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Abstract

Load side participation can provide valuable support to the power network in case of urgencies. On many occasions, loads
are naturally represented by on and off states. However, the use of on-off loads for frequency control can lead to chattering
and undesirable limit cycle behavior, which are issues that need to be resolved for such loads to be used for network support.
This paper considers the problem of primary frequency regulation with ancillary service from on-off loads in power networks
and establishes conditions that lead to convergence guarantees and an appropriate power allocation within the network. In
particular, in order to assist existing frequency control mechanisms, we consider loads that switch when prescribed frequency
thresholds are exceeded. Such control policies are prone to chattering, which limits their practicality. To resolve this issue,
we consider loads that follow a decentralized hysteretic on-off policy, and show that chattering is not observed within such
a setting. Hysteretic loads may exhibit, however, limit cycle behavior, which is undesirable. To address this, we propose an
adapted hysteretic control scheme for which we provide convergence guarantees. Furthermore, we consider a mixed-integer
optimization problem for power allocation and propose a suitable design of the control policy such that the cost incurred at
equilibrium is within ε from the optimal cost, providing a non conservative value for ε. The practicality of our analytic results
is demonstrated with numerical simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system.
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1 Introduction

Motivation and literature review: Renewable
sources of generation are expected to increase their pen-
etration in power networks over the next years [2], [3].
This will result in an increased intermittency in the gen-
erated power, endangering power quality and potentially
the stability of the power network. This encourages fur-
ther study of the stability properties of the power grid.
Controllable loads are considered to be a way to coun-
terbalance intermittent generation, due to their ability
to provide fast response at urgencies, e.g. when there
is a sudden generation/demand change or a failure in

? A preliminary version of this study has appeared in [1].
This manuscript includes additional results related to the
stability and optimality properties of the considered system,
further discussion and simulations and the analytic proofs
of all the main results.
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infrastructure, by adapting their demand accordingly.
In recent years, various research studies considered con-
trollable demand as a means to support primary [4],
[5], [6], and secondary [7], [8], [9], [10], [11] frequency
control mechanisms, with respective objectives to en-
sure that generation and demand are balanced and that
the frequency converges to its nominal value (50Hz or
60Hz). Furthermore, an issue of fairness in the power
allocation between controllable loads is raised if those
are to be incorporated in power networks. This problem
has been pointed out in various studies [10], [12], [13],
[14]. Attempts to address this problem resulted in craft-
ing the equilibrium of the system to coincide with the
global solutions of appropriate optimization problems
that ensured a fair power allocation.

On many occasions, loads are naturally represented by
a discrete set of possible demand values, e.g. on and off
states, and hence a continuous representation does not
suffice for their study. The possible switching nature of
loads has been taken into account in [15], [16], which
considered on-off loads that switched when some fre-
quency deviation was reached in order to support the
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network at urgencies within the secondary frequency
control timeframe. Furthermore, [17] considered two
switching modes of operation for loads (at nominal
and urgent situations), where controllable load inputs
were determined from the local deviations in frequency.
The (temperature dependent) on-off behavior of loads
has been also pointed out in several studies [18], [19],
[20], [21], where various control schemes for improved
performance have been explored. The study of on-off
loads with the ability to provide support to the power
network is therefore of major significance for the devel-
opment of demand response schemes. Furthermore, the
fast response required to provide ancillary support at
urgencies coincides with the primary frequency control
timeframe, which makes its study highly relevant for
this purpose.

Contribution: This paper considers the problem of en-
suring stability of the network, and optimality of the
power allocation, when on-off loads contribute to pri-
mary frequency control. This is a problem that is sig-
nificantly more involved relative to the case where only
continuous generation/loads are present, since the on-
off nature of the loads renders the underlying dynamical
system a hybrid system. Furthermore, as it will be dis-
cussed within the paper, the lack of integral action in
primary frequency control, which results to a non-zero
steady state frequency deviation, further complicates the
analysis by raising problems related with the existence
of equilibria and the presence of limit cycles. The on-off
nature of loads introduces also challenges in achieving an
optimal power allocation, as the corresponding network
optimization problem is a mixed-integer programming
problem that is NP-hard (e.g. [22]).

Our study considers frequency dependent on-off loads
that turn on/off when sufficiently large frequency devia-
tions occur, within the primary frequency control time-
frame, building upon ideas presented in 1 [16]. We first
show that the inclusion of loads that switch at a pre-
scribed frequency does not compromise the stability of
the power network, and improves the frequency perfor-
mance. However, such control policies can lead to chat-
tering, which limits their practicality. A classical ap-
proach to resolve this is to consider hysteresis in the on-
off load dynamics. However, the coupling between fre-
quency dynamics and load behavior in conjunction with
the discontinuous nature of the loads can lead to cases
where equilibirium points do not exist or limit cycles oc-
cur.

1 Note that [16] considers secondary frequency control, i.e
the frequency deviation is zero at steady state and thus the
loads do not contribute to the asymptotic behavior of the
system. In this paper we consider instead primary control,
which as discussed in the previous paragraph is more in-
volved, since loads can contribute at equilibrium, which com-
plicates the stability and optimality analysis.

A main result of this paper is to propose an adapted hys-
teretic control scheme for on-off loads that resolves such
stability issues using aggregate demand measurements.
In particular, stability guarantees are provided for this
scheme, and the absence of chattering is also analytically
proven.

A further objective of this study is to consider the prob-
lem of power allocation within the network at steady
state, by requiring this to be the solution of an appropri-
ately constructed optimization problem. Due to the dis-
crete nature of the loads this is a mixed-integer optimiza-
tion problem which is known to be NP-hard. Within the
paper we propose a control policy such that the cost in-
curred at equilibrium is guaranteed to be within ε of the
optimal cost, where ε is shown to be non-conservative.

A distributed mechanism for obtaining the required de-
mand measurements is also proposed and we show that
the presented stability and optimality properties of the
system are unaltered with this policy.

Our stability and optimality analysis is numerically ver-
ified through simulations on the NPCC 140-bus system
which demonstrate that the inclusion of frequency de-
pendent on-off loads provides improved performance and
optimal steady state power allocation. Our main con-
tribution can be summarized as follows:

1. We propose control schemes for on-off hysteretic
loads that lead to convergence guarantees, which
translate to lack of limit cycles and chattering.

2. We consider a mixed-integer optimization problem
for power allocation and provide design conditions
for hysteretic loads such that the cost incurred at
the resulting equilibrium points is within ε from
the optimal cost to this problem, providing a non-
conservative value for ε.

Paper structure: The structure of the paper is as fol-
lows: Section 1.1 includes some basic notation and in
Section 2 we present the power network model. In Sec-
tion 3 we consider controllable demand that switches
on-off whenever certain frequency thresholds are met
and present our results concerning network stability. In
Section 4, we consider controllable loads with hysteretic
control policies. In Section 5, we propose a scheme to re-
solve the issue of potential limit cycle behavior from hys-
teretic loads and provide relevant asymptotic stability
guarantees. In Section 6 we extend our proposed scheme
by considering also the problem of optimal power alloca-
tion. Numerical investigations of the results are provided
in Section 7. Finally, conclusions are drawn in Section 8.
The proofs of the results are provided in the Appendix.

1.1 Notation

Real and natural numbers are denoted by R and Z and
the set of n-dimensional vectors with real entries is de-
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noted byRn. The set of natural numbers including zero is
denoted by N0 and the sets of positive and non-negative
real numbers by R>0 and R≥0. Furthermore, the set of
integer numbers is denoted by Z. We use 0n and 1n to
denote n-dimensional vectors with all elements equal to
0 and 1 respectively. The cardinality of a discrete set Σ
is denoted by |Σ|. Moreover, we denote the collection of
subsets of Rn by P(Rn).

2 Network model

We describe the power network model by a connected
graph (N,E) where N = {1, 2, . . . , |N |} is the set of
buses and E ⊆ N ×N the set of transmission lines con-
necting the buses. Furthermore, we use (i, j) to denote
the link connecting buses i and j and assume that the
graph (N,E) is directed with an arbitrary orientation, so
that if (i, j) ∈ E then (j, i) /∈ E. For each j ∈ N , we use
N i
j and No

j to denote the sets of buses that are predeces-
sors and successors of bus j respectively. It is important
to note that the form of the dynamics in (1)–(2) below is
unaltered by any change in the graph ordering, and all
of our results are independent of the choice of direction.
The following assumptions are made for the network:
1) Bus voltage magnitudes are |Vj | = 1 per unit for all
j ∈ N . 2) Lines (i, j) ∈ E are lossless and characterized
by their susceptances Bij = Bji > 0. 3) Reactive power
flows do not affect bus voltage phase angles and frequen-
cies. 4) Relative phase angles are sufficiently small such
that the approximation sin ηij = ηij is valid.

