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Abstract     59 

Dopamine signaling is a crucial part of the brain reward system and can affect feeding 60 

behavior. Dopamine receptors are also expressed in the hypothalamus, which is known 61 

to control energy metabolism in peripheral tissues. Here we show that pharmacological 62 

or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the 63 

lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and 64 

stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R 65 

stimulation requires an intact sympathetic nervous system and orexin system to exert its 66 

action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as 67 

early as 3 months after onset of treatment, patients treated with the D2R agonist 68 

cabergoline experience an increase in energy expenditure that persists for one year, 69 

leading to total body weight and fat loss through a prolactin-independent mechanism. 70 

Our results may provide a mechanistic explanation for how clinically used D2R 71 

agonists act in the CNS to regulate energy balance. 72 

 73 

 74 

 75 

 76 

  77 

 78 

  79 
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Introduction 80 

Obesity has reached epidemic prevalence, and much research has focused on 81 

homeostatic and hedonic mechanisms underlying overconsumption of food and the 82 

regulation of body weight. Dopamine has the ability to modulate food consumption by 83 

both reward (hedonic) and hypothalamic (homeostatic) pathways 1. Among the five 84 

dopamine receptors (D1R, D2R, D3R, D4R and D5R), dopamine signaling through 85 

D1R 2-4 and D2R regulates food intake 1,5-7. The increase in central dopaminergic 86 

signaling is often associated to the stimulation of feeding, while its decrease has the 87 

opposite effect; however  in the hypothalamus, the effects on food intake depend on the 88 

hypothalamic area targeted 8. 89 

 90 

The clinical relevance of the D2R is well characterized and D2R agonists such as 91 

bromocriptine and cabergoline, have been widely used for the treatment of 92 

prolactinomas. Since 2009 bromocriptine has been also approved in the United States as 93 

adjunctive treatment for type 2 diabetes 9, as it improves glucose tolerance and reduces 94 

fasting and postprandial plasma glucose levels in diabetic patients 10-12. In terms of 95 

energy homeostasis, obese humans have reduced dopamine levels and/or function 13. 96 

Antipsychotic drugs that block D2R are associated with increased appetite, weight gain 97 

and development of diabetes 14,15 and morbidly obese humans have less D2R 98 

availability 8. In addition, human studies have shown a higher prevalence of the Taq1A 99 

allele for the D2R in obese individuals 16 and genetic variants influencing D2R 100 

signaling affect a significant portion of the population 17. However, the effects of 101 

bromocriptine and cabergoline on body weight are contradictory in different studies, 102 

albeit most of them non-randomized,  reporting either reduction or no significant effects 103 
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on body weight 10,18 or no significant effects in body weight in obese or type 2 diabetic 104 

patients 19.   105 

 106 

In this study, we find that the central stimulation of D2R increases brown adipose tissue 107 

(BAT) activity in lean and diet-induced obese rodents in a food intake-independent 108 

manner. These central effects are located in GABAergic neurons in the lateral 109 

hypothalamic area (LHA) and the neighboring zona incerta (ZI). D2R triggers orexin 110 

signaling, which leads to decreased protein kinase A (PKA) activity, increased 111 

phosphodiesterase 3B (PDE3B) and reduced ribosomal protein S6 (rpS6) levels. Of 112 

note, this thermogenic action depends on the sympathetic nervous system (SNS). 113 

Importantly, the clinical relevance of these findings is supported by the fact that patients 114 

treated with cabergoline for 12 months showed a significant weight loss, associated with 115 

augmented resting energy expenditure, alongside metabolic improvement, through a 116 

prolactin-independent mechanism. 117 

  118 

Results 119 

Bromocriptine induces negative energy balance and thermogenesis 120 

A single ICV injection of bromocriptine (40 and 80 µg/rat) significantly decreased body 121 

weight after 24 hours independently of food or water intake, while a dose of 20 µg/rat 122 

did not change body weight (Supplementary Fig. 1a-d). The dose of 80 µg/rat elicited a 123 

significant early increase in food intake but after 24 hours the food intake was similar 124 

between control and bromocriptine-treated animals. ICV bromocriptine-treated rats (40 125 

µg/rat) showed increased energy expenditure (Supplementary Fig. 1e), BAT 126 
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interscapular temperature (Supplementary Fig. 1f) and stimulation of 2-18F-fluoro-2-127 

deoxy-2-glucose (18F-FDG) uptake in BAT analyzed by positron emission 128 

tomography-computed tomography (PET-CT) (Supplementary Fig. 1g); while no 129 

changes were found in body temperature or respiratory quotient (Supplementary Fig. 130 

1h-i). Consistently, the analysis of histological sections revealed smaller lipid droplets 131 

in adipocytes of BAT from bromocriptine-treated rats (Supplementary Fig. 1j), 132 

increased BAT UCP1 protein levels (Supplementary Fig. 1k) and increased tolerance to 133 

cold exposure (Supplementary Fig. 1l). As expected, the central activation of D2R 134 

stimulated locomotor activity at short-term (Supplementary Fig. 1m). To determine the 135 

relevance of physical activity on energy expenditure in relation to non-physical activity 136 

mechanisms (e.g. resting metabolic rate), we performed correlations and found that 137 

energy expenditure and locomotor activity were positively correlated in the dark phase 138 

(right panel) but not in the light phase (left panel) (Supplementary Fig. 1n). In addition, 139 

we have also analyzed energy expenditure (Kcal/h) during 2 hours of the light phase 140 

when animals were less active. During these 2 hours of the light phase, we did not see 141 

any difference in energy expenditure between vehicle and bromocriptine treated rats 142 

(Supplementary Fig. 1o), suggesting that bromocriptine is not affecting resting 143 

metabolic rate. Bromocriptine and cabergoline are used in patients with prolactin�144 

secreting pituitary adenomas 20, but circulating levels of prolactin in rats treated with 145 

bromocriptine ICV remained unchanged when compared to control groups 146 

(Supplementary Fig. 1p).  147 

 148 

In addition, we injected prolactin ICV in male mice at two different doses (1 and 10 149 

µg/mouse) and after 24 hours (when bromocriptine caused a significant reduction in 150 

body weight independent of food intake), we failed to find any statistically significant 151 
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effect on body weight and food intake (Supplementary Fig. 2a,b). In keeping, prolactin 152 

ICV did not affect BAT interscapular temperature (Supplementary Fig. 2c). Overall, 153 

these results indicate that the central administration of prolactin is not altering BAT 154 

activity.   155 

 156 

To rule out the possibility that centrally injected bromocriptine leaks out of the CNS 157 

into the circulation and elicits a response by directly acting at peripheral level, we 158 

administered bromocriptine peripherally, using the same dose as the one injected 159 

centrally. We were unable to detect changes in food intake, body weight or BAT 160 

temperature (Supplementary Fig. 3a-c). Consistent with this, when we injected an 161 

adenoviral vector encoding a shRNA against D2R in the BAT 21, the knockdown of 162 

D2R specifically in BAT (Supplementary Fig. 3d,e) did not prevent the effects of 163 

central bromocriptine on body weight (Supplementary Fig. 3f), food intake 164 

(Supplementary Fig. 3g), BAT interscapular temperature (Supplementary Fig. 3h) or 165 

BAT UCP-1 levels (Supplementary Fig. 3i). In addition, to assess whether the effect of 166 

bromocriptine on BAT was sex-dependent or not, we injected a single ICV injection of 167 

bromocriptine (40 µg/rat) in females, and found that identically to males, it significantly 168 

decreased body weight and white fat mass after 24 hours, concomitant with increased 169 

BAT interscapular temperature, and this effect was again independent of food intake 170 

(Supplementary Fig. 4a-e). 171 

 172 

We next investigated if the effects of central bromocriptine may be long-lasting. 173 

Therefore, we chronically infused bromocriptine (40 µg/rat) during 2 weeks in rats fed a 174 

chow diet. We found that cumulative food intake remained unchanged, while body 175 
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weight gain was significantly lower in rats treated with bromocriptine (Fig. 1a,b). 176 

Histological analyses revealed smaller lipid droplets in BAT of bromocriptine-treated 177 

rats, as well as increased protein content of UCP1, FGF21 and PRDM16 (Fig. 1c,d). β-178 

adrenergic receptors represent a key link involved in the regulation of adipose tissue 179 

metabolism by the sympathetic nervous system (SNS) 22,23. To determine whether the 180 

central bromocriptine action on BAT was mediated by SNS, we injected the β3 181 

adrenergic receptor specific antagonist SR59230A 24,25 and found that it reversed the 182 

effects of central bromocriptine on weight gain (Fig. 1a), BAT lipid content and BAT 183 

levels of thermogenic markers (Fig. 1c,d). After that, we assessed the efficacy of the 184 

chronic central infusion of bromocriptine in diet-induced obese (DIO) rats. Similarly, to 185 

the results obtained in rats fed a chow diet, central bromocriptine reduced body weight 186 

gain and adiposity in a feeding independent manner (Fig. 1e-g). Consistently, energy 187 

expenditure was also higher (Fig. 1h), with changes neither in respiratory quotient nor 188 

locomotor activity (Fig. 1i,j). BAT from bromocriptine-treated DIO rats showed smaller 189 

lipid droplets and increased protein content of thermogenic markers (Fig. 1k,l). 190 

Moreover, the pharmacological blockade of the β3 adrenergic receptor reversed the 191 

effects of central bromocriptine on weight gain, adiposity, energy expenditure, as well 192 

as BAT morphology and protein levels of UCP1 (Fig. 1f-l). To finally characterize the 193 

relevance of the SNS, triple knockout (TKO) (β1-, β2-, and β3-adrenergic receptors) 194 

mice were centrally infused with bromocriptine for 7 days. Bromocriptine did not affect 195 

food intake in WT or TKO mice, but significantly decreased body weight gain and 196 

white fat mass in WT mice, but not in TKO mice (Fig. 1m-o). In agreement with this, 197 

central bromocriptine reduced BAT lipid content and increased BAT UCP1 protein 198 

levels in WT but not in TKO mice (Fig. 1p,q).   199 

 200 
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D2R in the LHA and ZI activates BAT in diet-induced obese (DIO) rats 201 

D2R is widely expressed in the hypothalamus 26. Therefore, we examined the specific 202 

activation of the dopaminergic system in different hypothalamic sites. We found that a 203 

single injection of bromocriptine in the LHA and the zona incerta (ZI) (Supplementary 204 

Fig. 4f) of rats fed a chow diet decreased body weight and stimulated BAT temperature 205 

after 24 hours in a feeding-independent manner (Supplementary Fig. 4g-i). In these 206 

animals, circulating levels of prolactin did not change significantly compared to control 207 

groups (Supplementary Fig. 4j). When vehicle or bromocriptine were injected in the 208 

