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The ready availability of full-field velocity measurements in present-day experiments has
kindled interest in using such data for force estimation, especially in situations where
direct measurements are difficult. Among the methods proposed, a formulation based
on impulse is attractive, for both practical and physical reasons. However, evaluation of
the impulse requires a complete description of the vorticity field, and this is particularly
hard to achieve in the important region close to a body surface. This paper presents a
solution to the problem. The incomplete experimental vorticity field is augmented by a
vortex sheet on the body, with strength determined by the no-slip boundary condition.
The impulse is then found from the sum of vortex-sheet and experimental contributions.
Components of physical interest can straightforwardly be recognised; for example, the
classical ‘added mass’ associated with fluid inertia is represented by an explicit term
in the formulation for the vortex sheet. The method is implemented in the context
of two-dimensional flat-plate flow, and tested on velocity-field data from a translating
wing experiment. The results show that the vortex-sheet contribution is significant for
the test data set; furthermore, when it is included, good agreement with force-balance
measurements is found. It is thus recommended that any impulse-based force calculation
should correct for (likely) data incompleteness in this way.

1. Introduction

The fluid mechanics of flapping wings is a subject of long-standing interest to biologists.
More recently, it has also attracted attention in the context of unmanned air vehicles.

Experimental work in this field has benefited greatly from the emergence of particle-
image-velocimetry (PIV) as a viable, non-intrusive, full-field measurement technique.
As a result, velocity data from unsteady wing-flow tests are typically available to an
unprecedented extent. Force data, however, are less easily obtained. The conventional,
load-cell-based, approach that is so successful for steady flows becomes less straightfor-
ward; the force levels in the parameter ranges relevant to flapping flight are typically much
lower than for conventional wings, and measurements are contaminated by inertial loads.
Hence there is interest in alternative techniques that make use of the readily-available
velocity data, via the link between force and momentum.

The standard starting point (e.g. van Oudheusden et al. 2007) is a force-momentum
balance for a control volume enclosing the wing. This requires knowledge of the pres-
sure on the outer boundaries. Direct measurement of this quantity is difficult, but in
incompressible flow it is fully determined by the velocity field. Hence most momentum-
based load estimates include a pressure calculation as a first step (cf., for example, Unal
et al. 1997; van Oudheusden et al. 2008; Mohebbian & Rival 2012; Gharali & Johnson
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2014). Alternatively, the dependence of pressure on velocity allows the primitive control-
volume formulation to be manipulated into one that is pressure-free, at the price of
greater complexity in the boundary flux terms (Noca et al. 1999; Simão Ferreira et al.
2011; DeVoria & Ringuette 2013). At present, it is unclear whether this step conveys a
significant practical advantage. Common to both methods is the possibility of accuracy
problems when organised flow structures cross the boundary (Mohebbian & Rival 2012;
DeVoria & Ringuette 2013).

An alternative to the control-volume approach is one based on the impulse of the flow
field. Historically, the deduction of force from impulse is linked to first potential, and
then inviscid, flow theory, but it has since been shown (Wu 1981) that the formulae
arising in these contexts are special cases of a general result for a real, viscous, fluid.
The impulse-based formulation is attractive because it eliminates the need to calculate
pressure (or equivalent) contributions at a boundary. It also has the potential to provide
useful physical insight, as it is founded on the vorticity field. However, it requires every
significant part of that field to have been captured. In particular, the details of the
‘starting’ vorticity must be available. As a result, this approach cannot be regarded as
a candidate to supplant the momentum formulation in all cases. Nonetheless, where
applicable, it represents a complementary, and potentially valuable, line of attack.

Examples of impulse-based load estimation are given by Lin & Rockwell (1996), Poelma
et al. (2006) and DeVoria & Ringuette (2013). In each case, the starting flow is included in
the available data, and the results show promising agreement with direct measurements.
None, however, addresses the issue of resolution near the body surface. This is a particular
concern for impulse-based methods, based as they are on the vorticity field. Vorticity
generated at the surface diffuses very slowly into the bulk fluid, over periods of order
Reynolds-number greater than the convective time-scale, so the local field consists of
intense, spatially concentrated, regions. Inevitably, not all will be properly captured by
the experimental measurements, introducing an unquantifiable, and possibly significant,
potential for error. The purpose of this paper is to present a means of accounting for the
deficit.

