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Abstract

Recent genome-wide association studies have identified several single nucleotide polymor-

phisms (SNPs) associated with glucose levels. We tested the hypothesis here whether the

cumulative effect of glucose raising SNPs, assessed via a score, is associated with glucose

levels. A total of 1,434 participants of Greek descent from the THISEAS study and 1,160

participants form the GOMAP study were included in this analysis. We developed a genetic

risk score (GRS), based on the known glucose-raising loci, in order to investigate the cumu-

lative effect of known glucose loci on glucose levels. In the THISEAS study, the GRS score

was significantly associated with increased glucose levels (mmol/L) (β ± SE: 0.024 ± 0.004,

P = 8.27e-07). The effect of the genetic risk score was also significant in the GOMAP study

(β ± SE: 0.011 ± 0.005, P = 0.031). In the meta-analysis of the two studies both scores were

significantly associated with higher glucose levels GRS: β ± SE: 0.019 ± 0.003, P = 1.41e-

09. Also, variants at the SLC30A8, PROX1, MTNR1B, ADRA2A, G6PC2, LPIN3 loci indi-

cated nominal evidence for association with glucose levels (p < 0.05). We replicate associa-

tions of the established glucose raising variants in the Greek population and confirm

directional consistency of effects (binomial sign test p = 6.96e-05). We also demonstrate

that the cumulative effect of the established glucose loci yielded a significant association

with increasing glucose levels.
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Introduction

Type 2 diabetes is a metabolic disorder resulting in altered protein, carbohydrate and fat

metabolism and is characterized by impaired insulin secretion, impaired glucose and insulin

homeostasis. Pre-diabetic abnormalities, such as impaired fasting glucose and impaired glu-

cose tolerance could lead to diabetes [1–3]. A large number of genome-wide significant loci

influencing glycemic traits [4] and type 2 diabetes development [5, 6] have been recently iden-

tified. The results from these studies highlight important biological pathways implicated in

glucose regulation [7, 8]. The number of common associated SNPs with fasting glucose con-

centration has now raised to 36[9]. Many of these loci include those encoding genes involved

in b-cell function, insulin secretion and some are encoding transcription factors implicated in

pancreas development[4]. A number of the loci associated with glycemic traits in diabetes-free

individuals also affect the risk of type 2 diabetes [10]. More specifically, thirty three out of 53

glycemic loci are also associated with increased type 2 diabetes risk [4]. The fact that the

observed effect sizes are generally small lends further support that a significant number of vari-

ants with small effect size is more likely to explain a substantial proportion of the variance in

glucose levels [11, 12]. The medical socioeconomic strain of the disease is increased by its com-

plications [13]. Identification of a large number of common and rare genetic variants impli-

cated in glucose metabolism contributes to translate the genetic information to the clinical

practice and improve risk prediction.

Genetic risk models for type 2 diabetes based on both cross-sectional and longitudinal stud-

ies have been developed [14, 15]. The little observed clinical value of genetic testing for identifi-

cation of individuals prone to develop impaired glucose metabolism can be improved in the

future with new sequencing techniques and identification of low and rare variants with larger

effect sizes[14]. Evaluation of the cumulative variant effect of glucose risk loci on glucose levels

could give a good estimation for pre-diabetic status as well as better control and prevention.

This is of particular interest as based on recent estimations from IDF, 415 million people have

diabetes in the world and there were 608,800 cases of diabetes in Greece in 2015 (http://www.

idf.org/membership/eur/greece). Over the last 30 years, the number of diabetic individuals has

at least quadrupled. It is imperative to focus our research on ways that could detect individuals

at risk of developing diabetes, by identifying them when they are in the pre-diabetic or border-

line state. If undiagnosed or untreated, prediabetes can develop into type 2 diabetes, which is

not fully reversible and is a global problem closely tied to obesity.

Here we address the role of the association of known glucose-raising genetic variants with

glucose levels. We sought to evaluate the cumulative effect of the known variants on glucose

levels estimated by the calculation of an unweighted and a weighted genetic risk score in the

Greek population.

Materials and methods

Study population

Our sample consisted of 2594 individuals from Greek origin individuals, aged 57.1 ± 13.6

years old. The sample was drawn from the THISEAS (The Hellenic Study of Interactions

between SNPs and Eating in Atherosclerosis Susceptibility) [16, 17] and GOMAP (Genetic

Overlap of Metabolic and Psychiatric Diseases) studies. 1434 individuals were included from

the THISEAS and 1160 individuals for the GOMAP study, all diabetes-free adult individuals of

Greek ancestry (S1 Table). Association analyses were undertaken in individuals deriving from

each study separately. Meta-analysis was carried out in the GOMAP and THISEAS studies. All
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participants were informed both verbally and in a written consent form [16]. The studies had

the approval of the Ethics Committee of Harokopio University of Athens.