VMH of rats fed a chow diet (Supplementary Fig. 4k), we found that body weight of 209 

vehicle-treated rats decreased after 24 hours, but bromocriptine-treated animals lost 210 

more weight and shower higher BAT temperature than controls independent of changes 211 

in feeding (Supplementary Fig. 4l-n). Notably, the central injection of bromocriptine in 212 

the LHA/ZI (Fig. 2a-e), but not within the VMH (Fig. 2f-h), of DIO rats reduced body 213 

weight, increased interscapular temperature, reduced the lipid content in BAT and 214 

increased BAT UCP1 protein levels without changing food intake (Fig. 2a-h).  215 

We next used a designer receptor exclusively activated by designer drugs (DREADD) 216 

approach to specifically activate D2R neurons in the LHA and the ZI. D2R-Cre mice 217 

fed a chow diet were bilaterally injected with AAV-hSyn-DIO-hM3D(Gq)-mCherry in 218 

the LHA and the ZI, where its expression was located (Fig. 2i). More specifically, D2R-219 

mCherry neurons occupy the LHA area defined by the fornix/perifornical nucleus, the 220 

nigrostriatal bundle, cerebellar peduncle, and the medial tuberal nucleus. After 3 weeks, 221 

activation of hM3D(Gq)-mCherry by intraperitoneal (i.p.) injections of clozapine-N-222 

oxide (CNO) (1mg/kg) leads to a decrease in body weight without changes in feeding 223 

and water intake (Fig. 2j,k). The decrease in body weight was associated with higher 224 

interscapular temperature, energy expenditure and BAT UCP1 protein levels, alongside 225 



10 
 

decreased lipid content in BAT with unaltered body temperature, respiratory quotient, 226 

locomotor activity, resting metabolic rate or plasma prolactin levels (Fig. 2l-t). When 227 

animals were exposed to 4ºC, the group where D2R were activated in the LHA/ZI 228 

showed a cold resistance as demonstrated by an increased capacity to maintain body and 229 

BAT temperature (Fig. 2u). 230 

Since clozapine metabolite rather than CNO has been shown to mediate the activation 231 

of DREADD receptor after i.p injection 27 and clozapine has some affinity with D2R, 232 

we also performed an independent experiment using this compound. Similar to CNO, 233 

the injection of clozapine decreased body weight and stimulated BAT temperature 234 

(Supplementary Fig. 4o,q). We next evaluated the phenotype of mice after 235 

chemogenetic activation of D2R neurons at thermoneutrality (30 ºC). At 30 ºC, the 236 

activation of D2R neurons in the LHA and ZI resembled the effects found at 23 ºC 237 

described above, as the mice presented lower body weight, increased interscapular 238 

temperature and energy expenditure without changes in body temperature or locomotor 239 

activity (Supplementary Fig. 5a-f). We also performed correlations between energy 240 

expenditure and locomotor activity but failed to find any correlation (Supplementary 241 

Fig. 5g). In addition, energy expenditure did not change during the 2 hours of the light 242 

phase when animals were less active, suggesting that activation of D2R neurons in the 243 

LHA/ZI is not affecting resting metabolic rate (Supplementary Fig. 5g). 244 

 245 

To test whether D2R neurons located in other hypothalamic areas were also important 246 

for the regulation of BAT activity, we performed chemogenetic activation of D2R 247 

neurons in the mediobasal hypothalamus (MBH: ARC + VMH) including the 248 

tuberoinfundibular dopamine (TIDA) neurons controlling prolactin secretion from the 249 
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anterior pituitary 28, and in the dorsomedial nucleus of hypothalamus (DMH). We found 250 

that chemogenetic activation of D2R neurons in the MBH and DMH did not affect body 251 

weight, interscapular temperature or white fat mass (Supplementary Fig. 6).  252 

 253 

The effect of bromocriptine on BAT is dependent on D2R in the LHA/ZI 254 

We stereotaxically delivered an adenoviral vector encoding a shRNA against D2R in the 255 

LHA/ZI in rats fed a chow diet. Infection efficiency in the LHA and ZI was assessed by 256 

expression of GFP and decreased levels of D2R (Fig. 3a,b). Although the selected titer 257 

of the adenoviral vector inhibiting D2R in the LHA/ZI did not affect either body weight 258 

or food intake, it attenuated bromocriptine–induced weight loss (Fig. 3c,d). In 259 

agreement with these results, the effect of bromocriptine on adiposity, BAT 260 

temperature, lipid content and UCP1 levels was absent when D2R was inhibited in the 261 

LHA/ZI (Fig. 3e-h). Furthermore, rats receiving bromocriptine in the LHA/ZI displayed 262 

a significant increase in c-FOS staining in the raphe pallidus (RPa) and the inferior olive 263 

(IO), which was indicative of higher neuronal activation (Fig. 3i).  264 

 265 

However, the knockdown of D2R in the VMH (Supplementary Fig. 7a) of rats fed a 266 

chow diet did not ameliorate bromocriptine–induced weight loss, adiposity or 267 

interscapular temperature (Supplementary Fig. 7b-e). To further confirm the relevance 268 

of the LHA/ZI in the actions of bromocriptine, we performed another experiment 269 

injecting in the LHA/ZI the adenoviral vector inhibiting D2R (Supplementary figure 7f) 270 

and two weeks later, mice were treated with systemic bromocriptine at a dose higher 271 

than the one administered ICV. This intraperitoneal dose (5 mg/kg) decreased body 272 

weight, WAT mass and activated BAT temperature and UCP1 protein levels 273 



12 
 

(Supplementary Fig. 7g-k). However, these effects were completely abolished when the 274 

D2R was inhibited in the LHA/ZI (Supplementary Fig. 7g-k).    275 

 276 

D2R action in GABAergic neurons requires orexin to modulate BAT  277 

The LHA and the ZI are mainly composed by multiple neuronal populations expressing 278 

different neuropeptides and neurotransmitters. To identify which neuronal populations 279 

were expressing D2R, we used a D2R-cre:ribotag mouse line 29. HA immunoreactivity 280 

allowing the identification of D2R-positive cells was detected in GABAergic and 281 

glutamatergic neurons in the LHA and the ZI, but not in cells expressing MCH or 282 

orexin (Fig. 3j). To know the functional relevance of GABAergic and glutamatergic 283 

neurons in the actions of D2R, we over-expressed D2R in these neuronal populations 284 

injecting a viral vector (Ad-hSyn-DIO-D2R) in the LHA/ZI of Vglut2- ires-cre and 285 

Vgat-ires-cre mice. Fluorescent activated cell sorting (FACS) demonstrated that the 286 

virus targeted 198.2 ± 10.2 cells per animal in the LHA/ZI and confirmed D2R 287 

expression in GABAergic and glutamatergic neurons (Fig. 4g). The gating strategy for 288 

FACS is detailed in Supplementary fig 8. We found that over-expression of D2R in 289 

GABAergic (Fig. 4f-k), but not glutamatergic cells of the LHA/ZI (Fig. 4a-e), reduced 290 

body weight and increased interscapular temperature and UCP1 protein levels 291 

independent of food intake. In line with this, the inhibition of D2R in GABAergic 292 

neurons of the LHA/ZI using a viral vector expressing a shRNA against D2R (Ad-hSyn-293 

DIO-shD2R) increased body weight and decreased interscapular temperature when 294 

compared to control mice (Fig. 4l-o).   295 

Since GABA regulates the activity of different neuronal populations in the LHA, we 296 

next tested whether the effects of the hypothalamic dopamine system required orexin or 297 
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MCH, two neuropeptides known to be involved in thermoregulation 30,31. We found that 298 

bromocriptine administered ICV increased orexin, but not MCH, mRNA levels in the 299 

LHA (Supplementary Fig. 9a). Similarly, bromocriptine directly injected in the LHA/ZI 300 

augmented orexin protein levels (Supplementary Fig. 9b), the knockdown of D2R in the 301 

LHA/ZI prevented bromocriptine-induced orexin protein levels (Supplementary Fig. 302 

9c), and the chemogenetic activation of D2R in LHA/ZI stimulated orexin levels 303 

(Supplementary Fig. 9d). The specific isolation of the LHA/ZI was corroborated by 304 

measuring protein levels of orexin and MCH, which are specifically located in the LHA 305 

and were not detected in the VMH (Supplementary Fig. 9e). Although there are no 306 

specific markers for the ZI, the isolated micropunches included the LHA and also ZI, 307 

because due to their neighboring localization and the lack of specific markers, it is 308 

virtually impossible to separate it from the LHA. Moreover, the specificity of the 309 

antibodies for D2R, orexin and MCH was tested in D2R null mice, orexin null mice and 310 

rats injected with an MCH antisense oligonucleotide respectively (Supplementary Fig. 311 

10a).    312 

To investigate the mechanistic link between LHA D2R and the orexin system, we next 313 

assessed the effects of central bromocriptine in mice lacking orexin. We found that 314 

while in WT mice bromocriptine decreased body weight in a food-independent manner, 315 

increased interscapular temperature, decreased lipid content in BAT and up-regulated 316 

BAT UCP-1 protein levels, it was unable to exert these actions in orexin-deficient mice 317 

(Fig. 4p-t).  318 

To further characterize the role of orexin as a mediator of dopamine actions, we 319 

performed chemogenetic stimulation of D2R neurons in the LHA/ZI and concomitant 320 

treatment with the orexin receptor 1 antagonist SB-334867 32. Our findings 321 

demonstrated that the effects of D2R activation in the LHA/ZI on body weight, 322 
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interscapular temperature, BAT lipid content and UCP1 levels were completely blocked 323 

when SB-334867 was injected ICV (Fig. 4u-x). 324 

 325 

Phosphodiesterase 3B and protein kinase A mediate the actions of bromocriptine   326 

Protein kinase A (PKA) signaling has been related to non-metabolic dopamine D2R 327 

actions in some extra-hypothalamic areas 33,34. Herein, we measured phosphorylated 328 

cAMP response element-binding protein (pCREB) as a marker of PKA activity 35. We 329 

found that both bromocriptine administered either ICV or in the LHA/ZI (Fig. 5a,b) and 330 

chemogenetic activation of D2R in the LHA/ZI (Fig. 5c) decreased pCREB protein 331 

levels, an effect that was blunted by the injection of the orexin receptor 1 antagonist 332 

(Fig. 5c). This decrease in pCREB levels was also detected after the injection of orexin 333 