The key idea is to represent the ‘missing’ vorticity as a vortex sheet on the body
surface. The concept of a surface vortex sheet arises naturally for inviscid flow, as an
interpretation of the physically unrealistic slip velocity that the theory permits (Lighthill
1963). Perhaps surprisingly, it is also useful for viscous fluids. Here, although the singular
distribution of vorticity that it represents cannot occur in a physically realisable flow,
it appears when the vorticity evolution equation is discretised in time. After a finite
time step, the evolved vorticity field is no longer consistent with the no-slip condition
on bounding surfaces. The vortex sheet associated with the discrepancy is identified as
the accumulation of vorticity generated at the surface over the time step. In the real
flow, such vorticity is continuously diffused into the fluid and the field remains finite;
in the numerical method the diffusion requires a separate, subsequent, calculation. This
qualitative algorithm description was first given by Lighthill (1963), and forms the basis
of the ‘vortex method’ approach to flow computation. Its implementation in practice is
discussed by Cottet & Koumoutsakos (2000, ch. 6).

The approach presented in this paper bears a strong superficial resemblance to the
vortex-method algorithm: the velocities associated with the (incomplete) experimental
vorticity field are inconsistent with the no-slip condition on the body surface, and
the discrepancy corresponds to our vortex sheet. Conceptually, however, it is crucially
different, in that the sheet cannot be directly linked to vorticity generation. Indeed, if the
experimental vorticity field were complete and fully resolved, there would be no sheet,
but there would of course still be vorticity generation at the surface. Our vortex sheet is
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Figure 1. The translating flat-plate wing. The plate has chord c and centre coordinates
(xc, yc). It moves horizontally to the left at incidence α and with speed U(t).

simply an approximate representation of the part of the (real, finite) vorticity field that
has not been captured by the experimental measurements. We argue that this must be
accounted for if the impulse formulation is to be valid.

Fortunately, this is entirely possible; given the experimental vorticity field and the body
motion, the sheet strength is uniquely determined (Lighthill 1986, ch. 6).† In general, it
would be calculated using a two- or three-dimensional panel method, but here we consider
an application — two-dimensional flow around a flat plate — that is amenable to a quasi-
analytical approach. The theoretical details are set out in §2. An initial experimental
assessment of the method is then presented in §3.

2. Application: translating plate in two dimensions

2.1. Description

The problem geometry is defined in figure 1. A flat plate of chord c moves parallel to
the x axis in fluid that is stationary at infinity. The plate is oriented at an angle α to the
horizontal, with centre at (xc, yc) and speed U(t)(= −dxc/dt). It starts from rest, with
the fluid quiescent, so according to Kelvin’s theorem the circulation around a contour
enclosing the plate and its shed vorticity is zero throughout the motion.

2.2. Vortex-sheet strength

The strength of the vortex sheet is given by the spurious plate-surface slip velocity
associated with the experimental vorticity field. Thus, although it is conceptually different
from the sheet that arises in a vortex method, its calculation is algorithmically identical.
As noted by Eldredge (2010), it depends linearly on the plate motion and the vorticity
field, so its strength can be expressed as the sum of their individual contributions. This
decomposition is shown schematically in figure 2.

Each vortex-sheet component requires its overall circulation to be specified before
it is uniquely determined. Note, first, that the plate-motion part has an irrotational
surrounding flow field. Therefore, if its circulation is chosen to be zero, it is simply the
potential flow associated with the classical ‘added mass’ force contribution (Batchelor
2000, §6.4). While it is not intuitively obvious that added mass should persist in this form
even when the overall flow is strongly rotational, Leonard & Roshko (2001, appendix)
have convincingly argued that it must. Hence we follow Eldredge (2010), and make this
term non-circulatory. The other vortex-sheet component, due to the known vorticity,
then has circulation equal and opposite to that of the known vorticity. It will henceforth
be referred to as the ‘circulatory part’ of the vortex sheet.

