# Multiple Change Point Detection and Validation in Autoregressive Time Series Data

Lijing Ma  $\cdot$  Andrew J. Grant  $\cdot$  Georgy Sofronov

Received: date / Accepted: date

Abstract It is quite common that the structure of a time series changes abruptly. Identifying these change points and describing the model structure in the segments between these change points is of interest. In this paper, time series data is modelled assuming each segment is an autoregressive time series with possibly different autoregressive parameters. This is achieved using two main steps. The first step is to use a likelihood ratio scan based estimation technique to identify these potential change points to segment the time series. Once these potential change points are identified, modified parametric spectral discrimination tests are used to validate the proposed segments. A numerical study is conducted to demonstrate the performance of the proposed method across various scenarios and compared against other contemporary techniques.

**Keywords** Changepoint detection  $\cdot$  Autoregressive time series  $\cdot$  Likelihood ratio scan statistics  $\cdot$  Multiple testing problems

### 1 Introduction

The statistical properties of time series data, such as mean and variance or the coefficients of the regression model, may change abruptly at unknown time points. Identifying those unknown time points is referred to as change point

Lijing Ma

Department of Mathematics and Statistics, Macquarie University

E-mail: lijing.ma@mq.edu.au

Andrew J. Grant

 $\operatorname{MRC}$  Biostatistics Unit, University of Cambridge

E-mail: andrew.grant@mrc-bsu.cam.ac.uk

Georgy Sofronov

Department of Mathematics and Statistics, Macquarie University

 $\hbox{E-mail: georgy.sofronov@mq.edu.au}$ 

detection or time series segmentation. The change point problem was first considered by Page (1954) and Page (1955) for quality control. Since then, the topic has been explored theoretically and computationally in the field of statistics and computer science, and has been applied to economics (Bai and Perron (2003), Bai (2010)), finance (Aue and Horváth (2013), Andreou and Ghysels (2009)), and biology (Olshen et al. (2004), Niu and Zhang (2012)). Furthermore, see the recent survey papers by Jandhyala et al. (2013), Aminikhanghahi and Cook (2017) and Truong et al. (2020) for the development of univariate or multivariate time series segmentation methods.

There are essentially two types of approaches for detecting unknown change points under a parametric design: the model selection method and the traditional hypothesis testing method. Model selection or exact segmentation methods generally include two elements, a cost function and an optimization algorithm. The computational complexity depends on the complexity of data and the number of change points. In contrast, the approximate segmentation methods have significantly less computational cost when there are more change points. Here, we follow in the direction of the approximate segmentation methods.

One popular representation of the approximate segmentation methods is the binary segmentation (BS) family of methods. The core idea is that BS tests if there is a change point in the process at each step or iteration (see Fryzlewicz, 2014 for a detailed description). BS has gained huge popularity due to the minor computational cost and its user-friendliness. However, the method may ignore change points if the length of the segment is relatively short. Hence, Olshen et al. (2004) further improved the BS algorithm, and proposed the circular BS (CBS) method. Fryzlewicz (2014) proposed the wild BS (WBS) approach to detect the number and locations of changes in a piecewise stationary model when the values of the parameters change. Another representation of the approximate segmentation methods is bottom-up segmentation, which is less explored than the BS algorithm (we recommend the paper by Keogh et al., 2001 for further details). Bottom-up segmentation is also easy to apply: the first step is to obtain a sequence of overestimated change points; the second step is to eliminate the falsely-detected ones.

However, both the BS algorithm and the bottom-up method may suffer from the multiple testing problem. Eichinger et al. (2018) mentions in regards to the BS algorithm that "it can be difficult to interpret the results in terms of significance due to the multiple testing involved". Thus, Fryzlewicz (2014) added a randomized segment selection step to the BS method. Li et al. (2016) proposed multiscale change point segmentation with controlled false discovery rate (FDR) based on multiscale statistics considered by Frick et al. (2014) for inferring the changes in the mean of an independent sequence of random variables. Cao and Wu (2015) developed a large scale multiple testing procedure for data with clustered signals. The earlier references that introduced FDR for multiple change point detection include Niu and Zhang (2012) and Hao et al. (2013), which are motivated by genome data. Hitherto, only a small amount of literature attempts to address this issue. When the observations are dependent

dent, detecting multiple change points is quite a difficult task, especially in the case of autoregressive processes. Davis et al. (1995) studied the asymptotic behavior of the likelihood ratio statistic in testing if a change point has occurred in the mean, the autocovariance structure or the order of an autoregressive process. Later on, Davis et al. (2006) estimated all the parameters of a piecewise stationary autoregressive process by using a genetic algorithm to optimize an information criterion as objective function. Hušková et al. (2007) firstly derived the limiting behavior of various max-type test statistics under the hypothesis of whether there is an autocorrelation coefficient change in an autoregressive time series, then compares the asymptotic results of these test statistics with corresponding resampling procedures in the paper of Hušková et al. (2008). Peštová and Pešta (2017) developed a method based on the ratio type statistic to test at most one possible regression parameter change in an AR(1) series. Chakar et al. (2017) proposed a robust approach for estimating change points in the mean of an AR(1) process. Korkas and Fryzlewicz (2017) upgraded the WBS algorithm by applying a locally stationary wavelet process for estimating change points in the second-order structure of a piecewise stationary time series model. Yau and Zhao (2016) proposed a likelihood ratio scan method (LRSM) to estimate change points in piecewise stationary processes.

In this paper, we develop a new Multiple Comparisons Procedure for a Multiple change point Problem (MCP-MCP, or MCP2 for short), to estimate the number and locations of change points in a piecewise stationary autoregressive model. The procedure includes three simple steps: the first step is to apply the likelihood ratio scan statistics by Yau and Zhao (2016) to obtain a set of potentially overestimated change points; the second step is to use the spectral discrimination procedure developed by Grant and Quinn (2017) to eliminate possibly falsely discovered change points; the third step is to use a classic controlling FDR procedure and an adjusted p-value Bonferroni procedure to address the multiple testing issue. Our work is mainly inspired by Yau and Zhao (2016) and Korkas and Fryzlewicz (2017) and, to the best of our knowledge, is the first paper to address the multiple testing issue taking the dependency into account as a bottom-up segmentation method.

As indicated by Mercurio and Spokoiny (2004), it is highly risky to treat non-stationary data as though they are from a stationary process when making predictions and forecasting. Therefore, the estimation accuracy tends to be very important and the exact properties of estimates need careful attention. In our simulation study, we focus on the correct estimated number and locations of change points. The structure of the paper is as follows. In section 2, we provide the details of the MCP2 method. In section 3, through extensive simulation experiments and in section 4, through two real data examples, we evaluate the performance of the MCP2, LRSM and WBS methods. Lastly, we conclude the paper in section 5 with discussion and comments on future research.

# 2 A Multiple Comparisons Procedure for Change Point Detection

### 2.1 Non-stationary time series segmentation as a multiple testing problem

We start this section by demonstrating the autoregression process segmentation problem, and how it can be viewed as a multiple hypothesis testing problem. Let  $x_1, x_2, \ldots, x_T$  be a sequence of an autoregression process, with q the unknown number of change points and  $k_1, k_2, \ldots, k_q$  their respective unknown positions, where  $1 < k_1 < k_2 < \cdots < k_q < T$ . The autoregression process with multiple change points is illustrated as below

$$x_{t} = \begin{cases} \beta_{0}^{(1)} + \beta_{1}^{(1)} x_{t-1} + \dots + \beta_{p_{1}}^{(1)} x_{t-p_{1}} + \varepsilon_{t}^{(1)}, & t = 1, \dots, k_{1} \\ \beta_{0}^{(2)} + \beta_{1}^{(2)} x_{t-1} + \dots + \beta_{p_{2}}^{(2)} x_{t-p_{2}} + \varepsilon_{t}^{(2)}, & t = k_{1} + 1, \dots, k_{2} \\ \dots & \\ \beta_{0}^{(q+1)} + \beta_{1}^{(q+1)} x_{t-1} + \dots + \beta_{p_{q+1}}^{(q+1)} x_{t-p_{q+1}} + \varepsilon_{t}^{(q+1)}, & t = k_{q} + 1, \dots, T \end{cases}$$

where  $\varepsilon_t \sim i.i.d.N(0, \sigma_t^2)$  and each segment is a stationary autoregression of order p (AR(p)) and independent of each other. This problem can be expressed as a classical single hypothesis testing problem, as follows. Letting  $\theta_t$  be the parameters that generate the data at each time point,  $t = 1, ..., k_q, ..., T$ ,

$$H_0: \theta_1 = \dots = \theta_{k_q+1} = \dots = \theta_T$$

$$H_1: \theta_1 = \dots = \theta_{k_1} \neq \theta_{k_1+1} = \dots = \theta_{k_2} \neq \dots \neq \theta_{k_q+1} = \dots = \theta_T$$
 (1)

If  $H_1$  is supported, the data are split into q+1 segments,  $(x_1, x_2, \ldots, x_{k_1})$ ,  $(x_{k_1+1}, x_{k_1+2}, \ldots, x_{k_2})$ ,  $\ldots$ ,  $(x_{k_q+1}, x_{k_q+2}, \ldots, x_T)$ , with different generating parameters for each segment denoted by  $\theta_i := (p_i, \beta_{p_i}^{(i)}, \sigma^{2(i)})$ ,  $i = 1, \ldots, q+1$ . The ambitious objective is to estimate the number of change points q, the

The ambitious objective is to estimate the number of change points q, the location vector  $k = (k_1, k_2, \dots, k_q)$  and the parameters for each segment  $\theta_i$ . It is not practical to achieve this objective through the aforementioned single hypothesis testing framework, hence we decompose (1) to multiple hypothesis tests

$$H_0(i): \theta_{k_{i-1}+1:k_i} = \theta_{k_i+1:k_{i+1}}$$

$$H_1(i): \theta_{k_{i-1}+1:k_i} \neq \theta_{k_i+1:k_{i+1}}$$
(2)

for i = 1, ..., q. Since we assume that each segment is an independent time series, (2) can be viewed as a multiple testing problem by determining whether two adjacent segments  $(x_{k_{i-1}+1}, x_{k_{i-1}+2}, ..., x_{k_i})$  and  $(x_{k_{i+1}}, x_{k_{i+2}}, ..., x_{k_{i+1}})$  have been generated by the same underlying stochastic process. We use a parametric spectral discrimination approach to solve this problem.

