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Abstract

Raman spectroscopy is the prime non-destructive characterization tool for graphene and

related layered materials. The shear (C) and layer breathing modes (LBMs) are due to rela-

tive motions of the planes, either perpendicular or parallel to their normal. This allows one

to directly probe the interlayer interactions in multilayer samples. Graphene and other two-

dimensional (2d) crystals can be combined to form various hybrids and heterostructures, cre-

ating materials on demand with properties determined by theinterlayer interaction. This is

the case even for a single material, where multilayer stackswith different relative orientations

have different optical and electronic properties. In twisted multilayer graphene samples there
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is a significant enhancement of the C modes due to resonance with new optically allowed elec-

tronic transitions, determined by the relative orientation of the layers. Here we show that this

applies also to the LBMs, that can be now directly measured atroom temperature. We find that

twisting has a small effect on LBMs, quite different from thecase of the C modes. This implies

that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our

work shows that Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d

hybrids and heterostructures.

Keywords: twisted multilayer graphene, layer breathing modes, interface coupling,first-

principles calculations, resonant Raman spectroscopy,two-dimensional materials, two-dimensional

heterostructures.
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Layered materials can be assembled to form heterostructures held together by van der Waals

interactions. For a given assembly, the relative orientation of the individual layers can change

the optical and electronic properties.1–7 This is also the case when a single material is consid-

ered. In multilayer graphene (MLG) samples, for a given number of layers (N), a wide range

of properties is accessible by changing the relative orientation of the individual layers.1,3,8–14We

refer to these as twisted-MLG (tMLG),11 to indicate a mutual orientation of the planes differ-
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ent from the naturally occurring one,15 with a twist angle (θt).11 The twist vector (p,q) is de-

fined as the lattice vector of a supercell havingq, p coordinates with respect to the basis vec-

tors of single layer graphene (SLG).16 The twist angle can be derived from the twist vector as:

cosθt=(q2+4qp+p2)/2(q2+qp+p2).16,17

By assembling Bernal stacked15 m-layer (mLG, m ≥ 1) andn-layer (nLG, n ≥ 1) flakes, a

(m+ n)-system is formed, which we indicate as t(m+ n)LG.11 In this notation, a Bernal-stacked

BLG is denoted as 2LG, while a twisted one as t(1+1)LG. A flake consisting of a Bernal-stacked

BLG placed at a generic angleθt on a Bernal-stacked three layer graphene (TLG) is indicatedas

t(2+3)LG. This has significantly different properties whencompared to a Bernal-stacked 5LG, or

to a t(1+4)LG, or t(1+1+3)LG,etc, even though all these have the same N=5. For a given total N,

the choice ofm,n, etc. (with m+n+...=N) and relative angles between each m,n,...LGs leads to a

family of systems with different optical and electronic properties. Probing the coupling between

the interface layers ofmLG andnLG in t(m+n)LGs, and its impact on band structure and lattice

dynamics, is crucial to gaining fundamental understandingof these systems and to tuning them for

novel applications.

Raman spectroscopy is one of the most used characterizationtechniques in carbon science

and technology.18 The Raman spectrum of graphite and MLG consists of two fundamentally dif-

ferent sets of peaks. Those, such as D, G, 2D,etc, present also in SLG, and due to in-plane

vibrations,18–20 and others, such as the shear (C) modes21 and the layer breathing (LB) modes

(LBMs),20,22,23due to relative motions of the planes themselves, either perpendicular or parallel

to their normal. In NLG, all vibrational modes split due to the confinement in the direction per-

pendicular to the basal plane,z, and, for a given N, there are N-1 C or LB modes, which we denote

asCNN−i and LBMNN−i (i = 1,2, ...,N−1), respectively. Here,CN1 and LBMN1(i.e., i = N −1)

are the C and LB modes with the highest frequencies, respectively. However, due to the low elec-

tron phonon coupling (EPC) and different symmetry, it has been not possible, thus far, to detect

