkers.

Overall, our findings are consistent with established knowledge
about iron homeostasis and the role of iron in various biological
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Fig. 1 Phenome-wide associations between GRSs for iron status biomarkers and 1473 phecodes, blood biomarkers, and continuous traits in the UK
Biobank. Phenome-wide associations between the GRS for each biomarker (serum iron [a], serum ferritin [b], total iron-binding capacity [c], and
transferrin saturation percentage [d]) and 1473 phecodes, blood biomarkers, and continuous traits in the UK Biobank. Triangles pointing upwards indicate a
positive association between the phenotype and the GRS (where a higher GRS score represents higher level of the biomarker) and vice versa. Associations
with p-values < 10−324 are plotted at 10−324. The Bonferroni corrected p-value cut-off (2.3 × 10−7) is given as a red dotted line. Biological domains are
indicated by color; for the significant associations, these are: hematopoietic (orange), anthropometric (dark blue), circulatory system (red), respiratory
(brown), digestive (light green), genitourinary (yellow), musculoskeletal (dark green), endocrine/metabolic (magenta), symptoms (light blue).
Abbreviations: MCV mean corpuscular volume, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, dist.
distribution, Cong. def. congenital deficiencies, HbA1c glycated hemoglobin, SHBG sex hormone-binding globulin, LDL low-density lipoproteins, Apo B
apolipoprotein B, IGF-1 insulin-like growth factor 1, FEV1 forced expiratory volume (1 s), FVC forced vital capacity, ALP alkaline phosphatase, ASAT
aspartate aminotransferase, ALAT alanine aminotransferase, GGT gamma-glutamyl transferase. a: 1Other anemias, 2Impedance, 3FEV1, 4FVC, 5Total
protein, 6Cystatin C, 7Phosphate, 8Apo B, 9Testosterone, 10IGF-1, 11Cholesterol, 12LDL. b: 1Anemias (iron deficiency and other anemias), 2Platelet indices
(platelet count, platelet crit, platelet dist. width), 3White blood cell counts (lymphocytes, leukocytes, monocytes), 4Seated height, 5Water mass, 6Fat-free
mass, 7Phlebitis and thrombophlebitis, 8Non-alcoholic liver disease, 9Gamma-glutamyl Transferase, 10Direct bilirubin, 11Urate, 12Creatinine. c: 1Mean
platelet volume, 2Platelet crit, 3Platelet dist. width., 4FEV1, 5FVC, 6Liver cirrhosis, 7Cystatin C, 8Phosphate. d: 1Other anemias, 2Monocyte percentage,
3Congenital deficiency of other clotting factors, 4FEV1, 5FVC, 6ALAT, 7Cystatin C, 8Phosphate, 9LDL, 10Apo B, 11IGF-1, 12Cholesterol, 13Testosterone.
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processes: In four of the novel loci for iron status biomarkers, the
genes nearest to the index variant encoded proteins with estab-
lished roles in iron regulation: (1) the mitochondrial iron trans-
porter mitoferrin-2 (SLC25A28), (2) heme oxygenase 1
(HMOX1), which catalyzes heme degradation, (3) the iron-
responsive element binding 2 (IREB2), and (4) PAS1, which
regulates erythropoiesis according to cellular iron availability32.
In addition to the direct associations with iron-related traits,
many of the genes in both the known and novel loci were known
for their role in other biological processes and diseases, such as
cardiovascular or liver markers, immunity, inflammation, and
cancers, suggesting that these loci might be more indirectly
associated with iron status, either via processes that cause or are
caused by changes in iron status. Knowing that ferritin and
transferrin are also acute-phase biomarkers58, such indirect
associations might also explain the high number of TIBC and
ferritin-associated loci that were not associated with other iron
status biomarkers. The PheWAS analyses further linked the
identified loci to many different traits and phenotypes, particu-
larly within the hematopoietic, digestive, and endocrine/meta-
bolic domains.