Conditions 1) to 3) have been widely used in studies as-
sociated with frequency control in power networks, e.g.
[7], [9], [16]. These assumptions are valid in medium to
high voltages where transmission lines are dominantly
inductive and voltage variations are small. Condition 4)
is valid when the network operates under nominal con-
ditions, where relative phase angles are small. Note that
although the theoretical analysis relies on the above as-
sumptions, the numerical simulations in Section 7, that
verify the results in this paper, make use of a full com-
plexity model of the power network.

We use swing equations to describe the rate of change
of frequency at each bus. This motivates the following
system dynamics (e.g. [23]),

η̇ij = ωi − ωj , (i, j) ∈ E, (1a)

Mjω̇j = −pLj +pMj −(dcj+d
u
j )−

∑
k∈No

j

pjk+
∑
i∈Ni

j

pij , j ∈ N,

(1b)
pij = Bijηij , (i, j) ∈ E. (1c)

In system (1) the state ωj represents the deviation from
the nominal value of the frequency at bus j. Moreover,

the state ηij represents the power angle difference 2 and
pij the power transmitted from bus i to bus j. In addi-
tion, the mechanical power injection at bus j is denoted
by pMj . The variable dcj represents the deviation from

the nominal value 3 of controllable demand at bus j.
The variable duj represents the uncontrollable frequency-
dependent load and generation damping present at bus
j. The constant Mj > 0 denotes the generator iner-
tia. Moreover, the constant pLj denotes the frequency-
independent load and the nominal value of the control-
lable load at bus j, and ` = 1T|N |p

L its aggregate value

throughout the network.

2.1 Generation and uncontrollable demand dynamics

We consider generation and frequency dependent uncon-
trollable demand dynamics described by

τj ṗ
M
j = −(pMj + αjωj), j ∈ N, (2a)

duj = Ajωj , j ∈ N, (2b)

where τj > 0 are time constants and Aj > 0 and αj > 0,
j ∈ N, are damping and droop coefficients respectively.
Note that the analysis carried in this paper is still valid
for more general generation/demand dynamics, includ-
ing cases of nonlinear and higher order dynamics, pro-
vided certain input-output conditions hold, as shown in
[16], [24], [25]. We choose to use the simple first order
generation and static uncontrollable demand dynamics
for simplicity and to avoid a shift in the focus of the pa-
per from on-off loads.

3 On-off loads

Within this section, we consider frequency dependent
on-off loads that respond to frequency deviations by
switching to an appropriate state in order to aid the net-
work at urgencies.

The considered controllable demand dynamics are de-
scribed by

dcj = fdj (ωj) =


dj , ωj > ωj ,

0, ωj < ωj ≤ ωj ,
dj , ωj ≤ ωj ,

j ∈ N, (3)

2 The variables ηij represent the angle difference between
buses i and j, i.e. ηij = θi − θj , where θj is the angle at

bus j. The angles themselves must also satisfy θ̇j = ωj at
all j ∈ N . This equation is omitted in (1) since the power
transfers are functions of the phase differences only.
3 A nominal value of the controllable demand, dc,nom, is a
constant demand value selected by the users. The variable dcj
represents the deviation of the actual controllable demand
from dc,nom

j . For convenience in presentation, dc,nom
j is in-

corporated in pL.
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0

Fig. 1. On-off controllable demand deviations as described
by (3).

where −∞ < dj ≤ 0 ≤ dj < ∞, ωj > 0 > ωj for all

j ∈ N and fdj : R → R is a discontinuous map from
frequency to controllable demand at bus j. The static
map in (3) is depicted on Figure 1. Note that (3) may be
trivially extended to include more discrete values, that
would possibly respond to higher frequency deviations.
The extension has been omitted for simplicity.

To cope with the discontinuous behavior of loads and
allow well defined solutions of (1)–(3) for all times, a
common approach is to relax (3) using a Filippov set
valued map [26] as follows:

F [dcj(ωj)] =


[0, dj ], ωj = ωj
[dj , 0], ωj = ωj ,

{fdj (ωj)}, otherwise,

j ∈ N. (4)

The states of the interconnected system (1)–(3) are de-
noted by x = (η, ω, pM ), where any variable without
subscript represents a vector with all respective com-
ponents. For a compact representation of this system,
consider the Filippov set valued map Q : Rn → P(Rn),
where n = |E|+ 2|N |, such that

ẋ ∈ Q(x) (5)

where

Q(x) :=


{ωi − ωj}, (i, j) ∈ E,
{ 1
Mj

(−pLj + pMj −Ajωj − vj −
∑
k∈No

j
pjk

+
∑
i∈Ni

j
pij : vj ∈ F [dcj ]}, j ∈ N,

{− 1
τj

(pMj + αjωj)}, j ∈ N.

This representation allows the discontinuous frequency
derivatives to be well-defined at all points.

For the analysis of system (1)–(3), we will be considering
its Filippov solutions (e.g. [26]). In particular, a Filippov
solution of (1)–(3) on an interval [0, t1] is an absolutely
continuous map x(t), x : [0, t1] → Rn that satisfies (5)

for almost all t ∈ [0, t1]. Filippov solutions are often em-
ployed to analyze discontinuous systems, as a means to
overcome the complications associated with the discon-
tinuity of the vector field.

3.1 Equilibrium and existence of solutions

We describe below what is meant by an equilibrium of
the interconnected system (5).

Definition 1 The constant x∗ = (η∗, ω∗, pM,∗) defines
an equilibrium of the system (5) if 0n ∈ Q(x∗).

Note that the corresponding equilibrium value of
the vector du,∗ follows directly from ω∗. Similarly
the steady state controllable demand dc,∗ satisfies
dc,∗j ∈ F [fdj (ω∗j )], j ∈ N . Furthermore, note that an

equilibrium of (5) always exists.

In order to study the behavior of (5), it is necessary to
address the existence of solutions, which is stated in the
following lemma, proven in the Appendix.

Lemma 1 There exists a Filippov solution of system
(1)–(3) from any initial condition x0 = (η(0), ω(0), pM (0))
∈ Rn.

3.2 Stability analysis

We now present the main result of this section, with the
proof provided in the Appendix.

Theorem 1 The Filippov solutions of system (1)–(3)
converge for all initial conditions to an equilibrium point,
as defined in Definition 1.

The above theorem shows that all Filippov solutions
of (1)–(3) converge to an equilibrium point of the sys-
tem. It therefore demonstrates that the inclusion of con-
trollable loads described by (3) does not compromise the
stability of the system. However, convergence of Filip-
pov solutions to an equilibrium point does not rule out
chattering, as explained below, which is a problematic
behavior. Nevertheless, Theorem 1 provides valuable in-
tuition on the convergence properties of the system, used
in the derivations of the results presented in the follow-
ing sections.

3.3 Chattering

A possibility when discontinuous systems are involved, is
the occurrence of infinitely many switches within some fi-
nite time, a phenomenon known as chattering (e.g. [27]).
Such behavior is not acceptable in practical implemen-
tations and should be avoided.
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Chattering may occur in controllable loads, as shown in
simulations in Section 7. Such behavior may occur when
the component of the vector field that gives ω̇j for some
bus j, changes sign when ωj is on either side of a point
of discontinuity ωj or ωj , such that the vector field when
ωj is on either side of this point is pointing towards this
point. For example, when 0 < Mjω̇j < d̄j at some time
instance where ωj = ωj , then ω̇j < 0 when a switch
from off to on occurs, which in turn causes the frequency
to decrease. This change in derivative sign will cause
an infinite number of switches within some finite time,
resulting in the aforementioned chattering behavior.

4 Hysteresis on controllable loads

In this section we discuss how on-off load dynamics can
be modified in order to ensure that no chattering will
occur. To this end, we consider the use of hysteresis such
that controllable loads switch on when a particular fre-
quency is reached and switch off at a different frequency
that is closer to the nominal one. Such dynamics render
the combined power network a hybrid system. A formal
definition of a hybrid system and its solutions are given
later in this section. The controllable load trajectories
satisfy 4 the following property

dcj(t) = djσj(t), σ+
j (t) ∈



{1}, ωj(t) > ω1
j

{0}, ωj(t) < ω0
j

{σj(t)}, ω0
j < ωj(t) < ω1

j

{0, σj(t)}, ωj(t) = ω0
j

{σj(t), 1}, ωj(t) = ω1
j

(6)
where j ∈ N , σ+

j (t) = limε→0+ σ(t+ ε), dj > 0 and the

frequency thresholds ω0
j , ω

1
j , satisfy ω1

j > ω0
j > 0. Sig-

nal σj(t) ∈ P = {0, 1} denotes the switching state for
loads in bus j ∈ N that is continuous at all times t
where ωj(t) /∈ {ω0

j , ω
1
j }. Also if σj(t) is discontinuous at

t, with ωj(t) = ω0
j (similarly ωj(t) = ω1

j ) then σ+
j (t) = 0

(similarly σ+
j (t) = 1). For generality, the control scheme

(6) considers two possibilities when frequency thresholds
ω0
j and ω1

j are reached, corresponding to a switch when
the frequency reaches or exceeds a particular threshold.
This approach is used throughout the rest of the paper
and is consistent with the widely used framework in [27]
for the analysis of hybrid systems. Note that the results
in Sections 4–6 concerning convergence of solutions and
absence of chattering are about all solutions of the re-
sulting hybrid systems.

