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Abstract
We develop algebraic models of simple type theories, laying
out a framework that extends universal algebra to incorpo-
rate both algebraic sorting and variable binding. Examples of
simple type theories include the unityped and simply-typed
λ-calculi, the computational λ-calculus, and predicate logic.
Simple type theories are given models in presheaf cate-

gories, with structure specified by algebras of polynomial
endofunctors that correspond to natural deduction rules.
Initial models, which we construct, abstractly describe the
syntax of simple type theories. Taking substitution structure
into consideration, we further provide sound and complete
semantics in structured cartesian multicategories. This de-
velopment generalises Lambek’s correspondence between
the simply-typed λ-calculus and cartesian-closed categories,
to arbitrary simple type theories.

1 Introduction
Universal algebra is a framework for describing a class of
mathematical structures: precisely those equipped with
monosorted algebraic operations satisfying equational laws.
Though such structures are prevalent, there are
nevertheless many structures of interest in computer
science that do not fit into this framework. In particular,
notions of type theory, despite being presented in an
algebraic style, cannot be expressed as universal algebraic
structures. Herein, we follow the tradition of algebraic type
theory [10, 12] in describing type theories as the extension
of universal algebra to a richer setting, viz. that of sorting
(i.e. typing) and variable binding.

There are several reasons to be interested in extending
universal algebra in this manner. From the perspective of pro-
gramming language theory, this is a convenient framework
for abstract syntax: the structure of programming languages,
disregarding the superficial details of concrete syntax. From
a categorical perspective, algebraic type theory provides
a precise correspondence between syntactic and semantic
structure: the rules of a type theory give a conveniently ma-
nipulable internal language for reasoning about a categorical
structure, which, in turn, models the theory. The classical
result due to Lambek [23], that the simply-typed λ-calculus
is an internal language for cartesian-closed categories, is a
representative example of such a correspondence.

In this paper, we consider the syntax and semantics of
simple type theories: algebras with sorted binding operations,
whose type structure itself is (nonbinding) algebraic. Simple
type theories encompass many familiar examples beyond
algebraic theories, including the unityped and simply-typed
λ-calculi, the computational λ-calculus [26], and predicate
logic. Similar extensions to universal algebra have been ex-
plored in the past [5, 15, 17, 18], but previous approaches
have proven difficult to extend to the dependently-sorted
setting that is necessary to describe more sophisticated type
theories such as Martin-Löf Type Theory [25]. We describe
a new approach, combining the theories of abstract syntax
[18] and polynomial functors [20], which we feel is an ap-
propriate setting to consider dependently-sorted extensions.

Philosophy
Type theories are typically presented by systems of natu-
ral deduction rules describing the inductive structure of the
theory. Models of the type theory will therefore have cor-
responding structure. The observation that motivates our
approach may be summarised by the following thesis.

Natural deduction rules are syntax for polynomials.

In this paper we give an exposition of this idea, describing
a polynomial approach to the semantics of simple type the-
ories. Concretely, we will show how the natural deduction
rules presenting the algebraic structure of a simple type
theory, which are described precisely by a class of arities,
induce polynomial functors in presheaf categories whose
algebras are exactly models of the type theory. In particular,
the initial algebras are the syntactic models, whose terms are
inductively generated from the rules. This provides a corre-
spondence between type theoretic and categorical structure.
To build intuition for the general setting, we will frame the
classical example of the simply-typed λ-calculus in this new
perspective.
The relationship between polynomials and the algebraic

structure of type theories was first proposed by Fiore [13],
in the context of generalised polynomial functors between
presheaf categories. Though our approach is similarly moti-
vated, the setting is different: we consider traditional polyno-
mial functors between slice categories. This is a setting that
has been more widely studied [1, 20] and one we suggest also
extends more readily to modelling dependent type theories:
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Awodey and Newstead [3, 4, 28], for instance, have also con-
sidered a relationship between polynomial pseudomonads
and natural models of type theory [3]. Their setting, how-
ever, is entirely semantic, and one in which the significance
of polynomials in the structure of natural deduction rules is
not apparent.
In this framework, we consider two classes of models:

models of simply typed syntax (Section 5), and models of
simple type theories (Section 8). Both classes of models have
algebraic type structure and multisorted binding (i.e. second-
order) algebraic term structure, but simple type theories
extend syntax in two ways: while syntax here refers to
those terms solely built inductively from natural deduction
rules, type theories additionally have an associated notion
of (capture-avoiding) substitution: a variable in a term may
be replaced by a term of the same type, taking care not to
bind any free variables. Typically, a syntax gives rise to a
type theory, as one can add a substitution operation that
commutes with the operators of the syntax. For this reason,
many models of universal algebra do not draw a distinction
between syntax and type theory: for instance, Lawvere the-
ories [24] have a built-in notion of substitution, given by
composition of morphisms. However, it is useful to consider
these two notions separately: substitution gives rise to rich
structure that one can only observe by treating it explicitly,
for example the substitution lemma (Theorem 6.3) that is
ubiquitous in treatments of type theory.
We also consider only type theories (and not syntax) to

be equational, as modelling equations involves identifying
terms that are syntactically distinct.

Contributions
The main contributions of this paper are the following.

1. A new perspective on natural deduction rules, present-
ing natural deduction rules for formation, introduc-
tion and elimination, as the syntax for polynomials in
presheaf categories.

2. A general definition of models of simply typed syntax
and simple type theories.

3. Initiality theorems, giving a construction of the ini-
tial models of simply typed syntax and simple type
theories.

4. A correspondence between models of simple type the-
ories and classifying multicategories, generalising the
classical Lambek correspondence between the simply-
typed λ-calculus and cartesian-closed categories.

This work provides a basis for our ongoing development
of algebraic dependent type theory.

Organisation of the paper
We build up the definition of a simple type theory in parts,
presenting the syntax and semantics in conjunction.

Section 2 describes the monosorted nonbinding algebraic
structure of types, which is standard from universal algebra.
Section 3 considers variable contexts and introduces models
thereof. Section 4 is the central contribution of the paper
and explains how the multisorted binding algebraic struc-
ture on terms may be presented by syntax for polynomials
corresponding to natural deduction rules. Section 5 defines
categories of models of simply typed syntax and gives a
construction of the initial model (Theorem 5.7). Section 6
introduces substitution structure on terms and establishes a
substitution lemma (Theorem 6.3). Section 7 describes equa-
tions on terms, which crucially relies on the substitution
structure from the preceding section. Section 8 defines cat-
egories of models of simple type theories, which extend
syntax by having substitution and equational structure, and
leads to a construction of the initial model (Theorem 8.4).
Section 9 demonstrates how models of simple type theories
induce structured cartesian multicategories, establishing a
generalised Lambek correspondence (Theorem 9.2 and Corol-
lary 9.4).