A, an effect blocked by the orexin receptor 1 antagonist (Fig. 5d). Thus, these data 334 

indicate that both bromocriptine and orexin modulate PKA activity. 335 

 336 

Central injection of the specific PKA activator Sp-cAMPS (90 ng/rat) 35,36, abolished 337 

the effects of bromocriptine on body weight, white mass, BAT interscapular 338 

temperature, lipid content and UCP1 protein levels in a feeding-independent manner 339 

after 24h (Fig. 5e-j). Furthermore, the administration of the PKA inhibitor H-89 (62 340 

ng/rat) 35,36 in the LHA/ZI recapitulated the effects of bromocriptine, since it decreased 341 

body weight, white mass and BAT lipid content and stimulated BAT interscapular 342 

temperature and UCP1 protein levels (Fig. 5k-p) independent of food intake. 343 

 344 
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Phosphodiesterases (PDEs) are enzymes that break a phosphodiester bond and are 345 

classified in different families. PDE3 is highly sensitive to inhibition of cAMP 346 

hydrolysis by cGMP, and there are 2 PDE3 isoforms which are encoded by different 347 

genes (PDE3A and PDE3B) 37. Hypothalamic PDE3B was found to play a relevant role 348 

regulating the action of leptin on feeding 38 and insulin 39. PDE3B is also related to 349 

hypothalamic leptin signaling during the development of diet-induced obesity 40. We 350 

measured protein levels of PDE3B in the LHA/ZI of mice and found that after the 351 

chemogenetic stimulation of D2R in this hypothalamic area, PDE3B levels were 352 

increased compared to control mice (Fig. 5q). Then, we injected ICV the PDE3 353 

inhibitor cilostamide at a reported dose (10 µg/mouse) 39 that did not affect body weight 354 

or food intake (Fig. 5r,s). However, this dose of cilostamide blocked the effects of 355 

chemogenetic activation of D2R on body weight and interscapular temperature (Fig. 5t-356 

v). Finally, we injected cilostamide ICV in mice where D2R was over-expressed in 357 

GABA neurons injecting the Ad-hSyn-DIO-D2R in the LHA/ZI of Vgat-ires-cre mice; 358 

our data showed that cilostamide ameliorated the suppression of body weight and 359 

stimulation of BAT activity and increased energy expenditure induced by D2R 360 

overexpression in GABA neurons (Fig. 5w-z). Overall, these results indicate that 361 

PDE3B mediates the central effects of the hypothalamic dopamine system within 362 

LHA/ZI on body weight and BAT activity. 363 

 364 

rpS6 in the LHA/ZI modulates the actions of bromocriptine  365 

PKA has been identified to regulate ribosomal protein S6 (rpS6) 41,42. Thereby, we 366 

investigated the possibility that rpS6 was mediating the actions of bromocriptine on 367 

energy balance. Phosphorylated levels of rpS6 (P-rpS6) were significantly decreased 368 
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after the injection of bromocriptine ICV (Fig. 6a,b) or in the LHA/ZI (Fig. 6c), an effect 369 

that was blunted when D2R was knocked down specifically in the LHA/ZI (Fig. 6d) and 370 

when bromocriptine was injected in orexin-deficient mice (Fig. 6e). The chemogenetic 371 

activation of D2R in the LHA/ZI also resulted in lower P-rpS6 protein levels, and this 372 

effect was prevented by the antagonism of orexin receptor 1 (Fig. 6f). In line with this, 373 

orexin, which also down-regulates P-rpS6 levels failed to do that when the orexin 374 

receptor 1 antagonist was given (Fig. 6g). These results suggest that both D2R and 375 

orexin signaling were important for the modulation of P-rpS6. Importantly, the effects 376 

of bromocriptine on P-rpS6 were specific, because when we measured hypothalamic 377 

protein levels of multiple molecules known to have important effects on energy 378 

homeostasis such as phosphorylated c-Jun N-terminal kinase (pJNK), JNK, 379 

phosphorylated protein kinase B (pAKT), AKT or mammalian target of rapamycin 380 

(mTOR), they remained unaltered after bromocriptine treatment (Supplementary Fig. 381 

10b). In addition, we found that the administration of H-89 in the LHA/ZI decreased P-382 

rpS6 levels (Fig. 6h), and that the activation of PKA by Sp-cAMPS blunted 383 

bromocriptine-induced rpS6 inhibition (Fig. 6i). 384 

 385 

Given that rpS6 was regulated by bromocriptine/orexin/PKA, we next performed a 386 

functional study using an adenovirus encoding a constitutive active form of S6K (CA-387 

S6K-Ad) 43 in the LHA/ZI. We confirmed the efficiency of the viral vector by detecting 388 

increased P-rpS6 protein levels 8 days after the stereotaxic administration of CA-S6K-389 

Ad (Fig. 6j). Although the dose of the adenoviral vector activating S6K in the LHA/ZI 390 

did not affect food intake or body weight, it attenuated bromocriptine–induced weight 391 

loss (Fig. 6k,l), the increase in interscapular temperature (Fig. 6m), the reduction of 392 

lipid content in BAT (Fig. 6n) and the up-regulation of BAT UCP1 (Fig. 6o). To note, 393 
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the activation of S6K did not modify the bromocriptine-induced orexin levels in the 394 

LHA/ZI, confirming that rpS6 is downstream orexin (Ad Null LHA/ZI+ Vehicle ICV: 395 

100± 9.1, Ad Null LHA/ZI + BC (40ug/rat)ICV: 136.7±9.6, Ad S6K1 LHA/ZI+ 396 

Vehicle ICV:104,0± 8.9, Ad S6K1 LHA/ZI+ BC (40ug/rat) ICV: 126,2±6.8). 397 

 398 

Dopamine agonism decreases body weight in hyperprolactinemic patients  399 

In the retrospective study after one year of cabergoline treatment instauration with 0.5 400 

mg twice weekly all patients normalized the hyperprolactinemia irrespective of sex. 401 

Side effects were infrequent and very mild (nausea and postural hypotension) and no 402 

patient was withdrawn from the treatment for this reason. A statistically significant 403 

decrease in body weight and BMI were observed (Table 1 and Fig. 7a). Noteworthy, a 404 

huge inter-individual variability in weight loss was evident (Fig. 7a). Of interest, after 405 

12 months of cabergoline treatment a statistical improvement in glucose metabolism as 406 

evidenced by decreases in glucose and insulin concentrations as well as in the insulin 407 

resistance HOMA-IR index was observed. The same was true for the lipid profile with 408 

significant reductions in the levels of triglycerides, total and LDL cholesterol. No sex 409 

differences were observed as regards both the anthropometric and metabolic changes. 410 

 411 

Dopamine agonism increases energy expenditure in hyperprolactinemic patients  412 

To gain more insight into the potential impact of dopamine agonism on body weight, 413 

body composition, resting energy expenditure and metabolic changes were analysed in a 414 

prospective study in patients affected by hyperprolactinemia. As observed in the 415 

retrospective study one year after cabergoline treatment instauration with 0.5 mg twice 416 

weekly all patients normalized the hyperprolactinemia irrespective of sex. Side effects 417 
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were again infrequent and very mild (nausea, postural hypotension and dizziness) with 418 

no patient withdrawing from the treatment. In this case, the statistically significant 419 

reduction in body weight and BMI was already observed after 3 months of cabergoline 420 

treatment start (Fig. 7b) and persisted after 12 months (Table 1). Again, patients 421 

exhibited a huge inter-individual variability in weight loss both after 3 and 12 months 422 

following cabergoline treatment irrespective of the weight category (Fig. 7b). The 423 

magnitude of weight loss was greater after 3 as compared to 12 months. Noteworthy, 424 

following cabergoline treatment body composition analysis showed a significant 425 

decrease of both total and visceral adiposity as evidenced by reduction of body fat 426 

percentage and waist circumference, respectively (Table 1). In line with the 427 

anthropometric changes observed, a statistically significant increase in REE was 428 

documented expressed in absolute terms or adjusted by either total body weight or fat-429 

free mass. Importantly, patients showed the REE predicted from the Harris Benedict 430 

equation before starting the cabergoline treatment, however after 3 months of treatment 431 

the REE was significantly higher than the theoretical REE (Fig. 7c); and there was a 432 

positive correlation between the REE adjusted per body weight after cabergoline 433 

treatment and weight loss (Fig. 7d). Cabergoline treatment was followed by a 434 

significant improvement in glucose metabolism as evidenced by decreases in glucose 435 

and insulin concentrations as well as in the insulin resistance HOMA-IR index which 436 

was already evident after 3 months. Triglyceride concentrations experimented also a 437 

significant decrease after 3 and 12 months of cabergoline start, although in this case no 438 

changes in total, LDL and HDL cholesterol levels were observed. As in the 439 

retrospective study, no significant differences in the anthropometric, REE and metabolic 440 

effects between men and women took place.  441 

 442 



19 
 

Discussion 443 

Our findings indicate that the brain dopamine system directly activates BAT 444 

thermogenesis in a feeding-independent manner. More specifically, these actions are 445 

mediated by the stimulation of D2R in GABAergic neurons located within the LHA and 446 

the ZI, which activates the SNS and ultimately leads to the increase of UCP1, BAT 447 

temperature and energy expenditure. This process is mediated by the up-regulation of 448 

orexin and PDE3B, which in turn decreases cAMP and the activity of PKA and rpS6. 449 

To our knowledge, these findings are the first to provide information about the brain site 450 

and mechanisms by which fat mass decreases in response to a stimulation of CNS D2R 451 

activity, independently of anorexigenic actions. We also observed that patients treated 452 

with cabergoline, a D2R agonist, for 12 months showed a reduction in BMI and body 453 

fat together with an increase in resting energy expenditure and an improvement in 454 

glucose and lipid metabolism. 455 

The mechanisms by which central dopamine affects body weight are widely assumed to 456 

be related to food intake and reward 17,44. Within the hypothalamus, dopamine levels in 457 

the LHA immediately increase in response to feeding and normalize after meal 458 

consumption 45-47, and injection of D2R antagonists in the LHA reverses amphetamine-459 

induced anorexia 48,49. However, dopamine levels in the VMH decrease after feeding 460 

and increase during fasting 50 and dopamine injection in this area increased meal size 461 

while decreasing meal number 51. In line with this, tyrosine hydroxylase neurons of the 462 

ARC excited AgRP neurons and inhibited POMC neurons, suggesting that dopamine 463 

has an orexigenic action in this hypothalamic site 52. More recently, one report has 464 

shown that activation of striatal D2R reduced BAT thermogenesis and energy 465 

expenditure, and accelerated obesity despite reduced eating 53. That study supports the 466 

idea that the dopamine system may exert different actions depending on the 467 
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hypothalamic site. Nevertheless, some report showed that although chronic obesogenic 468 

diets reduce striatal D2R function, striatal D2R down-regulation does not lead to obesity 469 

54,55, suggesting that changes in striatal D2R expression could be a consequence rather 470 

than the cause of obesity.  471 

 472 

In addition to the well-known effects on food intake, the hypothalamic areas where D2R 473 

is highly expressed, are also important centers for the control of BAT activity 56. 474 

Therefore, we hypothesized that D2R stimulation at this level could trigger BAT 475 

thermogenesis. We found that chronic central infusion of bromocriptine increases BAT 476 

activity and ameliorates diet-induced obesity, independently of feeding. These effects 477 

are regulated by the SNS, since its pharmacological or genetic disruption blunts 478 

bromocriptine-induced effects on BAT. The hypothalamic area responsible for the 479 

effects of bromocriptine resides in the LHA and the ZI, since pharmacological and 480 

chemogenetic stimulation of D2R in these areas reduces HFD-induced adiposity due to 481 

increased BAT activity and higher energy expenditure. The chemogenetic stimulation of 482 

