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Abstract	

	

Purpose	of	review:	Here	we	review	the	present	state-of-the-art	of	microdialysis	for	

monitoring	patients	with	severe	traumatic	brain	injury	(TBI),	highlighting	the	newest	

developments.	Microdialysis	has	evolved	in	neurocritical	care	to	become	an	established	

bedside	monitoring	modality	that	can	reveal	unique	information	on	brain	chemistry.	

Recent	findings:	A	major	advance	is	recent	consensus	guidelines	for	microdialysis	use	and	

interpretation.	Other	advances	include	insight	obtained	from	microdialysis	into	the	

complex,	interlinked	TBI	pathologies	of	electrophysiological	changes,	white	matter	injury,	

inflammation	and	metabolism.		

Summary:	Microdialysis	has	matured	into	being	a	standard	clinical	monitoring	modality	that	

takes	its	place	alongside	intracranial	pressure	and	brain	tissue	oxygen	tension	measurement	

in	specialist	neurocritical	care	centres,	as	well	as	being	research	tool	able	to	shed	light	on	

brain	metabolism,	inflammation,	therapeutic	approaches,	blood	brain	barrier	transit	and	

drug	effects	on	downstream	targets.	Recent	consensus	on	microdialysis	monitoring	is	paving	

the	way	for	improved	neurocritical	care	protocols.	Furthermore,	there	is	scope	for	future	

improvements	both	in	terms	of	the	catheters	and	microdialysate	analyser	technology,	which	

may	further	enhance	its	applicability.	

	

	

Key	words:	traumatic	brain	injury	(human),	microdialysis,	metabolism,	inflammation,	

blood–brain	barrier,	multimodality	monitoring.	
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Introduction	

	

Traumatic	brain	injury	(TBI)	is	the	largest	single	cause	of	death	in	those	aged	under	40	years	

in	the	developed	world	(1).	Survivors	experience	varying	disabilities	that	are	often	life-long,	

with	demands	on	carers	and	resources	(2).	After	the	ictus,	the	greatest	clinical	challenge	is	

to	limit	secondary	brain	injury,	when	complex,	dynamic	changes	occur	in	cerebral	

physiology	and	chemistry	(3).		

	

Hypotension,	hypoxia,	hypoglycaemia,	sustained	intracranial	pressure	(ICP)	rises,	seizures,	

and	infections	are	avoided	with	the	aim	of	maintaining	adequate	cerebral	perfusion	and	

preventing	herniation	syndromes	(3).	Most	patients,	both	adult	and	paediatric,	suffering	a	

severe	TBI,	defined	as	a	presenting	Glasgow	Coma	Score	(GCS)	£	8,	will	be	managed	with	the	

use	of	ICP	monitoring	and	cerebral	perfusion	pressure	(CPP)	targeted	therapy	(4).		

	

Target-driven	therapy	is	essential	to	improve	patient	outcome	(5,	6).	Currently,	we	monitor	

ICP	and	brain	tissue	oxygen	tension	(PbtO2)	with	“real-time”	analyses,	which	allows	us	to	

respond	rapidly	to	any	dangerous	changes	in	these	parameters	(7).	This	is	complemented	

with	the	analysis	of	brain	chemistry	performed	using	microdialysis.	A	typical	bedside	

multimodality	monitoring	setup	is	illustrated	in	Fig.	1.	Introduced	clinically	during	the	1990s,	

microdialysis	enables	continuous	monitoring	of	tissue	chemistry	to	study	transplanted	

tissue,	surgical	grafts	or	most	commonly	brain	injury.	First	described	in	1974	(8),	only	during	

the	late	1990s	did	microdialysis	become	more	readily	available	for	hospitals	worldwide	due	

to	advancements	in	computing	hardware	(9).	Since	then,	microdialysis	has	been	extensively	

refined,	and	methodological	variants	introduced	to	improve	monitoring	of	the	injured	brain.	
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Principle	

	

The	microdialysis	catheter	consists	of	two	concentric	tubes.	The	outer	tube	is	connected	to	

a	syringe	pump	that	delivers	perfusion	fluid.	The	perfusate	flows	through	the	external	tube	

down	to	the	tip,	where	the	final	10	mm	of	the	catheter	consists	of	a	semi-permeable	dialysis	

membrane	allowing	bi-directional	diffusion	between	the	perfusate	and	the	extracellular	

fluid	of	the	brain	parenchyma	(10).	The	diffusion	rate	is	driven	by	the	chemical	gradient	

across	the	dialysis	membrane	(9).	The	perfusate,	now	termed	microdialysate,	is	extracted	

via	the	inner	catheter	to	be	analysed.		