The novel protein-altering variants were also found in genes
associated with diverse biological traits and functions, which
potentially highlight the many biological processes both involved
in and dependent on iron and iron regulation. These included,
but were not limited to, genes involved in or associated with: (1)
Iron gut absorption, regulation, and transport (TFR2, SLC11A2,
and DNAJC13)8,54,59,60, where we found a rare (minor allele
frequency (MAF)= 0.0009) protein-altering variant with mod-
erate effect size in DNAJC13, a gene suggested to be involved in
transferrin recycling59. This variant was only imputed in HUNT,
where it was more than 100 times more common than in other
non-Finnish Europeans (https://gnomad.broadinstitute.org/
variant/rs367731784)61; (2) Parkinson’s disease, which is asso-
ciated with iron deposition in the brain62, and where DNAJC13 is
one of several associated genes whose roles in the disease are still
debated63; (3) Concentrations of hemoglobin (SPRTN, FCGR2A,
CPS1, PNPLA3, and ABCA6)53,64–66, which holds more than two
thirds of the body’s iron1, and bilirubin (SLCO1B1)67, which
together with iron are products of heme degradation; (4) Iron-
dependent (putative) tumor suppression (JMJD1C)68; (5) Fibri-
nolysis and bleeding (SERPINF2)69; (6) Liver-related traits
(ABCA6, HNF4A, PNPLA3, and SERPINA1)69–71; and (7) Tissue
specific iron accumulation (WIP1 could potentially be associated
with iron accumulation in the brain via its homologWIPI472, and
the index variant we report in SERPINA1, rs28929474, has
recently been proposed as a modifier of HFE-related hereditary
hemochromatosis73 and as a trigger for hepatic iron overload74);
A previous study also identified a different protein-altering SNP
in the serine protease inhibitor SERPINA121. The transmembrane

serine protease 6 (encoded by TMPRSS6) is a negative regulator
of hepcidin75, a key hormone regulator of iron homeostasis17.
Given the role of the transmembrane serine protease 6 in iron
regulation, both serine protease inhibitors could potentially affect
iron regulation via this gene. In contrast to some of the well-
known genetic variants associated with iron homeostasis, most of
the novel protein-altering variants in the current study were
predicted as “tolerated” by in silico testing. This is however as
expected for common variants, since an increased GWAS sample
size will give an increased power to detect variants with smaller
effect sizes than what has been identified in previous studies.

Using DEPICT, we detected an enriched expression in the liver
of genes in iron status loci. This is in line with the important role
of the liver in iron metabolism and storage76, including hepcidin
production. Consistent with previous studies, our analysis
prioritized genes encoding known hepcidin regulators such as
HFE, TMPRSS6, TF, TFRC, TFR2, ERFE, and IL6R77–80. Muta-
tions in several of these genes have been demonstrated to cause
diseases of iron deficiency or overload1,19,37,81. The associations
with other genes related to inflammation, both in the DEPICT
and colocalization analyses, could possibly be related to the
hepcidin response to inflammation. The genes and gene sets
prioritized by DEPICT pointed to several different biological
processes, which might reflect the numerous roles of iron in the
body. A limitation with using a similarity-based method for gene
set and gene prioritization for iron traits was that the software
excluded the MHC region from the analysis, thereby also
excluding one of the most central genes in iron homeostasis, the
HFE gene.

Colocalization analysis further linked the GWAS loci both to
the liver and to iron overload: iron status loci overlapped with cis-
eQTLs for several of the hepcidin regulators, and genes involved
in other liver functions such as lipid and fatty acid metabolism
(ORMDL1, FADS1)82,83. The latter was also found in a previous
independent GWAS study39 and is in line with the results from
the PheWAS analysis. The colocalization of iron status loci and
cis-eQTLs were however found in several tissues, and not pri-
marily in liver. A limitation to the analysis was however due to
different sample sizes for each tissue, where liver had a relatively
small sample size and subsequently lower power than other tis-
sues. Further, gene expression is highly dependent on the cellular
conditions, so tissue from living donors might not produce
similar outcomes.