Remark 1 Chattering behaviour could be avoided by im-
plementing some time delay in the switch of on-off loads,

4 It should be clarified that (6) is stated as a property of
trajectories σ(t) and ω(t), t ∈ [t1, t2) ⊂ R but does not de-
fine how these are generated. An exact definition of solu-
tions, using a hybrid systems formalism, is provided later in
Definition 3.

0

0

Fig. 2. Hysteresis dynamics for on-off loads described by (6).

i.e. enabling a switch only when the frequency is below a
particular threshold for some given time duration. How-
ever, it can be shown that such schemes may result in
absence of equilibria to the power system and hence in
undesirable behaviors. In addition, the imposed time de-
lay may reduce the effectiveness of the ancillary services
provided from on-off loads.

The dynamics in (6) describe loads that switch on from
off. Note that the conjugate case of loads switching off
from on can also be incorporated by reversing the signs
of frequency thresholds and controllable demand de-
viations and that all the analytic results of this pa-
per can be trivially extended to include this case. How-
ever, we consider only loads that switch from off to on
for simplicity in presentation. The dynamics described
in (6) can be visualized in Figure 2. Moreover, we use
ti,j , i ∈ N, j ∈ N to denote the time-instants where the
value of σj changes. Within the rest of the paper we shall
adopt the notation a+(t) = limε→0+ a(t+ ε) for any real
vector a(t). For convenience in the notation, we will re-
fer to a+(t) by simply a+.

The behavior of system (1), (2), (6) can be described
by the states ζ = (x, σ), where x = (η, ω, pM ) ∈ Rn,
n = |E| + 2|N |, is the continuous state, and σ ∈ P |N |
the discrete state. Moreover, let Λ = Rn × P |N | be the
space where the system’s states evolve. The continuous
dynamics of the system (1), (2), (6) are described by

η̇ij = ωi − ωj , (i, j) ∈ E, (7a)

Mjω̇j = −pLj + pMj − (djσj +Ajωj)

−
∑
k∈No

j

pjk +
∑
i∈Ni

j

pij , j ∈ N, (7b)

pij = Bijηij , (i, j) ∈ E, (7c)

τj ṗ
M
j = −(pMj + αjωj), j ∈ N, (7d)

σ̇j = 0, j ∈ N, (7e)

which is valid when ζ belongs to the set C described
below,

C = {ζ ∈ Λ : σj ∈ Ij(ωj), ∀j ∈ N}, (8)
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where

Ij(ωj) =


{1}, ωj > ω1

j ,

{0}, ωj < ω0
j ,

{0, 1}, ω0
j ≤ ωj ≤ ω1

j .

Alternatively, when ζ belongs to the set D = Λ \ C ∪D
where D = {ζ ∈ Λ : σj ∈ IDj (ωj), ∀j ∈ N}, and

IDj (ωj) =

{
{0}, ωj = ω1

j ,

{1}, ωj = ω0
j ,

its components follow the discrete update depicted below

x+ = x, σ+
j =

{
1, ωj ≥ ω1

j ,

0, ωj ≤ ω0
j .

(9)

We can now provide the following compact representa-
tion for the hybrid system (1), (2), (6),

ζ̇ = f(ζ), ζ ∈ C, ζ+ = g(ζ), ζ ∈ D, (10)

where f(ζ) : C → C and g(ζ) : D → C \D are de-
scribed by (7) and (9) respectively. Note that ζ+ = g(ζ)
represents a discrete dynamical system where ζ+ indi-
cates that the next value of the state ζ is given as a func-
tion of its current value through g(ζ). Moreover, note
that C ∪D = Λ.

4.1 Analysis of equilibria and solutions

In this subsection, we define and study the equilibria
and solutions of (10). We provide sufficient design con-
ditions for the existence of equilibria of (10) and show
that chattering does not occur when hysteretic dynam-
ics are used.

Below, we provide the definition of an equilibrium of the
system described by (10).

Definition 2 A point ζ∗ is an equilibrium of the system
described by (10) if it satisfies f(ζ∗) = 0, ζ∗ ∈ C or
ζ∗ = g(ζ∗), ζ∗ ∈ D.

It should be noted that, when hysteretic loads are in-
troduced, the system is not guaranteed to have equilib-
ria, and hence additional conditions are required. The
following theorem, proven in the Appendix, provides a
sufficient condition under which an equilibrium to (10)
exists. For the rest of the manuscript we define D =∑
j∈N (αj +Aj).

Theorem 2 An equilibrium point ζ∗ of (10) exists for
any pL if ω1

j − ω0
j ≥ dj/D holds for all j ∈ N .

Theorem 2 provides a sufficient design condition on the
hysteretic dynamics which ensures that equilibria will
exist for any load profile. Potential lack of equilibria
results in undesirable behaviors such as limit cycles.
Stability-wise, the conditions for existence of equilibria
can be seen as necessary conditions for convergence to
a fixed point. Furthermore, there exist configurations
where it can be shown that the condition in Theorem 2 is
also necessary, e.g. when the hysteresis region in at least
one load is non-overlapping with the respective hystere-
sis regions of all other loads. The physical interpretation
of Theorem 2 is that the hysteresis region of each on-off
load should be no smaller than the frequency deviation
caused by its switch, which can be shown to be dj/D.
Note also that Theorem 2 trivially holds when D is re-
placed by a known lower bound, which offers robustness
to measurement uncertainty.

Below, we provide a definition of a hybrid time domain,
hybrid solution and complete and maximal solutions for
systems described by (10). Note that we use the defini-
tion of a hybrid system from [27, Dfn. 2.2].

Definition 3 ([27]) A subset of R≥0 × N0 is a hybrid
time domain if it is a union of a finite or infinite sequence
of intervals [tl, tl+1]× {l}, with the last interval (if exis-
tent) possibly of the form [tl, tl+1]× {l}, [tl, tl+1)× {l},
or [tl,∞) × {l}. Consider a function ζ(t, l) : K → Rn
defined on a hybrid time domain K such that for every
fixed l ∈ N, t → ζ(t, l) is locally absolutely continuous
on the interval Tl = {t : (t, l) ∈ K}. The function ζ(t, l)
is a solution to the hybrid system H = (C, f,D, g) if
ζ(0, 0) ∈ C ∪D, and for all l ∈ N such that Tl has non-
empty interior (denoted by intTl)

ζ(t, l) ∈ C, for all t ∈ intTl,

ζ̇(t, l) ∈ f(ζ(t, l)), for almost all t ∈ Tl,
and for all (t, l) ∈ K such that (t, l + 1) ∈ K,

ζ(t, l) ∈ D, ζ(t, l + 1) ∈ g(ζ(t, l)).

A solution ζ(t, l) is complete if K is unbounded. A solu-
tion ζ is maximal if there does not exist another solution
ζ̃ with time domain K̃ such that K is a proper subset of
K̃ and ζ(t, l) = ζ̃(t, l) for all (t, l) ∈ K.

For convenience in the presentation the term solutions
within the paper will refer to maximal solutions 5 . The
following proposition demonstrates the existence of so-
lutions to (10) as well as of a finite dwell time between
switches of states σj within any compact set. Further-
more, it establishes that all maximal solutions to (10)
are complete.

5 We will also occasionally use explicitly the term maximal
solutions to remind the reader of this property in cases this
is technically of significance.
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Proposition 1 For any initial condition ζ(0, 0) ∈ Λ
there exists a complete solution to (10). All maximal so-
lutions to (10) are complete. Furthermore, for any com-
plete bounded solution to (10), there exists τj > 0 such
that mini≥1(ti+1,j − ti,j) ≥ τj for any j ∈ N .

Remark 2 The importance of Proposition 1 is that it
shows that no chattering will occur for any complete
bounded solution of system (10). This is because for any
finite time interval τ = minj τj , j ∈ N , the vector σ
changes at most |N | times. This shows the practical ad-
vantage of (10) when compared to (5).

