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sistent and asymptotically e�cient estimation of panel data models

with weakly exogenous or endogenous regressors and residuals gen-

erated by a multi-factor error structure. In this case, the standard

dynamic panel estimators fail to provide consistent estimates of the

parameters. The novelty of our approach is that we introduce new

parameters to represent the unobserved covariances between the in-

struments and the factor component of the residual; these parameters

are estimable when N is large. Some important estimation and iden-

ti�cation issues are studied in detail. The �nite sample performance

of the proposed estimators is investigated using simulated data. The

results show that the method produces reliable estimates of the pa-

rameters over several parametrisations.
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1 Introduction

This paper develops a new approach that is based on instrumental variables for

consistent and asymptotically e�cient estimation of panel data models with er-

rors generated by a multi-factor structure. The factor structure is an attractive

framework as it permits general forms of unobserved heterogeneity that may oth-

erwise contaminate estimation and statistical inference. Factor residuals can be

motivated in several ways, depending on the application in mind. In macroecono-

metric panels, the factors may be thought of as economy wide shocks that a�ect

all individuals, albeit with di�erent intensities; essentially, this allows cross sec-

tions to inhabit a common environment, to which they may respond di�erently.

In microeconometric panels, the factor structure may capture di�erent sources of

unobserved individual-speci�c heterogeneity, the impact of which varies intertem-

porally in an arbitrary way. For instance, in studies of production functions, the

factor loadings may capture distinct components of �rm-speci�c technical e�-

ciency, which varies through time. In models of earnings determination, the factor

loadings may re�ect an individual's several di�erent unobserved skills, while the

factors represent the industry wide price of these skills, which is not necessarily

constant over time (see also the detailed discussions in Ahn, Lee and Schmidt

(2001, 2010) and Bai (2009)). Systematic changes in tastes is another plausible

example. In some circumstances such variables could be measured and directly

included in the model, but often the details of measurement might be di�cult,

contentious and, in any case, outside the focus of the analysis.1 In such cases it is

inviting to allow the model residual to be composed of one or more unspeci�ed fac-

tors, themselves to be estimated. One can interpret such a procedure as allowing

some degree of cross-sectional dependence in the model residuals. An overview of

the current literature on panel data models with error cross-sectional dependence

is provided by Sara�dis and Wansbeek (2012).

Consider the simplest case of a one regressor, one factor model in the standard

form

yit = φxit + λift + εit t = 1, ..., T i = 1, ..., N. (1.1)

In some cases the values of ft, or λi, are assumed to be known, such as when �tting

1 For example, how does one measure monetary shocks? Does one look at interest rates or

monetary aggregates? Which monetary aggregates? How does one handle �nancial innova-

tion?
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an error components structure, or polynomial time trends, but here we shall treat

the f 's as vectors of parameters to be estimated. In this case, one might �t this

model by nonlinear least squares based on principal components analysis; see e.g.

Bai (2009). Pesaran (2006) suggests the alternative of augmenting the regression

model by the cross-sectional averages of the variables, yit and xit, which will span

the unobserved factors for large N . Both these methods require that the set of

regressors is strictly exogenous with respect to the idiosyncratic error component,

εit, and N , T are both large. Sara�dis and Yamagata (2013) propose an IV estima-

tor in a model with a lagged dependent variable and strictly exogenous covariates.

The procedure involves defactoring the exogenous covariates using principal com-

ponents analysis, which then are used to form a set of instruments. The proposed

estimator is valid for large N and T . In the present paper we focus on the case

where N is large, T �xed and some (or all) of the regressors are either weakly

exogenous, or endogenous with respect to εit. This scenario is empirically relevant

in many economic applications. For example, our framework allows models with

lags of the dependent variable on the right hand side, as in partial adjustment

models for labour supply, Euler equations for household consumption, and em-

pirical growth models. In these models the coe�cient of the lagged dependent

variable captures inertia, habit formation and costs of adjustment and therefore

it has structural signi�cance (see e.g. Arellano, 2003, Ch. 7). Furthermore, since

underlying economic behaviour is intrinsically dynamic, past residual errors might

in�uence the current value of explanatory variables even when lagged dependent

variables are not directly present in the model, leading to weak exogeneity. For

instance, in panels of observations on economies, expectational errors are likely

to work through the whole economy over time, and it is natural to expect that a

given variable is often not immune from this process (see e.g. Sara�dis and Wans-

beek, 2012). Finally, our framework also permits endogenous regressors, due to

(say) errors of measurement, omitted variables and/or simultaneity. As a result,

it possesses an appealing generality.

When unobserved heterogeneity is subject to an error components structure,

a popular method to estimate models with weakly exogenous, or endogenous re-

gressors is the Generalised Method of Moments (GMM), analysed in the dynamic

panel data context by Arellano and Bond (1991), Ahn and Schmidt (1995), Arel-

lano and Bover (1995), Blundell and Bond (1998) and others. Among the many

economic applications where GMM has been used include estimation of (i) pro-

duction functions and technological spillovers (e.g. Blundell and Bond, 2000), (ii)

the demand for money (e.g. Bover and Watson, 2005), (iii) the responsiveness of
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labor supply to wages (e.g. Ziliak, 1997), (iv) the structure and pro�tability of

the banking sector (e.g. Tregenna, 2009) and the empirical growth literature (e.g.

Presbitero, 2008). In all these applications the set of regressors includes weakly

exogenous variables, the cross-sectional dimension is fairly large and T is relatively

small.2

However, as shown by Sara�dis and Robertson (2009) and Sara�dis, Yama-

gata and Robertson (2009), these procedures fail to provide consistent estimates

of the parameters when the errors are generated by a multi-factor structure be-

cause the moment conditions they utilise are invalidated. Panel data models with

a single factor structure and a small number of time series observations have

been studied by Holtz-Eakin, Newey and Rosen (1988), Ahn, Lee and Schmidt

(2001) and Nauges and Thomas (2003). All these studies utilise some form of

quasi-di�erencing that eliminates the factor component from the residuals. More

recently, in a seminal paper Ahn, Lee and Schmidt (2010) develop a GMM esti-

mator that allows for multiple factors using multi-quasi-di�erencing.

In this paper we develop a new instrumental variables approach; instead of

eliminating the factors using some form of quasi-di�erencing, our methodology

introduces new parameters that represent the unobserved covariances between the

instruments and the factor component of the residual. The proposed estimator

is more e�cient than the existing quasi-di�erencing type GMM estimators and

attains the semi-parametric e�ciency bound discussed by Newey (1990).

The basic intuition behind our method is as follows. Assume in the above

model we have some variable (instrument) zit for which the moment condition

E(zitεit) = 0 holds true. This implies that

E(zityit) = φE(zitxit) + gtft, (1.2)

where gt = E(zitλi).We treat theg's as parameters to be estimated. Replacing the

expectations with their sample moments, one has T such orthogonality conditions

and 2T + 1 parameters to be estimated (φ and the g's and f 's): too many to be

identi�ed. However, if all lags of zit are instruments, the number of orthogonality

conditions is expanded to T (T + 1)/2, while the number of parameters remains

the same; one has now more moment conditions than parameters for T > 3, so

identi�cation becomes feasible. We shall call estimators in this class Factor In-

2In particular, Blundell and Bond (2000) use a panel of 509 R&D performing US manufacturing
companies, Bover and Watson (2005) use data on 5,649 �rms operating in Spain, Ziliak (1997)
surveys 534 individuals, Tregenna (2007) considers 644 banking institutions, while Presbitero
(2008) utilises data from 144 countries. T ranges from 5 to 27 in these applications.
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strumental Variables (FIV) estimators. FIV estimators have been introduced by

Robertson and Symons (2007); the present treatment greatly improves and ex-

tends that paper. FIV estimators have the traditional attraction of method of

moments estimators in that they exploit only the orthogonality conditions im-

plied by the structure of the model, which in fact may be the implication of an

underlying economic theory, and make no use of subsidiary assumptions such as

homoskedasticity or other assumed distributional properties of the error process.

The method is general in the sense that all that is required is the existence of

some instrument zit with orthogonality conditions at su�ciently many periods

other than t to identify the model parameters.

In most practical circumstances the instrument set will include lags of the de-

pendent and independent variables of the model. In this case, a set of linear

restrictions can be demonstrated to hold among the parameters (φ and the g's

and f 's) of the model, leading to greater estimation e�ciency. We call this es-

timator FIVR (restricted FIV) in contrast to the estimator obtained when these

restrictions are not imposed, FIVU (unrestricted FIV). FIVR is asymptotically

e�cient in the class of estimators that make use of second moment information.

Using simulated data we show that these extra restrictions can be important and

FIVR largely outperforms FIVU in terms of RMSE.

2 Stochastic Framework

We consider the following model:

x′
itβ = λ′

ift + εit, i = 1, ..., N, t = 1, ..., T, (2.1)

where xit = (yit, x1it, x2it, . . . , xq−1,it)
′ is a q× 1 vector containing the (endogenous

and exogenous) observed variables. The q×1 vector β is assumed to be a function

of r free parameters φ:

β = β(φ).

In the work below we shall usually take β = (1,−φ′)′ where φ is a (q − 1) × 1

vector of parameters. λi is a stochastic n× 1 vector of factor loadings and ft is an

n×1 vector of factors which are treated as time-speci�c parameters; εit is a purely

idiosyncratic disturbance.3 The sampling structure is that we have N su�ciently

3We shall treat n as known. The results presented below are not a�ected when the number of
factors is unknown and is estimated consistently. A formal proof for this argument is provided
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independent draws, indexed by i, from the population. The following assumption

is made:

Assumption 1. Existence of instruments. We assume potential instruments

are given by a vector wi of dimension d; these instruments may correspond to the

variables of the model or be extraneous variables. In each period t, ct instruments

are available, expressed in vector form as follows:

wit = Stwi, (2.2)

for which the condition E(witεit) = 0 holds.

Here St is the selector matrix of 0's and 1's that picks out from all potential

instruments in wi, those that are valid at date t. The matrix St has dimension

ct × d where ct is the number of orthogonality conditions associated with εit. The

instruments available depend on the structure of the model. Thus, for example,

in a model with a single explanatory variable, wi could consist of all values of

this variable, from t = 1 to t = T . If the variable was strictly exogenous with

respect to εit then St would be the identity matrix IT at each t. If the variable was

only weakly exogenous then the selector matrix for each t would pick out values

dated t and earlier, provided that E(εisεit) = 0, s 6= t. Mixed cases can occur

naturally, such as when the covariates consist of (say) a weakly exogenous and an

endogenous variable. In this case, wi is a 2T × 1 vector and the selector matrix

will pick out current and lagged values of the weakly exogenous variable, as well

as the appropriate dates for the endogenous variable.