D2R neurons in the LHA/ZI, but not in the VMH or DMH, also stimulated BAT activity 483 

and decreased adiposity in conditions of thermoneutrality. Supporting these data, the 484 

loss-of-function of D2R by shRNA in the LHA/ZI was enough to block the actions of 485 

central and peripheral bromocriptine on BAT function. Therefore, these results indicate 486 

that the site of action of the dopamine system to regulate BAT activity occurs 487 

specifically in the LHA/ZI but not in other hypothalamic regions.   488 

 489 

In line with this, even though dopamine receptors have been detected in brown 490 

adipocytes and dopamine stimulates thermogenesis in these cells 57, when we inhibited 491 
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D2R in BAT, central bromocriptine was still able to decrease body weight and increase 492 

BAT temperature. Overall, our in vivo results indicate that the thermogenic action of 493 

bromocriptine requires the presence of D2R in the LHA/ZI, while D2Rs located in BAT 494 

are not necessary. Previous reports have suggested that the effects on food intake occur 495 

in the ARC and VMH and our present findings indicate that chemogenetic activation of 496 

D2R in the MBH, which includes ARC and VMH, or in the DMH, does not affect BAT 497 

thermogenesis while D2R neurons in the LHA and ZI regulate BAT and increase energy 498 

expenditure. Therefore, the effects of dopamine on food intake from those on energy 499 

expenditure are dissociated since dopamine requires the ARC to regulate food intake 52 500 

and the present study indicates that dopamine actions in the LHA and ZI controls BAT 501 

activity and energy expenditure.  502 

 503 

The LHA and ZI are heterogeneous brain areas containing numerous genetically distinct 504 

cell populations that use a plethora of signaling mechanisms. Our findings indicate that 505 

D2R is located in both glutamatergic and GABAergic cells, but only genetic 506 

manipulation of D2R only in GABAergic neurons exert marked effects on body weight. 507 

This is of relevance because both GABA neurons and dopamine modulate orexin 508 

activity 58,59. A key role of orexin is related to energy expenditure via the regulation of 509 

thermogenesis  31,32,60,61. However, despite these data it was totally unknown whether 510 

the interaction with central dopamine system could play a significant role in energy 511 

homeostasis. To address that possibility, we investigated whether the central 512 

thermogenic effect of bromocriptine was associated with orexin function. Our findings 513 

indicate that central stimulation of D2R increased orexin expression and that 514 

bromocriptine failed to activate BAT thermogenesis in orexin-deficient mice. In 515 

agreement with this, the effect of the chemogenetic stimulation of D2R neurons in the 516 



22 
 

LHA/ZI was blunted after the central blockade of the OX1R. Thus, our results indicate 517 

that orexin mediates the thermogenic effects of brain D2R stimulation.  518 

 519 

Dopamine has been related with cAMP-dependent signaling. More precisely, the 520 

activation of D2R inhibits 62, while the D2R antagonist haloperidol promotes the 521 

stimulation of cAMP-dependent PKA and increased the phosphorylation of rpS6 in 522 

neurons of the striatum 42. Moreover, phosphodiesterase (PDE), and more precisely 523 

PDE3B is highly sensitive to inhibition of cAMP hydrolysis by cGMP 37. Hypothalamic 524 

PDE3B, plays a relevant role regulating the action of leptin 38 and insulin 39. Our results 525 

indicate that PDE3B mediates the central effects of the dopamine system on body 526 

weight and BAT activity. Thus, our current model is that high levels of PDE3B degrade 527 

cAMP and these low levels of cAMP subsequently determine the low activity of PKA. 528 

Hypothalamic PKA 35,63 and rpS6 43 have been reported to play a relevant role in the 529 

control of energy balance, but their role within the LHA is still unexplored. 530 

Furthermore, PKA has been identified as a regulator of rpS6 in neuronal cells 42. 531 

Therefore, we hypothesized that bromocriptine might be using this pathway in the LHA 532 

to exert its actions on BAT. Our findings demonstrate that both pharmacological and 533 

chemogenetic activation of D2R decreased PKA activity, measured by the surrogate 534 

marker pCREB. Accordingly, the direct injection of the PKA inhibitor named H-89 in 535 

the LHA/ZI stimulated BAT activity and decreased body weight, and the activation of 536 

PKA by Sp-cAMPS totally blunted bromocriptine effects on weight loss, BAT 537 

temperature and UCP1 expression. Overall, these results indicate that bromocriptine-538 

mediated actions on BAT activity are mediated by PKA-catalyzed phosphorylation of 539 

rpS6. In line with our findings, previous studies showed that the inactivation of central 540 

PKA, achieved by the disruption of several of its subunits causes resistance to diet-541 
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induced obesity 64,65. However, to our knowledge, this is the first study addressing the 542 

relevant role of PKA in the LHA/ZI.  543 

 544 

In line with the findings made in rodents, dopamine agonism in both our retrospective 545 

and prospective studies of hyperprolactinemic patients decreased body weight and 546 

improved glucose and lipid metabolism. The weight loss was accompanied by a 547 

reduction in both total body fat and visceral adiposity. Interestingly, dopamine agonism 548 

achieved by cabergoline treatment in hyperprolactinemic patients resulted in an increase 549 

in REE which is consistent with the bromocriptine-induced effects on BAT observed in 550 

rodents. Moreover, in patients treated with cabergoline, the weight loss is positively 551 

correlated to REE. Our observations are in agreement with previous studies of 552 

bromocriptine or cabergoline treated patients 66-68. Noteworthy, while cabergoline 553 

decreases body weight in both lean and overweighed patients irrespective of BMI a 554 

clear variability in this response is observed, and patients with higher BMIs are in a 555 

position of losing more excess weight. Our preclinical studies indicate that prolactin is 556 

not mediating the effects of bromocriptine nor chemogenetic manipulation of 557 

neuroendocrine TIDA neurons on body weight and BAT activity. In line with this, in 558 

human studies it is unlikely that weight loss is secondary to normalization of prolactin, 559 

because all the patients with prolactinomas treated with cabergoline showed a 560 

normalization in prolactin levels. Despite that prolactin levels are normalized in all 561 

these patients treated with cabergoline, they showed changes in body weight. Therefore, 562 

there is no correlation between circulating prolactin levels and body weight.  563 

 564 
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In summary, this study reveals that the activation of D2R in GABA neurons within the 565 

LHA and ZI stimulates orexin and PDE3B, which lowers cAMP levels and inhibits a 566 

PKA-rpS6. This increases SNS tone, upregulates BAT thermogenesis, and increases 567 

energy expenditure, leading to weight loss. In line with this, patients undergoing 568 

treatment with the dopamine agonist cabergoline experimented an increase in energy 569 

expenditure, leading to total body weight and fat loss. Therefore, this study provides 570 

mechanistic insight into the mechanisms taking place at the CNS by which 571 

bromocriptine/cabergoline exert their beneficial effects on energy balance and 572 

metabolic homeostasis in the clinical setting. 573 

 574 

Material and Methods 575 
 576 
Animals and diets 577 

Male and female Sprague-Dawley rats (200-250 g); WT and triple b-adrenoreceptor 578 

(AR) knockout (TKO) male mice (weight 20–25 g, age 8–10 weeks old) 69,70; WT and 579 

orexin knockout male mice (null Ox/Hcrt mice, orexin/hypocretin; B6.129S6-580 

Hcrttm1Ywa/J, The Jackson Laboratory) (weight 25–30 g, age 10–12 weeks old)  32, 581 

WT and Drd2-cre male mice (C57BL/6J, weight 20–25 g, age 8–10 weeks old) 71, 582 

Drd2-cre:riboatg mice (weight 25-30 g, age 8-10 weeks old) 29, vgat-ires-cre knock-in 583 

(C57BL/6J) and vglut2-ires-cre knock-in (C57BL/6J) from Jackson Laboratory (weight 584 

20-25g, age 8-10 weeks old) were used for the experiments and littermates controls 585 

were used in each experiment  (Reporting Summary). Except Drd2-cre:ribotag mice, all 586 

animals were housed in individual cages under controlled conditions of illumination (12 587 

h light/dark cycle), temperature and humidity. The animals were allowed free access to 588 

water and a standard laboratory diet (CD) (Scientific Animal Food & Engineering, 589 
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proteins 16%, carbohydrates 60% and fat 3%) or high fat diet (HFD) (Research Diets 590 

12492; 60% of calories from fat, 5.24 Kcal/g; Research Diets, New Brunswick, NJ) for 591 

12 weeks. Food intake and body weight were measured daily during the experimental 592 

phase in all experiments. 4 to 12 animals per group were used. The animals were 593 

euthanatized, and all the tissues were removed rapidly, frozen immediately on dry ice, 594 

and kept at -80ºC until analysis. All experiments and procedures involved in this study 595 

were reviewed and approved by the Ethics Committee of the University of Santiago de 596 

Compostela, in accordance with European Union normative for the use of experimental 597 

animals. 598 

 599 

Body composition and indirect calorimetry 600 

Body composition (white fat mass) was measured using a nuclear magnetic resonance 601 

system (Whole Body Composition Analyser; EchoMRI, Houston,TX). Measurements 602 

were performed before surgery and on the last day of the treatment. Energy expenditure, 603 

respiratory quotient (RQ) and locomotor activity were assessed using a calorimetry 604 

system (LabMaster; TSE Systems) 24,72.  605 

 606 

Temperature measurements, thermal imaging, cold exposure and thermoneutrality 607 

Interscapular temperature was assessed and was visualized using a high-resolution 608 

infrared camera (E60bx: Compact-Infrared-Thermal-Imaging-Camera; FLIR; West 609 

Malling, Kent, UK) and analyzed with a FLIR-Tools specific software package 73. Body 610 

temperature was recorded with a rectal probe connected to a digital thermometer (BAT-611 

12 Microprobe-Thermometer; Physitemp; NJ, USA). After the acute injection of 612 
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bromocriptine, rats were placed for 6 h in a special room with a stable temperature of 613 

4ºC 74.  D2r-cre mice were moved to a thermoneutral environment (30ºC with relative 614 

humidity of 45-52%) in order to eliminate the extra-metabolism needed to defend the 615 

body temperature at lower temperatures 75. 616 

 617 

Intracerebroventricular treatments 618 

Animals were anesthetized by an intraperitoneal injection of a mixture of ketamine-619 

xylazine (ketamine 100 mg/kg rat body weight + xylazine 15 mg/kg rat body weight; 620 

ketamine 8 mg/kg mouse body weight + xylazine 3 mg/kg mouse body weight). 621 

Intracerebroventricular (ICV) cannulae aimed at the lateral ventricle were 622 

stereotaxically implanted in rats using the following coordinates: 1.3 mm posterior to 623 

bregma, 1.9 mm lateral to the midsagittal suture, and a depth of 3.5 mm; and in mice: 624 

0.6 mm posterior to bregma, 1.2 mm lateral to the midsagittal suture, and a depth of 2 625 

mm 72,76. Animals received vehicle (DMSO 100 mM) or bromocriptine mesylate (20, 40 626 

or 80 µg/animal; Tocris, St Louis, MO, USA). In other experiments, the orexin receptor 627 

