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Abstract
We prove that the uniform spanning forests of Z

d and Z
� have qualitatively different

connectivity properties whenever � > d ≥ 4. In particular, we consider the graph
formed by contracting each tree of the uniform spanning forest down to a single
vertex, which we call the component graph. We introduce the notion of ubiquitous
subgraphs and show that the set of ubiquitous subgraphs of the component graph
changes whenever the dimension changes and is above 8. To separate dimensions
5, 6, 7, and 8, we prove a similar result concerning ubiquitous subhypergraphs in the
component hypergraph. Our result sharpens a theorem of Benjamini, Kesten, Peres,
and Schramm, who proved that the diameter of the component graph increases by one
every time the dimension increases by four.

Mathematics Subject Classification 60D05 · 60K35

1 Introduction

The uniform spanning forests of an infinite, connected, locally finite graph G are
defined to be distributional limits of uniform spanning trees of large finite subgraphs of
G. These limits can be takenwith either free orwired boundary conditions, yielding the
free uniform spanning forest (FUSF) and wired uniform spanning forest (WUSF)
respectively. Although they are defined as limits of trees, the USFs are not necessarily
connected. Indeed, Pemantle [21] proved that the FUSF andWUSF ofZ

d coincide for
all d (so that we can refer to both simply as the USF ofZ

d ), and are a single tree almost
surely (a.s.) if and only if d ≤ 4. A complete characterization of the connectivity of
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the WUSF was given by Benjamini, Lyons, Peres, and Schramm [3], who proved that
the WUSF of a graph is connected if and only if two independent random walks on G
intersect infinitely often a.s.

Extending Pemantle’s result, Benjamini, Kesten, Peres, and Schramm [2] (hence-
forth referred to as BKPS) discovered the following surprising theorem.

Theorem (BKPS [2]) Let F be a sample of the USF of Z
d . For each x, y ∈ Z

d , let
N (x, y) be the minimal number of edges that are not in F used by a path from x to y
in Z

d . Then

max
x,y∈Zd

N (x, y) =
⌈
d − 4

4

⌉

almost surely.

In particular, this theorem shows that every two trees in the uniform spanning forest
of Z

d are adjacent almost surely if and only if d ≤ 8. Similar results have since been
obtained for other models [4,18,22–24]. The purpose of this paper is to show that, once
d ≥ 5, the uniform spanning forest undergoes qualitative changes to its connectivity
every time the dimension increases, rather than just every four dimensions.

In order to formulate such a theorem, we introduce the component graph of the uni-
form spanning forest. Let G be a graph and let ω be a subgraph of G. The component
graph C1(ω) of ω is defined to be the simple graph that has the connected components
of ω as its vertices, and has an edge between two connected components k1 and k2 of
ω if and only if there exists an edge e of G that has one endpoint in k1 and the other
endpoint in k2. More generally, for each r ≥ 1, we define the distance r component
graph Cr (ω) to be the graph which has the components of ω as its vertices, and has
an edge between two components k1 and k2 of ω if and only if there is path in G from
k1 to k2 that has length at most r .

When formulated in terms of the component graph, the result of BKPS states that
the diameter of C1(F) is almost surely �(d − 4)/4� for every d ≥ 1. In particular, it
implies that C1(F) is almost surely a single point for all 1 ≤ d ≤ 4 (as follows from
Pemantle’s theorem), and is almost surely a complete graph on a countably infinite
number of vertices for all 5 ≤ d ≤ 8.

We now introduce the notion of ubiquitous subgraphs. We define a graph with
boundary H = (∂V , V◦, E) = (∂V (H), V◦(H), E(H)) to be a graph H = (V , E)

whose vertex set V is partitioned into two disjoint sets, V = ∂V ∪ V◦, which we
call the boundary and interior vertices of H , such that ∂V 	= ∅. Given a graph G,
a graph with boundary H , and collection of distinct vertices (xu)u∈∂V of G indexed
by the boundary vertices of H , we say that H is present at (xu)u∈∂V if there exists
a collection of vertices (xu)u∈V◦ of G indexed by the interior vertices of H such that
xu ∼ xv or xu = xv for every u ∼ v in H . (Note that, in this definition, we do not
require that xu and xv are not adjacent in G if u and v are not adjacent in H .) We say
that H is faithfully present at (xu)u∈∂V if there exists a collection of distinct vertices
(xu)u∈V◦ of G, disjoint from (xu)u∈∂V , indexed by the interior vertices of H such that
xu ∼ xv for every u ∼ v in H . In figures, we will use the convention that boundary
vertices are white and interior vertices are black.
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The component graph of the uniform spanning forest…

Fig. 1 Three trees with boundary that can be used to distinguish the component graphs of the uniform
spanning forest in dimensions 9, 10, 11, and 12. Boundary vertices are white, interior vertices are black

We say that H is ubiquitous in G if it is present at every collection of distinct
vertices (xu)u∈∂V in G, and that H is faithfully ubiquitous in G if it is faithfully
present at every collection of distinct vertices (xu)u∈∂V in G.

For example, if H is a path of length n with the endpoints of the path as its boundary,
then H is ubiquitous in a graph G if and only if G has diameter less than or equal to n.
The same graph is faithfully ubiquitous in G if and only if every two vertices of G can
be connected by a simple path of length exactly n. If H is a star with k leaves set to be
in the boundary and the central vertex set to be in the interior, then H is ubiquitous in
a graph G if and only if every k vertices of G share a common neighbour, and in this
case H is also faithfully ubiquitous.

The main result of this paper is the following theorem. We say that a transitive
graph G is d-dimensional if there exist positive constants c and C such that cnd ≤
|B(x, n)| ≤ Cnd for every vertex x of G and every n ≥ 1, where B(x, n) denotes
the graph-distance ball of radius n around x in G. The WUSF and FUSF of any d-
dimensional transitive graph coincide [3], and we speak simply of the USF of G. Note
that the geometry of a d-dimensional transitive graph may be very different from that
of Z

d . (Working at this level of generality does not add any substantial complications
to the proof, however.)

Theorem 1.1 Let G1 and G2 be transitive graphs of dimension d1 and d2 respectively,
and let F1 and F2 be uniform spanning forests of G1 and G2 respectively. Then the
following claims hold for every r1, r2 ≥ 1:

(1) (Universality and monotonicity.) If d1 ≥ d2 ≥ 9, then every finite graph with
boundary that is ubiquitous in Cr1(F1) is also ubiquitous in Cr2(F2) almost surely.

(2) (Distinguishability of different dimensions.) If d1 > d2 ≥ 9, then there exists a
finite graph with boundary H such that H is almost surely ubiquitous in Cr2(F2)

but not in Cr1(F1).

Moreover, the same result holds with ‘ubiquitous’ replaced by ‘faithfully ubiquitous’.

In order to prove item (2) of Theorem 1.1, it will suffice to consider the case that H
is a tree. In this case, the following theorem allows us to calculate the dimensions for
which H is ubiquitous in the component graph of the uniform spanning forest. The
corresponding result for general H is given in Theorem 1.4. Examples of trees that
can be used to distinguish between different dimensions using Theorem 1.2 are given
in Figs. 1 and 2.
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(d− 4)/5

(d− 4 mod 5)

Fig. 2 A family of trees with boundary that can distinguish between d and d + 1 for any d ≥ 9

Fig. 3 Left: a finite tree with boundary T . Right: the subgraph T ′ of T maximizing |E(T ′)|/|V◦(T ′)|. By
Theorem 1.2, T is almost surely faithfully ubiquitous in the component graph of the uniform spanning
forest of Z

d if and only if d ≤ 9

Theorem 1.2 Let G be a d-dimensional transitive graph for some d > 8, let F be
a uniform spanning forest of G, let r ≥ 1, and let T be a finite tree with boundary.
Then T is almost surely ubiquitous in Cr (F) if and only if T is almost surely faithfully
ubiquitous in Cr (F), if and only if

max

{ |E(T ′)|
|V◦(T ′)| : T

′ is a subgraph of T

}
≤ d − 4

d − 8
.

Note that (d − 4)/(d − 8) is a decreasing function of d for d > 8. The theorem of
BKPS follows as a special case of Theorem 1.2 by taking T to be a path. Figure 2 gives
an example of a family of trees that can be used to deduce item (2) of Theorem 1.1
from Theorem 1.2. See Fig. 3 for another example application.

The next theorem shows that uniform spanning forests in different dimensions
between 5 and 8 also have qualitatively different connectivity properties. The result
is more naturally stated in terms of ubiquitous subhypergraphs in the component
hypergraph of the USF; see the following section for definitions and Fig. 4 for an
illustration of the relevant hypergraphs.

Theorem 1.3 (Distinguishing dimensions 5, 6, 7, and 8) Let G be a d-dimensional
transitive graph and let F be a uniform spanning forest of G. The following hold
almost surely.

(1) If d = 5, then there exists a constant r0 such that for every five trees of F, there
exists a ball of radius r0 in G that is intersected by each of the five trees. On the
other hand, if d ≥ 6, then for every r ≥ 1, there exists a set of four trees in F such
that there does not exist a ball of radius r in G intersecting all four trees.
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Fig. 4 Three hypergraphs with boundary that can be used to distinguish the component hypergraphs of the
uniform spanning forest in dimensions 5, 6, 7, and 8. Edges are represented by shaded regions

Fig. 5 Considering the coarsening in which all edges of a hypergraph are merged into one shows that any
connected graph with |∂V | ∈ {0, 1} is faithfully ubiquitous in the component graph of the uniform spanning
forest of Z

d for every d > 4, since every subhypergraph of this coarsening has d-apparent weight either
−d or −4

(2) If d = 5 or 6, then there exists a constant r0 such that for every three trees of F,
there exists a ball of radius r0 in G that is intersected by each of the three trees.
On the other hand, if d ≥ 7, then for every r ≥ 1, there exists a set of three trees in
F such that there does not exist a ball of radius r in G intersecting all three trees.

(3) If d = 5, 6, or 7, then there exists a constant r0 such that for every r ≥ r0, every
set of three pairs of trees of F have the following property: There exist three trees
T1, T2, T3 in F such that Ti and the i th pair of trees all intersect some ball Bi of
radius r in G for each i = 1, 2, 3, and the trees T1, T2, T3 all intersect some ball
B0 of radius r in G. On the other hand, if d ≥ 8, then for every r ≥ 1 there exists
a set of three pairs of trees of F that do not have this property.

1.1 Ubiquity of general graphs and hypergraphs in the component graph.

In this section, we extend Theorem 1.2 to the case that H is not a tree. In order to
formulate this extension, it is convenient to consider the even more general setting
in which H is a hypergraph with boundary. Indeed, it is a surprising feature of the
resulting theory that one is forced to consider hypergraphs even if one is interested
only in graphs.

We define a hypergraph H = (V , E,⊥) to be a triple consisting of a set of
vertices V , a set of edges E , and a binary relation ⊥⊆ V × E such that the set
{v ∈ V : (v, e) ∈⊥} is nonempty for every e ∈ E . We write v ⊥ e or e ⊥ v

and say that v is incident to e if (v, e) ∈⊥. Note that this definition is somewhat
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nonstandard, as it allows multiple edges with the same set of incident vertices. We
say that a hypergraph is simple if it does not contain two distinct edges whose sets
of incident vertices are equal. Every graph is also a hypergraph. A hypergraph with
boundary H = (∂V , V◦, E,⊥) is defined to be a hypergraph H = (V , E,⊥) together
with a partition of V into disjoint subsets, V = ∂V ∪ V◦, the boundary and interior
vertices of H , such that ∂V 	= ∅. The degree of a vertex in a hypergraph is the number
of edges that are incident to it, and the degree of an edge in a hypergraph is the
number of vertices it is incident to. To lighten notation, we will often write simply
H = (∂V , V◦, E) for a hypergraph with boundary, leaving the incidence relation ⊥
implicit.

If H = (∂V , V◦, E,⊥) is a hypergraph with boundary, a subhypergraph (with
boundary) of H is defined to be a hypergraph with boundary of the form H ′ =
(∂V ′, V ′◦, E ′,⊥′), where

∂V ′ ⊆ ∂V , V ′◦ ⊆ V◦, E ′ ⊆ E, V ′ = ∂V ′ ∪ V ′◦, and ⊥′=⊥ ∩ (V ′ × E ′).

We say that a hypergraph with boundary H ′ = (∂V ′, V ′◦, E ′,⊥′) is a quotient of a
hypergraph with boundary H = (∂V , V◦, E,⊥) if there exists a surjective function
φV : V → V ′mapping ∂V bijectively onto ∂V ′ and a bijective function φE : E → E ′
such that

{v′ : v′ ∈ V ′, v′ ⊥′ φE (e)} = {φV (v) : v ∈ V , v ⊥ e}

for every e ∈ E . Similarly, we say that H ′ is a coarsening of H (and call H a
refinement of H ′) if there exists a bijection φV : V → V ′ mapping ∂V bijectively
onto ∂V ′ and a surjection φE : E → E ′ such that

{e′ : e′ ∈ E ′, e′ ⊥′ φV (v)} = {φE (e) : e ∈ E, e ⊥ v}

for every v ∈ V . In other words, H ′ is a quotient of H if it can be obtained from H
by merging together some of the vertices of H , while H ′ is a coarsening of H if it
can be obtained by merging together some of the edges of H .

The following theorem allows us to calculate the dimensions for which an arbitrary
finite simple graph H is ubiquitous in the component graph of the uniform spanning
forest. It will be used to deduce Theorems 1.1 and 1.2. See Figs. 5 and 6 for example
applications. For each finite hypergraph with boundary H = (∂V , V◦, E) and d ∈ R,
we define theweight of H , denoted�(H), and the d-apparent weight of H , denoted
by ηd(H), by setting

�(H) :=
∑
e∈E

deg(e)=
∑
v∈V

deg(v) and ηd(H) :=(d − 4)�− d|E | − (d − 4)|V◦|

respectively. We say that H is d-buoyant if ηd(H) ≤ 0, i.e., if its d-apparent weight
is non-positive. If H is a simple graph then � = 2|E | and so ηd(H) = (d − 8)|E | −
(d − 4)|V◦|.
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Theorem 1.4 Let G be a d-dimensional transitive graph for some d > 4, let F be
the uniform spanning forest of G, let H be finite simple graph with boundary, and let
r ≥ 1. Then H is faithfully ubiquitous in Cr (F) almost surely if and only

min
{
max

{
ηd(H

′′) : H ′′ is a subhypergraph of H ′
} : H ′ is a coarsening of H

}≤0,
(1.1)

that is, if and only if H has a coarsening all of whose subhypergraphs are d-buoyant.
Moreover, H is ubiquitous in Cr (F) if and only if it has a quotient that is faithfully
ubiquitous in Cr (F) almost surely.

This terminology used here arises from the following analogy: We imagine that
from each vertex-edge pair (v, e) of H with v ⊥ e we hang a weight exerting a
downward force of (d − 4), while from each edge and each interior vertex of H we
attach a balloon exerting an upward force of either d or (d − 4) respectively. The net
force is equal to the apparent weight. The hypergraph is buoyant (i.e., floats) if the
apparent weight is non-positive.

Theorem 1.4 is best understood as a special case of a more general theorem con-
cerning the component hypergraph. Given a subset ω of a graph G and r ≥ 1, we
define the component hypergraph Chypr (ω) to be the simple hypergraph that has the
components of ω as vertices, and where a finite set of components W is an edge of
Chypr (ω) if and only if there exists a set of diameter r in G that intersects every com-
ponent of ω in the setW . Presence, faithful presence, ubiquity and faithful ubiquity of
a hypergraph with boundary H in a hypergraph G are defined similarly to the graph
case. For example, we say that a finite hypergraph with boundary H = (∂V , V◦, E)

is faithfully present at (xu)u∈∂V in G if there exists a collection of distinct vertices
(xu)u∈V◦ of G, disjoint from (xu)u∈∂V , indexed by the interior vertices of H such that
for each e ∈ E there exists an edge f of G that is incident to all of the vertices in
the set {xv : v ⊥ e}. Given a d-dimensional graph G and M ≥ 1, we let RG(M) be
minimal such that there exists a set of vertices in G of diameter RG(M) that intersects
M distinct components of the uniform spanning forest of G with positive probability.
Given a hypergraph with boundary H , we let RG(H) = RG(maxe∈E deg(e)).

Theorem 1.5 Let G be a d-dimensional transitive graph for some d > 4, let F be the
uniform spanning forest of G, and let H be finite hypergraph with boundary. If

min
{
max

{
ηd(H

′′) : H ′′ is a subhypergraph of H ′
} : H ′ is a coarsening of H

} ≤ 0
(1.2)

then H is faithfully ubiquitous in Chypr (F) almost surely for every r ≥ RG(H). Other-
wise, H is not faithfully ubiquitous in Chypr (F) for any r ≥ 1 almost surely. Moreover,
H is ubiquitous in Chypr (F) if and only if it has a quotient that is faithfully ubiquitous
in Chypr (F) almost surely.

H clearly cannot be faithfully ubiquitous inChypr (F) if r < RG(H), so this condition
is necessary. Note that RG(2) = 1 for any d-dimensional transitive graph with d > 4,
so that Theorem 1.4 follows as a special case of Theorem 1.5 as claimed. Theorem 1.3
follows immediately by applying Theorem 1.5 to the hypergraphs pictured in Fig. 4.
The minmax problem arising in (1.1) and (1.2) is studied in Sect. 2.7.
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H1 H1 H1 H2H1

Fig. 6 The graph with boundary H1, far left, has d-apparent weight ηd (H1) = 6d − 64, and is therefore
d-buoyant if and only if d ≤ 10+ 2/3. Meanwhile, it has a coarsening H ′1, centre left, that has d-apparent
weight ηd (H ′1) = 5d−64, so that H ′1 is d-buoyant if and only if d ≤ 12+4/5. In fact, using Theorem 1.4,
it can be verified that H1 is almost surely faithfully ubiquitous in the component graph of the uniform
spanning forest of Z

d if and only if d ≤ 12. On the other hand, considering the quotient H ′′1 of H1, centre,
and the coarsening H ′′′1 of H ′′1 , centre right, along with other possible coarsenings of quotients, it can be

verified that H1 is almost surely ubiquitous in the component graph of the uniform spanning forest of Z
d

if and only if d ≤ 16. Thus, for 13 ≤ d ≤ 16 the graph H1 is ubiquitous but not faithfully ubiquitous in the
component graph of the uniform spanning forest of Z

d a.s. A similar analysis shows that the graph H2, far
right, is faithfully ubiquitous in the component graph of the uniform spanning forest of Z

d almost surely if
and only if d ≤ 9, and is ubiquitous almost surely if and only if d ≤ 16

1.2 Organisation

In Sect. 2, we give background on uniform spanning forests, establish notation, and
prove some simple preliminaries that will be used throughout the rest of the paper. In
Sect. 3, we outline some of the key steps in the proof of the main theorems; this section
is optional if the reader prefers to go straight to the fully detailed proofs. Section 4 is
the computational heart of the paper, where the quantitative estimates needed for the
proof of the main theorems are established. In Sect. 5, we deduce the main theorems
from the estimates of Sect. 4 together with the multicomponent indistinguishability
theorem of [12], which is used as a zero-one law. This section is quite short, most the
work having already been done in Sect. 4. We conclude with some open problems and
remarks in Sect. 6.

2 Background, definitions, and preliminaries

2.1 Basic notation

Let G be a d-dimensional transitive graph with vertex set V, and let F be the uniform
spanning forest of G. For each set W ⊆ V, we write F (W ) for the event that the
vertices of W are all in the same component of F. Let r ≥ 1 and let H = (∂V , V◦, E)

be a finite hypergraph with boundary. We define

η̂d(H) = min
{
ηd(H

′) : H ′ is a coarsening of H
}
.

We write �,�, and � for inequalities or equalities that hold up to a positive mul-
tiplicative constant depending only on some fixed data that will be clear from the
context, usually G, H , and r , and write �,� and ≈ for inequalities or equalities that
hold up to an additive constant depending only on the same data. In particular
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a � b if and only if log2 a ≈ log2 b.

We sometimes write exp2(a) to mean 2a .
For each two vertices x and y of G, we write 〈xy〉 = dG(x, y) + 1, where dG is

the graph metric on G. For each vertex x of G and∞ ≥ N > n ≥ 0, we define the
dyadic shell

�x (n, N ) :=
{
y ∈ V : 2n ≤ 〈xy〉 ≤ 2N

}
.

If x = (xu)u∈∂V is a collection of vertices inG, we choose one such point x0 arbitrarily
and set �x (n, N ) = �x0(n, N ) for every N > n ≥ 0. Since G is d-dimensional, we
have that

log2 |�x (n, N )| ≈ dN (2.1)

for all n ≥ 0 and N ≥ n + 1. The upper bound is immediate, while the lower bound
follows because �x (n, N ) contains both some point y with 〈x0y〉 = 2N−1 + 2N−2
and the ball of radius 2N−2 around this point y.

2.2 Uniform spanning forests

Given a finite connected graph G, we define USTG to be the uniform probability
measure on the set of spanning trees of G, that is, connected subgraphs of G that
contain every vertex ofG and do not contain any cycles. Now suppose thatG = (V , E)

is an infinite, connected, locally finite graph, and let (Vi )i≥1 be an exhaustion of V by
finite sets, that is, an increasing sequence of finite, connected subsets of V such that⋃

i≥1 Vi = V . For each i ≥ 1, let Gi be the subgraph of G induced1 by Vi , and let G∗i
be the graph formed from G by contracting V \Vi down to a single vertex and deleting
all of the self-loops that are created by this contraction. The free and wired uniform
spanning forest (FUSF and WUSF) measures of G, denoted FUSFG andWUSFG , are
defined to be the weak limits of the uniform spanning tree measures of Gi and G∗i
respectively. That is, for every finite set S ⊂ E ,

FUSFG
({ω ⊆ E : S ⊆ ω}) = lim

i→∞USTGi

({ω ⊆ E : S ⊆ ω})

and

WUSFG
({ω ⊆ E : S ⊆ ω}) = lim

i→∞USTG∗i
({ω ⊆ E : S ⊆ ω}).