The model (2.1) can be stacked over t to take the form

Xiβ = (IT ⊗ λ′
i)f + εi, (2.3)

where Xi = [xi1, ...,xiT ]
′, f = vec(F ′), F = [f1, ..., fT ]

′, εi = (εi1, ..., εiT )
′.

by Bai (2003, footnote 5). A consistent estimate of the number of factors in this context can
be obtained using a sequential method based on Sargan's overidentifying restrictions test
statistic. The intuition is that when the number of factors �tted is smaller than the true
value, Sargan's statistic will reject the null hypothesis for N su�ciently large. Alternatively,
one can estimate the number of factors consistently using an information based criterion.
Ahn, Lee and Schmidt (2010) provide speci�c details and proofs for both methods. See also
Sara�dis and Yamagata (2010) for further discussion.
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The corresponding instrument matrix Zi is de�ned by

Z ′
i =


wi1 0 .. 0

0 wi2 0

:
. . .

0 0 .. wiT

 , (2.4)

such that

E(Z ′
iεi) = 0, (2.5)

where Z ′
i is c×T and c =

∑t=T
t=1 ct denotes the total number of moment conditions.

In view of (2.2), the matrix of instruments can be written as

Z ′
i = S(IT ⊗wi), (2.6)

where

S =


S1 0 .. 0

0 S2 .. 0

: : : :

0 0 .. ST

 . (2.7)

The matrix S has dimension c × Td. The vector of orthogonality conditions we

use to estimate the model parameters is

E[Z ′
iXiβ − Z ′

i(IT ⊗ λ′
i)f − Z ′

iεi] = 0, (2.8)

which, by use of (2.5) and (2.6), can be written as follows:

Mβ − S(IT ⊗G)f = 0, (2.9)

where M = E(Z ′
iXi) and G = E(wiλ

′
i). Matrices M and G have dimensions c× q

and d× n, respectively. Alternative forms of the second term in (2.9) are

S(IT ⊗G)f = Svec(GF ′) = S(F ⊗ Id)g, (2.10)

where g = vec(G). A compact expression of the orthogonality conditions is thus

Mβ − Svec(GF ′) = 0. (2.11)
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When the instruments consist of current and all lagged values: the canon-

ical case As an example, consider the case where all instruments available can

be naturally arranged in a T × p matrix Vi of T observations on p variables (so

that wi = vec(Vi)), and εit is orthogonal to the block of potential instruments

from s = 1 to s = t, i.e. the orthogonality conditions are given by

E(zisεit) = 0, t = 1, ..., T ; s = 1, ..., t, (2.12)

where z′is is the sth row of Vi. This can be viewed as a canonical case in the

sense that there exists a collection of contemporaneous instruments and their

lagged values; it arises, for example, when all variables in the model are weakly

exogenous, such as in the AR(1) dynamic panel data model with factor residuals

(in which case p = 1). De�ne M st = E(zisx
′
it) and Gs = E(zisλ

′
i), which have

dimensions p× q and p× n, respectively. The orthogonality conditions are given

by

Mstβ −Gsft = 0, t = 1, ..., T ; s = 1, ..., t. (2.13)

These conditions can be stacked as

M11β

M12β

M22β

:

M1Tβ

M2Tβ

:

MTTβ


−



G1f1

G1f2

G2f2

:

G1fT

G2fT

:

GT fT


= 0. (2.14)

More succinctly, this is

Mβ − vech(GF ′) = 0, (2.15)

where M is the stacked Mst terms and the vech operator is understood to act on

p× 1 submatrices. Let S̃T be the selector matrix of 0's and 1's that turns vec into

vech (acting on T × T matrices). Then

Mβ − vech(GF ′) =Mβ − (S̃T ⊗ Ip)vec(GF
′) = 0, (2.16)

which is of the form of (2.11), with the selector matrix S given by S = S̃T ⊗ Ip.
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3 The unrestricted estimator FIVU

De�ne the following moment function:

ψ(θ, Z ′
iXi) = Z ′

iXiβ(φ)− Svec(GF ′), (3.1)

where θ = (φ′, g′, f ′)′. Then by construction E(ψ(θ)) = 0 at the true value

θ0. Our aim is to estimate θ0 by minimising ψ(θ, M̂)′Cψ(θ, M̂) where M̂ =∑N
i=1 Z

′
iXi/N is the matrix of sample moments and C is a given �xed matrix. As

it stands, the model is not identi�ed because

Mβ − Svec(GF ′) =Mβ − Svec(GUU−1F ′), (3.2)

for any n× n invertible U . This particular indeterminancy is typically eliminated

by requiring an n × n submatrix of F ′ to be the identity matrix. However, it

turns out that this identity restriction on a submatrix of F is not in general

su�cient for full identi�cation so that further restrictions may be required. The

required restrictions will vary depending upon the speci�cation of the model. In

what follows we provide su�cient conditions for identi�cation of the full parameter

vector θ and illustrate with an example.

Let Ω be the full set of possible parameter vectors.

Assumption 2. θ0 belongs to the interior of Θr ⊆ Ω where Θr is obtainable

by restrictions on the G,F components of the vectors in Ω, together with some

possible further restrictions excluding a closed set. We assume θ0 is identi�ed on

Θr in the sense that E(ψ(θ)) = 0 for θ ∈ Θr implies θ = θ0.

Let

Γ = E

(
∂ψ

∂θ′r
(θ0)

)
, (3.3)

and

∆ = E (ψ(θ0)ψ(θ0)
′) , (3.4)

where θr consists of the free parameters in a restricted θ.

Assumption 3. Γ and ∆ exist and are uniformly positive de�nite.

Assumption 4. E|z2it`|1+δ < $ < ∞ and E|x2it`|1+δ < $ < ∞ for some δ > 0

and for all i, t, `, and the function β(.) is twice continuously di�erentiable.
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As an example, consider the AR(1) one factor model:

yit = φyit−1 + λift + εit.

The moment conditions are derived from taking expectations in

yisyit = φyisyit−1 + yisλift + yisεit, s = 0, . . . , t− 1; t = 1, . . . , T.

The full parameter vector θ = (φ, g1, . . . , gT , f1, . . . , fT ) ∈ Ω is not identi�ed at θ0.

One identifying restriction is simply a rescaling of g and f , obtained by setting one

entry in f equal to 1, e.g. fT = 1. In this model one column of the matrix Γ consists

of zeros except for a single entry that equals g1, so the full rank condition for Γ

requires as well that g1 6= 0. Thus we may take Θ = {θ = (φ, g1, . . . , gT , f1, . . . , fT );

g1, fT 6= 0} ⊂ Ω and Θr = {θ = (φ, g1, . . . , gT , f1, . . . , fT ); g1 6= 0, fT = 1} ⊂ Θ.

Assumption 2 implies that the model is identi�ed. Some plausible models will

not �t this framework. For instance if the set of instruments is not correlated

with the factor loadings (as it would occur in an uncorrelated random e�ects

formulation), then all the g's will be zero, which implies there can be no restrictions

that would allow identi�cation of the f 's. However, this case is trivial as pointed

out by Ahn, Lee and Schmidt (2010), because the structural parameter vector φ

can be straightforwardly estimated by OLS.

Note that the positive de�niteness assumption for Γ itself implies that θ0 is

locally identi�ed. The above set of assumptions is su�cient to make an appeal to

standard GMM theory in order to derive the asymptotic properties of FIVU. In

our context the result is given in the following proposition:

Proposition 1. Distributional result for FIVU. Let Θc be a compact sub-

set of Θr containing θ0 in its interior and let

θ̂(Θc) = arg min
θ∈Θc

ψ(θ, M̂)′Cψ(θ, M̂), (3.5)

recalling that M̂ =
∑N

i=1 Z
′
iXi/N and C is a given �xed positive de�nite matrix.

Then θ̂ converges in probability to θ0 and

√
N(θ̂ − θ0)

d→ N(0, (Γ′CΓ)−1(Γ′C∆CΓ)(Γ′CΓ)−1). (3.6)

Proof. This is straightforward enough; see e.g. Newey and McFadden (1994) for
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further details.4

If C is chosen as ∆−1 the covariance matrix of the asymptotic distribution is

(Γ′∆−1Γ)−1, in which case the estimator has certain optimality properties. These

distributional results hold as well if the unobserved ∆ is replaced by a consistent

estimate.

Appendix II establishes a general identi�cation scheme for FIVU under a multi-

factor structure. In many circumstances, the full parameter vector is not the

object of interest and one is interested only in estimates of φ. In this case we

show below that it is not essential to impose identifying restrictions on the factors

in FIVU estimation as the value of φ obtained by unrestricted estimation (over Ω)

will coincide with the restricted estimate (over Θc) under one further assumption:

Assumption 5 There exists an open set Θ where Ω ⊇ Θ ⊇ Θr with Θ dense

in Ω such that for all θ = (φ′,g′, f ′)′ ∈ Θ

Svec(GF ′) = Svec(GrF
′
r), (3.7)

for some (φ′,g′
r, f

′
r)

′ ∈ Θr. Assume as well that ψ(θr,M)′Cψ(θr,M), θr ∈ Θr, is

bounded away from zero outside some given compact set.

Theorem 2. Equivalence of unrestricted and restricted estimation.

Under Assumptions 1-5 φ̂(Ω) → φ̂(Θc) in probability, where Θc is de�ned in the

distributional result for FIVU. De�ne ν = (g′, f ′)′ and νr as the subvector of free

parameters in ν. If, moreover, at the true values of ν and νr

Span
∂Svec(GF ′)

∂ν ′ = Span
∂Svec(GrF

′
r)

∂ν ′
r

, (3.8)

then the covariance matrix of φ̂(Ω) obtained using the generalised inverse of

(∂ψ/∂θ′)′CN∂ψ/∂θ
′ coincides with the covariance matrix of φ̂(Θr) inferred from

the inverse of (∂ψ/∂θ′r)
′CN∂ψ/∂θ

′
r.

Proof. See Appendix I.