	

Clinical	indication	

	

Indications	for	clinical	monitoring	using	microdialysis	are	not	clear-cut,	younger	patients	

generally	have	better	outcome,	nevertheless,	caution	should	be	maintained	when	selecting	

candidates	(11*).	It	is	generally	accepted	that	patients	with	brainstem	injury	and	central	

herniation	should	be	excluded	from	the	procedure	because	of	the	pre-disposition	to	poor	

outcome	with	such	features	(12).	The	post-resuscitation	GCS	is	perhaps	the	most	accurate	

assessment	(13).	Disease-specific	recommendations	have	been	identified	in	the	most	recent	

consensus	statement	(11*).	In	TBI	microdialysis	can	be	used	to	monitor	“healthy”	tissue	

(e.g.	to	guide	systemic	glucose	treatment)	and/or	to	monitor	focal	regions	at	risk.	Similarly,	

in	another	form	of	acute	brain	injury,	guidance	in	subarachnoid	haemorrhage	(SAH)	

suggests	microdialysis	as	a	primary	monitoring	device	in	mechanically	ventilated	(‘poor-
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grade’)	patients	or	to	monitor	patients	at	risk	of	a	secondary	neurological	deterioration	(e.g.	

delayed	ischaemic	deficit)	(11*).	

	

Surgical	procedure	

	

The	clinical	microdialysis	catheter	is	carefully	placed	within	the	cerebral	parenchyma	either	

via	a	cranial	access	device	(“bolt”)	or	tunnelled	via	a	twist	drill	hole	or	placed	under	direct	

vision	at	craniotomy	(14).	The	microdialysis	catheter	tip	contains	gold,	visible	on	CT	scan.	

	

In	TBI,	insertion	is	guided	by	the	type	of	injury	sustained.	In	diffuse	axonal	injury,	the	

catheter	should	be	inserted	in	the	non-dominant	frontal	lobe.	In	focal	injury	(acute	subdural	

haematoma	or	contusion)	the	catheter	should	be	placed	in	ipsilateral	to	the	lesion	in	

radiographically	normal	brain	where	possible.	It	is	acceptable	to	place	bilateral	microdialysis	

catheters	where	focal	injury	results	in	significantly	radiographically	different	brain	(11*).	

	

In	SAH,	the	recommendation	is	to	insert	the	microdialysis	catheter	in	the	watershed	

anterior	cerebral	artery–middle	cerebral	artery	territory	ipsilateral	to	the	maximal	blood	

load	seen	on	CT	or	the	ruptured	aneurysm	(11*).	If	the	blood	load	is	symmetrical,	insertion	

in	the	non-dominant	hemisphere	is	recommended.	However,	in	delayed	ischemic	deficit,	

microdialysis	catheters	should	be	placed	in	tissue	most	at	risk	as	directed	by	radiological	

findings	(11*).		

	

	

Understanding	brain	chemistry	through	microdialysis	



	 6	

	

The	primary	physical	injury	in	TBI	caused	by	impact	is	followed	over	the	ensuing	hours	and	

days	by	complex	pathology	intertwining	intracranial	dynamics,	electrophysiological	

responses,	cerebral	metabolism	and	inflammation.	Modern	neurocritical	care	means	that	

gross	ischaemia	is	usually	avoided.	However,	despite	seemingly	adequate	provision	of	

metabolic	fuels	and	oxygen,	the	injured	brain	sometimes	cannot	utilise	them	efficiently:	

termed	‘mitochondrial	dysfunction’,	and,	in	severe	form,	‘metabolic	crisis’,	the	exact	basis	is	

still	not	understood.	A	few	recent	studies	have	notably	tied	together	brain	extracellular	

focal	chemistry	with	other	brain	measures	in	TBI	patients,	as	follows.		