† A supplementary condition may also be required. Typically this issue only arises in
two-dimensional flows, and is resolved by application of Kelvin’s circulation theorem.
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Figure 2. Schematic representation of the decomposition of the surface vortex sheet into
components associated with the plate motion (left) and the experimental vorticity field (right).

The expression for the vortex-sheet strength is most conveniently found by transform-
ing the plate to a cylinder. In terms of the complex variable

z = (x− xc) + i(y − yc), (2.1)

the mapping is defined by

z = ζ +
( c

4
e−iα

)2
ζ−1, (2.2)

and the problem is now to determine the flow around the cylinder ζ = (c/4)eiθ, subject
to the plate motion and the known vorticity. The former appears straightforwardly as
an oncoming free stream with horizontal velocity U , but the latter requires further
consideration. Without loss of generality, we represent the vorticity field as a collection
of point vortices with circulations Γk at locations (xk, yk). The mapping of equation (2.2)
conserves circulation, so the ζ plane contains point vortices Γk at the positions

ζk =
1

2

[
zk +

(
zk −

c

2
e−iα

)1/2 (
zk +

c

2
e−iα

)1/2]
, (2.3)

with zk defined in terms of xk and yk by equation (2.1).
According to the circle theorem (Batchelor 2000, §6.5), the cylinder-surface boundary

condition can be satisfied by introducing, for each vortex, images of circulation −Γk and
Γk at ζ = (c/4)2/ζ∗k and ζ = 0 respectively. However, this leaves the cylinder with zero
circulation, rather than the required value −

∑
Γk, which must therefore be added via

an additional point vortex at the origin. Since this element exactly cancels all the image
vortices at that point, we conclude that the known-vorticity contribution to the cylinder
flow can equally be found by simply introducing the −Γk images alone.

The upshot of these considerations is a complete description of the cylinder-plane flow,
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consisting of contributions from the known point vortices, their images, and the oncoming
free stream. The quantity of interest is the azimuthal velocity, uθ, on the cylinder surface,
and this can be written as

uθ = ucθ + uamθ (2.4)

with

ucθ = − 2

πc

∑
k

Γk
|ζk|2 − (c/4)2

|ζk − (c/4)eiθ|2
, (2.5)

uamθ = −2U sin θ. (2.6)

Note that this split mirrors the plate-plane decomposition of figure 2; ucθ is the circulatory
part associated with the known vorticity field, and uamθ the added-mass term. Their link
to the plate-plane vortex-sheet strength will be explained in the following section.

2.3. Impulse

The impulse components are given by the area integrals (Wu 1981):

Ix =

∫
yω dA, Iy = −

∫
xω dA, (2.7)

where ω is the vorticity field.† Recall that, here, ω consists of both the known vorticity
in the fluid and the surface vortex sheet required to fulfil the no-slip boundary condition.
The former is represented by the point vortices Γk, and the latter will be denoted as γ.
Hence equation (2.7) becomes

Ix = Ikvx + Ivsx , Iy = Ikvy + Ivsy , (2.8)

with

Ikvx =
∑
k

ykΓk, Ikvy = −
∑
k

xkΓk, (2.9)

and

Ivsx =

∮
yγ dl, Ivsy = −

∮
xγ dl, (2.10)

the contour integrals being taken around the plate surface.
To evaluate the vortex-sheet contributions, we must link γ to the mapped, cylinder,

flow field. To do so, we first view the latter in the same way, i.e. as a combination of
surrounding vorticity and a vortex sheet on the body surface. The vortex-sheet strength is
then given by the tangential slip velocity, uθ (cf. equations (2.5) and (2.6)). Furthermore,
the circulation-conserving property of the plate-cylinder mapping implies the relation