4It is easy to see that our assumptions imply the assumptions employed by Newey-McFadden,
except perhaps for their assumption of dominance, i.e. the norm of the moment function is
dominated by a function of M̂ of �nite expectation. In fact this follows easily in our case
from compactness and the existence of second moments.
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Theorem 2 shows that the distribution of φ̂ obtained from estimation subject

to a set of restrictions on G and F coincides with that obtained from optimisation

without imposing these restrictions. If the restrictions constitute a set of identify-

ing restrictions, Proposition 1 tells us that the distribution of φ̂ over the restricted

parameter space, and hence in this case the distribution of φ̂ without restrictions,

is that given by Newey and McFadden (1994). Essentially, the spanning condition

(3.8) ensures that the submatrix of the covariance matrix of θ̂ corresponding to the

parameters of interest has not been altered by the restrictions imposed on G and

F . In principle, for any proposed model one would need to write down identifying

restrictions and check whether Svec(GF ′) equals Svec(GrF
′
r) and also whether

the spanning condition (3.8) holds, in which case estimation could proceed simply

over the unrestricted parameter space.

In the AR(1) one factor example discussed above the free parameters νr con-

sist of (g1, . . . , gT , f1, . . . , fT ) with fT removed. Fixing fT removes ∂ψ/∂fT from

∂ψ/∂θ′; the spanning condition requires that such deletion does not change the

linear space spanned by the columns of ∂ψ/∂ν ′. In Appendix II we demonstrate

that Assumptions 1-5 and condition (3.8) are satis�ed under the identi�cation

scheme proposed for the AR(1) one factor model, so that FIVU can be imple-

mented for this model with unrestricted optimisation.

Estimation for FIVU

The FIVU estimator is straightforward to obtain. Let B be the Choleski matrix

of C. Then the objective function has the form

QB(θ, M̂) =
∥∥∥Bψ(θ, M̂)

∥∥∥2

=
∥∥∥[M̂β − Svec(GF ′)]

∥∥∥2

. (3.9)

When β is a linear function of the parameters φ, then, if either G or F is held

�xed, the expression B[M̂β(φ)−Svec(GF ′)] is a linear function of the remaining

parameters, and the conditional minimum of (3.9) may be found by a one pass

least squares procedure. One may then seek a joint minimum by iteration over

G and F . This appears to work well in practice. In Appendix III we obtain �rst

and second derivatives for the RHS in (3.9), so Gauss-Newton procedures are also

available.

The condition (2.11) takes a particularly simple form when ft ≡ 1 for all t, as

in the one way error components model. In this case one has

Svec(GF ′) = S(ιT ⊗ Id)g. (3.10)
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Therefore using (3.9), we obtain

BMβ −BS(ιT ⊗ Id)g = 0, (3.11)

which can be interpreted as a classical regression whenM is replaced by its sample

counterpart. When β is a linear function of φ, FIVU may be obtained by a one

pass least squares estimate of (3.11).

Quasi-di�erencing

An alternative approach to FIVU is obtained by multi-quasi-di�erencing, which

removes the factor component in (2.11). This is achieved by constructing a matrix

D = D(F ) such that D(F )Svec(GF ′) = 0. The orthogonality conditions then

become

D(F )Mβ = 0. (3.12)

Quasi-di�erencing is the method employed by Holtz-Eakin, Newey and Rosen

(1988), Ahn, Lee and Schmidt (2001) and Nauges and Thomas (2003) for the one

factor case, and Ahn, Lee and Schmidt (2010) for the multi-factor case, as well

as Arellano and Bond (1991) (mutatis mutandis). In general, this approach elimi-

nates the factor component from the error at the same cost in moment conditions.

As shown in Appendix I, such transformations of moment conditions produce es-

timators of the same asymptotic e�ciency as working with the untransformed

moment conditions. This result is summarised in the following theorem:

Theorem 3. Asymptotic equivalence result. Under Assumptions 1-4 FIVU

in model (2.1) is asymptotically equivalent to a Generalised Method of Moments

estimator based on quasi-di�erencing and upon constructing D(F ).

Proof. See Appendix I.

To see this intuitively, consider without loss of generality an AR(1) model with

a single factor structure (n = 1):

yit = φyit−1 + λift + εit, t = 1, ..., T. (3.13)

FIVU does not rely on any form of di�erencing and as such it will estimate

1+2T parameters (φ, T g's and T f 's) using T (T +1)/2 moment conditions. The

quasi-di�erencing procedure proposed by Holtz-Eakin, Newey and Rosen (1988)
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and adopted by Nauges and Thomas (2003) transforms the model as

yit − rtyit−1 = φ(yit−1 − rtyit−2) + λi(f t − rtft−1) + (εit − rtεit−1)

= φ(yit−1 − rtyit−2) + (εit − rtεit−1), t = 2, . . . T, (3.14)

where rt = f t/f t−1. This requires estimating 1 + T parameters (φ and T f 's)

using T (T − 1)/2 moment conditions. The procedure proposed by Ahn, Lee and

Schmidt (2001, 2010) involves normalising the value of the factor over the last

period to unity and transforming the model as follows:

yit − f̃tyiT = φ(yit−1 − f̃tyiT−1) + λi(f̃t − f̃tf̃T ) + (εit − f̃tεiT )

= φ(yit−1 − f̃tyiT−1) + (εit − f̃tεiT ), (3.15)

where f̃t is the normalised value of ft such that f̃t=ftf̃T/fT and f̃T=1. Again, this

requires estimating 1 + T parameters using T (T − 1)/2 moment conditions. The

net di�erence between the number of moment conditions and parameters across

all these methods is the same. Hence the resulting estimators are asymptoticallly

equivalent.

Remark. Computational procedures based on some quasi-di�erencing transforma-

tions could run into problems if some of the factor values are close enough to

zero. For example, strictly speaking rt exists only if ft 6=0 for all t. Similarly, the

normalisation f̃t=ftf̃T/fT requires fT 6=0. On the other hand, our approach is not

restricted by a particular identication scheme. Of course, we do need to assume

the model is identi�ed to invoke general GMM results. However, as Theorem 2

makes clear any identi�cation will su�ce for this purpose. In fact, if one is only

interested in estimating the structural parameters φ it is not even necessary to

impose identifying restrictions on the factors.

Notice that it is also possible to construct a matrix D = D(G) to eliminate the

g terms. To see how this can be achieved, assume a single factor and consider the

column vector Svec(gf ′), consisting of scalar terms of the form gsft. Consider the

following operations on Svec(gf ′):

1. Transform Svec(gf ′) so that all coe�cients of terms in the scalar g1 are unity.

2. Choose one of the g1 terms and use it to di�erence away the rest.

3. Eliminate the (single) remaining term in g1.

One now repeats these operations for the remaining g's. The key point is that

all these operations can be accomplished by left multiplication on Svec(gf ′) by
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matrices of the form D(G).Where there is more than one factor, vec(GF ′) consists

of sums of terms of the form vec(gf ′). Since the above operations preserve the

structure of these terms, the operations may be applied sequentially to the later

terms to eliminate them in their turn. Similarly as before, this approach eliminates

dn parameters (the g's) at the same cost in moment conditions and so there is no

asymptotic e�ciency gain/loss over the aforementioned methods.

4 Parameter restrictions: the FIVR estimator

When elements of xit occur as instruments, model (2.1) implies restrictions on G,

the imposition of which will lead to greater e�ciency. These restrictions require:

Assumption 6 E(λiεit) = 0, for all i and t.

The extra restrictions can be obtained by pre-multiplying (2.1) by λi and taking

expectations, which yields

E(λix
′
it)β = ΩΛft, t = 1, ..., T, (4.1)

for N large, where ΩΛ = E(λiλ
′
i). The key point is that, when the instrument

set includes elements of xit, the entries in E(λix
′
it) include terms in various of the

g's so that the LHS of (4.1) is a linear function of the ensemble vector g. Some

examples will illustrate.

Example 1. One lagged dependent variable and a single factor The model

is

yit = φyit−1 + λift + εit. (4.2)

Here xit = (yit, yit−1)
′, β = (1,−φ)′, zit = yit−1, gs = E(yis−1λi). The linear

restrictions (4.1) take the form

gs+1 = φgs + σ2fs, (4.3)

where σ2 = E(λ2i ), which can be written in matrix form as
−φ 1 0 .. 0

0 −φ : 0

: : : 1 :

0 0 .. −φ 1




g1

g2

:

gT+1

 = σ2f. (4.4)
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Notice the appearance of the �out-of-sample� term gT+1, which we regard as a

constant to be estimated.5 Section this matrix equation into the form

[
H eT

] [ g

gT+1

]
= σ2f , (4.5)

where eT is the T × 1 dimensional column vector with 1 in the T th position. The

restriction has the form

Hg = σ2f + δeT (δ ∈ R). (4.6)

We shall call H = H(β) the structure matrix; it is speci�c to the particular model

considered.

Example 2. One lagged dependent variable and two factors. In this case

gs = E(yis−1λ
′
i) is a 1 × 2 row vector and the restrictions have the form g′

s+1 =

φg′
s+ΩΛfs. The matrix of restrictions is as in Example 1 except that g is replaced

by vec(G′) and δ ∈ R2. Therefore, we have

(H ⊗ I2)PT,2g = (IT ⊗ ΩΛ)f + Uδ, (4.7)

where g is a 2T × 1 vector and U is the 2T × 2 matrix with columns one and two

being e2T−1 and e2T respectively, and Pm,n is the permutation matrix such that

Pm,nvec(A) = vec(A′) for m× n matrices A.

Example 3. One lagged dependent variable, one weakly exogenous variable

and one factor. The model is

yit = φyit−1 + αxit + λift + εit. (4.8)

In this case the instrument vector is zit = (yit−1, xit)
′. Note the g's are two-

dimensional:

gs = ( g1s , g2s )′ = E(( yis−1λi, xisλi )
′). (4.9)

The restrictions can be written g1s+1 = φg1s + αg2s + σ2fs. In matrix form we

have

5Strictly speaking, the value of gT+1 is de�ned by the restriction it appears in (4.3). We adopt
this convention so as to have a neat formula for the full vector f .
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
−φ −α 1 0 0 .. 0

0 0 −φ −α 1 .. 0

: : : : : : :

0 0 0 .. −φ −α 1





g11

g21

:

g1T
g2T
g1T+1


= σ2f , (4.10)

which can be written more generally as

Hg = σ2f + δeT, δ ∈ R. (4.11)

where the structure matrix H is now T × 2T.

One can obtain a transformation of (4.11) that is useful when ft ≡ 1 for all

t. Since H will in general have a null space of dimension T , (4.11) determines g

only up to T free parameters. Section H into T × T submatrices so that H =[
H1 H2

]
and section g conformably as g = (g′

1, ζ
′)′. Then the general solution

to (4.11) is given by

g1 = H−1
1 (f + δeT −H2ζ), (4.12)

where ζ ∈ RT is a free vector of parameters. One can now substitute for g in

(3.11). For a given value of β, the only unknowns are the parameters δ and ζ,

which can be estimated by OLS. The RSS from this regression is the minimand

of (3.9). Thus, this procedure e�ects a concentration RSS = RSS(β). Finding

estimates of the structural parameters is reduced to minimising this function.