2 Simple types
We consider types with monosorted nonbinding algebraic
structure à la universal algebra. The type constructors of
the simply-typed λ-calculus are examples of such algebraic
structure; consider the following formation rules.

Unit-form
Unit type

A type B type
Prod-form

Prod(A,B) type

A type B type
Fun-form

Fun(A,B) type
These types may be modelled by a set S of sorts with a
function expressing the denotations of the type constructors.
Base types are described by nullary type constructors, as in
universal algebra.

1 + S2 + S2
[JUnitK,JProdK,JFunK]
−−−−−−−−−−−−−−−−→ S

This structure is an algebra for the endofunctor on Set map-
ping S 7→ S0 + S2 + S2. This is an example of a polynomial
functor on Set. Polynomial functors are a categorification of
the notion of polynomial functions and similarly represent
“sums of products of variables”. Just as a polynomial function
is presented by a list of coefficients, polynomial functors
are presented by polynomials, which are diagrams of the
following shape.

I
s
←− A

f
−→ B

t
−→ J

Such a polynomial in Set induces a polynomial functor
Set/I → Set/J , given by the following, where Bj = t−1(j)
and Ab = f −1(b).

(Xi | i ∈ I ) 7→ (Σb ∈BjΠa∈AbXs(a) | j ∈ J )
2
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This is slightly more sophisticated than the traditional sum
of products: in particular, we also have a notion of reindex-
ing. Clear introductions to polynomial functors are given in
Gambino and Kock, Weber [20, 29].
Type constructors correspond generally to polynomials

in Set. Consider the Prod type constructor, for instance. It
induces the following very simple polynomial.

1← 1 + 1→ 1→ 1
Each summand in the second component corresponds to
a premiss in the formation rule. Here, every morphism is
trivial, which is a consequence of types being monosorted.
We will see more illustrative examples later. The polynomial
induces the polynomial functor (−) 7→ (−) × (−), algebras
for which are sets S with a function JProdK : S2 → S as
intended.
Type operators (i.e. formation rules) are described gener-

ally in terms of arities.

Notation 2.1. LetM : Set→ Set be the free monoid endo-
functor. For any functor F : Set→ Set, define F⋆ def

= M ◦ F .

Definition 2.2. We define ark : Set → Set, for k ∈ N,
inductively.

ar0
def
= Id

ark+1
def
= ark⋆ × ark

We call ark (S) the set of S-sorted k th-order arities.

Notation 2.3. We denote by A1, . . . ,An → A the S-sorted
first-order arity

(
(A1, . . . ,An),A

)
∈ ar1(S). We identify

nullary arities with constants and omit the arrow (→) when
n = 0.

Notation 2.4. We denote by n the set {1, . . . ,n}, for n ∈ N.
In particular, 0 is the empty set.

First-order arities correspond to the operators of (multi-
sorted) universal algebra [5], though in this setting we are
solely concerned with monosorted operators. Specifically,
our type operators are represented by {∗}-sorted first-order
arities, where ∗ is the unique kind.
In general, an n-ary type operator

O : ∗, . . . , ∗︸  ︷︷  ︸
n∈N

→ ∗

corresponds to a type formation rule of the form
A1 type · · · An type

O-form
O(A1, . . . ,An) type

where A1, . . . ,An are type metavariables, universally quan-
tified over all types.

An n-ary type operator induces a polynomial in Set

1← n → 1→ 1
intuitively the following.
{∗} ← {A1 : ∗} + · · · + {An : ∗} → {O(A1, . . . ,An) : ∗} → {∗}

An algebra for the induced polynomial functor is given ex-
plicitly by a set S and a function JOK : Sn → S . We collect
the arities into a single signature, which completely describes
the inductive structure of the types.
Definition 2.5. A type operator signature, denoted Oty, is
given by a list of {∗}-sorted first-order arities.
Notation 2.6. To aid readability, we will use the following
informal notation throughout. The ▷ symbol separates the
type metavariables from a type, term or equation involving
them. For example, the notation

A,B : ∗ ▷ Prod(A,B) : ∗
specifies a {∗}-sorted first-order arity ∗, ∗ → ∗.
Example 2.7 (Formation rules for the simply-typed
λ-calculus). Let I ∈ Set be a finite set of base types.

▷ Basei : ∗ (i ∈ I )

▷ Unit : ∗
A,B : ∗ ▷ Prod(A,B) : ∗
A,B : ∗ ▷ Fun(A,B) : ∗

A type operator signature induces a polynomial (resp.
polynomial functor), given by taking the coproduct of the
polynomials (resp. polynomial functors) induced by its ele-
ments.
Notation 2.8. We will denote by Oty both a type operator
signature and the polynomial functor Oty : Set → Set it
induces.
The polynomial functor Oty induces a monad giving the

closure of a set of type metavariables under the operators of
the signature.
Notation 2.9. Given a type operator signature Oty, we de-
note by O∗ty the free Oty-algebra monad on Set.

The Eilenberg–Moore category of the monad O∗ty is iso-
morphic to the category of Oty-algebras.

2.1 Equations on types
We permit types to be identified by means of equational laws.
For anym ∈ N, the set O∗ty(m) may be considered syntacti-
cally as the set of types parameterised bym type metavari-
ables. Each element ofm acts as a placeholder, which one
can substitute for a concrete type, by the freeness of O∗ty(m)
as in the following. A morphism A as below corresponds to
a family of sorts (Ai )1≤i≤m ∈ S

m .

Oty(O
∗
ty(m)) Oty(S)

O∗ty(m) S

m

Aη

ΨA

JtyK∗ JtyK

Oty(ΨA)

(1)
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Definition 2.10. An Oty-type equation is given by a pair(
m ∈ N, (L,R) ∈ O∗ty(m)

2) , representing an equation between
types L ≡ R parameterised bym metavariables.

An Oty-type equation induces a term monad identifying
the terms in the (L,R) pair [16], intuitively given by quoti-
enting O∗ty by the equation.

Definition 2.11. An equational type signature, typically de-
noted Σty, is given by a type operator signature Oty and a
list Ety of Oty-type equations.

Definition 2.12. Given an equational type signature Σty =

(Oty,Ety), a Σty-algebra is anOty-algebra satisfying the equa-
tions of Ety.

Notation 2.13. Given an equational type signature Σty, we
denote by Σ∗ty the associated term monad on Set.

The term monad associated to an equational type sig-
nature

(
Oty, [ ]

)
is the free Oty-monad O∗ty. For any list of

Oty-type equations Ety, there is a canonical quotient monad
morphism O∗ty ↠ Σ∗ty.

Example 2.14 (Unityped λ-calculus). In the unityped λ-
calculus there is a single type constant D : ∗ and a single
type constructor Fun : ∗, ∗ → ∗, where function types are
identified with the base constant: ▷ D ≡ Fun(D,D).