γ dl = uθ
c

4
dθ, (2.11)

which allows the integrals of equation (2.10) to be found without derivation of an explicit
expression for γ. Finally, then, in terms of the separate components of uθ,

Ivsx = Icx + Iamx , Ivsy = Icy + Iamy , (2.12)

where

† Wu extends this quantity to the interior of the moving body as well, but the additional
contribution to the impulse is zero in our case.
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Icx =
c

4

∫ 2π

0

y|ζ=(c/4)eiθ u
c
θ dθ, Icy = − c

4

∫ 2π

0

x|ζ=(c/4)eiθ u
c
θ dθ. (2.13)

Iamx =
c

4

∫ 2π

0

y|ζ=(c/4)eiθ u
am
θ dθ, Iamy = − c

4

∫ 2π

0

x|ζ=(c/4)eiθ u
am
θ dθ. (2.14)

The plate-plane x and y coordinates in these expressions are defined by equations
(2.2) and (2.1). Note that this formulation, despite its representation in the cylinder
plane, evaluates the contributions to the plate-plane impulse in the absolute frame of
reference (i.e. with the fluid stationary at infinity). We also observe in passing that, in
this particular application, the integrals of equations (2.13) can be evaluated in closed
form, via residue theory (Wang & Eldredge 2013).

Finally, as shown by Wu (1981), the (two-dimensional) drag and lift forces on a body
of negligible cross-sectional area† are given by

D2D = −ρdIx
dt

, L2D = −ρdIy
dt

. (2.15)

These expressions also define the forces associated with the various impulse components,
via equations (2.8) and (2.12).

At this stage, it is worth recalling that Wu’s results apply for a viscous fluid; i.e. the
forces found via equations (2.15) include both pressure and shear-stress contributions.
This point deserves emphasis because of the aforementioned similarity between the
current approach and the enforcement of the no-slip boundary condition in a vortex
method. We reiterate that the vortex sheet here is not purely associated with vorticity
generation, and is hence not directly linked to the surface pressures. Instead, it represents
the unmeasured part of the vorticity field, which, when complete, determines the overall
fluid force through the impulse relation.

3. Experimental assessment

This section presents an initial evaluation of the proposed method, using PIV velocity-
field data and force-balance measurements. As two-dimensional flow is difficult to achieve
experimentally, the test case is three-dimensional, and the impulse analysis is based on a
single plane in the velocity field. Support for this approach comes from the investigations
of Luttges (1989), Jones et al. (2011) and Jardin et al. (2012), which have found starting
flows to be quasi-two-dimensional. Nonetheless, it introduces a discrepancy between the
theoretical assumptions and the experiment that must be borne in mind.

3.1. Apparatus and measurements

The experimental facility has already been documented by Pitt Ford & Babinsky
(2013), so will only briefly be described here. It consists of a 7m-long by 1m-square
towing tank, through which a rectangular carbon-fibre flat-plate wing is transported by
a carriage. For the tests reported here, the plate has chord 0.12m and span 0.48m. A
skim-plate on the carriage end provides a symmetry plane, so the effective aspect ratio
is 8. Force measurements are made with a two-component strain-gauge balance, and
velocity measurements using PIV. The wing position is found from its image in the PIV
frames.

† The general result includes an additional, straightforwardly calculable, term associated with
the inertia of the fluid displaced by the body.
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Acceleration distance (chords) 1 6
Acceleration (ms−2) 0.0398 0.00663
Final velocity (ms−1) 0.0978 0.0977

Table 1. Trajectory parameters for the PIV runs.

3.2. Test cases

For all tests reported here, the incidence was set to a nominal angle of 45◦ and the wing
was translated over ten chords with a constant-acceleration/constant-velocity/constant-
deceleration profile. Two different profiles were investigated, with acceleration to final
velocity over one chord or six chords displacement. For both, the deceleration to rest was
over the final chord of motion.

In order to optimise data quality, force and PIV measurements were carried out at
different Reynolds numbers: 35,000 and 10,000 (based on final velocity and chord). The
justification for this approach rests on previous observations (Tangler & Ostowari 1991;
Ol et al. 2010) of Reynolds-number independence for high-incidence aerofoil flows with
well-defined separation points.

