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KLB is associated with alcohol drinking, and its gene
product β-Klotho is necessary for FGF21 regulation of
alcohol preference
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Excessive alcohol consumption is a major public health problem
worldwide. While drinking habits are known to be inherited, few
genes have been identified that are robustly linked to alcohol
drinking. We conducted a genome-wide association meta-analysis
and replication study among >105,000 individuals of European
ancestry, and identified β-Klotho (KLB) as a locus associated with
alcohol consumption (rs11940694; P=9.2x10-12). β-Klotho is an
obligate co-receptor for the hormone FGF21, which is secreted
from the liver and implicated in macronutrient preference in man.
We show that brain-specific β-Klotho knock-out mice have an
increased alcohol preference and that FGF21 inhibits alcohol drink-
ing by acting on the brain. These data suggest that a liver-brain
endocrine axis may play an important role in the regulation of
alcohol drinking behavior and provide a unique pharmacologic
target for reducing alcohol consumption.

alcohol consumption | β-Klotho | FGF21 | mouse model | human

Introduction
Excessive alcohol consumption is a major public health problem
worldwide causing an estimated 3.3 million deaths in 2012 (1).
Much of the behavioral research associated with alcohol has
focused on alcohol-dependent patients. However, the burden of
alcohol-associated disease largely reflects the amount of alcohol
consumption in a population, not alcohol dependence (2). It
has long been recognized that small shifts in the mean of a
continuously distributed behavior such as alcohol drinking can
have major public health benefits (3). For example, a shift from
heavy to moderate drinking could have beneficial effects on
cardiovascular disease risk (4).

Alcohol drinking is a heritable complex trait (5). Genetic vari-
ants in the alcohol and aldehyde dehydrogenase gene family can
result in alcohol intolerance caused by altering peripheral alcohol
metabolism, and may thus influence alcohol consumption and
dependence (6). However, genetic influences on brain functions
affecting drinking behavior have been more difficult to detect
because, as for many complex traits, the effect of individual genes
is small, so large sample sizes are required to detect the genetic
signal (7).

Here we report a genome-wide association (GWAS) and
replication study of over 100,000 individuals of European descent.
We identify a gene variant in β-Klotho (KLB) that associates with
alcohol consumption. β-Klotho is a single-pass transmembrane
protein that complexes with FGF receptors to form cell surface
receptors for the hormones FGF19 and FGF21 (8, 9). FGF19
is induced by bile acids in the small intestine to regulate bile
acid homeostasis and metabolism in the liver (9). FGF21 is
induced in liver and released into the blood in response to various
metabolic stresses, including high carbohydrate diets and alcohol
(10-12). Notably, FGF21 was recently associated in a human
GWAS study withmacronutrient preference, including changes in
carbohydrate, protein and fat intake (13). Moreover, FGF21 was
shown to suppress sweet and alcohol preference in mice (14, 15).
Our current findings suggest that the FGF21-β-Klotho signaling
pathway regulates alcohol consumption in humans.

Results
Association of KLB gene SNP rs11940694 with alcohol drinking
in humans

We carried out aGWAS of quantitative data on alcohol intake
in 70,460 individuals (60.9% women) of European descent from
30 cohorts.We followed up themost significantly associated SNPs
(six sentinel SNPs P<1.0x10-6 from independent regions) among
up to 35,438 individuals from 14 additional cohorts (Dataset S1;
and Appendix 1). We analyzed both continuous data on daily al-
cohol intake in drinkers (as g/day, log transformed) and a dichoto-
mous variable of heavy versus light or no drinking (Dataset S1).

Average alcohol intake in drinkers across the samples was 14.0
g/day in men and 6.0 g/day in women. We performed per cohort
sex-specific and combined-sex single SNP regression analyses
under an additive genetic model, and conducted meta-analysis
across the sex-specific strata and cohorts using an inverse variance
weighted fixed effects model.