## 2.2 Change points exploration by using scan statistics

In section 2.1, we did not define the range of q, which could be any value between 0 and T. Therefore, as the first step, a possibly overestimated set

of change points will be estimated by using the likelihood ratio scan statistics proposed by Yau and Zhao (2016). A brief introduction is given in this section.

For a window radius h we define a corresponding scanning window  $R_t(h)$  and observations as

$$R_t(h) = t - h + 1, \dots, t + h$$
  
 $x_{R_t(h)} = x_{t-h+1}, \dots, x_{t+h}$ 

The likelihood ratio scan statistics is then

$$LS_h(t) = \frac{1}{h} L_{t-h+1,\dots,t}(t,\hat{\theta}_1) + \frac{1}{h} L_{t+1,\dots,t+h}(t,\hat{\theta}_2) - \frac{2}{h} L_{t-h+1,\dots,t+h}(t,\hat{\theta}),$$
where  $L(\theta) = \sum_{t=1}^{T} \log f_{\theta}(x_t \mid x_{t-1},\dots,x_{t-p})$ 

By scanning the observed time series data, a sequence of  $LS_h(t)$  will be obtained at  $t = h, h + 1, \ldots, T - h$ . If h meets certain criteria, at most one change point outputs in  $R_t(h)$ , and if there is a change at t, then  $LS_h(t)$  tends to be large. Hence, a set of potential change points  $\hat{k} = (k_1, k_2, \ldots, k_q)$  will be obtained after the scanning process.

# 2.3 A likelihood ratio test for comparing time series

Given a set of estimated change points, we then apply a modified version of the parametric spectral discrimination test proposed by Grant and Quinn (2017) to test if the adjacent segments are from the same autoregressive process. We fit the autoregressive models

$$x_t + \beta_{x,1} x_{t-1} + \dots + \beta_{x,p_x} x_{t-j} = \varepsilon_t$$
  
 $y_t + \beta_{y,1} y_{t-1} + \dots + \beta_{y,p_y} y_{t-j} = u_t$ 

to two adjacent segments of lengths  $T_1$  and  $T_2$ , respectively, where  $\{\varepsilon_t\}$  and  $\{u_t\}$  are independent processes with zero mean and variances  $\sigma_{\varepsilon}^2$  and  $\sigma_u^2$ , respectively. Although the test is developed as though  $\{\varepsilon_t\}$  and  $\{u_t\}$  are i.i.d and Gaussian, the asymptotic distribution of the test statistic holds under much weaker conditions (Grant, 2018). Note that we are also assuming that the processes have zero mean, and in practice the time series are mean-corrected before analysis. That is, we do not consider a shift in mean between segments to constitute a change point, but rather consider only changes in the second-order properties. The hypothesis test is

$$H_0: \beta_{X,j} = \beta_{Y,j}$$
 for all  $j$ ,  $\sigma_{\varepsilon}^2 = \sigma_u^2$   
 $H_A: \text{Not } H_0.$ 

Under the null hypothesis, the underlying processes share the same autocovariance structure, or, in other words, have the same spectral density (hence

the term spectral discrimination tests). In order to compute the likelihood ratio statistic, we need the maximum likelihood estimators of the parameters under both  $H_0$  and  $H_A$ . Under  $H_A$ , the processes are independent and the parameters can be estimated separately using, for example, the Levinson–Durbin algorithm (Levinson (1947); Durbin (1960)). For a given order p, the algorithm computes the estimators

$$\widehat{\beta}^{p} = -\widehat{\Gamma}_{p}^{-1}\widehat{\gamma}^{p},$$

$$\widehat{\sigma}_{p}^{2} = \widehat{\gamma}(0) + (\widehat{\gamma}^{p})'\widehat{\beta}^{p},$$

where

$$\widehat{\beta}^{p} = \left[\beta_{1} \cdots \beta_{p}\right]', \quad \widehat{\gamma}^{p} = \left[\gamma\left(1\right) \cdots \gamma\left(p\right)\right]', \quad \widehat{\gamma}\left(j\right) = \frac{1}{T} \sum_{t=j}^{T-1} x_{t} x_{t-j},$$

T is the sample size and  $\widehat{\Gamma}_p$  is the  $p \times p$  matrix with (i,j)th entry given by  $\widehat{\gamma}(|i-j|)$ . These estimators are the solutions to the Yule–Walker equations, and represent method of moment estimators of the model parameters. Asymptotically, they are equivalent to the maximum likelihood estimators under Gaussianity. Under  $H_0$ , for  $j=0,\ldots,p$ , we define

$$c(j) = \frac{1}{T_1 + T_2} \left( \sum_{t=j}^{T_1 - 1} x_t x_{t-j} + \sum_{t=j}^{T_2 - 1} y_t y_{t-j} \right).$$

Replacing  $\hat{\gamma}(j)$  by c(j) in the Levinson–Durbin algorithm gives estimators for the common parameters. The test statistic is

$$\Lambda = T_1 \log \left( \frac{\widehat{\sigma}_0^2}{\widehat{\sigma}_{\varepsilon;A}^2} \right) + T_2 \log \left( \frac{\widehat{\sigma}_0^2}{\widehat{\sigma}_{u;A}^2} \right), \tag{3}$$

where  $\widehat{\sigma}_{\varepsilon;A}^2$  and  $\widehat{\sigma}_{u;A}^2$  are the estimators of  $\sigma_{\varepsilon}^2$  and  $\sigma_u^2$  under  $H_A$ , and  $\widehat{\sigma}_0^2$  is the estimator of the common residual variance under  $H_0$ . We reject  $H_0$  when  $\Lambda$  is greater than the  $100 (1-\alpha)$ th percentile of the  $\chi^2$  distribution with  $p_x + p_y - p + 1$  degrees of freedom.

Since the orders are unknown in practice, they can be estimated using, for example, an information criterion such as BIC. This is easily incorporated into the Levinson–Durbin algorithm. However, it was shown in Grant and Quinn (2017) that the test performs poorly when the underlying time series are not truly autoregressive. The proposed solution was to use autoregressive approximation by fixing the orders, under both  $H_0$  and  $H_A$ , as  $p_x = p_y = p = \lfloor (\log T_{\min})^v \rfloor$ , where v > 1,  $T_{\min} = \min (T_1, T_2)$  and  $\lfloor (\log T_{\min})^v \rfloor$  is the integer component of  $(\log T_{\min})^v$ . The null hypothesis is then rejected when  $\Lambda$  is greater than the  $100 (1 - \alpha)$ th percentile of the  $\chi^2$  distribution with p + 1 degrees of freedom. The test then performs well even when the time series are not autoregressive, with the cost being some loss in power in the autoregressive case.

It is possible to adjust the test to consider a change in mean as a change point. In this case, the models we fit (using the fixed autoregressive order approach outlined above) are

$$(x_t - \mu_X) + \beta_{x,1} (x_{t-1} - \mu_X) + \ldots + \beta_{x,p} (x_{t-j} - \mu_X) = \varepsilon_t$$
  
$$(y_t - \mu_Y) + \beta_{y,1} (y_{t-1} - \mu_Y) + \ldots + \beta_{y,p} (y_{t-j} - \mu_Y) = u_t,$$

and the null hypothesis is

$$H_0^*: \beta_{X,j} = \beta_{Y,j} \quad \text{for all } j, \quad \sigma_\varepsilon^2 = \sigma_u^2 \quad \mu_X = \mu_Y.$$

Letting

$$\widehat{\mu}_X = \frac{1}{T_1} \sum_{i=0}^{T_1 - 1} x_i, \quad \widehat{\mu}_Y = \frac{1}{T_2} \sum_{i=0}^{T_2 - 1} Y_i, \quad \widehat{\mu} = \frac{1}{T_1 + T_2} \left( T_1 \widehat{\mu}_X + T_2 \widehat{\mu}_Y \right),$$

we replace  $\widehat{\gamma}(j)$  and c(j) by

$$\widehat{\gamma}^*\left(j\right) = \frac{1}{T} \sum_{t=j}^{T-1} \left(x_t - \widehat{\mu}_X\right) \left(x_{t-j} - \widehat{\mu}_X\right)$$

and

$$c^{*}(j) = \frac{1}{T_{1} + T_{2}} \left\{ \sum_{t=j}^{T_{1}-1} (x_{t} - \widehat{\mu}) (x_{t-j} - \widehat{\mu}) + \sum_{t=j}^{T_{2}-1} (y_{t} - \widehat{\mu}) (y_{t-j} - \widehat{\mu}) \right\}$$

respectively. The test statistic is then computed in the same way using parameter estimates from the Levinson–Durbin algorithm. The null hypothesis is rejected when  $\Lambda$  is greater than the  $100 (1 - \alpha)$ th percentile of the  $\chi^2$  distribution with p + 2 degrees of freedom.