In all cases, the PIV measurement plane was at half span.

3.3. Data processing

3.3.1. Position tracking

The wing appears as a thin white line in the raw PIV images. Its position was
determined using a template-matching algorithm, starting from manually determined
estimates for vertical coordinate and angle. In a first pass through the images, matching
was performed for: horizontal coordinate and angle simultaneously; displacement normal
to chord; displacement tangent to chord. The resulting vertical coordinate estimates
showed a slight increasing trend inconsistent with the nominal trajectory, and confirmed
as spurious by direct inspection of velocity fields. A second pass was thus made with
vertical position fixed at an (approximate) average value, with the matching over hori-
zontal coordinate and angle repeated. Both first- and second-pass angle estimates also
showed a trend, from approximately 46.6◦ to 47.4◦. For subsequent analysis, the wing
angle was taken as 47◦. The uncertainty in final results associated with the angle and
vertical-coordinate discrepancies is discussed in §3.5.

The impulse calculation requires a value for the instantaneous wing velocity that is
robust to the subsequent differentiation required to deduce force. This was obtained by
least-squares fitting of the estimated position to its nominal form. For the six-chord
acceleration-distance case, the acceleration is constant throughout the PIV field of view,
and the fit was unconstrained. In contrast, the one-chord case reaches its final velocity
within the field of view, and the fit was constrained to have one chord displacement
at this point. Both fits showed excellent agreement with the tracked position data, with
root-mean-square errors in the region of 0.2mm. The kinematic parameters obtained from
the fits are given in table 1.

For the force-measurement runs, in the absence of tracking information, a trigger
channel providing start and stop markers was employed. The kinematic parameters
deduced from the overall times and nominal position profiles of the runs are shown
in table 2.
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Acceleration distance (chords) 1 6
Acceleration (ms−2) 0.459 0.0766
Final velocity (ms−1) 0.332 0.332

Table 2. Trajectory parameters for the force-measurement runs.

1.9c

2.9c

0.4c

Figure 3. The flat-plate wing in the PIV field of view, showing overall dimensions and the
approximate vertical position of the plate. Data in the shaded region are excluded from the
calculation of the experimental-vorticity impulse contribution.

3.3.2. Velocity-field analysis

Each velocity field was estimated from the average of five experimental runs. Details
of the PIV analysis are given by Pitt Ford & Babinsky (2013).

The quantities required here are the elemental circulations Γk, which define the known-
vorticity contribution to impulse explicitly, via equation (2.9), and the circulatory vortex-
sheet contribution implicitly, via the term ucθ in equation (2.13). They were found by
direct trapezoidal integration around each (square) data-grid cell. The associated position
coordinates were set to the cell-centre values.

All the velocity fields are incomplete. Most notably, the region directly below the wing
is shaded from the laser light sheet and contains no reliable data. Elsewhere, a number of
grid points have velocity vectors identified as spurious during the PIV data processing.
These non-physical contributions must be excluded from the impulse calculation. Equally,
it is advantageous for numerical efficiency to ignore regions of irrotational flow.

The upshot of these considerations is indicated schematically in figure 3, which shows
the wing at a representative position in the PIV field of view. The shaded area both
contains the unreliable light-sheet shadow region, and is expected, on physical grounds, to
be irrotational (with the exception of an attached boundary layer on the plate underside,
which will be accounted for by the vortex sheet). Hence the cell-circulation analysis was
restricted to the remaining, white, part of the field. Within this area, only contributions
from cells with legitimate velocity vectors at all four corners (the vast majority) were
considered.

3.3.3. Force-balance data

Each case was repeated five times, and the results averaged to obtain normal and tan-
gential force records. High-frequency noise was removed by filtering and down-sampling
(from 2kHz to 200Hz), using a proprietary decimation routine.† No further smoothing

† cf. http://uk.mathworks.com/help/signal/ref/decimate.html
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was applied. The forces were then resolved into the x and y directions, using the incidence
deduced from the tracking analysis.