Both limits were proven to exist by Pemantle [21] (although the WUSF was not
considered explicitly until the work of Häggström [9]), and do not depend on the
choice of exhaustion.

1 Given a graph G = (V , E) and a set of vertices W ⊆ V , the subgraph of G induced by W is defined to
be the graph with vertex set W and with edge set given by the set of edges of G that have both endpoints
in W .
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Benjamini, Lyons, Peres, and Schramm [3] proved that the WUSF and FUSF of
G coincide if and only if G does not admit harmonic functions of finite Dirichlet
energy, fromwhich they deduced that theWUSF and FUSF coincide on any amenable
transitive graph. In particular, it follows that the WUSF and FUSF coincide for every
transitive d-dimensional graph, and in this context we refer to both the FUSF and
WUSF measures on G as simply the uniform spanning forest measure, USFG , on G.
We say that a random spanning forest of G is a uniform spanning forest of G if it has
law USFG .

2.3 Wilson’s algorithm

Wilson’s algorithm [29] is a way of generating the uniform spanning tree of a finite
graph by joining together loop-erased random walks. It was extended to generate
the wired uniform spanning forests of infinite, transient graphs by Benjamini, Lyons,
Peres, and Schramm [3].

Recall that, given a path γ = (γn)n≥0 in a graph G that is either finite or visits each
vertex of G at most finitely often, the loop-erasure of γ is defined by deleting loops
from γ chronologically as they are created. The loop-erasure of a simple randomwalk
path is known as loop-erased random walk and was first studied by Lawler [17].
Formally, we define the loop-erasure of γ to be LE(γ ) = (γτi )i≥0, where τi is defined
recursively by setting τ0 = 0 and

τi+1 = 1+ sup{t ≥ τi : γt = γτi }.
(If G is not simple, then we also keep track of which edges are used by LE(γ ).)

Let G be an infinite, connected, transient, locally finite graph. Wilson’s algorithm
rooted at infinity allows us to sample thewired uniform spanning forest ofG as follows.
Let (vi )i≥1 be an enumeration of the vertices of G. Let F0 = ∅, and define a sequence
of random subforests (Fi )i≥0 of G as recursively follows.

(1) Given Fi , let Xi+1 be a random walk started at vi+1, independent of Fi .
(2) Let Ti+1 be the first time Xi+1 hits the set of vertices already included in Fi , where

Ti+1 = ∞ if Xi+1 never hits this set. Note that Ti+1 will be zero if vi+1 is already
included in Fi .

(3) Let Fi+1 be the union of Fi with the loop-erasure of the stopped randomwalk path
(Xi+1

n )
Ti+1
n=0 .

Finally, let F = ⋃
i≥1 Fi . This is Wilson’s algorithm rooted at infinity: the resulting

random forest F is a wired uniform spanning forest of G.

2.4 Themain connectivity estimate

Let K be a finite set of vertices of G. Following [2], we define the spread of K ,
denoted 〈K 〉, to be

〈K 〉 = min
{ ∏
{x,y}∈E(τ )

〈xy〉 : τ = (W , E) is a tree with vertex set K
}
.
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Note that the tree τ being minimized over in the definition of 〈K 〉 need not be a
subgraph of G. If we enumerate the vertices of K as x1, . . . , xn , then we have the
simple estimate [2, Lemma 2.6]

〈K 〉 �
n∏

i=1
min

{〈xi x j 〉 : 1 ≤ j < i
}
, (2.2)

where the implied constant depends on the cardinality of K . In practice we will always
use (2.2), rather than the definition, to estimate the spread.

The main tool in our analysis of the USF is the following estimate of BKPS. Recall
thatF (K ) is the event that every vertex of K is in the same component of the uniform
spanning forest F.

Theorem 2.1 (BKPS [2]) Let G be a d-dimensional transitive graph with d > 4, let
F be the uniform spanning forest of G, and let K be a finite set of vertices of G. Then
there exists a constant C = C(G, |K |) such that

P
(
F (K )

) ≤ C
〈
K
〉−(d−4)

. (2.3)

BKPS proved the theorem in the case G = Z
d . The general case follows from the

same proof by applying the heat kernel estimates of Hebisch and Saloff-Coste [10]
(see Theorem 4.18), as stated in [2, Remark 6.12]. These heat kernel estimates imply
in particular that the Greens function estimate

∑
n≥0

pn(u, v) � 〈uv〉−(d−2) (2.4)

holds for every d-dimensional transitive graph G with d > 2 and every pair u, v ∈ V.

Proposition 2.2 Let G be a d-dimensional transitive graph, let F be the uniform span-
ning forest of G, and let Ki be a collection of finite sets of vertices of G indexed by
some finite set I . Then there exists a constant C = C(G, |I |, {|Ki | : i ∈ I }) such that

P
(
F (Ki ∪ K j ) if and only if i = j

) ≤ C
∏
i∈I

〈
Ki
〉−(d−4)

. (2.5)

Proof We may assume that I = {1, . . . , k} for some k ≥ 1. Given a collection of
independent random walks X1, . . . , Xn , let A(X1, . . . , Xn) be the indicator of the
event that the forest generated by running the first n steps of Wilson’s algorithm using
the walks X1, . . . , Xn , in that order, is connected.

Thus, given a finite set K ⊂ V, we have

P(F (K )) = P

(
A
(
X1, . . . , X |K |

)
= 1

)

where X1, . . . , X |K | are independent random walks started at the vertices of K . Now
suppose that (Ki )i∈I is a collection of finite sets, and supposewegenerate a sampleF of
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theUSF, startingwith independent randomwalks X1,1, . . . , X1,|K1|, X2,1, . . . , Xk,|Kk |,
where Xi, j starts from the j th element of Ki . Then we observe that

{
F (Ki ∪ K j ) if and only if i = j

} ⊆⋂
i∈I

{
A(Xi,1, . . . , Xi,|Ki |) = 1

}
,

and hence that

P
(
F (Ki ∪ K j ) if and only if i = j

) ≤∏
i∈I

P(F (Ki )). (2.6)

The claim now follows from Theorem 2.1. It is also possible to prove (2.6) using the
negative association property of the USF, see e.g. [8]. ��

2.5 Witnesses

Let H be a finite hypergraph with boundary, let r ≥ 1, and let x = (xv)v∈∂V be a
collection of vertices in G. We say that H is r -faithfully present at x if it is faithfully
present at the components of x in Chypr (F). We define r -presence of H at x similarly.
Let E• be the set of pairs (e, v), where e ∈ E is an edge of H and v ⊥ e is a vertex of
H incident to e. We say that ξ = (ξ(e,v))(e,v)∈E• ∈ V E• is a witness for the r -faithful
presence of H at x if the following conditions hold:

(1) For every e ∈ E and every u, v ⊥ e we have that 〈ξ(e,v)ξ(e,u)〉 ≤ r − 1.
(2) For each boundary vertex v ∈ ∂V , every point in the set {xv} ∪ {ξ(e,v) : e ⊥ v} is

in the same component of F,
(3) for each interior vertex v ∈ V◦, every point in the set {ξ(e,v) : e ⊥ v} is in the same

component of F, and
(4) for any two distinct vertices u, v ∈ V , the components of F containing {ξ(e,u) :

e ⊥ u} and {ξ(e,v) : e ⊥ v} are distinct.
See Fig. 7 for an illustrated example. We write W (x, ξ) = W H

r (x, ξ) for the event
that ξ is a witness for the r -faithful presence of H at x . Thus, on the event that all the
vertices of x are in distinct components of F, H is r -faithfully present at x if and only
if W H

r (x, ξ) occurs for some ξ ∈ V E• , and is present at x if and only if W H ′
r (x, ξ)

occurs for some quotient H ′ of H and some ξ ∈ V E•(H ′).
We say that H is r -robustly faithfully present at x = (xv)v∈V if there is an

infinite collection {ξ i = (ξ i(e,v))(e,v)∈E• : i ≥ 1} such that ξ i is a witnesses for the

r -faithful presence of H at x for every i , and ξ
j
(e,v) 	= ξ

j
(e′,v′) for every i > j ≥ 1 and

(e, v), (e′, v′) ∈ E•.
Often, x , r and H will be fixed. In this case we will speak simply of ‘faithful pres-

ence’ to mean ‘r -faithful presence’, ‘robustly faithfully present’ to mean ‘r -robustly
faithfully present’, ‘witnesses’ to mean ‘witnesses for the r -faithful presence of H at
x’, and so on.
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ξ(v1,e1)
ξ(v2,e1)

ξ(v2,e2)

ξ(v3,e2)

xv1

xv3

Fig. 7 Schematic illustration of a witness for the faithful presence of a path of length two with endpoints as
boundary points. Let H be the graph with boundary defined by V (H) = {v1, v2, v3}, ∂V (H) = {v1, v3}
and with edges e1 = {v1, v2} and e2 = {v2, v3}. The configuration (ξ(v,e))(v,e)∈E• is a witness for the
1-faithful presence of H at (xv1 , xv3 ) if {ξ(v1,e1), ξ(v2,e1)} and {ξ(v2,e2), ξ(v3,e2)} are edges of G and
there exist three distinct trees of F each containing one of the sets {xv1 , ξ(v1,e1)}, {ξ(v1,e1), ξ(v2,e1)}, and{ξ(v3,e2), xv3 }

It will be useful to define the following sets in which witnesses must live. For every
(xv)v∈∂V , n ≥ 0 and N > n, let

�x (n, N ) = �H
x (n, N ) = (�x (n, N ))E

and let �•x (n, N ) = �
H ,r•x (n, N ) be the set

�•x (n, N ) =
{
(ξ(e,v))(e,v)∈E• ∈ (�x (n, N ))E• : 〈ξ(e,v)ξ(e,u)〉 ≤ r − 1

for every e ∈ E and every u, v ⊥ e} ,

so that ξ ∈ �x (n, N )E• is a witness for the faithful presence of H if and only if
ξ ∈ �•x (n, N ) and conditions (2), (3), and (4) in the definition of witnesses, above,
hold.

2.6 Indistinguishability of tuples of trees

In this section we provide background on the notion of indistinguishability theorems,
including the indistinguishability theorem of [12] which will play a major role in the
proofs of our main theorems.

Indistinguishability theorems tell us that, roughly speaking, ‘all infinite components
look alike’. The first such theorem was proven in the context of Bernoulli percolation
by Lyons and Schramm [20]. Indistinguishability of components in uniform spanning
forests was conjectured by Benjamini, Lyons, Peres, and Schramm [3] and proven by
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Hutchcroft and Nachmias [13]. (Partial progress was made independently at the same
time by Timár [27].) All of the results just mentioned apply to individual components.
In this paper, we will instead apply the indistinguishability theorem of [12], which
yields a form of indistinguishability for multiple components in the uniform spanning
forest. We will use this theorem as a zero-one law that allows us to pass from an
estimate showing that certain events occur with positive probability to knowing that
these events must occur with probability one.

We now give the definitions required to state this theorem. Let G = (V , E) be
a graph, and let k ≥ 1. We define 
k(G) = {0, 1}E × V k , which we equip with its
product σ -algebra and think of as the set of subgraphs ofG rooted at an ordered k-tuple
of vertices. A measurable set A ⊆ 
k(G) is said to be a k-component property if

(ω, (ui )
k
i=1) ∈ A �⇒ (ω, (vi )

k
i=1) ∈ A

for all (vi )ki=1 ∈ V k such that ui is
connected to vi in ω for each i = 1, . . . , k.

That is,A is a k-component property if it is stable under replacing the root verticeswith
other root vertices from within the same components. Given a k-component property
A , we say that a k-tuple of components (K1, . . . , Kk) of a configuration ω ∈ {0, 1}E
has propertyA if (ω, (ui )ki=1) ∈ A whenever u1, . . . , uk are vertices of G such that
ui ∈ Ki for every 1 ≤ i ≤ k.

Given a vertex v of G and a configuration ω ∈ {0, 1}E , let Kω(v) denote the
connected component of ω containing v. We say that a k-component property A is a
tail k-component property if

(ω, (vi )
k
i=1) ∈ A �⇒ (ω′, (vi )ki=1) ∈ A

∀ω′ ∈ {0, 1}E such that ω ω′ is finite and
Kω(vi ) Kω′(vi ) is finite for every i = 1, . . . , k,

where  denotes the symmetric difference. In other words, tail multicomponent prop-
erties are stable under finite modifications to ω that result in finite modifications to
each of the components of interest Kω(v1), . . . , Kω(vk).

Theorem 2.3 [12] Let G be a d-dimensional transitive graph with d > 4 and with
vertex set V, and let F be the uniform spanning forest of G. Then for each k ≥ 1
and each tail k-component property A ⊆ 
k(G), either every k-tuple of distinct
connected components of F has property A almost surely or no k-tuple of distinct
connected components of F has property A almost surely.

We say that A is a multicomponent property if it is a k-component property for
some k ≥ 1. For our purposes, the key example of a tail multicomponent property
is the property that some finite hypergraph with boundary H is r -robustly faithfully
present at (xv)v∈∂V . Applying Theorem 2.3, we will deduce that if H is r -robustly
faithfully present at some (xv)v∈∂V with positive probability then it must be almost
surely r -robustly faithfully present at every (xv)v∈∂V for which the vertices {xv}v∈∂V

are all in distinct components of F.
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2.7 Optimal coarsenings

In this section we study the minmax problem appearing in Theorems 1.4 and 1.5,
proving the following.

Lemma 2.4 Let H be a finite hypergraph with boundary and let d ≥ 4. Then

max
{
min

{
ηd (H ′′) : H ′′ is a coarsening of H ′

} : H ′ is a subhypergraph of H}
= min

{
max

{
ηd (H ′′) : H ′′ is a subhypergraph of H ′

} : H ′ is a coarsening of H
}
.

(2.7)

In particular, H has a coarsening all of whose subhypergraphs are d-buoyant if and
only if every subhypergraph of H has a d-buoyant coarsening.

Given a hypergraph with boundary H = (∂V , V◦, E,⊥) and an equivalence rela-
tion !" on E , we can form a coarsening H/!" of H by taking ∂V (H/!") = ∂V (H)

and V◦(H/!") = V◦(H), taking E(H/ !") to be the set of equivalence classes of !",
and defining

⊥(H/ !") =
{
(v, [e]) : v ∈ V , [e] ∈ E(H/ !"), and ∃ f ∈ E such that [ f ] = [e] and v ⊥ f

}
,

where [e] denotes the equivalence class of e under !". It is easily seen that every
coarsening of H can be uniquely represented in this way. We say that a coarsening
H/ !" of a hypergraph with boundary H is proper if there exist at least two non-
identical edges of H that are related under !".

Let H = (∂V , V◦, E,⊥) be a finite hypergraph with boundary. We say that a
subhypergraph H ′ of H is subordinate to an equivalence relation !" on E if every
equivalence class of !" is either contained in or disjoint from the edge set of H ′. Given
an equivalence relation !" on E and a subhypergraph H ′ of H , we write H ′/ !" for
the coarsening H ′/( !" |E ′), where !" |E ′ is the restriction of !" to the edge set of H ′.
The function H ′ $→ H ′/!" is a bijection from subhypergraphs of H subordinate to !"
to subhypergraphs of H/!". We say that an equivalence relation !" on E is d-optimal
if

ηd(H/!") = min
{
ηd(H/!"′) : H/!"′ a coarsening of H

}
.

We call a coarsening H ′ = H/ !" of H d-optimal if !" is d-optimal. We say that a
subhypergraph H ′ = (∂V ′, V ′◦, E ′,⊥′) of H is full if {v ∈ V : v ⊥ e} ⊆ V ′ for every
e ∈ E ′.

Lemma 2.5 Let H be a finite hypergraph with boundary, let d ∈ R, and let H/!" be
a d-optimal coarsening of H. Then H ′/!" is a d-optimal coarsening of H ′ for every
full subhypergraph H ′ of H subordinate to !".

Recall from Sect. 1.1 that ηd(H) is defined to be (d−4)�(H)−d|E |−(d−4)|V◦|.
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Proof Let H ′ be a subhypergraph of H subordinate to !". Let !"′ be an equivalence
relation on E ′, and let !"′′ be the equivalence relation on E defined by

e !"′′ e′ ⇐⇒ (e, e′ ∈ E\E ′ and e !" e′) or (e, e′ ∈ E ′ and e !"′ e′).

Thus, H ′ is subordinate to !"′′ and H ′/!"′′= H ′/!"′. It is easily verified that, since
!" and !"′′ differ only on edges of H ′ and H ′ is subordinate to !",

|V◦(H ′/!"′)| − |V◦(H ′/!")| = |V◦(H/!"′′)| − |V◦(H/!")|,
|E(H ′/!"′)| − |E(H ′/!")| = |E(H/!"′′)| − |E(H/!")|, and

�(H ′/!"′)−�(H ′/!") = �(H/!"′′)−�(H/!").

We deduce that, since H/!" is d-optimal,

ηd(H
′/!"′)− ηd(H

′/!") = ηd(H/!"′′)− ηd(H/!") ≥ 0,

and the result follows since !"′ was arbitrary. ��
Lemma 2.6 Let H be a finite hypergraph with boundary, let d ≥ 4, and let H/!" be
a d-optimal coarsening of H. Then

max
{
min

{
ηd(H

′/!"′) : H ′/!"′ a coarsening of H ′
} : H ′ a subhypergraph of H

}
= max

{
ηd(H

′/!") : H ′ a subhypergraph of H
}
. (2.8)

Proof Let H/ !" be a d-optimal coarsening of H . Let H ′ be a subhypergraph of H ,
and let H ′′ be the smallest full subhypergraph of H that contains H ′ and is subordinate
to !". That is, H ′′ is obtained from H ′ by adding every edge of H that is contained in
equivalence class of !" intersecting E ′ and every vertex of H that is incident to either
an edge of H ′ or one of these added edges. Writing degH ′′/!"(v) for the degree of a
vertex in H ′′/!", we compute that

ηd(H
′′/!")− ηd(H

′/!") = (d − 4)
∑

v∈V (H ′′)\V (H ′)

(
degH ′′/!"(v)− 1

) ≥ 0.

It follows that

min{ηd(H ′/!"′) : H ′/!"′ a coarsening of H ′} ≤ ηd(H
′/!") ≤ ηd(H

′′/!")
= min{ηd(H ′′/!"′) : H ′′/!"′ is a coarsening of H ′′}, (2.9)

where the equality on the second line follows from Lemma 2.5. Taking the maximum
over H ′, we obtain that

max
{
min

{
ηd (H ′/!"′) : H ′/!"′ a coarsening of H ′

} : H ′ a subhypergraph of H
}

≤ max
{
ηd (H ′/!") : H ′ a subhypergraph of H

}

≤ max

{
min

{
ηd (H ′′/!"′) : H ′′/!"′ a coarsening of H ′′

} : H ′′ a subhypergraph of
H subordinate to !"

}
,
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where the second equality follows from (2.9). The the final line of this display is clearly
less than or equal to the first line, so that all the lines must be equal, completing the
proof. ��
Proof of Lemma 2.4 It follows immediately from Lemma 2.6 that

max
{
min

{
ηd (H ′/!"′) : H ′/!"′ a coarsening of H ′

} : H ′ a subhypergraph of H
}

≥ min
{
max

{
ηd (H ′/!"′) : H ′ a subhypergraph of H

} : H/!"′ a coarsening of H
}
,

and the reverse inequality is trivial. ��
Remark Lemma 2.6 yields a brute force algorithm for computing the value of the rele-
vantmaxmin problem that is exponentially faster than the trivial brute force algorithm,
although still taking superexponential time in the number of edges of H .

3 Sketch of the proof

In this section we give a detail-free overview of the most important components of the
proof. This section is completely optional; all the arguments and definitionsmentioned
here will be repeated in full detail later on.

3.1 Non-ubiquity in high dimensions

LetG be a d-dimensional transitive graph, let H be a finite hypergraph with boundary,
and letF be the uniform spanning forest ofG.Wewish to show that if every coarsening
of H has a subhypergraph that is not d-buoyant, then H is not faithfully ubiquitous in
Chypr (F) for any r ≥ 1 a.s. By Lemma 2.4, this condition is equivalent to there existing
a subhypergraph of H none of whose coarsenings are d-buoyant. If H is faithfully
ubiquitous then so are all of its subhypergraphs, and so it suffices to consider the case
that H does not have any d-buoyant coarsenings, i.e., that η̂d(H) > 0.

To show that H is not faithfully ubiquitous, it would suffice to show that if the
vertices x = (xv)v∈∂V are far apart from each other, then the expected total number of
witnesses for the faithful presence of H at x is small. As it happens, we are not able
to control the total number of witnesses without making further assumptions on H .
Nevertheless, the most important step in our argument is to show that if x is contained
in�x (0, n−1), then the expected number ofwitnesses in�x (n, n+1) is exponentially
small as a function of n. Once we have done this, we will control the expected number
of witnesses that occur ‘at the same scale’ as x by a similar argument. We are not
finished at this point, of course, since we have not ruled out the existence of witnesses
that are spread out across multiple scales. However, given the single-scale estimates,
we are able to handle multi-scale witnesses of this form via an inductive argument
on the size of H (Lemmas 4.7–4.9), which allows us to reduce from the multi-scale
setting to the single-scale setting.