### 2.4 Approaches for multiple hypothesis tests

Generally, for a single hypothesis test, we specify a Type I error, say 0.05, and make a conclusion based on the test statistic which meets this specification while giving the highest power. When multiple hypotheses are tested simultaneously, the probability of at least one incorrect "statistically significant" outcome is increased with as the number of independent tests increases, which may result in incorrect conclusions. Thus, it is necessary to evaluate the tests as a whole. Numerous procedures have been proposed for this multiple comparison problem. In this paper, we implement two classical procedures: Controlling the false discovery rate, proposed by Benjamini and Hochberg (1995) (BH); and the adjusted p-values approach of Wright (1992).

As per the previous subsection, we can obtain unadjusted p-values  $p_{(1)}, p_{(2)}, \ldots, p_{(q)}$  corresponding to the multiple hypotheses considered in (2). Let  $P_{(1)} \leq$ 

 $P_{(2)} \leq \cdots \leq P_{(q)}$  be the ordered  $p_{(1)}, p_{(2)}, \ldots, p_{(q)}$  from smallest to largest. The BH multiple-testing procedure is as follows.

For each 
$$i = 1, 2, ..., q$$
, if  $P_{(i)} \leq \frac{i}{q} \alpha$ 

then reject all  $H_{(i)}$ 

 $\hat{k}^* = (k_1, k_2, \dots, k_{q^*})$  is the final estimates of change points.

Next, we adopt the adjusted p-values method by Bonferroni procedure as follows.

For each 
$$i = 1, 2, ..., q$$
, if  $q \times p_{(i)} \le \alpha$ 

then reject all  $H_{(i)}$ 

 $\hat{k}^* = (k_1, k_2, \dots, k_{q^*})$  is the final estimates of change points.

### 3 Simulation Study

#### 3.1 Choice of scanning window

In this section, we use nine classic examples to compare the performance of the MCP2 method with methods from recent literature including the likelihood ratio scan method (LRSM) by Yau and Zhao (2016) and the wild binary segmentation method (WBS) by Korkas and Fryzlewicz (2017). Except for model G, the models used in the simulation study also were considered by Yau and Zhao (2016). For each model, we simulated 100 sequences. The first step of both the LRSM and MCP2 method is to obtain the possible change points by using likelihood ratio scan statistics, which involves the tuning parameter — scanning radius h. Theoretically, the LRSM requires  $r \log(T)^2 \le h \le ml_k/2$ , where  $ml_k$  denotes the minimum length between the adjacent change points, T is the length of the time series, and r is specified by the user. The scanning radius  $h = \max\{50, 2\log(T)^2\}$  is suggested by Yau and Zhao (2016) as a rule-of-thumb. However, the LRSM may not be applicable when the  $h \le ml_k/2$  is violated, additionally,  $h \le ml_k/2$  criterion is not practical as the minimum distance of neighboring change points is unknown.

Hence, we implement a sensitivity analysis to study the optimal choice of h in the MCP2 method for each model, displayed by Table 1. In the table,  $\%: \hat{N} = N$  denotes the percentage that the estimated number of change points is the actual number. We also investigate average degrees of freedom of  $\chi^2$  distribution, as  $p = \lfloor (\log T_{\min})^v \rfloor$ , the length of segment may be affected by the scanning window h.