Because iron plays an essential role in so many biological
processes, several MR studies have explored the causal effect of
iron status on a range of diseases22–27. Despite the known
harmful effects of both iron deficiency and overload, as well as the
associations of both high and low TSP with increased mortality
risk in traditional observational studies13–16, no previous MR
studies have investigated the shape of the exposure-outcome
relationship. We, therefore, assessed the causal effect of iron
status biomarkers on all-cause mortality and investigated the
shape of these associations. We demonstrated that the GRSs
based on the previous study were good instruments for iron, TSP,
TIBC, and ferritin in the independent HUNT study (variance
explained 6% (iron), 11% (TSP), 13% (TIBC), 1.6% (ferritin)),
thereby validating the previous study findings. Using these, we
found evidence of a harmful effect of increased serum iron and
TSP (derived from serum iron and TIBC) in linear analyses that
estimated population-averaged effects. The point estimates of
TIBC and ferritin were also suggestive of a harmful effect of
increased iron status, although the estimates were not statistically
significant, and the ferritin estimate was very imprecise due to the
small sample size. In non-linear models, we did not find strong
statistical evidence supporting non-linear relationships over lin-
ear ones. However, there was weak evidence of a protective effect

Table 3 Linear Mendelian randomization ratio of coefficient
estimates.

Biomarker N Hazard ratio
(95% CI)

P-value

Serum iron 56,654 1.07 (1.01–1.14) 0.03
Serum ferritin* 2335 1.07 (0.26–4.41) 0.92
TSP 56,651 1.07 (1.02–1.12) 0.01
TIBC 56,654 0.96 (0.92–1.01) 0.10

Hazard ratios with 95% confidence intervals for all-cause mortality are given per 1 standard
deviation increase in the biomarker. Sample size (N), Confidence interval (CI), Transferrin
saturation percentage (TSP), Total iron-binding capacity (TIBC).
*Measured in fertile, non-pregnant women, 20–55 years old, with no blood donations in the two
previous years.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03529-z ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:591 | https://doi.org/10.1038/s42003-022-03529-z | www.nature.com/commsbio 7

https://gnomad.broadinstitute.org/variant/rs367731784
https://gnomad.broadinstitute.org/variant/rs367731784
www.nature.com/commsbio
www.nature.com/commsbio


of increasing serum iron at the very low end of its distribution, at
serum iron levels below the normal range of 10–34 µmol L−1 84.
The results were supported by post-hoc sensitivity analyses using
only genetic variants consistent with systemic iron status. Our
findings confirm the previously reported associations between
elevated TSP and an increased risk for overall mortality. We also
found weak support for the previously reported J-shaped asso-
ciation between iron biomarkers and mortality, although further
studies are needed to confirm this.

This study had several clear limitations. First, in our GWAS
analyses we did not adjust for additional factors that could affect
the biomarker concentrations, such as iron supplementation,
inflammatory status, alcohol consumption, and menopausal sta-
tus (except for ferritin, where the full sample was pre-meno-
pausal). These factors could therefore have influenced the effect
estimates, particularly for rare variants. Second, we would need a
larger sample size to confirm a non-linear shape of the exposure-
outcome relationship at the extremes of the biomarker distribu-
tions. The analysis of ferritin was particularly limited by the small
sample (N= 2334) consisting of only relatively young, non-
pregnant females, giving a low number of strata and (fortunately)
few deaths. Third, the association of the GRSs with all-cause
mortality could be attenuated because HUNT participants with
suspected iron deficiency anemia or phenotypic hemochroma-
tosis were later contacted by the primary health care services and
offered treatment, and they could therefore have obtained a
healthier iron status than they would otherwise have had, causing
the analysis to be less precise. Finally, although the four

biomarkers are commonly used to assess people’s iron status,
neither of them is a very good individual predictor of iron stores,
and the findings should therefore be interpreted with caution.

In summary, we have increased the number of iron status-
associated loci through a large GWAS meta-analysis and vali-
dated the latest genetic risk scores for four iron status biomarkers.
We find evidence of a harmful population-averaged effect of
genetically proxied elevated serum iron and TSP, and weak evi-
dence of a protective effect of increasing serum iron in individuals
at the very low end of its distribution. Our findings contribute to
our understanding of the genes affecting iron status and its
consequences on human health.