	

Electrophysiological	changes	

	

Electrophysiological	responses	to	TBI	include	cortical	spreading	depolarizations	(CSD)	

associated	with	marked	changes	in	glucose	and	lactate	levels	in	the	brain	extracellular	fluid	

(15).	These	can	be	regarded	as	waves	of	“bad	chemistry”	propagating	spatially	and	

temporally,	often	across	large	regions	of	the	brain	and/or	around	contusions.	Another	

electrophysiological	response	found	in	TBI,	and	apparently	related	to	CSD,	are	seizures	(16)	-	

typically	non-convulsive	seizures	and	periodic	discharges	(PD).	Vespa	and	colleagues	have	

built	on	their	earlier	work,	and	have	now	positively	established	linkage	between	seizures	

and	metabolic	crises	(17**).	Electrophysiological	disturbances	may	go	undetected	unless	

patients	are	monitored	continuously	with	electrodes.		Depth	electrodes	inserted	into	the	

brain	were	more	useful	than	scalp	electrodes	for	monitoring	seizures	and	PDs	in	TBI	patients	

(17**).	Seizures	or	PDs	occurred	in	61%	of	34	subjects,	with	42.9%	of	these	seizures	noted	

only	on	intracortical	depth	electroencephalogram	(dEEG)	and	in	some	cases	lasting	for	many	
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hours.	Metabolic	crisis	as	measured	by	elevated	cerebral	microdialysis	lactate/pyruvate	

ratio	(LPR)	occurred	during	seizures	or	PDs	but	not	during	electrically	non-epileptic	epochs.	

PDs	and	seizures	occurred	in	normal-appearing	tissue	at	a	similar	rate	to	that	of	

pericontusional	tissue.	This	suggests	that	multiple	regions	of	the	brain	are	at	risk	for	

electrical	instability,	not	just	the	pericontusional	tissue	recognised	previously.	The	study	has	

highlighted	the	importance	of	PDs	hitherto	often	regarded	as	benign	by	

electroencephalographers.	Vespa	et	al.	have	suggested	that	both	PDs	and	seizures	are	

potential	therapeutic	targets	in	severe	TBI.	They	described	the	seizures/PDs	and	metabolic	

crisis	(elevated	LPR)	as	being	“time-locked”,	a	finding	subject	to	the	constraint	that	

microdialysate	collection	vials	were	changed	and	analysed	hourly	whereas	the	EEG	sampling	

rate	was	2.5	kHz.	Thus,	there	is	no	information	yet	on	whether	there	is	a	cause-effect	

relationship	between	electrophysiology	and	metabolism	(or	vice-versa),	or	whether	they	are	

mutually	interactive,	or	both	results	of	some	other	initiating	effect.	

	

White	matter	injury	

	

White	matter,	which	is	composed	chiefly	of	glia,	and	constitutes	the	largest	proportion	of	

the	brain,	provides	a	vital	support	infrastructure	for	grey	matter	neurons.	Magnoni	et	al.	

(18**)	reported	that	microdialysis	measurements	of	the	axonal	cytoskeletal	protein	tau	in	

the	brain	extracellular	space	correlated	well	with	diffusion	tensor	magnetic	resonance	

imaging	(DTI)-based	measurements	of	reduced	brain	white	matter	integrity	in	the	1-cm	

radius	white	matter-masked	region	near	the	microdialysis	catheter	insertion	sites.	They	

found	a	significant	inverse	correlation	between	microdialysate	levels	of	tau	13–36h	after	

injury	and	fractional	anisotropy	(FA)	reductions	in	comparison	with	healthy	controls.	FA	
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reductions	near	microdialysis	catheter	insertion	sites	were	highly	correlated	with	FA	

reductions	in	multiple	additional	white	matter	regions.	Both	microdialysis	tau	

measurements	and	magnetic	resonance	DTI	may	reflect	traumatic	axonal	injury.	Perhaps	

surprisingly,	there	were	no	significant	correlations	between	FA	reductions	and	brain	

microdialysate	metabolic	markers	(glucose,	lactate,	LPR	and	glutamate)	and	none	between	

FA	reductions	and	microdialysate	amyloid-beta.	No	correlation	was	observed	between	other	

DTI	parameters	(mean	diffusivity,	axial	diffusivity,	radial	diffusivity)	and	microdialysate	tau	

or	amyloid-beta.		

	

Measuring	biochemical	pathways	

	

Two	recent	13C-labelled	microdialysis	studies	(19,	20*)	have	revealed	insight	into	TBI	

patients’	brain	chemistry.	The	studies	employed	microdialysis	perfusion	with	respectively	

1,2-13C2	glucose	(19)	and	2,3-
13C2	succinate	(20*)	with	simultaneous	collection	of	the	

products	via	the	same	catheters,	with	high-resolution	13C	NMR	analysis.	The	first	study	(19),	

using	1,2-13C2	glucose,	revealed	that	the	major	pathway,	glycolytic	lactate	production	

(labelling	pattern	2,3-13C2	lactate),	was	significantly	greater	in	TBI	brain	than	in	normal	brain.	