LBMs for samples at room temperature, unlike the highest energy C modes that can be measured

in Bernal-stacked samples at room temperature.21,24In Ref. 11 we have shown that, by performing
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multi-wavelength Raman spectroscopy on tMLGs, an energy window exists, where a significant

intensity enhancement of the C peaks happens, due to resonance with new optically allowed elec-

tronic transitions, determined by the relative orientation of the layers. This resonance effect is

confirmed by the twist-angle dependence of the G and 2D intensities.9,13,14

Here we directly measure the LBM in tMLGs at room temperaturewith multi-wavelength Ra-

man spectroscopy, and confirm their assignment by symmetry and polarization analysis combined

with density functional theory (DFT). Similar to the C modes, the LBMs exhibit a significant

intensity enhancement determined by the relative orientation of the layers. However, unlike the

C modes, the observed LBMs are mainly determined by N, which suggests that the breathing

coupling at the tMLG interfaces is almost independent of therelative layer orientation. The exper-

imental positions of all LBMs can be described by a linear chain model considering next-nearest

interlayer interactions, as verified by DFT. A charge density analysis reveals that the different be-

havior of C and LB modes in tMLGs is due to the in-plane periodicity mismatch at the twisted

interface.

Results and Discussion

The twisted samples are prepared as follows. Highly oriented pyrolytic graphite (HOPG) is me-

chanically exfoliated on a Si/SiO2 substrate.25 During exfoliation mLG flakes are folded onto

nLG flakes to form t(m+n)LG flakes, such as the t(1+1+1)LG, t(1+3)LG, t(3+3)LG, t(4+4)LG and

t(5+5)LG used in this study. Alternatively, a mLG flake from one substrate can also be trans-

ferred onto a nLG flake on another substrate to form t(m+n)LG.Samples t(1+2)LG, t(2+2)LG and

t(2+3)LG are prepared in this way. We follow the transfer method described in Ref.26 A flake is

exfoliated onto a polymer stack consisting of a water-soluble layer (Mitsubishi Rayon aquaSAVE)

and PMMA, and the substrate is floated on the surface of a deionized water bath. During transfer,

the target substrate is heated to 110◦C to drive off any water adsorbed on the sample surface, as

well as to promote good adhesion of PMMA to the target substrate. N in all initial and twisted
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Figure 1: (a) Stokes/anti-Stokes Raman spectra in the C and LB spectral range, and Stokes Raman
spectra in the G peak region for 1.96 and 2.33eV excitation. Polarized Raman spectra are also
shown. (b) Peak area ofC31, C32 ,LBM41 and LBM42 as a function of excitation energy. Solid
diamonds, open squares and triangles are the experimental data, and solid and dashed lines are the
simulations. The peak area of the E1 mode at 127 cm−1 of quartz,Aqz(E1), is used to normalize
all peaks. (c)A(LBM 41) as a function of excitation polarization direction. Open triangles are
experimental data and solid lines are the expected trends the symmetry analysis.
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MLGs is identified by Raman spectroscopy and optical contrast.11,27–29

Raman spectra are measured in back-scattering at room temperature with a Jobin-Yvon HR800

Raman system, equipped with a liquid-nitrogen-cooled charge-coupled device (CCD), a 100×

objective lens (NA=0.90) and several gratings. The excitation energies are 1.58 and 1.71eV from a

Ti:Saphire laser, 1.96, 2.03, 2.09 and 2.28eV from a He-Ne laser, 1.83, 1.92, 2.18, 2.34 and 2.41eV

from a Kr+ laser, and 2.54, 2.67eV from an Ar+ laser. A 1800 lines/mm grating enables us to have

each pixel of the charge-coupled detector cover 0.54cm−1 at 488nm. Plasma lines are removed

from the laser signals using BragGrate Bandpass filters, as described in Ref. 21. Measurements

down to 5cm−1 for each excitation are enabled by three BragGrate notch filters with optical density

3 and with full width at half maximum (FWHM)=5-10cm−1.21 The typical laser power is∼0.5mW

to avoid sample heating. The accumulation time for each spectrum is∼600s.

We first consider a t(1+3)LG measured at 1.96 and 2.33eV, as for Figure 1(a). This shows

peaks at∼1510 and∼1618cm−1. We assign these to the R and R′ modes as described in Refs.

30,31. From their position we deduce aθt ∼10.6◦ between the SLG and TLG in this t(1+3)LG,

see Methods for details. This corresponds to a twist vector (1,9). Two C modes (C31 andC32)

are observed in t(1+3)LG, mainly localized in 3LG constituent, as previously discussed.11 Two

additional modes are observed in t(1+3)LG at∼116 and∼93cm−1.