Methods
Cohort descriptions
HUNT. The HUNT Study is a longitudinal population-based health study con-
ducted in the county of Trøndelag, Norway since 198429. About 123,000 indivi-
duals (aged ≥ 20 years) have participated in at least one of four surveys, and more
than 70,000 of these participants have been genotyped using one of three Illumina
HumanCoreExome arrays: 12 v.1.0, 12 v.1.1 and 24 with custom content (UM
HUNT Biobank v1.0). Samples whose genotypes had call rates < 99%, estimated
contamination > 2.5%, large chromosomal copy number variants, lower call rate of
a technical duplicate pair or twin, gonosomal constellations other than XX or XY,
or discrepancy between inferred sex and reported gender were excluded. Following
genotyping, variants with call rate < 99%, deviations from Hardy Weinberg
equilibrium (p-value < 10−4 in unrelated samples of European ancestry), probe
sequences that could not be perfectly mapped to the reference genome, cluster
separation < 0.3, Gentrain score < 0.15, or if another assay with higher call rate had
genotyped the same variant were excluded. All variants were imputed from the
TOPMed reference panel (freeze 5)28 using Minimac4 v1.0 (https://genome.sph.
umich.edu/wiki/Minimac4). The reference panel is composed of 53,831 multi-

Fig. 2 Non-linear Mendelian Randomization: causal associations between iron status biomarkers and all-cause mortality. Dose-response curves (black)
between iron traits and all-cause mortality in HUNT (gray lines give 95% confidence interval). The x-axis gives a: serum iron levels (µmol/L) [N= 56,654],
b: serum ferritin (µg L−1) [N= 2335], c: transferrin saturation (%) [N= 56,651] and d: total iron-binding capacity (TIBC) (µmol L−1) [N= 56,654]. The y-
axis gives the hazard ratios for all-cause mortality with respect to the reference values (red dot), which represent the established target values (iron, TIBC,
TSP)84 or median value (ferritin) for the traits. The curve gradients represent the localized average causal effect at each point. N= sample size.
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ethnic samples and 410,323,831 SNP and indel variants at high depth (mean read
depth 38.2X). Variants with a minor allele count (MAC) > 10 or imputation
R2 ≥ 0.3 were included in analysis. A subset of individuals was genotyped with
additional custom content variants.

MGI. The MGI is a repository of genetic data and electronic medical records from
Michigan Medicine. Approximately 80,000 participants (aged ≥18 years) have
predominantly been enrolled prior to surgical procedures with over 59,000 indi-
viduals genotyped using Illumina Infinium CoreExome-24. Following genotyping,
sample-level QC was performed to remove sex-mismatches, duplicates, samples
with call rate < 99%, or with estimated contamination > 2.5%. Variants with
GenTrain score < 0.15, Cluster Separation scores < 0.3, Hardy–Weinberg Equili-
brium p-value among unrelated individuals of European ancestry <1 × 10−4, or
with evidence of batch effects (p-value < 1 × 10−3, Fisher’s exact test) were
excluded. Imputation was performed using the TOPMed Imputation Server
(v1.2.7). Variants with MAF > 0.05% and imputation quality R2 ≥ 0.3 were included
in analysis.

SardiNIA. The SardiNIA study is a longitudinal population-based health study
including 6,602 individuals from the Lanusei valley on Sardinia. The participants
have been genotyped on four different Illumina Infinium arrays, OmniExpress,
Cardio-Metabochip85, Immunochip86, and Exome Chip). Samples with low call
rate or with discrepancies between inferred and reported sex and/or relationships
were excluded. After genotyping, variants with low call rates, large discordance
among duplicate or identical twin genotypes, excess Mendelian inconsistencies,
deviations from Hardy–Weinberg equilibrium, or MAF= 0 were excluded. Var-
iants were then imputed from a SardiNIA-specific sequencing panel (~4× coverage)
of 3839 individuals, using Minimac387. Markers with imputation quality R2 > 0.3
(or >0.6 in variants with MAF < 1%) were retained, resulting in a total of ~19
million genetic variants.

Iron status biomarkers. Distributions of the biomarker levels in the HUNT, MGI,
and SardiNIA participants included in the current study are reported in Supple-
mentary Data 2.