The	minor	pathway,	pentose	phosphate	(PPP)-derived	lactate	production	(3-13C	lactate),	

was	statistically	not	significantly	different	in	TBI	brain	than	in	normal	brain.	However,	

several	of	the	TBI	individuals	showed	PPP-derived	lactate	elevation	above	the	range	

observed	in	the	normal	brain.	There	was	a	shift	in	glucose	metabolism	from	glycolysis	

towards	PPP	with	decreasing	PbtO2	although	glycolysis	always	remained	dominant.	The	

findings	raise	interesting	questions	about	the	roles	of	the	PPP	and	glycolysis	after	TBI,	and	

whether	they	can	be	manipulated	to	enhance	the	potentially	reparative	and	antioxidant	role	
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of	the	PPP	for	better	patient	outcome.	The	second	study	(20*),	using	2,3-13C2	succinate	

(disodium	salt),	showed	that	this	molecule	was	metabolised	via	the	TCA	cycle	(evidenced	by	

13C-labelling	patterns	in	metabolites)	and	ameliorated	cellular	metabolism	(evidenced	by	

lowering	LPR),	proof-of-concept	that	the	TCA	cycle	can	be	directly	supplemented	and	TBI	

brain	chemistry	potentiated.	Succinate	is	a	tricarboxylic	acid	(TCA)	cycle	intermediate	that	

interacts	directly	with	complex	II	of	the	mitochondrial	electron	transport	chain	(ETC),	

enabling	a	‘shortcut’	route	(missing	out	ETC	complex	I)	for	oxidative	metabolism.	Lower	LPR	

suggests	that	succinate	improves	redox	balance,	conceivably	by	boosting	shuttles	utilising	

mitochondrial	ETCs	to	recycle	NADH	to	NAD+,	possibly	promoting	glucose	utilisation	and	

glutamate	clearance	from	the	interstitium,	further	supported	by	the	finding	of	lower	

microdialysate	concentrations	of	glucose	and	glutamate.	

	

Neuroinflammation	and	blood-brain	barrier	

	

Microdialysis	can	provide	unique	information	for	clinical	trials,	establishing	whether	

systemically	administered	drugs	cross	the	blood-brain	barrier,	and	informing	on	

downstream	targets	and	biomarkers.	In	TBI	patients	with	diffuse	injury,	subcutaneous	

administration	of	human	interleukin	receptor	antagonist	(IL-1ra),	in	recombinant	form	as	

the	pharmaceutical	anakinra/Kineret,	resulted	in	marked	elevation	of	both	circulating	IL-1ra	

and	brain	extracellular	IL-1ra	(21).	Alongside	IL-1ra,	other	cytokines,	chemokines	and	growth	

factors	were	analysed	in	a	42-plex	Luminex	assay	(42	analytes)	in	10	treated	patients	plus	10	

control	patients	(without	anakinra)	(21).	Multivariate	(partial	least	squares	discriminant)	

analysis	of	this	dataset	has	recently	revealed	a	pattern	of	response	that	questions	the	
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simple	classification	of	IL1ra	as	an	‘anti-inflammatory’	cytokine	and	highlights	the	

importance	of	the	microglial	response	to	injury	(22*).	

	

A	paired	microdialysis	catheter	study	(23)	of	peri-contusional	vs.	radiologically	“normal”	

sites,	measuring	matrix	metalloproteinases	(MMPs),	has	shown	that	MMP-9	concentrations	

are	increased	in	peri-contusional	brain	early	post-TBI	(within	72h)	and	potentially	represent	

a	therapeutic	target	to	reduce	haemorrhagic	progression	and	vasogenic	oedema.	

	

Significance	of	lactate	

	

The	significance	and	roles	of	lactate	in	the	brain	are	still	debated.	Microdialysis	can	provide	

insight.	High	brain	LPR	suggests	high	reliance	on	glycolysis,	which	can	be	due	to	ischaemia,	

in	which	case	lactate	is	high	and	pyruvate	is	low,	together	with	low	glucose	and	(if	

measured)	low	PbtO2.	This	is	termed	Type	I	LPR	elevation.	Alternatively,	high	lactate	

accompanied	by	less	drastically	lowered	pyruvate,	in	the	absence	of	ischaemia,	is	Type	2	LPR	

elevation,	more	often	seen	in	TBI	patients	than	Type	1	(24,	25).	Significantly,	transitions	can	

occur	within-patient	between	ischaemia-pattern	and	mitochondrial	dysfunction-pattern	

(and	vice-versa),	with	time	post-injury,	and	that	in	the	transition	from	ischaemia-pattern	to	

mitochondrial	dysfunction,	pyruvate	can	rise	with	time	(25).		