For a given N, the LBM position, Pos(LBM)N, can be written as:20,32

Pos(LBM)N,N-i = Pos(LBM)∞ sin

[

iπ
2N

]

, (1)

where Pos(LBM)∞ is the LBM in bulk graphite∼128cm−1.33 We note that the N-1 LBM fre-

quencies predicted by Eq. (1) do not necessarily translate to the experimental observation of the

corresponding C and LBM Raman peaks, as these become Raman active under specific selection

rules and symmetry constraints, as discussed in Methods.

From Eq. (1) we get Pos(LBM21)=90.5cm−1 and Pos(LBM31)=110.8cm−1. The experimental

value 116cm−1 is, however, larger than the predicted Pos(LBM31), but closer to Pos(LBM41)=118cm−1.
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This implies that the LBM is consistent with that of a 4LG, butnot with that of the 3LG constituent

in the t(1+3)LG, unlike the case of the C modes, where the observed peaks correspond to C31 and

C32,11 as indicated in 1. Thus, we assign the two LBMs in t(1+3)LG as LBM41 and LBM42.

Unlike the D and 2D modes, the LBMs are non-dispersive with excitation energy,Eex, as shown

in Figure 1(a). This is expected, since they come from the Brillouin zone (BZ) center. The peak

area of LBM41, A(LBM 41) measured at 1.96eV is∼30 times higher than at 2.33eV, indicative of

a resonant Raman behavior. We assign the LBM41 and LBM42 enhancement to resonance with

new optically allowed electronic transitions in t(1+3)LG,as in the case of the C and G modes dis-

cussed in Ref. 11. The C and LB modes are normalized to the E1 mode of quartz.34 Its position

(∼127cm−1) is so small that the CCD efficiency difference between C, LB and E1 modes for each

excitation energy can be ignored. The resonant profile of LBM41 is almost identical to that of C32,

and the profile of LBM42 is similar to that of C31, as shown in Figure 1(b). This indicates that the

LBM41 resonant behavior can be also assigned to the resonance between the van Hove singularities

in the joint density of states of all optically allowed transitions in t(1+3)LG and the laser excitation

energy, similar to the C modes in tMLGs.11

Figure 1(a) shows that the C and G modes are present in both parallel (XX) and cross (XY)

polarization. However, the LBMs in t(1+3)LG vanish in the XYconfiguration. This can be ex-

plained as follows. A t(m+n)LG (m 6= n) has aC3 symmetry, and the corresponding irreducible

representation35 is Γ=A+E. All LBMs have A symmetry, all of C modes have E symmetry, and

both the A and E modes are Raman active.35 The A Raman tensor is:35

A =













a 0 0

0 a 0

0 0 b













(2)

This implies that, in backscattering, all LBMs should not beseen in the XY configuration, see

Methods, and that their intensity is a function of the angle (φ ) between the polarization of the

incident light and the polarization (Y) of the Raman signal,I(LBM) = a2cos(φ)2 (see Methods).
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Figure 1(c) plotsI(LBM41) as a function ofφ . The experimental data (open triangles) are in good

agreement with the symmetry analysis.
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Figure 2: Stokes/anti-Stokes Raman spectra in the C and LB peak region and Stokes spectra in the
G spectral region for six tMLGs.Eex is also indicated. The spectra are scaled and offset for clarity.
The scaling factors of the individual spectra are shown. Vertical lines are guides to the eye.

Figure 2 plots the Raman spectra of six tMLGs: t(1+2)LG, t(1+1+1)LG, t(1+3)LG, t(2+2)LG,

t(2+3)LG and t(5+5)LG. To facilitate comparison, all are normalized to have the same intensity

of the G peak, I(G). The spectra show the C modes ofmLG (m >1) andnLG (n >1), localized

inside themLG or nLG constituents.11 However, this it is not the case for the LBMs. E.g., in

t(1+1+1)LG there is no observable C mode, because the twisted interface significantly weakens

the shear coupling and pushes the C frequency towards the Rayleigh line, outside the measured

spectral region.11 However, in the LBM region, t(1+1+1)LG shows a peak at∼108.8cm−1, close to