| MCP2BH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $h = 1\lfloor \log(T)^2 \rfloor$                                      | $ml_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\%: \hat{N} = N$                                                                                                               | $\overline{df}$                                                                                                                                                                                                               | $h = 1.5 \lfloor \log(T)^2 \rfloor$                                             | $\%: \hat{N} = N$                                                                                                              | $\overline{df}$                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                |                                                                                                                                                              |
| ModelA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                    | 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                              | 4.05                                                                                                                                                                                                                          | <b>=</b> 0                                                                      | =-                                                                                                                             | - 0-                                                                                                                                                         |
| $\beta = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                                                                                                                              | 4.87                                                                                                                                                                                                                          | 72 $72$                                                                         | 71                                                                                                                             | 5.27                                                                                                                                                         |
| $\beta = 0.7$ $\beta = -0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48                                                                    | 1024 $1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65<br>66                                                                                                                        | 4.88 $4.88$                                                                                                                                                                                                                   | $\frac{72}{72}$                                                                 | $73 \\ 72$                                                                                                                     | $5.22 \\ 5.24$                                                                                                                                               |
| $\beta = -0.1$ $\beta = -0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48<br>48                                                              | 1024 $1024$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66<br>73                                                                                                                        | 4.90                                                                                                                                                                                                                          | 72<br>72                                                                        | 73                                                                                                                             | 5.24 $5.24$                                                                                                                                                  |
| $\beta = -0.7$<br>ModelB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48                                                                    | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47                                                                                                                              | 4.90 $4.94$                                                                                                                                                                                                                   | 72                                                                              | 56                                                                                                                             | 5.24 $5.24$                                                                                                                                                  |
| ModelC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                    | $\frac{250}{212}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58                                                                                                                              | 4.92                                                                                                                                                                                                                          | 72                                                                              | 70                                                                                                                             | 5.44                                                                                                                                                         |
| ModelD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58                                                                                                                              | 4.86                                                                                                                                                                                                                          | 72                                                                              | 65                                                                                                                             | 5.25                                                                                                                                                         |
| ModelE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                    | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                               | 5.06                                                                                                                                                                                                                          | 72                                                                              | 21                                                                                                                             | 5.47                                                                                                                                                         |
| ModelF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                    | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                               | 5.04                                                                                                                                                                                                                          | 72                                                                              | 22                                                                                                                             | 5.45                                                                                                                                                         |
| ModelG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                              | 4.96                                                                                                                                                                                                                          | 72                                                                              | 64                                                                                                                             | 5.40                                                                                                                                                         |
| ModelH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                                                                                                                              | 4.95                                                                                                                                                                                                                          | 72                                                                              | 63                                                                                                                             | 5.46                                                                                                                                                         |
| ModelI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                    | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                              | 4.38                                                                                                                                                                                                                          | 45                                                                              | 88                                                                                                                             | 4.81                                                                                                                                                         |
| MCP2BH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $h = 2 \log(T)^2 $                                                    | $ml_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $%: \hat{N} = N$                                                                                                                | $\overline{df}$                                                                                                                                                                                                               | $h = 2.5 \log(T)^2 $                                                            | $%: \hat{N} = N$                                                                                                               | $\overline{df}$                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n = 2[log(1)]                                                         | 7700 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 . 11 — 11                                                                                                                    |                                                                                                                                                                                                                               | 77 — 2.0 [10g(1 ) ]                                                             | 70:11 - 11                                                                                                                     | - aj                                                                                                                                                         |
| ModelA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                |                                                                                                                                                              |
| $\beta = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                              | 5.50                                                                                                                                                                                                                          | 120                                                                             | 82                                                                                                                             | 5.72                                                                                                                                                         |
| $\beta = 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                                                                                                                              | 5.45                                                                                                                                                                                                                          | 120                                                                             | 81                                                                                                                             | 5.70                                                                                                                                                         |
| $\beta = -0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                              | 5.50                                                                                                                                                                                                                          | 120                                                                             | 74                                                                                                                             | 5.81                                                                                                                                                         |
| $\beta = -0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79                                                                                                                              | 5.47                                                                                                                                                                                                                          | 120                                                                             | 77                                                                                                                             | 5.77                                                                                                                                                         |
| ModelB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                                                                              | 5.69                                                                                                                                                                                                                          | 120                                                                             | 87                                                                                                                             | 5.86                                                                                                                                                         |
| ModelC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83                                                                                                                              | 5.74                                                                                                                                                                                                                          | 120                                                                             | 91                                                                                                                             | 5.87                                                                                                                                                         |
| ModelD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                                                                                                                              | 5.45                                                                                                                                                                                                                          | 120                                                                             | 78                                                                                                                             | 5.62                                                                                                                                                         |
| ModelE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51                                                                                                                              | 5.67                                                                                                                                                                                                                          | 120                                                                             | 62                                                                                                                             | 5.88                                                                                                                                                         |
| ModelF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                              | 5.74                                                                                                                                                                                                                          | 120                                                                             | 41                                                                                                                             | 5.91                                                                                                                                                         |
| ModelG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                                                                                                                              | 5.66                                                                                                                                                                                                                          | 120                                                                             | 89                                                                                                                             | 5.82                                                                                                                                                         |
| ModelH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                                                                                                                              | 5.61                                                                                                                                                                                                                          | 120                                                                             | 60                                                                                                                             | 5.70                                                                                                                                                         |
| ModelI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                    | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                             | 5                                                                                                                                                                                                                             | 75                                                                              | 100                                                                                                                            | 5                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                |                                                                                                                                                              |
| MCP2WRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $h = 1\lfloor \log(T)^2 \rfloor$                                      | $ml_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\%: \hat{N} = N$                                                                                                               | $\overline{df}$                                                                                                                                                                                                               | $h = 1.5 \lfloor \log(T)^2 \rfloor$                                             | $\%: \hat{N} = N$                                                                                                              | $\overline{df}$                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $h = 1\lfloor \log(T)^2 \rfloor$                                      | $ml_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $%: \hat{N} = N$                                                                                                                | $\overline{df}$                                                                                                                                                                                                               | $h = 1.5 \lfloor \log(T)^2 \rfloor$                                             | $%: \hat{N} = N$                                                                                                               | $\overline{df}$                                                                                                                                              |