HUNT. Non-fasting serum samples were drawn in 1995–1997 (HUNT2). Serum
iron concentration (µmol L−1) was determined using a FerroZine method using a
Hitachi 911 Autoanalyzer (reagents from Boehringer, Germany). The serum
transferrin concentration (µmol L−1) was analyzed by an immunoturbidimetric
method using the Hitachi 911 Autoanalyzer (reagents from DAKO A/S, Denmark),
and calculated for a molecular weight of 79,570 Da. TIBC was calculated as 2 × the
serum transferrin concentration. The TSP was calculated as 100 × [serum iron
concentration/TIBC]. Serum ferritin (µg L−1) was measured from serum samples
using an Abbott AxSYM analyzer (reagents from Abbott Laboratories, USA). In
total, 56,667 HUNT participants had measurements of serum iron and TIBC,
56,664 had measurements of TSP, while ferritin was only measured in 2334 women
(fertile, non-pregnant, aged 20–55 years).

SardiNIA. Serum iron (µmol L−1) and serum transferrin concentrations (µmol L−1)
were measured in fasting blood-samples from individuals with genotype and
imputation data from the SardiNIA cohort. TIBC was calculated as 2 × the serum
transferrin concentration. In total, 5930 and 5926 genotyped SardiNIA participants
had measurements on serum iron and TIBC respectively.

MGI. Serum iron concentration (µmol L−1) was measured using the Ferrozine
Colorimetric assay, and serum ferritin (µg L−1) was measured using a Chemilu-
minescent Immunoassay. Serum transferrin concentrations were measured using
an Immunoturbidimetric assay, and TIBC was calculated as 2 × the serum trans-
ferrin concentration. The TSP was calculated as 100 × [serum iron concentration/
TIBC]. For individuals with multiple measurements, the initial measurement was
used in the analyses. In total, 10,403, 9480, 10,399, and 10,381 participants from
MGI had measurements of serum iron, serum ferritin, TIBC, and TSP respectively.

Association analyses. Association analyses of all iron traits (iron, ferritin, TIBC,
and TSP) in HUNT were performed using a linear mixed model regression under
an additive genetic model for each variant as implemented in BOLT-LMM v2.3.488,
which also controls for relatedness between the samples. Association analyses of all
iron traits in MGI were performed using a linear regression model in unrelated
individuals using rvtests89. In both HUNT and MGI, we applied rank-based inverse
normal transformation on the iron variables after adjusting for age and sex using
linear regression, and included age, sex, genotyping batch, and the first 10 principal
components (PCs) of ancestry as covariates. Association analyses of serum iron
and TIBC in SardiNIA were performed using age, age2, and sex-adjusted inverse-
normalized residuals of TIBC or iron as input to the Efficient Mixed Model
Association eXpedited (EMMAX)90 single variant test as implemented in EPACTS
(https://github.com/statgen/EPACTS).

Additionally, we performed association analyses of serum iron, TIBC, and TSP
in HUNT with 19,273 additional polymorphic custom content variants genotyped
in 44,248 (serum iron, TIBC) or 44,246 individuals (TSP) using BOLT-LMM

v2.3.488, including the same covariates and rank-based normal transformation of
the variables as was done in the main analyses.

Meta-analyses. We performed fixed-effect inverse-variance weighted meta-
analysis of summary statistics for iron (sample size N= 236,612), ferritin
(N= 257,953), TIBC (N= 208,422) and TSP (N= 198,516) using METAL91.
Serum iron and TIBC were meta-analyzed in all studies (HUNT, MGI, SardiNIA,
and summary statistics from deCODE and Interval). SardiNIA did not have data
on serum ferritin and TSP and was therefore excluded from these meta-analyses,
while the available summary statistics for ferritin also included the DBDS study. To
harmonize genomic positions from each study, we used LiftOver from UCSC92 to
map the data from SardiNIA from Human Genome Build GRCh37 to GRCh38.
Because standard errors were not given in the available summary statistics from
deCODE, Interval and DBDS, we calculated them as the absolute value of the
(effect size/qnorm(p-value/2)), where qnorm represents the inverse standard nor-
mal distribution. Prior to meta-analysis, we filtered all studies on MAF ≥ 0.001, and
in HUNT, MGI and SardiNIA we performed genomic control correction of any
analyses with an inflation factor λ > 1. We considered genetic loci reaching a
p-value < 5 × 10−8 for follow-up analyses.