the predicted LBM31∼110.8cm−1. A similar peak at∼109.9cm−1 is observed in t(1+2)LG. Since

both t(1+1+1)LG and t(1+2)LG are two possible t3LG embodiments, we assign the two LBMs

in t(1+1+1)LG and t(1+2)LG to LBM31. The t(2+2)LG sample shows a LBM∼115.5cm−1, very
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close to the observed∼116cm−1 in t(1+3)LG, and to the expected value for LBM41. However,

unlike t(1+3)LG, t(2+2)LG has a D3 symmetry, and LBM41 and LBM43 are Raman-active A1

modes, while LBM42 is a Raman-inactive A2 mode, see Methods. Thus, LBM42 in t(2+2)LG is

not detected due to symmetry. In a similar way, we assign the LBMs in t(2+3)LG and t(5+5)LG as

LBM51, LBM52 and LBM10,1, respectively. Based on symmetry, all C modes in t(m+n)LGs are

Raman active. Consequently, the C modes of the Bernal-stacked constituents are also observed,

such as C51, C53 and C54 in t(5+5)LG.

The above data suggest that, unlike the the C modes, Pos(LBMN,N−i) in a tNLG (N = m+n+

...) is mainly determined by N and not by the number of layers of the individual Bernal-stacked

constituents (m,n,...). This means that the LBMs in tMLG are not localized inside its constituents,

but are a collective motion involving all layers. We stress thatθt for the six tMLGs in 2 is not the

same, as determined by the respective R′ and R positions. Variousθt give different band structures

with different values for optically-allowed resonance transitions.11,13 Therefore, for each sample

we detect LBMs at different excitations.

We now consider the effects of changing interlayer interactions on the LBM positions. To do

so, we solve the equation of motion for a linear chain system.21 The frequenciesω (in cm−1) and

displacement patterns can be calculated by solving linear homogeneous equations:11,21

ω2
i ui =

1
2π2c2µ

Dui, (3)

whereui is the phonon eigenvector of theith mode with frequencyωi, µ=7.6×10−27kgÅ−2 is the

SLG mass per unit area,c=3.0×1010cm s−1 is the speed of light, andD is the force constant matrix.

In our previous works, we adopted a simple linear chain model(LCM) with only nearest-neighbor

interlayer interactions.21,32This allowed us to explain the observed C modes in Bernal and tMLGs,

as well as the LBMs in several 2d materials.21,24,32,36For tMLGs, this also predicts the C modes

by introducing a weaker shear force constant (α‖
t ) at the twisted interface.11

The top panel of Figure 3(a) plots the schematic LCM for LBMs in t(2+3)LG if only the

9
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Figure 3: (a)Linear chain model (LCM) and LCM withsecond-nearest interlayer coupling
(2LCM). (b) Theoretical (LCM, open triangles; 2LCM, open diamonds) Pos(LBMN1) and
Pos(LBMN2) in 4LG and 5LG, and experimental (Exp., crosses) and theoretical (2LCM, open
diamonds) Pos(LBMN1) and Pos(LBMN2) in t(2+2)LG, t(1+3)LG and t(2+3)LG. (c) Experimental
(Exp., open crosses) and theoretical (2LCM, open diamonds)Pos(LBMN1) and Pos(LBMN2) in
tNLG. (d) Normal mode displacements and frequencies of t(1+3)LG andt(2+3)LG based on the
2LCM.
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nearest-neighbor layer-breathing interlayer interaction (α⊥
0 ) is considered. The experimental fre-

quencies of t(2+2)LG, t(1+3)LG and t(2+3)LG are plotted in Figure 3(b) as crosses, and those of

all tMLGs are summarized in Figure 3(c), including LBMs fromt(3+3)LG and t(4+4)LG, whose

Raman spectra are presented in Methods. By taking the average frequency (115.8cm−1) of the

experimental LBM41 measured in t(1+3)LG and t(2+2)LG, we getα⊥
0 =106×1018 Nm−3, which

would give 119.2cm−1 for Pos(LBM51) in 5LG, consistent with the value measured in t(2+3)LG.