| ModelA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $h = 1\lfloor \log(T)^2 \rfloor$ $48$ $48$                            | $ml_k$ 1024 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\%: \hat{N} = N$ $70$ $68$                                                                                                     | 4.87<br>4.88                                                                                                                                                                                                                  | $h = 1.5 \lfloor \log(T)^2 \rfloor$ $72$ $72$ $72$                              | $\%: \hat{N} = N$ $71$ $75$                                                                                                    | $ \overline{df} $ $ 5.27 $ $ 5.22 $                                                                                                                          |
| $\begin{array}{c} \hline \\ \text{ModelA} \\ \beta = 0.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48                                                                    | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                              | 4.87                                                                                                                                                                                                                          | 72                                                                              | 71                                                                                                                             | 5.27                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48<br>48                                                              | 1024<br>1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70<br>68                                                                                                                        | 4.87<br>4.88                                                                                                                                                                                                                  | 72<br>72                                                                        | 71<br>75                                                                                                                       | 5.27<br>5.22                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48<br>48<br>48                                                        | 1024<br>1024<br>1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70<br>68<br>68                                                                                                                  | 4.87<br>4.88<br>4.88                                                                                                                                                                                                          | 72<br>72<br>72<br>72                                                            | 71<br>75<br>74                                                                                                                 | 5.27<br>5.22<br>5.24                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48<br>48<br>48<br>48                                                  | 1024<br>1024<br>1024<br>1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70<br>68<br>68<br>78                                                                                                            | 4.87<br>4.88<br>4.88<br>4.90                                                                                                                                                                                                  | 72<br>72<br>72<br>72<br>72                                                      | 71<br>75<br>74<br>75                                                                                                           | 5.27<br>5.22<br>5.24<br>5.24                                                                                                                                 |
| $\begin{array}{c} \text{ModelA} \\ \beta = 0.4 \\ \beta = 0.7 \\ \beta = -0.1 \\ \beta = -0.7 \\ \text{ModelB} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48<br>48<br>48<br>48<br>48                                            | 1024<br>1024<br>1024<br>1024<br>256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70<br>68<br>68<br>78<br>58                                                                                                      | 4.87<br>4.88<br>4.88<br>4.90<br>4.94                                                                                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72                                                | 71<br>75<br>74<br>75<br>69                                                                                                     | 5.27<br>5.22<br>5.24<br>5.24<br>5.24                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48<br>48<br>48<br>48<br>48<br>48                                      | 1024<br>1024<br>1024<br>1024<br>256<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70<br>68<br>68<br>78<br>58<br>74                                                                                                | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92                                                                                                                                                                                  | 72<br>72<br>72<br>72<br>72<br>72<br>72                                          | 71<br>75<br>74<br>75<br>69<br>90                                                                                               | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.24<br>5.47                                                                                                         |
| $\begin{array}{c} \hline \text{ModelA} \\ \beta = 0.4 \\ \beta = 0.7 \\ \beta = -0.1 \\ \beta = -0.7 \\ \text{ModelB} \\ \text{ModelC} \\ \text{ModelD} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48<br>48<br>48<br>48<br>48<br>48<br>48                                | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70<br>68<br>68<br>78<br>58<br>74<br>72                                                                                          | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86                                                                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72                                    | 71<br>75<br>74<br>75<br>69<br>90<br>75                                                                                         | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25                                                                                                         |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48<br>48<br>48<br>48<br>48<br>48<br>48                                | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70<br>68<br>68<br>78<br>58<br>74<br>72<br>17                                                                                    | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06                                                                                                                                                                  | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72                        | 71<br>75<br>74<br>75<br>69<br>90<br>75<br>24                                                                                   | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47                                                                                                 |
| $\begin{array}{l} \label{eq:modelA} \\ \text{ModelA} \\ \beta = 0.4 \\ \beta = 0.7 \\ \beta = -0.1 \\ \beta = -0.7 \\ \text{ModelB} \\ \text{ModelC} \\ \text{ModelD} \\ \text{ModelE} \\ \text{ModelF} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48<br>48<br>48<br>48<br>48<br>48<br>48<br>48                          | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70<br>68<br>68<br>78<br>58<br>74<br>72<br>17                                                                                    | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04                                                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72                  | 71<br>75<br>74<br>75<br>69<br>90<br>75<br>24<br>21                                                                             | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47<br>5.45                                                                                         |
| $\begin{array}{c} \hline \text{ModelA} \\ \beta = 0.4 \\ \beta = 0.7 \\ \beta = -0.7 \\ \beta = -0.7 \\ \text{ModelB} \\ \text{ModelC} \\ \text{ModelD} \\ \text{ModelE} \\ \text{ModelF} \\ \text{ModelG} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48                    | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70<br>68<br>68<br>78<br>58<br>74<br>72<br>17<br>14<br>36                                                                        | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.96                                                                                                                                                  | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72            | 71<br>75<br>74<br>75<br>69<br>90<br>75<br>24<br>21<br>60                                                                       | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47<br>5.45<br>5.40                                                                                 |
| $\begin{array}{c} \textbf{ModelA} \\ \beta = 0.4 \\ \beta = 0.7 \\ \beta = -0.1 \\ \beta = -0.7 \\ \textbf{ModelB} \\ \textbf{ModelC} \\ \textbf{ModelD} \\ \textbf{ModelE} \\ \textbf{ModelF} \\ \textbf{ModelG} \\ \textbf{ModelH} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48              | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70<br>68<br>68<br>78<br>58<br>74<br>72<br>17<br>14<br>36<br>45                                                                  | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.96<br>4.95                                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72      | 71<br>75<br>74<br>75<br>69<br>90<br>75<br>24<br>21<br>60<br>76                                                                 | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.25<br>5.47<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46                                                                 |
| $\begin{aligned} & \text{ModelA} \\ & \beta = 0.4 \\ & \beta = 0.7 \\ & \beta = -0.1 \\ & \beta = -0.7 \\ & \text{ModelB} \\ & \text{ModelC} \\ & \text{ModelC} \\ & \text{ModelD} \\ & \text{ModelE} \\ & \text{ModelF} \\ & \text{ModelG} \\ & \text{ModelH} \\ & \text{ModelI} \\ & \text{ModelI} \\ \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>30        | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>125<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70<br>68<br>68<br>78<br>58<br>74<br>72<br>17<br>14<br>36<br>45<br>83                                                            | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38                                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>7 | 71<br>75<br>74<br>75<br>69<br>90<br>75<br>24<br>21<br>60<br>76<br>92                                                           | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46<br>4.81                                                                 |
| $\begin{array}{l} \text{ModelA} \\ \beta = 0.4 \\ \beta = 0.7 \\ \beta = -0.1 \\ \beta = -0.7 \\ \text{ModelB} \\ \text{ModelC} \\ \text{ModelD} \\ \text{ModelE} \\ \text{ModelE} \\ \text{ModelF} \\ \text{ModelH} \\ \text{ModelH} \\ \text{ModelH} \\ \text{ModelH} \\ \text{ModelH} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>30        | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 68 68 78 58 74 72 17 14 36 45 83 $\%: \hat{N} = N$                                                                           | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38                                                                                                                                          | 72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>72<br>7 | 71<br>75<br>74<br>75<br>69<br>90<br>75<br>24<br>21<br>60<br>76<br>92                                                           | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46<br>4.81                                                                 |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline MCP2WRI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>125<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70<br>68<br>68<br>78<br>58<br>74<br>72<br>17<br>14<br>36<br>45<br>83                                                            | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38<br>$\overline{df}$                                                                                                                       | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71 \\ 75 \\ 74 \\ 75 \\ 69 \\ 90 \\ 75 \\ 24 \\ 21 \\ 60 \\ 76 \\ 92$ $\%: \hat{N} = N$                                       | 5.27 $5.22$ $5.24$ $5.24$ $5.25$ $5.47$ $5.45$ $5.40$ $5.46$ $4.81$                                                                                          |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline MCP2WRI \\ \hline \\ ModelA \\ $\beta=0.4$ \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 68 68 78 58 74 72 17 14 36 45 83 $\%: \hat{N} = N$                                                                           | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38<br>$\overline{df}$                                                                                                                       | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71 \\ 75 \\ 74 \\ 75 \\ 69 \\ 90 \\ 75 \\ 24 \\ 21 \\ 60 \\ 76 \\ 92 \\ \%: \hat{N} = N$                                      | $5.27$ $5.22$ $5.24$ $5.24$ $5.25$ $5.47$ $5.45$ $5.40$ $5.46$ $4.81$ $\overline{df}$                                                                        |
| $\begin{aligned} & \text{ModelA} \\ \beta &= 0.4 \\ \beta &= 0.7 \\ \beta &= -0.1 \\ \beta &= -0.7 \\ & \text{ModelB} \\ & \text{ModelC} \\ & \text{ModelD} \\ & \text{ModelF} \\ & \text{ModelF} \\ & \text{ModelG} \\ & \text{ModelH} \\ & \text{ModelI} \\ & \text{ModelA} \\ & \beta &= 0.4 \\ \beta &= 0.7 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \\ 1024 \\ 1024 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ 70 \\ 68 \\ 68 \\ 78 \\ 58 \\ 74 \\ 72 \\ 17 \\ 14 \\ 36 \\ 45 \\ 83 $ $ \%: \hat{N} = N $                                    | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38<br>$\overline{df}$<br>5.50<br>5.45                                                                                                       | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71 \\ 75 \\ 74 \\ 75 \\ 69 \\ 90 \\ 75 \\ 24 \\ 21 \\ 60 \\ 76 \\ 92 \\ \%: \hat{N} = N$                                      | $\begin{array}{c} 5.27 \\ 5.22 \\ 5.24 \\ 5.24 \\ 5.25 \\ 5.47 \\ 5.25 \\ 5.47 \\ 5.45 \\ 5.40 \\ \hline 5.46 \\ 4.81 \\ \hline \hline df \\ \\ \end{array}$ |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline MCP2WRI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ 70 \\ 68 \\ 68 \\ 78 \\ 58 \\ 74 \\ 72 \\ 17 \\ 14 \\ 36 \\ 45 \\ 83 $ $ \%: \hat{N} = N $ $ 76 \\ 77 \\ 76 $                 | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38<br>$\overline{df}$<br>5.50<br>5.45<br>5.50                                                                                               | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71 \\ 75 \\ 74 \\ 75 \\ 69 \\ 90 \\ 75 \\ 24 \\ 21 \\ 60 \\ 76 \\ 92$ $\%: \hat{N} = N$ $84 \\ 81 \\ 76$                      | 5.27 $5.22$ $5.24$ $5.24$ $5.24$ $5.47$ $5.45$ $5.40$ $5.46$ $4.81$ $df$ $5.72$ $5.70$ $5.81$                                                                |
| $\begin{aligned} & \text{ModelA} \\ \beta &= 0.4 \\ \beta &= 0.7 \\ \beta &= -0.1 \\ \beta &= -0.7 \\ & \text{ModelB} \\ & \text{ModelC} \\ & \text{ModelD} \\ & \text{ModelF} \\ & \text{ModelF} \\ & \text{ModelG} \\ & \text{ModelH} \\ & \text{ModelI} \\ & \text{ModelA} \\ & \text{ModelA} \\ & \beta &= 0.4 \\ & \beta &= 0.7 \\ & \beta &= -0.1 \\ & \beta &= -0.7 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ 70 \\ 68 \\ 68 \\ 78 \\ 58 \\ 74 \\ 72 \\ 17 \\ 14 \\ 36 \\ 45 \\ 83 $ $ \%: \hat{N} = N $ $ 76 \\ 77 \\ 76 \\ 80 $           | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38<br>df                                                                                                                                    | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71 \\ 75 \\ 74 \\ 75 \\ 69 \\ 90 \\ 75 \\ 24 \\ 21 \\ 60 \\ 76 \\ 92$ $\%: \hat{N} = N$ $84 \\ 81 \\ 76 \\ 78$                | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46<br>4.81<br>$\overline{df}$ 5.72<br>5.70<br>5.81<br>5.77                 |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=-0.7$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.7$ \\ ModelB \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $70$ $68$ $68$ $78$ $58$ $74$ $72$ $17$ $14$ $36$ $45$ $83$ $\%: \hat{N} = N$ $76$ $77$ $76$ $80$ $82$                          | $\begin{array}{c} 4.87 \\ 4.88 \\ 4.88 \\ 4.90 \\ 4.94 \\ 4.92 \\ 4.86 \\ 5.06 \\ 5.04 \\ 4.95 \\ 4.38 \\ \hline df \\ \\ \hline 5.50 \\ 5.45 \\ 5.50 \\ 5.47 \\ 5.69 \\ \end{array}$                                         | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71 \\ 75 \\ 74 \\ 75 \\ 69 \\ 90 \\ 75 \\ 24 \\ 21 \\ 60 \\ 76 \\ 92$ $\%: \hat{N} = N$ $84 \\ 81 \\ 76 \\ 78 \\ 92$          | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.47<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46<br>4.81<br>df  5.72<br>5.70<br>5.81<br>5.77<br>5.86                     |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>125<br>128<br>$ml_k$<br>1024<br>1024<br>1024<br>256<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $70$ $68$ $68$ $78$ $58$ $74$ $72$ $17$ $14$ $36$ $45$ $83$ $\%: \hat{N} = N$ $76$ $77$ $76$ $80$ $82$ $95$                     | $\begin{array}{c} 4.87 \\ 4.88 \\ 4.88 \\ 4.90 \\ 4.94 \\ 4.92 \\ 4.86 \\ 5.06 \\ 5.04 \\ 4.95 \\ 4.38 \\ \hline df \\ \\ \hline 5.50 \\ 5.45 \\ 5.50 \\ 5.47 \\ 5.69 \\ 5.74 \\ \end{array}$                                 | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71$ $75$ $74$ $75$ $69$ $90$ $75$ $24$ $21$ $60$ $76$ $92$ $\%: \hat{N} = N$ $84$ $81$ $76$ $78$ $92$ $94$                    | 5.27 $5.22$ $5.24$ $5.24$ $5.24$ $5.47$ $5.25$ $5.47$ $5.45$ $5.40$ $5.46$ $4.81$ $df$ $5.72$ $5.81$ $5.77$ $5.86$ $5.87$                                    |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelF \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\$ | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>125<br>128<br>ml <sub>k</sub><br>1024<br>1024<br>1024<br>256<br>212<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $70$ $68$ $68$ $78$ $58$ $74$ $72$ $17$ $14$ $36$ $45$ $83$ $\%: \hat{N} = N$ $76$ $77$ $76$ $80$ $82$ $95$ $82$                | $\begin{array}{c} 4.87 \\ 4.88 \\ 4.88 \\ 4.90 \\ 4.94 \\ 4.92 \\ 4.86 \\ 5.04 \\ 4.95 \\ 4.38 \\ \hline df \\ \hline \\ 5.50 \\ 5.45 \\ 5.50 \\ 5.47 \\ 5.69 \\ 5.74 \\ 5.45 \\ \end{array}$                                 | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71$ $75$ $74$ $75$ $69$ $90$ $75$ $24$ $21$ $60$ $76$ $92$ $\%: \hat{N} = N$ $84$ $81$ $76$ $78$ $92$ $94$ $83$               | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46<br>4.81<br>df<br>5.72<br>5.70<br>5.81<br>5.77<br>5.86<br>5.87<br>5.62           |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelD \\ ModelD \\ ModelD \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\$ | $\begin{array}{c} 1024 \\ 1024 \\ 1024 \\ 1024 \\ 256 \\ 212 \\ 50 \\ 274 \\ 274 \\ 125 \\ 125 \\ 128 \\ ml_k \\ \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 1024 \\ 10$ | $70$ $68$ $68$ $78$ $58$ $74$ $72$ $17$ $14$ $36$ $45$ $83$ $\%: \hat{N} = N$ $76$ $77$ $76$ $80$ $82$ $95$ $82$ $95$ $82$ $58$ | 4.87<br>4.88<br>4.88<br>4.90<br>4.94<br>4.92<br>4.86<br>5.06<br>5.04<br>4.95<br>4.38<br>df<br>5.50<br>5.45<br>5.50<br>5.47<br>5.69<br>5.74<br>5.69<br>5.67                                                                    | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71$ $75$ $74$ $75$ $69$ $90$ $75$ $24$ $21$ $60$ $76$ $92$ $%: \hat{N} = N$ $84$ $81$ $76$ $78$ $92$ $94$ $83$ $65$           | 5.27<br>5.22<br>5.24<br>5.24<br>5.24<br>5.25<br>5.47<br>5.45<br>5.40<br>5.46<br>4.81<br>df<br>5.72<br>5.70<br>5.81<br>5.77<br>5.86<br>5.87<br>5.62<br>5.88   |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} MCP2WRI \\ \hline \begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelD \\ ModelE \\ ModelF \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\$   | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>128<br>ml <sub>k</sub><br>1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $70$ $68$ $68$ $78$ $58$ $74$ $72$ $17$ $14$ $36$ $45$ $83$ $\%: \hat{N} = N$ $76$ $76$ $80$ $82$ $95$ $82$ $58$ $39$           | $\begin{array}{c} 4.87 \\ 4.88 \\ 4.88 \\ 4.90 \\ 4.94 \\ 4.92 \\ 4.86 \\ 5.06 \\ 5.04 \\ 4.95 \\ 4.38 \\ \hline df \\ \hline \\ 5.50 \\ 5.47 \\ 5.69 \\ 5.74 \\ 5.67 \\ 5.67 \\ 5.74 \\ \end{array}$                         | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71$ $75$ $74$ $75$ $69$ $90$ $75$ $24$ $21$ $60$ $76$ $92$ $%: \hat{N} = N$ $84$ $81$ $76$ $78$ $92$ $94$ $83$ $65$ $48$      | 5.27 $5.22$ $5.24$ $5.24$ $5.24$ $5.47$ $5.25$ $5.47$ $5.45$ $5.40$ $5.46$ $4.81$ $ df$ $5.72$ $5.86$ $5.87$ $5.86$ $5.87$ $5.62$ $5.88$ $5.91$              |
| $\begin{tabular}{ll} ModelA \\ $\beta=0.4$ \\ $\beta=0.7$ \\ $\beta=-0.1$ \\ $\beta=-0.7$ \\ ModelB \\ ModelC \\ ModelD \\ ModelE \\ ModelF \\ ModelG \\ ModelH \\ ModelI \\ \hline \hline {MCP2WRI} \\ \hline \hline \\ MODEL \\ \hline \hline {MODEL MODEL } \\ \hline \hline {MODEL MODEL MODEL } \\ \hline \hline {MODEL MODEL MODEL } \\ \hline {MODEL MODEL MODEL MODEL MODEL } \\ \hline {MODEL MODEL MODEL MODEL MODEL } \\ \hline {MODEL MODEL MODEL MODEL MODEL } \\ \hline {MODEL MODEL MODEL } \\ \hline {MODEL MODEL MO$ | $ \begin{array}{c} 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\\$ | 1024<br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125<br>128<br>ml <sub>k</sub><br>1024<br>1024<br>1024<br>256<br>212<br>50<br>274<br>274<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $70$ $68$ $68$ $78$ $58$ $74$ $72$ $17$ $14$ $36$ $45$ $83$ $\%: \hat{N} = N$ $76$ $76$ $80$ $82$ $95$ $82$ $58$ $39$ $68$      | $\begin{array}{c} 4.87 \\ 4.88 \\ 4.88 \\ 4.90 \\ 4.94 \\ 4.92 \\ 4.86 \\ 5.06 \\ 5.04 \\ 4.95 \\ 4.38 \\ \hline df \\ \hline \\ 5.50 \\ 5.45 \\ 5.50 \\ 5.47 \\ 5.67 \\ 5.67 \\ 5.67 \\ 5.67 \\ 5.67 \\ 5.66 \\ \end{array}$ | 72 $72$ $72$ $72$ $72$ $72$ $72$ $72$                                           | $71$ $75$ $74$ $75$ $69$ $90$ $75$ $24$ $21$ $60$ $76$ $92$ $%: \hat{N} = N$ $84$ $81$ $76$ $78$ $92$ $94$ $83$ $65$ $48$ $79$ | $5.27$ $5.22$ $5.24$ $5.24$ $5.24$ $5.25$ $5.47$ $5.45$ $5.40$ $5.46$ $4.81$ $\overline{df}$ $5.72$ $5.81$ $5.77$ $5.86$ $5.87$ $5.86$ $5.88$ $5.91$ $5.82$  |