Rig-inertia effects were characterised by running the same displacement profiles in the
emptied tow-tank. The effective inertia was found by least-squares fit to the point-mass
force profile associated with the nominal acceleration history. This quantity was used to
calculate, and subtract, the rig-inertia force in the filled-tank runs.

3.4. Results

The finite PIV field of view (cf. figure 3), along with the need to capture all the shed
vorticity, limits the available impulse data to the first two chords of plate travel. Sample
plate-region velocity fields from this part of the motion are presented in figure 4.

Figure 5 shows the evolution of the measured circulation with time in the one-chord
acceleration case. The notable feature of this plot is the departure of the circulation from
the zero value that would be found if all the vorticity were captured by the experimental
data. By the end of the record, the discrepancy is around 0.7U0c, which is significant.
(A wing in steady flow with bound circulation at this level would have a lift coefficient
of 1.4.) Figure 5 also includes the circulation associated with the plate vortex sheet,
calculated in the same way as the corresponding impulse components. This provides a
useful algorithmic check — as required, it is equal and opposite to the measured value
— and a means of assessing the required discretisation. Two hundred panels were used,
yielding a typical accuracy of better than 0.01%.

An example of the calculated impulse — the x component in the one-chord acceleration
case — is shown in figure 6. Also plotted are its two constituents according to the
decomposition of equation (2.8): the known-vorticity (equation (2.9)) and vortex-sheet
(equation (2.10)) contributions. Both are seen to be relevant. Note also the reduced
‘noise’ in the overall curve; we ascribe this to the compensating effect of the vortex-
sheet calculation. There will inevitably be some variation in the extent of near-plate
vorticity captured by the PIV measurements, but any circulation lost here must, due to
the Kelvin-theorem constraint, reappear in the vortex sheet. Furthermore, as long as the
missed vorticity is not too far from the plate, its substitute in the sheet will be located
appropriately, and will thus give the correct contribution to the impulse.

The decomposition of the impulse into known-vorticity and vortex-sheet contributions
is dependent on the resolution of the measurements near the plate. Hence it is of
algorithmic, rather than physical, interest. Figure 7 shows, for both components of the
impulse, an alternative: into circulatory (Ikvx + Icx, I

kv
y + Icy) and added-mass (Iamx , Iamy )

contributions. The latter increase linearly with time during the (one-chord) acceleration
phase up to t = 2U0/c, and remain constant thereafter. This, of course, is exactly the
behaviour expected of the added mass. It is also possible to confirm correspondence
between the current formulation and the classical added-mass concept; the forces deduced
from the gradients match the theoretical results for the flat plate (which can be derived
analytically from the general expressions given by, for example, Batchelor 2000, §6.4).

The drag- and lift-coefficient predictions obtained from the impulses of figure 7, via
equation (2.15), are compared with the direct force measurements in figure 8. The
numerical differentiation was performed via a linear least-squares fit over a window of
0.5s centred on the time of interest. (The filtering effect of this method can be seen in
the added-mass contribution.) The non-dimensionalisation is on 1

2ρU
2
0 c. For the force-

balance data, the corresponding quantity is 2ρU2
0 c

2 (recall that the wing span is 4c).
Also shown are the predictions that would arise if the impulse were calculated from the
experimental vorticity field alone, without the vortex-sheet contribution.

It is immediately evident that this component is crucial. Without it, the predictions
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Figure 4. PIV velocity fields in the vicinity of the plate. The left-hand plots are for acceleration
over one chord, plate displacements: (a) c/2 (t = 1.4c/U0); (c) c (t = 2c/U0); (e) 3c/2
(t = 2.5c/U0). The right-hand column shows the six-chord acceleration results for the same
displacements, with times: (b) 3.5c/U0; (d) 4.9c/U0; (f) 6c/U0. Arrows marked ‘U ’ and ‘U0’
indicate, respectively, the instantaneous and final plate velocities. Also plotted are contours of
dimensionless vorticity, ωc/U , at levels –30, –20, –10, 10, 20, and 30.