Figure 3(b) also gives Pos(LBM42)=88.6cm−1 for 4LG and Pos(LBM52)=101.4cm−1 for 5LG,

which are 4.3 and 2.9cm−1 lower than those observed in t(1+3)LG and t(2+3)LG, respectively.

These lower frequencies suggest that the LCM, with only nearest-neighbor interlayer interac-

tions, may be insufficient to reproduce the interlayer breathing coupling in tMLGs. If a weakened

coupling at the twisted interface is included in the LCM, it will result in LBM red-shift for both

LBMN1 and LBMN2 (N=4,5), making the agreement worse, see Methods. We thus introduce an

interlayer breathing force constant between the second-nearest neighbor layers (β⊥
0 ). The new

model is denoted as 2LCM, and is schematically shown in Figure 3(a) for LBMs in t(2+3)LG.

2LCM with β⊥
0 ∼ 9.3×1018 Nm−3 fits the experimental data best, as indicated by diamonds in

Figure 3(b). With 2LCM we can well fit the frequencies of the observed LBMs in all tMLGs, as

shown in Figure 3(b,c). Additionally, we can expand the 2LCMpredictions to bulk graphite, based

on the parameters fitted on our experiments. The silent LBM (B2g) in graphite is derived to be

∼125.3cm−1, very close to∼128cm−1 determined by neutron spectrometry.33

The normal mode displacements and frequencies of each LBM int(1+3)LG and t(2+3)LG as

derived by the 2LCM are summarized in Figure 3(d). In LBMN,1, the relative motions of the

nearest-neighbor layers are always out-of-phase, and those of the second-nearest-neighbor layers

are always in-phase. This would suggest Pos(LBMN,1) to be insensitive to the second-nearest-

neighbor interlayer coupling. However, the relative motions of the second-nearest-neighbor are

out-of-phase for LBM42 in t(1+3)LG and LBM52 in t(2+3)LG. Thus, the reason why Eq. (1) fits

Pos(LBMN1) well, but predicts lower frequencies for Pos(LBMN2) is, most likely, due to the lack

of interaction from second-nearest-neighbor layers.
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The 2LCM gives the same LB coupling for twisted and Bernal-stacked interfaces. However,

the shear coupling at twisted interfaces is∼20% of that at Bernal-stacked interfaces.11 We now use

DFT and density functional perturbation theory (DFPT)37 to validate this model, and to understand

the difference between the C and LBMs in tMLG. Because a t(m+ n)LG with a twist vector of

(1,2),i.e., a twist angle of 21.8◦, is a simplest twist structure, we consider t(2+3)LG and t(1+2)LG

with this twist angle for DFPT.

Table 1:Ab initio interlayer force constants between each couple of layers alongz for t(2+3)LG.
Twisting happens between the second (denoted 2a) and third (denoted 3b) layers. Two categories
of Bernal-stacked layers are grouped as "a" and "b", respectively.

Force constant
(×1018 Nm−3) 1a 2a 3b 4b 5b

1a - - - - -
2a 114.2 - - - -
3b 4.3 114.7 - - -
4b 3.9 3.4 120.1 - -
5b 4.0 6.1 2.6 113.4 -

We first calculate the frequencies of LBMs in t(2+3)LG with a (1,2) twist vector. They are

126.3cm−1 (LBM51), 107.3cm−1 (LBM52), 79.9cm−1 (LBM53) and 47.9cm−1 (LBM54), respec-

tively, overall consistent, but a few cm−1 larger, than the experiments reported in Figure 3, owing

to the slightly overestimated interlayer interaction.38,39A full comparison between calculated and

measured frequencies is reported in Methods. Figure 3(a) shows the five layers and four inter-

faces in t(2+3)LG. We denote them as 1a, 2a, 3b, 4b, and 5b fromleft to right. Twisting happens

between layers 2a and 3b, and we call this interface 2a-3b. The interlayer force constant (IFC)

alongz is a measure of the interlayer breathing coupling and is calculated as for Methods. The

IFC alongz between 2a and 3b (the twisted interface) is 114.7×1018Nm−3, close to that of other

Bernal stacked interfaces, pointing to a similar breathingcoupling at the twisted interface as that

of the Bernal stacked interface. We getα⊥
0 =115.6×1018Nm−3 by averaging the computed IFCs

alongz at the four interfaces, which agrees with the experiments and with the value derived using

the 2LCM (116×1018Nm−3)
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Figure 4: (a) Atomic structure of t(1+2)LG withθt=21.8◦. The twisted and Bernal-stacked inter-
faces are indicated by green solid and dashed lines, respectively. (b) Charge density contour for
the t(1+2)LG sample ina. (c) Layer-averaged charge density alongz.