Let us brieflydiscuss how the single-scale estimate is attained.Write� = �x (n, n+
1). Proposition 2.2 implies that the expected number of witnesses in �x (n, n + 1) is
at most a constant multiple of
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∑
ξ∈�

∏
u∈∂V

W (x, ξ),

where

W (x, ξ) =
∏
u∈∂V

〈xu, {ξe : e ⊥ u}〉−(d−4) ∏
u∈V◦

〈{ξe : e ⊥ u}〉−(d−4).

To control this sum, we split it as follows. Let L be the set of symmetric functions
� : E2 → {0, . . . , n} such that �(e, e) = 0 for every e ∈ E .

For each � ∈ L , let

�� =
{
ξ ∈ � : 2�(e,e′) ≤ 〈ξeξe′ 〉 ≤ 2�(e,e′)+2 for all e, e′ ∈ E

}
,

so that� =⋃
�∈L ��. The advantage of this decomposition is thatW is approximately

constant on each set ��:

log2 W (x, ξ) ≈ −(d − 4)|∂V |n − (d − 4)
|E |∑
i=1

∑
u⊥e

min
{
�(ei , e j ) : j < i, e j ⊥ u

}

for every ξ ∈ ��.
On the other hand, by considering the number of choices we have for ξei at each

step given our previous choices, it follows that

log2 |��| � dn + d
|E |∑
i=1

min
{
�̂(ei , e j ) : j < i

}
, (3.1)

where �̂ is the largest ultrametric on E that is dominated by �. (�� could be much
smaller than this of course—it could even be empty.) We deduce that

∑
ξ∈�

W (x, ξ) � exp2 (dn − (d − 4)|∂V |n)

·
∑
�∈L

exp2

⎡
⎣d

|E |∑
i=1

min
{
�̂(ei , e j ) : j < i

}
− (d − 4)

|E |∑
i=1

∑
u⊥e

min
{
�(ei , e j ) : j < i, e j ⊥ u

}⎤⎦

and hence that

log2
∑
ξ∈�

W (x, ξ) � log2 |L| + dn − (d − 4)|∂V |n

+max
�∈L

⎡
⎣d

|E |∑
i=1

min
{
�̂(ei , e j ) : j < i

}
− (d − 4)

|E |∑
i=1

∑
u⊥e

min
{
�(ei , e j ) : j < i, e j ⊥ u

}⎤⎦ .

We have that log2 |L| = E2 log2(n + 1), which will be negligible compared with the
rest of the expression in the case that η̂d(H) > 0. From here, the problem is to identify
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the � ∈ L achieving the maximum above. We will argue, by invoking a general lemma
(Lemma 4.4) about optimizing linear combinations of minima of distances on the
ultrametric polytope, that there is an � ∈ L maximizing the expression such that � is
an ultrametric and �(e, e′) ∈ {0, n} for every e, e′ ∈ E . The set of such functions � are
in bijection with the set of coarsenings H ′ of H , where two edges of H are identified
in H ′ if and only if �(e, e′) = 0. Choosing such a coarsening optimally, it is not hard
to deduce that

log2
∑
ξ∈�

W (x, ξ) � −η̂d(H) n + |E |2 log2 n,

giving the desired exponential decay.

3.2 Ubiquity in low dimensions

We now sketch the proof of ubiquity in low dimensions. Here we will only discuss
the case in which d/(d − 4) is not an integer (i.e., d /∈ {5, 6, 8}). The case in which
d/(d−4) is an integer raises several additional technical complications, see Sect. 4.2.1.

LetG be a d-dimensional transitive graphwith d ∈ {7}∪{9, 10, . . .}, let H be afinite
hypergraph with boundary, and let F be the uniform spanning forest of G. Recall the
definition of RG(H) from Sect. 1.1. Working in the opposite direction to the previous
subsection,wewish to prove that if H has a coarsening all ofwhose subhypergraphs are
d-buoyant, then H is faithfully ubiquitous in the component hypergraph Chypr (F) for
every r ≥ RG(H) a.s. We say that H is r -robustly faithfully present at x = (xv)v∈V
if there are infinitely many disjoint witnesses for the faithful presence of H at x . The
event that H is r -robustly faithfully present at x is a tail |∂V |-component property.
Thus, by Theorem 2.3, it suffices to prove that there exists an x such that, with positive
probability, the points of x are all in different components of F and H is RG(H)-
robustly faithfully present at x .

Let us suppose for now that every subhypergraph of H is d-buoyant (i.e., that we
do not have to pass to a coarsening for this to be true). To prove that H has a positive
probability of being robustly faithfully present at some x , we perform a first and
second moment analysis on the number of witnesses in dyadic shells. Suppose that
x is contained in �x (0, n − 1). Since we are now interested in existence rather than
nonexistence, we can make things easier for ourselves by considering only ξ that are
both contained in a dyadic shell �x (n, n + 1), and such that 〈ξ(e,u)ξ(e′,u′)〉 ≥ 2n−C1

whenever e 	= e′, for some appropriate chosen constant C1. Furthermore, for each
e ∈ E the points {ξ(e,u) : u ⊥ e} must be sufficiently well separated that there are not
local obstructions to ξ being a witness—this is where we need that r ≥ RG(H). Call
such a ξ good, and denote the set of good ξ by 
x (n). We then argue that for good ξ ,
the probability that ξ is a witness is comparable to

W (x, ξ) =
∏
u∈∂V

〈xu, {ξe : e ⊥ u}〉−(d−4) ∏
u∈V◦

〈{ξe : e ⊥ u}〉−(d−4)

� exp2 [−(d − 4)(�− |V◦|) n] ,
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where ξe is chosen arbitrarily from {ξ(e,u) : u ⊥ e} for each e, and hence that the
expected number of witnesses in 
x (n) is comparable to 2−ηd (H)n . In other words,
we have that the upper bound on the probability that ξ is a witness provided by
Proposition 2.2 is comparable to the true probability when ξ is good. Our proof of this
estimate appears in Sect. 4.3; unfortunately it is quite long.

Taking this lower bound on trust for now, the rest of the analysis proceeds similarly
to that sketched in Sect. 3.1, and is in fact somewhat simpler thanks to our restriction to
good configurations. The bound implies that the expected number of good witnesses
in �x (n, n + 1) is comparable to exp2 [−ηd(H) n]. Estimating the second moment is
equivalent to estimating the expected number of pairs ξ, ζ such that ξ and ζ are both
good witnesses. Observe that if ξ and ζ are both good witnesses then the following
hold:

(1) For each v ∈ V , there is at most one v′ ∈ V such that ξ(e,v) and ζ(e′,v′) are in the
same component of F for some (and hence every) e ⊥ v and e′ ⊥ v′.

(2) For each e ∈ E , there is at most one e′ ∈ E such that 〈ξeζe′ 〉 ≤ 2n−C1−1.
To account for the degrees of freedom given by (1), we define � to be the set of
functions φ : V◦ → V◦ ∪ {�} such that the preimage of φ−1(v) has at most one
element for each v ∈ V◦. (Here and elsewhere, we use � as a dummy symbol so that
we can encode partial bijections by functions.) For each φ ∈ �, we define W̃φ(ξ, ζ )

to be the event that ξ and ζ are both witnesses, and that ξ(e,v) and ζ(e′,v′) are in the
same component of F if and only if e′ = φ(e). Thus, to control the expected number
of pairs of good witnesses, it suffices to control

∑
φ∈�

∑
ξ,ζ good

P

(
W̃φ(ξ, ζ )

)
� max

φ∈�

∑
ξ,ζ good

P

(
W̃φ(ξ, ζ )

)
.

Next, to account for the degrees of freedom given by (2), we define � to be the set of
functions ψ : E → E ∪ {�} such that the preimage ψ−1(e) has at most one element
for each e ∈ E . For each ψ ∈ � and k = (ke)e∈E ∈ {0, . . . , n}E , let


ψ,k

=
{
(ξ, ζ ) ∈ (
x (n))2 : 2

n−ke ≤ 〈ζeξψ(e)〉 ≤ 2n−ke+2 for all e ∈ E such that ψ(e) 	= �,

and 〈ζeξe′ 〉 ≥ 2n−C1−2 for all e, e′ ∈ E such that e′ 	= ψ(e)

}
.

We can easily upper bound the volume

log2 |
ψ,k(x)| � 2d|E |n − d
∑

ψ(e) 	=�

ke.

Using this together with Proposition 2.2, is straightforward to calculate that

log2
∑

(ξ,ζ )∈
ψ,k

P

(
W̃φ(ξ, ζ )

)
� −2ηd(H) n − (d − 4)|{u ∈ V◦ : φ(u) 	= �}| n

+ (d − 4)
∑

ψ(e) 	=�

|{u ⊥ e : φ(u) ⊥ ψ(e)}|ke − d
∑

ψ(e) 	=�

ke
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for every φ ∈ �, ψ ∈ � and k ∈ {0, . . . , n}E .
We now come to some case analysis. Observe that for every ψ ∈ � and e ∈ E , we

have that

n∑
ke=0

exp2 [(d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| − d] ke

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp2 [(d − 4)|{u ⊥ e :
φ(u) ⊥ ψ(e)}| − d] n if (d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| > d

n if (d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| = d

1 if (d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| < d.

Since d/(d − 4) is not an integer, the middle case cannot occur and we obtain that

log2
∑
k

∑
(ξ,ζ )∈
ψ,k

P(W̃φ(ξ, ζ )) � −2ηd(H) n − (d − 4)|{u ∈ V◦ : φ(u) 	= �}| n

+
∑
e

[(d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| − d]1 (|{u ⊥ e : φ(u) ⊥ ψ(e)}|

> d/(d − 4)) n.

From here, our task is to show that the expression on the right hand side is maximized
whenφ ≡ � andψ ≡ �, inwhich case it is equal to−2dηd (H)n. To do this, we identify
optimal choices of φ and ψ with subhypergraphs of H , and use the assumption that
every subhypergraph of H is d-buoyant. This should be compared to how, in the proof
of non-ubiquity sketched in the previous subsection, we identified optimal choices of
� with coarsenings of H .

Once we have this, since there are only a constant number of choices for φ and ψ ,
we deduce that the second moment of the number of good witnesses is comparable to
the square of the first moment. Thus, it follows from the Cauchy–Schwarz inequality
that the probability of there being a good witness in each sufficiently large dyadic
shell is bounded from below by some ε > 0, and we deduce from Fatou’s lemma
that there are good witnesses in infinitely many dyadic shells with probability at
least ε. This completes the proof that robust faithful presence occurs with positive
probability.

It remains to remove the simplifying assumption we placed on H , i.e., to allow
ourselves to pass to a coarsening of H all of whose subhypergraphs are d-buoyant
before proving faithful ubiquity. To do this, we introduce the notion of constellations
of witnesses. These are larger collections of points, defined in such a way that every
constellation of witness for H contains a witness for each refinement of H . In the
actual, fully detailed proof we will work with constellations from the beginning. This
does not add many complications.
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4 Moment estimates

4.1 Non-ubiquity in high dimensions

The goal of this section is to prove the following.

Proposition 4.1 Let G be a d-dimensional transitive graph with d > 4, let F be the
uniform spanning forest of G, let H be a finite hypergraph with boundary, and let
r ≥ 1. Then the following hold:

(1) If H has a subhypergraph that does not have any d-buoyant coarsenings, then H
is not faithfully ubiquitous in Chypr (F) almost surely.

(2) If every quotient H ′ of H such that RG(H ′) ≤ r has a subhypergraph that does
not have any d-buoyant coarsenings, then H is not ubiquitous in Chypr (F) almost
surely.

Let G be a d-dimensional graph with d > 4, and let F be the uniform spanning
forest of G. Let H = (∂V , V◦, E) be a finite hypergraph with boundary such that
E 	= ∅, and let r ≥ 1. Recall thatW (x, ξ) is defined to be the event that ξ is a witness
for the faithful presence of H at x . For each N > n, we define

SH
x (n, N ) =

∑
ξ∈�•x (n,N )

1 [W (x, ξ)] .

For each (ξe)e∈E ∈ V
E , we also define

WH (x, ξ) =
∏
u∈∂V

〈xu, {ξe : e ⊥ u}〉−(d−4) ∏
u∈V◦

〈{ξe : e ⊥ u}〉−(d−4)

and

W
H
x (n, N ) =

∑
ξ∈�x (n,N )

WH (x, ξ),

so that, if we choose a vertex u(e) ⊥ e arbitrarily for each e ∈ E and set (ξe)e∈E =
(ξ(e,u(e)))e∈E , it follows from Proposition 2.2 that

E

[
SH
x (n, N )

]
=

∑
ξ∈�•x (n,N )

P(W (x, ξ)) �
∑

ξ∈�•x (n,N )E

W H (x, ξ) = W
H
x (n, N )

for every x , n, and N .
To avoid trivialities, in the case that H does not have any edges we define

W
H
x (n, N ) = 1 for every x ∈ V

∂V and N > n.
In order to proveProposition 4.1, itwill suffice to show that if H has a subhypergraph

with boundary that does not have anyd-buoyant coarsenings, then for every ε > 0 there
exists a collection of vertices (xu)u∈∂V such that all the vertices xu are in a different
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component of F with probability at least 1/2 (which, by Theorem 2.1, will be the
case if the vertices are all far away from each other), but P(H is faithfully present at
x) = P(SH

x (0,∞) > 0) ≤ ε. In order to prove this, we seek to obtain upper bounds on
the quantityW

H
x (n, N ).We begin by considering the case of a single distant scale. That

is, the case that |N−n| is a constant and all the points of x are contained in�x (0, n−1).
Recall that η̂d(H) is defined to be min{ηd(H ′) : H ′ is a coarsening of H}.
Lemma 4.2 (A single distant scale) LetG be a d-dimensional transitive graph and let
H be a finite hypergraph with boundary. Then for every m ≥ 0, there exists a constant
c = c(G, H ,m) such that

log2 W
H
x (n, n + m) ≤ −η̂d(H) n + |E |2 log2 n + c

for all x = (xu)u∈∂V ∈ V
∂V and all n such that 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V .

It will be useful for applications in Sect. 4.3 to prove a more general result. A
graph G is said to be d-Ahlfors regular if there exists a positive constant c such that
c−1rd ≤ |B(x, r)| ≤ crd for every r ≥ 1 and every x ∈ V (in which case we say
G is d-Ahlfors regular with constant c). Given α > 0 and a finite hypergraph with
boundary H , we define

ηd,α(H) = (d − 2α)�− d|E | − (d − 2α)|V◦|,

where we recall that � = ∑
e∈E deg(e) = ∑

v∈V deg(v), and define η̂d,α(H) =
min{ηd,α(H ′) : H ′ is a coarsening of H}. Given a graph G, a finite hypergraph with
boundary H = (∂V , V◦, E), and points (xv)v∈∂V , (ξe)e∈E we also define

WH
α (x, ξ) =

∏
u∈∂V

〈xu, {ξe : e ⊥ u}〉−(d−2α)
∏
u∈V◦

〈{ξe : e ⊥ u}〉−(d−2α)

and, for each N > n,

W
H ,α
x (n, N ) =

∑
ξ∈�x (n,N )

WH
α (x, ξ).

Note that ηd = ηd,2 and W
H
x = W

H ,2
x , so that Lemma 4.2 follows as a special case

of the following lemma.

Lemma 4.3 (A single distant scale, generalised) Let G be a d-Ahlfors regular graph
with constant c′, let H be a finite hypergraph with boundary, and let α ∈ R be such
that d ≥ 2α. Then for every m ≥ 0, there exists a constant c = c(c′, H , α, d,m) such
that

log2 W
H ,α
x (n, n + m) ≤ −η̂d,α(H) n + |E |2 log2 n + c

for all x = (xu)u∈∂V ∈ V
∂V and all n such that 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V .

Before proving this lemma, we will require a quick detour to analyze a relevant
optimization problem.
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Optimization on the ultrametric polytope

Recall that a (semi)metric space (X , d) is an ultrametric space if d(x, y) ≤
max{d(x, z), d(z, y)} for every three points x, y, z ∈ X . For each finite set A, the
ultrametric polytope on A is defined to be

UA =
{
(xa,b)a,b∈A ∈ [0, 1]A2 : xa,a = 0 for all a ∈ A, xa,b = xb,a for all a, b ∈ A,

and xa,b ≤ max
{
xa,c, xc,b

}
for all a, b, c ∈ A

}
,

which is a closed convex subset ofR
A2
.We considerUA to be the set of all ultrametrics

on A with distances bounded by 1. We write P(A2) for the set of subsets of A2.

Lemma 4.4 Let A be a finite non-empty set, and let F : RA2 → R be of the form

F(x) =
K∑

k=1
ck min{xa,b : (a, b) ∈ Wk},

where K < ∞, c1, . . . , cK ∈ R, and W1, . . . ,WK ∈ P(A2). Then the maximum of
F on UA is obtained by an ultrametric for which all distances are either zero or one.
That is,

max{F(x) : x ∈ UA} = max
{
F(x) : x ∈ UA, xa,b ∈ {0, 1} for all a, b ∈ A

}
.

Proof We prove the claim by induction on |A|. The case |A| = 1 is trivial. Suppose
that the claim holds for all sets with cardinality less than that of A. We may assume
that (a, a) /∈ Wk for every 1 ≤ k ≤ K and i ∈ A, since if (a, a) ∈ Wk for some
1 ≤ k ≤ K then the term ck min{xa,b : (a, b) ∈ Wk} is identically zero on UA. We
write 1 for the vector

1(a,b) = 1(a 	= b).

It is easily verified that

F(λx) = λF(x) and F(x + α1) = F(x)+ αF(1)

for every x ∈ R
A2
, every λ ≥ 0, and every α ∈ R.

Suppose y ∈ UA is such that F(y) = maxx∈UA F(x). We may assume that F(y) >

F(1) and that F(y) > F(0) = 0, since otherwise the claim is trivial. Let m =
min{ya,b : a, b ∈ A, a 	= b}, which is less than one by assumption. We have that

y

1− m
− m

1− m
1 ∈ UA

and

F

(
y

1− m
− m

1− m
1
)
= F(y)

1− m
− mF(1)

1− m
= F(y)+ m

1− m
(F(y)− F(1)),
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and so we must have m = 0 since y maximizes F .
Define an equivalence relation !" on A by letting a and b be related if and only

if ya,b = 0. We write â for the equivalence class of b under !". Let C be the set of
equivalence classes of !", and let φ : UC → UA be the function defined by

φ(x)a,b = xâ,b̂

for every x ∈ Un . For each 1 ≤ k ≤ K , let Ŵk be the set of pairs â, b̂ ∈ C such that
(a, b) ∈ Wk for some a in the equivalence class â and b in the equivalence class b̂.
Let F̂ : UC → R be defined by

F̂(x) =
K∑

k=1
ck min{xa,b : (â, b̂) ∈ Ŵk}.

We have that F̂ = F ◦φ, and, since y maximized F , we deduce that, by the induction
hypothesis,

max{F(x) : x ∈ UA} = max{F̂(x) : x ∈ UC }
= max{F̂(x) : x ∈ UC , xâ,b̂ ∈ {0, 1} for all â, b̂ ∈ C},

completing the proof. ��
We will also require the following generalisation of Lemma 4.4. For each finite

collection of disjoint finite sets {Ai }i∈I with union A =⋃
i∈I Ai , we define

U{Ai }i∈I = {x ∈ UA : xa,b = 1 for every distinct i, j ∈ I and every a ∈ Ai and b ∈ A j .}.

Lemma 4.5 Let {Ai }i∈I be a finite collection of disjoint, finite, non-empty sets with
union A =⋃

i∈I Ai , and let F : RA2 → R be of the form

F(x) =
K∑

k=1
ck min{x(i, j) : (i, j) ∈ Wk},

where K < ∞, c1, . . . , cK ∈ R, and W1, . . . ,WK ∈ P(A2). Then the maximum of
F on UA is obtained by an ultrametric for which all distances are either zero or one.
That is,

max{F(x) : x ∈ U{Ai }i∈I }=max
{
F(x) : x ∈ U{Ai }i∈I , xa,b ∈ {0, 1} for all a, b ∈ A

}
.

Proof We prove the claim by fixing the index set I and inducting on |A|. The case
|A| = |I | is trivial. Suppose that the claim holds for all collections of finite disjoint sets
indexed by I with total cardinality less than that of A. Wemay assume that (i, i) /∈ Wk

for every 1 ≤ k ≤ K and i ∈ A, since if (i, i) ∈ Wk for some 1 ≤ k ≤ K then the term
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ck min{xi, j : (i, j) ∈ Wk} is identically zero on UA. Furthermore, wemay assume that
Wk contains more than one element of at least one of the sets Ai for each 1 ≤ k ≤ K ,
since otherwise the term ck min{xi, j : (i, j) ∈ Wk} is equal to the constant ck on
U{Ai }i∈I . We write 1 and i for the vectors

1a,b = 1(a 	= b)

and

ia,b = 1(a 	= b, and a, b ∈ Ai for some i ∈ I ).

It is easily verified that

F(λx) = λF(x) and F(x + αi) = F(x)+ αF(1)

for every x ∈ U{Ai }i∈I , every λ ≥ 0, and every α ∈ R such that x + αi ∈ U{Ai }i∈I .
The rest of the proof is similar to that of Lemma 4.4. ��

Back to the uniform spanning forest

We now return to the proofs of Proposition 4.1 and Lemma 4.3.

Proof of Lemma 4.3 In this proof, implicit constants will be functions of c′, H , α, d
and m. The case that E = ∅ is trivial (by the assumption that d ≥ 2α), so we may
assume that |E | ≥ 1.

Write � = �x (n, n + m). First, observe that

〈xu, {ξe : e ⊥ u}〉 � 2n〈{ξe : e ⊥ u}〉

for every ξ ∈ � and u ∈ ∂V , and hence that

W
H ,α
x (n, n + m) =

∑
ξ∈�

∏
u∈∂V

〈xu, {ξe : e ⊥ u}〉−(d−2α)
∏
u∈V◦

〈{ξe : e ⊥ u}〉−(d−2α)

� 2−(d−2α)|∂V |n ∑
ξ∈�

∏
u∈V
〈{ξe : e ⊥ u}〉−(d−2α).