4.2 Limit cycle behavior

Numerical simulations in Section 7 (see Fig. 9) demon-
strate that limit cycle behavior can occur when the con-
sidered hysteretic loads are introduced in the network.
This is a consequence of the load on-off behavior which
results to discontinuous changes in the vector field which
in turn cause further switches. Note that the existence of
equilibrium points does not ensure the absence of limit
cycles. In the following section we present an approach
to resolve this issue.

5 An adapted scheme for hysteretic loads

In this section, we discuss how hysteretic on-off load dy-
namics may be modified to guarantee convergence, rul-
ing out limit cycle behavior. In particular, we propose a
control scheme that allows two modes of operation for
on-off loads; one that implements (6), and a second one
that allows loads to switch on when significant frequency
deviations are observed, providing support to the power
network, but prohibits further switches. The latter is in
line with existing load shedding practices where loads
are switched at urgencies (e.g. [28, Ch. 9]). The mode of
operation of the loads is determined from the aggregate
demand. In particular, load shedding is implemented on
an increasing portion of on-off loads as the total demand
increases. In this section, we explain how such scheme
should be designed such that on-off loads provide ancil-
lary service to the power network without compromis-
ing its stability properties. In particular, controllable de-
mand trajectories satisfy the following property

dcj = djσj , σ
+
j (t) ∈



{1}, ωj > ω1
j ,

{0}, ωj < ω0
j and pc < pc

j
,

{σj(t)},

{
ω0
j < ωj < ω1

j ,

ωj < ω0
j and pc

j
< pc,

{0, σj(t)},

{
ωj = ω0

j and pc ≤ pc
j
,

ωj ≤ ω0
j and pc = pc

j
,

{σj(t), 1}, ωj = ω1
j ,

(11)

0
0

10

ON

ONOFF

Fig. 3. Adapted hysteresis scheme for controllable loads de-
scribed by (11).

where j ∈ N , pc
j

are variables available for design (see

Section 5.1 below), and dj , ω
0
j and ω1

j are as in (6). The
scheme in (11) is depicted in Figure 3. Furthermore, pc

is a power command variable given by

pc = −` = −
∑
j∈N

pLj . (12)

Remark 3 The scheme presented in (11) uses the power
command signal (12) to determine the dynamic behav-
ior of each load. In particular, when the power com-
mand value is above the local respective threshold pc

j
, then

switching from on to off is prohibited, although loads can
still switch once from off to on to support the network.
Alternatively, when pc ≤ pc

j
, then (11) reduces to (6)

and convergence depends on the choice of the thresholds
in (11), which are available for design. In Section 5.1 we
discuss how these thresholds should be selected such that
convergence can be deduced.

Remark 4 An application scenario is to implement the
scheme in (11)–(12) on an aggregation of small loads at
a given bus. Note also that the scheme in (12) requires
knowledge of the total demand of the system which could
be estimated by SCADA systems, e.g. [29]. Furthermore,
note that all convergence properties presented below are
retained when the magnitude of ` is replaced with a known
upper bound, and hence its precise value is not necessary
for stability (see also Remark 9). Such upper bound may
be obtained using historical demand data, or updated via
signals from the operator at slower timescales. In addi-
tion, the requirement for frequency measurements can be
fulfilled with low cost at the load level. It should further
be noted that the requirement for a centrally implemented
controller to transmit the total demand in (11), (12) is re-
laxed in [30, Appendix B], where we present a distributed
scheme to evaluate the aggregate demand without com-
promising the convergence properties of the system.

5.1 Controller design

In this section we propose a way to design power com-
mand and frequency thresholds such that loads that sat-
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isfy pc ≤ pc
j

are off at steady state which, as shown below,

allows to deduce convergence to the set of equilibrium
points. The condition concerns the power command and
lower frequency thresholds pc

j
and ω0

j . We remind that

D =
∑
j∈N (αj +Aj).

Design Condition 1 The values of pc
j

and ω0
j are cho-

sen such that pc
j
≤ Dω0

j holds.

Design condition 1 rules out the occurrence of limit cy-
cles, as follows from Theorem 3 in Section 5.4. The
scheme (11)–(12) ensures that each load will satisfy ei-
ther pc > pc

j
, which prohibits switching from on to off

as explained in Remark 3, or pc ≤ pc
j
. When the latter

occurs, switching depends on the frequency only as fol-
lows from (11), and Design condition 1 guarantees that
the equilibrium frequency is less than the corresponding
frequency thresholds ω0

j , a property that is key to pro-
vide stability guarantees, as shown in the proof of The-
orem 3. The condition follows by noting that the power
command and the equilibrium values of frequency de-
pend directly on `, as shown by (12) and (13) below.

ω∗ =
−`− dTσ∗

D
(13)

From (13), it follows that the value of ` allows to obtain
an upper bound of the equilibrium frequency, attained
when σ∗ = 0. Hence, Design condition 1 guarantees that

when pc < pc
j
, then ω∗ < ω0

j , noting that D = pc

ω∗

∣∣
σ∗=0

.

The condition can be easily fulfilled since both ω0
j and

pc
j

are design variables. It should be further noted that

Design condition 1 requires knowledge of the aggregate
droop and damping coefficients from all buses across the
network. However, for the purpose of the analysis, it
is sufficient to have a lower bound of D, which offers
robustness to model uncertainty.

The practical significance and non-conservativeness of
the proposed scheme is demonstrated with realistic sim-
ulations in Section 7, where significant improvement in
the frequency response is observed.

Remark 5 An alternative approach to avoid limit cycles
would be to choose the set of loads satisfying pc > pc

j
and

assign to them an arbitrary switching condition. How-
ever, such scheme would not respond to local frequency
deviations and hence not provide an efficient ancillary
service to the power network, i.e. loads could switch at
buses far from a disturbance. Furthermore, such a scheme
would require central knowledge of the power command
thresholds of all loads and could result to increased user
disutility, causing unnecessary load switch.

5.2 Hybrid system description

The states ζ = (x, σ) ∈ Λ can describe the behavior of
the system (1), (2), (11), (12). Its continuous dynamics
are described by (7) and (12) when ζ belongs to the set
F defined below,

F = {ζ ∈ Λ : σj ∈ J j(ωj , pc), ∀j ∈ N}, (14)

where

J j(ωj , pc)=


{1}, ωj > ω1

j ,

{0}, ωj < ω0
j and pc < pc

j
,

{0, 1},

{
ω0
j ≤ ωj ≤ ω1

j ,

ωj ≤ ω0
j and pc

j
≤ pc.

(15)

Furthermore, when ζ ∈ G = Λ \ F ∪ G̃, where G̃ = {ζ ∈
Λ : σj ∈ I

D

j (ωj , p
c), ∀j ∈ N}, and

IDj (ωj , p
c) =


{0}, ωj = ω1

j ,

{1},

{
ωj ≤ ω0

j and pc = pc
j
,

ωj = ω0
j and pc ≤ pc

j
,

(16)

then its components follow a discrete update given by

x+ = x, σ+
j =

{
1, ωj ≥ ω1

j ,

0, ωj ≤ ω0
j and pc ≤ pc

j
.

(17)

Hence, the hybrid system (1), (2), (11), (12) can be rep-
resented by

ζ̇ = f̃(ζ), ζ ∈ F, ζ+ = g̃(ζ), ζ ∈ G, (18)

where f̃(ζ) : F → F and g̃(ζ) : G → F \G follow from
(7) and (12), and (17) respectively.

5.3 Equilibrium and solutions analysis

Below we provide the definition of an equilibrium of (18).

Definition 4 A point ζ∗ is an equilibrium of the system
described by (18) if it satisfies f̃(ζ∗) = 0, ζ∗ ∈ F or
ζ∗ = g̃(ζ∗), ζ∗ ∈ G.

The following proposition, proven in the Appendix,
states that equilibria of (18) exist when Design condi-
tion 1 holds.

Proposition 2 Consider the system described by (18)
and let Design condition 1 hold. Then, an equilibrium
point exists and satisfies ζ∗ ∈ F .

8



Proposition 3 below shows the existence of solutions
to (18) and of a minimum time between consecutive
switches. The latter implies that no chattering occurs.

Proposition 3 For any initial condition ζ(0, 0) ∈ Λ
there exists a complete solution to (18). All maximal so-
lutions to (18) are complete. Furthermore, for any com-
plete bounded solution to (18), there exists τ > 0 such
that mini≥1(ti+1,j − ti,j) ≥ τ, j ∈ N .

5.4 Stability of hybrid system

In this section, we provide our main convergence result
about system (18), with the proof provided in the Ap-
pendix.

Theorem 3 Let Design condition 1 hold. Then, for all
initial conditions, the solutions of (18) are bounded and
converge to a subset of its equilibria.

Theorem 3 and Proposition 3 show that the inclusion of
loads with dynamics described by (11) does not compro-
mise the stability of the system, when Design condition
1 holds, and neither exhibits any chattering behavior.

