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ESM.1 Derivation of (2.10) from (2.9)

We need to calculate ¢(), where

dx

tan ¢ = —d—y, (ESM1.1)

x = R(A) cosf and y = R(0)sinh are Cartesian coordinates, and the curve (in polar
coordinates) r = R(#) is given by
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( :;)TO =1+ S cos(f — ). (ESM1.2)
It follows from (ESM1.1) that
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From (ESM1.2), we have
1
tan(5) = -+ eosto - a),

(14 )0 <}%> — _sin(f—a). (ESM1.4)

and therefore from (ESM1.3),

[v + cos(f — )] sin O — sin(6 — «) cos §
[v + cos(f — )] cos O + sin(6 — o) sin 6
vsin @ + sin a

= ESM1.5
ycosf + cosa’ ( )

tan ¢

which is (2.10).

ESM.2 The geometry of conics

In section 3 of the paper, much use is made of the geometry of conics, as deduced
from their polar coordinate representation. In this section we elucidate this material.
We start with equation (3.3) which we may write in the form

d_ v —cosb, (ESM2.1)
r

1

where v = — < 1. Converting this to Cartesian coordinates gives d+z = v+/x? + 2,
e

and squaring this leads to
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d
which, after an origin shift to X = x+ T2 can be converted to the standard form
-7

X2 y2
where J J
__ Y _ _
a=1— V=g (ESM2.4)

This gives the standard form of the hyperbola shown in figure ESM.1. It should be
noted that the squaring of d + x = yr gives two branches of (ESM2.3), but the polar
representation (ESM2.1) only has one.

It is clear from (ESM2.1) that the asymptotic rays of the hyperbola are § = +a =
+ cos™! v, and this provides an easy way to visualise the hyperbola, from the graph

of r (or —) against #. Care needs to be taken, because one might be tempted to
r
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Figure ESM.1: Standard form of a hyperbola (left) as given by (ESM2.2), and the
corresponding graph of r against 6 from (ESM2.1), using values d = 1, v = 0.5. Also
shown in the right figure is v — cos @ (scaled by 3).

suppose the range of 6 on the hyperbola is (—a, a), particularly if one uses (ESM2.3),
and polar coordinates based on X = 0, y = 0. However, with the origin based as in
(ESM2.1) at z = 0, y = 0, and as shown in the left diagram of figure ESM.1, it is
clear that the range is actually (o, 2m — «), as also seen in the right diagram. The
use of the polar representation of r versus 6 then makes it straightforward to assess
the shape of curves such as (3.2) in the paper.

ESM.3 Growth at a corner

We refer to the geometry shown in figure ESM.2. The geometry of growth demands
that

0, +0p = 9+g—x,

sin 6 P
= —, ESM3.1
100 = T (ESM3.1)
where the dependence of v on y is associated with the facetted nature of plagioclase
growth. We also require equilibria of surface energy at the corner,! and thus

pecosfa+ Acosfp =1, ,u:E A= 0L (ESM3.2)
OAP OAP

IThe reason for this is that an inequality would require an infinite supply of energy at the A-P-
melt corner (for the same reason that there is a barrier to homogeneous nucleation, i. e., the surface
to volume ratio becomes infinite in the corner). The same assumption is made by Jackson and Hunt
(1966) in their study of lamellar eutectics.



Figure ESM.2: Defining geometry at an augite-plagioclase-melt junction.

Note that we must have p + A > 1. The three equations in (ESM3.1) and (ESM3.2)
can be solved to determine 64, g and x as functions of 4. .