3 Contexts
Type theories have a notion of (variable) context, explicitly
quantifying the free variables that may appear in a term.
Here, we take the contexts of simple type theories to be carte-
sian: intuitively, lists of typed variables, admitting exchange,
weakening, and contraction. Cartesian context structures
model the structure of such contexts.

Definition 3.1. Given an equational type signature Σty =

(Oty,Ety), a cartesian Σty-typed context structure for an alge-
bra JtyK : Σ∗ty(S) → S consists of
• a small category C, the category of contexts, with a
specified terminal object ϵ , the empty context;

• a functor ⟨−⟩ : S → C, embedding sorts as single-
variable contexts, where S denotes the discrete category
on a set S ;
• for all Γ ∈ C and A ∈ S , a specified product Γ × ⟨A⟩,
context extension of Γ by a variable of sort A.

Notation 3.2. We write Cart(S) for the free strict cartesian
category on a set S , given concretely by the opposite of the
comma category (F ↪→ Set) ↓ (S : 1→ Set), where F is the
skeleton of the category of finite sets and functions.

Example 3.3. Every algebraic theory [2] (that is, a cartesian
category) C is an example of a cartesian Id |C |-typed context
structure (in fact, one closed under concatenation, rather
than just extension).

Definition 3.4. A homomorphism of cartesian Σty-typed con-
text structures from (C, S) → (C′, S ′) consists of
• a functor H : C→ C′;
• a Σ∗ty-algebra homomorphism h : S → S ′,

such that the following diagram commutes.

C × S C′ × S ′

C × C C′ × C′

C C′

1

H

ϵ ϵ ′

×

id×⟨−⟩

H×h

id×⟨−⟩′

×

Cartesian Σty-typed context structures and their homo-
morphisms form a category.

Proposition 3.5. There is a left-adjoint free functor taking
sets S to the free cartesian Σty-typed context structure on S ,
given by Cart(Σ∗ty(S)) with ⟨−⟩ the canonical embedding.

In particular, the free cartesian Σty-typed context structure
on ∅ is the initial object.

4 Terms
We follow the tradition of abstract syntax, initiated in Fiore,
Plotkin, and Turi [18], of representing models of terms as
presheaves over categories of contexts. In particular, for a
cartesian Σty-typed context structure C, we consider
presheaves T : Cop → Set as sets of terms, indexed by their
context. For each context Γ ∈ Cop, T (Γ) is to be regarded as
the set of terms with variables in Γ; while a morphism
ρ : Γ → Γ′ in Cop, representing a context renaming, induces
a mapping T (ρ) : T (Γ) → T (Γ′) between terms in different
contexts.

Notation 4.1. We use the same symbol for a set S (resp.
function h : S → S ′) and any constant presheaf on S (resp.
any constant natural transformation on h).

The set of sorts S embeds into Ĉ as a constant presheaf:
intuitively a presheaf of types that do not depend on their
context. In this light, a natural transformation τ : T → S

in Ĉ is to be regarded as an assignment of types to terms
that respects context renaming. The slice category Ĉ/S is
thus an appropriate setting for considering typed terms in
context. (Note that we work in the fibred setting, rather than
the equivalent indexed setting of Fiore [9].)

Definition 4.2. A typed term structure for a cartesian
Σty-typed context structure (C, S) is an object of Ĉ/S ,
concretely
• a presheaf T in Ĉ, the terms;
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• a natural transformation τ : T → S , the assignment of
a type for each term.

The type of any term t ∈ T (Γ) is therefore given by τΓ(t)
(cf. the view taken in Fiore [14] and Awodey’s natural mod-
els [3]).

Example 4.3. The presheaf of variables for a cartesian
Σty-typed context structure (C, S) forms a typed term
structure ν : V → S given by the following, where y
denotes the Yoneda embedding.

V
def
=

∐
A∈S

y⟨A⟩ ν (⟨A, ρ⟩)
def
= A

The presheaf of variables is so called because, for any
context Γ, the setV (Γ) is to be regarded as the variables in Γ.
We note that, for all presheaves X ∈ Ĉ and A ∈ S , one has
XVA � X (− × ⟨A⟩), illustrating that exponentiation by VA is
the same as context extension [18] (in turn demonstrating
that context extension is polynomial).

Proposition 4.4. For all n ∈ N, the morphism νn :V n → Sn

is representable.

Any presheaf of terms may be restricted to just those with
a specified type, by taking pullbacks, as in the following
example.

Example 4.5. Given a typed term structure τ : T → S and a
sort A ∈ S , we denote byTA the presheaf consisting of terms
in T whose type is A, given by the fibre:

TA T

1 S

τ

ιA

A

⌟

It induces a typed term structure given by the composite
TA → 1

A
−→ S .

4.1 Algebraic models of the simply-typed λ-calculus
Terms have two additional forms of structure that is not
found in simple types: multisorting and binding. We walk
through the illustrative algebraic term structure of the
simply-typed λ-calculus to give intuition before providing
the general construction in Section 4.3. First, we will
identify the structure we expect our models to have, before
seeing how this structure arises from our models being
algebras for a polynomial functor in Section 4.2.
As with the algebraic structure for types, the algebraic

structure for terms is presented by natural deduction rules
(typically introduction or elimination rules), each rule corre-
sponding to an operator on terms.

Products. The introduction rule for Prod is given by the
following.

Γ ⊢ a : A Γ ⊢ b : B Prod-intro
Γ ⊢ pair(a,b) : Prod(A,B)

(2)

Conceptually, the introduction rule allows one to take two
terms of any two types A and B and form a new term, their
pair, such that the type of the new term is the product
JProdK(A,B), given by the algebraic structure of the types.
A typed term structure τ : T → S therefore models Prod-
intro when equipped with a morphism JpairK such that the
following diagram commutes.

T ×T T

S × S S

ττ×τ

JpairK

JProdK

The elimination rules for products are given by the following.
Γ ⊢ p : Prod(A,B)

Prod-elim1
Γ ⊢ proj1(p) : A

(3)

Γ ⊢ p : Prod(A,B)
Prod-elim2

Γ ⊢ proj2(p) : B
(4)

A typed term structure τ : T → S models the first projec-
tion when equipped with a morphism Jproj1K such that the
following left-hand square commutes, where TJProdK is given
by the following right-hand square.

TJProdK T

S × S S

τ

Jproj1K

π1

TJProdK T

S × S S

τ

ι

JProdK

⌟

This condition is analogous to the one for the introduction
rule, the primary difference being that it is only possible to
project from terms that have type Prod(A,B) for some types
A and B. The situation for Prod-elim2 is analogous.

Units. Compared to that for products, the algebraic struc-
ture for units is almost trivial. The introduction rule for Unit
is given by the following.

