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Motivating Task
Terminal Manoeuvring Area trajectory planning required:
●  3D manoeuvres needed.
●  Large numbers of aircraft.
●  High level of computational capacity allowable. 
●  Uncertainty present from a number of sources.

Model Predictive Control
● Define a finite horizon sum-of-stage-cost objective.
● Receding horizon online constrained optimisation.
● Solve till the horizon then execute one step of the plan.
● Move the horizon forwards and repeat the process now with 
the updated information on what happened in the previous step.

Stochastic Optimisation Methods
● Used to solve the optimisation problem at each MPC time step.
● Allows for modelling uncertainty.
● Able to cope with non-linear dynamics, constraints and an 
objective function.
● Based on large numbers of individual simulations to sample 
possible outcomes.
● Often tied to Monte Carlo methods and used for financial 
market simulation.
● Many different methods though previous ATM work has 
focused on Sequential Monte Carlo (SMC) and Markov Chain 
Monte Carlo (MCMC) 
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Markov Chain Monte Carlo (MCMC)
● Samples from probability distributions constructed via a 
Markov Chain with the desired distribution as an equilibrium.
● The state of the chain after many iterations of updates is 
sampled to yield a near optimal control action.
● Penalty functions on the cost are used instead of hard 
constraints to reduce re-sampling.
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MCMC algorithm iterative updates for a single step of MPC

Sequential Monte Carlo (SMC)
● Often better known as particle filtering for model estimation 
and signal processing.
● Has a population of particles each containing a potential 
control action and a weighting on the particle.
● If a particle's control action would break a constraint the 
particle's weighting is set to 0.
● The population is iteratively re-sampled based on the 
particles' weighting and cost.
● Final control action chosen as the mode of the particles' 
population.
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Programming

Future Directions
● Both methods are easily 
parallelised so there are 
many options for faster 
computation using GPUs and 
FPGAs.
● SMC appears to have suited 
the problem in question better 
than MCMC.
● Complex realistic dynamics 
models are easily substituted 
into both methods. 
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