Let L be the set of symmetric functions � : E2 → {0, . . . , n} such that �(e, e) = 0
for every e ∈ E . For each � ∈ L , let

�� =
{
ξ ∈ � : 2�(e,e′) ≤ 〈ξeξe′ 〉 ≤ 2�(e,e′)+m+1 for all e, e′ ∈ E

}
,

so that � =⋃
�∈L ��. For each � in L , let

�̂(e, e′) = min{�(e, e′)} ∪ {max{�(e, e1), . . . , �(ek, e′)} : k ≥ 1 and e1, . . . , ek ∈ E
}
.
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In other words, �̂ is the largest ultrametric on E that is dominated by �. Observe that
for every � ∈ L , every ξ ∈ ��, end every e, e′, e′′ ∈ E , we have that

log2〈ξeξe′ 〉 ≤ log2 [〈ξeξe′′ 〉 + 〈ξe′′ξe′ 〉] ≤ log2 max{〈ξeξe′′ 〉, 〈ξe′′ξe′ 〉} + 1

≤ max{�(e, e′′), �(e′′, e′)} + 2m + 3,

and hence, by induction, that

log2〈ξeξe′ 〉 ≤ �̂(e, e′)+ (2m + 3)|E | ≈ �̂(e, e′).

Let e1, . . . , e|E | be an enumeration of E . For every � ∈ L , every 1 ≤ j < i ≤ |E |
and every ξ ∈ �� we have that

ξei ∈ B
(
ξe j , 2

�̂(ei ,e j )+(2m+3)|E |) and
∣∣∣B (ξe j , 2�̂(ei ,e j )+(2m+3)|E |)∣∣∣ � 2d �̂(ei ,e j ).

By considering the number of choices we have for ξei at each step given our previous
choices, it follows that

log2 |��| � dn + d
|E |∑
i=2

min
{
�̂(ei , e j ) : j < i

}
. (4.1)

Now, for every ξ ∈ ��, we have that

log2
∏
u∈V
〈{ξe : e ⊥ u}〉−(d−2α)

≈ −(d − 2α)
∑
u∈V

|E |∑
i=2

1(ei ∈ u)min
{
�(ei , e j ) : j < i, e j ⊥ u

}

= −(d − 2α)

|E |∑
i=2

∑
u⊥e

min
{
�(ei , e j ) : j < i, e j ⊥ u

}
. (4.2)

Thus, from (4.5) and (4.2) we have that

log2
∑
ξ∈��

∏
u∈V
〈{ξe : e ⊥ u}〉−(d−2α)

� dn +
|E |∑
i=2

[
d min{�̂(ei , e j ) : j < i} − (d − 2α)

∑
u⊥e

min{�(ei , e j ) : j < i, e j ⊥ u}
]

.

(4.3)

Let Q : L → R be defined to be the expression on the right hand side of (4.3). We
clearly have that Q(�̂) ≥ Q(�) for every � ∈ L , and so there exists � ∈ L maximizing
Q such that � is an ultrametric. It follows from Lemma 4.4 (applied to the normalized
ultrametric �/n) that there exists � ∈ L maximizing Q such that � is an ultrametric
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and every value of � is in {0, n}. Fix one such �, and define an equivalence relation !"
on E by letting e !" e′ if and only if �(e, e′) = 0, which is an equivalence relation
since � is an ultrametric. Observe that, for every 2 ≤ i ≤ |E |,

min{�(ei , e j ) : j < i} = 1[e j is not in the equivalence class of ei for any j < i] n,

and hence that

dn +
|E |∑
i=2

min{�(ei , e j ) : j < i} = |{equivalence classes of !"}| n.

Similarly, we have that, for every vertex u of H ,

|E |∑
i=2

min{�(ei , e j ) : j < i, e j ⊥ u} = (|{equivalence classes of !" incident to u}| − 1) n,

where we say that an equivalence class of !" is incident to u if it contains an edge that
is incident to u. Thus, we have that

Q(�) = d|{equivalence classes of !"}| n
−(d − 2α)

∑
u∈V

(|{equivalence classes of !" incident to u}| − 1) n.

(4.4)

Let H ′ = H/ !" be the coarsening of H associated to !" as in Sect. 2.7. We can
rewrite (4.4) as

Q(�) = d|E(H ′)| n − (d − 2α)�(H ′) n + (d − 2α)|V (H)| n
= −ηd,α(H ′) n + (d − 2α)|∂V | n.

Since |L| ≤ (n + 1)|E |2 , we deduce that

log2 W
H ,α
x (n, n + m) � −(d − 2α)|∂V | n + log2

∑
�∈L

Q(�)

≤ max
�∈L Q(�)− (d − 2α)|∂V | n + log2 |L|

� −η̂d,α(H) n + |E |2 log2 n

as claimed. ��
Next, we consider the case that the points xv are roughly equally spaced and we

are summing over points ξ that are on the same scale as the spacing of the xv .
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Lemma 4.6 (The close scale) Let G be a d-dimensional transitive graph with d > 4
and let H be a finite hypergraph with boundary. Let m1,m2 ≥ 0. Then there exists a
constant c = c(G, H ,m1,m2) such that

log2 W
H
x (0, n + m2) ≤ −η̂d(H) n + |E ∪ ∂V |2 log2 n + c

for every n ≥ 1 and every x = (xu)u∈∂V ∈ V
∂V are such that 2n−m1 ≤ 〈xuxv〉 ≤ 2n

for every u, v ∈ V .

Proof We may assume that E 	= ∅, the case E = ∅ being trivial. For notational
convenience, we will write ξv = xv , and consider v ⊥ v for every vertex v ∈ ∂V .
Write � = �x (0, n +m2), and observe that for each ξ ∈ � and e ∈ E there exists at
most one v ∈ ∂V for which log2〈ξeξv〉 < n − m1 − 1. To account for these degrees
of freedom, we define � to be the set of functions φ : E ∪ ∂V → ∂V ∪ {�} such
that φ(v) = v for every v ∈ ∂V . For each φ ∈ �, let Lφ be the set of symmetric
functions � : (E ∪ ∂V )2 → {0, . . . , n} such that �(e, e) = 0 for every e ∈ E ∪ ∂V
and �(e, e′) = n for every e, e′ ∈ E ∪ ∂V such that φ(e) 	= φ(e′). For each φ ∈ �

and � ∈ Lφ , let

�φ,� =
{
ξ ∈ � : �(e, e′)− m1 − 1 ≤ log2〈ξeξe′ 〉 ≤ �(e, e′)+ m2

+ 1 for every e, e′ ∈ E ∪ ∂V
}
,

and observe that � =⋃
φ∈�

⋃
�∈Lφ

�φ,�.

Now, for each φ ∈ � and � ∈ Lφ , let �̂ be the largest ultrametric on E ∪ ∂V that
is dominated by �. Observe that �̂ ∈ Lφ , and that, as in the previous lemma, we have
that

log2〈ξeξe′ 〉 � �̂(e, e′)

for every e, e′ ∈ E ∪ ∂V .
Let e1, . . . , e|E | be an enumeration of E , and let e0, e−1, . . . , e−|∂V |+1 be an enu-

meration of ∂V . As in the proof of the previous lemma, we have the volume estimate

log2 |�φ,�| � d
|E |∑
i=1

min{�̂(ei , e j ) : j < i} (4.5)

Now, for every ξ ∈ �φ,�, we have that, similarly to the previous proof,

log2 W (x, ξ) ≈ −(d − 4)
|E |∑
i=1

∑
u⊥e

min{�(ei , e j ) : j < i, e j ⊥ u}.
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(Recall that we are considering u ⊥ u for each u ∈ ∂V .) Thus, we have

log2
∑

ξ∈�φ,�

W (x, ξ)

�
|E |∑
i=1

[
d min{�̂(ei , e j ) : j < i} − (d − 4)

∑
u⊥e

min{�(ei , e j ) : j < i, e j ⊥ u}
]

.

(4.6)

Let Q : Lφ → R be defined to be the expression on the right hand side of (4.6).
Similarly to the previous proof but applying Lemma 4.5 instead of Lemma 4.4, there
is an � ∈ Lφ maximizing Q such that � is an ultrametric and �(e, e′) ∈ {0, n} for all
e, e′ ∈ E ∪ ∂V . Fix one such �, and define an equivalence relation !" on E ∪ ∂V by
letting e !" e′ if and only if �(e, e′) = 0, which is an equivalence relation since � is
an ultrametric. Similarly to the proof of the previous lemma, we can compute that

Q(�) = dn |{equivalence classes of !" that are contained in E}|
−(d − 4)n

∑
u∈∂V

|{equivalence classes of !" incident to u that do not contain u}|

−(d − 4)n
∑
u∈V◦

(|{equivalence classes of !" incident to u}| − 1) .

Since d > 4 and each equivalence class of !" can contain at most one vertex of v, we
see that Q increases if we remove a vertex v ∈ ∂V from its equivalence class. Since
� was chosen to maximize Q, we deduce that the equivalence class of v under !" is
a singleton for every v ∈ ∂V . Thus, there exists an ultrametric � ∈ Lφ maximizing
Q such that �(e, e′) ∈ {0, n} for every e, e′ ∈ E and �(e, v) = n for every e ∈ E
and v ∈ ∂V . Letting !"′ be the equivalence relation on E (rather than E ∪ ∂V )
corresponding to such an optimal �, we have

Q(�) = dn
∣∣{equivalence classes of !"′}∣∣

−(d − 4)n
∑
u∈∂V

∣∣{equivalence classes of !"′ incident to u}∣∣ .
−(d − 4)n

∑
u∈V◦

(∣∣{equivalence classes of !"′ incident to u}∣∣− 1
)
.

(4.7)

The rest of the proof is similar to the Proof of Lemma 4.2. ��
We can now bootstrap from the single scale estimates Lemmas 4.2 and 4.6 to a

multi-scale estimate. Given a hypergraph with boundary H = (∂V , V◦, E) and a
set of edges E ′ ⊆ E , we write V◦(E ′) = ⋃

e∈E ′ {v ∈ V◦ : v ⊥ e} and define
H(E ′) = (∂V , V◦(E ′), E ′).
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Lemma 4.7 (Induction estimate) Let G be a d-dimensional transitive graph and let H
be a finite hypergraph with boundary. Then there exists a constant c = c(G, H) such
that

log2
[
W

H
x (0, N + |E | + 2)−W

H
x (0, N )

]

≤ max
E ′�E

{
log2 W

H(E ′)
x (0, N + |E | + 2)

− [η̂d(H)− η̂d(H(E ′))
]
N + |E\E ′|2 log2 N

}
+ c

for every x = (xu)u∈∂V ∈ V
∂V and every N such that 〈xuxv〉 ≤ 2N−1 for all

u, v ∈ ∂V .

Note that when |E | ≥ 1 we must consider the term E ′ = ∅ when taking the
maximum in this lemma, which gives −η̂d(H)N + |E |2 log2 N .

Proof The claim is trivial in the case E = ∅, so suppose that |E | ≥ 1. Let � =
�x (0, N + |E | + 2)\�x (0, N ) so that

W
H
x (0, N + |E | + 2)−W

H
x (0, N ) ≤

∑
ξ∈�

WH (x, ξ).

For each E ′ � E and every 1 ≤ m ≤ |E | + 1, let

�E ′,m = (�x (0, N + m − 1))E
′ × (�x (N + m, N + |E | + 2))E\E ′ .

Observe that if ξ ∈ � then, by the Pigeonhole Principle, there must exist 1 ≤ m ≤
|E | + 2 such that ξe is not in �x (N − m − 1, N − m) for any e ∈ E , and we deduce
that

� =
⋃{

�E ′,m : E ′ � E, 1 ≤ m ≤ |E | + 2
}

.

Thus, to prove the lemma it suffices to show that

log2
∑

ξ∈�H(E ′),m
W H (x, ξ) � log2 W

H(E ′)
x (0, N )− (η̂d(H)− η̂d(H(E ′))

)
N

+|E\E ′|2 log2 N (4.8)

whenever 1 ≤ m ≤ |E | + 2 and E ′ � E . If E ′ = ∅ then this follows immediately
from Lemma 4.2, so we may suppose not.

To this end, fix E ′ � E with |E ′| ≥ 1 and write H ′ = H(E ′) =
(∂V , V◦(E ′), E ′) = (∂V , V ′◦, E ′). Choose some v0 ∈ ∂V arbitrarily, and write
xv = xv0 for every v ∈ V ′◦. Then for every ξ ∈ �E ′,m , using the fact that we have the
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empty scale �x (N − m − 1, N − m) separating {ξe : e ∈ E ′} from {ξe : e /∈ E ′}, we
have that

〈{xu} ∪ {ξe : e ⊥ u}〉 � 〈{xu} ∪ {ξe : e ∈ E ′, e ⊥ u}〉 〈{xu} ∪ {ξe : e /∈ E ′, e ⊥ u}〉

for every vertex u ∈ ∂V ,

〈{ξe : e ⊥ u}〉 � 〈{ξe : e ∈ E ′, e ⊥ u}〉 〈{xu} ∪ {ξe : e /∈ E ′, e ⊥ u}〉

for every vertex u ∈ V ′◦, and that, trivially,

〈{ξe : e ⊥ u}〉 = 〈{ξe : e /∈ E ′, e ⊥ u}〉

for every vertex u ∈ V◦\V ′◦. Define a hypergraph with boundary H ′′ = (∂V ′′, V ′′◦ , E ′′,
⊥′′) by setting

∂V ′′ = ∂V ∪ V ′◦, V ′′◦ = V◦\V ′◦, V ′′ = ∂V ′′ ∪ V ′′◦ = V , E ′′ = E\E ′,
and ⊥′′ = ⊥ ∩ (V ′′ ∩ E ′′).

For each ξ ∈ �E ′,m , let ξ ′ = (ξ ′e)e∈E ′ = (ξe)e∈E ′ and ξ ′′ = (ξ ′′e )e∈E ′′ = (ξe)e∈E ′′ .
Then the above displays imply that

WH (x, ξ) � WH ′ (x, ξ ′) ·WH ′′(x, ξ ′′)

for every ξ ∈ �E ′,m . Thus, summing over ξ ′ ∈ (�x (0, N + m − 1))E
′
and ξ ′′ ∈

(�x (N + m, N + |E | + 2))E
′′
, we obtain that

log2
∑

ξ∈�E ′,m
W H (x, ξ) � log2 W

H ′
x (0, N + m − 1)+ log2 W

H ′′
x (N + m, N + |E | + 2)

� log2 W
H ′
x (0, N + |E | + 2)− η̂d(H

′′)N + |E ′′|2 log2 N ,

(4.9)

where the second inequality follows from Lemma 4.2.
To deduce (4.8) from (4.9), it suffices to show that

η̂d(H) ≤ η̂d(H
′)+ η̂d(H

′′). (4.10)

To this end, let !"′ be an equivalence relation on E ′ and let !"′′ be an equivalence
relation on E ′′. We can define an equivalence relation !" on E by setting e !" e′ if and
only if either e, e′ ∈ E ′ and e !"′ e′ or e, e′ ∈ E ′′ and e !"′′ e′. We easily verify that
�(H/!")=�(H ′/!"′)+�(H ′′/!"′′), |V◦(H/!")| = |V◦(H ′/!"′)|+|V◦(H ′′/!"′′)|,
and |E(H/!")| = |E(H ′/!"′)| +|E(H ′′/!"′′)|, so that

ηd(H/!") = ηd(H
′/!"′)+ ηd(H

′′/!"′′),
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and the inequality (4.10) follows by taking the minimum over !"′ and !"′′. ��

We now use Lemmas 4.6 and 4.7 to perform an inductive analysis of W. Although
we are mostly interested in the non-buoyant case, we begin by controlling the buoyant
case.

Lemma 4.8 (Many scales, buoyant case) Let H be a finite hypergraph with boundary.
Let m ≥ 1, and suppose that x = (xu)u∈∂V ∈ V

∂V are such that 2n−m ≤ 〈xuxv〉 ≤
2n−1. If every subhypergraph of H has a d-buoyant coarsening, then there exists a
constant c = c(G, H ,m) such that

log2 W
H
x (0, N ) ≤ −η̂d(H) N + (|E ∪ ∂V |2 + 1) log2 N + c

for all N ≥ n.

Proof We induct on the number of edges in H . The claim is trivial when E = ∅.
Suppose that |E | ≥ 1 and that the claim holds for all finite hypergraphs with boundary
that have fewer edges than H . By assumption, η̂d(H ′) ≤ 0 for all subhypergraphs H ′
of H . Thus, it follows from the induction hypothesis that

log2 W
H ′
x (0, N + |E | + 2) � −η̂d(H

′) N + (|E ′ ∪ ∂V ′|2 + 1) log2 N

for each proper subhypergraph H ′ of H , and hence that

log2 W
H ′
x (0, N + |E | + 2)− [η̂d(H)− η̂d(H

′)
]
N + |E\E ′|2 log2 N

� −η̂d(H) N + (|E ′ ∪ ∂V |2 + 1+ |E\E ′|2) log2 N .

(Note that the implicit constants depending on H ′ from the induction hypothesis are
bounded by a constant depending on H since H has only finitely many subhyper-
graphs.) Observe that whenever E ′ � E we have that

|E ′ ∪ ∂V |2 + 1+ |E\E ′|2 ≤ |E ∪ ∂V |2,

and so we deduce that

log2 W
H ′
x (0, N + |E | + 2)− [η̂d(H)− η̂d(H

′)
]
N + |E\E ′|2 log2 N

� −η̂d(H) N + |E ∪ ∂V |2 log2 N

for every proper subhypergraph H ′ of H . Thus, we have that

log2
[
W

H
x (0, N + 1)−W

H
x (0, N )

]
≤ log2

[
W

H
x (0, N + |E | + 2)−W

H
x (0, N )

]

� −η̂d(H) N + |E ∪ ∂V |2 log2 N

123



T. Hutchcroft, Y. Peres

for all N ≥ n, where we applied Lemma 4.7 in the second inequality. Summing from
n to N we deduce that

W
H
x (0, N )−W

H
x (0, n) �

N∑
i=n

exp2
[
−η̂d(H) i + |E ∪ ∂V |2 log2 i

]

� exp2
[
−η̂d(H) N + (|E ∪ ∂V |2 + 1) log2 N

]
.

Using Lemma 4.6 to control the term W
H
x (0, n) completes the induction. ��

We are now ready to perform a similar induction for the non-buoyant case. Note that
in this case the induction hypothesis concerns probabilities rather than expectations.
This is necessary because the expectations can grow as N →∞ for the wrong reasons
if H has a buoyant coarsening but has a subhypergraph that does not have a buoyant
coarsening (e.g. the tree in Fig. 3).

Lemma 4.9 (Every scale, non-buoyant case) Let H be a finite hypergraph with bound-
ary such that E 	= ∅, let m ≥ 1, and suppose that H has a subhypergraph that does not
have any d-buoyant coarsenings. Then there exist positive constants c1 = c1(G, H ,m)

and c2 = c2(G, H .m) such that

log2 P(SH
x (0,∞) > 0) ≤ −c1 n + |E ∪ ∂V |2 log2 n + c2

for all x = (xu)u∈∂V ∈ V
∂V such that 2n−m ≤ 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V .

Proof We induct on the number of edges in H . For the base case, suppose that H
has a single edge. In this case we must have that ηd(H) > 0, and we deduce from
Lemmas 4.2 and 4.6 that

W
H
x (0, N ) ≤ W

H
x (0, n)+

N∑
i=n+1

W
H
x (i − 1, i)

� exp2
[
−η̂d(H) n + |E ∪ ∂V |2 log2 n

]

+
N∑

i=n+1
exp2

[
−η̂d(H) i + |E |2 log2 i

]

� exp2
[
−η̂d(H) n + |E ∪ ∂V |2 log2 n

]
,

so that the claim follows from Markov’s inequality. This establishes the base case of
the induction.

Now suppose that |E | > 1 and that the claim holds for all finite hypergraphs with
boundary that have fewer edges than H . If H has a proper subhypergraph H ′ with
η̂d(H ′) > 0, then SH ′

x (0,∞) is positive if SH
x (0,∞) is, and so the claim follows from

the induction hypothesis, letting c1(G, H ,m) = c1(G, H ′,m) and c2(G, H ,m) =
c2(G, H ′,m).
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Thus, it suffices to consider the case that η̂d(H) > 0 but that η̂d(H ′) ≤ 0 for every
proper subhypergraph H ′ of H . In this case, we apply Lemma 4.7 to deduce that

log2
[
W

H
x (0, N + 1)−W

H
x (0, N )

]
≤ log2

[
W

H
x (0, N + |E | + 2)−W

H
x (0, N )

]

� max
E ′�E

{
log2 W

H(E ′)
x (0, N + |E | + 2)

− [η̂d(H)− η̂d(H(E ′))
]
N + |E\E ′|2 log2 N

}
.

Lemma 4.8 then yields that

log2
[
W

H
x (0, N + 1)−W

H
x (0, N )

]

� −η̂d(H) N + (|E ′ ∪ ∂V |2 + 1+ |E\E ′|2) log2 N
� −η̂d(H) N + |E ∪ ∂V |2 log2 N .