Results of the primary GWAS for log g/day alcohol are shown
in Figures 1 and S1, Dataset S2. We identified five SNPs for
replication at P<1x10-6: rs11940694 in the KLB gene, rs197273
in TANK, rs780094 in GCKR, rs350721 in ASB3 and rs10950202
in AUTS2 (Table 1, Dataset S2). In addition to rs10950202 in
AUTS2 (P=2.9x10-7), we took forward SNP rs6943555 in AUTS2
(P=1.4x10-4), which was previously reported in relation to alcohol
drinking (7). In both men and women the newly discovered SNPs
were all significantly associated with log g/day alcohol at P<0.005
(Table S1). When combining discovery and replication data, we
observed genome-wide significance for SNP rs11940694 (A/G) in
KLB (P=9.2x10-12) (Table 1 and Figure S1), for which the minor
allele A was associated with reduced drinking. KLB is localized
on human chromosome 4p14 and encodes a transmembrane pro-
tein, β-Klotho, which is an essential component of receptors for
FGF19 and FGF21 (8, 9). Rs197273 in the TRAF family member-
associated NF-kappa-B activator gene (TANK) narrowly missed
reaching genome-wide significance in the combined sample (Ta-
ble 1; P=7.4x10-8). In the dichotomous analysis of the primary
GWAS, SNP rs12599112 in the Cadherin 13 gene (CDH13) and
rs10927848 in the Transmembrane protein 82 gene (TMEM82)
were significant at P=2.3x10-8 and P=2.6x10-7, respectively (Fig-
ure S2, Table S2 and Dataset S2), but did not reach genome wide
significance in the combined analysis (Table S2).

SNP rs11940694 is localized in intron 1 of the KLB gene. The
local linkage disequilibrium (LD) structure of the KLB gene is
shown in Figure S3. Theminor allele frequencies of this SNPwere
generally high (between 0.37 and 0.44) in different ethnic groups
(Table S3).We found no significant association of rs11940694with
gene expression in peripheral blood of 5,236 participants of the
Framingham study (Table S4) (16).

β-Klotho in the brain controls alcohol drinking in mice

Significance

Alcohol is a widely consumed drug in western societies that
can lead to addiction. A small shift in consumption can have
dramatic consequences on public health. We performed the
largest genome-wide association meta-analysis and replica-
tion study to date (>105,000 individuals) and identified a new
genetic basis for alcohol consumption during non-addictive
drinking. We found a locus in the gene encoding β-Klotho
(KLB) is associated with alcohol consumption. β-Klotho is an
essential receptor component for the endocrine fibroblast
growth factors (FGFs) 19 and 21. Using mouse models and
pharmacologic administration of FGF21, we demonstrate that
β-Klotho in the brain controls alcohol drinking. These findings
reveal a mechanism regulating alcohol consumption in humans
that may be pharmacologically tractable for reducing alcohol
intake.
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Table 1. Associations of single nucleotide polymorphisms* with alcohol intake (log g/day) in the genome-wide association analysis
(GWAS).

SNP Chr Position (hg
19)

Nearest
gene

Effect /
other
alleles

EAF# Discovery GWAS Replication Combined

Beta (SE) P-value Beta (SE) P-value Beta (SE) P-value N
rs780094 2 27741237 GCKR T/C 0.40 -0.0155

(0.0026)
3.6x10-9 0.0035

(0.0029)
0.238 -0.0102

(0.0019)
1.6x10-7 98,679

rs350721 2 52980427 ASB3 C/G 0.18 0.0206
(0.0040)

3.2x10-7 -0.0000
(0.0042)

0.994 0.0109
(0.0029)

1.9x10-4 100,859

rs197273 2 161894663 TANK A/G 0.49 -0.0141
(0.0026)

9.8x10-8 -0.0058
(0.0028)

0.040 -0.0103
(0.0019)

7.4x10-8 97,631

rs11940694 4 39414993 KLB A/G 0.42 -0.0137
(0.0027)

3.2x10-7 -0.0135
(0.0030)

5.2x10-6 -0.0136 (
0.0020)

9.2x10-12 98,477

rs6943555 7 69806023 AUTS2 A/T 0.29 -0.0115
(0.0030)

1.4x10-4 -0.0070
(0.0033)

0.032 -0.0094
(0.0022)

1.9x10-5 104,282

rs10950202 7 69930098 AUTS2 G/C 0.16 -0.0194
(0.0038)