1 inhibitor (SB-334867; 4 µg/mouse, Tocris, St Louis, MO, USA), orexin (10 628 

µg/mouse, Bachem, Bubendorf, Switzerland) 32,77, the specific PKA activator Sp-629 

cAMPS (90 ng/rat dose; Tocris, St Louis, MO, USA) 35,36, prolactin (1 or 10 µg/mouse, 630 

San Diego, CA, USA) or cilostamide (10 µg/mouse, AlfaAesar, Massachusetts, USA) 39 631 

were also administered ICV. For chronic experiments, a catheter tube was connected 632 

from the brain infusion cannulae to an osmotic minipump flow moderator (model 2002 633 

for a 14-days period for rats and model 1007D for a 7-days period for mice; Alzet 634 

Osmotic Pumps, Durect, Cupertino, CA). These pumps had a flow rate of 0.5 µl/hour 635 

during the days of treatment. The minipump was inserted in a subcutaneous pocket on 636 

the dorsal surface of the animal that we created using blunt dissection and the incision 637 
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was closed with surgical sutures. After surgery, animals were kept warm until they fully 638 

recovered.  639 

 640 

Peripheral treatments 641 

For peripheral treatments, rats received an intraperitoneal administration of 642 

bromocriptine (40 µg/rat) and mice (5 mg/kg). Mice received an intraperitoneal 643 

administration of clozapine-N-oxide (CNO; 1 mg/kg, Sigma-Aldrich; St.Louis, MO) 644 

and clozapine (1mg/kg, Sigma-Aldrich; St. Louis, MO) 27. Pharmacological inactivation 645 

of β3-adrenoreceptor was performed by subcutaneous administration of the specific 646 

antagonist SR59230A (Tocris, St Louis, MO, USA) at a dose of 3 mg/kg 24. 647 

 648 

Stereotaxic microinjections in specific hypothalamic nuclei 649 

Rats were placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA) 650 

under ketamine-xylazine anesthetics. Bromocriptine (40 µg/rat) and the specific PKA 651 

inhibitor H-89 (62 ng/rat; Sigma Chemical, USA) were injected stereotaxically with a 652 

25-gauge needle (Hamilton, Reno, NV, USA) connected to a 1 µl syringe. We targeted 653 

the lateral hypothalamus area and zona incerta (LHA/ZI) and the ventromedial 654 

hypothalamus area (VMH) 72. The coordinates used to reach the LHA/ZI in rats were 655 

(anterior to the bregma (AP), -2.85 mm; lateral to the sagittal suture (L), ±2 mm; and 656 

ventral from the surface of the skull (DV), -8.1 mm) and to reach the VMH were (AP, -657 

2.85 mm; L, ±0.6 mm; DV, -10 mm). The coordinates used to reach the LHA/ZI in mice 658 

were (AP, -1.3 mm; L, ±1.1 mm; DV, -5.2 mm), to reach the MBH were (AP-1.5 mm; 659 

L, ±0.2 mm; DV, -6 mm) and to reach the DMH were (AP-1.9 mm; L, ±0.3 mm; DV, -5 660 
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mm). The incision was closed with sutures and acetylsalicylic acid (Bayer, Leverkusen, 661 

Germany) 150 mg/kg was injected intraperitoneally after surgery as a painkiller. 662 

 663 

Stereotaxic microinjection of adenoviral expression vectors 664 

Adenoviral vectors D2R knockdown (3.5 x 1010 PFU/ml) or the vector controls (3.5 x 665 

1010 PFU/ml) 78 and adenoviral vectors containing the constitutively active form of 666 

S6K1 (4.77 x 1010 PFU/ml) or null controls (1.8 × 1010 PFU/ml) 43 were used. To 667 

modify the expression of D2R specifically in vgat and vglut2 neurons, we injected Ad-668 

hSyn-DIO-D2R-EGFP (1.0 x 1010 PFU/ml), Ad-hSyn-DIO-shD2R-EGFP (1.0 x 1010 669 

PFU/ml) and Ad-hSyn-DIO-EGFP (1.0 x 1010 PFU/ml) (Vector Builder) under cell 670 

specific cre promoters. These viral vectors were injected in the hypothalamic nuclei as 671 

described in the previous section. 672 

 673 

FACS sorting and Quantitative RT-PCR analyses 674 

 Viral infection was confirmed using FACS. The tuberal region of the hypothalamus of 675 

Vgat-cre + Ad-EGFP LHA/ZI mice were microdissected and enzymativcally 676 

dissociated using Papain Dissociation System (Worthington, Lakewood, NJ) to obtain 677 

single cell suspensions 79. FACS was performed using an EPICS ALTRA Cell Sorter 678 

Cytometer device (BD Bioscience). The sort decision was based on measurements of 679 

EGFP fluorescence (excitation: 488 nm; 50 mW; detection: EGFP bandpass 530/30 nm, 680 

autofluorescence bandpass 695/40 nm) by comparing cell suspensions from non-681 

infected brain sites (i.e., cortex) and infected brain sites (i.e., the hypothalamus), as 682 

indicated in Figure 4g. For each animal 150 to 400 EGFP-positive cells were sorted 683 
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directly into 10 μl of extraction buffer: 0.1% Triton X100 (Sigma-Aldrich) and 0.4 unit/ 684 

μl RNaseOUTTM (Life technologies). RNAs obtained from FACS-sorted EGFP-685 

negative and positive cells were reversed transcribed using SuperScript® III Reverse 686 

Transcriptase (Life Technologies) and a linear preamplification step was performed 687 

using the TaqMan® PreAmp Master Mix Kit Protocol (P/N 4366128, Applied 688 

Biosystems). Real-time PCR was carried out on Applied Biosystems 7900HT Fast Real-689 

Time PCR system using exon-boundary-specific TaqMan® Gene Expression Assays 690 

(Applied Biosystem): VGat (Slc32a1-Mm00494138_m1), Dopamine receptor 2 (Drd2-691 

Mm00438545_m1) and VGlut2 (Slc17a6-Mm00499876_m1). Control housekeeping 692 

genes: R18S (r18S-Mm03928990_g1) and Actin (Actb-Mm00607939_s1). 693 

 694 

Designer Receptors Exclusively Activated by Designer Drugs  695 

The hM3Dq coding sequences were cloned into a mCherry vector upstream of the 696 

mCherry sequence to generate C-terminal mCherry fusion proteins (Addgene, 697 

Cambridge, USA). The hM3Dq-mCherry coding sequence was amplified by PCR, and 698 

the amplicons and a cre-inducible AAV vector with a human Synapsin 1 promoter was 699 

packaged in serotype 8: 7.53X1012 PFU/ml genome copies per ml and was prepared and 700 

tittered at the Universidad Autónoma de Barcelona (Barcelona, Spain). Ketamine-701 

xylazine anesthesized male D2-cre mice 80 were placed in a stereotaxic frame (David 702 

Kopf Instruments). The CRE-dependent AAVs were injected bilaterally into the 703 

LHA/ZI of all mice. The viral particles (1 μl, 7.53X1009 PFU/ml) were infused over 15 704 

minutes. Three weeks after the injection of the AAVs, mice received CNO (1 mg/kg of 705 

body weight) or vehicle- i.p. injection.  706 

 707 
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Adenoviral injection in the BAT of mice 708 

Adenoviral vectors for knocking down D2R (1.0 x 109 PFU/ml) or the vector controls 709 

(1.0 x 109 PFU/ml) were injected in a volume of 50 µl bilaterally into the BAT in mice 710 

under ketamine-xylazine anesthetics 21.  711 

 712 

PET imaging system  713 

Whole-body micro PET/CT images were acquired with the Albira PET/CT Preclinical 714 

Imaging System (Bruker Biosping; Woodbidge, CT, USA) and the experimental 715 

procedure with rats were performed in the same conditions. BAT area was delineated by 716 

using image tools implemented the AMIDE Software (http://amide.sourceforge.net/) to 717 

generate a three-dimensional spherical volume of interest with radius of 6mm and 718 

centered on the BAT area. Mean standardized uptake values (SUV) were computed. The 719 

PET-CT analysis was performed in the Molecular Imaging Unit of the Department of 720 

Nuclear Medicine of University of Santiago de Compostela. 721 

 722 

Dissection of brain areas 723 

The brains were removed and immediately frozen and stored at −80°C until further 724 

processing. Then, the brain was placed in a brain matrix with a ventral surface on top 725 

under a dissecting microscope. The LHA/ZI were removed from the whole 726 

hypothalamus by cutting between the rostral and caudal limits of the median eminence 727 

parallel to the base of the hypothalamus and 1 mm to each lateral side of the median 728 

eminence. The depth of each section isolated was around 1 mm thick in mice and 3mm 729 

thick in rats brain 81,25. 730 
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 731 

Western Blot analysis 732 

Tissues were homogenized using a TissueLyser II (Qiagen, Tokyo, Japan) in cold RIPA 733 

buffer (containing 200 mMTris/HCl (pH 7.4), 130 mM NaCl,10%(v/v) glycerol, 734 

0.1%(v/v) SDS, 1%(v/v) Triton X-100, 10 mM MgCl2) with anti-proteases and anti-735 

phosphatases (Sigma-Aldrich;St.Louis, MO). The tissue lysates were centrifuged for 30 736 

minutes at 18000 g in a microfuge at 4ºC. Brown adipose tissue (BAT), muscle, cortex, 737 

VMH and LHA total protein lysates were subjected to sodium–dodecyl sulfate-738 

polyacrylamide gels (SDS–PAGE), then electrotransferred on a PVDF membrane and 739 

probed successively with the following antibodies: UCP1, FGF21, PRDM16, D2R, 740 

Myostatin (Abcam, Cambridge, UK); PGC1α, JNK, MCH (Santa Cruz Biotechnology, 741 

CA, USA); pAKT (Ser473), AKT, phospho-S6 ribosomal protein, S6 ribosomal protein, 742 

phospho-SAPK/JNK(Thr183/Tyr185, phospho-CREB (Ser133) (Cell Signaling, USA); 743 

GAPDH (Merck Millipore, Darmstadt, Germany); mTOR, β-actin, α-tubulin (Sigma- 744 

Aldrich, St. Louis,MO); Myogenin (DSHB, Iowa, USA); Orexin A (Bioss Antibodies, 745 

Massachusetts, USA); PDE3B (Invitrogen, CA, USA) after incubating the membranes 746 

with 5% BSA blocking buffer. For protein detection we used horseradish-peroxidase-747 

conjugated secondary antibodies (Dako Denmark, Glostrup, Denmark). Specific 748 

antigen-antibody bindings were visualized using chemiluminescence method according 749 

to the manufacturer´s instructions (Pierce ECL Western Blotting Substrate, Thermo 750 

Scientific, USA). Values were expressed in relation to β-actin or GAPDH (for cortex, 751 

VMH and LHA) and α-tubulin (for muscle and BAT) protein levels. For details related 752 

to antibodies and dilutions please see Reporting Summary. Uncropped images of all 753 

immunoblots are provided in Supplementary fig. 11. 754 
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 755 