Unit-intro
Γ ⊢ u : Unit (5)

A typed term structure τ : T → S for the Unit type should
therefore single out a term JuK with type τ (JuK) = JUnitK (in
any context). That is, we expect the following diagram to
commute.

1 T

S

τ
JUnitK

JuK

λ-abstraction. Having considered sorting structure, we
now consider variable binding. The introduction rule for Fun
is given by the following.

Γ,a : A ⊢ b : B
Fun-intro

Γ ⊢ abs((a : A)b) : Fun(A,B)
(6)

The abs operator allows one to take a term in an extended
context and form a term in the original context. A typed
term structure τ : T → S therefore models Fun-intro when

5
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equipped, for every context Γ and typesA,B ∈ S , with a map-
ping JabsKA,BΓ , natural in Γ, such that the following diagram
on the left commutes.

TB (Γ × ⟨A⟩) T (Γ)

1 S

τΓ

JabsKA,BΓ

JFunK(A,B)

TB
VA T

1 S

τ

JabsKA,B

JFunK(A,B)

Through the relationship between context extension and ex-
ponentiation by representables (Example 4.3), this is equiv-
alent to the above diagram on the right, for all A,B ∈ S .
Finally, quantifying over the types, this is further equivalent
to the following formulation.∐

A,B∈S TB
VA T

S × S S

τ

JabsK

π

JFunK

The elimination rule is simpler.

Γ ⊢ f : Fun(A,B) Γ ⊢ a : A
Fun-elim

Γ ⊢ app(f ,a) : B
(7)

A typed term structure τ : T → S models function applica-
tion when equipped with a morphism JappK such that the
following square commutes.∐

A,B∈S TJFunK(A,B) ×TA T

S × S Sπ2

τ

JappK

π

4.2 Polynomials for the simply-typed λ-calculus
We now show how the above structure for models of the
simply-typed λ-calculus is actually algebraic structure for a
polynomial functor. While, so far, we have only dealt with
polynomials in Set, we recall that the concept makes sense
for any presheaf category Ĉ.
For every morphism f : A→ B in Ĉ, there is an adjoint

triple Σf ⊣ f ∗ ⊣ Πf where Σf is postcomposition by f and
f ∗ : Ĉ/B → Ĉ/A is pullback along f . Every polynomial
I ← A → B → J induces a polynomial functor ΣtΠf s

∗ :
Ĉ/I → Ĉ/J .
An algebra for a functor F : Ĉ/S → Ĉ/S is a typed term

structure τ : T → S with a morphism φ : dom(F (τ )) → T
such that the following diagram commutes.

dom(F (τ )) T

S

τ
F (τ )

φ

We will write F (T ) to mean dom(F (τ )) when unambiguous.

In particular, algebras for a polynomial functor,
φ : ΣtΠf s

∗(τ : T → S) → (τ : T → S), are illustrated by the
following diagram.

T s∗(T ) Πf s
∗(T ) T

S A B S
fs t

τ τΠf s∗(τ )

φ

s∗(τ )

⌟

We will sometimes depict polynomials geometrically as in
the following.

A B

I J

s t
f

We may then unambiguously omit a component morphism,
which is taken to be the identity. The composition of two
polynomials is also a polynomial [20, Proposition 1.12], de-
picted graphically as in the following.

A B C D

I J K

Products. The condition for Prod-intro (2) exactly states
that τ : T → S is an algebra for the polynomial functor
induced by the following polynomial in Ĉ.

S
[π1,π2]
←−−−−− S2 + S2

∇2
−−→ S2

JProdK
−−−−−→ S (Prod-intro)

The structure of this polynomial may seem opaque at first; we
will attempt to provide some intuition. The polynomial de-
scribes a (many-in, one-out) transformation between terms,
respecting the type structure. The middle component ∇2 :
S2+S2 → S2 represents the type metavariablesA and B: each
summand in the domain represents the metavariables in a
premiss, while the codomain represents the metavariables in
the conclusion. While some metavariables may not appear
in every premiss, each premiss is implicitly parameterised
by each type metavariable; the codiagonal ensures that the
metavariables available to each premiss (and the conclusion)
are the same (i.e. unified).
The leftmost component S ← S2 + S2 : [π1,π2] describes

the types of each premiss, given the metavariables. In this
case, the types are simply projections: the left-hand side to
A and the right-hand side to B. The rightmost component
JProdK : S2 → S describes the type of the conclusion, given
the metavariables: in this case, constructing the product of
A and B.

An algebra for the functor induced by this polynomial is
calculated explicitly below, to demonstrate that it aligns with
the structure we deduced earlier.

T T × S + S ×T T 2 T

S S2 + S2 S2 S
JProdK[π1,π2] ∇2

τ

[π1,π2]

τ×id+id×τ τ 2=Π∇2 (τ×id+id×τ ) τ

JpairK

⌟

6



Algebraic models of simple type theories

The polynomials for the projections are similarly described.
For τ : T → S to be a model of the product eliminators Prod-
elim1 (3) and Prod-elim2 (4), we require it to be an algebra
for the following polynomials.

S
JProdK
←−−−−− S2

∇1
−−→ S2

π1
−−→ S (Prod-elim1)

S
JProdK
←−−−−− S2

∇1
−−→ S2

π2
−−→ S (Prod-elim2)

Given some examination, the structure of the polynomials
is analogous to that of the introduction rule, with the first
component selecting the type of the premiss, the codiagonal
(in this case trivially) unifying the premisses, and the final
component selecting the type of the conclusion.

Units. For Unit-intro (5), the polynomial inducing the
structure is similarly defined. For τ : T → S to be a model of
u, we require it to be an algebra for the following polynomial.

S
!
←− 0

∇0
−−→ 1

JUnitK
−−−−−→ S (Unit-intro)

One may see that, as the introduction rule for Unit has no
premisses and no type metavariables, this (trivially) fits the
same pattern as with Prod.

λ-abstraction. To describe binding structure, we need
more sophisticated polynomials. For τ : T → S to be a
model of Fun-intro (6), we require it to be an algebra for
the following polynomial.

S
π2
←−− V × S

ν×id
−−−→ S2

JFunK
−−−−→ S (Fun-intro)

Here, the first and last components are familiar from the pre-
vious examples. The form of the middle component is new:
metavariables involved in context extension, and therefore
in variable binding, must be fibred over the presheaf of vari-
ables V . The typed term structure ν : V → S of Example 4.3
forgets the information associated to a variable apart from
its type.

For τ : T → S to be a model of Fun-elim (7), we require it
to be an algebra for the following polynomial.