ESM.3.1 Facetting

Before exploring the consequences of these equations, we flesh out the brief discussion
of facetting in section 3.3 of the paper. Suppose we have a (two-dimensional) surface
y = s(z,t). We define F' = s — y, so that the velocity of the surface v satisfies

dF
(partial derivates with respect to t are denoted by subscripts, as in F}), and since the
. VF . . . .
upward normal is n = —W, this determines the normal velocity of the interface
(upwards) as
F;
Up=van= " ot (ESM3.4)

VE| ~ 1+ s2)72

So if the interfacial growth rate is prescribed as a function of slope, v, = V(s,), then
the evolution of s is determined by solving the partial differential equation

se=V(sa) (14 s2)Y2, (ESM3.5)

where, as for t derivatives, subscripts x denote partial x derivatives.
This first order equation can be solved using Charpit’s method (e. g., Carrier and
Pearson 1976, chapter 12). We define

p=ss Qp)=Vp)(1+p)"% (ESM3.6)



then the solution of (ESM3.5) is obtained by solving the ordinary differential (char-
acteristic) equations

T = _Qla
i = Q-pQ, (ESM3.7)

where @' is the derivative of Q(p), and the overdots represent time derivatives along
curves in (z,t) space called characteristics, on each of which (in this example) p is
constant. We parameterise the initial data s = so(x) at ¢ = 0 by specifying

/

z=10(€), s=s0(), p= 89<5> at t=0, (ESM3.8)

6(8)
and each characteristic curve is parameterised by ¢ (and p is constant on each char-

acteristic).
The solution is then given by

r = xo(§) - Q't,

s = 80(€)+(Q—pQ)t. (ESM3.9)

The characteristics are straight lines, and ‘shocks’ will form if they intersect. These
shocks correspond to the formation of facets. It is easier to deal with the surface angle
1 = x, where p = tant, rather than the slope p, and we will take V' = V(¢). (The
angle v was denoted as y in the paper, to avoid confusion with the impingement
angle, but no such confusion should arise here, and 1 is the common notation in
intrinsic coordinates.) Thus we find

ZL, Q' = R(¢) =V'cost + Vsin,
cos
Q—pQ = S(¥)=Vcosyp—V'siny; (ESM3.10)

here the prime on @’ is a derivative with respect to p, but that on V"’ is with respect
to 1. We can then use v as the characteristic parameter in (ESM3.9), which then
has the form

r = () — R(P),
s = so(v) + S(¥)t. (ESM3.11)

Suppose first that V' is constant (and positive), and that the initial configuration is
a rounded corner, as shown in figure ESM.3. Then z4(¢) is monotonically decreasing,
and so R = V' sin® is positive and decreases from V' at the left to 0 at the right, and
the characteristics spread out in a fan, as shown in figure ESM.3. In this case,
the rounded corner grows with time, and a small seed crystal would end up being
completely rounded.

However, if V' is not constant, then R may not be an increasing function of .
Calculating its derivative, we find

R = (V" 4+ V)cos, (ESM3.12)
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Figure ESM.3: An initially round corner remains round if V' is constant.
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and thus if V' increases between ¢ = 0 and ¢ = 7, R may have an interior maximum
at ¥y, say. An example of such a pair is shown in figure ESM.4. In this case, the
characteristic from x = x); where v = 1, is the most steeply inclined to the left, and
so it will catch up with all those to the left of x);. A shock will form, representing
the formation of a corner, where eventually the surface angle jumps from 3§ to ¢y,
as indicated in figure ESM.5. To the right of zj;, the characteristics spread out as
a fan, and a curved upper face is propagated. However, if the maximum of R is at
1 = 0, which will be the case if V' increases sufficiently rapidly near v = 0, then the
most steeply inclined characteristics are those at the far right, there is no fan, and
the eventual shape is a right-angled facet.

For the mathematician, it is perhaps easier to see what happens by taking the x
derivative of (ESM3.5). This gives the hyperbolic equation

pe — Q' (p)ps =0, (ESM3.13)
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Figure ESM.4: The functions V(1) (left) and R(x) (right) given by V = 0.8 cos?¢) +
0.3sin? ¢ + sin® 2¢; R is defined in (ESM3.10).
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Figure ESM.5: Shock and facet formation when R(¢) has an interior maximum.

or better, in terms of v,

v — R(Y)h, = 0. (ESM3.14)

Shocks form as described above if R’ < 0, and at these there is a jump in ¢ and thus
slope.