Definition of independent loci and locus novelty. Genetic loci were defined
around variants with a genome-wide significant association with a trait (p-value <
5 × 10−8). The locus borders were set 500 kb to each side of the highest and lowest
genetic positions reaching genome-wide significance in each region. Overlapping
genetic loci were merged if the index (lowest p-value) variants were in LD (R2 ≥ 0.2
and/or D’ ≥ 0.8), or if one of the index variants was too rare to calculate LD with
the other variants from our reference panel of 5000 unrelated individuals in
HUNT. A locus was classified as novel for a given trait if it had not been reported
previously for the trait, and novel for iron status biomarkers if it had not been
previously reported for any of the four traits. Previously published variants were
identified through a literature search and a look-up in the GWAS catalog93.

Annotation of genetic variants. We used plink v1.994 with a reference panel of
5000 unrelated individuals in HUNT to identify genetic variants in strong LD
(R2 ≥ 0.8) with the index variants, and annotated the functional consequences and
rsIDs of the index variants and LD proxies using ANNOVAR (v.2019Oct24)95 and
the UCSC human genome browser92.

Functional mapping of genetic variants. We used three different bioinformatic
approaches to perform functional mapping and gene prioritization of the meta-
analysis summary level data: Bayesian colocalization analysis96,97, DEPICT51, and
Polygenic Priority Scores98.

To assess if any iron status loci were overlapping with statistically significant
(p-value < 5 × 10−8) cis-eQTL signals and consistent with shared causal variants for
iron status markers and gene expression levels in specific tissue types, we used
Bayesian colocalization analysis (‘coloc’) as implemented in the R package coloc.
We used cis-eQTL data from 27 general tissue types (49 subtypes) in the
individuals of European ancestry from the Genotype-Tissue Expression (GTEx)
portal, data set v8 (https://www.gtexportal.org), and the GWAS meta-analysis
results for each of the iron status biomarkers as input. For each tissue type, we
analyzed all genes whose expression were associated (p-value < 5 × 10−8) with at
least one iron status associated variant (p-value < 5 × 10−8), using effect sizes and
standard errors for each variant-trait association as input. The coloc software
estimated the variance in each trait (iron trait or gene expression level) from the
sample sizes and minor allele frequencies. We set the prior probability of a genetic
variant being associated with only iron traits, only gene expression, or both traits to
be 10−4, 10−4, and 10−6 respectively. We considered posterior probabilities (PP4)
above 75% to give support for a common causal variant for the iron trait and
expression of the gene in the given tissue.

We performed gene set enrichment, gene prioritization, and tissue/cell type
enrichment tests on the iron trait loci (p-value < 5 × 10−8) using DEPICT (v1.1,
release 194)51. Prior to the analysis, we used LiftOver from the UCSC92 to convert
the genomic positions of the genetic variants from GRCh38 to GRCh37.
Enrichment results with an FDR < 5% were considered significant.

Finally, we prioritized genes by computing Polygenic Priority Scores98 from
summary-level data from each iron status biomarker. The method uses Multi-
marker Analysis of GenoMic Annotation (MAGMA)99 to compute gene-level
associations and gene-gene correlations from the meta-analysis p-values and
sample sizes and LD information from individuals of European ancestry from the
1000 Genomes reference panel100. MAGMA is applied a second time to perform
enrichment analysis for genetic features. Genes are finally prioritized based on a
combination of physical distance to associated genetic variants and functional
similarity with other associated genes. We considered the 1% top-ranked genes per
biomarker to be prioritized genes for the respective traits.

Heritability estimation. We estimated the narrow-sense additive SNP heritability
of serum iron, TIBC, and TSP in HUNT using GCTA40. Ferritin heritability was
not estimated because of the low sample size in HUNT. We created genetic rela-
tionship matrices (GRMs) based on 358,956 genotyped autosomal variants in
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56,667 individuals with serum iron and TIBC data, and 56,664 individuals with
TSP data. We used the respective GRMs with GCTA-GREML (genomic-related-
ness-based restricted maximum-likelihood) to estimate the variance in each vari-
able that was explained by the genetic variants. We used age, sex, and genotyping
batch as covariates in the analyses, and we transformed the iron trait variables to
normality with rank-based inverse normal transformation after regression on age
and sex prior to the analyses.