S
[JFunK,π1]
←−−−−−−−− S2 + S2

∇2
−−→ S2

π2
−−→ S (Fun-elim)

Polynomials are closed under taking coproducts: for a
typed term structure to be a model of the entire structure of
the simply-typed λ-calculus, therefore, we require it to be
an algebra for the polynomial endofunctor induced by the
coproduct of all the aforementioned polynomials.

4.3 Algebraic term structure
We now give syntax for a general natural deduction rule for
a term operator and the construction of the polynomial it
induces. As with type operators, we have a notion of arity
corresponding to term operators.

Notation 4.6. We denote by

(A1
1, . . . ,A

1
k1 )A1, . . . , (A

n
1 , . . . ,A

n
kn
)An → (B1, . . . ,Bk )B

the S-sorted second-order arity (Definition 2.2)
((((A1

1, ...,A
1
k1
),A1), ...,((An1 , ...,A

n
kn
),An )),((B1, ...,Bk ),B))∈ar2(S )

Second-order arities correspond to the operators of multi-
sorted binding algebra [17]: such an arity represents an oper-
ator taking n arguments, the ith of which binds ki variables,
which is parameterised by k variables. We identify nullary
arities with constants.

Given an equational type signature Σty andm ∈ N type
metavariables, we can represent term operators by
Σ∗ty(m)-sorted second-order arities. An n-ary term operator

o : (A1
1, . . . , A

1
k1
)A1, . . . , (An1 , . . . , A

n
kn
)An → (B1, . . . , Bk )B (8)

corresponds to a rule as in Figure 1, universally quantified
over all contexts Γ.

Definition 4.7. We say that a term operator is parameterised
when k , 0.

A term operator for an equational type signature Σty, as
in (8), induces a polynomial in Ĉ for any cartesian Σty-typed
context structure, given in Figure 2.

Definition 4.8. A term operator signature, denoted Otm, for
an equational type signature Σty is given by a list of pairs
of natural numbersm ∈ N and Σ∗ty(m)-sorted second-order
arities.

Example 4.9 (Term operators for the simply-typed
λ-calculus).

▷ u : Unit
A,B : ∗ ▷ abs : (A)B → Fun(A,B)

A,B : ∗ ▷ app : Fun(A,B),A→ B

A,B : ∗ ▷ pair : A,B → Prod(A,B)

A,B : ∗ ▷ proj1 : Prod(A,B) → A

A,B : ∗ ▷ proj2 : Prod(A,B) → B

A term operator signature induces a polynomial (resp.
polynomial functor), given by taking the coproduct of the
polynomials (resp. polynomial functors) induced by its ele-
ments.

Notation 4.10. We will denote byOtm both a term operator
signature and the polynomial functor it induces.

Remark 4.11. To gain intuition for the polynomial alge-
braic structure, it is instructive to evaluate the polynomials
oneself, starting with an arbitrary τ : T → S and taking pull-
backs, dependent products and postcomposing. Of these op-
erations, pullbacks and postcomposing are straightforward.
We give the two relevant calculations for the dependent
products explicitly.
Π∇n (P →

∐
1≤i≤n S

m) �
( ∐

A∈Sm
∏

1≤i≤n P ⟨i,A⟩
)
→ Sm

Πνk×id (V
k × P

id×p
−−−→ V k × Sm)

�
( ∐

A∈Sk ,B∈Sm PB
∏

1≤i≤k VAi
)
→ Sk × Sm

7
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Γ,x11 : A
1
1, . . . ,x

1
k1

: A1
k1
⊢ t1 : A1 · · · Γ,xn1 : An

1 , . . . ,x
n
kn

: An
kn
⊢ tn : An

Γ,y1 : B1, . . . ,yk : Bk ⊢ o[y1 : B1, . . . ,yk : Bk ]
(
(x11 : A

1
1, . . . ,x

1
k1

: A1
k1
)t1, . . . , (x

n
1 : An

1 , . . . ,x
n
kn

: An
kn
)tn

)
: B

Figure 1. Natural deduction rule for a term operator

∐
1≤i≤n S

m Sm V k × Sm

∐
1≤i≤n V

ki × Sm
∐

1≤i≤n S
ki × Sm Sk × Sm S

S

∐
1≤i≤n νki ×id[JAi K◦π2]1≤i≤n

∐
1≤i≤n ⟨⟨JAij K⟩1≤j≤ki , id ⟩

∇n

⟨⟨JBj K⟩1≤j≤k , id ⟩ νk×id
JBK◦π2

Figure 2. Polynomial induced by a term operator

∏
1≤i≤n TJAi K(C)(Γ × ⟨JA

i
jK(C)⟩1≤j≤ki ) T (Γ × ⟨JBjK(C)⟩1≤j≤k )

1 S

τΓ×⟨JBj K(C)⟩1≤j≤k

JBK(C)

JoK♯Γ

(C ∈ Sm)

Natural in the context Γ, where ⟨D1, . . . ,Dℓ⟩
def
= (· · · (ϵ × ⟨D1⟩) × · · · ) × ⟨Dℓ⟩.

Figure 3. Algebra structure induced by a term operator

Proposition 4.12. In elementary terms, Otm-algebras for
the polynomial functor as in Figure 2 are equivalently given
by typed term structures τ : T → S with a natural transfor-
mation JoK♯ such that the diagram in Figure 3 commutes.

Proposition 4.13. For all term signatures, the endofunctor
Otm on Ĉ/S is finitary.

Thus,Otm induces a monad [16] describing the term struc-
ture, closed under the operators of the signature.

Notation 4.14. Given a term operator signature Otm, we
denote by O∗tm the free Otm-algebra monad on Ĉ/S .

The Eilenberg–Moore category of the monad O∗tm is iso-
morphic to the category of Otm-algebras.

5 Models of simply typed syntax
We now give the definition of simply typed syntax, along
with its models. Note that this is not yet a full notion of
simple type theory, as we lack substitution and equations.

Definition 5.1. A simply typed syntax consists of:
• a type operator signature Oty;

• a term operator signature Otm for Oty.

Definition 5.2. A model for a simply typed syntax consists
of

• an Oty-algebra JtyK : Oty(S) → S ;

• a cartesian Oty-typed context structure C for S ;

• an Otm-algebra JtmK : Otm(τ :T→S) → (τ :T→S).

Proposition 5.3. S-sorted simply-typed categories with
families [6] are equivalent to models of simply typed syntax
for an empty type and term signature, such that the carriers
of the Oty- and Otm-algebras are S and ν : V → S respec-
tively.

To discuss the relationships between different models of a
simply typed syntax, and to prove that the syntactic model is
initial, we need a notion of homomorphism. This necessarily
involves a compatibility condition between algebraic term
structures.

Categorically, this is made somewhat difficult to express by
the fact that two typed term structures for the same signature
may be algebras for polynomial endofunctors on different
presheaf categories, depending on their cartesian Oty-typed
context structures. To reconcile them, we will make use of
the following lemma.