	

Labelling	studies	have	shown	that	lactate	can	be	oxidatively	metabolised	in	vivo	by	rat	brain	

(26)	and	by	human	brain	–	both	healthy	(27,	28)	and	TBI	(29).	Debate	still	exists	on	the	

astrocyte-neuron	lactate	shuttle	(ANLS)	hypothesis	(30,	31)	about	whether	astrocyte	

glycolysis-derived	lactate	is	the	preferred	energy	substrate	for	neurons,	or	whether	both	
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astrocytes	and	neurons	independently	metabolise	glucose	per	their	needs.	Supporting	the	

“independent	model”	is	a	kinetic	metabolic	modelling	study	in	rats	(32).	Debate	also	exists	

(33)	on	the	suitability	of	administering	exogenous	intravenous	lactate	as	therapy	for	TBI	(34-

36).		

	

Microdialysis	guidance	of	therapy	

	

Microdialysis	is	a	valuable	source	of	clinical	information	to	assist	evaluation	of	putative	TBI	

therapies.	Retrospective	data	analysis	from	36	TBI	patients	showed	normobaric	hyperoxia	

association	with	increased	excitotoxicity,	evidenced	by	increases	in	microdialysate	

glutamate	concentration	with	increasing	fraction	of	inspired	oxygen	(37).		Brain	multimodal	

monitoring—including	ICP,	PbtO2,	and	microdialysis—was	more	accurate	than	ICP	

monitoring	alone	in	detecting	cerebral	hypoperfusion	in	a	study	of	27	patients	with	severe	

TBI	and	predominantly	diffuse	injury	(38).	

	

Future	prospects	

	

Microdialysis	is	a	standard	part	of	neurocritical	care	monitoring	for	severe	TBI	in	some	

centres,	in	addition	to	its	key	role	in	clinical	research	studies.	Besides	adults,	it	is	being	

extended	to	monitor	paediatric	severe	TBI	patients	(39).	Next	steps	will	be	to	use	

microdialysis	more	consistently	to	inform	patient	management	and	therapy.	The	

fundamentals	for	this	have	been	set	out	in	a	recent	Consensus	Statement	(11*)	from	

microdialysis	experts	worldwide.	The	next	stage	is	establishing	a	suitably	tiered	formal	

protocol	for	enabling	microdialysis	results	to	be	optimally	utilised	alongside	intracranial	
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pressure	(ICP)	monitoring	and	other	modalities,	to	inform	decisions	on	individualised	

therapy	for	each	patient.	PbtO2	probes	are	desirable	in	this	multimodal	partnership,	to	help	

to	differentiate	hypoxia/ischaemia	from	mitochondrial	dysfunction/metabolic	crisis.	Besides	

TBI,	microdialysis	has	scope	for	increased	use	in	monitoring	other	forms	of	acute	brain	

injury,	e.g.	SAH	(36).		

	

In	injured	brain,	electrophysiological	disturbances	have	emerged	as	important	elements	

within	the	adverse	metabolic	changes	that	are	linked	to	poor	functional	outcomes.	However	

continuous	electrophysiological	measurements	are	hard	to	implement.	Technological	

improvement	and/or	understanding	of	appropriate	surrogate	markers	would	be	potentially	

beneficial.		

	

Faster	brain	microdialysis	measurement	on-line	rather	than	the	present	hourly	vial	changes	

is	desirable,	as	electrophysiological	changes	can	induce	potentially	damaging	rapid	changes	

in	brain	chemistry.	These	early	warning	signs	will	be	missed	on	hourly	measurements,	

thereby	losing	an	opportunity	for	therapy.	Progress	on	on-line	detectors	has	been	made	in	a	

research	context,	reported	microdialysis	measures	are	as	yet	confined	to	potassium,	glucose	

and	lactate,	but	not	pyruvate	(40).	Online,	rapid	detection	of	key	metabolites	in	an	easy-to-

use,	robust,	compact,	low-cost	format	would	be	beneficial	and	would	potentially	encourage	

adoption	of	microdialysis	by	more	centres.	