6 Optimal power allocation with hysteretic
loads

6.1 Optimal supply and hybrid load control problem

We investigate in this section how to adjust the gener-
ation and hybrid controllable demand to meet the step
change in pL and simultaneously minimize the total cost
that accounts for the extra power generated and the cost
incurred when on-off loads alter their demand.

Let Ch,j(d
c
j) denote the costs incurred from deviations

dcj in controllable demand. The discrete nature of con-
trollable loads suggests the following structure for the
cost functions,

Ch,j(d
c
j) =

{
0, dcj = 0,

cdj , d
c
j = d̄j ,

j ∈ N, (19)

where cdj > 0, j ∈ N . Furthermore, we let
cj
2 (pMj )2 and

1
2Aj

(duj )2 be the costs incurred for generation pMj and the

change in frequency, which alters frequency dependent
uncontrollable demand duj . The total cost is the sum
of all the above costs. The problem, called the optimal
supply and hybrid load control problem (H-OSLC), is
to choose the vectors pM , dc and du such that this total
cost is minimized when simultaneously power balance is

achieved.

H - OSLC:

min
pM ,dc,du

∑
j∈N

(cj
2

(pMj )2 + Ch,j(d
c
j) +

1

2Aj
(duj )2

)
subject to

∑
j∈N

(pMj − duj − pLj ) =
∑
j∈N

dcj ,

dcj ∈ {0, d̄j}, j ∈ N.

(20)

The first constraint in (20) is associated with the bal-
ance between generation and demand, which is a prop-
erty that needs to be satisfied at equilibrium. The sec-
ond constraint reflects the fact that controllable loads
take discrete values, making (20) a mixed-integer opti-
mization problem.

6.2 Controller design for convergence and optimality

In this section, we propose a control scheme that allows
on-off loads to provide ancillary services to the power
network and simultaneously ensures that the cost in-
curred at equilibrium is close to the optimal cost of (20).
Since the solution to (20) determines whether a load is
on or off at steady state for given aggregate demand
value `, it follows that the control policy needs to allow
load equilibrium values to be determined from `. In par-
ticular, we consider two main modes of operation for on-
off loads; one where loads stay switched on at all times
and a second one where loads implement (6) to provide
transient support to the network, but are designed to be
switched off at equilibrium. In addition, to avoid possible
chattering in the presence of noise in demand measure-
ments, we implement a third mode of operation which
allows loads to switch once, when appreciable frequency
deviations are present, but prohibits further switches,
similar to (11). We then explain how appropriate selec-
tion of the threshold values results to a power allocation
that is close to optimal.

In particular, controllable demand trajectories satisfy

dcj = djσj , σ
+
j (t) ∈



{1}, ωj > ω1
j or pc > p̄cj ,

{0}, ωj < ω0
j and pc < pc

j
,

{σj(t)},

{
ω0
j <ωj <ω

1
j and pc<p̄cj,

ωj<ω
0
j and pc

j
<pc <p̄cj ,

{0,σj(t)},

{
ωj = ω0

j and pc ≤ pc
j
,

ωj ≤ ω0
j and pc = pc

j
,

{σj(t),1},
{
ωj = ω1

j and pc ≤ p̄cj ,
ωj ≤ ω1

j and pc = p̄cj ,
(21)

where j ∈ N , p̄cj are design variables satisfying p̄cj >

pc
j
, and pc

j
, dj , ω

0
j and ω1

j are as in (11). Furthermore,

pc follows from (12). The scheme in (21) is depicted in
Figure 4.
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Fig. 4. Hysteresis scheme for on-off loads described by (21).

Compared to (11), the scheme in (21) introduces an ad-
ditional threshold for power command, such that when
pc > pcj , then loads remain switched on. As explained
above, this is exploited to provide an optimality inter-
pretation of the resulting equilibria.

The H-OSLC problem (20) is a mixed-integer optimiza-
tion problem that is NP-hard [31]. However, the contin-
uous relaxation of (20) can be solved using subgradient
KKT conditions (see (38) and Proposition 6 in the Ap-
pendix). Below, we describe how to design the frequency
and power command thresholds such that the KKT con-
ditions are satisfied by almost all loads at equilibrium,
thus leading to a power allocation that is shown to be
very close to optimal. We also show that convergence
guarantees are also provided, as in Section 5.

To facilitate the presentation of the proposed design, let
k ∈ N be the rank of controllable loads when those are
sorted in ascending order 6 of cdj/d̄j , j ∈ N . A param-
eter xk is associated with the k-th ranked controllable
load (i.e. the underlined subscript refers to the above de-
scribed rank). The design condition is presented below.

Design Condition 2 The values of the design variables
in (21) satisfy

ω0
k = cdk/d̄k, k ∈ N, (22a)

pc
1

= Dω0
1 , (22b)

pc
k

= Dω0
k +

k−1∑
j=1

d̄j , k ∈ N/{1}, (22c)

p̄cj ∈ (pc
j
, pc
j

+ δ), j ∈ N, (22d)

where δ = minj∈N dj.

Remark 6 Design condition 2 has two important fea-
tures which eliminate limit cycle behavior and also en-
sure that the cost at the resulting equilibria is close to

6 Note that in the case where there exist i, j ∈ N such that
cdi /d̄i = cdj/d̄j , then the order between i and j is arbitrarily
assigned.

the optimal. The choice of power command thresholds in
(22b)–(22c) follows directly from (12), (13), and ensures
that when pc ≤ pc

j
then ω∗ ≤ ω0

j . This condition guar-

antees that loads that satisfy pc ≤ pc
j

will be switched off

at equilibrium, which aids in deducing a convergence re-
sult analogous to Theorem 3. The optimality interpreta-
tion follows by ranking all loads based on their frequency
thresholds ω0

j and relating the latter with the cost per unit

value cdj/dj, via (22a). Then, conditions (22b)–(22d) en-
sure that when load j is switched on at steady state then
all loads with lower cost per unit demand are also switched
on. The latter is closely linked to the KKT conditions
associated with the continuous relaxation of (20) as ex-
plained in the proof of Theorem 5 below. Condition (22d)
also ensures that p̄cj 6= pc

j
, thus avoiding chattering when

there is measurement noise in pc.

Compared to Design condition 1, Design condition 2 re-
quires knowledge of all controllable load magnitudes and
also their order in terms of cost per unit cdj/d̄j , making
it a centralized design. However, as we demonstrate in
Theorem 5 below, Design condition 2 offers a close to
optimal power allocation at steady state. Hence, Design
condition 2 is preferable to Design condition 1 when the
required information is available. Alternatively, Design
condition 1 is easier to implement and requires much less
information on system parameters.

Remark 7 An approach to achieve stability and opti-
mality in power networks when on-off loads are present
would be to centrally solve the mixed-integer optimization
problem and then transmit the desired allocation to each
load. The scheme presented in (21) with Design condi-
tion 2 is superior to such an approach for two reasons.
Firstly, it provides transient support to the power net-
work, which is the main motivation for the control of on-
off loads in this study. Secondly, it does not require to
solve (20), which is an NP-hard problem with significant
computational cost when the number of loads is large.

6.3 Hybrid system description

The behavior of system (1), (2), (12), (21) can be de-
scribed by the states ζ = (x, σ) ∈ Λ. Its continuous dy-
namics, described by (7) and (12), are valid when ζ ∈ C
provided below.

C = {ζ ∈ Λ : σj ∈ Jj(ωj , pc), ∀j ∈ N} (23)

where

Jj(ωj , pc)=


{1}, ωj > ω1

j , or pc > p̄cj

{0}, ωj < ω0
j and pc < pc

j
,

{0, 1},

{
ω0
j ≤ ωj ≤ ω1

j and pc ≤ p̄cj ,
ωj ≤ ω0

j and pc
j
≤ pc ≤ p̄cj .

(24)
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Alternatively, when ζ belongs to the set D = Λ \ C ∪ D̃
where D̃ = {ζ ∈ Λ : σj ∈ IDj (ωj , p

c), ∀j ∈ N}, and

IDj (ωj , p
c) =


{0}, ωj = ω1

j or pc = p̄cj ,

{1},

{
ωj ≤ ω0

j and pc = pc
j
,

ωj = ω0
j and pc ≤ pc

j
,

(25)

then its components follow a discrete update described
by

x+ = x, σ+
j =

{
1, ωj ≥ ω1

j or pc ≥ p̄cj ,
0, ωj ≤ ω0

j and pc ≤ pc
j
.

(26)

Hence, the following hybrid compact representation de-
scribes the system (1), (2), (12), (21),

ζ̇ = f(ζ), ζ ∈ C, ζ+ = g(ζ), ζ ∈ D, (27)

where f(ζ) : C → C and g(ζ) : D → C \D follow from
(7) and (12), and (26) respectively.