Lemma 5.4. Let (C,τ : T → S) and (C′,τ ′ : T ′ → S ′) be
models, and let (H : C→ C′,h : S → S ′) be a cartesian Oty-
typed context structure homomorphism between them (Defini-
tion 3.4). Then there is a canonical natural transformation as

8
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∏
1≤i≤n TJAi K(C)(Γ × ⟨JA

i
jK(C)⟩1≤j≤ki ) TJBK(C)(Γ × ⟨JBjK(C)⟩1≤j≤k )

∏
1≤i≤n T

′

JAi K′(h(C))
(H (Γ) × ⟨JAi

jK
′
(h(C))⟩1≤j≤ki ) T ′JBK′(h(C))(H (Γ) × ⟨JBjK

′
(h(C))⟩1≤j≤k )

JtmK♯Γ

(JtmK′)♯Γ

∏
1≤i≤n(fJAi K(C))(Γ×⟨JAij K(C)⟩1≤j≤ki ) (fJBK(C))(Γ×⟨JBj K(C)⟩1≤i≤k )

C = ⟨C1, . . . ,Cm⟩ ∈ S
m h(C) def= ⟨h(C1), . . . ,h(Cm)⟩

Figure 4. Elementary term algebra coherence

follows.

Ĉ′/S ′ Ĉ/S

Ĉ′/S ′ Ĉ/S

OtmO
′

tm

h∗◦(−)H

h∗◦(−)H

Definition 5.5. A homomorphism of models for a simply
typed syntax, from a model (C,τ : T → S) to a model
(C′,τ ′ : T ′→ S ′), consists of
• a cartesian Oty-typed context structure
homomorphism (H : C→ C′,h : S → S ′);
• a natural transformation f : T → T ′H ,

such that the following diagrams, term-type coherence (left)
and term algebra coherence (right), commute:

T T ′H

S S ′
h

τ τ ′H

f

Otm(T ) Otm(h
∗(T ′H ))

h∗(O
′

tm(T
′)H )

T h∗(T ′H )

JtmK

f⌟

Otm(f⌟)

(Lemma 5.4)

h∗(JtmK′H )

where f⌟ is the mediating morphism as in the following
diagram.

T h∗(T ′H ) T ′H

S S ′

f⌟

τ ′Hτ

h

h∗(τ ′H )
⌟

f

The term algebra coherence diagram expresses that f⌟ is
anOtm-algebra homomorphism. This equivalently expresses
that f is a form of term algebra heteromorphism as in the
following diagram.

Otm(T ) Otm(h
∗(T ′H )) h∗(O

′

tm(T
′)H ) O

′

tm(T
′)H

T T ′H

Otm(f⌟) (Lemma 5.4)

JtmK JtmK′H

f

In elementary terms, this corresponds to the coherence con-
dition expressed in Figure 4. This resolves the compatibility
difficulty described earlier.

Example 5.6. For any cartesianOty-typed context structure
homomorphism (H ,h), there is a canonical model homomor-
phism (H ,h,v) for v : V → V ′H given by the action of
H :

vΓ
(
A , ρ : Γ → ⟨A⟩

) def
=

(
h(A) , H (ρ) : H (Γ) → ⟨h(A)⟩

)
Models of simply typed syntax and their homomorphisms,

for a simply typed syntax O , form a category SO .

Theorem 5.7. SO has an initial object.

Proof. Let JtyK : Oty(S) → S be the initialOty-algebra and let
C be the free cartesianOty-typed context structure on S as in
Proposition 3.5. The slice category Ĉ/S is cocomplete and the
polynomial endofunctor Otm is finitary (Proposition 4.13).
Thus, we have an initial Otm-algebra JtmK : Otm(τ : T →
S) −→ (τ :T → S). Then M

def
= (C, JtyK,τ :T → S, JtmK) is a

model for the signature O .
Let (C′, JtyK′,τ ′ : T ′ → S ′, JtmK′) be a model of simply

typed syntax for the signature O . There is a unique
Oty-homomorphism h : S → S ′, by initiality of S , and
H : C→ C′ is uniquely determined by the freeness of C.
Furthermore, there is a unique Otm-homomorphism
f : T → T ′H satisfying the coherence conditions by the
initiality of τ : T → S . Finally, (H ,h, f ) is a unique model
homomorphism andM is therefore initial. □

The initial object in SO is the syntactic model. Indeed, ac-
cording to the viewpoint of initial-algebra semantics [21],
syntactic models are precisely initial ones, for these have a
canonical compositional interpretation into all models and,
as such, uniquely characterise any concrete syntactic con-
struction up to isomorphism. Here, it is further possible to
make the finitary semantic construction of Theorem 5.7 ex-
plicit to demonstrate its coincidence with familiar syntactic
constructions.

9
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6 Substitution
Otm-algebras represent a notion of terms with (sorted and
binding) algebraic structure. However, there are still two
important concepts that are missing: that of
(capture-avoiding) substitution, and that of equations.
Substitution must be described before defining equations on
terms, as many equational laws (such as the β-equality of
the simply-typed λ-calculus) involve this meta-operation.
Substitution is an important metatheoretic concept even
besides this, and is necessary to define the multicategorical
composition operation that will appear in some of the
models of simple type theories (Definition 9.1).
To begin to talk about substitution, one must have a no-

tion of variables as terms, corresponding to the following
structure.

V T

S
ν

var

τ

This structure is not a term operator: it may instead be added
by considering freeOtm-algebras on the typed term structure
of variables, ν : V → S .
Substitution is traditionally given in one of two forms:

single-variable substitution (typically denoted t[u/x]) and
multivariable substitution (in which terms must be given for
every variable in context). When the category of contexts is
freely generated, these notions are equivalent. In our more
general setting single-variable substitution is the appropriate
primitive notion.
One may present substitution as an operation given by

the following rule.
Γ,x : A ⊢ t : B Γ ⊢ u : A

subst
Γ ⊢ t[u/x] : B

It corresponds to the polynomial below, according to the
general description of Section 4.3.

S
[π2,π1]
←−−−−− V × S + S2

[ν×id, id]
−−−−−−−→ S2

π2
−−→ S

An algebra for the functor induced by this polynomial is
given explicitly by amorphism subst in Ĉ/S as in the diagram
below.

T V ×T +T × S
∐

A,B∈S TB
VA ×TA T

S V × S + S2 S2 S
[ν×id, id][π2,π1] π2

τ τ

subst[π2,π1]

⌟

τ×id+τ×id

Here, for expository purposes, we shall equivalently consider
the structure as given by a family of morphisms in Ĉ,

substA,B : TBVA ×TA → TB (A,B ∈ S)

which is closer to the syntactic intuition.
The substitution operator must obey equational laws (cf.