bear little relation to the direct measurements. When it is included, the agreement is
much better, albeit still imperfect at a detailed level. (Note, however, that the large-scale
measured-force oscillations are probably associated with vibration, and hence spurious.)
Finally, the benefit of being able to identify the added-mass contribution is clear; we see
that this term initially dominates, but is gradually superceded by the circulatory part.
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Figure 5. Experimental (—) and vortex-sheet (– –) circulations for the one-chord
acceleration case.
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Figure 6. Horizontal impulse for the one-chord acceleration case: —, experimental-vorticity
contribution; – –, vortex-sheet contribution; · · ·, total.

All results presented so far have been for the one-chord acceleration case, which
includes the transition from constant acceleration to constant velocity within the PIV
field of view. We conclude with the force comparison for the six-chord acceleration case
(figure 9). Here an impulse-differentiation fitting window of 1.0s was employed. The direct
measurement is significantly noisier than previously, but it is still possible to discern good
agreement — if anything, better than in figure 8 — with the impulse-based prediction,
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Figure 7. Horizontal (a) and vertical (b) impulse components for the one-chord acceleration
case: —, vortical contribution; – –, added-mass contribution; · · ·, total.
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Figure 8. Drag (a) and lift (b) coefficients for the one-chord acceleration case: —, force-balance
data; – –, impulse-based prediction; – · –, prediction from experimental-vorticity impulse alone;
· · ·, added-mass contribution to the prediction.

as long as the vortex-sheet contribution is accounted for. Added mass again represents
a dominant proportion of initial force levels but (unlike the one-chord case) becomes
almost insignificant before the acceleration phase is complete.
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Figure 9. Drag (a) and lift (b) coefficients for the six-chord acceleration case: —, force-balance
data; – –, impulse-based prediction; – · –, prediction from experimental-vorticity impulse alone;
· · ·, added-mass contribution to the prediction.

3.5. Errors and uncertainty

3.5.1. Direct force measurements

The precision error of the force balance is 0.01N (Pitt Ford & Babinsky 2013), which
corresponds to an absolute uncertainty of 3 × 10−3 in the force coefficients of figures 8
and 9. These results are also affected by the choice of incidence angle, which was set
to 47◦ on the basis of the tracking analysis. The uncertainty associated with the range
observed there (46.6◦ to 47.4◦) can be estimated on the basis that the overall force on
the plate is predominantly in the normal direction. This implies a relative uncertainty of
0.7%.

In practice, the variance of the force-measurement ensembles for each case implies
considerably greater uncertainty than the estimates above. This quantity is reasonably
constant as a function of time, allowing the standard deviation of the ensemble means to
be estimated at around 0.1N, corresponding to an absolute uncertainty in drag and lift
coefficients of 0.03.

3.5.2. Forces derived from impulse

The most obvious error path for this calculation is from the PIV velocity data, for
which the error estimates are given by Pitt Ford & Babinsky (2013). Unfortunately, the
propagation is not straightforward to predict; while the summations of equation (2.9)
imply a beneficial reduction in variation, there is also significant cancellation in the cell-
circulation calculation. Certainly, as shown in figure 6, there are notable fluctuations
in the impulse estimates. However, these occur on a timescale much shorter than the
fitting window used for differentiation, which was deliberately chosen to include a large
number of time samples (50 in this case). Hence, in the expected absence of significant
correlation in time, we argue that stochastic uncertainty in the velocity data is likely to
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be unimportant. This leaves the bias error of –1% (Pitt Ford & Babinsky 2013), which
would feed through directly.

A more subtle, but more important, issue is the influence of estimated plate position
on the force predictions. This was assessed by running the analysis again for alternative
parameter specifications. For the plate incidence, values of 46.6◦ and 47.4◦ were specified,
and found to yield variations typically under 1%, with extremes exceeding 2% only very
rarely. Similar differences were found for vertical positions 2mm either side of the nominal
value.