6.4 Analysis of equilibria and solutions

The following proposition, proven in the Appendix,
demonstrates the existence and characterizes the equi-
libria of (27). Note that the definition of an equilibrium
to (27) is analogous to Definition 4 and is omitted for
compactness.

Proposition 4 Consider the system described by (27)
and let Design condition 2 hold. Then, an equilibrium
point exists and satisfies ζ∗ ∈ C.

The following proposition demonstrates the existence of
solutions to (27), that all maximal solutions to (27) are
complete and also that no chattering occurs.

Proposition 5 For any initial condition ζ(0, 0) ∈ Λ
there exists a complete solution to (27). All maximal so-
lutions to (27) are complete. Furthermore, for any com-
plete bounded solution to (27), there exists τ > 0 such
that mini≥1(ti+1,j − ti,j) ≥ τ, j ∈ N .

6.5 Stability and optimality of hybrid system

In this section, we provide our main stability and opti-
mality results about system (27), with the proofs pro-
vided in the Appendix.

Theorem 4 Let Design condition 2 hold. Then, for all
initial conditions, the solutions of (27) are bounded and
converge to a subset of its equilibria.

Theorem 4 and Proposition 5 demonstrate that the in-
clusion of loads with dynamics described by (21) does
not compromise the stability of the system, when Design
condition 2 holds, and also does not result to chattering
behavior.

The optimality result associated with Design condition
2 is stated in Theorem 5 below. Within the theorem
statement, we make use of the notion of an ε-optimal
point defined below.

Definition 5 Given a cost function Cf : Rn ×Zm → R
where n,m > 0, a vector x̄ ∈ Rn×Zm is called ε-optimal
for Cf , for some ε ∈ R>0, if it holds that

Cf (x̄) ≤ min
x∈Rn×Zm

Cf (x) + ε. (28)

Theorem 5 Let Design condition 2 hold and the control
dynamics in (2a) be chosen such that αj = c−1

j , j ∈ N .

Then, the equilibrium values (pM,∗, dc,∗, du,∗) are ε-
optimal for the H-OSLC problem (20), where ε =
1

2D maxj∈N (d̄j)
2.

Theorems 4 and 5 demonstrate convergence to a power
allocation that is close to optimal, when Design condi-
tion 2 is implemented, and provide a non-conservative
bound on the difference between the cost at equilib-
rium and the optimal one. However, Design condition
2 comes with additional information requirements com-
pared to Design condition 1, making the latter more suit-
able when those parameters are difficult to obtain.

Remark 8 The value of ε in Theorem 5, i.e. the devia-
tion of the power allocation cost from its optimal value,
is expected to be very small since in most realistic power
network configurations it holds that maxj∈N dj � D.

Remark 9 The requirement for knowledge of the values
of ` and D in the implementation of (11) and (21) and
Design conditions 1 and 2 does not limit the applicabil-
ity of the proposed schemes, since it can be shown that
the convergence properties presented in Theorems 3 and
4 are retained when an upper bound to the magnitude of
` and a lower bound to D are known. However, the latter
may compromise the optimality interpretation of Theo-
rem 5. Hence, there exists a trade-off between robustness
to measurement uncertainty and optimality.

Remark 10 The contribution of this work in compari-
son to [16], which considers a hysteretic scheme for on-off
loads as an ancillary service to secondary frequency con-
trol, is multilevel. In particular, the fact that on-off loads
are allowed to actively contribute at steady state when
primary frequency control is considered raises issues of
existence of equilibria and limit cycles. Such issues do
not occur in secondary frequency control, since loads do
not contribute at equilibrium. This study resolves these
issues by providing a sufficient condition for the existence
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of equilibria in Theorem 2 and a suitable hysteretic de-
sign (Design condition 1) for on-off loads which allows
to deduce stability, as shown in Theorem 3. Moreover,
using the fact that on-off loads may contribute at steady
state, we proposed Design condition 2, which allows an
ε-optimal allocation among generation and on-off loads
and retains the stability properties of the system, as an-
alytically shown in Theorems 4 and 5.

7 Simulation on the NPCC 140-bus system

In this section we verify our analytical results with nu-
merical simulations on the Northeast Power Coordinat-
ing Council (NPCC) 140-bus interconnection system, us-
ing the Power System Toolbox [32]. This model is more
detailed and realistic than our analytical one, and in-
cludes line resistances, a DC12 exciter model, a tran-
sient reactance generator model, and turbine governor
dynamics 7 . The test system consists of 93 load buses
serving different types of loads including constant active
and reactive loads and 47 generation buses. The over-
all system has a total real power of 28.55 GW. For our
simulation, we added five loads on units 2, 8, 9, 16 and
17, each having a step increase of magnitude 3 per unit
(base 100 MVA) at t = 1 second.

Controllable demand was considered within the simula-
tions on 20 generation and 20 load buses, with loads con-
trolled every 10ms. The system was tested at three dif-
ferent cases. In case (i) on-off controllable loads as in (3)
were considered. The values for ωj were selected from a
uniform distribution within the range [0.02Hz 0.07Hz]
and those of ωj by setting ωj = −ωj . In case (ii) con-
trollable loads with hysteretic dynamics described by (6)
were considered. For a fair comparison, the same fre-
quency thresholds as in case (i) were used, with ω1

j = ωj
and ω0

j = ω1
j /2. Finally, in case (iii), hysteretic loads fol-

lowing the dynamics in (11) and Design condition 1 were
included. For this case, the same frequency thresholds
as in case (ii) where used, with power command thresh-
olds chosen such that Design condition 1 was satisfied.
For all cases d = 0.2 per unit was used. We shall refer
to cases (i), (ii), and (iii) as the ’switching’, ’hysteresis’
and ’adapted hysteresis’ cases respectively.

The frequency at bus 89 for the three tested cases is
shown in Fig. 5. From this figure, we observe that the
frequency converges to some constant value at all cases.
Note that a smaller steady state frequency deviation
is observed when hysteretic loads are considered, since
the hysteresis scheme allows more loads to be switched
on at steady state compared to (3). Moreover, Fig. 6
demonstrates that the inclusion of on-off loads decreases
the maximum overshoot in frequency, by comparing the
largest deviation in frequency with and without on-off

7 The details of the simulation models can be found in the
Power System Toolbox data file datanp48.
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Fig. 5. Frequency at bus 89 with controllable load dynamics
as in the following three cases: i) Switching case, ii) Hystere-
sis case, iii) Adapted hysteresis case.
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Fig. 6. Largest frequency overshoot for buses 1− 45 for four
cases: i) Switching case, ii) Hysteresis case, iii) Adapted hys-
teresis case, iv) No controllable loads case.

controllable loads at buses 1−45, where frequency over-
shoot was seen to be the largest. Note that the same
overshoot profiles are observed in all cases (i), (ii), and
(iii) since the same frequency thresholds have been used.

Furthermore, from Fig. 7 it can be seen that in case
(i) controllable loads switch very fast, as demonstrated
by the thick blue lines, indicating chattering, where in
case (ii) such behavior is not observed 8 , since far less
switches are exhibited, as shown in Fig. 8. Both figures
depict the behavior at the 4 buses with hysteretic loads
with the fastest consecutive switches. Chattering is also
verified numerically in case (i), since it was seen that for
each of the 20 controllable loads the minimum time be-
tween consecutive switches was 10ms, which is the small-
est time increment in our discrete numerical simulation.
Therefore, the numerical results support the analysis of
this paper, verifying that hysteresis eliminates chatter-
ing of controllable loads.

To demonstrate the possibility of limit cycles when case
(ii) is considered, we altered the frequency thresholds of

8 Note that analogous behavior to case (ii) has been ob-
served for case (iii). These results are omitted for compact-
ness in presentation.
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Fig. 7. Controllable demand at 4 buses with on-off loads
described by (3).
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Fig. 8. Controllable demand at 4 buses with Hysteretic on-off
loads.
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Fig. 9. Controllable demand at bus 21 for cases (ii) and (iii).

the on-off load at bus 21, making ω1
21 coincide with the

equilibrium frequency and then repeated the simulations
for cases (ii) and (iii). As demonstrated on Fig. 9, the
load at bus 21 exhibits limit cycle behavior at steady
state, whereas when the adapted hysteresis scheme was
considered, no such behavior is observed.