[18, Definition 3.1] and [19, Section 2.1]). This structure must
be described semantically, as it makes use of the implicit

cartesian structure of the categories of contexts, which is not
available syntactically. Specifically, we require the follow-
ing diagrams to commute. They correspond respectively to
trivial substitution, left and right identities, and associativity.

TA ×TB TA
VB ×TB

TA

wk×id

π1
substB,A

1 ×TA TA
VA ×TA

TA

λ(varA)×id

substA,A
π2

TB
VA ×VA TB

VA ×TA

TB

id×varA

substA,B
contr

(TC
VB×VA ×TB

VA ) ×TA TC
VA ×TA

(TC
VB×VA ×TA) × (TB

VA ×TA) TC

(TC
VA×VB ×TA

VB ) × (TB
VA ×TA) TC

VB ×TB

(exch×wk)×id

subst
VA
B,C×id

subst
VB
A,C×substA,B

substA,C

substB,C

str

The morphism exch is given byT γ where γ : X ×Y
�
−→ Y ×X

is the cartesian symmetry; wk by X ! : X → XY ; and contr
by the evaluation. By the extension structure of cartesian
Σty-typed context structures, they respectively correspond to
the admissible syntactic operations of exchange, weakening,
and contraction. The map str is the canonical strength of
products and the map substPA,B is the composite

TB
VA×P ×TA

P �
−→ (TB

VA ×TA)
P (substA,B )

P

−−−−−−−−−→ TB
P

Crucially, substitution must also commute with all the
operators of the theory: for every unparameterised operator o
as in Figure 1, we require the following diagram to commute
for all C ∈ Sm and D ∈ S , where Ei

def
=

∏
1≤j≤ki VJAij K(C)

.

( ∏
1≤i≤n TJAi K(C)

Ei
)VD ×TD TJBK(C)

VD ×TD

∏
1≤i≤n TJAi K(C)

VD×Ei ×TD
Ei

∏
1≤i≤n TJAi K(C)

Ei TJBK(C)

(JoK♯ )VD ×id

substD,JBK(C)∏
1≤i≤n substEiD,JAi K(C)

JoK♯

�◦(�×⟨wki ⟩1≤i≤n )

Models of simply typed syntax with unparameterised term
operators may be extended to incorporate variable and sub-
stitution structure; together with homomorphisms that pre-
serve this structure, they form a category.

10
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Γ,x11 : A
1
1, . . . ,x

1
k1

: A1
k1
⊢ t1 : A1 · · · Γ,xn1 : An

1 , . . . ,x
n
kn

: An
kn
⊢ tn : An

Γ,y1 : B1, . . . ,yk : Bk ⊢ l ≡ r : B

Figure 5. Natural deduction rule for a term equation

Proposition 6.1. For a term signature Otm with unparame-
terised operators, models of simply typed syntax with vari-
able and substitution structure over a fixed cartesian typed
context structure admit free constructions, and thereby gen-
erate a free monad which we denote by O⊛

tm.

Proposition 6.2. O⊛
tm-algebras for the free cartesian

([ ], [ ])-typed context structure on a single sort
(Proposition 3.5) are, equivalently, Otm-substitution
algebras [18].

Theorem 6.3 (Substitution lemma, cf. [11, 18]). For a fixed
Σty-algebra and the free cartesian Σty-typed context structure
thereon, provided that the signature Otm contains only unpa-
rameterised operators, the free O∗tm-algebra on ν : V → S and
the initial O⊛

tm-algebra are isomorphic.

From the syntactic viewpoint, this means that substitution
is admissible: adding a substitution operator to a simply
typed syntax leaves the associated terms unchanged, because
a term involving substitution is always equal to one that does
not involve substitution.

Proposition 6.4. In the presence of weakening and ex-
change (present in the simple type theories we consider
here) and substitution, parameterised term operators (Defi-
nition 4.7) are admissible.

7 Equations on terms
Equations on terms may now be treated, analogously to
those on types, with the proviso that one must keep track of
sorts and variable contexts. In particular, we are interested
in terms parameterised by a number of type metavariables,
and term metavariables in extended contexts [11, 22].

Notation 7.1. Form ∈ N, letKm denote the free Σty-algebra
Σ∗ty(m) on a set of typemetavariablesm and letKm denote the
category of contextsCart(Km) of the free cartesian Σty-typed
context structure on a set of type metavariablesm (Proposi-
tion 3.5).

Definition 7.2. An Otm-term equation is given by a triple(
m ∈ N ,

(
A1, . . .An → B

)
∈ ar2

(
O∗ty(m)

)
, (l , r )

)
(9)

with l , r :
∏

1≤j≤k VBj → O⊛
tm(p : P → Km)B a parallel pair

of morphisms in K̂m for

P
def
=

∐
1≤i≤n

∏
1≤j≤ki

VAij p
(
⟨i, (ρ1, . . . , ρki )⟩

) def
= Ai

where Ai = (A
i
1, . . . ,A

i
ki
)Ai and B = (B1, . . . ,Bk )B.

The parallel pair equivalently corresponds to a pair of
terms in O⊛

tm(P)B (⟨B1, . . . ,Bk ⟩) which may be syntactically
presented as in Figure 5.

Definition 7.3. An equational term signature, typically de-
noted Σtm, is given by a term operator signature Otm and a
list Etm of Otm-term equations.

Fix an Otm-term equation as in (9) and consider an
Otm-algebra in Ĉ/S :

JtmK : Otm(τ :T → S) −→ (τ :T → S) (10)

Every C ∈ Sm freely induces a homomorphism (H ,h) :
(Km ,Km) → (C, S), and every morphism t in K̂m/Km as
below

P h∗(TH )

Km

t

p h∗(τH )
(11)

freely induces the following situation, analogously to (1).

Otm(O
⊛
tm(P)) Otm(h

∗(TH ))

O⊛
tm(P) h∗(TH )

P
η

ψt

JtmK⊛ h∗(JtmKH ) ◦ (Lemma 5.4)

Otm(ψt)

t

Definition 7.4. An Otm-algebra as in (10) satisfies an
Otm-term equation as in (9) whenever, for all C and t as in
the preceding discussion,ψt ◦ l = ψt ◦ r .

A morphism t as in (11) corresponds to a family

ti ∈ TJAi K(C)(⟨JA
i
1K(C), . . . , JA

i
ki

K(C)⟩) (1 ≤ i ≤ n)

As such, it provides a valuation for the term placeholders
of the terms in the equation. Indeed, the evaluation ofψt at
u ∈ O⊛

tm(P)B (⟨B1, . . . ,Bk ⟩) is the term resulting from a meta-
substitution operation replacing the term placeholders in u
with the concrete terms (ti )1≤i≤n .

Definition 7.5. Given an equational term signature Σtm =

(Otm,Etm), a Σtm-algebra is an Otm-algebra that satisfies the
equations of Etm.