We now address the substantial force constant difference for the C and LBMs in twisted and

Bernal-stacked layers. Van der Waals forces, specifically the dispersion force,40 rule the interlayer

interactions, and play a key role in the difference between Cand LBMs in tMLG. Figure 4(a)

plots the sideview of the fully-relaxed atomic structure ofa t(1+2)LG with a (1,2) twist vector. We

also consider t(1+2)LGs with twist angles of 13.2◦, 38.2◦ and 46.8◦. Four stacking configuration

are considered for each angle. The average interlayer distance for every configuration is 3.39Å,

with a variation less than 0.01Å. Ref.41 reported a similar result for twisted MoS2 bilayers, with the

calculated interlayer distances nearly identical in the 0◦ to 60◦ range. Our calculations are also con-

sistent with the interlayer distance in t(1+1)LGs calculated in Ref.,42 showing a larger interlayer

distance at the twisted interface when compared to Bernal-stacked layers, and little correlation

between interlayer distance and twist angle. The interlayer distance between the twisted interface

and the Bernal-stacked interface in t(1+2)LG is∼0.1Å , much smaller than in MoS2/MoSe2 het-

erostructures (∼0.6Å),43 where the interface has∼4% lattice mismatch. This is directly relevant

for the out-of-plane breathing vibration alongz, as represented by the LBM frequency. Eq. (4)

and Eq. (5) in Methods indicate that the interaction strength has a positive correlation with charge

density, nearly identical at the two interfaces of Figure 4(b). A small difference is revealed by

calculating the mean charge densities at the two interfaces. The interlayer breathing interaction at

the twisted interface is very close to that of Bernal-stacked interfaces, again supporting the 2LCM.

13
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Figure 5: Atomic structure of (a) Bernal-stacked 2LG on the top of t(1+2)LG and (b) the t2LG
at the bottom of t(1+2)LG. The corresponding charge density(c) at the Bernal-stacked interface
in (a) and (d) at the twisted interface in (b). Schematic diagram for the charge distribution (e)
at the Bernal-stacked interface in (a) and (f) at the twisted interface in (b). The latter shows the
mismatched periodicity between the two layers.

We turn to consider the C modes in t(1+2)LG with a (1,2) twist vector. Top views of the

Bernal-stacked and twisted interfaces are shown in Figure 5(a,b), while their corresponding charge

densities in the middle of two SLGs is shown in Figure 5(c,d).Both plots indicate that the C6

symmetry at the Bernal-stacked interface is broken at the twisted interface (Figure 5(b)), and the

local density periodicity is also lifted (Figure 5(d)). Twisting forms a Moiré pattern, resulting in

a locally mismatched periodicity of the charge density variations. Figure 5(e,f) plots a schematic

diagram illustrating the effect of periodicity mismatch onthe C vibrations. In Bernal-stacked inter-

faces the interatomic restoring forces are all along the positive direction for a small displacement,

Figure 5(e). With the elimination of the local periodicity,a Moiré pattern at the twisted interface

makes the interatomic restoring forces negative or positive, as shown in Figure 5(f). Therefore,

shear restoring forces are nearly canceled at the twisted interface, resulting in a much weaker

shear coupling than in Bernal-stacked interfaces. Thus, the softening of the C modes is due to the

periodicity mismatch at the twisted interface.

14



Conclusions

We measured by resonant Raman spectroscopy the LBMs of tMLG,an archetype heterostructure.