Finally, combining this with Lemma 4.6 yields that, since η̂d(H) > 0,

W
H
x (0, N ) � exp2

[
−η̂d(H) n + |E ∪ ∂V |2 log2 n

]

+
N∑
i=n

exp2
[
−η̂d(H) i + |E ∪ ∂V |2 log2 i

]

� exp2
[
−η̂d(H) n + |E ∪ ∂V |2 log2 n

]
,

and the claim follows from Markov’s inequality. ��

Proof of Proposition 4.1 Let H be a finite hypergraph with boundary that has a subhy-
pergraph that does not have any d-buoyant coarsenings, so that in particular H has at
least one edge. Lemma 4.9 and Proposition 2.2 imply that for every ε > 0, there exists
x = (xv)v∈∂V such that each of the points xv are in different components of F with
probability at least 1 − ε, but H has probability at most ε to be faithfully present at
x in the component hypergraph Chypr (F). It follows that H is not faithfully ubiquitous
in the component graph Chypr (F) a.s.

Now suppose that H is a hypergraph with boundary such that every quotient H ′
of H such that RG(H ′) ≤ r has a subhypergraph that does not have any d-buoyant
coarsenings. Note that if H ′ is a quotient of H such that RG(H ′) > r then H ′ is not
faithfully present anywhere in G a.s. This follows immediately from the definition
of RG(H ′). On the other hand, Lemma 4.9 and Proposition 2.2 imply that for every
ε > 0, there exists x = (xv)v∈∂V such that each of the points xv are in different
components of F with probability at least 1− ε, but, for each quotient H ′ of H with
RG(H ′) ≤ r , the hypergraph H ′ has probability at most ε/|{quotients of H}| to be
faithfully present at x in the component hypergraph Chypr (F), since H ′ must have a
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subhypergraph none of whose coarsenings are d-buoyant by assumption. It follows
by a union bound that H has probability at most ε to be present in Chypr (F) at this x .

It follows as above that H is not ubiquitous in the component hypergraph Chypr (F)

a.s. ��

4.2 Positive probability of robust faithful presence in low dimensions

Recall that if G is a d-dimensional transitive graph, H = (∂V , V◦, E) is a finite
hypergraph with boundary, that r ≥ 1 and that (xv)v∈∂V is a collection of points
in G, we say that H is r -robustly faithfully present at x = (xv)v∈V if there is an
infinite collection {ξ i = (ξ i(e,v))(e,v)∈E• : i ≥ 1} such that ξ i is a witness for the

r -faithful presence of H at x for every i , and ξ
j
(e,v) 	= ξ

j
(e′,v′) for every i, j ≥ 1

and (e, v), (e′, v′) ∈ E• such that i 	= j . As in the introduction, for each M ≥ 1
we let RG(M) be minimal such that it is possible for a set of diameter RG(M) to
intersectM distinct components of the uniform spanning forest ofG, and let RG(H) =
RG(maxe∈E deg(e)).

We say that a set W ⊂ V is well-separated if the vertices of W are all in different
components of the uniform spanning forest F with positive probability.

Lemma 4.10 Let G be a d-dimensional transitive graph with d > 4, and let F be the
uniform spanning forest of G. Then a finite set W ⊂ V is well-separated if and only
if when we start a collection of independent simple random walks {Xv : v ∈ W } at
the vertices of W , the event that {Xu

i : i ≥ 0} ∩ {Xv
i : i ≥ 0} = ∅ for every distinct

u, v ∈ W has positive probability.

Proof We will be brief since the statement is intuitively obvious from Wilson’s algo-
rithm and the details are somewhat tedious. The ‘if’ implication follows trivially from
Wilson’s algorithm. To see the reverse implication, suppose that W is well-separated
and consider the paths {(�v

i )i≥0 : v ∈ W } from the vertices of W to infinity in F.
Using Wilson’s algorithm and the Green function estimate (2.4), it is easily verified
that

lim
i→∞

∑
v∈W

∑
u∈W\{v}

⎡
⎣〈�v

i �
u
j 〉−d+4 +

i−1∑
j=0
〈�v

i �
u
j 〉−d+2

⎤
⎦ = 0 (4.11)

almost surely on the event that the vertices of W are all in different components of F.
Let i ≥ 1 and consider the collection of simple random walks Y v,i started at �v

i and
conditionally independent of each other and of F given (�v

i )v∈W , and let Ỹ v,i be the
random path formed by concatenating (�v

j )
i
j=1 with Y v,i . It follows from (4.11) and

Markov’s inequality that

lim sup
i→∞

P

({
Ỹ v,i
j : j≥0

} ∩ {Ỹ u,i
j : j≥0

} = ∅ for every v ∈ W
)
= P(F (W )) > 0,

(4.12)
where we recall that F (W ) is the event that all the vertices of W are in different
components of F. In particular, it follows that the probability appearing on the left
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hand side of (4.12) is positive for some i0 ≥ 0. The result now follows since the
walks {Xv : v ∈ W } have a positive probability of following the paths �v for their
first i0 steps, and on this event their conditional distribution coincides with that of
{Ỹ v,i0 : v ∈ W }. ��

The goal of this subsection is to prove criteria for robust faithful presence to occur
with positive probability. We begin with the case that d/(d − 4) is not an integer
(i.e., d /∈ {5, 6, 8}), which is technically simpler. The corresponding proposition for
d = 5, 6, 8 is given in Proposition 4.15.

Proposition 4.11 Let G be a d-dimensional transitive graph with d > 4 such that
d/(d − 4) is not an integer, and let F be the uniform spanning forest of G. Let H
be a finite hypergraph with boundary with at least one edge, and suppose that H
has a coarsening all of whose subhypergraphs are d-buoyant. Then for every r ≥
RG(H) and every well-separated collection of points (xv)v∈∂V inV, there is a positive
probability that the vertices xu are all in different components of F and that H is
robustly faithfully present at x in Chypr (F).

The Proof of Proposition 4.11 will employ the notion of constellations. The reason
we work with constellations is that a constellation of witnesses for the presence of H
(defined below) necessarily contains a witness for every refinement of H . This allows
us to pass to a coarsening and work in the setting that every subhypergraph of H is
d-buoyant.

For each finite set A, we define the rooted powerset of A, denoted P•(A), to be

P•(A) := {(B, b) : B is a subset of A and b ∈ B}.

We call a set of vertices y = (y(B,b)) of G indexed by P•(A) an A-constellation.
Given an A-constellation y, we defineAr (y) to be the event that y(B,b) and y(B′,b′) are
connected in F if and only if b = b′, and in this case they are connected by a path in F
with diameter at most r . We say that an A-constellation y in G is r -good if it satisfies
the following conditions.

(1) 〈y(B,b)y(B′,b′)〉 ≤ r for every (B, b), (B ′, b′) ∈ P•(A).
(2) 〈y(B,b)y(B,b′)〉 ≤ RG(|B|)+ 1 for every B ⊆ A and b, b′ ∈ B, and
(3) P(Ar (y)) ≥ 1/r .

The proof of the following lemma is deferred to Sect. 4.3.

Lemma 4.12 Let G be a d-dimensional transitive graph with d > 4. Let A be a finite
set. Then there exists r = r(|A|) such that for every vertex x of G, there exists an
r-good A-constellation contained in the ball of radius r around x.

Let H = (∂V , V◦, E) be a finite hypergraph with boundary with at least one edge,
and let r = r(maxe deg(e)) be as in Lemma 4.12. We write P•(e) = P•({v ∈ V :
v ⊥ e}) for each e ∈ E . For each ξ = (ξe)e∈E ∈ V

E and each e ∈ E , we let
(ξ(e,B,v))(B,v)∈P•(e) be an r -good e-constellation contained in the ball of radius r
about ξe, whose existence is guaranteed by Lemma 4.12.

For each x = (xv)v∈∂V and ξ = (ξe)e∈E , we define W̃ (x, ξ) to be the event that
the following conditions hold:
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(1) For each boundary vertex v ∈ ∂V , every point in the set {xv} ∪ {ξ(e,A,v) : e ∈
E, (A, v) ∈ P•(e)} is in the same component of F,

(2) For each interior vertex v ∈ V◦, every point in the set {ξ(e,A,v) : e ∈ E, (A, v) ∈
P•(e)} is in the same component of F, and

(3) For any two distinct vertices u, v ∈ V , the components of F containing the sets
{ξ(e,A,u) : e ∈ E, (A, u) ∈ P•(e)} and {ξ(e,A,v) : e ∈ E, (A, v) ∈ P•(e)} are
distinct.

Thus, on the event W̃ (x, ξ) every refinement H ′ of H is RG(H ′)-faithfully present
at x : Indeed, letting φV : V ′ → V and φE : E ′ → E be as in the definition
of a coarsening and letting A(e′) = {v ∈ V : φ−1V (v) ⊥′ e′} for each e ∈ E ′,
the collection (ξ(e′,v′))(e′,v′)∈E ′• = (ξ(φE (e′),A(e′)φV (v′)))(e′,v′)∈E ′• is a witness for the
RG(H ′)-faithfully presence of H ′ at x .

For each n ≥ 0, let 
x (n) be the set


x (n) =
{
(ξe)e∈E ∈ �x (n, n + 1)E : 〈ξeξe′ 〉 ≥ 2n−C1 for all distinct e, e′ ∈ E

}
,

where C1 = C1(E) is chosen so that log2 |
x (n)| ≈ nd|E | for all n sufficiently large
and all x . It is easy to see that such a constant exists using the d-dimensionality of G.
For each n ≥ 0 we define S̃x (n) to be the random variable

S̃x (n) :=
∑

ξ∈
x (n)

1(W̃ (x, ξ)),

so that every refinement H ′ of H is RG(H ′)-faithfully present at x on the event that
S̃x (n) is positive for some n ≥ 0, and every refinement H ′ of H is RG(H ′)-robustly
faithfully present at x on the event that S̃x (n) is positive for infinitely many n ≥ 0.

The following lemma lower bounds the first moment of S̃n .

Lemma 4.13 Let G be a d-dimensional transitive graph with d > 4. Let H be a
finite hypergraph with boundary with at least one edge, let ε > 0, and suppose that
x = (xv)v∈∂V is such that 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V and satisfies

P

(
{Xu

i : i ≥ 0} ∩ {Xv
i : i ≥ 0} = ∅ for every distinct u, v ∈ ∂V

)
≥ ε

when {Xv : v ∈ ∂V } are a collection of independent simple random walks started at
(xv)v∈∂V . Then there exist constants c = c(G, H , ε) and n0 = n0(G, H , ε) such that
if n ≥ n0 then

log2 P(W̃ (x, ξ)) ≥ −(d − 4) (�− |V◦|) n − c

for every ξ ∈ 
x (n) and hence that

log2 E[S̃x (n)] ≥ −ηd(H) n − c.
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The proofs of Lemmas 4.12 and 4.13 are unfortunately rather technical, and are
deferred to Sect. 4.3. For the rest of this section, we will take these lemmas as given,
and use them to prove Proposition 4.11. The key remaining step is to upper bound the
second moment of the random variable S̃x (n).

Lemma 4.14 (Restricted second moment upper bound) Let G be a d-dimensional
transitive graphwith d > 4 such that d/(d−4) is not an integer. Let H be a hypergraph
with boundary with at least one edge. Suppose that every subhypergraph of H is d-
buoyant. Then there exists a positive constant c = c(G, H) such that

log2 E[S̃x (n)2] ≤ −2ηd(H) n + c

for all x = (xu)u∈∂V ∈ (V)∂V and all n such that 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V .

Proof Observe that if ξ, ζ ∈ 
x (n) are such that the events W̃ (x, ξ) and W̃ (x, ζ )

both occur, then the following hold:

(1) For each v ∈ V , there is at most one v′ ∈ V such that ξ(e,A,v) and ζ(e′,A′,v′) are
in the same component of F for some (and hence every) e, e′ ∈ E and (A, v) ∈
P•(e), (A′, v′) ∈ P•(e′).

(2) For each e ∈ E , there is at most one e′ such that 〈ξeζe′ 〉 ≤ 2n−C1−1.

As a bookkeeping tool to account for the first of these degrees of freedom, we define�

be the set of functionsφ : V◦ → V◦∪{�} such that the preimageφ−1(v) has atmost one
element for each v ∈ V◦. We write φ−1(v) = � if v is not in the image of φ ∈ �, and
write φ(v) = v for every v ∈ ∂V . (Here and elsewhere, we use � as a dummy symbol
so that we can encode partial bijections by functions.) For each φ ∈ �, and ξ, ζ ∈ V,
define the event W̃φ(ζ, ξ) to be the event that both the event W̃ (x, ξ) ∩ W̃ (x, ζ )

occurs, and that for any two distinct vertices u, v ∈ V◦ the components of F containing
{ξ(e,A,u) : e ∈ E, (A, u) ∈ P•(e)} and {ζ(e,A,v) : e ∈ E, (A, v) ∈ P•(e)} coincide if
and only if v = φ(u). Thus, we have that

W̃ (x, ξ) ∩ W̃ (x, ζ ) =
⋃
φ∈�

W̃φ(ξ, ζ )

and hence that

S̃x (n)2 =
∑

ξ,ζ∈
x (n)

1[W̃ (x, ξ) ∩ W̃ (x, ζ )] ≤
∑
φ∈�

∑
ξ,ζ∈
x (n)

1[W̃φ(ξ, ζ )].
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It follows from Proposition 2.2 that

P(W̃φ(ξ, ζ )) �
∏
u∈∂V

〈{xu} ∪ {ξe : e ⊥ u}, {ζe : e ⊥ u}〉−(d−4)

·
∏

u∈V◦, φ(v)=�

〈{ξe : e ⊥ u}〉−(d−4)

·
∏

u∈V◦, φ−1(v)=�

〈{ξe : e ⊥ u}〉−(d−4)

∏
u∈V◦, φ(v) 	=�

〈{ξe : e ⊥ u} ∪ {ζe : e ⊥ φ(u)}〉−(d−4) (4.13)

We define Rφ(ξ, ζ ) to be the expression on the right hand side of (4.13), so that

E

[
S̃x (n)2

]
�
∑
φ∈�

∑
ξ,ζ∈
x (n)

Rφ(ξ, ζ ).

We now account for the second of the two degrees of freedom above. Let � be the
set of functions ψ : E → E ∪ {�} such that the preimage ψ−1(e) has at most one
element for every e ∈ E . For each ψ ∈ � and k = (ke)e∈E ∈ {0, . . . , n}E , let


ψ,k

=
{
(ξ, ζ ) ∈ (
x (n))2 : 2

n−ke ≤ 〈ζeξψ(e)〉 ≤ 2n−ke+2 for all e ∈ E such that ψ(e) 	= �,

and 〈ζeξe′ 〉 ≥ 2n−C1−2 for all e, e′ ∈ E such that e′ 	= ψ(e)

}
,

where C1 is the constant from the definition of 
x (n), and observe that

log2 |
ψ,k | � 2d|E |n − d
∑

ψ(e) 	=�

ke. (4.14)

For each ξ, ζ ∈ 
x (n) and e ∈ E , there is at most one e′ ∈ E such that 〈ζeξe′ 〉 ≤
2n−C1−2, and it follows that

(
x (n))2 =
⋃
ψ,k


ψ,k,

where the union is taken over ψ ∈ � and k ∈ {0, . . . , n}E .
Now, for any ξ, ζ ∈ 
ψ,k and u ∈ V◦ with φ(u) 	= �, we have that

log2〈{ξe : e ⊥ u} ∪ {ζe : e ⊥ φ(u)}〉−(d−4) ≈ −(d − 4) (deg(u)+deg(φ(u))− 1) n

+(d − 4)
∑
e⊥u

1[ψ(e) ⊥ φ(u)] ke.

Meanwhile, we have that

log2〈{ξe : e ⊥ u}〉−(d−4) ≈ log2〈{ζe : e ⊥ u}〉−(d−4) ≈ −(d − 4)(deg(u)− 1) n
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for every u ∈ V◦, and

log2〈xu, {ξe : e ⊥ u}, {ζe : e ⊥ u}〉−(d−4)

≈ −2(d − 4) deg(u)n + (d − 4)
∑
e⊥u

1[ψ(e) ⊥ u] ke

for every u ∈ ∂V . Summing these estimates yields

log2 Rφ(ξ, ζ ) ≈ −2(d − 4)�n + 2(d − 4)|V◦|n − (d − 4)|{v ∈ V◦ : φ(v) 	= �}| n
+(d − 4)

∑
e

|{u ⊥ e : φ(u) ⊥ ψ(e)}|ke.

Thus, using the volume estimate (4.14), we have that

log2
∑

(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ ) � −2ηd(H)n − (d − 4)|{u ∈ V◦ : φ(u) 	= �}| n

+(d − 4)
∑

ψ(e) 	=�

|{u ⊥ e : φ(u) ⊥ ψ(e)}|ke − d
∑

ψ(e) 	=�

ke.

Observe that for every ψ ∈ � and e ∈ E , we have that

n∑
ke=0

exp2 ([(d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| − d] ke)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp2 ([(d − 4)|{u ⊥ e :
φ(u) ⊥ ψ(e)}| − d] n) if (d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| > d

n if (d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| = d

1 if (d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| < d.

Thus, summing over k, we see that for every ψ ∈ � and φ ∈ � we have that

log2
∑

k∈{0,...,n}E

∑
(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ ) � −2ηd (H) n − (d − 4)|{u ∈ V◦ : φ(v) 	= �}|n

+
∑
e∈E

[(d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| − d]1 (|{u ⊥ e : φ(u) ⊥ ψ(e)}| > d/(d − 4)) n

+
∑
e∈E

1 (|{u ⊥ e : φ(u) ⊥ ψ(e)}| = d/(d − 4)) log2 n. (4.15)
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Since d/(d − 4) is not an integer, the last term is zero, so that if we define Q :
�×� → R by

Q(φ,ψ) = −(d − 4)|{u ∈ V◦ : φ(v) 	= �}|
+
∑
e∈E

[(d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| − d]

1[|{u ⊥ e : φ(u) ⊥ ψ(e)}| > d/(d − 4)], (4.16)

then we have that

log2
∑

k∈{0,...,n}E

∑
(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ ) � −2ηd(H)n + Q(φ,ψ)n.

Thus, since |�×�| does not depend on n, we have that

log2 E[S̃x (n)2] � log2
∑
φ∈�

∑
ψ∈�

∑
k∈{0,...,n}E

∑
(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ )

� max
φ,ψ

log2
∑

k∈{0,...,n}E

∑
(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ ) � −2ηd(H)n +max
φ,ψ

Q(φ, ψ)n,

and so it suffices to prove that Q(φ,ψ) ≤ 0 for every (φ,ψ) ∈ �×�.
To prove this, first observe that we can bound

Q(φ,ψ) ≤ Q̃(φ) := −(d − 4)|{u ∈ V◦ : φ(v) 	= �}|
+
∑
e∈E

[(d − 4)|{u ⊥ e : φ(u) 	= �}| − d]

1[|{u ⊥ e : φ(u) 	= �}| > d/(d − 4)].

Let H ′ be the subhypergraph of H with boundary vertices given by the boundary
vertices of H , edges given by the set of edges of H that have |{u ⊥ e : φ(u) 	= �}| >
d/(d − 4), and interior vertices given by the set of interior vertices u of H for which
φ(u) 	= � and φ(u) ⊥ e for some e ∈ E ′. Then we can rewrite

Q̃(φ) = ηd(H
′)− (d − 4)

∣∣{v ∈ V◦ : φ(v) 	= �}\V ′∣∣ ≤ 0, (4.17)

where the second inequality follows by the assumption that every subhypergraph of
H is d-buoyant. This completes the proof. ��
Proof of Proposition 4.11 Suppose that the finite hypergraph with boundary H has a d-
optimal coarsening all of whose subhypergraphs are d-buoyant. Then the lower bound
on the square of the first moment of S̃H ′

x (n) provided by Lemma 4.13 and the upper
bound on the second moment of S̃H ′

x (n) provided by Lemma 4.14 coincide, so that
the Cauchy–Schwarz inequality implies that
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P

(
S̃H ′
x (n) > 0

)
≥

E

[
S̃H ′
x (n)

]2

E

[
S̃H ′
x (n)2

] � 1

for every n such that 〈xuxv〉 ≤ 2n−1 for every u, v ∈ ∂V . It follows from Fatou’s
lemma that

P

(
S̃H ′
x (n) > 0 for infinitely many n

)
≥ lim sup

n→∞
P

(
S̃H ′
x (n) > 0

)
� 1,

so that H is robustly faithfully present at x with positive probability as claimed. ��

4.2.1 The cases d = 5, 6, 8.

We now treat the cases in which d/(d−4) is an integer. This requires somewhat more
care owing to the possible presence of the logarithmic term in (4.15). Indeed, we will
only treat certain special ‘building block’ hypergraphs directly via the second moment
method.Wewill later build other hypergraphs out of these special hypergraphs in order
to prove the main theorems.

Let H = (∂V , V◦, E) be a finite hypergraphwith boundary.We say that a subhyper-
graph H ′ = (∂V ′, V ′◦, E ′) of H is bordered if ∂V ′ = ∂V and every vertex v ∈ V \V ′
is incident to at most one edge in E ′. For example, every full subhypergraph containing
every boundary vertex is bordered. We say that a subhypergraph of H is proper if it
is not equal to H and non-trivial if it has at least one edge. We say that H is d-basic
if it does not have any edges of degree less than or equal to d/(d − 4) and does not
contain any proper, non-trivial bordered subhypergraphs H ′ with ηd(H ′) = 0.

Proposition 4.15 Let G be a d-dimensional transitive graph with d ∈ {5, 6, 8}, and
let F be the uniform spanning forest of G. Let H be a finite hypergraph with boundary
with at least one edge. Suppose additionally that one of the following assumptions
holds:

(1) H is a refinement of a hypergraph with boundary that has exactly one edge, the
unique edge contains exactly d/(d − 4) boundary vertices, and every interior
vertex is incident to the unique edge.

or

(2) H has a d-basic coarsening with more than one edge, all of whose subhypergraphs
are d-buoyant.