Example 4. Two lagged dependent variables and one factor. The model is

yit = φ1yit−1 + φ2yit−2 + λift + εit. (4.13)

In this case wi = (yi0, . . . , yiT−1)
′, zit = yit−1 and the matrix of restrictions takes

the form


−φ2 −φ1 1 0 · · · 0

0 −φ2 −φ1 1 . . .
...

0 0 0
. . . . . . 0

...
...

... −φ2 −φ1 1





g0

g1

g2

:

gT

gT+1


= σ2f . (4.14)
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This is partitioned conformably into

[
−φ2e1 H eT

] g0

g

gT+1

 = σ2f , (4.15)

with solution

Hg = σ2f +
[
e1 eT

]
δ (δ ∈ R2). (4.16)

We turn to the general case. The restrictions take the form

H(β)Pd,ng = (IT ⊗ ΩΛ)f + Uδ, (4.17)

where H(β) is an nT × nd matrix that depends on the structure of the model,

as in the above examples, U is a matrix of e elementary column vectors and δ is

a vector of free parameters corresponding to the �out-of-sample� observations in

the above examples. The FIVR estimator (restricted FIV estimator) chooses θ to

minimise (3.9) subject to (4.17). FIVR will in general have fewer parameters to

estimate than FIVU and as such it will be more e�cient.

The term H(β) is a linear function of β and one has

H(β) =

q∑
i=1

Kiβi = K(β ⊗ Ind), (4.18)

where K =
[
K1 ... Kq

]
. Note that the Ki are given �xed nT × nd matrices

depending on the structure of the model. Then H(β)Pd,ng = K(Iq ⊗Pd,ng)β and

one can write the restrictions in the form

K(Iq ⊗ Pd,ng)β = (IT ⊗ ΩΛ)f + Uδ. (4.19)

With no restrictions on F (such as ft = 1 for all t, as in the one-way error

components model), the model can be reparameterised so as to have ΩΛ = In. If

there are speci�c restrictions on some elements of F , (4.19) still holds and can

be used to eliminate f in the objective function at the cost of introducing some

parameters in ΩΛ corresponding to the restricted factors.

Identi�cation and Estimation for FIVR One does not need to develop a sepa-

rate theory of identi�cation for FIVR; this can be inferred from the FIVU results.

18



If Assumptions 1-5 hold, and given the equivalence of restricted and unrestricted

estimation, then the FIVU estimator may be obtained by minimising the criterion

function over the whole parameter space. FIVR minimises the criterion over a

closed neighbourhood of θ0 and this implies straightforwardly that the FIVR esti-

mator likewise has probability limit θ0. Since FIVR is obtained by expressing some

of the nuisance parameters in terms of the remaining parameters, its covariance

matrix may be obtained from the FIVU matrix by application of the appropriate

Jacobian (calculated in Appendix III). Of course, FIVR will be identi�ed in cases

where FIVU is not, since FIVR estimates fewer parameters.

The standard method of solving a minimisation problem subject to an exact

constraint is to use the constraint to solve out for some of the choice variables and

substitute into the minimand. For the general case we have

f = K(Iq ⊗ Pd,ng)β − Uδ. (4.20)

Then one can minimise (3.9) over (β(φ),g, δ), having substituted for f from (4.20).

In practice one can use a constrained nonlinear optimisation procedure to �nd the

minimum. Formulae for the derivatives are given in Appendix III.

The FIVR estimator e�ects a more parsimonious parametrisation of the nuisance

parameters g, which leads to more e�cient GMM estimation of the parameters

of interest. Thus FIVR is strictly superior to FIVU and since FIVU is itself

asymptotically equivalent to quasi-di�erencing methods it is superior to these as

well. This is summarised in the following theorem:

Theorem 4. Distribution result for fivr. Under Assumptions 1-4, 6 and

model (2.1) FIVR is asymptotically more e�cient than FIVU. Furthermore, it is

the e�cient estimator in the class of estimators that make use of second moment

information.

Proof. See Appendix I.

Remark. When n = 1 and ft = 1 for t = 1, ..., T , the set of linear restrictions (4.3)

becomes

gs+1 = φgs + σ2. (4.21)

In this case, FIVR utilises the same set of orthogonality conditions as FIVU,

T (T + 1)/2 in total, but estimates only three parameters, namely φ, g1 and σ2.

Therefore, FIVR makes e�cient use of second moment information and intuitively

we should expect that it is asymptotically equivalent to the GMM estimator pro-

posed by Ahn and Schmidt (1995). Under stationary initial conditions there is an
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extra restriction in that g1 = σ2/(1 − φ). In this case the number of estimable

parameters decreases by one and a version of FIVR that uses this extra restriction

is asymptotically equivalent to the system GMM estimator proposed by Arellano

and Bover (1995) and Blundell and Bond (1998).

5 Finite Sample Performance

In this section we investigate the performance of the GMM estimators proposed

in this paper in �nite samples. Our focus is on the signal-to-noise ratio of the

model, the proportion of the variance of the total error component that is due to

the factor component and the degree of persistence in the model.

Design

The data generating process is given by6

yit = αyit−1 + βxit + uit;

uit = λ
′
ift + εit =

n∑
j=1

λjif
j
t + εit, (5.1)

and

xit = ρxit−1 + γ
′
ift + υit = ρxit−1 +

n∑
j=1

γji f
j
t + υit;

υit = νit + πεit−1, (5.2)

where εit ∼ i.i.d.N
(
0, c1σ

2
εi

)
, with σ2

εi
∼ i.i.d.U [0, 2], νit ∼ i.i.d.N (0, σ2

ν), λ
j
i ∼

i.i.d.N
(
0, c2σ

2
λi

)
with σ2

λi
∼ i.i.d.U [0, 2] and f j

t ∼ i.i.d.N (0, 1) for all j, such that

E
(
c1σ

2
εi

)
= c1 > 0 and E

(
c2σ

2
λi

)
= c2 > 0. Thus, our design allows for substantial

cross-sectional heteroskedasticity in the idiosyncratic error and the factor loadings.

The zero mean assumption of the factor variates and the idiosyncratic error

component is not restrictive since in practice one can remove the non zero mean

for a multi-factor structure by adding individual- and time-speci�c e�ects. In

particular, one can always reparameterise the error term uit = λ′
ift + εit = ηi +

τt + (λi − λ̄)′(ft − f̄) + εit, where ηi = λ
′
if̄ and τt = λ̄ft. Similarly, adding a global

intercept will remove the non zero mean of εit.

6In a previous version of our paper we investigate the performance of our estimators based
on a pure AR(1) panel model. That version is available on line at http://mpra.ub.uni-
muenchen.de/26166/ .

20



The factor loadings of the x and y processes are correlated such that

γji = %γλλ
j
i +

(
1− %2γλ

)1/2
$j

i , $
j
i ∼ i.i.d.N

(
0, c2σ

2
λi

)
∀ j. (5.3)

yit can be expressed recursively as follows:

yit = β
∞∑
s=0

αsxit−s + λ
′
i

∞∑
s=0

αsft−s +
∞∑
s=0

αsεit−s

= β
∞∑
s=0

αs(γ ′
i

∞∑
τ=0

ρτ ft−s−τ +
∞∑
τ=0

ρτυit−s−τ ) + λ
′
i

∞∑
s=0

αsft−s +
∞∑
s=0

αsεit−s

= βγ ′
i

∞∑
s=0

αs

∞∑
τ=0

ρτ ft−s−τ + β
∞∑
s=0

αs

∞∑
τ=0

ρτυit−s−τ + λ
′
i

∞∑
s=0

αsft−s +
∞∑
s=0

αsεit−s,

(5.4)

since

xit = γ
′
i

∞∑
τ=0

ρτ ft−τ +
∞∑
τ=0

ρτυit−τ . (5.5)

As described in Kiviet (1995) and Bun and Kiviet (2006), the variances of νit

and λi are major determinants of the relative strength of the signal-to-noise ratio

and the error components, respectively. Noticing that on average

var(υit) = σ2
υ = σ2

ν + π2c1, (5.6)

the average variance of the signal of the model, conditionally on λ′
ift and γ

′
ift, is

given by

σ2
s = var(yit|λ′

ift,γ
′
ift)− var(εit)

= var(β
∞∑
s=0

αs

∞∑
τ=0

ρτυit−s−τ ) +
∞∑
s=0

αsεit−s

+2cov(β
∞∑
s=0

αs

∞∑
τ=0

ρτυit−s−τ ,
∞∑
s=0

αsεit−s)− var(εit)

=
β2

(1− α2)(1− ρ2)
σ2
ν +

β2π2

(1− α2)(1− ρ2)
c1 +

1

(1− α2)
c1

+
2βαπ

(1− αρ)(1− α2)
c1 − c1

=
β2

(1− α2)(1− ρ2)
σ2
ν +

β2π2 + (1− αρ)(1− ρ2) + 2βαπ(1− ρ2)

(1− α2)(1− ρ2)(1− αρ)
− c1.

(5.7)
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The signal-to-noise ratio is de�ned as

SNR ≡ σ2
s − c1
c1

. (5.8)

We normalise c1 = 1, which implies that SNR depends on the value of σ2
ν only, as

far as the variance parameters are concerned. Hence, we set σ2
ν such that SNR is

controlled across experiments. In particular, solving for σ2
ν yields

σ2
ν =

(
SNR + 1− β2π2 + (1− αρ)(1− ρ2) + 2βαπ(1− ρ2)

(1− α2)(1− ρ2)(1− αρ)

)
(1− α2)(1− ρ2)

β2
.

(5.9)

Recalling that E
(
c2σ

2
λi

)
= c2, the value of c2 is determined according to the

average proportion of the variance of the total error, uit, that is due to the factor

component, λ′
ift. It is easy to show that this ratio equals

Fλ = nc2(c2 + 1)−1.

Thus, for example, Fλ = 0.2 means that 20% of the variance of the total error is

due to the unobserved factors; thus, the factor component has small in�uence in

this case. Solving for c2 yields

c2 =
nFλ

1− Fλ

.