Genetic correlation between iron status biomarkers. We used the LD Score
Regression software41 with the iron status biomarker meta-analysis summary
statistics and precomputed LD Scores for Europeans from the 1000 Genomes
reference panel100, and estimated the pair-wise genetic correlations of the four iron
traits. Prior to the analysis, we changed all p-values < 1 × 10−300 to the exact value
1 × 10−300 to make sure the software was able to read the smallest values and did
not discard these SNPs. To ensure that only well-imputed SNPs were included in
the analysis and thereby avoid bias due to variable imputation quality, we filtered
the input files to the HapMap3 reference panel prior to the analysis, as recom-
mended by the software developers (https://github.com/bulik/ldsc/).

Phenome-wide association tests (PheWAS). We constructed GRSs for the iron
status biomarkers by summing the product of the effect size and the estimated allele
count (dosage) for the index variants in genome-wide significant loci (p-value <
5 × 10−8). We used TOPMed imputed estimated allele counts and effect sizes from
the meta-analysis and calculated the GRS for participants of white British ancestry
in the UK Biobank. We tested for pleiotropic associations of each GRS (GRS-
PheWAS) and individual index variant (single variant PheWAS) with 1 394 phe-
codes and 79 continuous traits and blood biomarkers. We used a logistic or linear
regression model respectively to assess the association of the single variant estimated
allele counts (‘dosage’) or inverse normalized GRS and each phecode or continuous
trait/biomarker. For the GRS-PheWAS we included as covariates sex, birth year and
the first four principal components of ancestry. For the single variant PheWAS we
used publicly available GWAS summary statistics (phecodes from https://pheweb.
org/UKB-TOPMed/ and continuous traits and biomarkers from https://pan.ukbb.
broadinstitute.org/). To correct for multiple testing, we used a Bonferroni corrected
p-value significance cut-off of 2.3 × 10−7, correcting for the number of tested var-
iants, GRSs, phecodes, biomarkers, and continuous traits. Two variants were
excluded from the single variant PheWAS and 14 from the GRS-PheWAS because
they were not imputed in UK Biobank (Supplementary Note 2).

Validation of genetic risk scores in HUNT. To validate the previously published
results from Iceland, Denmark, and UK, we created weighted GRSs for each trait
based on the published index variants and effect sizes21 using the same approach as
described in the previous section. We tested the predictive ability of each GRS by
regressing each trait on the respective GRS in the independent cohort, HUNT
(Niron=NTIBC= 56,667, NTSP= 56,664, Nferritin= 2334), and report the trait var-
iance explained by the GRS. In total, ten variants were excluded from the GRSs
because they were not imputed in HUNT (Supplementary Note 3).

Mendelian randomization of iron status on all-cause mortality. To assess the
causal association of iron status on all-cause mortality, we performed linear MR
analyses using the ratio of coefficients method101, using GRSs as genetic instru-
ments for the four iron-related traits. The GRSs were constructed as described
above, using index variants and external effect sizes from the previous independent
meta-analysis21. We used linear regression to estimate the associations between the
iron-related traits and the GRS, and a Cox proportional hazards regression to
estimate the association of the GRS with mortality. The MR estimate was obtained
as the ratio of the outcome-instrument and exposure-instrument association esti-
mates. The standard error was estimated as the standard error of the GRS-mortality
association divided by the GRS-biomarker association estimate.

To further assess the shape of the association, we performed a non-linear MR
with the fractional polynomial method102,103 in HUNT, using the same GRS as
genetic instrument for the iron traits. The method has been described in detail
elsewhere103–106. In brief, each iron-related trait was regressed on its respective
GRS, including appropriate covariates, and the population was divided into 100
(iron, TIBC, TSP) or 20 (ferritin) strata based on the residual traits. We stratified
on the residual traits to avoid overadjustment and collider bias, as the residual trait
was defined as the residual from the regression of the biomarker on the GRS, and
represented the predicted biomarker level if the GRS had been zero. The number of
strata was reduced for ferritin because of the lower sample size for this biomarker.
In each stratum, we used linear regression to estimate the association of the GRS
with the iron trait, and Cox proportional hazards regression to estimate the
association of the GRS with mortality. We calculated the localized average causal
effect (LACE) of the respective trait on all-cause mortality in each stratum as the
ratio of the GRS-outcome and GRS-exposure associations. Unless the fractional
polynomial of degree 1 fit as good (p-value > 0.5) as that of degree 2, we plotted the
best-fitting fractional polynomials of degree 2 to allow for flexibility in the non-
linear biomarker-mortality relationship. Otherwise, we plotted the best-fitting
fractional polynomials of degree 1. We performed meta-regression of the LACE
against the mean of the exposure in each stratum and tested whether the best-