Blood determinations 756 

The quantitative determination of mouse/rat prolactin concentrations in plasma were 757 

determined by ELISA using reagents kits and methods provided by Mybiosurce 758 

(Catalog Number MBS 580033; P.R., China). 759 

 760 

Histomorphology 761 

BAT samples were fixed 24 hour in 10% formalin buffer and then were dehydrated and 762 

embedded in paraffin by a standard procedure. Sections of 3 µm were made in a 763 

microtome and staining in a standard Hematoxilin/Eosin Alcoholic (BioOptica) 764 

procedure following manufacturer instructions 24. Sections were observed and 765 

photographed using a Provis AX70 microscope (Olympus, Corp, Tokyo, Japan). BAT 766 

quantification was analyzed using Image-J software (National Institutes of Health, 767 

USA).  768 

 769 

Immunohistochemistry and immunofluorescence  770 

Detection of UCP1 in BAT was performed using anti-UCP1 (1:500; Abcam, 771 

Cambridge, UK) and the detection was done with an anti-rabbit antibody conjugated 772 

with Alexa 488 (1:200; Molecular Probes; Grand Island, NY, USA) 24. Images were 773 

observed and photographed using a Provis AX70 microscope (Olympus, Corp, Tokyo, 774 

Japan) and were quantified with Frida software (Framework for Image Dataset 775 

Analysis). 776 
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Animal brains were fixed by perfusion followed by inmersion-fixed in formol-calcium 777 

for 24 hours. After that were dehydrated and embedded in paraffin and using a thick 778 

section of 3 µm were cut and mounted (Vibratome Series 1000, The Vibratome 779 

Company, St Louis, MO, USA) 82. Sections were incubated overnight at 4ºC with anti-780 

phospho-S6 ribosomal (Cell Signaling, USA) diluted 1:200 in EnVision Flex Antibody 781 

diluent (DAKO). After washes, sections were incubated with LSAB-DAKO secondary 782 

for 30 min. Also brains were processed and immunohistochemistry assays were 783 

performed to visualize protein levels of c-FOS (Santa Cruz, CA, USA) at a dilution of 784 

1:500 72. Images were observed and photographed using a Provis AX70 microscope 785 

(Olympus, Corp, Tokyo, Japan). Cellular counting was performed in the brain using 786 

Image-J software (National Institutes of Health, USA).  787 

To test specific nuclei injection, we used immunofluorescence. To visualize green 788 

positive signals sections were incubated with rabbit antibody against green fluorescent 789 

protein (GFP) (1:200; Abcam, Cambridge, UK) and we used a goat anti-rabbit Alexa 790 

488 (1:200; Molecular Probes; Grand Island, NY, USA). 791 

Detection of mCherry was performed with an immunofluorescence procedure, using a 792 

rabbit anti-cherry (1:200; Abcam; Cambridge, UK). Detection was done with an anti-793 

rabbit antibody conjugated with Alexa 488 (1:200; Molecular Probes; Grand Island, 794 

NY, USA). 795 

Tissue preparation, immunofluorescence and quantification were performed as 796 

described  26. The following primary antibodies were used : mouse anti-HA (1:1000, 797 

Covance, #MMS-101R), chicken anti-GFP (1:500, Life technologies (#A10262), rabbit 798 

anti-VGlut2 (1:500, Synaptic Systems, #135402), anti-VGat (1:1000, Synaptic Systems, 799 

#131013), anti-orexin-A (1:500, Millipore, Darmstadt, Germany #AB3098) and anti-800 

MCH (1:500, Sigma, #M8440). LHA and ZI sections were identified using a mouse 801 
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brain atlas and sections comprised between -1.34 to -1.70 mm from bregma were 802 

analyzed.  803 

 804 

In situ hybridation  805 

Coronal hypothalamic sections (16 μm) were cut on a cryostat and immediately stored 806 

at −80 C until hybridization. For MCH, and prepro-OX mRNA detection we employed 807 

the specific antisense oligodeoxynucleotides (Table 1). These probes were 3′-end 808 

labeled with [α-35S]deoxy-ATP using terminal deoxynucleotidyl transferase. The 809 

frozen sections were fixed with 4% paraformaldehyde in 0.1 m phosphate buffer (pH 810 

7.4) at room temperature for 30 min. They were then dehydrated using 70%, 80%, 90%, 811 

95%, and absolute ethanol (5 min each). The hybridization was carried out overnight at 812 

37 C in a moist chamber. Hybridization solution contained 5 × 105 (prepro-OX) or 1 × 813 

106 cpm (MCH) per slide of the labeled probe, 4× standard saline citrate (SSC), 50% 814 

deionized formamide, 1× Denhardt’s solution, 10% dextran sulfate, and 10 μg/ml 815 

sheared, single-stranded salmon sperm DNA. Afterward, the hybridization sections 816 

were sequentially washed in 1× SSC at room temperature, four times in 1× SSC at 42 ºC 817 

(30 min/wash), and once in 1× SSC at room temperature (1 h), and then rinsed in water 818 

and ethanol. Finally, the sections were air-dried and exposed to Hyperfilm β-Max 819 

(Amersham International, Little Chalfont, UK) at room temperature for 4–6 d 83. Images 820 

were quantified using Image-J software (National Institutes of Health, USA). 821 

 822 

Patient selection 823 

First, we conducted a retrospective chart review of patients affected by 824 

hyperprolactinemia seen at the Endocrinology Department of the University Clinic of 825 



35 
 

Navarra between January 2007 and December 2013. All patients were of Caucasian 826 

origin. Pregnant and lactating women were excluded. Patients with hyperprolactinemia 827 

secondary to drugs (including neuroleptics, antidepressants, opiates and gastrointestinal 828 

prokinetics) or mixed-secreting tumours or those already receiving dopamine agonists at 829 

the first visit to our hospital as well as those not completing a 12-month follow-up 830 

period were excluded from the analysis. Furthermore, patients with multiple pituitary 831 

hormone deficiencies and/or the presence of other concomitant causes of overt 832 

hypogonadism were excluded to avoid the potential effect of hormonal replacement 833 

therapy on body weight control and metabolic changes. In this respect, patients with 834 

previously known treatment with hypoglycemic agents to control glucose metabolism 835 

abnormalities or anti-obesity drugs for body weight loss were also excluded. After all 836 

the exclusions, 31 patients with newly diagnosed prolactinoma comprised the study 837 

sample of the retrospective analysis (26 females and 5 males with an age range between 838 

21-61 years). All patients underwent a detailed anamnesis, physical exploration and 839 

metabolic evaluation (Reporting Summary). The diagnosis was based on signs and 840 

symptoms of hyperprolactinemia, high serum prolactin concentrations and magnetic 841 

resonance imaging (MRI) demonstrating a pituitary tumor84. After the diagnosis patients 842 

received cabergoline, a potent long-acting dopamine agonist that is more effective and 843 

better tolerated than bromocriptine85. Cabergoline was administered orally at a starting 844 

dose of 0.25 mg once weekly at bedtime for the first week, twice weekly during the 845 

second week and escalating until administration of 0.5 mg twice weekly at bedtime. 846 

Prolactin normalization was achieved with this treatment protocol in all patients.  847 

 848 

In order to examine in more detail, the potential impact of dopamine agonism on body 849 

weight, body composition, resting energy expenditure and metabolic changes a 850 
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prospective study was carried out in patients affected by hyperprolactinemia seen at the 851 

same Endocrinology Department of the University Clinic of Navarra between January 852 

2014 and May 2017  (Reporting Summary). The same inclusion and exclusion criteria 853 

and treatment protocol as for the retrospective study were applied. In this case, however, 854 

body composition as well as resting energy expenditure determinations were performed 855 

at baseline when the diagnosis was established as well as at the follow-up visits at 3, 6 856 

and 12 months after treatment instauration with cabergoline. In the prospective study, 857 

22 patients of Caucasian origin with newly diagnosed prolactinoma were enrolled (19 858 

females and 3 males with an age range between 25-63 years). All patients were non-859 

smokers and did not show signs of infection. Both clinical studies were approved, from 860 

an ethical and scientific standpoint, by the Hospital's Ethical Committee and were 861 

conducted in accordance with the principles of the Declaration of Helsinki with patients 862 

giving their informed consent for participation. 863 

 864 

Anthropometry 865 

Body weight was measured with a digital scale to the nearest 0.1 kg, while height was 866 

measured to the nearest 0.1 cm with a Holtain stadiometer (Holtain Ltd., Crymych, UK) 867 

to calculate the BMI. Waist circumference was determined at the midpoint between the 868 

iliac crest and the rib cage on the midaxillary line. Body fat was estimated by air-869 

displacement-plethysmography (Bod-Pod®, Life Measurements, Concord, California, 870 

USA) 86.  871 

 872 
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Indirect calorimetry 873 

In the prospective study the resting energy expenditure (REE) and respiratory quotient 874 

(RQ) were determined by indirect calorimetry after a 12-h overnight fast using an open-875 

air-circuit ventilated canopy measurement system (Vmax29, SensorMedics Corporation, 876 

Yorba Linda, California) at baseline and at follow-up visits after treatment start 877 

adjusting also for body composition87.  878 

 879 

Blood determinations 880 

Plasma samples were obtained by venipuncture after an overnight fast. Glucose was 881 

analyzed based on enzymatic spectrophotometric reactions by an automated analyzer 882 

(Hitachi Modular P800, Roche, Basel, Switzerland). Insulin was measured by means of 883 

an enzyme-amplified chemiluminescence assay (IMMULITE®, Diagnostic Products 884 

Corp., Los Angeles, CA). The intra-and interassay coefficients of variation (CV) were 885 

4.2% and 5.7%, respectively. Insulin resistance was calculated using the homeostasis 886 

model assessment (HOMA-IR) index. Circulating prolactin concentrations were 887 

determined by a microparticle chemiluminescent assay (Prolactin II, Elecsys, Cobas E, 888 

Roche Diagnostics GmbH., Mannheim, Germany) with a normal range of 1-27 µg/L for 889 

women and of 1-20 µg/L for men together with intra- and interassay CV of 2.3 and 890 

5.9%, respectively. Triglycerides, total cholesterol, high-density lipoprotein (HDL)-891 

cholesterol and low-density lipoprotein (LDL)-cholesterol levels were calculated as 892 

previously described 88. 893 

 894 

Statistics 895 
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Results are given as mean ± standard deviation (SD). Samples or animals were excluded 896 

whether their values were outside the ± 2-fold standard deviation 89, or whether an 897 

objective experimental failure was observed; studies were not blinded to investigators or 898 

formally randomized. The number of animals used in each study is listed in the figure 899 

legends. To test if the populations follows a Gaussian distribution, a normality test was 900 

performed (Kolgomorov-Smirnov test for n between 5-7; Shapiro-Wilk test for n ≥7) 90. 901 