Adiposity and biochemical measurements

The enzymatic colorimetric assay (ACE analyzer) was used for glucose levels measurements in

THISEAS and GOMAP studies. Venus serum was used for glucose levels. Individuals with

type 2 diabetes were excluded based on their medical history; self-reported cases in THISEAS.

We also excluded individuals with fasting glucose levels more than 7 mmol/L and random glu-

cose levels more than 11 mmol/L.

Genotyping

Genomic DNA was extracted from whole blood using the iPrep PureLink gDNA Blood Kit-

Invitrogen for the GOMAP study and by using the salting-out method for the THISEAS study

[18]. DNA samples were genotyped using the Illumina Metabochip for the THISEAS study

and using the Illumina HumanCoreExomeChip at the Wellcome Trust Sanger Institute, Hinx-

ton, UK. The genotype calling algorithms were GenoSNP and GenCall for THISEAS and

GOMAP studies respectively. For both studies we excluded individuals with sample call

rate< 95%, genome-wide heterozygosity higher than ± 3SD, sex discrepancies, ethnic outliers

identified by multidimensional scaling (MDS) using PLINK[19]. In THISEAS study four SNPs

(rs2657879, rs2302593, rs7708285 and rs10830963) failed the 98% call rate threshold and were

replaced by imputed data. Imputation was performed using the cosmopolitan 1000 Genomes

panel (http://www.1000genomes.org/) and IMPUTE2 [20]. Prior phasing was done using

SHAPEIT [21]. In the GOMAP study twelve SNPs failed the 98% call rate threshold and were

replaced by imputed data. Imputation was performed using a 3-way reference panel (1000

Genomes (http://www.1000genomes.org/), UK10K (http://www.uk10k.org/) and MANOLIS

study). Estimated probabilities for these SNPs were converted to best-guess genotypes using

gtool (http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html). In the imputed format

each SNP is represented as a set of three probabilities which corresponds to allele pairs AA, AB

and BB. Using a calling threshold cutoff for the probability values (info: 0.9), probabilities for

each individual were transformed to best-guess genotypes using Gtool (http://www.well.ox.ac.

uk/~cfreeman/software/gwas/gtool.html). The genotypes are expressed as pairs of 1, 2, 0

where 1 corresponds to allele A from GEN file and 2 corresponds to allele B. If none of the

probabilities are over the calling threshold then the pair is unknown, coded as 0 0. The defined

threshold for calling genotypes (info: 0.9) was used in order to calculate for missing data. The

info measure takes the value 1 if all genotypes are completely certain, and the value 0 if the

genotype probabilities for each sample are completely uncertain.

Genetic risk score (GRS) modelling

In order to investigate the cumulative effects of known glucose-raising genetic variants, a

genetic risk score was constructed (GRS). We included the public available variants associated

with glucose levels, identified by the MAGIC (the Meta-Analyses of Glucose and Insulin-related

traits Consortium) effort [4, 22]. We calculated the GRS for each individual by summing the

number of effect allele of the 36 SNPs they are carrying. We also modelled a weighted genetic

risk score. The wGRS was calculated as the sum of the 36 risk alleles, weighted by the published

effect sizes [4]. We further addressed the possible overfitting issue, as THISEAS study was part

of the discovery effort, where the weights for the wGRS were taken from. We removed the effect

of this particular sample, by using mathematical formulas to simulate a situation where this

sample is excluded from the meta-analysis, and obtained corrected beta estimates [23]. For the
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calculation of the weighted scores in THISEAS study, only corrected effect sizes were used. We

present the range of the possible number of weighted glucose-increasing alleles, by dividing the

score by the average effect size of the 36 SNPs for each individual [24]. This is a transformation

of the wGRS so that the range equalled that of the unweighted score.

Statistical analysis

We used PLINK [19] assuming an additive genetic model to investigate the association of the

36 SNPs on glucose levels in both studies. We conducted an inverse variance weighted meta-

analysis in a sample of individuals of Greek ancestry. GWAMA (Genome-Wide Association

Meta-Analysis) was used for the meta-analysis performed for the two studies [25]. Statistical

analysis was performed using R version 3.1.1. We present continuous variables as mean ± stan-

dard deviation (SD). The coefficient of determination (R2) was used to express the proportion

of total variation explained by the GRS and the wGRS. We used t-test to compare the differ-

ences between two means.

Regression coefficients derived from the linear regression models testing for the association

of the scores with glucose levels, express the increase of glucose levels per 1-unit increase in the

genetic score. An inverse variance weighted meta-analysis for the association of the scores

with glucose levels was performed for the two studies. The reported p values were based on

two-sided tests and for the associations assessed adjustments for age, sex and BMI were

applied. For the association analyses the statistical significance level is set at p�0.05.