2.9x10-7 -0.0015
(0.0042)

0.720 -0.0113
(0.0028)

5.9x10-5 105,639

* One SNP with smallest P-value taken forward per region
# Effect Allele Frequency, in Discovery GWAS

Fig. 1. . Genome-wide association results of log g/day alcohol in AlcGen and CHARGE+ consortia. (A) Manhattan plot showing the significance of the
association (-log10 transformed P value on the y axis) for each SNP at chromosomal position shown on the x axis. The dotted line represents the genome-wide
significance level at P=5x10-8. The genes that were followed up are labelled. (B) Quantile-quantile plot comparing the expected P value on the x axis and the
observed P value on the y axis (both were -log10 transformed).

To examine whether β-Klotho affects alcohol drinking in
mice, and whether it does so through actions in the brain, we
measured alcohol intake and the alcohol preference ratio of
brain-specific β-Klotho-knockout (KlbCamk2a) mice and control
floxed Klb (Klbfl/fl) mice. We used a voluntary two-bottle drinking
assay performed with water and alcohol. Since we previously
showed that FGF21-transgenic mice, which express FGF21 at
pharmacologic levels, have a reduced alcohol preference (14), we
performed these studies while administering either recombinant
FGF21 or vehicle by osmotic minipump. Alcohol preference ver-
sus water was significantly increased in vehicle-treated KlbCamk2a

compared to Klbfl/fl mice at 16 vol. % alcohol (Fig. 2A). FGF21
suppressed alcohol preference in Klbfl/fl mice, but not in KlbCamk2a

demonstrating that the effect of FGF21 on alcohol drinking
depends on β-Klotho expressed in the brain (Fig. 2A). There was
a corresponding decrease in plasma alcohol levels immediately
after 16 vol. % alcohol drinking, which reflects the modulation of
the drinking behavior (Fig. 2B). However, plasma FGF21 levels
were comparable in Klbfl/fl and KlbCamk2a mice administered

recombinant FGF21 at the end of the experiment (Fig. 2C).
Alcohol bioavailability was not different between FGF21 treated
Klbfl/fl and KlbCamk2a mice (Fig. 2D). We have previously shown
that FGF21 decreases the sucrose and saccharin preference ratio
in Klbfl/fl but not KlbCamk2a mice, and has no effect on the
quinine preference ratio (14). To rule out a potential perturbation
of our findings as a result of the experimental procedure, we
independently measured preference and consumption of 16 vol.
% alcohol in Klbfl/fl and KlbCamk2a mice without osmotic minipump
implantation. Again, KlbCamk2a mice showed significantly greater
alcohol consumption and increased alcohol preference compared
to Klbfl/fl mice (Fig. 2E and F), thus replicating our findings above.
Alcohol bioavailability after an intraperitoneal injection was not
different between Klbfl/fl and KlbCamk2a mice after 1 and 3 hours
(Fig. 2G).

β-Klotho in brain does not regulate emotional behavior in
mice

Increased alcohol drinking in humans and mice may be mo-
tivated by its reward properties or as a means to relieve anxiety
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Fig. 2. FGF21 reduces alcohol preference in mice
by acting on β-Klotho in brain. (A) Alcohol pref-
erence ratios determined by two-bottle preference
assays with water and the indicated ethanol con-
centrations for control (Klbfl/fl) and brain-specific β-
Klotho knockout (KlbCamk2a) mice administered ei-
ther FGF21 (0.7 mg/kg/day) or vehicle (n=10/ group).
(B) Plasma ethanol and (C) FGF21 concentrations at
the end of the 16% ethanol step of the two-bottle
assay. (D) Plasma ethanol concentrations 1 and 3 hours
after i.p. injection of 2 g/kg alcohol (n=4/each group).
(E) Consumption of 16% ethanol (g/kg/d) and (F) al-
cohol preference ratios in two-bottle preferences as-
says performed with control (Klbfl/fl) and brain-specific
β-Klotho-knockout (KlbCamk2a) mice. Alcohol pref-
erence was measured by volume of ethanol/total
volume of fluid consumed (n=13/group). (G) Plasma
ethanol concentrations 1 and 3 hours after i.p. injec-
tion of 2 g/kg alcohol (n=5/group). Values are means
±S.E.M. For (A-C), *p<0.05; ***p<0.001 for Klbfl/fl +
vehicle versus Klbfl/fl + FGF21 groups; and ##p<0.01;
###p<0.001 for Klbfl/fl + FGF21 versus KlbCamk2a + FGF21
groups as determined by one-way ANOVA followed
by Tukey's post-tests. For (E, F),*p<0.05 and **p<0.01.