Then for every r ≥ RG(H) and every well-separated collection of points (xv)v∈∂V in
V there is a positive probability that the vertices xu are all in different components of
F and that H is robustly faithfully present at x.

TheProof of Proposition 4.15will apply the following lemma,which is the analogue
of Lemma 4.14 in this context.
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Lemma 4.16 Let G be a d-dimensional transitive graph with d ∈ {5, 6, 8}. Let H be
a hypergraph with boundary with at least one edge such that every subhypergraph of
H is d-buoyant.

(1) If H has exactly one edge, this unique edge is incident to exactly d/(d−4)boundary
vertices, and every interior vertex is incident to this unique edge, then there exists
a constant c = c(G, H) such that

log2 E[S̃x (n)2] ≤ log2 n + c

for all x = (xu)u∈∂V ∈ (V)∂V and all n such that 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V .
(2) If H is d-basic, then there exists a constant c = c(G, H) such that

log2 E[S̃x (n)2] ≤ −2ηd(H)+ c

for all x = (xu)u∈∂V ∈ (V)∂V and all n such that 〈xuxv〉 ≤ 2n−1 for all u, v ∈ ∂V .

Proof Note that in both cases we have that every subhypergraph of H is d-buoyant.
We use the notation of the Proof of Proposition 4.11. As in Eq. (4.15) of that proof,
we have that

log2
∑

k∈{0,...,n}E

∑
(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ )

� −2ηd(H) n + Q(φ,ψ)n + |{e ∈ E : |{u ⊥ e : φ(u) ⊥ ψ(e)}|
= d/(d − 4)}| log2 n, (4.18)

where Q(φ,ψ) is defined as in (4.16).Moreover, the same argument used in that proof
shows that Q(φ,ψ) ≤ 0 for every (φ,ψ) ∈ �×�. In case (1) of the lemma, in which
H has a single edge, we immediately obtain the desired bound since ηd(H) = 0 and
the coefficient of the log2 n term is either 0 or 1.

Now suppose that H is d-basic. Let L(φ,ψ) be the coefficient of log2 n in (4.18).
Note that H cannot have an edge whose intersection with ∂V has (d − 4)/d elements
or more, since otherwise the subhypergraph H ′ of H with that single edge and with
no internal vertices is proper, bordered, and has ηd(H ′) ≥ 0. Thus, we have that if φ0
is defined by φ0(v) = � for every v ∈ V◦ then

L(φ0, ψ) ≤ |{e ∈ E : |ψ(e) ∩ ∂V | ≥ d/(d − 4)}| = 0

for every ψ ∈ �.
Let Isom ⊆ �×� be the set of all (φ,ψ) such that φ(u) ⊥ ψ(e) for every e ∈ E

and v ⊥ e. Since H is d-basic we have that if (φ,ψ) ∈ Isom then

L(φ,ψ) = |{e ∈ E : deg(e) = d/(d − 4)}| = 0.
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We claim that Q(φ,ψ) ≤ −(d − 4) unless either φ = φ0 or (φ,ψ) ∈ Isom. Once
proven this will conclude the proof, since we will then have that

log2
∑

k∈{0,...,n}E

∑
(ξ,ζ )∈
ψ,k

Rφ(ξ, ζ ) � −2ηd(H) n

+max{−(d − 4)n + |E | log2 n, 0} � −2ηd(H)n

for every (φ,ψ) ∈ �×�, from which we can conclude by summing over �×� as
done previously.

We first prove that Q(φ,ψ) ≤ −(d−4) unless either φ = φ0 or φ(v) 	= � for every
v ∈ V . Note that since d − 4 divides d, the d-apparent weight of every hypergraph
with boundary is a multiple of d − 4, and so we must have that ηd(H ′) ≤ −(d − 4)
for every subhypergraph H ′ of H with ηd(H ′) < 0. As in (4.17), we have that
Q(φ,ψ) ≤ ηd(H ′), where H ′ = H ′(φ) is the subhypergraph of H with boundary
vertices given by the boundary vertices of H , edges given by the set of edges of H
that have |{u ⊥ e : φ(u) 	= �}| ≥ d/(d − 4), and interior vertices given by the set of
interior vertices u of H for which φ(u) 	= � and φ(u) ⊥ e for some e ∈ E ′.

We claim that if φ is such that ηd(H ′) = 0 then H ′ is bordered, and consequently
is either equal to H or does not have any edges by our assumptions on H . To see
this, suppose for contradiction that H ′ is not bordered, so that there exists a vertex
v ∈ V◦\V ′◦ that is incident to more than one edge of H ′. Let H ′′ be the subhypergraph
of H ′ obtained from H ′ by adding the vertex v. Thenwe have that |E(H ′′)| = |E(H ′)|,
|V◦(H ′′)| = |V◦(H ′)|+1 and�(H ′′) ≥ �(H ′′)+2, and consequently that ηd(H ′′) ≥
ηd(H ′)+(d−4). Since every subhypergraphof H isd-buoyant,wehave thatηd (H ′′) ≤
0 and consequently that ηd(H ′) ≤ −(d − 4), a contradiction. This establishes that
Q(φ,ψ) ≤ −(d − 4) unless either φ = φ0 or φ(v) 	= � for every v ∈ V , as claimed.

It remains to show that if φ(v) 	= � for every v ∈ V then Q(φ1, ψ) ≤ −(d − 4)
unless (φ,ψ) ∈ Isom. Since every edge of H has degree strictly larger than d/(d−4),
we have that

[(d − 4)|{u ⊥ e : φ(u) ⊥ ψ(e)}| − d]1[|{u ⊥ e : φ(u) ⊥ ψ(e)}| > d/(d − 4)]
≤ [(d − 4) deg(e)− d

]− (d − 4)

for every e ∈ E and every (φ,ψ) ∈ � × � such that |{u ⊥ e : φ(u) ⊥ ψ(e)}| <

deg(e). It follows easily from this and the definition of Q(φ,ψ) that if φ has φ(v) 	= �

for every v ∈ V , then

Q(φ,ψ) ≤ ηd(H)− (d − 4)|{e ∈ E : |{u ⊥ e : φ(u) ⊥ ψ(e)}| < deg(e)}|.

Since ηd(H) ≤ 0 by assumption, it follows that Q(φ,ψ) ≤ −(d−4) unless (φ,ψ) ∈
Isom. This concludes the proof. ��

Lemma 4.14 (together with Lemma 4.13) is already sufficient to yield case (2) of
Proposition 4.15. To handle case (1), we will require the following additional estimate.
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Lemma 4.17 (Different scales are uncorrelated) Let G be a d-dimensional transitive
graph with d > 4. Let H be a hypergraph with boundary. Then there exists a positive
constant c = c(G, H , r) such that

log2 E[S̃x (n)S̃x (n + m)] ≤ −ηd(H) (2n + m)+ c

for all x = (xu)u∈∂V ∈ (V)∂V , all m ≥ 2, and all n such that 〈xuxv〉 ≤ 2n−1 for all
u, v ∈ ∂V .

Proof Let � and W̃φ(ξ, ζ ) be defined as in the Proof of Lemma 4.14.
For every ξ ∈ 
x (n) and ζ ∈ 
x (n+m), we have that all distances relevant to our

calculations are on the order of either 2n or 2n+m . That is,

log2〈ξeξe′ 〉, log2〈ξexv〉 ≈ n and log2〈ξeζe′ 〉, log2〈ζeζe′ 〉, log2〈ζexv〉 ≈ n + m

for all e, e′ ∈ E and v ∈ ∂V . Thus, using (4.13), can estimate

1

d − 4
log2 P(W̃φ(ξ, ζ ))

� −
∑
u∈∂V

|{e ∈ E : e ⊥ u}| (2n + m)

−
∑

u∈V◦, φ(u)=�

(|{e ∈ E : e ⊥ u}| − 1) n

−
∑

u∈V◦, φ−1(u)=�

(|{e ∈ E : e ⊥ u}| − 1) (n + m)

−
∑

u∈V◦, φ(u) 	=�

(|{e ∈ E : e ⊥ u}| n − n + |{e ∈ E : e ⊥ φ(u)}| (n + m))

= −�(2n + m)+ |V◦| (2n + m)− |{v ∈ V◦ : φ(v) 	= �}| (n + m),

which is maximized when φ(v) = � for all v ∈ V◦. Now, since

log2 |
x (n)×
x (n + m)| � |�(n − 1, n)E ×�(n + m − 1, n + m)E | � d(2n + m),

we deduce that

log2 E[S̃x (n)S̃x (n + m)] ≤ log2 |
x (n)×
x (n + m)| + log |�|
+max{P(W̃φ(ξ, ζ )) : ξ ∈ 
x (n), ζ ∈ 
x (n + m), φ ∈ �}

� d|E |(n + m)− (d − 4)�(2n + m)+ (d − 4)|V◦|(2n + m)

= −ηd(H)(2n + m)

as claimed. ��
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Proof of Proposition 4.15 given Lemmas 4.12 and 4.13 The second case, inwhich H has
a d-basic coarsening with more than one edge all of whose subhypergraphs are d-
buoyant, follows from Lemma 4.12 and Lemmas 4.13 and 4.16 exactly as in the
proof of Proposition 4.11. Now suppose that H is a refinement of a hypergraph with
boundary H ′ that has d/(d − 4) boundary vertices and a single edge incident to every
vertex. Then ηd(H ′) = 0 and every subhypergraph of H ′ is d-buoyant. Applying
Lemmas 4.13, 4.16 and 4.17, we deduce that

E

[
2n∑
k=n

S̃H ′
x (2k)

]
� n, and E

⎡
⎣
(

2n∑
k=n

S̃H ′
x (2k)

)2⎤
⎦ � n2,

for every n such that 〈xuxv〉 ≤ 2n−1 for every u, v ∈ ∂V , from which it follows by
Cauchy–Schwarz that

P

(
2n∑
k=n

S̃H ′
x (2k) > 0

)
� 1.

for every n such that 〈xuxv〉 ≤ 2n−1 for every u, v ∈ ∂V . The proof can now be
concluded as in the Proof of Proposition 4.11. ��

4.3 Proof of Lemmas 4.12 and 4.13

In this section we prove Lemmas 4.12 and 4.13. We begin with some background on
random walk estimates. Given a graph G and a vertex u of G, we write Pu for the
law of the random walk on G started at u. Let G be a graph, and let pn(x, y) be the
probability that a random walk on G started at x is at y at time n. Given positive
constants c and c′, we say that G satisfies (c, c′)-Gaussian heat kernel estimates if

c

|B(x, n1/2)|e
−cd(x,y)2/n ≤ pn(x, y)+ pn+1(x, y) ≤ c′

|B(x, n1/2)|e
−d(x,y)2/(c′n)

(4.19)

for every n ≥ 0 and every pair of vertices x, y in G with d(x, y) ≤ n. We say that
G satisfies Gaussian heat kernel estimates if it satisfies (c, c′)-Gaussian Heat Kernel
Estimates for some positive constants c and c′.
Theorem 4.18 (Hebisch and Saloff-Coste [10]) Let G be a d-dimensional transitive
graph. Then G satisfies Gaussian heat kernel estimates.

Hebisch and Saloff-Coste proved their result only for Cayley graphs, but the general
case can be proven by similar methods,2 see e.g. [30, Corollary 14.5 and Theorem
14.19].

2 In fact, the general case can also be deduced from the case of Cayley graphs, since ifG is a d-dimensional
transitive graph then the product of G with a sufficiently large complete graph is a Cayley graph [7,28], but
taking such a product affects the random walk in only a very trivial way.
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Now, recall that two graphs G = (V , E) and G ′ = (V ′, E ′) are said to be (α, β)-
rough isometric if there exists a function φ : V → V ′ such that the following
conditions hold.

(1) φ roughly preserves distances: The estimate

α−1d(x, y)− β ≤ d ′(φ(x), φ(y)) ≤ αd(x, y)+ β

holds for all x, y ∈ V .
(2) φ is roughly surjective: For every x ∈ V ′, there exists y ∈ V such that

d ′(x, φ(y)) ≤ β.

The following stability theorem for Gaussian heat kernel estimates follows from the
work of Delmotte [5]; see also [15, Theorem 3.3.5].

Theorem 4.19 Let G and G ′ be (α, β)-roughly isometric graphs for some positive
α, β, and suppose that the degrees of G and G ′ are bounded by M < ∞ and that
G satisfies (c, c′)-Gaussian heat kernel estimates for some positive c, c′. Then there
exist c̃ = c̃(α, β, M, c, c′) and c̃′ = c̃′(α, β, M, c, c′) such that G ′ satisfies (c̃, c̃′)-
Gaussian heat kernel estimates.

Recall that a function h : V → R defined on the vertex set of a graph is said to be
harmonic on a set A ⊆ V if

h(v) = 1

deg(v)

∑
u∼v

h(u)

for every vertex v ∈ A, where the sum is taken with appropriate multiplicities if there
are multiple edges between u and v. The graphG is said to satisfy an elliptic Harnack
inequality if for every α > 1, there exist a constant c(α) ≥ 1 such that

c(α)−1 ≤ h(v)/h(u) ≤ c(α)

for every two vertices u and v of G and every positive function h that is harmonic on
the set

{w ∈ V : min{d(u, w), d(w, v)} ≤ αd(u, v)} ,

in which case we say that G satisfies an elliptic Harnack inequality with constants
c(α).

The following theorem also follows from thework ofDelmotte [5], andwas implicit
in the earlier work of e.g. Fabes and Stroock [6]; see also [15, Theorem 3.3.5]. Note
that these references all concern the parabolic Harnack inequality, which is stronger
than the elliptic Harnack inequality.

Theorem 4.20 Let G be a graph. If G satisfies (c1, c′1)-Gaussian heat kernel estimates,
then there exists c2(α) = c2(α, c1) such that G satisfies an elliptic Harnack inequality
with constants c2(α).
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We remark that the elliptic Harnack inequality has recently been shown to be stable
under rough isometries in the breakthrough work of Barlow and Murugan [1].

Recall that a graph is said to be d-Ahlfors regular if there exists a positive constant
c such that c−1rd ≤ |B(x, r)| ≤ crd for every r ≥ 1 and every x ∈ V (in which case
we say G is d-Ahlfors regular with constant c). Ahlfors regularity is clearly preserved
by rough isometry, in the sense that if G and G ′ are (α, β)-rough isometric graphs
for some positive α, β, and G is d-Ahlfors regular with constant c, then there exists a
constant c′ = c′(α, β, c) such that G ′ is d-Ahlfors regular with constant c′.

Observe that if the graph G is d-Ahlfors regular for some d > 2 and satisfies a
Gaussian heat kernel estimate, then summing the estimate (4.19) yields that

1 ≤
∑
n≥0

pn(v, v) � 1

for every vertex v, and that

Pu(hit v) =
∑

n≥0 pn(u, v)∑
n≥0 pn(v, v)

� 〈uv〉−(d−2) (4.20)

for all vertices u and v of G.
We now turn to the proofs of Lemmas 4.12 and 4.13. The key to both proofs is the

following lemma.

Lemma 4.21 Let G be a d-Ahlfors regular graph with constant c0 for some d > 4,
let F be the uniform spanning forest of G, and suppose that G satisfies (c−10 , c0)-
Gaussian heat kernel estimates. Let K1, . . . , KN be a collection of finite, disjoint sets
of vertices, and let K = ⋃k

i=1 KN . Let {Xv : v ∈ K } be a collection of independent
simple random walks started from the vertices of K . If

P

(
{Xu

i : i ≥ 0} ∩ {Xv
i : i ≥ 0} = ∅ for all u 	= v ∈ K

)
≥ ε > 0, (4.21)

then there exist constants c = c(G, H , ε, |K |, c0) and C = C(G, H , ε, |K |, c0) such
that

log2 P

(
F (Ki ∪ K j ) if and only if i = j , and each two points in Ki are connected
by a path in F of diameter at most C diam(K ) for each 1 ≤ i ≤ N

)

≥ −(d − 4)(|K | − N ) log2 diam(K )+ c. (4.22)

Here we are referring to the diameter of the path considered as a subset of G.
Before proving Lemma 4.21, let us see how it implies Lemmas 4.12 and 4.13.

Proof of Lemma 4.12 given Lemma 4.21 Let r ′ be a large constant to be chosen later.
By definition of RG and Lemma 4.10, there exists ε = ε(|A|) > 0 such that for each
set B ⊆ A, there exists a set {ξ(B,b) : b ∈ B} ⊂ V of diameter at most RG(|B|) such
that if {X (B,b) : b ∈ B} are independent simple random walks then

P

(
{X (B,b)

i : i ≥ 0} ∩ {X (B,b′)
i : i ≥ 0} = ∅ for every b 	= b′ ∈ B

)
≥ (2ε)2

−|A|
.
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Take such a set for each B in such a way that the set {ξ(B,b) : (B, b) ∈ P•(A)} is
contained in the ball of radius r ′ around x , and for each distinct B, B ′ ⊆ A, the sets
{ξ(B,b) : b ∈ B} and {ξ(B′,b) : b ∈ B ′} have distance at least r ′/2 from each other.
Clearly this is possible for sufficiently large r ′. We have by independence that

P

⎛
⎝⋂

B⊆A

{
{X (B,b)

i : i ≥ 0} ∩ {X (B,b′)
i : i ≥ 0} = ∅ for every b 	= b′ ∈ B

}⎞⎠ ≥ 2ε.

On the other hand, it follows easily from the Greens function estimate (2.4) that if r ′
is sufficiently large (depending on |A| and ε) then

P

( {X (B,b)
i : i ≥ 0} ∩ {X (B′,b′)

i : i ≥ 0} = ∅ for
some B, B ′ ⊆ A, b ∈ B and b′ ∈ B with B 	= B ′

)
≤ ε,

and we deduce that

P

(
{X (B,b)

i : i ≥ 0} ∩ {X (B′,b′)
i : i ≥ 0} = ∅ for every distinct (B, b), (B′, b′) ∈ P•(A)

)
≥ ε

for such r ′. Applying Lemma 4.21, we deduce that P(ACr ′(ξ)) ≥ c for some C =
C(G, |A|, ε, r ′) and c = c(G, |A|, ε). It follows that (ξ(B,b))(B,b)∈P•(A) is an r -good
A constellation for some r = r(|A|) sufficiently large. ��

Proof of Lemma 4.13 given Lemma 4.21 Let G be a d-dimensional transitive graph for
some d > 4. Let x = (xv)v∈∂V be such that 〈xuxv〉 ≤ 2n−1 for every u, v ∈ ∂V ,
let ξ = (ξe)e∈E ∈ 
x (n), and let r = r(H) and (ξ(e,A,v))e∈E,(A,v)∈P•(e) be as in
Sect. 4.2.

For each edge e of H , writeAe(ξ) for the eventAr ((ξ(e,A,v))(A,v)∈P•(e)), which has
probability at least 1/r by definition of the r -good constellation (ξ(e,A,v))(A,v)∈P•(e).
Since the number of subtrees of a ball of radius r in G is bounded by a constant, it
follows that there exists a constant ε = ε(G, H) and a collection of disjoint subtrees
(T(e,v)(ξ))(e,v)∈E• of G such that the tree T(e,v)(ξ) has diameter at most r and contains
each of the vertices ξ(e,A,v) with (A, v) ∈ P•(e) for every (e, v) ∈ E•, and the estimate

P

(
Ar (ξ̂e) ∩

⋂
v⊥e
{T(e,v)(ξ) ⊂ F}

)
≥ (2ε)1/|E |

holds for every e ∈ E . Fix one such collection (T(e,v)(ξ))(e,v)∈E• for every ξ ∈ 
x (n),
and for each e ∈ E let Be(ξ) be the event that T(e,v)(ξ) is contained in F for every
v ∈ E . LetB(ξ) =⋂

e∈E Be(ξ). Considering generatingF usingWilson’s algorithm,

starting with random walks {X (e,A,v) : e ∈ E, (A, v) ∈ P•(e)} such that X (e,A,v)
0 =

ξ(e,A,v) for every e ∈ E and (A, v) ∈ P•(e), we observe that
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∣∣∣P (B(ξ))−
∏
e∈E

P (Be(ξ))

∣∣∣ ≤ P

(
X (e,A,v) and X (e′,A′,v′) intersect for some distinct
e, e′ ∈ E and some (A, v) ∈ P•(e), (A′, v′) ∈ P•(e′)

)

(4.23)
and hence that

P (B(ξ)) ≥ 1

2

∏
e∈E

P (Be(ξ)) ≥ ε (4.24)

for all n sufficiently large and ξ ∈ 
x (n).
Let Gξ be the graph obtained by contracting the tree T(e,v)(ξ) down to a single

vertex for each (e, v) ∈ E•. The spatial Markov property of the USF (see e.g. [14,
Section 2.2.1]) implies that the law of F given the event B(ξ) is equal to the law of
the union of

⋃
(e,v)∈E• T(e,v)(ξ) with the uniform spanning forest of Gξ . Observe that

Gξ and G are rough isometric, with constants depending only on G and H , and that
Gξ has degrees bounded by a constant depending only on G and H . Thus, it follows
from Theorem 4.18–4.20 that Gξ is d-Ahlfors regular, satisfies Gaussian heat kernel
estimates, and satisfies an elliptic Harnack inequality, each with constants depending
only on H and G.