We used Quanto v1.2.4, for power calculations (http://hydra.usc.edu/gxe/). We had 80%

power to detect a 0.045 mmol/L change in glucose levels under the effect of the genetic risk

score (S1 Fig).

Results

Several of the variants corresponding to previously identified MAGIC loci also showed evi-

dence for association with glucose levels in our meta-analysis with adjustments used by large-

scale meta-analyses for glycemic traits[26]. Nominal associations were observed at the

SLC30A8 (β ± SE: 0.053 ± 0.021, p = 0.013), PROX1 (β±SE: 0.043±0019, p = 0.027), MTNR1B
(β±SE: 0.048±022, p = 0.03), ADRA2A (β±SE: 0.074±035, p = 0.034), G6PC2 (β±SE: 0.046±022,

p = 0.035) and LPIN3 (β±SE: 0.058±0027, p = 0.035) loci, after adjusting for age and sex (S2, S4

and S6 Tables, S4 Fig). The majority of the investigated variants (30 out of 36) had consistent

direction of effect between the meta-analysis of the THISEAS and GOMAP studies and the

MAGIC [4] meta-analysis (binomial sign test p = 6.96e-05). Nominally significant associations

were observed after adjusting for age, sex and BMI for MTNR1B, ADRA2A, SLC30A8, PDX1,

FEN1, G6PC2 and CDKAL1 loci (S3, S5 and S7 Tables).

Association of the GRS and wGRS scores with glucose levels were also investigated. We

observed positive correlation of the GRS and wGRS with glucose levels (mmol/L) in diabetes-

free individuals for the THISEAS and GOMAP studies (S2 and S3 Figs). Both scores were sig-

nificantly associated with higher glucose levels, as expected. For each increasing risk allele in

an individual’s GRS, glucose levels were increased by 0.019 mmol/L: β ± SE: 0.019 ± 0.003,

P = 1.41e-9. For each increment point in an individual’s wGRS, glucose levels were increased

by 0.016 mmol/L: β ± SE: 0.016 ± 0.003, P = 3.75e-8 (Tables 1 and 2). Our results indicate no

substantial difference regarding the increasing effect of the two scores reflected by the beta

value. Forest plots reporting the effect size of the GRS and wGRS in both cohorts as well as in

the meta-analysis are shown in Fig 1.
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The difference in mean glucose levels between subjects in the highest tertile and those in

the lower tertile was 0.12191 mmol/L, P = 2.30 x10-3). Linear regression models for glucose lev-

els estimation suggested the GRS account for 6.35% of the variance in glucose levels (Fig 2).

Descriptive characteristics of the study cohorts are given in S1 Table. The mean GRS and

wGRS are 37.347 ± 3.686 and 38.729 ± 4.388 points respectively for the diabetes-free individu-

als from the THISEAS study and 37.651 ± 3.708 and 39.214 ± 4.134 points respectively for the

diabetes-free individuals from the GOMAP study.

Discussion

We constructed unweighted and weighted genetic risk scores based on 36 known variants

associated with glucose levels [4]. Our purpose was to investigate whether these genetic scores

are associated with increased glucose levels and could predict impaired glucose metabolism in

a sample of the Greek population.

Many of the previously published variants associated with glucose levels also showed evi-

dence of association in the present meta-analysis, fact that supports the investigation of their

cumulative effect on glucose levels by using a genetic risk score in our population.

Given that most common risk variants identified until now have modest effects on glucose

levels, we ought to investigate the cumulative effect of these variants on glucose levels. We con-

ducted meta-analysis of the genetic scores using data from diabetes-free individuals from the

THISEAS and GOMAP studies. The derived GRS and wGRS scores were associated with

increased glucose levels.

There are some limitations that should be mentioned. The established variants associated

with increased glucose levels used for the scores, explain only a small proportion of the vari-

ance in glucose levels. The observed lower beta estimate of the GRS for the GOMAP study

could be attributed to the hospital-based recruitment, opposite to the THISEAS study, where

volunteers were recruited from the general population. Furthermore, another limitation of this

Table 1. Associations of the unweighted Genetic Risk Score (GRS) and the weighted Genetic Risk Score (wGRS) with glucose levels for the meta-

analysis of the GOMAP and THISEAS studies a.

Scores β SE beta_95L beta_95U z p-value i2 N

GRS36 0.018 0.004 0.011 0.025 4.910 9.29E-07 0.624 2216

wGRS36 0.016 0.003 0.010 0.021 5.480 4.35E-08 0.000 2216

aAdjusted for age and sex

Beta coefficient and standard error for the estimated difference in glucose (mmol/L per 1-unit increase in the scores GRS and wGRS.

i2: Heterogeneity index I2 by Higgins et al. 2003.