 $\textbf{Table 1} \ \ \text{Sensitivity test of scanning window} \ h \ \text{for MCP2BH and MCP2WRI}$ 

We have tested multiple values of h, it is shown that the choice of h has an impact on the detection rate  $(\%:\hat{N}=N)$ . Optimal scanning window h can be selected based on two criteria. We first consider choosing the minimum value of h which gives the maximum detection rate  $(\%:\hat{N}=N)$ . Second, we select the value of h which is less than the first segment's length. For example, the exact change point of Model D is located at 50, although the detection rate increased as h increased, the optimal value of h should be less than 50; otherwise, the actual change point is dismissed at the beginning. The optimal scanning window for each model is summarised in Table 2.

|                | MCP2BH          | 11101 = 111101 |
|----------------|-----------------|----------------|
| Model          | $h = r \lfloor$ | $\log(T)^2$    |
| ModelA         |                 |                |
| $\beta = 0.4$  | r = 2.5         | r = 2.5        |
| $\beta = 0.7$  | r = 2.5         | r = 2.5        |
| $\beta = -0.1$ | r = 2           | r = 2          |
| $\beta = -0.7$ | r = 2           | r = 2          |
| ModelB         | r = 2.5         | r = 2.5        |
| ModelC         | r = 2.5         | r = 2          |
| ModelD         | r = 1           | r = 1          |
| ModelE         | r = 2.5         | r = 2.5        |
| ModelF         | r = 2.5         | r = 2.5        |
| ModelG         | r = 2.5         | r = 2.5        |
| ModelH         | r = 2           | r = 2          |
| ModelI         | r=2             | r=2            |

Table 2 Optimal scanning window h selected for MCP2BH and MCP2WRI

# 3.2 Comparison between methods

To measure the detection accuracy of the methods, we consider evaluating the estimated number of change points and the estimated locations separately. In this paper, we define the exact detection rate as the proportion that the estimated number of change points equals to the correct number of change points among 100 sequences, shown by  $\%: \hat{N} = N$  in Table 1. Table 3 summarises the performance in terms of estimated number of change-points for each model. In addition, we designed novel plots to display the distance between the actual and estimated locations of change points, which could help evaluate the detection accuracy on estimated locations.

In order to compare with LRSM, we used the same setting for both the LRSM and MCP2 method:  $h = 2\log(T)^2$ ,  $ml_k = 50$  is set for Model A, B, C, G, and H;  $h = \log(T)^2$ ,  $ml_k = 25$  is set for Model I;  $h = \log(T)^2$ ,  $ml_k = 50$  is set for Model D, E and F.

a Model A: stationary AR(1) process with various  $\beta = -0.7, -0.1, 0.4, 0.7$ 

$$x_t = \beta x_{t-1} + \varepsilon_t, 1 \le t \le 1024 \tag{4}$$

|                | MCP2BH |           | MCP2WRI  |          | LRSM      |          |      | WBS       |          |          |           |          |
|----------------|--------|-----------|----------|----------|-----------|----------|------|-----------|----------|----------|-----------|----------|
|                |        | $\hat{N}$ |          |          | $\hat{N}$ |          |      | $\hat{N}$ |          |          | $\hat{N}$ |          |
| Model A        | 0*     | 1         | $\geq 2$ | 0*       | 1         | $\geq 2$ | 0*   | 1         | $\geq 2$ | 0*       | 1         | $\geq 2$ |
| $\beta = 0.4$  | 0.75   | 0.15      | 0.10     | 0.76     | 0.17      | 0.07     | 1    | 0         | 0        | 0.93     | 0.06      | 0.01     |
| $\beta = 0.7$  | 0.76   | 0.16      | 0.08     | 0.77     | 0.19      | 0.04     | 1    | 0         | 0        | 0.93     | 0.06      | 0.01     |
| $\beta = -0.1$ | 0.75   | 0.13      | 0.12     | 0.76     | 0.19      | 0.05     | 1    | 0         | 0        | 0.95     | 0.03      | 0.02     |
| $\beta = -0.7$ | 0.79   | 0.16      | 0.05     | 0.80     | 0.16      | 0.04     | 1    | 0         | 0        | 0.35     | 0.25      | 0.40     |
|                | 0      | 1*        | $\geq 2$ | 0        | 1*        | $\geq 2$ | 0    | 1*        | $\geq 2$ | 0        | 1*        | $\geq 2$ |
| Model D        | 0      | 0.58      | 0.42     | 0        | 0.72      | 0.28     | 0.03 | 0.97      | 0        | 0.15     | 0.67      | 0.18     |
| Model I        | 0      | 0.75      | 0.25     | 0        | 0.83      | 0.17     | 0    | 1         | 0        | 0        | 0.97      | 0.03     |
|                | ≤ 1    | 2*        | $\geq 3$ | ≤ 1      | 2*        | $\geq 3$ | ≤ 1  | 2*        | $\geq 3$ | ≤ 1      | 2*        | $\geq 3$ |
| Model B        | 0      | 0.70      | 0.30     | 0.01     | 0.82      | 0.17     | 0    | 1         | 0        | 0.13     | 0.52      | 0.35     |
| Model C        | 0      | 0.83      | 0.17     | 0        | 0.95      | 0.05     | 0    | 1         | 0        | 0        | 0.88      | 0.12     |
| Model E        | 0.03   | 0.06      | 0.91     | 0.04     | 0.17      | 0.79     | 0.05 | 0.21      | 0.74     | 0.04     | 0.22      | 0.74     |
| Model F        | 0      | 0.08      | 0.92     | 0        | 0.14      | 0.86     | 0.17 | 0.23      | 0.60     | 0.11     | 0.32      | 0.57     |
|                | ≤ 2    | 3*        | $\geq 4$ | $\leq 2$ | 3*        | $\geq 4$ | ≤ 2  | 3*        | $\geq 4$ | $\leq 2$ | 3*        | $\geq 4$ |
| Model G        | 0.09   | 0.74      | 0.17     | 0.22     | 0.68      | 0.10     | 0.60 | 0.40      | 0        | 0.61     | 0.38      | 0.01     |
| Model H        | 0.08   | 0.74      | 0.18     | 0.12     | 0.81      | 0.07     | 0.45 | 0.55      | 0        | 0.46     | 0.54      | 0        |

**Table 3** The simulation performance of MCP2BH, MCP2WRI, LRSM, and WBS method for estimating the number of change points. The true number of change point(s) is  $0^*$ ,  $1^*$ ,  $2^*$  and  $3^*$  respectively.

We evaluate the performance of the methods via Model A that there is no change point. LRSM is overall perfect under model A, WBS is nearly perfect except the poor performance when  $\beta = -0.7$ . MCP2 method performs well and almost uniformly with various  $\beta$ , while tends to have oversegmentation problem, regardless of the value of h.

b Model B: piecewise stationary auto-regressive process

$$x_{t} = \begin{cases} 0.9x_{t-1} + \varepsilon_{t} & 1 \le t \le 512\\ 1.69x_{t-1} - 0.81x_{t-2} + \varepsilon_{t}, & 513 \le t \le 768\\ 1.32x_{t-1} - 0.81x_{t-2} + \varepsilon_{t}, & 769 \le t \le 1024 \end{cases}$$
 (5)

From Table 3, it is clear that LRSM is outstanding over the others, WBS has the lowest accuracy rate and tends to overestimate the number of change points, and MCP2BH suffers from overestimation as well. Moreover, LRSM gives the most accurate estimated locations which can be seen by looking at Figure 1. Estimated location of WBS spaced out around the true location 768, compared with the estimates at 512, it seems to lose the power to detect the second change-point, which may be the reason for overestimation. If we look at the setting of Model B, at the second location, the coefficients of the adjacent AR(2) segments are very close, which make it difficult to detect. Similarly, the estimated locations of MCP2 methods show mild variation at 512 and 768.

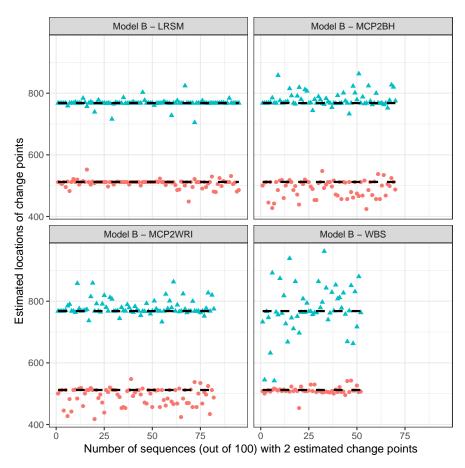



Fig. 1 Plots of estimated locations of change points from different methods under model B. Horizontal line stands for the sequence of estimated changes only when the estimated number of change points equals to 2. The dashed black lines represent the true locations of change points, 512 and 768.

c Model C: piecewise stationary AR(1) process

$$x_{t} = \begin{cases} 0.4x_{t-1} + \varepsilon_{t} & 1 \le t \le 400\\ -0.6x_{t-1} + \varepsilon_{t}, & 401 \le t \le 612\\ 0.5x_{t-1} + \varepsilon_{t}, & 613 \le t \le 1024 \end{cases}$$
 (6)

Comparing with model B, the performance of all methods improved for estimates of both the number and locations of change points. It can be seen from Figure 2, in the WBS method, there is a mild spread at the first location 400. MCP2 methods perform well under this model.