Fig. 3. Behavior tests in brain-specific β-Klotho
knockout mice. Results from (A) novelty suppressed
feeding, (B) elevated plus maze and (C) open
field activity assays performed with control (Klbfl/fl)
and brain-specific β-Klotho-knockout (KlbCamk2a) mice
(n=15/each group). Values are the time (seconds)
spent for each step of the assay.

and stress (17). In mice, FGF21 increases corticotropin-releasing
hormone expression in hypothalamus, circulating glucocorticoid
concentrations and sympathetic outflow (18-20), which are linked

to heightened anxiety. We therefore tested Klbfl/fl and KlbCamk2a

mice in behavioral paradigms measuring anxiety, including nov-
elty suppressed feeding (Fig. 3A), elevated plus maze (Fig. 3B),
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and open field activity tests (Fig. 3C). However, we did not find
differences between Klbfl/fl and KlbCamk2a mice in any of these
anxiety measures or in general locomotor activity. Our finding
of increased alcohol preference in KlbCamk2a mice may thus be
caused by alteration of alcohol-associated reward mechanisms.
While this notion is consistent with our previous results showing
Klb expression in areas important for alcohol reinforcement,
specifically the nucleus accumbens and the ventral tegmental area
(14), additional studies will be required to determine precisely
where in the brain and how β-Klotho affects alcohol drinking.

Discussion
Here we report that in a GWAS performed in over 100,000
individuals, SNP rs11940694 in KLB associates with alcohol con-
sumption in non-addicts. We further show that mice lacking β-
Klotho in the brain have increased alcohol consumption and are
refractory to the inhibitory effect of FGF21 on alcohol consump-
tion. These findings reveal a previously unrecognized brain path-
way regulating alcohol consumption in humans that may prove
pharmacologically tractable for suppressing alcohol drinking.

FGF21 is induced in liver by simple sugars through a mech-
anism involving the transcription factor carbohydrate response
element binding protein (10, 11, 15, 21, 22). FGF21 in turn acts
on brain to suppress sweet preference (14, 15). Thus, FGF21 is
part of a liver-brain feedback loop that limits the consumption
of simple sugars. Notably, FGF21 is also strongly induced in
liver by alcohol and contributes to alcohol-induced adipose tissue
lipolysis in a mouse model of chronic-binge alcohol consumption
(12). Our present data suggest the existence of an analogous
feedback loop wherein liver-derived FGF21 acts on brain to limit
the consumption of alcohol. However, additional studies will be
required to establish the existence of this FGF21 pathway in vivo.

In murine brain, there is evidence that FGF21 suppresses
sweet preference through effects on the paraventricular nucleus
in the hypothalamus (15). Among its actions in the hypothalamus,
FGF21 induces corticotropin-releasing hormone (18, 19), which
is a strong modulator of alcohol consumption (23). Notably, β-
Klotho is also present in mesolimbic regions of the brain that reg-
ulate reward behavior, including the ventral tegmental area and
nucleus accumbens, and FGF21 administration reduced tissue
levels of dopamine and its metabolites in the nucleus accumbens
(14). Thus, FGF21may act coordinately onmultiple brain regions
to regulate the consumption of both simple sugars and alcohol.

In closing, our data linking β-Klotho to alcohol consumption
together with previous GWAS data linking FGF21 to macronu-
trient preference raise the intriguing possibility of a liver-brain
endocrine axis that plays an important role in the regulation of
complex adaptive behaviors, including alcohol drinking. While
our findings support an important role for the KLB gene in the
regulation of alcohol drinking, we cannot rule out the possibility
that KLB rs11940694 acts by affecting neighboring genes. There-
fore additional genetic and mechanistic studies are warranted.
Finally, it will be important to follow up on our findings in more
severe forms of alcohol drinking, since our results suggest that
this pathway could be targeted pharmacologically for reducing the
desire for alcohol.