We specify T = 10, %γλ = 0.5, π = 0.2, N ∈ {100, 400}, ρ ∈ {0.5, 0.95}, α ∈
{0.2, 0.8}, Fλ ∈ {0.2, 0.8}, SNR ∈ {3, 9}, n = 1, 2, giving rise to 64 di�erent

experiments. ρ = 0.95 allows us to examine the case where the covariate is close

to a unit root process. α = 0.8 implies that the y process is highly persistent and

receives relatively small in�uence from x. The SNR values are based on previous

literature (e.g. Bun and Kiviet, 2006). 2,000 replications are performed in all

cases.

Results

The results are reported in Tables 1-4. We distinguish between one step and

two step GMM estimators; FIV Uj (FIV Rj) refers to the j step FIVU (FIVR)

estimator, j = 1, 2. One step estimators make use of the identity matrix as a

weighting matrix. Two step estimators make use of the optimal weighting matrix,

computed using estimates of the parameters obtained from the �rst stage. For the

one factor case all estimators make use the two most recent available instruments
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for both y and x. This means there are 35 moment conditions available, while

there are 29 parameters for FIVU and 22 for FIVR. For the two factor case, all

estimators make use of the four (three) most recent available instruments for y (x).

This means there are 56 moment conditions utilised, 54 parameters for FIVU and

40 for FIVR. For FIVU minima are found by an iterative least squares procedure,

as described in Section 3; for FIVR we use a constrained nonlinear optimisation

algorithm based on Matlab's fmincon function. Convergence is deemed to have

occurred when the modulus of the gradient vector is less than 10−5. To obtain

initial values for the factors we investigate a grid of values for ρ and for each

one we estimate f using the �rst n principal components of the resulting residual

ẽit = xit − ρ̃xit−1; we pick f corresponding to the value of ρ̃ that minimises the

criterion function. Notice that identifying restrictions on the factor parameters

are not imposed.

For comparison, we also use two versions of the two step GMM estimators

proposed by Arellano and Bond (1991), hereafter DIF, and Blundell and Bond

(1998), hereafter SYS. Two step refers to the fact that the estimators make use

of the optimal weighting matrix in each case. Although these estimators are

not consistent under cross-sectional dependence generated by a multi-factor error

structure, it is useful to examine their performance under such circumstances given

their popularity and the fact that cross-sectional dependence is a highly likely

empirical scenario. DIFa and SY Sa make use of the two most recent available

instruments for both y and x with respect to the equations in �rst di�erences,

while DIFb and SY Sb make use of the four most recent available instruments

with respect to the equations in �rst di�erences. The SYS estimators use, in

addition, ∆yit−1 as an instrument for yit−1 in the model in levels, t = 3, ..., T .

Thus, DIFa, DIFb, SY Sa and SY Sb utilise 31, 55, 47, and 71 moment conditions

respectively, quantities that are well below the size of N .

The results are reported using the following format: average, (standard devia-

tion), [RMSE], {size} of the z-statistic for the structural parameters of the model

and |size| of the overidentifying restrictions test statistic. Nominal size is set equal

to 5%.7

It is clear that FIVU and FIVR perform well under all circumstances. Naturally,

their performance improves when the signal-to-noise ratio increases. The same

holds as Fλ increases, for α = .5, especially when x is highly persistent. Bias

for FIVU and FIVR is negligible in all experiments. FIVR has lower standard

7For DIF and SYS, since the moment conditions are invalid under a factor structure, the entries
in | | re�ect power, as opposed to size.
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deviation than FIVU and therefore it performs better in terms of RMSE, often

by a substantial margin. The di�erence in the performance of the two estimators

with regards to RMSE appears to become larger with higher values of ρ and α

when the factor component has a relatively small contribution in the variance of

the total error (i.e. Fλ = .2). For example, for SNR = 9 the ratio of the standard

deviation of the estimated autoregressive parameter for FIV R2 over the standard

deviation of FIV U2 is roughly about 77% when α = .5 and ρ = .5 and decreases

to around 73% for α = .8 and ρ = .95. Gains in terms of dispersion and RMSE

obtained using FIVR appear to be smaller for β compared to α. As expected

two step estimators, which are asymptotically e�cient, outperform their one step

counterparts, especially when x is highly persistent. All estimators perform well

in terms of the empirical size of the z-statistic for the structural parameters of the

model. The overidentifying restrictions test statistic is valid only for the optimal

(two step) GMM estimators and in this case there are only small size distortions.

The performance of DIF and SYS is generally poor and highly sensitive to the

design. As expected, bias is smaller when Fλ = 0.2 relative to Fλ = 0.8. Even in

the former case however, bias can be very large, especially when ρ = 0.95 and/or

α = 0.8. There also appear to be large size distortions for the z-statistic, especially

when bias is large, in which case the null hypothesis is rarely not rejected. The

power of the overidentifying restrictions test statistic depends crucially on the

number of instruments used. For DIFa power is high, particularly when Fλ = 0.8.

In contrast, the power of SY Sb is close to zero, even in those cases where the

degree of misspeci�cation is huge. Practically what this means is that provided

the number of moment conditions used is large enough, it is most likely that one

fails to reject the validity of the model based on SYS, even if the model is not well

speci�ed and the estimator performs poorly.

Similar conclusions apply for the two factor model in that FIVU and FIVR

perform well in all experiments. Compared to the one factor case, the dispersion

of FIVU increases slightly, while FIVR appears to remain largely una�ected. The

performance of the estimators improves for N = 400 and, as expected, their

standard deviation decreases roughly at the rate of N1/2. To save space we do not

report these results.

6 Concluding Remarks

The Generalised Method of Moments is a popular approach for estimating dynamic

panel data models with large N and T �xed. This approach has the advantage
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that, compared to maximum likelihood, requires much weaker assumptions about

the initial conditions of the data generating process, and avoids full speci�cation of

the serial correlation and heteroskedasticity properties of the error, or indeed any

other distributional assumptions. On the other hand, under a multi-factor error

structure these estimators are inconsistent as the moment conditions they utilise

are invalid. In this paper we develop a new GMM type approach for consistent

and asymptotically e�cient estimation of panel data models with factor residuals.

One novelty of our approach is that we do not use quasi-di�erencing to remove the

factor structure - rather, we introduce new parameters to represent the unobserved

covariances between the instruments and the factor component of the residual. We

develop estimators that are asymptotically e�cient and appear to behave well in

small samples under a wide range of parametrisations.
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Appendix I: Proofs of Theorems

Theorem 2

Proof. Assumption 5 guarantees that φ̂(Θ) = φ̂(Θr). According to the bounded-

ness assumption, we may choose Θc such that the objective function is bounded

away from zero outside of this set. Since the minimising value over this set con-

verges to true θ in probability, it follows that, for N su�ciently large, φ̂(Θc) =
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φ̂(Θr) with arbitrarily high probability. The result that φ̂(Ω) → φ̂(Θc) now fol-

lows from the density of Θ in Ω.8 The result for the covariance matrices follows

from the following observation. Let X and Y be matrices with the same number

of rows. Then the submatrix in the north west corner of the inverse or generalised

inverse of
[
X Y

]
′
[
X Y

]
, which is of dimension that ofX ′X, is (X ′MYX)−1,

where MY is the projection that removes Y , i.e. MY = I − Y (Y ′Y )−1Y ′. This

follows from the partitioned inverse formula. Thus the covariance matrix of the

parameters of interest is obtained by removing from Γ the linear space spanned by

the columns corresponding to the nuisance variables; two sets of nuisance variables

generating the same span will yield the same covariance matrix.

Theorem 3

Proof. Assume we have an k-dimensional moment function

ψ =


ψ1(m,θ)

...

ψk(m,θ)

 , (6.1)

where m is a collection of moments and θ is a parameter vector. Consider the

usual GMM estimator of the true value based on ψ. This has asymptotic variance

var(θ̂) = (Γ′∆−1Γ)−1, (6.2)

where

Γ = E

[
∂ψ

∂θ′

]
; ∆ = E(ψψ′), (6.3)

both evaluated at the true value θ0. Assume Γ and ∆ have full rank and let

θ = (ϕ′,ν ′)′ be a decomposition of the parameter space into two subsets. ϕ

is a vector that includes the parameters of interest (and possibly some nuisance

parameters) and the vector ν contains the remaining nuisance parameters. Let

Q = E

[
∂ψ

∂ϕ′

]
; R = E

[
∂ψ

∂ν ′

]
, (6.4)

8�Dense subset� means that one can �nd something in the subset arbitrarily close to any element
in the superset. For example the set of invertible square matrices is dense in the set of all
square matrices, because one can �nd an invertible matrix arbitrarily close to a given singular
matrix. In our context, certain arguments concerning identi�cation will not go through if
certain submatrices of F and G are singular. For example in the AR(1), one factor case, we
require g1 6= 0. Density allows us to assume away g1 = 0 and thus obtain identi�cation.
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so that Γ =
[
Q R

]
. Since Γ is of full rank, so too are Q and R. Assume that,

for some `× k matrix D(ϕ) of full rank ` ≤ k

D(ϕ)ψ(ϕ,ν) = ψ̄(ϕ), for all ϕ,ν, (6.5)

i.e. D represents a set of transformations that eliminates the nuisance parameters

ν at the cost of some loss of moment conditions. Then ψ̄ is a moment function and

inference about ϕ may be based on it. One has the asymptotic variance matrix

var(ϕ̄) = (Γ̄′∆̄−1Γ̄)−1, (6.6)

where Γ̄ = E(∂ψ̄(m,θ0)/∂ϕ
′) and ∆̄ = E(ψ̄ψ̄

′
). Di�erentiating (6.5) with respect

to ϕ and using the fact that E(ψ(m,θ0)) = 0 one has

DQ = Γ̄. (6.7)

Di�erentiating (6.5) with respect to ν one has

DR = 0, (6.8)

where, in both cases, D is evaluated at θ0. One has as well that

∆̄ = D∆D′. (6.9)

The asymptotic covariance matrix of ϕ̄ is now

var(ϕ̄) = [Q′D′(D∆D′)−1DQ]−1. (6.10)

Make the transformations D∆ = D∆1/2, Γ∆ = ∆−1/2Γ =
[
Q∆ R∆

]
. Then,

using results for partitioned inverses, one �nds

var(ϕ̂) = (Q′
∆(IM − PR∆

)Q∆)
−1, (6.11)

where PR∆
= R∆(R

′
∆R∆)

−1R′
∆. One also has

var(ϕ̄) = (Q′
∆PD∆

Q∆)
−1, (6.12)

where PD∆
= D′

∆(D∆D
′
∆)

−1D∆. Then var(ϕ̄) > var(ϕ̂) (as positive matrices) if

and only if
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Q′
∆(IM − PR∆

− PD∆
)Q∆ > 0. (6.13)

Now condition (6.8) implies that the matrices inside the brackets are orthogonal

projections so the sandwich matrix is a projection of rank k − `− dim(R). There

are thus no losses in e�ciency from eliminating the ν parameters in this way if

dim(R) = k − `, i.e. the number of eliminated parameters is equal to the number

of lost moment conditions.