3.6. Discussion

While inevitably limited, the results of this initial assessment clearly support our
fundamental contention: that an impulse-based force prediction method must account
for vorticity near the body surface which is either unavailable or unresolved in the
experimental data. Without its contribution, the impulse yields force estimates of little,
if any, utility. Its inclusion improves the quality of prediction to a level which, if not
perfect, is usable. Furthermore, these conclusions are not compromised by uncertainties
in the data analysis.

Strictly, the demonstration applies only to the current measurements. However, as
argued before, it is hard to envisage any present-day experimental data set that fully
resolves the vorticity field at practical Reynolds numbers, so some degree of augmentation
will always be necessary. The quantitative significance of such augmentation will, of
course, vary, and this is a topic for further investigation. Similarly, the relative accuracy
of impulse-based and control-volume approaches remains an open question.

A secondary conclusion follows from the correspondence between the impulse-based
method (as implemented here) and the direct measurements: strong two-dimensionality
in the unsteady flow, at least during the starting phase. While important on its own,
this observation also has significance for the approach proposed here. If the flow is two-
dimensional, not only are data requirements reduced, but the vortex-sheet calculation
is simplified, and the impulse-based approach becomes particularly attractive. Equally,
starting flows form an ideal context for its application (because of the need for complete
vorticity-field information). Thus, if the tendency towards two-dimensionality observed
here is indeed a general feature of starting flows, the proposed method will be a natural
choice for force estimation.

Finally, it is worth mentioning that the idea of using the experimental velocity field
and the body boundary condition to correct for data incompleteness could also be used
in momentum-based force calculations. Under the same conditions as assumed here —
all missing vorticity close to the body — the combined experiment/vortex-sheet system
uniquely determines the velocity field at all points in the fluid. Hence unavailable or
spurious velocities in irrotational regions of a control volume could be reconstructed.

4. Conclusions

In this paper we have proposed an impulse-based method for estimating body forces,
given velocity-field data. Its novelty lies in allowance for incompleteness in the data,
via a surface vortex sheet introduced to ensure that the no-slip boundary condition is
satisfied. We argue that experimental measurements from high-Reynolds-number flows
are inevitably incomplete to some extent; even the best quality and most extensive sets
will fail to resolve high-shear regions close to the body. However, these are exactly the
locations where the vortex sheet compensates correctly for missing data. Thus, as long
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as there are no significant lacunae away from the body, the upshot is a complete flow
description that will provide accurate impulse estimates.

To illustrate the method, we have set out the necessary analysis for the case of a
translating plate in two dimensions. We have then applied the resulting formulation to
experimental data for which direct force measurements are also available. The significance
of the surface vortex sheet in this instance has been demonstrated, with its contributions
both materially altering the overall impulse levels and compensating, to some extent,
the noise in the measured-vorticity component. Finally the force predictions arising
from the impulse calculation have been shown to agree satisfactorily with the direct
measurements. Implicit in this agreement is a high degree of two-dimensionality in the
(three-dimensional) experiment.

The prospects for the proposed method thus appear good. In particular, it is well suited
to starting flows, where the requirement for measurements to span the entire vorticity
field is most easily met. The case is even more compelling if, as is the case here, the
flows are essentially two-dimensional; data need only be collected on a plane, and the
vortex-sheet calculation is simplified.

We conclude by reiterating the theoretical attraction of an impulse-based method:
it allows flow features to be linked with body forces, thereby providing insight and
understanding. However, these benefits are crucially dependent on the availability of
a complete, physically consistent, description of the vorticity field. We argue that, at
the Reynolds numbers of interest, this is highly unlikely to be provided purely by
experimental data; hence we recommend the introduction of a surface vortex sheet to
enforce the no-slip condition in all impulse-based force calculations.

The second author thanks the Engineering and Physical Sciences Research Council
(EPSRC) for financial support via its ‘Doctoral Training’ scheme. The paper itself has
benefited significantly from the thorough appraisal provided by its reviewers. Supporting
research data are available at: https://www.repository.cam.ac.uk/handle/1810/261928.
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