Let E� = E ∪ {�}, and let K = E• ∪ {(�, v) : v ∈ ∂V }. For each (e, v) ∈ E•, let
x(e,v) be the vertex of Gξ that was formed by contracting T(e,v)(ξ), and let x(�,v) = xv

for each v ∈ ∂V . For each vertex v of H , choose an edge e0(v) ⊥ v arbitrarily from
E�, and let K ′ = K\{xi : v ∈ V }. Let Fξ be the uniform spanning forest ofGξ , and let
W̃ ′(x, ξ) be the event that for each (e, v), (e′, v′) ∈ K the vertices x(e,v) and x(e′,v′)
are in the same component of Fξ if and only if v = v′. The spatial Markov property
and (4.24) imply that

P

(
W̃ (x, ξ)

)
≥ εP

(
W̄ ′(x, ξ)

) � P

(
W̃ ′(x, ξ)

)

whenever n is sufficiently large and ξ ∈ 
x (n). Thus, applying Lemma 4.21 to Gξ by
setting N = |V |, enumerating V = {v1, . . . , vN } and setting Ki = {x(e,vi ) : (e, vi ) ∈
K } for each v ∈ V yields that

log2 P

(
W̃ (x, ξ)

)
� log2 P

(
W̃ ′(x, ξ)

)
� −(d − 4) (�− |V◦|) n,

completing the proof. ��
We now start working towards the Proof of Lemma 4.21. We begin with the fol-

lowing simple estimate.

Lemma 4.22 Let G be d-Ahlfors regular with constant c1, and suppose that G satisfies
(c2, c′2)-Gaussian heat kernel estimates. Then there exist a positive constant C =
C(d, c1, c2, c′2) such that

C−1〈uw〉−(d−2) ≤ Pu (hit w before �x (n + 3c,∞), do not hit �x (0, n)) ≤ C〈uw〉−(d−2)

for every c ≥ C, every vertex x, every n ≥ 1, and every u, w ∈ �x (n + c, n + 2c).
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Proof The upper bound follows immediately from (4.20). We now prove the lower
bound. For every c ≥ 1 and every u, w ∈ �x (n + c,∞), we have that

Pu(hit �x (0, n)) = Pu(hit x)

Pu(hit x | hit �x (0, n))
� 〈ux〉−(d−2)

2−(d−2)n � 2−(d−2)c.

Thus, we have that

Pu(hit w and �x (0, n)) ≤ Pu(hit �x (0, n) after hitting w)+ Pu(hit w after hitting �x (0, n))

� 〈uw〉−(d−2)2(d−2)n〈wx〉−(d−2) + 2(d−2)n〈ux〉−(d−2)〈wx〉−(d−2),

where the second term is bounded by conditioning on the location at which the walk
hits �x (0, n) and then using the strong Markov property. By the triangle inequality,
we must have that at least one of 〈ux〉 or 〈wx〉 is greater than 1

2 〈uw〉. This yields the
bound

Pu(hit w and �x (0, n)) �
(
2(d−2)n〈wx〉−(d−2)+2(d−2)n (min {〈ux〉, 〈wx〉})−(d−2))

〈uw〉−(d−2)

� 2−(d−2)c〈uw〉−(d−2).

On the other hand, if u, w ∈ �x (n + c, n + 2c) then conditioning on the location at
which the walk hits �x (n + 3c,∞) yields that

Pu(hit w after �x (n + 3c,∞)) � 2−(d−2)(n+3c) � 〈uw〉−(d−2).

The claim now follows easily. ��
Proof of Lemma 4.13 For each 1 ≤ i ≤ N , let xi be chosen arbitrarily from the set Ki .
Let (Xx )x∈K be a collection of independent random walks on G, where Xx is started
at x for each x ∈ K , and write Xi = Xxi . Let K ′i = Ki\{xi } for each 1 ≤ i ≤ N and

let K ′ = ⋃N
i=1 K ′i . In this proof, implicit constants will be functions of |K |, N , c0,

and d. We take n such that 2n−1 ≤ diam(K ) ≤ 2n .
Let c1, c2, c3 be constants to be determined. For each y = (yx )x∈K ∈ (�(n +

c1, n + c3))K , let Yy be the event

Yy = {Xx
22(n+c2) = yx for each x ∈ K }.

Let C (c2) be the event that none of the walks Xx intersect each other before time
22(n+c2), so that P(C (c2)) ≥ ε for every c2 ≥ 0 by assumption. For each x ∈ K , let
Dx (c1, c3) be the event that Xx

22(n+c2) is in�(n+c1, n+c3) and that Xx
m ∈ �(n,∞) for

all m ≥ 22(n+c2), and let D(c1, c3) =⋂
Dx (c1, c3). It follows by an easy application

of the Gaussian heat kernel estimates that we can choose c2 = c2(G, N , ε) and
c3 = c3(G, N , ε) sufficiently large that

P(D(c1, c3) | Yy) ≥ 1− ε/2 (4.25)
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for every y = (yx )x∈K ∈ (�(n + c1, n + c3))K , and in particular so that P(C (c2) ∩
D(c1, c3)) ≥ ε. We fix some such sufficiently large c1, c2, and c3, and also assume
that c1 is larger than the constant from Lemma 4.22. We write C = C (c2), Dx =
Dx (c1, c3), and D = D(c1, c3).

For each 1 ≤ i ≤ N and x ∈ K ′i , we define Ix to be the event that the walk Xx

hits the set

Li
good =

{
LE(Xi )m : LE(Xi )m ∈ �(n + 2c3, n + 4c3), LE(Xi )m′

∈ �(0, n + 6c3) for all 0 ≤ m′ ≤ m
}

before hitting �(n + 6c3,∞), and let I =⋂
x∈K ′ Ix .

For each x and x ′ in K , we define Ex,x ′ to be the event that the walks Xx and Xx ′

intersect, and let

E =
⋃{

Ex,x ′ : 1 ≤ i < j ≤ N , x ∈ Ki , x
′ ∈ K j

} ∪⋃{
Ex,x ′ : x, x ′ ∈ K ′

}
.

These events have been defined so that, if we sample F using Wilson’s algorithm,
beginningwith the walks {Xv : v ∈ V } (in any order) and then the walks {Xx : x ∈ K }
(in any order), we have that

{
F (Ki ∪ K j ) if and only if i = j , and each two points in Ki are connected
by a path in F of diameter at most 26c3 diam(K ) for each 1 ≤ i ≤ N

}

⊇ (C ∩D ∩I )\E .

Thus, it suffices to prove that

log2 P ((C ∩D ∩I ) \E ) � −(d − 4) (K − N ) n = −(d − 4)|K ′| n.

We break this estimate up into the following two lemmas: one lower bounding the
probability of the good eventC ∩D∩I , and the other upper bounding the probability
of the bad event C ∩D ∩I ∩ E .

Lemma 4.23 The estimate

log2 P(Ix | C ∩D ∩ Yy) � −(d − 4)n

holds for every x ∈ K ′ and y = (yx )x∈K ∈ (�(n + c1, n + c3))K .

The proof uses techniques from [19] and the Proof of [2, Theorem 4.2].

Proof of Lemma 4.23 Fix x ∈ K ′, and let 1 ≤ i ≤ N be such that x ∈ K ′i . Write
Y = Xi and Z = Xx . Let L = (L(k))k≥0 be the loop-erasure of (Yk)k≥0 and, for each
m ≥ 0, let Lm = (Lm(k))qmk=0 be the loop-erasure of (Yk)mk=0. Define

τ(m) = inf{0 ≤ r ≤ qm : Lm(r) = Yk for some k ≥ m}
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and

τ(m, �) = inf{0 ≤ r ≤ qm : Lm(r) = Zk for some k ≥ �}.

The definition of τ(m) ensures that Lm(k) = L(k) for all k ≤ τ(m). We define the
indicator random variables

Im,� = 1(Ym = Z� ∈ �(n + 2c3, n + 4c3), and Ym′ , Z�′

∈ �(0, n + 6c3) for all m
′ ≤ m, �′ ≤ �)

and

Jm,� = Im,� 1
(
τ(m, �) ≤ τ(m)

)
.

Observe that

Ix ⊆
{
Jm,� = 1 for some m, � ≥ 22(n+c2)

}
.

Moreover, for every m, � ≥ 22(n+c2) and every y ∈ (�(n + c1, n + c3))K , the walks
〈Yk〉k≥m and 〈Zk〉k≥� have the same distribution conditional on the event

C ∩D ∩ Yy ∩ {Im,� = 1}.

Thus, we deduce that

P
(
τ(m) ≥ τ(m, �) | C ∩D ∩ Yy ∩ {Im,� = 1}) ≥ 1/2

whenever the event being conditioned on has positive probability, and therefore that

E[Im,� | C ∩D ∩ Yy] ≥ E[Jm,� | C ∩D ∩ Yy] ≥ 1

2
E[Im,� | C ∩D ∩ Yy].

Let

I =
∑

�≥22(n+c2)

∑
m≥22(n+c2)

Im,� and J =
∑

�≥22(n+c2)

∑
m≥22(n+c2)

Jm,�,

and note that the conditional distribution of I given the event C ∩ D ∩ Yy is the
same as the conditional distribution of I given the event D ∩ Yy . For every y ∈
(�(n + c1, n + c3))K , we have that, decomposing E[I | D ∩ Yy] according to the
location of the intersections and applying the estimate Lemma 4.22,
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E[J | C ∩D ∩ Yy] � E[I | D ∩ Yy]
�

∑
w∈�̃(n+2c3,n+4c3)

Pyxi
( hit w before �(n + 6c3,∞) | do not hit �(0, n))

·Pyx ( hit w before �(n + 6c3,∞) | do not hit �(0, n))

� 2−2(d−2)n|�(n + 2c3, n + 4c3)| � 2−(d−4)n .

On the other hand, we have that

E[J 2 | C ∩D ∩ Yy] ≤ E[I 2 | C ∩D ∩ Yy] = E[I 2 | D ∩ Yy] � E[I 2 | Yy].

Meanwhile, decomposing E[I 2 | Yy] according to the location of the intersections
and applying the Gaussian heat kernel estimates yields that

E[I 2 | Yy] �
∑

w,z∈�(n+2c3,n+4c3)
〈yxi w〉−(d−2)〈wz〉−(d−2)〈yxw〉−(d−2)〈wz〉−(d−2)

+
∑

w,z∈�(n+2c3,n+4c3)
〈yxi w〉−(d−2)〈wz〉−(d−2)〈yx z〉−(d−2)〈zw〉−(d−2),

where the two different terms come fromwhether Y and Z hit the points of intersection
in the same order or not.With the possible exception of 〈wz〉, all the distances involved
in this expression are comparable to 2n . Thus, we obtain that

E[I 2 | Yy] � 2−2(d−4)n
∑

w,z∈�(n+2c3,n+4c3)
〈wz〉−2(d−2).

For each w ∈ V, considering the contributions of dyadic shells centred at w yields
that, since d > 4,

∑
z∈V

〈wz〉−2(d−2) �
∑
n≥0

2dn2−2(d−2)n ≤
∑
n≥0

2−(d−4)n � 1,

and we deduce that

E[I 2 | Yy] � 2−2(d−4)n|�(n + 2c3, n + 4c3)| � 2−(d−4)n .

Thus, the Cauchy–Schwarz inequality implies that

P(Ix | C ∩ D ∩ Yy) ≥ P(J > 0 | C ∩ D ∩ Yy) �
E
[
J | C ∩ D ∩ Yy

]2
E
[
J 2 | C ∩ D ∩ Yy

] � 2−(d−4)n .

as claimed. ��
We next use the elliptic Harnack inequality to pass from an estimate on Ix to an

estimate on I .
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Lemma 4.24 log2 P(C ∩D ∩I ) � −(d − 4)|K ′| n
Proof For each 1 ≤ i ≤ N , let x ′i be chosen arbitrarily from K ′i . To deduceLemma4.24
from Lemma 4.23, it suffices to prove that

P

( ⋂
x∈K ′

Ix | C ∩D ∩ Yy

)
�

N∏
i=1

P

(
Ix ′i | C ∩D ∩ Yy

)|K ′i |

for every y = (yx )x∈K ∈ (�(n + c1, n + c3))K .
Let X be the σ -algebra generated by the random walks (Xi )Ni=1. Observe that for

each x ∈ K ′ we have

P(Ix | X , C ∩D ∩ Yy) =
Pyx

(
hit Ligood before �(0, n + 6c3), never leave �(n,∞)

)
Pyx (never leave �(n,∞))

� Pyx

(
hit Ligood before �(0, n + 6c3), never leave �(n,∞)

)
.

The right hand side of the second line is a positive harmonic function of yx on �(n+
c1, n + c3 + 1), and so the elliptic Harnack inequality implies that for every y, y′ ∈
(�(n + c1, n + c3))K and every x ∈ K ′, we have that

P
(
Ix | X , C ∩D ∩ Yy

) � P(Ix | X , C ∩D ∩ Yy′).

Furthermore, if y′ is obtained from y by swapping yx and yx ′ for some 1 ≤ i ≤ N
and x, x ′ ∈ K ′i , then clearly

P(Ix | X , C ∩D ∩ Yy) = P(Ix ′ | X , C ∩D ∩ Yy′).

Therefore, it follows that

P(Ix | X , C ∩D ∩ Yy) � P(Ix ′ | X , C ∩D ∩ Yy)

for all 1 ≤ i ≤ N and x, x ′ ∈ K ′i .
Since the events Ix are conditionally independent given the σ -algebra X and the

event C ∩D ∩ Yy , we deduce that

P(I | C ∩D ∩ Yy) = E
[
P(I | X , C ∩D ∩ Yy) | C ∩D ∩ Yy

]

= E

[∏
x∈K ′

P(Ix | X , C ∩D ∩ Yy) | C ∩D ∩ Yy

]

� E

[
N∏
i=1

P(Ix ′i | X , C ∩D ∩ Yy)
|K ′i | | C ∩D ∩ Yy

]
.
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Now, the randomvariablesP(Ix ′i | X , C ∩D∩Yy)
|K ′i | are independent conditional

on the event C ∩D ∩ Yy , and so we have that

P(I | C ∩D ∩ Yy) �
N∏
i=1

E

[
P(Ix ′i | X , C ∩D ∩ Yy)

|K ′i | | C ∩D ∩ Yy

]

≥
N∏
i=1

P(Ix ′i | C ∩D ∩ Yy)
|K ′i |,

as claimed, where the second line follows from Jensen’s inequality. ��

Finally, it remains to show that the probability of getting unwanted intersections in
addition to those that we do want is of lower order than the probability of just getting
the intersections that we want.

Lemma 4.25 We have that

log2 P(C ∩D ∩I ∩ E ) � −[(d − 4)|K ′| + 2
]
n + |K ′|2 log2 n.

Proof For each w ∈ V and x, x ′ ∈ K , let Ex,x ′(w) be the event that Xx and Xx ′

both hit w. Let ζ = (ζx )x∈K ′ and let σ = (σi )
N
i=1 be such that σv is a bijection from

{1, . . . , |K ′i |} to K ′i for each 1 ≤ i ≤ N . We defineRσ (ζ ) to be the event that for each
1 ≤ i ≤ N the walk Xi passes through the points {ζx : x ∈ K ′i } in the order given by
σ and that for each x ∈ K ′ the walk Xx hits the point ζx . We also define

Rσ (ζ ) =
N∏
i=1

〈
xiζσi (1)

〉−(d−2)
|K ′i |∏
j=1

〈
ζσi ( j−1)ζσi ( j)

〉−(d−2) 〈
σi ( j)ζσi ( j)

〉−(d−2)
,

so that P(Rσ (ζ )) � Rσ (ζ ) for every ζ ∈ V
K ′ .

Let �ζ = �(n + c1, n + c1 + c2)K
′
, �w,1 = �(n, n + c2 + 1), �w,2 = �(n +

c2 + 1,∞), and �w = �w,1 ∪ �w,2. (Note that these sets are not functions of ζ or
w, but rather are the sets from which ζ and w will be drawn.) We also define

O = K 2\
[
{(x, x) : x ∈ K } ∪

N⋃
i=1

[{(xi , x) : x ∈ Ki } ∪ {(x, xi ) : x ∈ Ki }]
]

.

To be the set of pairs of points at least one of which must have their associated pair of
random walks intersect in order for the event E to occur. Define the random variables
Mσ,0, Mσ,1, and Mσ,2 to be
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Mσ,0 =
∑
ζ∈�ζ

1
[
Rσ (ζ )

]

Mσ,1 =
∑

(x,x ′)∈O

∑
w∈�w,1

∑
ζ∈�ζ

1
[
Rσ (ζ ) ∩ Ex,x ′(w)

]
, and

Mσ,2 =
∑

(x,x ′)∈O

∑
w∈�w,2

∑
ζ∈�ζ

1
[
Rσ (ζ ) ∩ Ex,x ′(w)

]
.

Observe that
∑

σ (Mσ,1 + Mσ,2) ≥ 1 on the event C ∩B ∩I ∩ E , and so to prove
Lemma 4.25 it suffices to prove that

log2 E
[
Mσ,1 + Mσ,2

]
� −[(d − 4)|K ′| + 2

]
n + 2 log2 n (4.26)

for every σ . We will require the following estimate. ��

Lemma 4.26 The estimate

P
(
Rσ (ζ ) ∩ Ex,x ′(w)

) � Rσ (ζ )〈wζx 〉−(d−2)〈wζx ′ 〉−(d−2). (4.27)

holds for every (x, x ′) ∈ O, every ζ ∈ �ζ , every w ∈ �w, and every collection
σ = (σi )

N
i=1 where σi : {1, . . . , |K ′i |} → K ′i is a bijection for each 1 ≤ i ≤ N.

Proof Unfortunately, this proof requires a straightforward but tedious case analysis.
We will give details for the simplest case, in which both x, x ′ ∈ K ′. A similar proof
applies in the cases that one or both of x or x ′ is not in K ′, but there are a larger amount
of subcases to consider according to when the intersection takes place. In the case that
x, x ′ ∈ K ′, let E −,−(ζ, w), E −,+(ζ, w), E +,−(ζ, w) and E +,+(ζ, w) be the events
defined as follows:

E −,−(ζ, w): The event Rσ (ζ ) occurs, and Xx and Xx ′ both hit w before they hit
ζx and ζx ′ respectively.
E −,+(ζ, w): The eventRσ (ζ ) occurs, Xx hits w before hitting ζx , and Xx ′ hits w

after hitting ζx ′ .
E +,−(ζ, w): The event Rσ (ζ ) occurs, Xx hits w after hitting ζx , and Xx ′ hits w

before hitting ζx ′ .
E +,+(ζ, w): The eventRσ (ζ ) occurs, and Xx and Xx ′ both hit w after they hit ζx
and ζx ′ respectively.

We have the estimates

P(E −,−(ζ, w)) � R(x, ζ )
〈xw〉−(d−2)〈wζx 〉−(d−2)〈x ′w〉−(d−2)〈wζx ′ 〉−(d−2)

〈xζx 〉−(d−2)〈x ′ζx ′ 〉−(d−2) ,

P(E −,+(ζ, w)) � R(x, ζ )
〈xw〉−(d−2)〈wζx 〉−(d−2)

〈xζx 〉−(d−2) 〈ζx ′w〉−(d−2),
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Fig. 8 Left: The hypergraph Hσ in the case that N = 2, |K1| = 5, and |K2| = 4. Note that the isomorphism
class of Hσ does not depend on σ . Centre: Letting K1 = {x1,1, . . . , x1,5}, and K2 = {x2,1, . . . , x2,4}, this
is the hypergraph Hσ (x1,2, x1,4). Right: The hypergraph Hσ (x1,4, x2,2)

P(E +,−(ζ, w)) � R(x, ζ )
〈x ′w〉−(d−2)〈wζx ′ 〉−(d−2)

〈x ′ζx ′ 〉−(d−2) 〈ζxw〉−(d−2),

and

P(E +,+(ζ, w)) � R(x, ζ )〈ζxw〉−(d−2)〈ζx ′w〉−(d−2).

In all cases, a bound of the desired form follows since 〈wx〉 � 〈ζx x〉 and 〈wx ′〉 �
〈ζx ′x ′〉 for every x, x ′ ∈ K ′, ζ ∈ �ζ , and w ∈ �w, and we conclude by summing
these four bounds. ��

Our aim now is to prove Eq. (4.26) by an appeal to Lemma 4.3. To do this, we
will encode the combinatorics of the potential ways that the walks can intersect via
hypergraphs. To this end, let Hσ be the finite hypergraph with boundary that has vertex
set

V (Hσ ) = ({1} × K ) ∪ ({2} × K ′
)
,

boundary set

∂V (Hσ ) = ({1} × {xi : 1 ≤ i ≤ N }) ∪ ({2} × K ′
)
,

and edge set

E(Hσ ) = {{(2, σi ( j)), (1, σi ( j)), (1, i, σi ( j + 1))} : 1 ≤ i ≤ N , 1 ≤ j ≤ |K ′i | − 1
}

∪ {{(2, σi (|K ′i |)), (1, σi (|K ′i |)} : 1 ≤ i ≤ N
}
.

See Fig. 8 for an illustration. Note that the isomorphism class of Hσ does not depend
on σ . The edge set E(Hσ ) can be identified with K ′ by taking the intersection of each
edge with the set {2}× K ′. Under this identification, the definition of Hσ ensures that

Rσ (ζ ) = WHσ ,2(x, ζ )

and consequently that

E[Mσ,0] � W
Hσ ,2
x (n, n + c1 + c2).
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We claim that
ηd,2(H

′
σ ) ≥ ηd,2(Hσ )+ 2 (4.28)

for any coarsening H ′σ of Hσ , so that

η̂d,2(Hσ ) = ηd,2(Hσ ) = (d − 2)(3|K ′| − |V |)− d|K ′| − (d − 2)(|K ′| − |V |)
= (d − 4)|K ′|.

and hence that

log2 E[Mσ,0] � −(d − 4)|K ′| n + |K ′|2 log2(n) (4.29)

byLemma4.3. Indeed, suppose that Hσ /!" is a proper coarseningof Hσ corresponding
to some equivalence relation !" on E(Hσ ), and that the edge corresponding to x =
σi ( j) ∈ K ′ is maximal in its equivalence class in the sense that there does not exist
σi ( j ′) in the equivalence class of σi ( j) with j ′ > j . Clearly such a maximal x must
exist in every equivalence class. Moreover, for such a maximal x = σi ( j) there can be
at most one edge of Hσ that it shares a vertex with and is also in its class, namely the
edge corresponding to σi ( j −1). Thus, if x is maximal and its equivalence class is not
a singleton, let Hσ / !"′ be the coarsening corresponding to the equivalence relation
!"′ obtained from !" by removing x from its equivalence class. Then we have that
�(Hσ /!"′) ≤ �(Hσ /!")+ 1 and that |E(Hσ /!"′)| = |E(Hσ /!")| + 1, so that

ηd(H/!") ≥ ηd(Hσ /!"′)+ d − (d − 2) = ηd(Hσ /!"′)+ 2, (4.30)

and the claim followsby inductingon thenumber of edges in non-singleton equivalence
classes.