Methods
Alcohol phenotypes

Alcohol intake in grams of alcohol per day was estimated by each
cohort based on information about drinking frequency and type of alcohol
consumed. For cohorts that collected data in ‘drinks per week’, standard
ethanol contents in different types of alcohol drinks were provided as
guidance to convert the data to ‘grams per week’, which was further divided
by 7 to give intake as ‘grams per day’. Adjustment was made if cohort-
specific drink sizes differed from the standard. For cohorts that collected
alcohol use in grams of ethanol per week, the numbers were divided by 7
directly into ‘grams per day’. Cohorts with only a categorical response to
the question for drinks per week used mid-points of each category for the
calculation. All non-drinkers (individuals reporting zero drinks per week)

were removed from the analysis. The ‘grams per day’ variable was then
log10 transformed prior to the analysis. Sex-specific residuals were derived
by regressing alcohol in log10 (grams per day) in a linear model on age, age-
square, weight, and if applicable, study site and principal components to
account for population structure. The sex-specific residuals were pooled and
used as the main phenotype for subsequent analyses.

Dichotomous alcohol phenotype was created based on categorization
of ‘drinks per week’ variable. Heavy drinking was defined as >=21 drinks per
week in men, or >=14 drinks per week in women. Light (or zero) drinking was
defined if male participants had <=14 drinks per week, or female participants
had <=7 drinks per week. Drinkers having >14 to <21 drinks for men, or >7
to <14 drinks for women were excluded. Where information was available,
current non-drinker who was former drinker of >14 drinker per week in men,
and >7 drinks per week in women, as well as current non-drinker who was
a former drinker of unknown amount were excluded; whereas current non-
drinkers who were former drinkers of <=14 for men or <=7 for women were
included. Further exclusion was made if there were missing data on alcohol
consumption or on the covariates.

The analyses only included participants of European origin and were
performed in accordance with the principles expressed in the Declaration of
Helsinki. Each cohort’s study protocol was reviewed and approved by their
respective institutional review board and informed consent was obtained
from all study subjects.

Discovery GWAS in AlcGen and CHARGE+ and replication analyses
Genotyping methods are summarized in Dataset S1B, S1C and S1F. SNPs

were excluded if: HWE P < 1x10-6 or based on cohort-specific criteria; MAF <
1%; imputation information score < 0.5; if results were only available from 2
or fewer cohorts, or total N < 10,000. Population structure was accounted for
within cohorts via principal components analysis (PCA). Linkage disequilib-
rium (LD) score regression (24) was conducted on the GWAS summary results
to examine the degree of inflation in test statistics, and genomic control
correction was considered unnecessary (λGC=1.06 and intercept=1.00; λ=0.99
to 1.06 for individual cohorts, Dataset S1B and S1C). SNPs were taken forward
for replication from discovery GWAS if they passed the above criteria and
if they had P < 1x10-6 (one SNP with the smallest P taken forward in each
region, except for AUTS2 for which two SNPs were taken forward based
on previous results (7)). Meta-analyses were performed by METAL (25) or R
(v3.2.2).

Gene expression profiling in Framingham study
In the Framingham study, gene expression profiling was undertaken

for the blood samples of a total of 5,626 participants from the Offspring
(N=2,446) at examination eight and the Third Generation (N=3,180) at
examination two. Fasting peripheral whole blood samples (2.5ml) were
collected in PAXgene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland).
RNA expression profiling was conducted using the Affymetrix Human Exon
Array ST 1.0 (Affymetrix, Inc., Santa Clara, CA) for samples that passed RNA
quality control. The expression values for ∼ 18,000 transcripts were obtained
from the total 1.2 million core probe sets. Quality control procedures for
transcripts have been described previously. All data used herein are avail-
able online in dbGaP (http://www.ncbi.nlm.nih.gov/gap; accession number
phs000007).