For normal distributions, parametric test was used; for two population comparisons, an 902 

unpaired t tests (two-tailed for treatment and phenotyping experiment, one-tailed 903 

otherwise) were used as indicated in figure legends 91-93; for multiple comparison test, a 904 

one-way ANOVA followed by Bonferroni post hoc multiple comparison test, was 905 

performed 94. For non-Gaussian distributions  was used; Man-Whitney test were used 906 

for two comparison test 95, and Kruskal-Wallis followed by Dunn post hoc test for 907 

multiple comparison 96,97. Data analysis was performed using GraphPad Prism Software 908 

Version 5.0 (GraphPad, San Diego, CA). The correlation between locomotor activity 909 

and energy expenditure was analyzed by Pearson’s correlation (normally distributed 910 

data) or Spearman’s rank correlation (non-normally distributed data) coefficients (r). 911 

Data analysis was performed using the SPSS version 20.0 sofware statistical package 912 

(SPSS, Chicago, IL) (Reporting Summary). 913 

 In patients, comparison of changes at baseline and after treatment administration at 914 

different time points was carried out by two-tailed paired Student’s t-tests between pre- 915 

and post-treatment values and Wilcoxon signed rank test as appropriate. The 916 

calculations were performed using the SPSS/Windows version 15.0 statistical package 917 

(SPSS, Chicago, IL) (Reporting Summary). A p value < 0.05 was considered 918 

statistically significant. 919 

 920 
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Data availability 921 

The data that support the findings of this study are available from the corresponding 922 

author upon request. Correspondence and requests for materials should be addressed to 923 

Ruben Nogueiras.  924 
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Figure legends 951 

Figure 1. Chronic central infusion of bromocriptine reduces diet-induced obesity. 952 

(a-d) Effect of a 14-day intracerebroventricular infusion of bromocriptine (BC) (40 953 

µg/rat/day) and subcutaneous injection of SR59230A hydrochloride (3 mg/kg) on body 954 

weight (a), cumulative food intake (b) (n=8); representative histology of BAT lipid 955 

content and quantification of lipid droplet average area (c) (n=7), scale bars, 200 µm; 956 

protein levels of BAT UCP1, FGF21, PRDM16 and PGC1α in rats fed a chow diet (d) 957 

(n=7). (e-l) Effect of a 10-day intracerebroventricular infusion of bromocriptine (40 958 

µg/rat/day) and subcutaneous injection of SR59230A hydrochloride (3 mg/kg) on 959 

cumulative food intake (e); body weight change (f); white mass gain (g); energy 960 

expenditure (EE) (h); respiratory quotient (RQ) (i), locomotor activity (j) (n=7 Veh, n=8 961 

BC and n=7 BC+ SR59230A hydrochloride treatment); representative histology of BAT 962 

lipid content and quantification of lipid droplet average area (k) (n=7 each treatment), 963 

scale bars, 200 µm; protein levels of BAT UCP1, FGF21, PRDM16 and PGC1α (l) (n=7 964 

Veh, n=8 BC and n=7 BC+ SR59230A hydrochloride treatment) in rats fed a high fat 965 

diet (HFD). (m-q) Effect of a 7-day intracerebroventricular infusion of bromocriptine 966 

(40 µg/mouse/day) on body weight change (m); cumulative food intake (n); white mass 967 

change (o); representative histology of BAT lipid content and quantification of lipid 968 

droplet average area (p) scale bars, 200 µm, and protein levels of BAT UCP1 (q) (n= 5 969 

WT Veh and WT BC mice, n= 4 TKO Veh and n=6 TKO BC mice). Protein data were 970 

expressed in relation (%) to control (vehicle-treated) animals. α-tubulin was used to 971 

normalize protein levels. Dividing lines indicate splicings within the same gel. Values 972 

are represented as the mean ± SD. Statistical differences according to a one-way 973 

ANOVA followed by Bonferroni post hoc multiple comparison test (a,b,c,e,f,g,h,i,k,j), 974 

analysis of covariance (ANCOVA) with non-fat mass as covariate (h), or a Kruskal-975 
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Wallis followed by Dunn post hoc test for multiple comparison (d,e,l,m,n,o,p,q). Values 976 

are represented as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (a,f). 977 

 978 

Figure 2. Stimulation of D2R in the LHA/ZI stimulates BAT activity. (a-e) Effect of 979 

the specific injection of bromocriptine (BC) (40 µg/rat) in the LHA/ZI on body weight 980 

change (a) and food intake (b) (n=9 each treatment); infrared thermal images and 981 

quantification of BAT interscapular temperature (c) (n=5); representative histology of 982 

BAT lipid content and quantification of lipid droplet average area (d) (n=5), scale bars, 983 

200 µm; protein levels of BAT UCP1 (e) (n=7) after 24 hours. (f-h) Effect of the 984 

specific injection of bromocriptine (40 µg/rat) in the VMH on body weight change (f), 985 

food intake (g), and infrared thermal images and quantification of BAT interscapular 986 

temperature after 24 hours (h) (n=9 each treatment). (i-t) Representative mCherry 987 

expression in the hypothalamic LHA/ZI after stereotaxic injection of hSYN-DIO-988 

hM3D(Gq)-mCherry AVV, scale bar 0.2 mm (i). Effect of the stereotaxical injection of 989 

hSYN-DIO-Hm3D(Gq)-mCherry AVV in the LHA/ZI of D2R-CRE mice on body 990 

weight change (j), food intake and water intake (k), infrared thermal images and 991 

quantification of BAT interscapular temperature (l), body temperature (m) (n=7 per 992 

group); respiratory quotient (n), locomotor activity (o) and energy expenditure (p) (n=5) 993 

and correlation between energy expenditure and locomotor activity in the dark phase, in 994 

the light phase and energy expenditure during 2 hours of light phase (Pearson 995 

correlation test) (q); representative histology of BAT lipid content (r) (n=6) scale bars, 996 

200 µm; protein levels of BAT UCP1 (s), plasma prolactin levels (t) (n= 7 Veh and n=6 997 

CNO) after 24 hours and body temperature and BAT interscapular temperature in cold 998 

exposure (4ºC) (n=9) (u). Protein data were expressed in relation (%) to control 999 

(vehicle-treated) animals. α- tubulin was used to normalize protein levels. Dividing lines 1000 
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indicate splicings within the same gel. The experiments were repeated five times (i). 1001 

Data are mean ± SD. Statistical differences according to a two-sided Student´s t-test 1002 

(e,f,g,h,j,l,m,u) or two-sided Mann-Whitney U test (a,b,c,d,k,n,o,p,q,r,s). 1003 

 1004 

Figure 3. Knock down of D2R in the LHA/ZI blunts bromocriptine-induced weight 1005 

loss. (a) Representative photomicrograph of brain section showing the injection of the 1006 

viral vectors that encodes GFP expression precisely placed in the LHA/ZI, scale bar, 0.1 1007 

mm and (b) D2R protein levels in the LHA/ZI 3 weeks after the viral infection (n=7 per 1008 

group). (c-i) Effect of the injection of adenoviral particles encoding for GFP- or D2R-1009 

KD in the LHA/ZI of rats treated with ICV bromocriptine (BC) (40 µg/rat) on body 1010 

weight change (c), food intake (d), WAT weight (e)  and infrared thermal images and 1011 

quantification of BAT interscapular temperature (f) (n= 6 GFP Veh, n=8 GFP BC, n=9 1012 

D2R-KD Veh and n=9 D2R-KD BC); representative histology of BAT lipid content and 1013 

quantification of lipid droplet average area (g) (n=5) scale bars, 200 µm; BAT UCP1 1014 

protein levels (h) (n= 6 in each treatment) and c-FOS immunoreactive cells (IR) in the 1015 

raphe pallidus (RPa) and inferior olive (IO) with representative sections (i) (Gi, 1016 

gigantocellular reticular nucleus; IO, inferior olive; py, pyramidal tract; RPa, raphe 1017 

pallidus; scale bar, 100 µm (n=5). (j) Double immunostaining of HA and orexin, MCH, 1018 

Vgat and Vglut2 in D2R-Cre: Ribotag mice, scale bars: 100 µm, insets, 40 µm, high 1019 

magnification, 8 µm). α-tubulin and β-actin were used to normalize protein levels. 1020 

Protein data were expressed in relation (%) to control (vehicle-treated) animals. 1021 

Dividing lines indicate splicings within the same gel. The experiments were repeated six 1022 

times (a,j). Data are mean ± SD. Statistical differences on the basis of a one-way 1023 

ANOVA followed by Bonferroni post hoc multiple comparison test (c,d,f,g) or two-1024 

tailed Student´s t-test (b,e,h,i). 1025 
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Figure 4. D2R action in GABAergic neurons requires orexin to modulate BAT. (a) 1026 

Photomicrograph showing the colocalization of GFP and Vglut2 in the LHA/ZI. (b-e) 1027 

Effect of the injection of Ad-hSyn-DIO-EGFP or Ad-hSyn-DIO-D2R-EGFP in the 1028 

LHA/ZI of vglut2-ires-cre mice on body weight change (b), food intake (c), BAT 1029 

temperature (d) (n=10) and BAT UCP1 protein levels (e) (n=4). (f) Photomicrograph 1030 

showing the colocalization of GFP and Vgat in the LHA/ZI. (g) Profiles from sorted 1031 

non-infected/EGFP (cortex) and infected/EGFP sites (hypothalamus) and mRNA 1032 

expression of Vgat, Vglut2 and Drd2 in Vgat-ires and Vglut2-ires cre mice injected 1033 

with Ad-hSyn-DIO-EGFP in the LHA/ZI (n=4). (h-k) Effect of the injection of Ad-1034 

hSyn-DIO-EGFP or Ad-hSyn-DIO-D2R-EGFP in the LHA/ZI of vgat-ires-cre mice on 1035 

body weight change (h), food intake (i), BAT temperature (j) (n=12) and BAT UCP1 1036 

protein levels (k) (n=4). (l-o) Effect of the injection of Ad-hSyn-DIO- EGFP or Ad-1037 

hSyn-DIO-shD2R-EGFP in the LHA/ZI of vgat-ires-cre mice on body weight change 1038 

(l), food intake (m) (n=7), BAT temperature (n) and BAT UCP1 protein levels (o) (n= 1039 

6). (p-t) Effect of a 24-hour ICV injection of bromocriptine (BC) (40 µg) on body 1040 

weight change (p), food intake (q), infrared thermal images and quantification of BAT 1041 

temperature (r), histology of BAT lipid content and quantification of lipid droplet 1042 

average area (s) (n=4); and BAT UCP1 protein levels (t) in wild type (n=4) and orexin 1043 

knockout (n=6) mice. (u-x) Effect of the injection of AAV-hSYN-DIO-Hm3D(Gq)-1044 

mCherry and the ICV injection of the orexin receptor antagonist SB-334867 (4 µg) on 1045 

body weight change (u) and infrared thermal images and quantification of BAT  1046 

temperature (v) (n=5-6); histology of BAT lipid content and quantification of lipid 1047 

droplet average area (w) and immunostaining of UCP1 and quantification in BAT (x) 1048 