ESM.3.2 The role of curvature

The Gibbs-Thomson effect depresses the liquidus temperature due to curvature of
the interface. Suppose the ambient liquidus temperature is 77, and the actual local
temperature is Tj, so that the local undercooling is AT = T, —Tj at a planar interface.
We might for example specify the growth rate as V(¢) = I'(¢))AT. If the interface
is curved, the Gibbs-Thomson effect implies that the (local equilibrium) interfacial

undercooling is
20Tk

psL
where k is the mean curvature, measured from ithe solid side, o is surface energy, ps
is solid density, and L is latent heat. This suggests that for a curved interface, we
take the growth rate to be V(1 — dk), where, if the model is written dimensionlessly
in terms of a grain length scale d,, the (then dimensionless) parameter § would be

AT, = AT — (ESM3.15)

207T;
S g

and the modification of (ESM3.5) would be

(ESM3.17)

s¢ = V(s;)(1+ )2 {1 P },

(1 +52)372

using the definition of curvature for s(x,t).
This curvature term has a diffusive effect. We can write (ESM3.17) in the form

st = Q(p) + 6V (p)[tan™" pl., (ESM3.18)
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and differentiating,
pr — Q'(p)pe = [V (p){tan™" p}.l., (ESM3.19)

which also shows its diffusive nature. This term can thus provide a shock structure
which smoothes jumps in slope over a (dimensionless) distance ~ 4. In detail, near a
shock x4(t) moving at speed —c (¢ positive so leftward moving as in figure ESM.5),
we put x = x5 + 60X, and then approximately

epx — [Q(p)]x = [V(p){tan™" p}x]x, (ESM3.20)

with first integral
K +cp—Q(p) = V(p){tan ' p}x, (ESM3.21)

and the solution of this provides the shock structure joining values py in x z T

ESM.3.3 Beaking

Having elucidated how facetting occurs in a growth model, we now return to the
consideration of growth at an augite-plagioclase-melt corner, as described by the
solution of the equations in (ESM3.1) and (ESM3.2). First we seck to understand
whether the problem is well-posed. We can consider a situation where augite and
plagioclase crystals grow upwards in a finite (dimensionless) domain 0 < x < 1, say,
with symmetric or periodic boundary conditions, so that s, = 0 at x = 0,1. We
denote the location of the A-P-melt junction as x = «(t). It follows from figure
ESM.2 that « is determined by

o= Snl0a—6) (ESM3.22)

sin 9,4

We need to solve (ESM3.17) separately in z z a, with conditions of continuity of s
at * = «, together with (ESM3.1) and (ESM3.2). Suppose we take s = s, at = a.
Then we have enough boundary conditions to solve for s, and thus determine s, at
a4, which determines § and x in terms of s.. The three equations in (ESM3.1) and
(ESM3.2) then determine 64 and 0p, with the extra equation providing the value of
Se.

Now we consider what happens to this well-posed problem if § is small. As already
described, the singular approximation  — 0 makes the growth problem hyperbolic.
At the plagioclase corner, the shock structure is replaced by an actual shock, but
there is a genuine discontinuity in slope at the A-P-melt junction. The loss of the
diffusive term implies the loss of ability to satisfy all three conditions in (ESM3.1)
and (ESM3.2), and as we have supposed all along, the one that is lost is the surface
energy balance (ESM3.2). On the long plagioclase face, we then have y = 7, 6 is
given from the radial augite growth, and (ESM3.1) determines 64 and 6p. The actual
satisfaction of (ESM3.2) then requires a boundary layer of thickness O(d), in which
X changes from its actual value at the junction to 7 on the vertical plagioclase face.

The issue that then faces us is what happens when the boundary layer at the A-
P-melt junction runs into the shock structure at the plagioclase corner. The eventual
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outcome is that a new A-P-melt boundary layer propagates along the short face,
having destroyed the corner shock structure, and our conjecture is that this can not
happen instantly, but requires a finite time while the slow evolution of # allows the
adjustment to take place. However, a detailed demonstration of the validity of this
conjecture is somewhat challenging.

ESM.4 Derivation of (4.1)

B

Figure ESM.6: The geometry of pore close-off.