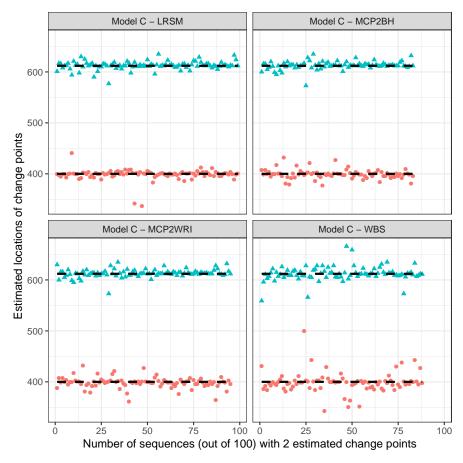



Fig. 2 Plots of estimated locations of change points from different methods under model C. Horizontal line stands for the sequence of estimated changes only when the estimated number of change points equals to 2. The dashed black line represents the true locations of change points, 400 and 612.

d Model D: piecewise stationary AR(1) process with a short segment

$$x_{t} = \begin{cases} 0.75x_{t-1} + \varepsilon_{t} & 1 \le t \le 50\\ -0.5x_{t-1} + \varepsilon_{t}, & 51 \le t \le 1024 \end{cases}$$
 (7)

LRSM remains the outstanding method in estimating the number of change points compared with the others. However, there is a large distance between estimated locations and true location in WBS and LRSM comparing with MCP2 methods, as shown in Figure 3. MCP2 method is superior in estimating the location under this model.

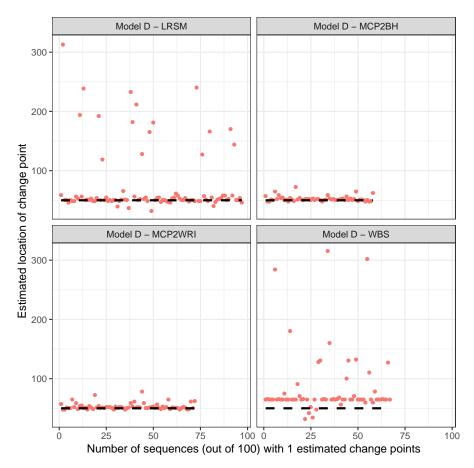
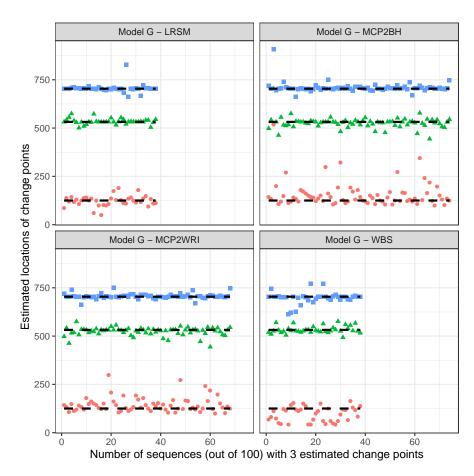



Fig. 3 Plots of estimated locations of change points from different methods under model D. Horizontal line stands for the sequence of estimated changes only when the estimated number of change points equals to 1. The dashed black line represents the true location of change points at 50.

e Model E: piecewise stationary near-unit-root process with changing variance

$$x_{t} = \begin{cases} 0.999x_{t-1} + \varepsilon_{t} & \varepsilon_{t} \sim N(0, 1), 1 \leq t \leq 400\\ 0.999x_{t-1} + \varepsilon_{t}, & \varepsilon_{t} \sim N(0, 1.5^{2}), 401 \leq t \leq 750\\ 0.999x_{t-1} + \varepsilon_{t}, & \varepsilon_{t} \sim N(0, 1), 751 \leq t \leq 1024 \end{cases}$$
(8)

Since the autocorrelation coefficients of this series remain unchanged for each segment and close to 1, all methods do not perform well.


f Model F: piecewise stationary AR process with high autocorrelation

$$x_{t} = \begin{cases} 1.399x_{t-1} - 0.4x_{t-2} + \varepsilon_{t} & \varepsilon_{t} \sim N(0, 1), 1 \leq t \leq 400\\ 0.999x_{t-1} + \varepsilon_{t}, & \varepsilon_{t} \sim N(0, 1.5^{2}), 401 \leq t \leq 750\\ 0.699x_{t-1} + 0.3x_{t-2} + \varepsilon_{t}, & \varepsilon_{t} \sim N(0, 1), 751 \leq t \leq 1024 \end{cases}$$
(9)

Simulations from models E and F are challenging data sets. From Table 3, the detection rate for all methods is quite low at around 0.3. Hence, it is not useful to plot the corresponding locations. MCP2 performs slightly better than the other two methods when the optimal scanning window is applied.

g Model G: piecewise stationary AR(1) process with three change points

$$x_{t} = \begin{cases} 0.7x_{t-1} + \varepsilon_{t} & 1 \le t \le 125\\ 0.3x_{t-1} + \varepsilon_{t} & 126 \le t \le 532\\ 0.9x_{t-1} + \varepsilon_{t} & 533 \le t \le 704\\ 0.1x_{t-1} + \varepsilon_{t} & 705 \le t \le 1024 \end{cases}$$
(10)



**Fig. 4** Plots of estimated locations of change points from different methods under model G. Horizontal line stands for the sequence of estimated changes only when the estimated number of change points equals to 3. The dashed black line represents the true locations of change points, 125, 532 and 704.

It can be indicated from Table 3 that MCP2 outperformed the other methods under this model in terms of estimating the number of change points. Both WBS and LRSM methods suffer from the underestimation. For location estimates, there is an outlier —  $(\hat{k}_1 = 518, \, \hat{k}_2 = 704, \, \hat{k}_3 = 909)$  in Figure 4 of MCP2BH. WBS and LRSM had similar performance. Overall, MCP2WRI is recommended for this model.

h Model H: piecewise stationary ARMA(1,1) process with three change points

$$x_{t} = \begin{cases} 0.7x_{t-1} + \varepsilon_{t} + 0.6\varepsilon_{t-1} & 1 \le t \le 125\\ 0.3x_{t-1} + \varepsilon_{t} + 0.3\varepsilon_{t-1} & 126 \le t \le 532\\ 0.9x_{t-1} + \varepsilon_{t} & 533 \le t \le 704\\ 0.1x_{t-1} + \varepsilon_{t} - 0.5\varepsilon_{t-1} & 705 \le t \le 1024 \end{cases}$$
(11)

Similar to the previous model, MCP2 has the best performance when estimating the number of change points, while the LRSM and WBS method has the tendency to underestimate the number of change points, as shown in Table 3. Furthermore, it is interesting to see that WBS and MCP2 have a mild variation at the second change-point from Figure 5. A location estimate vector — ( $\hat{k}_1 = 429$ ,  $\hat{k}_2 = 646$ ,  $\hat{k}_3 = 705$ ) is an outlier in WBS plot. Comparing WBS with LRSM, LRSM remains robust when estimating the locations.

i Model I: piecewise stationary moving average process

$$x_{t} = \begin{cases} \varepsilon_{t} + 0.8\varepsilon_{t-1} & 1 \le t \le 128\\ \varepsilon_{t} + 1.68\varepsilon_{t-1} - 0.81\varepsilon_{t-2} & 129 \le t \le 256 \end{cases}$$
 (12)

Tables 1 and 3 show that all methods performed well when estimating the number of change points. In terms of estimating the locations, all methods performed poorly. Figure 5 indicates that the estimates of LRSM and WBS method have large spread around the true change-point, while the estimates of MCP2 method tend to cluster below 128.

#### 3.3 Discussion of simulation results

In the simulation study, we have used nine settings to evaluate the performance of the MCP2, LRSM and WBS methods. We firstly had a discussion on the choice of scanning window. Comparing with LRSM, the implementation of MCP2 is not limited to the value of h. The optimal value of h has been provided in Table 2. Then, we evaluated the methods from two perspectives: the accuracy in detecting the number of change points and the accuracy in detecting the locations. Searching for the number of change points is the first challenge since it may be overestimated or underestimated, as shown in Table 3. We produce Figures 1, 2, 3, 4, 5 and 6 to show that fitting between estimated change points and true change points conditioned on that the estimated number of change points is correct. Overall, the MCP2 performs well and shows its

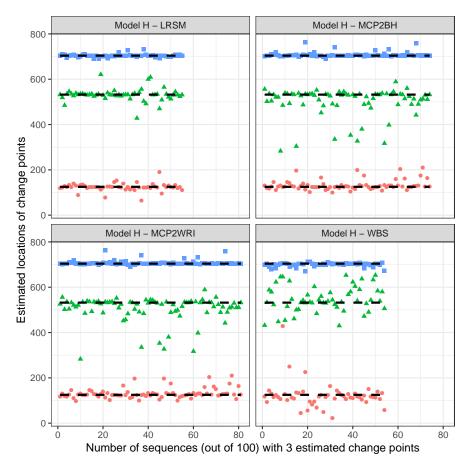



Fig. 5 Plots of estimated locations of change points from different methods under model H. Horizontal line stands for the sequence of estimated changes only when the estimated number of change points equals to 3. The dashed black line represents the true locations of change points, 125, 532 and 704.

superiority under Model G. Model H and I demonstrate that detecting changepoints in a piecewise stationary moving average process remains a challenge. As shown in Figure 6, the estimates from all methods display a large spread.