Remark. In the case where ft ≡ 1 for all t with linear β the moment conditions

are linear of the form

m+Qφ+Rξ = 0, (6.14)

where vector m and matrices Q and R consist of observable moments. The pa-

rameters ξ are here the g's from the development in the text. The �rst-di�erenced

GMM estimator proposed by Arellano and Bond (2001) introduces a di�erencing

matrix of full rank to eliminate R:

Dm+DQφ = 0. (6.15)

Both forms give rise to GMM estimates of the parameters of interest φ by a one

pass regression, given estimates of the error variance-covariance matrix. Let Ω1

and Ω2 be such estimates for (6.14) and (6.15) respectively. Call these estimates

compatible if Ω2 = DΩ1D
′. One might form compatible estimates by �rst de-

veloping an estimate of the covariance matrix for (6.14) and then adjusting it

appropriately for (6.15). The following is true:

Proposition. GMM estimates based on (6.14) and (6.15) are arithmetically equal

if they employ compatible estimates of the error variance-covariance matrix.

To prove this one shows

Q′Ω−1/2(I − P )Ω−1/2RΩ
−1/2Q = QD′(DΩD′)−1DQ, (6.16)

for any conformable full rank symmetric Ω. This is will be so if (I − P )Ω−1/2R =

PΩ1/2D. It is easy to see that PΩ−1/2RPΩ1/2D = 0, so that the projections are

orthogonal. Consideration of ranks now delivers the result.

In our context, this result shows the �rst di�erenced GMM of the error compo-

nents model is precisely the FIVU estimator, given compatible covariance matrix

estimates. In practice, AB estimates and FIVU estimates need not be the same as
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�rst step estimates of the structural parameters may di�er when the two equations

are considered in isolation. In this case, equality is only asymptotic.

Theorem 4.

Proof. Let

ν = ν(φ, τ ), (6.17)

where ν is de�ned above and τ is a vector of nuisance parameters which has

lower dimension than ν. We assume ν(.) is linear in τ , i.e. ν(φ, τ ) = v(φ)τ ,

though the argument to be presented would go through under the assumption of

su�cient di�erentiability at the true value. We consider the estimator φ̄ based on

the moment conditions in terms of φ, τ . One has Γ =
[
Q+RJ RV

]
where

J = ∂ν(φ, τ )/∂φ′ so, as in (6.11)

var(ξ) = [(Q+RJ)′∆(IM − P(RV )∆)(Q+RJ)∆)]
−1. (6.18)

Since (IM −PR∆
)((Q+RJ)∆) = (IM −PR∆

)Q and PR∆
> P(RV )∆ , one sees from

(6.11) that

var(φ̂) ≥ var(φ̄) (6.19)

with equality if and only if (PR∆
−P(RV )∆)(Q+RJ)∆ = 0. Since in general there is

no particular reason for this equality to hold, it follows that a more parsimonious

parametrisation of the nuisance parameters will typically deliver a more e�cient

estimator of the parameters of interest.9

It is also straightforward to prove that FIVR is e�cient in the class of estima-

tors that make use of second moment information, based on an argument similar

to that provided by Ahn and Schmidt (1995, section 4). Therefore this proof is

omitted. In summary, FIVR reaches the semi-parametric e�ciency bound dis-

cussed by Newey (1990) using standard results of Chamberlain (1987). Thus,

FIVR is asymptotically e�cient relative to a QML estimator, but the estimators

are equally e�cient under normality.

9The condition will hold if J = 0 and Q′
∆R∆ = 0. This will be so when the reparametrisation

can be accomplished independently of φ and the GMM estimates of the parameters of interest
are independent of the estimates of the nuisance parameters.
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Appendix II: Identi�cation for FIVU

We focus on the canonical case, where the set of instruments consists of current and

lagged values of the variables. Extension to the general case is straightforward.

The moment conditions take the form (2.15), i.e. Mβ − vech(GF ′) = 0. The

problem is to impose conditions on vech(GF ′) so that the values of G and F can

be uniquely inferred from knowledge of vech(GF ′), at the same time ensuring that

the original vech(GF ′) can be obtained from the restricted G and F . Consider

the upper triangular elements of the product GF ′:
G1f1 G1f2 . . . G1fT

G2f2 . . . G2fT
. . .

...

GT fT

 . (6.20)

One can impose the restriction that the last n columns of F ′ be In. We assume

n ≤ (T + 1)/2, so that an n× n block of terms exists above the main diagonal in

(6.20). If this is done, all Gs, for s =1,. . . T−n+1, may be inferred from the values

of the terms in (6.20). When s > T − n+ 1 this is no longer so, as such terms as

GT−n+2fT−n+1 are not observed. In this case we impose the restrictions that the

last s−T +n− 1 columns of Gs are zero. This enables the unique inference of all

the Gs in (6.20) i.e. the full G matrix. Consider now the problem of inferring ft

when t ≤ T − n. The matrix

G̃tft =


G1

...

Gt

 ft

is observed. The number of rows of G̃t is pt. When pt ≥ n we impose the

restriction that the null space of G̃t be zero, the full rank assumption on G̃t.

When pt < n (which need not occur), we set the last n− pt entries of G̃t to zero

and impose the condition that the appropriately truncated submatrix of G̃t be

of full rank. This establishes the identi�cation of G and F. The scheme has the

following characteristics:

1. The last n columns of F ′ form In.

2. There are additional zero restrictions on G and F .

3. There is a collection of full rank conditions on submatrices of G.
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Let Θr be the collection of parameters such that 1-3 hold and Θ be the collection

such that both 3 holds and the matrix formed from the last n columns of F ′ is of

full rank. The following facts are straightforward to show:

Properties of the identification scheme.

Assume n ≤ (T + 1)/2.

1. With φ held �xed, any θ ∈ Θr is identi�ed from the moment conditions.

2. For any θ ∈ Θ, ψ(θ) = ψ(θr) for some θr ∈ Θr. Θ is dense in the

unrestricted parameter set Ω.

3. E(∂ψ/∂ν ′
r) is of full rank where νr is the vector of free parameters in re-

stricted G,F .

4. For any θ ∈ Θ, ψ(θ) = ψ(θr) for some θr ∈ Θr.

5. The spanning condition (3.8) holds.

These results establish all of Assumption 5 in the canonical case except the bound-

edness condition for θ ∈ Θr. To see this, assume φ is restricted to a compact set.

Then

‖B(Mβ(φ)− vech(GF ′)‖ ≥
∣∣‖G‖∥∥Bvech(ḠF ′)

∥∥− ‖BMβ(φ)‖
∣∣ ,

where ‖G‖ is the Hilbert-Schmidt norm ofG and
∥∥Ḡ∥∥=1, where Ḡ = G/

∥∥Ḡ∥∥. The
second term can be made arbitrarily large by choice of ‖G‖ provided

∥∥Bvech(ḠF ′)
∥∥

can be bounded away from zero. Now
∥∥Bvech(ḠF ′)

∥∥≥ b
∥∥vech(ḠF ′)

∥∥ where b is

the smallest eigenvalue of B.10 The identi�cation restrictions on G are such that

each element of the matrix either appears as a separate term in vech(ḠF ′) or is

zero. This implies
∥∥vech(ḠF ′)

∥∥ ≥
∥∥Ḡ∥∥ = 1, thus delivering the result.

These conditions su�ce to identify the factors; it remains to consider identi�-

cation for the full vector θ. We shall give a condition for the one factor case. We

examine when Γ = E(∂ψ/∂θ′r) is of full rank, assuming linear β(.). Local identi-

�cation will follow from the full rank of Γ. Write the moment condition (2.14) in

terms of upper-triangular matrices

10This argument is facilitated by the assumption that B is the symmetric square root of the
weight matrix C rather than the Choleski matrix.
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
M11β M12β . . . M1Tβ

M22β . . . M2Tβ
. . .

...

MTTβ

−


g1f1 g1f2 . . . g1fT

g2f2 . . . g2fT
. . .

...

gTfT

 = 0. (6.21)

The identi�cation restriction is here that fT = 1 and gT 6= 0, the latter being the

full rank condition on submatrices of G. If this is so, and given that the full rank

of ∂ψ/∂ν ′
r is established, Γ can fail to have full rank only if

vech(M †(IT ⊗ φ∗)) =
∂vech(gf ′)

∂g′ g∗ +
∂vech(gf ′)

∂f ′
f∗ (6.22)

for some non-zero (φ∗′,g∗′, f∗′)′, where M † is the Tp× (q− 1)T matrix comprised

of the p × q matrices Mst with their �rst columns removed. In this expression

f ∗T = 0 since the identi�cation procedure has removed the last column of ∂ψ/∂f ′.

Making use of (2.10), this can be written as

vech(M †(IT ⊗ φ∗)) = vech(g∗f ′) + vech(gf∗′), (6.23)

such that the term on the left hand side is T 2p×1. One can give a condition under

which this relationship cannot hold, and thus Γ calculated for the unrestricted

elements of θ must be of full rank. Assume T ≥ 3. For the 2× 2 submatrix M of

terms from the north east of M † one �nds

M(I2 ⊗ φ∗) = g∗f ′ + gf∗′, (6.24)

where the terms on the right now each consist of two elements of the original

vectors on the right of (6.23), dated 1, 2 for both g vectors and T − 1, T for

the f vectors. Exploiting the conditions fT = 1, f ∗
T = 0, one can show that

(M (1) − fT−1M
(2))φ∗ = f ∗

T−1g where M (1) and M (2) are the �rst and second

blocks of q − 1 columns of M , respectively. Thus Γ being not of full rank implies

that the subvector g ∈ Span(M (1) − fT−1M
(2)) i.e the 2p× 1 vector g is a linear

combination of the q − 1 columns of M (1) − fT−1M
(2). Thus:

Identification in the canonical case with one factor Assume T ≥ 3.

Then Γ has full rank in the case of one factor and linear β(.) if g1 6= 0, fT = 1
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and [
g1

g2

]
/∈ Span(M (1) − fT−1M

(2)) (6.25)

at the true values of the parameters.

