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Terminal Manoeuvring Area trajectory planning required:
* 3D manoeuvres needed.

e Large numbers of aircraft.

* High level of computational capacity allowable.

« Uncertainty present from a number of sources.

 Define a finite horizon sum-of-stage-cost objective.

* Receding horizon online constrained optimisation.

« Solve till the horizon then execute one step of the plan.

* Move the horizon forwards and repeat the process now with
the updated information on what happened in the previous step.

.

p

« Samples from probability distributions constructed via a
Markov Chain with the desired distribution as an equilibrium.
* The state of the chain after many iterations of updates is
sampled to yield a near optimal control action.

e Penalty functions on the cost are used instead of hard
constraints to reduce re-sampling.
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MCMC algorithm iterative updates for a single step of MPC
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» Used to solve the optimisation problem at each MPC time step.
 Allows for modelling uncertainty.

* Able to cope with non-linear dynamics, constraints and an
objective function.

e Based on large numbers of individual simulations to sample
possible outcomes.

« Often tied to Monte Carlo methods and used for financial
market simulation.

 Many different methods though previous ATM work has
focused on Sequential Monte Carlo (SMC) and Markov Chain
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« Often better known as particle filtering for model estimation
and signal processing.

e Has a population of particles each containing a potential
control action and a weighting on the particle.

o |[f a particle's control action would break a constraint the
particle's weighting is set to 0.

* The population is iteratively re-sampled based on the
particles’ weighting and cost.

* Final control action chosen as the mode of the particles'’
population.
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SMC algorithm iterative updates for a single step of MPC
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* Both methods are easily
parallelised so there are
many options for faster
computation using GPUs and
FPGAs.

« SMC appears to have suited
the problem in question better
than MCMC.

« Complex realistic dynamics
models are easily substituted
into both methods.
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