fitting fractional polynomial of degree 1 fitted the LACE estimates better than a
linear model using the fractional polynomial method102.

To further validate the selection of SNPs representing each biomarker in the
non-linear MR, we performed post-hoc sensitivity analyses rerunning the non-
linear MR method with new instruments that had stricter criteria for SNP
inclusion. Here, we restricted the GRSs to index variants from the previous study21

that were not only GWAS significant for at least one trait, but also nominally
significant (p-value < 0.05) for the remaining traits. Further, we excluded SNPs that
had directions of effect that were not consistent with systemic iron status
(increasing serum iron, ferritin, and TSP, and decreasing TIBC)107. We used the
remaining 14 SNPs (Supplementary Note 4) to construct each of the four GRSs in
the analysis as described for the main analysis.

Statistics and reproducibility. Unless otherwise specified, statistical analyses were
performed in R v.3.6.4. Sample sizes, biomarker, age, and sex distributions per
study included in the GWAS meta-analyses are given in Supplementary Data 2.

Ethics. All study participants have given informed consent. The analyses in HUNT
has approval from the Norwegian Data Protection Authority and the Regional
Ethics Committee for Medical and Health Research Ethics in Central Norway (REK
Reference Number: 2014/144), the analyses in MGI are approved by the Institu-
tional Review Board of the University of Michigan Medical School (IRB Reference
Number: HUM00094409), the analyses in SardiNIA are approved by the local
ethics committee for the Istituto di Ricerca Genetica e Biomedica-CNR (IRGB-
CNR; Cagliari, Italy), and the analyses in UK Biobank are covered by the ethics
approval for UK Biobank studies (application 24460) from the NHS National
Research Ethics Service on 17th June 2011 (Ref 11/NW/0382) and extended on
10th May 2016 (Ref 16/NW/0274).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings are available in the Supplementary Data and upon
request. The UK Biobank data can be obtained by application (https://www.ukbiobank.
ac.uk). Summary level data from previously published meta-analysis in deCODE,
Interval, and DBDS are available from https://www.decode.com/summarydata/. Variant
associations with phecodes, continuous traits, and biomarkers used to generate Fig. 1 are
accessible from https://pheweb.org/UKB-TOPMed/ and https://pan.ukbb.broadinstitute.
org/. The data underlying Fig. 2 are given in Supplementary Data 20–23. The GWAS
meta-analysis summary level data from the current study are available from NTNU Open
Research Data, https://dataverse.no/dataverse/ntnu (https://doi.org/10.18710/S9TJEL).

Code availability
We used the following publicly available software and data (URLs) to generate and
analyze the data: R v.3.6.4, BOLT-LMM v.2.3.4 (https://alkesgroup.broadinstitute.org/
BOLT-LMM/downloads), EMMAX (https://github.com/statgen/EPACTS), METAL
v.2011-03-25 (https://genome.sph.umich.edu/wiki/METAL), UCSC LiftOver command
line tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver), ANNOVAR v.2019Oct24 (https://
annovar.openbioinformatics.org), plink v1.9 (https://zzz.bwh.harvard.edu/plink),
DEPICT (https://data.broadinstitute.org/mpg/depict), Coloc (https://chr1swallace.github.
io/coloc/articles/a01_intro.html), PoPS v0.1 (https://github.com/FinucaneLab/pops),
GCTA (https://cnsgenomics.com/software/gcta), LD Score Regression (https://github.
com/bulic/ldsc) and SUMMnlmr (https://github.com/amymariemason/SUMnlmr).
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