As a speci�c example of the canonical case, consider a single lagged dependent

variable with this (and its lags) as the instrument and assume 0 < |φ| < 1. The

model is

yit = φyit−1 + λift + εit. (6.26)

If one assumes that the observed data are generated by a process beginning in the

distant past, this can be solved as

yit = λi(I − φL)−1ft + (I − φL)−1εit (6.27)

= λif
c
t + ηit, (6.28)

where the f c
t = (I − φL)−1ft are rede�ned factors and ηit is a stationary AR(1)

(if the εit are homoskedastic). If we assume λi and εit are independent, it follows

that

m†
st = E(yis−1yit) = σ2

λf
c
t f

c
s−1 + σ2

ηφ
|t−s+1|, s = 1, . . . , t; t = 1, . . . , T. (6.29)

One has as well that

gs = E(λiyis−1) = σ2
λf

c
s−1. (6.30)

Using these formulae, one can show Γ has full rank unless[
f c
0

f c
1

]
∝

[
φ

1

]
. (6.31)

If this condition is false the structural parameter of the AR(1) model is identi�ed.

There is a somewhat more complicated version of (6.25) for the multi-factor case.

If this condition is satis�ed then Assumptions 1-5 can be taken to hold (save for ∆

being full rank) and hence the distributional result; since the spanning condition

has been demonstrated, the equivalence of restricted and unrestricted estimation

may be invoked in the canonical case. One caveat is that the condition (6.25) is

not in terms of primitive parameters (i.e. those giving a complete description of

the stochastic process generating the data) so it is possible in principle that the

condition is in fact vacuous. We have shown this is not the case for the AR(1).
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Appendix III: Derivatives

We shall derive the gradient function and the Hessian for a number of FIV models.

The notation will be as follows. If A(θ) is a (column) vector-valued function of θ

then DθA(θ) = ∂A/∂θ′. If A is a matrix then DθA(θ) = ∂vec(A)/∂θ′. The chain

rule takes the form Dθ(A(B(θ))) = DvecB(A(B))DθB. The product rule is

Dθ(A(θ)B(θ)) = (B′ ⊗ Im)DθA+ (Iq ⊗ A)DθB, (6.32)

where A is m× p and B is p× q. The gradient vector is de�ned as ∇θA = (DθA)
′.

FIVU gradient vector

In this case the minimand is

QB = ψ′B′Bψ, (6.33)

where

ψ = M̂β − Svec(GF ′). (6.34)

This is optimised with respect to θ = (φ′, f ′,g′)′. One has DθQB = 2ψ′B′BDθψ

and, using (2.10)

Dθψ =
[
(M̂Dφβ −S(IT ⊗G) −S(F ⊗ Id)

]
. (6.35)

The gradient vector is then calculated as

∇QB = 2(Dθψ)
′B′Bψ. (6.36)

FIVR gradient vector

As a general principle, the derivatives of the restricted models can be obtained

from the FIVU derivatives by use of appropriate Jacobian matrices. Assume the

restrictions e�ect a reparametrisation θ = θ(ξ) and let Jξ(θ) = Dξθ be the

Jacobian. Then

(∇RQB(ξ))
′ = ∂QB/∂ξ

′ = ∂QB/∂θ
′Jξ(θ) = (∇UQB)

′Jξ(θ). (6.37)

The FIVR minimisation is in terms of the ξ vector consisting of φ,g, δ where

f = HPd,ng − Uδ. The Jacobian matrix is given by
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J =

 Ir 0r×nd 0r×u

K(Iq ⊗ Pd,ng)Dφβ H(β)Pd,n −U
0nd×r Ind 0nd×u

 . (6.38)

Second derivatives

Write QB = u′u where u = Bψ. For any parameter vector θ one has

∇QB = 2
∂u′

∂θ
u, (6.39)

so

D2
θQB = Dθ∇QB (6.40)

= 2Dθ[
∂u′

∂θ
u] (6.41)

= 2[(u′ ⊗ Idim θ)Dθ(
∂u′

∂θ
) + (Dθu)

′(Dθu). (6.42)

Denote the �rst term within the brackets v(θ). One can show that

v =
dim u∑
i=1

uiD
2
θui, (6.43)

where ui = Bψi. For both FIVU and FIVR the u vector is linear in the stochastic

term M̂β (when β is a linear function of φ) so the second derivatives are non-

stochastic functions of θ. Since the u vector is zero in expectation at the true θ0

in Method of Moments models we have that, evaluated at θ0,

E(D2
θQB) = E((Dθu)

′(Dθu)), (6.44)

which suggests that the non-negative matrix (Dθu)
′(Dθu) may give a good ap-

proximation to the Hessian close to convergence.

FIVU second derivatives in the canonical case.

For the FIVU residual vector ψ, write ψ∗ = B′Bψ and section it into p×1 subma-

trices so that ψ∗ = (ψ∗′
1 , ...,ψ

∗′
T (T+1)/2)

′. Create a T ×T upper semi-triangular ma-

trix V ∗, with dimensions pT × T , from these submatrices so that vech(V ∗) = ψ∗..

Then one can show that
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V (θ) =

 0r×r 0r×nT 0r×npT

0nT×r 0nT×nT In ⊗ V ∗′

0npT In ⊗ V ∗ 0npT×npT

 . (6.45)

The Hessian for FIVU is thus

D2
θQB = V + (Dθu)

′(Dθu). (6.46)

It is easy to see that the eigenvalues of V are ±√
µi, i = 1, ..., nT (plus zero),

where the µi are the eigenvalues of V ∗′V ∗. Thus the positivity of the Hessian is

not assured in (6.46). In fact, observe that the second term is independent of

φ (see (6.35)), whereas the �rst term is not. If one imagines a scale increase in

φ then eventually the �rst term will grow as the square of the expansion factor

and the resulting Hessian will have saddlepoints. This shows that an original bad

approximation to φ will lead to problems with algorithms based on the unmodi�ed

Hessian.

Concentrations.

For FIVU one has

u = Bψ = B(M̂β − Svec(GF ′)). (6.47)

By use of (2.10) one has

u = B
[
M̂ −S(IT ⊗G)

] [ β
f

]
= B

[
M̂ −S(F ⊗ Id)

] [ β
g

]
. (6.48)

These relationships imply that, given F one can minimise the criterion function

by a one pass linear regression, and similarly for G. Iterating these procedures will

produce a declining sequence of values of the criterion which usually in practice

converges to a local minimum. As a general rule in FIVU estimation we use these

concentrations as they are much swifter than line-search methods based on the

Hessian. No such concentrations are available for FIVR as, after substituting out

for f , the resulting residual vector u is quadratic in g, so there we are forced to

rely on Hessian methods.
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Table 1: Monte Carlo results, ρ = .5

SNR Fλ FIV U1 FIV U2 FIV R1 FIV R2 DIFa DIFb SY Sa SY Sb

α = .5

3 .2

.497
(.034)
[.034]
{.067}
|.382|

.499
(.029)
[.029]
{.060}
|.031|

.499
(.023)
[.023]
{.056}
|.989|

.499
(.021)
[.021]
{.053}
|.039|

.481
(.044)
[.048]
{.146}
|.279|

.476
(.040)
[.047]
{.182}
|.039|

.491
(.035)
[.036]
{.142}
|.102|

.490
(.033)
[.035]
{.191}
|.002|

3 .8

.501
(.032)
[.032]
{.055}
|.960|

.500
(.030)
[.030]
{.068}
|.064|

.500
(.025)
[.025]
{.059}
|.960|

.499
(.021)
[.021]
{.057}
|.041|

.363
(.139)
[.195]
{.681}
|.982|

.362
(.135)
[.193]
{.775}
|.545|

.429
(.119)
[.139]
{.677}
|.545|

.425
(.119)
[.141]
{.746}
|.037|

9 .2

.499
(.020)
[.020]
{.059}
|.995|

.500
(.017)
[.017]
{.048}
|.048|

.500
(.014)
[.014]
{.056}
|.997|

.500
(.013)
[.013]
{.055}
|.041|

.493
(.024)
[.025]
{.082}
|.216|

.491
(.021)
[.023]
{.104}
|.039|

.497
(.018)
[.018]
{.088}
|.099|

.497
(.017)
[.017]
{.118}
|.002|

9 .8

.500
(.020)
[.020]
{.053}
|.998|

.500
(.017)
[.017]
{.058}
|.075|

.500
(.012)
[.012]
{.056}
|1.00|

.500
(.011)
[.011]
{.057}
|.043|

.416
(.107)
[.136]
{.643}
|.964|

.414
(.101)
[.133]
{.732}
|.466|

.465
(.088)
[.094]
{.662}
|.718|

.461
(.086)
[.095]
{.720}
|.040|

β = .5

3 .2

.500
(.027)
[.027]
{.034}

.500
(.025)
[.025]
{.053}

.500
(.022)
[.022]
{.041}

.498
(.020)
[.021]
{.039}

.512
(.031)
[.097]
{.033}

.515
(.026)
[.030]
{.109}

.515
(.024)
[.028]
{.137}

.518
(.021)
[.028]
{.200}

3 .8

.499
(.026)
[.026]
{.053}

.499
(.024)
[.025]
{.067}

.501
(.026)
[.026]
{.062}

.499
(.021)
[.021]
{.057}

.647
(.086)
[.171]
{.717}

.674
(.076)
[.187]
{.868}

.661
(.066)
[.174]
{.909}

.673
(.067)
[.186]
{.957}

9 .2

.500
(.015)
[.015]
{.032}

.500
(.014)
[.014]
{.052}

.500
(.012)
[.012]
{.042}

.499
(.011)
[.011]
{.060}

.503
(.015)
[.015]
{.073}

.504
(.013)
[.014]
{.062}

.504
(.011)
[.012]
{.090}

.505
(.010)
[.012]
{.101}

9 .8

.499
(.014)
[.014]
{.052}

.499
(.013)
[.013]
{.057}

.500
(.012)
[.012]
{.046}

.499
(.011)
[.011]
{.058}

.552
(.052)
[.074]
{.487}

.570
(.046)
[.083]
{.677}

567
(.037)
[.078]
{.776}

.576
(.038)
[.085]
{.867}

N = 100; T = 10; n = 1; 2,000 replications.
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Table 2: Monte Carlo results, ρ = .95