To verify the optimality results of Theorem 5, we re-
peated the simulation with 47 loads on generation buses
with magnitudes randomly selected from a uniform dis-
tribution of range [0.025 0.075] per unit and 20 loads on
load buses 1 − 20 of magnitude 0.2 per unit. We aimed

for a larger number of on-off devices to allow a large
number of possible solutions to (20) and show that the
cost of the obtained equilibrium when Design condition
2 is applied is ε-close to the globally minimum of (20), as
follows from Theorem 5. The costs were selected from a
uniform distribution in the range [10−4 0.002], resulting
to frequency thresholds ω0

j following (22a) in the range
[0.013Hz 0.08Hz]. The simulation results verified the
convergence of frequency to an equilibrium value and
that no limit cycle behavior occurred, similarly to case
(iii). Furthermore, the obtained equilibrium was seen to
be identical with the optimal one, calculated using a
heuristic reproduction and mutation genetic algorithm
(see [33, Ch. 3]) implemented 1000 times with random
initial conditions and always converging to the same so-
lution, numerically verifying the optimality analysis of
Theorem 5 when Design condition 2 is considered.

8 Conclusion

We have considered the problem of primary frequency
control where controllable on-off loads provide ancillary
services to the power network. We first considered loads
that switch on when some frequency threshold is reached
and off otherwise and provided relevant stability guar-
antees for the power network. Furthermore, we discussed
that such schemes might exhibit chattering, which lim-
its their practicality. To cope with this, we considered
on-off loads with hysteretic dynamics and showed that
chattering is no longer exhibited. We also provided de-
sign conditions that guarantee the existence of equilib-
ria when such loads are considered. However, numeri-
cal simulations demonstrate that hysteretic loads may
exhibit limit cycle behavior. As a remedy to this prob-
lem, we proposed an adapted hysteretic control scheme
and appropriate design conditions that ensure that the
network is stable, while also avoiding chattering. Fur-
thermore, we considered a mixed-integer optimization
problem for power allocation. We proposed a suitable
control design such that the stability guarantees are re-
tained and the cost at the equilibria of the system is
within ε to the global minimum, providing also a non-
conservative bound for ε. Our analytical results have
been verified with numerical simulations on the NPCC
140-bus system where it was shown that the presence of
on-off loads reduces the frequency overshoot and that
hysteretic schemes avoid chattering. Furthermore, simu-
lation results demonstrate that our proposed hysteretic
scheme avoids limit cycle behavior and leads to an opti-
mal power allocation at steady state.

Appendix

This appendix includes the proofs of the results pre-
sented in the main text.

Proof of Lemma 1: The lemma can be proven using
Proposition 3 in [26]. This states that solutions exist ifQ
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is locally essentially bounded and measurable. The local
boundedness of Q follows since the step size at disconti-
nuities is always bounded from (3) (i.e. by maxj∈N dj)
and the Lipschitz property of the vector field in (1), (2).
The fact that Q is measurable follows trivially. �

Within the proof of Theorem 1 we will make use of
the following equilibrium equations for system (1)–(3),
which follow from Definition 1.

0 = ω∗i − ω∗j , (i, j) ∈ E, (29a)

0 ∈ −pLj +pM,∗
j − F [dcj ]−

∑
k∈No

j

p∗jk +
∑
i∈Ni

j

p∗ij , j ∈ N,

(29b)

p∗ij = Bijη
∗
ij , (i, j) ∈ E, (29c)

pM,∗
j = −αjω∗j , d

u,∗
j = Ajω

∗
j , j ∈ N. (29d)

The notion of a Lyapunov stable equilibrium point, de-
fined below, will also be used for the considered system.

Definition 6 An equilibrium point x∗ of (5) is Lya-
punov stable if for all ε > 0 there exists a δ > 0 s.t. any
Filippov solution x(t) of (1)-(3) with initial condition
x(0) = x0, ‖x0 − x∗‖ < δ, satisfies ‖x(t) − x∗‖ < ε for
all t ≥ 0.

Proof of Theorem 1: To prove Theorem 1, we make use
of [34, Theorem 3] to establish convergence to the set
of equilibria of (5). We then show that each equilibrium
to (5) is Lyapunov stable and deduce convergence to
an equilibrium point using similar arguments as in [35,
Prop. 4.7, Thm. 4.20].

We will use the dynamics in (1) and (2) to define a Lya-
punov function for system (1)–(3). Note that the set val-
ued map in (5) takes compact, convex values, in accor-
dance to the class of systems considered in [34].

Firstly, we consider some equilibrium point x∗ =
(η∗, ω∗, pM,∗) and the function VF (ω) = 1

2

∑
j∈N Mj(ωj−

ω∗j )2. We then consider the time-derivative of VF (ω)
along the solutions of (1)–(3). For a given value of the
state x = (η, ω, pM ) this is a set valued map given by

V̇F (x) := {∂VF

∂x ẋ : ẋ ∈ Q(x)} ={
∑
j∈N (ωj − ω∗j )(−pLj +

pMj −uj−duj−
∑
k∈N0

j
pjk+

∑
i∈Ni

j
pij) : uj ∈ F [dcj(ωj)]},

by substituting (1b) for ω̇j and using the differential
inclusion for dcj for j ∈ N . Subtracting the product of
(ωj − ω∗j ) with each term in (29b), we get

V̇F (x)={
∑
j∈N

(ωj−ω∗j )(pMj −p
M,∗
j − (uj−u∗j )−(duj−d

u,∗
j ))

+
∑

(i,j)∈E

(pij−p∗ij)(ωj−ωi) :uj ∈F [dcj(ωj)],u
∗
j ∈F [dcj(ω

∗
j )]},

(30)

using in the first term the equilibrium condition (29a).
Additionally, consider VP (η) =

∑
(i,j)∈E Bij(ηij −η∗ij)2.

Using (1a) and (1c), the time-derivative equals

V̇P (x)=
∑

(i,j)∈E

Bij(ηij−η∗ij)(ωi−ωj)

=
∑

(i,j)∈E

(pij−p∗ij)(ωi−ωj). (31)

Finally, consider the function VM (pM ) = 1
2

∑
j∈N τj(p

M
j −

pM,∗
j )2. Using (2a), its time derivative is given by

V̇M (x)=
∑
j∈N

(pMj −p
M,∗
j )(−(pMj −p

M,∗
j )−(ωj−ω∗j )). (32)

Based on the above, we define the function

V (η, ω, pM ) = VF (ω) + VP (η) + VM (pM ), (33)

which is continuously differentiable and has a strict min-
imum at (η∗, ω∗, pM,∗) and hence is a suitable Lyapunov
candidate. Furthermore, it trivially follows that V is reg-
ular, following the definition provided in [34, p.363-364].
By (2b) and (30)–(32), it follows that

V̇ (x) = {
∑
j∈N

[−Aj(ωj − ω∗j )2 − (pMj − p
M,∗
j )2

− (ωj − ω∗j )(uj − u∗j )] : uj ∈ F [dcj(ωj)], u
∗
j ∈ F [dcj(ω

∗
j )]}.

Using (4), it therefore holds that,

max
y∈V̇ (x)

y≤
∑
j∈N

[−Aj(ωj−ω∗j )2−(pMj − p
M,∗
j )2] ≤ 0. (34)

It is clear that V (x) has a global minimum at x∗ =
(η∗, ω∗, pM,∗). Furthermore, from (34), there exists a
compact set Ξ = {x : V (x)−V (x∗) ≤ ε}, for some ε > 0,
such that solutions initiated in Ξ remain in Ξ for all fu-
ture times. Note that the value of ε in the definition of
Ξ can be selected to be arbitrarily small and hence x∗ is
Lyapunov stable, following Definition 6 and also that x∗

is an arbitrarily selected equilibrium point, which allows
to extend the above argument to all equilibria of (5).

Therefore, Theorem 3 in [34] can be used on function
V (η, ω, pM ) within the compact set Ξ along solutions

of (1)–(3). Let Z = {x : 0 ∈ V̇ (x)} and Ψ be the
largest weakly 9 invariant set within Ξ ∩ Z. Then, The-
orem 3 in [34] guarantees that all solutions of (1)–(3)

that start within Ξ converge to Ψ. Since 0 ∈ V̇ (x), it fol-
lows that within Ψ, ω = ω∗ and pM = pM,∗ from (34).
Moreover, (1a) suggests that when ω is constant then η

9 The notion of a weakly invariant set used follows from [34,
Dfn. 4].
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also takes some constant value η̄. Applying the above to
equation (1), leads to the equilibrium conditions (29a)–
(29d). Therefore, we conclude by Theorem 3 in [34] that
all Filippov solutions of (1)–(3) with initial conditions
(η(0), ω(0), pM (0)) ∈ Ξ converge to the set of equilibria
within Ξ defined in Definition 1.