N: indicates the sample size. The slight difference in sample size is due to missing BMI values in the studies.

https://doi.org/10.1371/journal.pone.0186669.t001

Table 2. Associations of the unweighted Genetic Risk Score (GRS) and the weighted Genetic Risk Score (wGRS) with glucose levels for the meta-

analysis of the GOMAP and THISEAS studies b.

Scores β SE beta_95L beta_95U z p-value i2 N

GRS36 0.019 0.003 0.013 0.025 6.060 1.41E-09 0.042 2160

wGRS36 0.016 0.003 0.010 0.022 5.506 3.75E-08 0.125 2160

bAdjusted for age, sex and BMI.

Beta coefficient and standard error for the estimated difference in glucose (mmol/L per 1-unit increase in the scores GRS and wGRS.

i2: Heterogeneity index I2 by Higgins et al. 2003.

N: indicates the sample size. The slight difference in sample size is due to missing BMI values in the studies.

https://doi.org/10.1371/journal.pone.0186669.t002

A meta-analysis in the Greek population

PLOS ONE | https://doi.org/10.1371/journal.pone.0186669 November 10, 2017 5 / 11

https://doi.org/10.1371/journal.pone.0186669.t001
https://doi.org/10.1371/journal.pone.0186669.t002
https://doi.org/10.1371/journal.pone.0186669


study is that individuals from the THISEAS study were included in the discovery meta-analysis

of Scott et al., which identified 20 out of the 36, but not all glucose associated variants, which

were used for the generation of the genetic risk score presented in the current manuscript [27].

To further address this issue, we performed the analyses for the wGRS in THISEAS study,

using corrected estimates [23]. Also, observational studies, especially cross-sectional study

designs are characterized by limited ability to offer causality or of predictive value inferences.

Furthermore, gene-gene and gene-environment interactions should be taken into account in

order to increase the glucose levels estimation ability of a genetic risk score.

Fig 1. Forest plots of the Meta-Analysis results. Forest plots showing the beta estimates and confidence

intervals of the A. GRS and B. wGRS association in the different populations studied in the discovery cohorts

and the meta-analysis fixed model results. An inverse variance weighted meta-analysis was performed.

https://doi.org/10.1371/journal.pone.0186669.g001

Fig 2. Distribution of individuals in every genotype score group and cumulative effects of the risk

alleles from the 36 SNPs for glucose levels. The bar plots show the average and standard error of glucose

in mmol/L for each genotype score group distribution of the genetic risk score.

https://doi.org/10.1371/journal.pone.0186669.g002
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In summary we found that both GRS and wGRS based on 36 well-established risk loci were

significantly associated with glucose levels. We observed that the allele frequency of the established

variants in the Greek population is in accordance with what is reported by MAGIC for the Euro-

pean populations. To this end it is generally anticipated that ongoing imputation and next-gener-

ation sequencing-based studies will identify further variants affecting blood glucose levels and

increase the estimated variation in glucose levels attributed to genetics. It is possible that addition

of a larger number of common and low frequency variants could improve risk prediction.

Genetic Risk Score methods when generalized could provide improved risk assessment and

lead to personalized preventive care. Studying the genetic risk scores for common diseases in

the general population is not straight-forward. It is also expected that genotypes individually

have small effects for a complex diseases, such as diabetes. Investigating the drug response

based on genotypes and stratifying individuals based on their genetic background could yield

in a more effective treatment. By identifying individuals at risk of developing diabetes based

on their GRS, clinicians could more accurately assess a patient’s unique risk of developing dia-

betes and therefore recommend personalized screening methods. In the era of personalized

medicine incorporation of genetic risk scores could potentially have important clinical utility.

In total, a genetic risk score method could categorize individuals based on their clinical

risk, by using many variants deriving from multiple genes and include them in a simpler

model. The genetic scores created could be promising for improving risk stratification. Appli-

cation of screening individuals for predisposing genetic variants, reliably associated with gly-

caemic traits, could contribute to better recommendations for glucose homeostasis control.

Supporting information

S1 Fig. Estimated power of the analyses for alpha 0.05. Lines represent the different power

values to detect the effect in the model for the association of the weighted genetic risk score

(GRS) with the trait. Calculations were performed using Quanto v1.2.4.

(TIF)

S2 Fig. Scatterplot of the positive correlation between the genetic risk scores and glucose

levels (mmol/L) in the GOMAP study. A. unweighted genetic risk score (GRS) and glucose

levels (mmol/L) and B. weighted genetic risk score (wGRS) and glucose levels (mmol/L).