SNR Fλ FIV U1 FIV U2 FIV R1 FIV R2 DIFa DIFb SY Sa SY Sb

α = .5

3 .2

.491
(.061)
[.062]
{.056}
|.249|

.495
(.055)
[.055]
{.051}
|.035|

.496
(.052)
[.052]
{.059}
|.824|

.497
(.040)
[.040]
{.043}
|.046|

.430
(.063)
[.094]
{.282}
|.771|

.412
(.059)
[.106]
{.542}
|.000|

.437
(.059)
[.086]
{.322}
|.895|

.443
(.055)
[.080]
{.434}
|.000|

3 .8

.500
(.059)
[.059]
{.046}
|.722|

.497
(.052)
[.052]
{.067}
|.064|

.496
(.063)
[.063]
{.034}
|.993|

.497
(.046)
[.046]
{.039}
|.043|

.189
(.132)
[.338]
{.922}
|.991|

.208
(.136)
[.322]
{.930}
|.607|

.290
(.152)
[.322]
{.814}
|.839|

.300
(.153)
[.251]
{.819}
|.023|

9 .2

.495
(.046)
[.046]
{.055}
|.702|

.499
(.038)
[.038]
{.052}
|.036|

.496
(.046)
[.046]
{.045}
|.985|

.499
(.030)
[.030]
{.040}
|.052|

.468
(.044)
[.054]
{.133}
|.267|

.462
(.041)
[.056]
{.231}
|.042|

.471
(.036)
[.047]
{.184}
|.117|

.470
(.036)
[.047]
{.257}
|.003|

9 .8

.500
(.047)
[.047]
{.052}
|.929|

.498
(.039)
[.039]
{.068}
|.055|

.498
(.049)
[.049]
{.042}
|.999|

.499
(.032)
[.032]
{.046}
|.042|

.256
(.117)
[.270]
{.893}
|.991|

.262
(.120)
[.267]
{.908}
|.635|

.329
(.132)
[.217]
{.794}
|.847|

.335
(.135)
[.214]
{.803}
|.046|

β = .5

3 .2

.508
(.056)
[.057]
{.038}

.503
(.052)
[.052]
{.053}

.505
(.052)
[.053]
{.058}

.501
(.042)
[.042]
{.043}

.734
(.192)
[.302]
{.355}

.684
(.118)
[.218]
{.524}

.575
(.053)
[.092]
{.382}

.572
(.053)
[.087]
{.534}

3 .8

.501
(.048)
[.048]
{.050}

.502
(.043)
[.043]
{.065}

.505
(.057)
[.057]
{.039}

.502
(.041)
[.041]
{.044}

.903
(.141)
[.427]
{.946}

.879
(.129)
[.400]
{.970}

.752
(.128)
[.289]
{.867}

.748
(.126)
[.278]
{.881}

9 .2

.503
(.038)
[.038]
{.044}

.500
(.032)
[.032]
{.044}

.503
(.042)
[.042]
{.040}

.500
(.028)
[.028]
{.046}

.586
(.147)
[.171]
{.133}

.579
(.111)
[.136]
{.193}

.529
(.029)
[.041]
{.212}

.530
(.028)
[.041]
{.287}

9 .8

.500
(.037)
[.037]
{.051}

.500
(.031)
[.031]
{.064}

.502
(.042)
[.042]
{.040}

.500
(.027)
[.027]
{.041}

.859
(.149)
[.389]
{.901}

.841
(.127)
[.364]
{.961}

.684
(.097)
[.208]
{.844}

.683
(.099)
[.208]
{.866}

N = 100; T = 10; n = 1; 2,000 replications.
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Table 3: Monte Carlo results, ρ = .5

SNR Fλ FIV U1 FIV U2 FIV R1 FIV R2 DIFa DIFb SY Sa SY Sb

α = .8

3 .2

.796
(.044)
[.044]
{.062}
|.826|

.797
(.033)
[.033]
{.051}
|.035|

.798
(.023)
[.023]
{.058}
|.988|

.798
(.022)
[.022]
{.057}
|.039|

.482
(.042)
[.321]
{1.00}
|.272|

.476
(.039)
[.325]
{1.00}
|.039|

.492
(.033)
[.310]
{1.00}
|.103|

.491
(.032)
[.032]
{1.00}
|.003|

3 .8

.799
(.047)
[.047]
{.084}
|.961|

.798
(.041)
[.041]
{.072}
|.059|

.797
(.031)
[.031]
{.061}
|.998|

.798
(.027)
[.021]
{.053}
|.036|

.367
(.138)
[.454]
{.999}
|.981|

.366
(.133)
[.454]
{.995}
|.537|

.432
(.117)
[.386]
{.999}
|.781|

.429
(.118)
[.390]
{.998}
|.039|

9 .2

.799
(.020)
[.020]
{.055}
|.999|

.799
(.016)
[.016]
{.056}
|.051|

.799
(.014)
[.014]
{.053}
|.998|

.799
(.012)
[.012]
{.057}
|.041|

.497
(.015)
[.303]
{1.000}
|.196|

.496
(.013)
[.304]
{1.00}
|.038|

.499
(.010)
[.301]
{1.00}
|.089|

.499
(.010)
[.010]
{1.00}
|.001|

9 .8

.800
(.025)
[.025]
{.076}
|1.00|

.799
(.019)
[.019]
{.038}
|.082|

.800
(.011)
[.011]
{.061}
|1.00|

.799
(.010)
[.010]
{.046}
|.057|

.454
(.068)
[.353]
{1.00}
|.946|

.451
(.066)
[.356]
{1.00}
|.404|

.484
(.055)
[.321]
{1.00}
|.658|

.481
(.053)
[.324]
{1.00}
|.026|

β = .2

3 .2

.199
(.024)
[.024]
{.041}

.199
(.022)
[.022]
{.057}

.200
(.019)
[.019]
{.061}

.199
(.018)
[.018]
{.049}

.511
(.028)
[.312]
{1.00}

.513
(.025)
[.314]
{1.00}

.513
(.022)
[.314]
{1.00}

.516
(.020)
[.317]
{1.00}

3 .8

.200
(.022)
[.022]
{.051}

.200
(.021)
[.021]
{.074}

.202
(.023)
[.023]
{.039}

.200
(.019)
[.019]
{.043}

.637
(.083)
[.444]
{.998}

.660
(.074)
[.466]
{1.00}

.651
(.064)
[.456]
{1.00}

.663
(.064)
[.468]
{1.00}

9 .2

.200
(.010)
[.010]
{.036}

.200
(.008)
[.008]
{.048}

.200
(.007)
[.007]
{.047}

.200
(.007)
[.007]
{.041}

.501
(.009)
[.301]
{1.00}

.501
(.008)
[.302]
{1.00}

.502
(.007)
[.302]
{1.00}

.502
(.006)
[.302]
{1.00}

9 .8

.200
(.009)
[.009]
{.060}

.200
(.008)
[.008]
{.069}

.200
(.007)
[.006]
{.066}

.200
(.007)
[.007]
{.061}

.522
(.030)
[.323]
{1.00}

.531
(.027)
[.332]
{1.00}

.531
(.021)
[.331]
{1.00}

.536
(.022)
[.336]
{1.00}

N = 100; T = 10; n = 1; 2,000 replications.
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Table 4: Monte Carlo results, ρ = .95

SNR Fλ FIV U1 FIV U2 FIV R1 FIV R2 DIFa DIFb SY Sa SY Sb

α = .8

3 .2

.793
(.051)
[.052]
{.046}
|.149|

.794
(.044)
[.045]
{.055}
|.038|

.796
(.037)
[.037]
{.043}
|.756|

.795
(.032)
[.033]
{.041}
|.036|

.404
(.074)
[.403]
{1.00}
|.374|

.399
(.067)
[.407]
{1.00}
|.060|

.417
(.069)
[.389]
{1.00}
|.157|

.427
(.064)
[.379]
{1.00}
|.001|

3 .8

.797
(.055)
[.055]
{.071}
|.061|

.796
(.044)
[.045]
{.087}
|.057|

.795
(.049)
[.049]
{.055}
|.995|

.795
(.038)
[.039]
{.046}
|.049|

.173
(.137)
[.642]
{1.00}
|.990|

.194
(.141)
[.623]
{1.00}
|.558|

.281
(.157)
[.543]
{.995}
|.813|

.291
(.157)
[.533]
{.996}
|.023|

9 .2

.797
(.038)
[.038]
{.051}
|.907|

.798
(.030)
[.030]
{.055}
|.039|

.799
(.030)
[.030]
{.039}
|.999|

.799
(.022)
[.022]
{.047}
|.045|

.484
(.032)
[.318]
{1.00}
|.222|

.480
(.029)
[.322]
{1.00}
|.041|

.486
(.024)
[.315]
{1.00}
|.099|

.448
(.024)
[.317]
{1.00}
|.002|

9 .8

.799
(.046)
[.046]
{.092}
|.986|

.798
(.032)
[.033]
{.068}
|.061|

.800
(.033)
[.033]
{.051}
|1.00|

.800
(.025)
[.025]
{.044}
|.043|

.331
(.097)
[.479]
{1.00}
|.975|

.324
(.100)
[.486]
{1.00}
|.549|

.373
(.109)
[.441]
{.999}
|.055|

.373
(.112)
[.441]
{.999}
|.055|

β = .2

3 .2

.208
(.052)
[.052]
{.046}

.203
(.051)
[.051]
{.061}

.202
(.052)
[.052]
{.041}

.201
(.044)
[.044]
{.044}

.809
(.202)
[.641]
{.921}

.767
(.163)
[.590]
{.963}

.616
(.073)
[.423]
{1.00}

.609
(.066)
[.414]
{1.00}

3 .8

.202
(.032)
[.032]
{.065}

.202
(.027)
[.027]
{.079}

.203
(.034)
[.035]
{.042}

.203
(.026)
[.027]
{.045}

.905
(.137)
[.719]
{1.00}

.885
(.129)
[.697]
{1.00}

.774
(.140)
[.591]
{1.00}

.771
(.138)
[.588]
{1.00}

9 .2

.201
(.020)
[.020]
{.051}

.200
(.017)
[.017]
{.055}

.200
(.019)
[.019]
{.059}

.200
(.015)
[.015]
{.051}

.533
(.105)
[.349]
{.926}

.534
(.075)
[.018]
{.989}

.513
(.018)
[.314]
{1.00}

.515
(.018)
[.316]
{1.00}

9 .8

.201
(.022)
[.022]
{.078}

.201
(.016)
[.016]
{.070}

.201
(.019)
[.019]
{.046}

.200
(.014)
[.014]
{.041}

.795
(.157)
[.615]
{.994}

.785
(.125)
[.598]
{1.00}

.627
(.074)
[.433]
{1.00}

.630
(.077)
[.437]
{1.00}

N = 100; T = 10; n = 1; 2,000 replications.
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