(n=8) after 24 hours. Dividing lines indicate splicings within the same gel. The 1049 

experiments were repeated six times (a,h). Data are mean ± SD. Statistical differences 1050 
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on the basis of a two-tailed Student´s t-test (b,c,d,h,i,j,k), a Kruskal-Wallis followed by 1051 

Dunn post hoc test for multiple comparison (c,p,q), two-way ANOVA (r), two-sided 1052 

Mann-Whitney U test (e,g,l,m,n,o,s,t) or a one-way ANOVA followed by Bonferroni 1053 

post hoc multiple comparison test (u,v,w,x).  1054 

 1055 

Figure 5. Protein kinase A mediates the effects of bromocriptine on BAT. (a-d) 1056 

Phosphorylated levels of CREB in the LHA/ZI after: 2-hour ICV (a) and 24-hour 1057 

specific injection of bromocriptine (BC) (40 µg) in the LHA/ZI (n=7) (b); injection of 1058 

AAV-hSYN-DIO-hM3D (Gq)-mCherry and the ICV injection of SB-334867 (4 µg) 1059 

(n=5-6) (c); ICV injection of orexin (OX) (10 µg) and SB-334867 (4 µg) after 24 hours 1060 

(n=5-9) (d). (e-j) Effect of the ICV injection of BC (40 µg) and Sp-cAMPS (90 ng) on 1061 

body weight change (e), food intake (f) and white mass gain (g) (n= 9); and BAT 1062 

temperature (h) (n=7-8); histology of BAT lipid content and quantification of lipid 1063 

droplet area (i) and immunostaining of UCP1 and quantification in BAT (j) (n=7) after 1064 

24 hours. (k-p) Effect of the LHA/ZI injection of the specific PKA inhibitor H-89 (62 1065 

ng) on body weight change (k), food intake (l), white mass gain (m), and BAT 1066 

temperature (n) (n=11-12); histology of BAT lipid content and quantification of lipid 1067 

droplet area (o) (n= 10), and protein levels of BAT UCP1 (p) (n=7) after 24 hours. (q) 1068 

Effect of the injection of AAV-hSyn-DIO-hM3D (Gq)-mCherry in the LHA/ZI of D2R-1069 

cre mice on PDE3B levels in the LHA/ZI (n=6). (r-s) Effect of the ICV injection of 1070 

Cilostamide (10 µg) on body weight (r) and food intake (s) (n=7). (t-v) Effect of the 1071 

injection of AAV-hSyn-DIO-Hm3D (Gq)-mCherry in the LHA/ZI of D2R-cre mice and 1072 

the ICV injection of Cilostamide (10 µg) on body weight (t), food intake (u) and BAT 1073 

temperature (v) (n=6). (w-z) Effect of the injection of Ad-hSyn-DIO-EGFP or Ad-1074 

hSyn-DIO-D2R-EGFP in the LHA/ZI of Vgat-ires-cre mice and ICV Cilostamide (10 1075 
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µg) on body weight (w), food intake (x), BAT  temperature (y) and energy expenditure 1076 

(EE) after 24hours (z) (n= 7-8). Dividing lines indicate splicings within the same gel. 1077 

Data are mean ± SD. Statistical differences according to a two-tailed Student´s t-test 1078 

(a,b,q,r,s), a one-way ANOVA followed by Bonferroni post hoc multiple comparison 1079 

test (c,e,f,g,h,i,j,w,x,y), a Kruskal-Wallis followed by Dunn post hoc test for multiple 1080 

comparison (d, t,u,v,) or two-sided Mann-Whitney U test (k,l,m,n,o,p) and analysis of 1081 

covariance (ANCOVA) with body weight as covariate (z). 1082 

 1083 

Figure 6. S6 mediates the effects of bromocriptine on BAT. (a-i) rpS6 1084 

phosphorylated levels in the LHA/ZI after: ICV injection of bromocriptine (BC) (40 µg) 1085 

assessed by immunohistochemistry (n=7) (a) and western blot (n=4) (b); 24-hour 1086 

specific injection of BC (40 µg) in the LHA/ZI (n=7) (c); injection of Ad-GFP or Ad-1087 

shD2R in the LHA/ZI of rats treated with ICV bromocriptine (40 µg) (n= 6 GFP Veh, 1088 

n=7 GFP BC, n=7 D2R-KD Veh and n=7 D2R-KD BC) (d); 24-hour ICV injection of 1089 

BC (40 µg) in wild type (n=4) and orexin (OX) knockout mice (n=6) (e); injection of 1090 

AAV-hSYN-DIO-hM3D (Gq)-mCherry and the ICV injection of SB-334867 (4 µg) 1091 

(n=4 Veh, n=4 CNO and n=5 CNO+SB-334867) (f); ICV injection of OX (10 µg) and 1092 

SB-334867 (4 µg) (n=6) (g); LHA/ZI injection of the specific PKA inhibitor H-89 (62 1093 

ng) (n=7) (h); and ICV injection of BC (40 µg) and the specific PKA activator Sp-1094 

cAMPS (90 ng) after 24 hours (n=6) (i). (j) Total and rpS6 phosphorylated levels in the 1095 

LHA/ZI 3 weeks after the viral infection (n=7). (k-o) Effect of the injection of 1096 

adenoviral particles encoding for Null or S6K1 in the LHA/ZI of rats treated with ICV 1097 

BC (40 µg) on body weight change (k), food intake (l) and infrared thermal images and 1098 

quantification of BAT interscapular temperature (m) (n= 8 ad null Veh, n=9 ad null BC, 1099 

n=8 ad S6K1 Veh and n=9 ad S6K1 BC), histology of BAT lipid content and 1100 
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quantification of lipid droplet average area (n), and BAT UCP1 protein levels (o) (n=7). 1101 

Dividing lines indicate splicings within the same gel. Data are mean ± SD. Statistical 1102 

differences according to a two-tailed Student´s t-test (a,c,d), a two-sided Man-Whitney 1103 

test (b,e,h,j), a Kruskal-Wallis followed by Dunn post hoc test for multiple comparison 1104 

(f,g,i) or a one-way ANOVA followed by Bonferroni post hoc multiple comparison test 1105 

(k,l,m,n,o). 1106 

 1107 

Figure 7. Cabergoline decreases body weight and increases resting energy 1108 

expenditure in patients. (a) Waterfall plot of the body weight changes experimented 1109 

by each patient (1-31) of the retrospective study between baseline and following 0.5 mg 1110 

twice weekly cabergoline treatment for 12 months. (b) Waterfall plot of the body weight 1111 

changes experimented by each patient (1-21) of the prospective study during the first 3 1112 

months of cabergoline treatment instauration with 0.5 mg cabergoline twice weekly. (c) 1113 

REE in patients before and after cabergoline treatment compared to the REE predicted 1114 

from the Harris Benedict equation. (d) Correlation between REE and weight loss in 1115 

patients treated with cabergoline.  1116 

 1117 

 1118 
1119 
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Table 1. Clinical, anthropometric and metabolic characteristics of hyperprolactinemic 1120 
patients before and after one year of treatment initiation with cabergoline. 1121 

Condition/Variable Patient at diagnosis Cabergoline treatment Stat signif. 

(n = 31) Baseline      After 12 months P value 
Gender (m/f) 5/26 5/26 0.732
Age (years) 35 ± 10 36 ± 11 0.846 
Body weight (kg) 67.5 ± 17.1 64.3 ± 14.2 0.045 
BMI (kg/m2) 24.9 ± 5.4 23.8 ± 4.6 0.043 
Prolactin (μg/L) 99.5 ± 16.7 8.3 ± 9 <0.001 
Glucose (mmol/L) 5.8  ±  1.7 4.6  ±  1.5 0.038 
Insulin (pmol/L) 92 ± 48 79 ± 54 0.040 
HOMA-IR 3.32 ± 2.15 2.26 ± 1.38 0.039 
Triglycerides (mmol/L) 2.0 ± 0.9 1.3 ± 0.5 0.008 
Total cholesterol (mmol/L) 5.0 ± 1.1 4.2 ± 0.6 0.041 
LDL cholesterol (mmol/L) 3.2 ± 1.0 2.1 ± 0.7 0.033 
HDL cholesterol (mmol/L) 1.1 ± 0.4 1.4 ± 0.5 0.075 
    
    
Condition/Variable 

Patient at  
Cabergoline treatment Stat. signif.  

P value 
(n = 21) Baseline 3 months 12 months  (a)       (b) 
Gender (m/f) 3/18 3/18 3/18 0.806 
Age (years) 40 + 12 40 + 12 41 + 11 0.799 
Body weight (kg) 70.5 ± 10.6 64.6 ± 12.3 64.1 ± 15.0 0.044    0.045 
BMI (kg/m2) 25.8 ± 5.1 24.2 ± 4.2 23.6 ± 5.3 0.042    0.043 
WC (cm) 90 ± 11 84 ± 9 83 ± 10 0.047    0.046 
Body fat (%) 34.7 ± 5.6 29.5 ± 4.2 28.9 ± 6.1 0.040    0.039 
REE (kJ/d) 5997 ± 704 6703 ± 800 6532 ± 779 0.046    0.045 
REE (kJ/kg/d) 85.1 ± 9.2 104.2 ± 9.8 102.7 ± 8.6 0.041    0.040 
REE (kJ/kg FFM/d) 90.0 ± 7.7 105.4 ± 5.6 101.9 ± 6.3 0.037    0.038 
RQ (vCO2/vO2) 0.83 ± 0.06 0.84 ± 0.05 0.83 ± 0.08 0.621    0.665 

Prolactin (μg/L) 111.5 ± 12.7 9.3 ± 3.1 8.3 ± 5.0 <0.001  <0.001 
Glucose (mmol/L) 5.7  ±  0.8 4.1  ±  0.3 4.5  ±  0.5 0.042    0.04 

Insulin (pmol/L) 93 ± 56 71 ± 44 75 ± 52 0.037    0.036 
HOMA-IR 3.53 ± 1.98 2.15 ± 1.59 2.43 ± 1.80 0.038    0.039 
Triglycerides (mmol/L) 2.1 ± 1.0 1.1 ± 0.3 1.3 ± 0.4 0.022    0.026 
Total cholesterol (mmol/L) 5.0 ± 0.9 4.7 ± 0.8 4.9 ± 1.0 0.278    0.301 
LDL cholesterol (mmol/L) 3.0 ± 1.1 2.5 ± 0.6 2.6 ± 0.8 0.293    0.352 
HDL cholesterol (mmol/L) 1.0 ± 0.6 1.2 ± 0.7 1.1 ± 0.5 0.348    0.386 

     
     

BMI, body mass index; WC, waist circumference; REE, resting energy expenditure; RQ, respiratory quotient; 1122 
vCO2/vO2, dimensionless ratio between carbon dioxide production and oxygen consumption; HOMA-IR, 1123 
homeostatic model assessment. Data are mean ± SD; comparison of baseline with (a) 3 months following 1124 
cabergoline treatment initiation and (b) 12 months after cabergoline treatment start; according to a two-sided 1125 
Student’s t-tests between pre- and post-treatment values and Wilcoxon signed rank test. 1126 

 1127 
  1128 
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