For simplicity we will suppose that there is no change of volume on solidification.
On the left we see an equilateral triangle BCD whose circumcircle has radius OB of
length r. As shown in the blown-up triangle OAB, the lengths of AB and OA are v/3r
and %7‘ respectively, since the angle ZOBA = 30°, and sin 30° = %, cos 30° = %\/g
Therefore the length of a side such as BD is \/§r, while an altitude such as COA is
of length 2r; so the area of BCD is %?:7‘2. If j1p, is the chemical potential (J mole™),
then pz/Vas is the chemical potential in J m™2, where Vj; is the molar volume (m?
mole™1). The free energy of the liquid in BCD per unit length transverse to the page
is thus

2
GL = m + 30’pL\/§7’, (ESM41)
4V

where the second term is the surface energy of the three solid-liquid interfaces BC,
CD and DB.

In the final solidified state, the volumetric free energy is similar (replace py by
is), but the solid-solid surface energy opp replaces opr, and the new surface area
per unit length out of the page is the sum of the lengths of OC, OB and OD, each of
which is of length r. Hence we have

B 3v/3r2 g
4V

and thus the free energy per unit length out-of-page of the liquid prism in figure 8 of
the paper relative to the solid state is

GS + 30'Pp’l", (ESM42)

2

A

AG:GL—GS == 3%3/#%-3(0'13[/\/3—0'1313) r, (ESM43)
M



where Ay = pp — ps.

ESM.5 Equilibrium dihedral angle

)

P PL
< ® L
Opp
P Opr,

Figure ESM.7: The equilibrium dihedral angle

The equilibrium angle between two plagioclase grains and liquid (mentioned fol-
lowing equation (4.1)) satisfies

Opp = 20’pL COS %@ (ESM51)

The reason for this is that we can interpret the minimisation of surface energy in
terms of an apparent force (the surface tension) acting along the interfaces. Thus in
figure ESM.7, the interfacial forces per unit length (in the page) are opp and opy,
and resolving these in the horizontal with a dihedral angle © leads to (ESM5.1).

ESM.6 Derivation of (4.3) from (4.2)

For the situation shown in figure ESM.8 (figure 10 of the paper, slightly modified),
the surface energy increment is defined by

E = UPPRS+20APPQ+UALPV+ZO'PLPS. (ESM61)

In order to derive (4.3) in the paper, we need to show that (the lengths of)

/7(
RS:O—, PQ = / 0')2 + R0 e,

sin «
0
PV = (r— 20)R(8), Ps = D0)cost (ESM6.2)
sin «

We consider these four line segments in turn.
The curve UTQ is the circular arc r = 1o, where the polar coordinates (r,6) are
as shown in the figure. The right hand plagioclase-liquid interface RQ is the straight
line rcos(f — o) = 1. At later values 7 of the time-like variable defined in (2.1) of
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Figure ESM.8: Calculation of surface energy.

the paper, RQ has moved to SX (but only SP forms an interface with liquid), given
by (2.4):

rcos(f —a) =rg— / v(s) ds, (ESM6.3)
0
where we allow « to vary with 7, while (part of) UTQ has moved to VP, given by
r=ry+T. (ESM6.4)

The forming plagioclase-augite grain boundary QP is given by the intersection of
(ESM6.3) and (ESM6.4), thus r = R(6), 7 = R — ry, and hence

R—ro
Rcos(f — o) =1y — / v(s) ds. (ESM6.5)
0

5 , where WS is the
sin «

To calculate RS, we see from figure ESM.8 that it is =

distance moved by RQ, which from (ESM6.3) is just / 7(s) ds; hence the expression
0

for RS in (ESM6.2).

To calculate (the length of) PQ, we note it is given by (ESM6.5), and also
that 6 = « at 7 = 0 (at the point Q). Since arc length o is given by do =
[R'(0")* + R(¢/ )2]1/ ? d#, we immediately obtain the given expression.

On the arc PV, P is at r = R(0), so the arc length PV is just R times the angle
subtended by PV at O, which is 2(5 — ) = = — 26, and hence the length of PV in
(ESMG6.2).

Finally, to determine PS, note that the horizontal distance PZ (z-coordinate of
P) of P from the vertical axis OR is R(6) cos, and since Z/PSZ = «, we obtain the
expression for PS in (ESM6.2).
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