	

While	both	20	kDa	and	100	kDa	clinical	catheters	allow	recovery	of	extracellular	small	

molecules	(metabolites),	the	100	kDa	additionally	permits	recovery	of	many	water-soluble	

extracellular	proteins,	e.g.	cytokines	and	chemokines.	Inflammation	is	a	crucial	aspect	of	the	
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response	to	TBI.	However,	optimising	microdialysis	recovery	of	proteins	remains	a	work-in-

progress.	Success	using	human	serum	albumin	(HAS)	supplementation	of	the	microdialysis	

perfusion	fluid	(21,	41,	42)	is	nowadays	becoming	unfeasible	as	increasing	licensing	

restrictions	on	pharmacy	manufacturing	mean	that	formulation	with	this	blood	product	is,	

depending	on	the	pharmacy,	either	not	permitted	or	prohibitively	expensive.	Dextran	is	an	

alternative	being	explored	(43,	44);	it	is	a	polysaccharide	with	various	polymer	sizes,	and	not	

a	protein.	Serum	albumin	is	widely	utilised	in	biochemistry	(not	just	microdialysis)	as	an	

agent	for	blocking	nonspecific	binding	losses	of	proteins	of	interest	that	would	otherwise	be	

variably	trapped	by	adherence	to	surfaces	in	tubing,	artificial	membranes,	vials	etc.	

Whether	dextran,	which	was	introduced	to	microdialysis	primarily	as	a	fluid-balancing	

osmotic	agent,	can	prevent	nonspecific	binding	of	proteins,	remains	to	be	established.	

Another	approach	to	improving	catheter	technology	is	coating	it	with	Pluronic	(a.k.a.	

Poloxamer)	(44,	45),	aimed	to	reduce	protein	binding	and	inhibit	biofouling	and	

encapsulation.	Pluronic	coating	is	only	reported	experimentally,	and	whether	this	might	

represent	any	significant	improvement	on	current	microdialysis	technology	and	subsequent	

progress	to	clinical	adoption,	are	future	questions.	

	

Conclusions	

	

Microdialysis	has	matured	into	a	standard	clinical	monitoring	modality	(alongside	ICP	and	

PbtO2)	in	specialist	neurocritical	care	centres	as	well	a	research	tool	for	shedding	light	on	

brain	metabolism,	inflammation,	therapeutic	approaches,	blood	brain	barrier	transit	and	

drug	effects	on	downstream	targets.	Recent	consensus	on	microdialysis	monitoring	paves	

the	way	for	improved	neurocritical	care	protocols.	Scope	exists	for	future	improvements	
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both	in	terms	of	the	catheters	and	microdialysate	analyser	technology,	which	may	further	

enhance	applicability.		

	

Key	points:	

• Traumatic	brain	injury	(TBI)	is	the	largest	single	cause	of	death	in	those	aged	under	

40	years	in	the	developed	world,	and	after	the	ictus,	the	greatest	clinical	challenge	is	

to	optimise	patient	outcome	by	limiting	secondary	brain	injury,	when	complex,	

dynamic	changes	occur	in	cerebral	physiology	and	chemistry.	

• Microdialysis	has	matured	into	a	standard	clinical	monitoring	modality	alongside	

intracranial	pressure	and	brain	tissue	oxygen	tension	monitoring	in	specialist	

neurocritical	care	centres.	

• A	recently	published	Consensus	on	microdialysis	monitoring	is	paving	the	way	for	

improved	neurocritical	care	protocols	and	individualised	patient	therapy.		

• Microdialysis	is	continuing	to	grow	as	a	research	tool	for	shedding	light	on	brain	

metabolism,	inflammation,	therapeutic	approaches,	blood	brain	barrier	transit	and	

drug	effects	on	downstream	targets,	and	thus	microdialysis	provides	important	

evidence	in	clinical	trials.		

• Scope	exists	for	future	improvements	both	in	terms	of	the	catheters	and	

microdialysate	analyser	technology,	which	may	further	enhance	applicability.	
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Figure	legend	

	

Figure	1.	Bedside	multimodality	setup	typically	used	in	severe	TBI	neurocritical	care,	

comprising	monitors	for	intracranial	pressure	(ICP),	brain	tissue	oxygen	tension	(PbtO2)	and	

microdialysis.	Illustration	copyright	Susan	Giorgi-Coll	and	reproduced	here	with	her	

permission.	
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