(TIF)

S3 Fig. Scatterplot of the positive correlation between the genetic risk scores and glucose

levels (mmol/L) in the THISEAS study. A. unweighted genetic risk score (GRS) and glucose

levels (mmol/L) and B. weighted genetic risk score (wGRS) and glucose levels (mmol/L).

(TIF)

S4 Fig. Meta-analysis association results for glucose levels associated loci with glucose lev-

els (mmol/L). Adjusted for age and sex, x-axis: Gene name, y-axis: -logPvalue.

(TIF)

S1 Table. Study-specific descriptive statistics of the cohorts. Age, weighted Genetic Risk

Score (wGRS), unweighted Genetic Risk Score (GRS) and Glucose (mmol/L). Data are pre-

sented as means ± SD for the total sample.

(XLSX)

S2 Table. THISEAS association summary statistics for glucose levels associated loci with

glucose levels. Effect sizes (beta) and SE are given for Glucose (mmol/L), Imputation quality:

info > 0.97.

Chr = chromosome, bp = base pairs, EAF = effect allele frequency, SE = standard error.
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Allelic test p, beta and SE are shown for each single SNP.

Effect sizes (beta) are reported for the effect allele.

Results were obtained using linear regression models assuming an additive effect. Adjust-

ments: age and sex.

EAF: Effect Allele Frequency, HWE: Hardy Weinberg Equilibrium.

(XLSX)

S3 Table. THISEAS association summary statistics for glucose levels associated loci with

glucose levels. Effect sizes (beta) and SE are given for Glucose (mmol/L), Imputation quality:

info > 0.97.

Chr = chromosome, bp = base pairs, EAF = effect allele frequency, SE = standard error.

Allelic test p, beta and SE are shown for each single SNP.

Effect sizes (beta) are reported for the effect allele.

Results were obtained using linear regression models assuming an additive effect. Adjust-

ments: age, sex and BMI.

EAF: Effect Allele Frequency, HWE: Hardy Weinberg Equilibrium.

(XLSX)

S4 Table. GOMAP association summary statistics for glucose levels associated loci with

glucose levels. Effect sizes (beta) and SE are given for Glucose (mmol/L), Imputation quality:

info > 0.97.

Chr = chromosome, bp = base pairs, EAF = effect allele frequency, SE = standard error.

Allelic test p, beta and SE are shown for each single SNP.

Effect sizes (beta) are reported for the effect allele.

Results were obtained using linear regression models assuming an additive effect. Adjust-

ments: age and sex.

EAF: Effect Allele Frequency, HWE: Hardy Weinberg Equilibrium.

(XLSX)

S5 Table. GOMAP association summary statistics for glucose levels associated loci with

glucose levels. Effect sizes (beta) and SE are given for Glucose (mmol/L), Imputation quality:

info > 0.97.

Chr = chromosome, bp = base pairs, EAF = effect allele frequency, SE = standard error.

Allelic test p, beta and SE are shown for each single SNP.

Effect sizes (beta) are reported for the effect allele.

Results were obtained using linear regression models assuming an additive effect. Adjust-

ments: age, sex and BMI.

EAF: Effect Allele Frequency, HWE: Hardy Weinberg Equilibrium.

(XLSX)

S6 Table. Meta-analysis association results for glucose levels associated loci with glucose

levels. Effect sizes (β) and se are given for Glucose (mmol/L).

Allelic test p, be and se are shown for each single SNP.

Effect sizes (β) are reported for the effect allele.

Adjustments: age and sex.

An inverse variance weighted meta-analysis was performed.

(XLSX)

S7 Table. Meta-analysis association results for glucose levels associated loci with glucose

levels. Effect sizes (β) and se are given for Glucose (mmol/L).

Allelic test p, be and se are shown for each single SNP.

A meta-analysis in the Greek population

PLOS ONE | https://doi.org/10.1371/journal.pone.0186669 November 10, 2017 8 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s011
https://doi.org/10.1371/journal.pone.0186669


Effect sizes (β) are reported for the effect allele.

Adjustments: age, sex and BMI.

An inverse variance weighted meta-analysis was performed.

(XLSX)

S8 Table. Associationsa analyses of the Genetic Risk Scores with glucose levels. aAdjusted

for age and sex.
bBeta coefficient and standard error for the estimated difference in glucose (mmol/L) values

per 1-unit increase in the genetic risk scores (GRS and wGRS respectively -A and B-).
bN indicates the sample size.

(XLSX)

S9 Table. Associationsa analyses of the Genetic Risk Scores with glucose levels. aAdjusted

for age, sex and BMI.
bBeta coefficient and standard error for the estimated difference in glucose (mmol/L) values

per 1-unit increase in the genetic risk scores (GRS and wGRS respectively -A and B-).
bN indicates the sample size.