# 4 Real Data Analysis

# 4.1 Example 1: Physiological data time series

In this section, we use two linked medical time series, BabyECG and BabySS, which are available in the R package *wavethresh*, containing 2048 observations of an infant's heart rate and sleep state sampled every 16 seconds recorded from 21:17:59 to 06:27:18. Both of them were recorded from the same 66 day

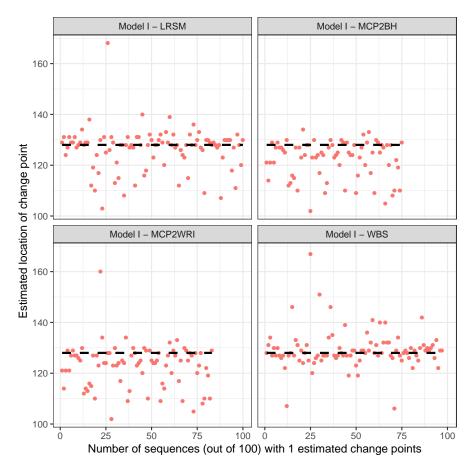



Fig. 6 Plots of estimated locations of change points from different methods under model I. Horizontal line stands for the sequence of estimated changes only when the estimated number of change points equals to 1. The dashed black line represents the true location of change point at 128.

old infant. The dashed line represents a change in sleep state. Korkas and Fryzlewicz (2017) has analysed the BabyECG time series as a real data example of a piecewise stationary time series by using the WBS method. Here we compare MCP2 with WBS, since LRSM is not applicable for this situation. From Figure 7, it can be seen that all methods tend to be in agreement at most estimated change points. MCP2 is able to identify the short segment if we use the smallest scanning window whereas WBS may ignore the shorter segments. In addition, the BH procedure is more conservative than Wright's. We remark that the selection of a scanning window exerts a control on the final estimates. In this situation, the scanning window we use is  $h = \max\{50, \log(2048)^2\}$ .

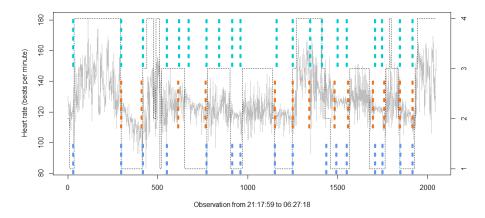



Fig. 7 Performance of MCP2 with WBS, the top and bottom dotted line represents MCP2-BH and MCP2-Wright, the middle dotted line represents WBS method with default setting. The right hand axis represents 1=quiet sleep, 2=between quiet and active sleep, 3=active sleep, 4=awake.

#### 4.2 Example 2: Monthly IBM stock returns

The experiment we perform here is used for comparing MCP2 with the LRSM method by analysing monthly stock returns of IBM from January 1962 to October 2014, which is an example tested by Yau and Zhao (2016) using LRSM. The scanning window used in MCP2 is the same as LRSM, which is h=41. LRSM gives two changes at 307 (July 1987) and 491 (November 2002), whereas MCP2-BH gives two estimations at 390 (June 1994) and 492 (December 2002). MCP2-Wright gives only one detection at 492. It seems that there is a clear agreement on the second change point.

### 5 Conclusion

In this paper, we proposed the MCP2 method which shows the flexibility and superior performance over the LRSM and WBS methods in piecewise stationary autoregressive process with more than two change points. In terms of measuring the locations of change points, we used novel statistical plots instead of the Hausdorff distance, one advantage being that we can get insights from the plots as to what caused the over-segmentation. In addition, the plots clearly demonstrated the performance of each method when estimating the locations of change points.

Although the MCP2 method worked particularly well in simulations in identifying change points when there were some, the Type I error rates were above the significance level under the null models (Model A). This may be due to the fact that, although the method accounts for multiple testing in the

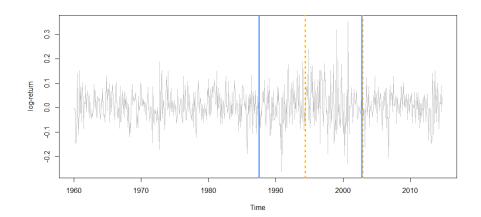



Fig. 8 Performance of MCP2 with LRSM, the blue line represents LRSM, the orange dotted line represents MCP2-BH method.

second (validation) stage, there is still uncertainty not accounted for from the first (detection) stage. A way of accounting for this would be to use the Bonferroni procedure with a p-value correction which reflects the number of scan statistics examined. A conservative approach is to set the p-value threshold to  $\alpha/T$ , which will reduce the Type I error rate with the trade-off that the power to detect true change points is also reduced. Future work will refine this approach, but preliminary simulation results suggest that good power is retained compared with the other methods.

Other future research will involve a theoretical investigation of our method as well as work to further improve the estimation accuracy.

**Acknowledgements** We thank two reviewers and the Guest Editor for helpful comments which improved the paper. Andrew J. Grant is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant number 204623/Z/16/Z).

#### References

Aminikhanghahi S, Cook DJ (2017) A survey of methods for time series change point detection. Knowledge and Information Systems 51(2):339–367

Andreou E, Ghysels E (2009) Structural breaks in financial time series. In: Mikosch T, Kreiß JP, Davis RA, Andersen TG (eds) Handbook of Financial Time Series, Springer Berlin Heidelberg, pp 839–870

Aue A, Horváth L (2013) Structural breaks in time series. Journal of Time Series Analysis 34(1):1–16

Bai J (2010) Common breaks in means and variances for panel data. Journal of Econometrics 157(1):78-92

- Bai J, Perron P (2003) Computation and analysis of multiple structural change models. Journal of applied econometrics 18(1):1–22
- Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57(1):289–300
- Cao H, Wu W (2015) Changepoint estimation: another look at multiple testing problems. Biometrika 102(4):974–980
- Chakar S, Lebarbier E, Lévy-Leduc C, Robin S (2017) A robust approach for estimating change-points in the mean of an AR(1) process. Bernoulli 23(2):1408–1447
- Davis RA, Huang D, Yao YC (1995) Testing for a change in the parameter values and order of an autoregressive model. The Annals of Statistics pp 282–304
- Davis RA, Lee TCM, Rodriguez-Yam GA (2006) Structural break estimation for nonstationary time series models. Journal of the American Statistical Association 101(473):223–239
- Durbin J (1960) The fitting of time-series models. Revue de l'Institut International de Statistique 28(3):233–244
- Eichinger B, Kirch C, et al. (2018) A MOSUM procedure for the estimation of multiple random change points. Bernoulli 24(1):526–564
- Frick K, Munk A, Sieling H (2014) Multiscale change point inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76(3):495–580
- Fryzlewicz P (2014) Wild binary segmentation for multiple change-point detection. The Annals of Statistics 42(6):2243–2281
- Grant AJ (2018) Parametric methods for time series discrimination. PhD thesis, Macquarie University, Sydney, Australia
- Grant AJ, Quinn BG (2017) Parametric spectral discrimination. Journal of Time Series Analysis 38(6):838–864
- Hao N, Niu YS, Zhang H (2013) Multiple change-point detection via a screening and ranking algorithm. Statistica Sinica 23(4):1553–1572
- Hušková M, Prášková Z, Steinebach J (2007) On the detection of changes in autoregressive time series i. asymptotics. Journal of Statistical Planning and Inference 137(4):1243–1259
- Hušková M, Kirch C, Prášková Z, Steinebach J (2008) On the detection of changes in autoregressive time series, ii. resampling procedures. Journal of Statistical Planning and Inference 138(6):1697–1721
- Jandhyala V, Fotopoulos S, MacNeill I, Liu P (2013) Inference for single and multiple change-points in time series. Journal of Time Series Analysis 34(4):423–446
- Keogh E, Chu S, Hart D, Pazzani M (2001) An online algorithm for segmenting time series. In: Proceedings 2001 IEEE International Conference on Data Mining, IEEE, pp 289–296
- Korkas KK, Fryzlewicz P (2017) Multiple change-point detection for non-stationary time series using wild binary segmentation. Statistica Sinica pp 287–311

Levinson N (1947) The Wiener RMS (root mean square) error criterion in filter design and prediction. Journal of Mathematics and Physics 25:261–278

- Li H, Munk A, Sieling H (2016) FDR-control in multiscale change-point segmentation. Electronic Journal of Statistics 10(1):918–959
- Mercurio D, Spokoiny V (2004) Statistical inference for time-inhomogeneous volatility models. The Annals of Statistics 32(2):577–602
- Niu YS, Zhang H (2012) The screening and ranking algorithm to detect DNA copy number variations. The Annals of Applied Statistics 6(3):1306–1326
- Olshen AB, Venkatraman E, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4):557-572
- Page E (1955) A test for a change in a parameter occurring at an unknown point. Biometrika 42(3/4):523-527
- Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115 Peštová B, Pešta M (2017) Asymptotic and bootstrap tests for a change in autoregression omitting variability estimation. In: International Work-Conference on Time Series Analysis, Springer, pp 187–202
- Truong C, Oudre L, Vayatis N (2020) Selective review of offline change point detection methods. Signal Processing 167:107299, DOI https://doi.org/10.1016/j.sigpro.2019.107299
- Wright SP (1992) Adjusted p-values for simultaneous inference. Biometrics 48(4):1005-1013
- Yau CY, Zhao Z (2016) Inference for multiple change points in time series via likelihood ratio scan statistics. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78(4):895–916