We showed that a second-nearest neighbor linear chain modelexplains all the measured spectra,

as validated by ab-initio calculations. The interlayer shear coupling strength declines at twisted in-

terfaces due to the periodicity mismatch between two twisted layers, while the interlayer breathing

coupling remains nearly constant. Beyond tMLGs, the interlayer interaction of other heterostruc-

tures can also be measured by Raman spectroscopy.44 Unlike graphene, the interlayer coupling

modes of other 2d layered materials, like transition metal chalcogenides32,36,44,45(e.g. MoS2 and

WSe2) and others, such as NbSe2,46 and Bi2Se3
44 and Bi2Te3,44 can be measured more easily,

due to the stronger electron-phonon coupling. Therefore, the LBMs should be also measurable in

heterostructures with clean interfaces, such as graphene/MoS2, graphene/WS2, MoS2/WSe2, thus

allowing one to probe the interlayer coupling of these two-component layered heterostructures and,

possibly, even more complex structures. By studying both C and LB modes together, it should be

possible to detect the detailed components, number of layers of each component, and the coupling

amongst the components, a crucial step for both fundamentalscience and technology based on

these materials.
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Methods

Calculations

Structural relaxation and charge density calculations areperformed using the DFT code Vienna

ab-initio simulation package (VASP)47 within the projector augmented wave method48,49 and a

plane-wave basis. The exchange-correlation potential is treated within the generalized gradient

approximation. Van der Waals interactions are considered under the framework of the vdW-DF

method40 with the optB86b exchange functional.50 This exchange-correlation combination is more

accurate in predicting lattice parameters in 2d materials,such as black phosphorous51 and boron

nitride39 than other vdW-DF approaches, while it is known to slightly overestimate interlayer

binding energy.38,39 In vdW-DF the description of the dispersion force requires the inclusion of

the non-local correlation energy:40

Enl
c =

h̄
2

∫ ∫

drdr′n(r)Φ(r,r′)n(r′) (4)

Φ(r,r′)→ 3e4

2m2ω0(r)ω0(r′)[ω0(r)+ω0(r′)]d6 (5)

with n(r) the charge density,Φ the correlation interaction kernel andd the distance between two

SLGs. Ford → ∞, Φ ∝ n−1.5d−6, which meansEnl
c ∝ n0.5d−6. The non-local correlation energy

between two SLGs is determined by charge density and layer distance.

A 29×29×1 k-mesh is used to sample the BZ for Bernal-stacked supercells and an 11×11×1

one for twisted supercells, due to the
√

7 larger lattice constant. The energy cutoff for the plane-

wave basis is 400eV. All atoms are fully relaxed until the residual force per atom is smaller than

0.001eV·Å−1. Vibrational frequencies are calculated using DFPT,37 as implemented in VASP.

In an interlayer vibrational mode, the whole layer can be treated as one rigid body. The IFC is

constructed by summing inter-atomic force constants over all atoms from each of the two adjacent

layers. The matrix of inter-atomic force constants, essentially the Hessian matrix of the Born-

Oppenheimer energy surface, is defined as the energetic response to a distortion of atomic geometry

16



in DFPT.37

Figure 6 plots the LBM positions calculated from the LCM in Eq. (1) and by DFT for Bernal

Stacked samples (with DFT data rigidly shifted by∼10cm−1) implemented in the QuantumE-

SPRESSO package.52 The in-plane lattice constant is set to 2.43 Å and the interlayer distance

3.26 Å to match the experimental ZO′ frequency at theΓ point. A norm-conserving Martins-

Troullier pseudopotential within the local density approximation (LDA) is used, and the plane

waves were expanded up to a 80Ry cutoff. The BZ is sampled using a 12×12×4 Monkhorst-Pack

mesh and Methfessel-Paxton smearing with 0.03Ry width is used for the electronic occupations

close to the Fermi level. The dynamical matrices are computed on a 8×8×3 mesh. The modes are

either Raman (R) or Infrared (IR) active.
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Figure 6: LBMs for Bernal stacked NLGs. Gray lines indicate the calculated LCM.

Figure 7 compares DFPT and experimental Pos(C) and Pos(LBM)in various tMLGs.