(XLSX)

Acknowledgments

This work was funded by the Wellcome Trust [098051].

Recruitment for THISEAS was partially funded by a research grant (PENED 2003) from

the Greek General Secretary of Research and Technology.

PD’s work forms part of the research themes contributing to the translational research port-

folio of Barts Cardiovascular Biomedical Research Unit which is supported and funded by the

National Institute for Health Research

We thank all the clinicians for their contribution to the THISEAS and GOMAP studies. We

thank Paris Pariza for technical assistance.

Authors would like to thank all participants and volunteers for their contribution in

GOMAP and THISEAS studies.

Author Contributions

Conceptualization: Eirini Marouli, Vasiliki Mamakou, George Dedoussis, Eleftheria Zeggini,

Panagiotis Deloukas.

Data curation: Eirini Marouli, Stavroula Kanoni, Vasiliki Mamakou, Sophie Hackinger, Lor-

raine Southam, Bram Prins, Angela Rentari, Maria Dimitriou, Eleni Zengini.

Formal analysis: Eirini Marouli.

Funding acquisition: George Dedoussis, Eleftheria Zeggini, Panagiotis Deloukas.

Investigation: Eirini Marouli.

Methodology: Eirini Marouli, Stavroula Kanoni.

Project administration: Eirini Marouli, Vasiliki Mamakou, George Dedoussis, Eleftheria Zeg-

gini, Panagiotis Deloukas.

Resources: Anastasia Thanopoulou, Eleftheria Zeggini.

A meta-analysis in the Greek population

PLOS ONE | https://doi.org/10.1371/journal.pone.0186669 November 10, 2017 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186669.s013
https://doi.org/10.1371/journal.pone.0186669


Supervision: Fragiskos Gonidakis, Genovefa Kolovou, Vassilis Kontaxakis, Loukianos Rallidis,

Nikolaos Tentolouris, Anastasia Thanopoulou, Klea Lamnissou, George Dedoussis, Elefth-

eria Zeggini, Panagiotis Deloukas.

Validation: Eirini Marouli.

Visualization: Eirini Marouli.

Writing – original draft: Eirini Marouli.

Writing – review & editing: Eirini Marouli, Stavroula Kanoni, Vasiliki Mamakou, Sophie

Hackinger, Lorraine Southam, Bram Prins, Angela Rentari, Maria Dimitriou, Eleni Zen-

gini, Fragiskos Gonidakis, Genovefa Kolovou, Vassilis Kontaxakis, Loukianos Rallidis,

Nikolaos Tentolouris, Anastasia Thanopoulou, Klea Lamnissou, George Dedoussis, Elefth-

eria Zeggini, Panagiotis Deloukas.

References
1. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of

type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The

New England journal of medicine. 2001; 344(18):1343–50. Epub 2001/05/03. https://doi.org/10.1056/

NEJM200105033441801 PMID: 11333990.

2. Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, et al. Diagnosis, prognosis, and

treatment of impaired glucose tolerance and impaired fasting glucose. Evid Rep Technol Assess

(Summ). 2005;(128):1–11. Epub 2005/10/01. PMID: 16194123.

3. de Vegt F, Dekker JM, Jager A, Hienkens E, Kostense PJ, Stehouwer CD, et al. Relation of impaired

fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study.

Jama. 2001; 285(16):2109–13. Epub 2001/05/10. PMID: 11311100.

4. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analy-

ses identify new loci influencing glycemic traits and provide insight into the underlying biological path-

ways. Nature genetics. 2012; 44(9):991–1005. Epub 2012/08/14. https://doi.org/10.1038/ng.2385

PMID: 22885924; PubMed Central PMCID: PMCPmc3433394.

5. Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology.

Nature reviews Genetics. 2007; 8(9):657–62. Epub 2007/08/19. https://doi.org/10.1038/nrg2178 PMID:

17703236.

6. Grant RW, Moore AF, Florez JC. Genetic architecture of type 2 diabetes: recent progress and clinical

implications. Diabetes Care. 2009; 32(6):1107–14. Epub 2009/05/23. https://doi.org/10.2337/dc08-

2171 PMID: 19460916; PubMed Central PMCID: PMCPmc2681026.

7. Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J, et al. Detailed physiologic

characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin

metabolism in humans. Diabetes. 2010; 59(5):1266–75. Epub 2010/02/27. https://doi.org/10.2337/

db09-1568 PMID: 20185807; PubMed Central PMCID: PMCPmc2857908.