Equational term signatures (like equational type signa-
tures) are an entirely syntactic notion and correspond exactly
to systems of natural deduction rules presenting a simple
type theory. We give examples.

11
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Example 7.6. Equational presentations in multisorted uni-
versal algebra [5] are examples of equational term signatures,
whose operators are nonbinding and unparameterised.

Notation 7.7. We will informally denote by t : (x :A)B a
term metavariable t of type B in contexts extended by a fresh
variable x of type A, reminiscent of the notation for second-
order arities (Notation 4.6). The types of bound variables in
term operators, and of terms themselves, may be inferred,
and are elided.

Example 7.8 (β/η rules for the simply-typed λ-calculus).

A,B : ∗ ▷ t : (x :A)B,a : A ⊢ app
(
abs

(
(z)t[z/x]

)
,a
)
≡ t[a/x]

A,B : ∗ ▷ f : Fun(A,B) ⊢ abs
(
(x)app(f ,x)

)
≡ f

Example 7.9 (Computational λ-calculus [27]). The follow-
ing extends the simply-typed λ-calculus.

▷ T : ∗ → ∗

A : ∗ ▷ return : A→ T(A)

A,B : ∗ ▷ bind : T(A), (A)T(B) → T(B)

A,B : ∗ ▷ a : A, f : (x :A)T(B)
⊢ bind

(
return(a), (z)f [z/x]

)
≡ f [a/x]

A : ∗ ▷m : T(A) ⊢ bind
(
m, (x)return(x)

)
≡m

A,B : ∗ ▷m : T(A), f : (x :A)T(B),д : (y :B)T(C)
⊢ bind

(
m, (a)bind

(
f [a/x], (b)д[b/y]

) )
≡ bind

(
bind(m, (a)f [a/x]), (b)д[b/y]

)
Models of simply typed syntax with variable and substitu-

tion structure may be restricted to algebras for equational
term signatures.

Proposition 7.10. Algebras for equational term signatures
Σtm with unparameterised operators over a fixed cartesian
typed context structure admit free constructions, and thereby
generate a free monad, which we denote by Σ⊛

tm.

The monad associated to an equational term signature
(Otm, [ ]) is the free Otm-monad with variable and substitu-
tion structure O⊛

tm. For any list of Otm-term equations Etm,
there is a canonical quotient monad morphism O⊛

tm ↠ Σ⊛
tm.

8 Models of simple type theories
Simple type theories extend simply typed syntax by incor-
porating variable, substitution, and equational structure.

Definition 8.1. A simple type theory consists of:
• an equational type signature Σty;

• an equational term signature Σtm for Σty.

Definition 8.2. A model for a simple type theory consists
of
• a Σ∗ty-algebra JtyK : Σ∗ty(S) → S ;

• a cartesian Σty-typed context structure C for S ;

• a Σ⊛
tm-algebra JtmK : Σ⊛

tm(τ :T → S) → (τ :T → S).
In particular, the type and term algebras both satisfy the
specified equations.

Definition 8.3. A homomorphism of models for a simple
type theory is a homomorphism (H ,h, f ) for the underlying
simply typed syntax such that f preserves the variable struc-
ture and is a heteromorphism for the substitution structure.

Models of simple type theories and their homomorphisms,
for a simple type theory Σ, form a category SΣ.

Theorem 8.4. SΣ has an initial object.

The initial object is the syntactic model. It is given by a
construction analogous to the one in Theorem 5.7, taking
Proposition 7.10 into account.

9 Classifying multicategories
The classes of models we have considered so far are very gen-
eral. First, contexts must be closed under extension, but may
not necessarily be lists of sorts. More importantly, substitu-
tion is not inherent in simply typed syntax, which allowed
us to consider models with and without substitution: it is
only by making this distinction that we are able to prove
metatheoretic properties regarding substitution, such as in
Theorem 6.3. However, one typically wishes to consider sim-
ple type theories that do have an associated notion of sub-
stitution, along with contexts that are lists. In this setting,
we can reformulate the models to be more familiar to the
models dealt with in categorical algebra (see e.g. Crole [7]).

Definition 9.1. A model of simple type theory is multisub-
stitutional if the embedding of the set of sorts in the category
of contexts presents the latter as the strict cartesian comple-
tion of the former.

Multisubstitutional models have list-like contexts and ad-
mit a multivariable substitution operation [18] in addition to,
and induced by, the single-variable substitution operation of
Section 6. In fact, we have the following result.

Theorem 9.2. Multisubstitutional models of simple type the-
ories with empty type operator signatures are equivalent to
cartesian multicategories with corresponding structure.

We sketch the idea. There is an equivalence taking such a
multisubstitutional model (C,τ : T → S) to a cartesian multi-
categoryM, with object set S ; multihomsM(A1, . . . ,An ;B) =
TB (⟨A1, . . . ,An⟩); identities arising from the variable struc-
ture; composition given by the multivariable substitution
operation (or, equivalently, by iterated single-variable sub-
stitution); and cartesian multicategory structure given by
the functorial action of the presheaf T along the exchange,
weakening, and contraction structure of C. Model homomor-
phisms define cartesian multifunctors.
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The algebraic structure on T induces structure on M,
where each term operator induces a pair of functors (corre-
sponding to the premisses and conclusion), natural transfor-
mations between which correspond to interpretations of the
operator.

There are a variety of notions equivalent to cartesianmulti-
categories, such as many-sorted abstract clones and multi-
sorted Lawvere theories, giving corresponding versions of
Theorem 9.2 for each notion. Relevant for future work on
polynomial models of dependent type theories is the rela-
tionship with categories with families [8]. We note that the
relationship with simply-typed categories with families in
Proposition 5.3 extends to incorporate operators and equa-
tions. However, care must be taken: in the context of cat-
egories with families, type theoretic structure is typically
expressed through generalised algebraic theories, which per-
mit operators that are not natural in a categorical sense;
while, conversely, such unnatural operators are forbidden in
the current framework.
Theorems 8.4 and 9.2 provide a general systematic con-

struction of the classifying cartesian multicategory of any
simple type theory. In the context of universal algebra, we
have the following.

Corollary 9.3. The initial model of the simple type theory for
an equational presentation in universal algebra is, equivalently,
its abstract clone.

Beyond universal algebra, we have a kind of “generalised
Lambek correspondence” between models of simple type
theories and structured cartesian multicategories. When the
simple type theory has finite products, the classifying carte-
sian multicategory is representable and hence equivalent to
a cartesian category. In particular, we recover the classical
Lambek correspondence.

Corollary 9.4 (Lambek correspondence). The initial model
of the simple type theory for the simply-typed λ-calculus with
a set of base types B is, equivalently, the free cartesian-closed
category on B.
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