Stochastic Methods for Control in Air Traffic Management Alison Eele, Jan Maciejowski

UNIVERSITY OF CANBRIDGE

Motivating Task

Terminal Manoeuvring Area trajectory planning required:

- 3D manoeuvres needed.
- Large numbers of aircraft.
- High level of computational capacity allowable.
- Uncertainty present from a number of sources.

Model Predictive Control

Stochastic Optimisation Methods

- Used to solve the optimisation problem at each MPC time step.
- Allows for modelling uncertainty.
- Able to cope with non-linear dynamics, constraints and an objective function.
- Based on large numbers of individual simulations to sample possible outcomes.
- Often tied to Monte Carlo methods and used for financial market simulation.

• Define a finite horizon sum-of-stage-cost objective. • Receding horizon online constrained optimisation.

• Solve till the horizon then execute one step of the plan.

• Move the horizon forwards and repeat the process now with the updated information on what happened in the previous step.

Markov Chain Monte Carlo (MCMC)

 Samples from probability distributions constructed via a Markov Chain with the desired distribution as an equilibrium. • The state of the chain after many iterations of updates is sampled to yield a near optimal control action. • Penalty functions on the cost are used instead of hard constraints to reduce re-sampling.

 Many different methods though previous ATM work has focused on Sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC)

Sequential Monte Carlo (SMC)

- Often better known as particle filtering for model estimation and signal processing.
- Has a population of particles each containing a potential control action and a weighting on the particle.
- If a particle's control action would break a constraint the particle's weighting is set to 0.
- The population is iteratively re-sampled based on the particles' weighting and cost.
- Final control action chosen as the mode of the particles' population.

computation using GPUs and

the problem in question better

• Complex realistic dynamics models are easily substituted

Work supported by EPSRC (Engineering and Physical Sciences Research Council – UK) Grant No. EP/G066477/1