To obtain a bound on the expectation of Mσ,2, considering the contribution of each
shell �(m,m + 1) yields the estimate

∑
w∈�w,2

〈ζxw〉−(d−2)〈ζx ′w〉−(d−2) �
∑

m≥n+c2+1
2dn2−2(d−2)n � 2−(d−4)n

for every ζ ∈ �ζ , and it follows from Lemma 4.26 and (4.29) that

log2 E[Mσ,2] � log2 E[Mσ,0] − (d − 4) n

� −(d − 4)(|K ′| + 1) n + |K ′|2 log2 n. (4.31)

It remains to bound the expectation of Mσ,1. For each two distinct x, x ′ ∈ K ′,
let Hσ (x, x ′) be the hypergraph with boundary obtained from Hσ by adding a single
vertex, �, and adding this vertex to the two edges corresponding to x and x ′ respectively.
These hypergraphs are defined in such a way that, by Lemma 4.26,

E[Mσ,1] �
∑

(x,x ′)∈O
W

Hσ (x,x ′), 2
x (n + c1, n + c1 + c2)
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We claim that

η̂d,2(Hσ (x, x ′)) ≥ η̂d,2(H)+ 2 = (d − 4)|K ′| + 2 (4.32)

for every two distinct x, x ′ ∈ K . First observe that coarsenings of Hσ and of Hσ (x, x ′)
both correspond to equivalence relations on K . Let !" be an equivalence relation on K ,
and let H ′σ (x, x ′) and H ′σ be the corresponding coarsenings. Clearly |E(H ′σ (x, x ′))| =
|E(H ′σ )| and |V◦(H ′σ (x, x ′))| = |V◦(H ′σ )| + 1. If x and x ′ are related under !", then
we have that �(H ′σ (x, x ′)) = �(H ′σ )+ 1, while if x and x ′ are not related under !",
then we have that �(H ′σ (x, x ′)) = �(H ′σ )+ 2. We deduce that

ηd,2(H
′
σ (x, x ′)) ≥

{
ηd,2(H ′σ ) if x !" x ′

ηd,2(H ′σ )+ 2 otherwise.

If x !" x ′ then H ′σ must be a proper coarsening of Hσ , and we deduce from (4.28) that
the inequality ηd,2(H ′σ (x, x ′)) ≥ ηd,2(Hσ )+ 2 holds for every coarsening H ′σ (x, x ′)
of Hσ (x, x ′), yielding the claimed inequality (4.32). Using (4.32), we deduce from
Lemma 4.3 that

log2 E[Mσ,1] � −
[
(d − 4)|K ′| + 2

]
n + |K ′|2 log2 n. (4.33)

Combining (4.31) and (4.33) yields the claimed estimate (4.26), completing the proof.
��

Completion of the Proof of Lemma 4.21. Since the upper bound given by
Lemma 4.25 is of lower order than the lower bound given by Lemma 4.24, it fol-
lows that there exists n0 = n0(|K |, N , d, c1, c2) such that

P(C ∩D ∩I ∩ E ) ≤ 1

2
P(C ∩D ∩I )

if n ≥ n0, and hence that

log2 P(C ∩D ∩I \E ) � log2 P(C ∩D ∩I ) � −(d − 4)|K ′| n

for sufficiently large n as claimed. ��

5 Proof of themain theorems

We now complete the Proof of Theorem 1.5. We begin with the simpler case in which
d/(d − 4) is not an integer.

Proof of Theorem 1.5 for d /∈ {5, 6, 8}We begin by analyzing faithful ubiquity. Let G

be a d-dimensional transitive graph, and let H be a finite hypergraph with boundary. If
H has a subhypergraph none of whose coarsenings are d-buoyant, then Proposition 4.1
implies that H is not faithfully ubiquitous in Chypr (F) almost surely for any r ≥ 1.
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Otherwise, by Lemma 2.4, H has a coarsening all of whose subhypergraphs are
d-buoyant. If d/(d − 4) is not an integer, then it follows from Proposition 4.11 that
there exist vertices (xv)v∈∂V inG such that with positive probability, the vertices xv are
in different components of F and H is RG(H)-robustly faithfully present at (xv)v∈V .
The set
{
(ω, (xv)v∈∂V ) ∈ {0, 1}E(G) × V

∂V : H is RG(H)-robustly faithfully present at x
}

is a tail multicomponent property, and it follows from Theorem 2.3 that H is faithfully
ubiquitous in Chypr (F) for every r ≥ RG(H) a.s.

We now turn to ubiquity. Let r ≥ 1. It follows immediately from the definitions
that if H has a quotient that is faithfully ubiquitous in Chypr (F) almost surely then H is
ubiquitous in Chypr (F) almost surely, and so it suffices to prove the converse. If every
quotient H ′ of H with RG(H ′) ≤ r has a subhypergraph none of whose coarsenings
are d-buoyant, then H is not ubiquitous in Chypr (F) almost surely by Proposition 4.1.
Otherwise, by Lemma 2.4, H has a quotient H ′ with RG(H ′) ≤ r that has a coarsening
all of whose subgraphs are d-buoyant, so that H ′ is faithfully ubiquitous in Chypr (F)

almost surely and therefore H is ubiquitous in Chypr (F) almost surely by the above.
This concludes the proof. ��
Proof of Theorem 1.5 for d ∈ {5, 6, 8} The only part of the proof that requires modifi-
cation in this case is the proof that if H has a coarsening all of whose subhypergraphs
are d-buoyant then H is faithfully ubiquitous in ChypRG(H)(F) almost surely. To show this,
we will prove by induction on |E(H)| that if every subhypergraph of H is d-buoyant
then every refinement H ′ of H is faithfully ubiquitous in ChypRG(H ′)(F) almost surely.

Let us first consider the base case |E(H)| = 1. Since every subhypergraph of
H is d-buoyant, the unique edge of H must contain at most d/(d − 4) boundary
vertices. Let H ′ be obtained from H by deleting all internal vertices that are not in the
unique edge of H , and, if necessary, adding additional new boundary vertices to the
unique edge so that it contains exactly d/(d − 4) boundary vertices. Then it follows
from Proposition 4.15 and Theorem 2.3 that every refinement H ′′ of H ′ is faithfully
ubiquitous in ChypRG(H ′′)(F) almost surely. It is easily verified from the definitions that

this implies that every refinement H ′′′ of H is faithfully ubiquitous in ChypRG(H ′′)(F)

almost surely also. In particular, it follows that for every n ≤ d/(d − 4), every set of
n trees of F are contained in an edge of Chypr (F) for every r ≥ RG(n) almost surely.

Let H be a finite hypergraph with boundary all of whose subhypergraphs are d-
buoyant. Suppose that |E(H)| ≥ 2 and that the claim has been established for all
hypergraphs with fewer edges than H . If H is d-basic then we are already done, so
assume not. Then at least one of the following must occur:

(1) H has an edge of degree less than or equal to d/(d − 4).
(2) H has a proper, non-trivial bordered subhypergraph H ′ with ηd(H ′) = 0.

Let us first consider the case that H has an edge of degree less than or equal to
d/(d − 4). Let e0 be an edge of H with deg(e0) ≤ d/(d − 4) and let H1 be the
subhypergraph of H with ∂V (H1) = ∂V (H), V◦(H1) = V◦(H), and E(H1) =
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E(H)\{e0}. By the induction hypothesis, every refinement H ′1 of H1 is faithfully

ubiquitous in ChypRG(H ′1)
(F) almost surely. Let H2 be a refinement of H , and let H3 be

obtained from H2 by deleting every edge of H2 which corresponds to e0 under the
refinement. Then H3 is a refinement of H1, and so is faithfully ubiquitous inChypRG(H3)

(F)

almost surely. On the other hand, every edge of H2 that was deleted to form H3 has
degree at most d/(d − 4), and since ChypRG(H2)

(F) contains every possible edge of these

sizes almost surely, we deduce that H2 is faithfully ubiquitous on ChypRG(H2)
(F) almost

surely.
Now suppose that H has a proper, non-trivial bordered subhypergraph H1 with

ηd(H1) = 0. Let H2 be the hypergraph with boundary that has ∂V (H2) = V (H1),
V◦(H2) = V◦(H)\V◦(H1), and E(H2) = E(H1)\E(H1). We claim that every subhy-
pergraph of H2 is d-buoyant. Indeed, suppose that H3 is a subhypergraph of H2, and
let H4 be the subhypergraph of H1 that includes all the edges and vertices of H1 that
are included in either H1 or H3 (noting that some of the boundary vertices of H3 will
become interior vertices of H4). Let N be the number of boundary vertices of H3 that
are interior vertices of H1. Then we can compute that |E(H4)| = |E(H1)|+ |E(H3)|,
|V◦(H4)| = |V◦(H1)| + |V◦(H4)| + N , and �(H4) = �(H1)+�(H4)+ N , so that

ηd(H3) = ηd(H3)+ ηd(H1) = ηd(H4) ≤ 0

since ηd(H1) = 0 and every subhypergraph of H1 is d-buoyant. Thus, we deduce from
the induction hypotheses that every refinement H ′ of either H1 or H2 is faithfully ubiq-
uitous in Chypr (F) almost surely for every r ≥ RG(H) ≥ max{RG(H1), RG(H2)}. It is
easily verified that this implies that every refinement H ′ of H is faithfully ubiquitous
in Chypr (F) for every r ≥ RG(H ′) almost surely. ��
Proof of Theorem 1.2 We begin by proving the claim about faithful ubiquity. Applying
Theorem 1.4 and Lemma 2.4, and since every subgraph of a tree is a forest, it suffices
to prove that if T is a finite forest with boundary then ηd(T ′) ≥ ηd(T ) whenever
d ≥ 4 and T ′ is a coarsening of T , so that, in particular,

η̂d(T ) = ηd(T ) = (d − 8)|E | − (d − 4)|V◦|

for every d ≥ 4.
Indeed, suppose that T ′ = T / !" is a proper coarsening of a finite forest with

boundary T . Since T is a finite forest, the subgraph of T spanned by each equivalence
class of !" is also a finite forest, and therefore must contain a leaf. Choose a non-
singleton equivalence class of !" and an edge e of this equivalence relation that is
incident to a leaf of the spanned forest. Thus, e has the property that one of the
endpoints of e is not incident to any other edge in e’s equivalence class. Let !"′ be the
equivalence relation obtained from !" by removing e from its equivalence class and
placing it in a singleton class by itself. Thenwe have that |E(T /!"′)| = |E(T /!")|+1
and �(T /!"′) ≤ �(T /!")+ 1 so that

ηd(T /!"′) ≤ ηd(T /!")− 4.
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Thus, it follows by induction on the number of edges of T in non-singleton equivalence
classes that ηd(T / !") ≥ ηd(T ) for every coarsening T / !" of T as claimed. This
establishes the claim about faithful ubiquity.

We now turn to ubiquity. LetG be a d-dimensional transitive graph for some d > 8,
let r ≥ 1, and let F be the uniform spanning forest of G. Let T be a finite tree with
boundary that is not faithfully ubiquitous in Cr (F), and let T ′ be a subgraph of T such
that (d − 8)|E(T ′)| − (d − 4)|V◦(T ′)| > 0, which exists by the previous paragraph.
Since

(d − 8)|E(T ′)|−(d − 4)|V◦(T ′)|=
∑

T ′′ a connected
component of T ′

(d − 8)|E(T ′′)| − (d − 4)|V◦(T ′′)|,

we deduce that T ′ has a connected subgraph T ′′ with (d − 8)|E(T ′′)| − (d −
4)|V◦(T ′′)| > 0. Let H be a quotient of T , let H ′ be the image of T ′′ under the quotient
map, and let S be a spanning tree of H ′, so that |V◦(S)| ≤ |V◦(T ′′)| and |∂V (S)| =
|∂V (T ′′)|. Since S and T ′′ are both trees, we have that |E(S)| = |∂V (S)|+|V◦(S)|−1
and |E(T ′′)| = |∂V (T ′′)|+|V◦(T ′′)|−1.We easily deduce that ηd(S) ≥ ηd(T ′′) > 0,
and consequently that S is not faithfully ubiquitous in Cr (F) almost surely. On the other
hand, since S is a subgraph of H , we have that if H is faithfully ubiquitous in Cr (F)

almost surely then S is also. Since the quotient H was arbitrary, it follows from Theo-
rem 1.4 that T is ubiquitous in Cr (F) if and only if it is faithfully ubiquitous in Cr (F)

almost surely, completing the proof. ��
Proof of Theorem 1.1 To deduce item (1) from Theorem 1.4 and Lemma 2.4, we need
only prove that

f (d) := min
{
max

{
ηd(H

′′) : H ′′ is a subhypergraph of H ′} : H ′ is a coarsening of H
}

is a non-decreasing function of d ≥ 4 for every finite hypergraph with boundary
H . Suppose that H ′ is a subhypergraph of a coarsening of H . Let H ′′ be the largest
subhypergraph of H ′ that contains no edges or interior vertices of degree strictly less
than 2. In other words, H ′′ is obtained from H ′ by recursively deleting edges and
interior vertices of H ′ that have degree strictly less than 2 until no such edges or
vertices remain. It is easily verified that deleting edges or interior vertices of degree
less than 2 does not decrease the d-apparent weight when d ≥ 4, and hence that
ηd(H ′′) ≥ ηd(H ′). Thus, we have that

f (d) = min

{
max

{
ηd(H

′′) : a subhypergraph of H ′ with no edges
or interior vertices of degree < 2

}
:

H ′ a coarsening of H
}

(5.1)

for every d ≥ 4. If H ′′ is a finite hypergraph with boundary such that every edge and
interior vertex of H ′′ has degree at least 2, then �(H ′′) ≥ 2|E(H ′′)| and �(H ′′) ≥
2|V◦(H ′′)|, so that �(H ′′) ≥ |E(H ′′)| + |V◦(H ′′)|, and hence the coefficient of d in
ηd(H ′′) is positive. Thus, the claimed monotonicity follows from (5.1).
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For item (2) it suffices by Theorem 1.2 to construct a family of finite trees with
boundary (Td)d≥9 such that

min

{ |V◦(T ′d)|
|E(T ′d)|

: T ′d is a subgraph of Td

}
= d − 8

d − 4

for each d ≥ 9.We will use the family of trees pictured in Fig. 2. Write d = 4+5k+�

where 0 ≤ � < 5 and let Td be the tree that has one vertex of degree five connected to
� paths of length k+1 and 5−� paths of length k. Td has five leaves, which we declare
to be in its boundary, and declare all the other vertices to be in its interior. Clearly
any subgraph T ′d of Td maximizing |V◦(T ′d)|/|E(T ′d)| must be induced by a union of
geodesics joining the boundary vertices, and it is easily verified that, amongst these
subgraphs, it is the full graph Td that maximizes |V◦(T ′d)|/|E(T ′d)|. To conclude, we
compute that

|V◦(Td)| = 1+ 5(k − 1)+ � = d − 8 and |E(Td)| = 5k + � = d − 4,

so that |V◦(Td)|/|E(Td)| = (d − 8)/(d − 4) as required. ��

6 Closing remarks and open problems

6.1 The number of witnesses

The Proof of Theorem 1.5 also yields the following result. If G is a d-dimensional
transitive graph, F is the uniform spanning forest of G, H = (∂V , V◦, E) is a finite
hypergraph with boundary, and r ≥ 1, then the following hold almost surely:

(1) If H is faithfully ubiquitous in Chypr (F), then for every collection (xu)u∈∂V of
distinct vertices of Chypr (F), there exists a collection (xiu)u∈V◦ of distinct vertices
of Chypr (F) for each i ≥ 1 such that {xiu : u ∈ V◦, u ⊥ e} ∪ {xu : u ∈ ∂V , u ⊥ e}
is an edge of Chypr (F) for every i ≥ 1 and every e ∈ E , {xiu : u ∈ V◦} is disjoint
from {xu : u ∈ ∂V } for every i ≥ 1, and {xiu : u ∈ V◦} and {x j

u : u ∈ V◦} are
disjoint whenever i > j ≥ 1.

(2) If H is not faithfully ubiquitous in Chypr (F), then for every collection (xu)u∈∂V

of distinct vertices of Chypr (F) there exists a finite set of vertices A of Chypr (F)

such that {xu : u ∈ V◦} intersects A whenever (xu)u∈V◦ is a collection of distinct
vertices of Chypr (F) disjoint from (xu)u∈∂V with the property that {xiu : u ∈ V◦, u ⊥
e} ∪ {xu : u ∈ ∂V , u ⊥ e} is an edge of Chypr (F) for every e ∈ E .

Indeed, item (2) is an immediate consequence of Theorem 2.3.
This has the following interesting consequence. For each d > 8, it follows from

Theorem1.2 that the starwith �(d−4)/(d−8)�boundary leaves and one internal vertex
is not faithfully ubiquitous in the component graph of the uniform spanning forest of
Z
d . Thus, we deduce from item (2), above, that if d > 8 then for every collection of
�(d−4)/(d−8)� distinct vertices of the component graph, there is almost surely some
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finite M depending on the collection such that any clique containing the collection has
size at most M . In particular, we conclude that the component graph of the uniform
spanning forest of Z

d does not contain an infinite clique whenever d > 8 a.s. In
contrast, we note that the component graph of the uniform spanning forest of Z

d does
contain arbitrarily large cliques almost surely whenever d ≥ 5. (This follows as a
special case of Theorem 1.4 as in Fig. 5, but is also very easy to prove directly.)

6.2 Further questions about the component graph of the USF

It is natural to wonder whether Theorem 1.4 determines the component graph up to
isomorphism. It turns out that this is not the case. Indeed, observe that faithful ubiquity
of a finite graph with boundary H can be expressed as a first order sentence in the
language of graphs:

for all (xv)v∈∂V there exists (xv)v∈V◦ such that xu ∼ xv for every u, v ∈ V

such that u ∼ v.

Ubiquity of H can be expressed similarly. However, even if we knew the almost-sure
truth value of every first order sentence in the language of graphs, this still would
not suffice to determine the graph up to isomorphism. Indeed, recall that a graph
G = (V , E) is quasi-k-transitive if the action of its automorphism group on V k

has only finitely many orbits. The model-theoretic Ryll–Nardzewski Theorem [11,
Theorem7.3.1] implies that a countably infinite graph is determined up to isomorphism
by its first order theory if and only if it is oligomorphic, i.e., quasi-k-transitive for every
k ≥ 1. By considering sizes of cliques as in Sect. 6.1, it follows from the discussion in
that section that the component graph of the uniform spanning forest of Z

d is a.s. not
quasi-�(d − 4)/(d − 8)�-transitive when d > 8, and hence is a.s. not oligomorphic
when d > 8. We conjecture that in fact the component graph has very little symmetry
indeed.

Conjecture 6.1 Let G be a d-dimensional transitive graph for some d > 8, and let
r ≥ 1. Then Cr (F) has no non-trivial automorphisms almost surely. Moreover, there
does not exist a deterministic graph G such that Cr (F) is isomorphic to G with positive
probability.

Although we do not believe the component graphs of the USF on different transi-
tive graphs of the same dimension to be isomorphic, it seems nevertheless that most
properties of the component graph should be determined by the dimension. One way
of formalizing such a statement would be to axiomatize entire the almost-sure first
order theory of the component graph of the uniform spanning forest and show that this
first order theory is the same for different transitive graphs of the same dimension. We
expect that Theorem 1.4, or a slightly stronger variation of it, should play an impor-
tant role in this axiomatization. See [25] for the development of such a theory in the
mean-field setting of Erdős–Rényi graphs. In particular, we believe the following.

Conjecture 6.2 Let G1 and G2 be d-dimensional transitive graphs, let r1, r2 ≥ 1,
and let F1 and F2 be the uniform spanning forests of G1 and G2 respectively. Then
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the component graphs Cr1(F1) and Cr2(F2) are elementarily equivalent almost surely.
That is, they satisfy the same set of first order sentences in the language of graphs
almost surely.

6.3 Component graphs of other models and other graphs

It would be interesting to study ubiquitous subgraphs in component graphs derived
from other models on Z

d . The most tractable of these is likely to be the interlacement
process [22,24,26], for which some related results have been proven by Lacoin and
Tykesson [16]. Here the component graph is defined by considering two trajectories
to be adjacent if and only if they intersect.

Question 6.3 Let d ≥ 3. Which finite graphs with boundary are ubiquitous in the
component graph of the random interlacement on Z

d?

The picture should be quite different to ours since the connection probabilities for
more than two points are no longer given by a power of the spread.

Amuchmore straightforward extension of our results would be to consider uniform
spanning forests generated by long-range random walks on Z

d . Similarly, one could
consider uniform spanning forests on non-transitive, possibly fractal, graphs that are
Ahlfors-regular and satisfy sub-Gaussian heat kernel estimates of some order β ≥ 2
(see e.g. [15, Chapter 3]). The beginnings of this analysis are already present implicitly
in Lemma 4.3.
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