Figure 8 compares the experimental LBMs in tMLGs with those calculated with the LCM of

Eq. (1) and those using a LCM with a weakened coupling at the twisted interface (tLCM). A 10%

weakened coupling red-shifts both LBMN1 and LBMN2 (N=4 and 5), resulting in a worse fit to the

experimental data.
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Figure 7: C and LBMs in tMLGs. (pink crosses) DFPT data. (bluecircles) Experiments.
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Figure 8: (Crosses) Experimental data. (Up triangles) LCM.(Circles) tLCM.
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Relation between θt and the frequency of R and R′ modes

The observation of R and R′ peaks in the Raman spectra of tBLG is due to the superlattice mod-

ulation activating phonons in the BZ interior.30,31 θt dictates the wavevector for this modulation,

with q(θt) the difference between the basic vectors of two SLGs in the BZ. The wavevectorq(θt)

selects the phonons along the phonon dispersion that becomeRaman active. The relation between

qΓK(θt) and theθt is given by:

qΓK(θt) =
4π
3a

(

1−
√

7−2
√

3sinθt −6cosθt

)

, (6)

wherea=2.46Å is the SLG lattice constant. From Pos(R) and Pos(R′), qΓK(θt) can be determined

from the SLG phonon dispersion. Eq. (6) then givesθt . For the assignment, we use phonon dis-

persions calculated from DFT53 corrected with GW (Green′s function G of the screened Coulomb

interaction W), which well reproduces the experimental LO-TO splitting.54,55

Figure 9 plots the optical image and Raman spectra of t(1+1+1)LG and t(1+1)LG. There are

two couples of R and R′ modes in t(1+1+1)LG due to twice folding a SLG. The R1 mode of

t(1+1+1)LG is at 1529cm−1, the same position as the R mode of t(1+1)LG. This means that the

R1 and R1
′ are from the bottom twisted bilayer of t(1+1+1)LG and that R2 is from the top twisted

bilayer of t(1+1+1)LG.

Figure 10 plots the optical image and Raman spectra of t(3+3)LG and t(4+4)LG.θt of t(3+3)LG

and t(4+4)LG are 11.4◦ and 12.0◦, respectively, determined by the respective R′ modes.

Symmetry and Raman activity of C and LBMs in t(m+ n)LG (m 6= n) and

t(n+n)LG (n ≥ 2)

t(m+ n)LG (m 6= n) have C3 symmetry, the corresponding irreducible representation is Γ=A+E,

and bothA and E modes are Raman active.35 In t(m+ n)LG with (m 6= n), all non-degenerate

LBMs haveA symmetry, and all of double-degenerate C modes belong toE symmetry.35

t(n+ n)LG (n ≥ 2) have D3 symmetry, and the corresponding irreducible representation is
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Figure 9: Optical image and Raman spectra of t(1+1+1)LG and t(1+1)LG.
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Figure 10: Stokes/anti-Stokes Raman spectra in the C peak region and Stokes spectra in the LBM
and G spectral regions for t(3+3)LG and t(4+4)LG. The twist angle and laser energy is marked for
each sample.
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Γ=A1+A2+E.35 A1 andE modes are Raman active, whileA2 are Raman inactive.35 In t(2+2)LG,

LBM41 and LBM43 haveA1 symmetry, while LBM42 hasA2 symmetry, and all the C modes are

E.35

The Raman intensity is proportional to|ei ·Rt ·es|2, whereei andes are the unit vectors describ-

ing the polarizations of the incident and scattered light, and Rt is Raman tensor.35 In our work,

the polarization of the incident light is at an angle (φ ) set by aλ /2 wave plate (ei=[cosφ sinφ 0]),

and the polarization of the scattered light is fixed along thehorizontal (es=[1 0 0]′). Therefore, the

Raman tensors of for the LBMs in t(m+n)LG (m 6= n) is:35

A =













a 0 0

0 a 0

0 0 b













(7)

Thus, I(LBMs) in t(m+n)LG (m 6= n) is:

I(LBMs) ∝

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[cosφ sinφ 0]













a 0 0

0 a 0

0 0 b

























1

0

0













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= a2cos(φ)2 (8)

As discussed above, the LBMs in the t(1+3)LG are Raman active, except LBM42 (Raman inactive).

LBM41 and LBM43 in t(2+2)LG are Raman active. Both LBM41 and LBM42 are observed in

t(1+3)LG, see Figure 2. However, only LBM41 is observed in t(2+2)LG. The absence of LBM43

in t(1+3)LG and t(2+2)LG may result from a weaker EPC.21 The Raman tensor of theA2 mode in

t(2+2)LG is the same as that of theA mode in t(1+3)LG,35 thus the I(LBM41) in t(2+2)LG is also

laser-polarization dependent.
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