The cis-expression quantitative trait loci analysis in the Framingham
study

To investigate possible effects of rs11940694 in KLB on gene expression,
we performed cis-eQTL analysis. The SNP in KLB was used as the independent
variable in association analysis with the transcript of KLB measured using
whole blood samples in the FHS (n=5,236). Affymetrix probe 2724308 was
used to represent the KLB overall transcript levels. Age, sex, BMI, batch
effects and blood cell differentials were included as covariates in the associa-
tion analysis. Linear mixed model was used to account for familial correlation
in association analysis.

Mouse studies
All mouse experiments were approved by the Institutional Animal Care

and Research Advisory Committee of the University of Texas Southwestern
Medical Center. Male littermates (2 to 4-month-old) maintained on a 12 hr
light/dark cycle with ad libitum access to chow diet (Harlan Teklad TD2916)
were used for all experiments. The Klb gene was deleted from brain by
crossing Klbfl/fl mice with Camk2a-Cre mice on a mixed C57BL/6J;129/Sv
background as described (26).

Alcohol drinking in mice
For voluntary two-bottle preference experiments, male mice (n=9-13 per

group) were given access to two bottles, one containing water and the other
containing 2-16% ethanol (vol/vol) in water. After acclimation to the two-
bottle paradigm, mice were exposed to each concentration of ethanol for
4 days. Total fluid intake (water + ethanol-containing water), food intake
and body weight were measured each day. Alcohol consumption (g) was
calculated based on EtOH density (0.789 g/ml). To obtain accurate alcohol
intake that corrected for individual differences in littermate size, alcohol
consumption was normalized by body weight per day for each mouse. As a
measure of relative alcohol preference, the preference ratio was calculated
at each alcohol concentration by dividing total consumed alcohol solution
(ml) by total fluid volume. Two-bottle preference assays were also performed
with sucrose (0.5 and 5%) and quinine (2 and 20 mg/dl) solutions. For all
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experiments, the positions of the two bottles were changed every two days
to exclude position effects.

Mouse experiments with FGF21
For FGF21 administration studies, recombinant human FGF21 protein

provided by Novo Nordisk was administered at a dose of 0.7 mg/kg/day
by subcutaneous osmotic mini-pumps (Alzet 1004). Mice were single caged
following mini-pump surgery, which was conducted under isoflurane anes-
thesia and 24 hour buprenorphine analgesia. Mice were allowed to recover
from mini-pump surgery for 4 days prior to alcohol drinking tests. After
experiments, mice were sacrificed by decapitation and plasma was collected
using EDTA or heparin after centrifugation for 15 minutes at 3000 rpm.
Plasma FGF21 concentrations were measured using the Biovendor FGF21
ELISA Kit according to manufacturer’s protocol.

Plasma ethanol concentration and clearance
For alcohol bioavailability tests, mice (n=4-5 per group) were injected i.p.

with alcohol (2.0 g/kg, 20% w/vol) in saline, and tail vein blood was collected
after 1 and 3 hours. Plasma alcohol concentrations were measured using the
EnzyChrom™ Ethanol Assay Kit.

Emotional behavior in mice
For open field activity assays, naïve mice were placed in an open arena

(44 x 44 cm, with the center defined as the middle 14 x 14 cm and the
periphery defined as the area 5 cm from the wall), and the amount of time
spent in the center versus along the walls and total distance traveled were
measured. For elevated plus maze activity assays, mice were placed in the
center of a plus maze with 2 dark enclosed arms and 2 open arms. Mice
were allowed to move freely around the maze, and the total duration of
time in each arm and the frequency to enter both the closed and open arms
was measured. For novelty suppression of feeding assays, mice fasted for 12
hours were placed in a novel environment and the time to approach and eat
a known food was measured.

Statistical analysis
All data are expressed as means ± S.E.M. Statistical analysis between

the two groups was performed by unpaired two-tailed Student's t test using
Excel or GraphPad Prism (GraphPad Software, Inc.). For multiple comparisons,
one-way analysis of variance (ANOVA) with post-hoc Tukey was done using
SPSS.
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