8. Barker A, Sharp SJ, Timpson NJ, Bouatia-Naji N, Warrington NM, Kanoni S, et al. Association of genetic

Loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabe-

tes. 2011; 60(6):1805–12. Epub 2011/04/26. https://doi.org/10.2337/db10-1575 PMID: 21515849;

PubMed Central PMCID: PMCPmc3114379.

9. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association

analysis identifies loci for type 2 diabetes and triglyceride levels. Science (New York, NY). 2007; 316

(5829):1331–6. Epub 2007/04/28. https://doi.org/10.1126/science.1142358 PMID: 17463246.

10. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature genetics.

2010; 42(2):105–16. https://doi.org/10.1038/ng.520 PMID: 20081858

11. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a

large proportion of the heritability for human height. Nature genetics. 2010; 42(7):565–9. Epub 2010/06/

22. https://doi.org/10.1038/ng.608 PMID: 20562875; PubMed Central PMCID: PMCPmc3232052.

12. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, et al. Estimation of effect size distri-

bution from genome-wide association studies and implications for future discoveries. Nature genetics.

2010; 42(7):570–5. Epub 2010/06/22. https://doi.org/10.1038/ng.610 PMID: 20562874.

A meta-analysis in the Greek population

PLOS ONE | https://doi.org/10.1371/journal.pone.0186669 November 10, 2017 10 / 11

https://doi.org/10.1056/NEJM200105033441801
https://doi.org/10.1056/NEJM200105033441801
http://www.ncbi.nlm.nih.gov/pubmed/11333990
http://www.ncbi.nlm.nih.gov/pubmed/16194123
http://www.ncbi.nlm.nih.gov/pubmed/11311100
https://doi.org/10.1038/ng.2385
http://www.ncbi.nlm.nih.gov/pubmed/22885924
https://doi.org/10.1038/nrg2178
http://www.ncbi.nlm.nih.gov/pubmed/17703236
https://doi.org/10.2337/dc08-2171
https://doi.org/10.2337/dc08-2171
http://www.ncbi.nlm.nih.gov/pubmed/19460916
https://doi.org/10.2337/db09-1568
https://doi.org/10.2337/db09-1568
http://www.ncbi.nlm.nih.gov/pubmed/20185807
https://doi.org/10.2337/db10-1575
http://www.ncbi.nlm.nih.gov/pubmed/21515849
https://doi.org/10.1126/science.1142358
http://www.ncbi.nlm.nih.gov/pubmed/17463246
https://doi.org/10.1038/ng.520
http://www.ncbi.nlm.nih.gov/pubmed/20081858
https://doi.org/10.1038/ng.608
http://www.ncbi.nlm.nih.gov/pubmed/20562875
https://doi.org/10.1038/ng.610
http://www.ncbi.nlm.nih.gov/pubmed/20562874
https://doi.org/10.1371/journal.pone.0186669


13. Snell-Bergeon JK, Wadwa RP. Hypoglycemia, diabetes, and cardiovascular disease. Diabetes Technol

Ther. 2012; 14 Suppl 1:S51–8. Epub 2012/06/08. https://doi.org/10.1089/dia.2012.0031 PMID:

22650225; PubMed Central PMCID: PMCPmc3361183.

14. Lyssenko V, Laakso M. Genetic screening for the risk of type 2 diabetes: worthless or valuable? Diabe-

tes Care. 2013; 36 Suppl 2:S120–6. Epub 2013/08/02. https://doi.org/10.2337/dcS13-2009 PMID:

23882036; PubMed Central PMCID: PMCPmc3920800.

15. Yan J, Peng D, Jiang F, Zhang R, Chen M, Wang T, et al. Impaired pancreatic beta cell compensatory

function is the main cause of type 2 diabetes in individuals with high genetic risk: a 9 year prospective

cohort study in the Chinese population. Diabetologia. 2016; 59(7):1458–62. Epub 2016/03/24. https://

doi.org/10.1007/s00125-016-3939-y PMID: 27008621.

16. Theodoraki EV, Nikopensius T, Suhorutsenko J, Peppes V, Fili P, Kolovou G, et al. Fibrinogen beta var-

iants confer protection against coronary artery disease in a Greek case-control study. BMC Med Genet.

2010; 11:28. Epub 2010/02/20. https://doi.org/10.1186/1471-2350-11-28 PMID: 20167083; PubMed

Central PMCID: PMCPmc2834581.

17. Dimitriou M, Rallidis LS, Theodoraki EV, Kalafati IP, Kolovou G, Dedoussis GV. Exclusive olive oil con-

sumption has a protective effect on coronary artery disease; overview of the THISEAS study. Public

health nutrition. 2016; 19(6):1081–7. Epub 2015/08/01. https://doi.org/10.1017/S1368980015002244

PMID: 26223368.

18. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucle-

ated cells. Nucleic Acids Res. 1988; 16(3):1215. Epub 1988/02/11. PMID: 3344216; PubMed Central

PMCID: PMCPmc334765.

19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-

genome association and population-based linkage analyses. American journal of human genetics.

2007; 81(3):559–75. Epub 2007/08/19. https://doi.org/10.1086/519795 PMID: 17701901; PubMed Cen-

tral PMCID: PMCPmc1950838.

20. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next gen-

eration of genome-wide association studies. PLoS Genet. 2009; 5(6):e1000529. Epub 2009/06/23.

https://doi.org/10.1371/journal.pgen.1000529 PMID: 19543373; PubMed Central PMCID:

PMCPmc2689936.

21. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat

Methods. 2012; 9(2):179–81. Epub 2011/12/06. https://doi.org/10.1038/nmeth.1785 PMID: 22138821.

22. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature genetics.

2010; 42(2):105–16. Epub 2010/01/19. https://doi.org/10.1038/ng.520 PMID: 20081858; PubMed Cen-

tral PMCID: PMCPmc3018764.

23. Nolte IM, van der Most PJ, Alizadeh BZ, de Bakker PI, Boezen HM, Bruinenberg M, et al. Missing herita-

bility: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort Study. European journal

of human genetics: EJHG. 2017; 25(7):877–85. Epub 2017/04/13. https://doi.org/10.1038/ejhg.2017.50

PMID: 28401901; PubMed Central PMCID: PMCPMC5520063.

24. Rasmussen-Torvik LJ, Li M, Kao WH, Couper D, Boerwinkle E, Bielinski SJ, et al. Association of a fast-

ing glucose genetic risk score with subclinical atherosclerosis: The Atherosclerosis Risk in Communities

(ARIC) study. Diabetes. 2011; 60(1):331–5. Epub 2010/11/03. https://doi.org/10.2337/db10-0839

PMID: 21036910; PubMed Central PMCID: PMCPmc3012190.

25. Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC bioinformat-

ics. 2010; 11:288. Epub 2010/06/01. https://doi.org/10.1186/1471-2105-11-288 PMID: 20509871;

PubMed Central PMCID: PMCPmc2893603.

26. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association

study of type 2 diabetes in Finns detects multiple susceptibility variants. Science (New York, NY). 2007;

316(5829):1341–5. Epub 2007/04/28. https://doi.org/10.1126/science.1142382 PMID: 17463248;

PubMed Central PMCID: PMCPmc3214617.

27. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits

from SNPs. Nature reviews Genetics. 2013; 14(7):507–15. Epub 2013/06/19. https://doi.org/10.1038/

nrg3457 PMID: 23774735; PubMed Central PMCID: PMCPmc4096801.

A meta-analysis in the Greek population

PLOS ONE | https://doi.org/10.1371/journal.pone.0186669 November 10, 2017 11 / 11

https://doi.org/10.1089/dia.2012.0031
http://www.ncbi.nlm.nih.gov/pubmed/22650225
https://doi.org/10.2337/dcS13-2009
http://www.ncbi.nlm.nih.gov/pubmed/23882036
https://doi.org/10.1007/s00125-016-3939-y
https://doi.org/10.1007/s00125-016-3939-y
http://www.ncbi.nlm.nih.gov/pubmed/27008621
https://doi.org/10.1186/1471-2350-11-28
http://www.ncbi.nlm.nih.gov/pubmed/20167083
https://doi.org/10.1017/S1368980015002244
http://www.ncbi.nlm.nih.gov/pubmed/26223368
http://www.ncbi.nlm.nih.gov/pubmed/3344216
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1371/journal.pgen.1000529
http://www.ncbi.nlm.nih.gov/pubmed/19543373
https://doi.org/10.1038/nmeth.1785
http://www.ncbi.nlm.nih.gov/pubmed/22138821
https://doi.org/10.1038/ng.520
http://www.ncbi.nlm.nih.gov/pubmed/20081858
https://doi.org/10.1038/ejhg.2017.50
http://www.ncbi.nlm.nih.gov/pubmed/28401901
https://doi.org/10.2337/db10-0839
http://www.ncbi.nlm.nih.gov/pubmed/21036910
https://doi.org/10.1186/1471-2105-11-288
http://www.ncbi.nlm.nih.gov/pubmed/20509871
https://doi.org/10.1126/science.1142382
http://www.ncbi.nlm.nih.gov/pubmed/17463248
https://doi.org/10.1038/nrg3457
https://doi.org/10.1038/nrg3457
http://www.ncbi.nlm.nih.gov/pubmed/23774735
https://doi.org/10.1371/journal.pone.0186669