Since Ξ is a bounded set for given ε and solutions of (5)
initiated within Ξ converge to the set of its equilibria, it
follows that trajectories of (5) are always bounded and
hence each trajectory x(t) has an ω-limit point (see [36,
p.129]) that is an equilibrium, i.e. there exists a subse-
quence x(tn) that converges to an equilibrium point as
t → ∞. Since all equilibria are also Lyapunov stable, it
follows that each trajectory initiated within Ξ converges
to an equilibrium within Ξ. Hence, noting that Ξ can be
chosen to be arbitrarily large, we deduce global conver-
gence of solutions to (5) to an equilibrium point of (5),
which completes the proof. �

The following lemma characterizes the equilibria of (10)
and will be used in the proof of Theorem 2.

Lemma 2 Consider the system described by (10). Then
any equilibrium point ζ∗ = (x∗, σ∗) ∈ C.

Proof of Lemma 2: Recall from Definition 2 that any
equilibrium ζ∗ should satisfy f(ζ∗) = 0, ζ∗ ∈ C or ζ+ =
ζ∗, ζ∗ ∈ D. Now note that the latter case can be excluded
since g(ζ) : D → C \D. Therefore, all ζ∗ ∈ C. �

Proof of Theorem 2: Let hj = ω1
j − ω0

j and

ω̃(pL, σ) = (−`− dTσ)/D, (35)

reminding that ` = 1T|N |p
L. As follows from (1b) and

Lemma 2, the existence of an equilibrium to (10) is
equivalent to the existence of a pair (ω̃, σ̃) within some
equilibrium point ζ∗ ∈ C as follows from Definition 2,
such that (35) is satisfied. Furthermore, for scalar ω̃i
and vector σ̃, we define the set Π as Π(ω̃i, σ̃) = {j :
ω̃i > ω1

j and σ̃j = 0, ω̃i < ω0
j and σ̃j = 1}, i.e. it con-

tains all buses that violate (6) when ω = ω̃i1|N | and
σ = σ̃. It should be clear that for any feasible equilib-
rium with frequency ω∗ and switching state σ∗, then
Π(ω̃i = ω∗, σ∗) = ∅.

To show that the condition suffices for the existence of
equilibria, we prove that when hi ≥ di/D, then there
exists some ζ∗ that satisfies Definition 2 for any pL. An
equilibrium pair (ω∗, σ∗) may be obtained by the fol-
lowing algorithm. Consider any pL, a vector σ0 = 0|N |
and the corresponding value of ω̃0 = ω̃(pL, σ0), as fol-
lows from (35). Then consider the set Π0 = Π(ω̃0, σ

0)
and note that it contains all the buses with σj = 0 that
should satisfy σj = 1 when ωj = ω̃0, as follows from (6).
Then, choose the bus j that satisfies ω0

j = mink∈Π0
ω0
k

and define σ1 = {σ : σi = σ0
i , i ∈ N/{j}, σj = 1},

Then, ω̃1 = ω̃0 − dj/D, noting that the condition hi ≥
di/D, i ∈ N guarantees that ω̃1 > ω0

j . Then, define the

set Π1 = Π(ω̃1, σ
1) and repeat. This algorithm creates a

decreasing series of ω̃i and a series of σi that converge to
some values (ω∗, σ∗) after at most |Π0| iterations. This
follows, by noting that it always holds that when Πi 6= ∅,
then |Πi+1| ≤ |Πi|− 1, since no bus with σj = 1 belongs
to any set Πi, since at any iteration ω̃i > ω0

j for any j
where σj = 1. Hence, the algorithm converges after at
most |Π0| iterations to some pair (ω∗, σ∗) that satisfies
both (6) and (35). Therefore, when hi ≥ di/D there ex-
ists an equilibrium that satisfies Definition 2. �

Proofs of Propositions 1, 3 and 5: All proofs follow in
analogy to the proofs of Lemma 4 and Proposition 1 in
[16]. Note that the fact that all maximal solutions are
complete follows from the global Lipschitz properties of
the continuous variable x in (10), (18) and (27). �

Proof of Proposition 2: Recall from Definition 4 that
any equilibrium ζ∗ should satisfy f̃(ζ∗) = 0, ζ∗ ∈ F or
ζ+ = ζ∗, ζ∗ ∈ G. Now note that the latter case can be
excluded since g̃(ζ) : G→ F \G. Therefore, all ζ∗ ∈ F .
To show that an equilibrium of (18) exists, it suffices that
(11), (12) and (13) are simultaneously satisfied for some
ω and σ. Now define the set of buses N1 = {j : pc ≤ pc

j
}.

Then, there exists an equilibrium with σj = 0, j ∈ N1

and σj = 1, j ∈ N \N1 that satisfies (11), (12) and (13),
when Design condition 1 holds. �

Proof of Proposition 4: The proof follows analogously to
the proof of Proposition 2, noting that the constructed
equilibrium in the last argument is also in agreement
with Design condition 2. �

Note the for convenience we prove first Theorem 4, be-
fore proving Theorem 3, as the latter follows easily from
the proof of the former. Furthermore note that both sys-
tems (18) and (27) considered in Theorems 3 and 4 re-
spectively are well posed, following [27, Theorem 6.8].

Proof of Theorem 4: To prove Theorem 4 we first define
the sets of buses N1 = {j : pc ≤ pc

j
} and N2 = N \N1.

We then split the proof in two parts. In part (a), we show
that for each initial condition there exists some finite
time T such that for each j ∈ N2 it either holds that
(i) σj(t) = σ∗j , t ≥ T or (ii) ω∗ = ω1

j for all solutions to
(27). Then, in part (b) we show that when either of these
two cases holds, a Lyapuonv argument ([27, Corollary
8.7 (b)]) can be used to deduce convergence to the set of
equilibria of (10).

Part (a): When Design condition 2 holds the equilib-
rium frequency ω∗ satisfies ω∗ ≤ ω0

j , j ∈ N1 . This fol-
lows from the monotonicity in the map from ` to pc and
the fact that when pc = pc

k
as follows from (22b)–(22c),
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then ω∗ = ω0
k, as follows from (12), (13), (22). Further-

more, for each initial condition, when j ∈ N2, it holds
that either σj converges to some σ∗j in some finite time
T following the fact that σj is not allowed to switch from
1 to 0 from (21) or that ω∗ = ω1

j . Note that the two
above cases are not mutually exclusive.

Part (b): In this part, we show that when (27) satisfies
either (i) σj(t) = σ∗j , t ≥ T or (ii) ω∗ = ω1

j for j ∈ N2,
then a Lyapunov argument can be used to show that
for all initial conditions at time T solutions to (27) con-
vergence to a subset of its equilibria. First, consider the
continuous function V , described by (33). Using simi-
lar arguments as in the proof of Theorem 1 and defining
Tc = {t ≥ T : (t, `) ∈ K, ζ(t, `) ∈ C}, Td = {t ≥ T :
(t, `) ∈ K, ζ(t, `) ∈ D}, where K is a hybrid time do-
main for (27) and C and D are defined with the aid of
(23) and (25) respectively, it follows that

V̇ (x) = −
∑
j∈N

[Aj(ωj − ω∗j )2 + (pMj − p
M,∗
j )2

+(ωj − ω∗j )(dcj − d
c,∗
j )]

≤
∑
j∈N

[−Aj(ωj − ω∗j )2 − (pMj − p
M,∗
j )2], t ∈ Tc (36a)

V (ζ+)− V (ζ) = 0, t ∈ Td, (36b)

along any solution of (27), where ζ+ = (x+, σ+). Note
that (ωj − ω∗j )(dcj − dc,∗j ) ≥ 0 in (36a) follows since

ω∗ ≤ ω0
j , j ∈ N1 (shown in part(a)), and the fact that

in part (b) we consider that for t ≥ T it either holds
that σj = σ∗j or ω∗ = ω1

j for j ∈ N2. Furthermore, note

that when x ⊂ ζ ∈ D, the value of V (x) remains con-
stant as it only depends on x that is constant from (26).
Note that V (x) has a strict minimum at (η∗, ω∗, pM,∗).
Moreover, V (x) = 0 yields (η, ω, pM ) = (η∗, ω∗, pM,∗),
and thus σ = σ∗. Hence, the function V serves as a Lya-
punov function for the hybrid system (27). Then, there
exists a set S = {(x, σ) : x ∈ Ξ and σ ∈ J (ω, pc)} for
some neighborhood Ξ of x∗, where Ξ is a compact set
satisfying Ξ = {x : V (x)−V (x∗) ≤ ε}, for some ε > 0,
such that solutions to (27) that lie in S at t = T , stay
within S for all future times. Moreover, note that the set
Ξ is compact, and hence solutions within S are bounded.
Furthermore, as shown in Proposition 5, all maximal so-
lutions to (27) are complete, and for bounded solutions
to (27), the time interval between any two consecutive
switches of individual loads is lower bounded by a posi-
tive number. Therefore, by [27, Corollary 8.7 (b)], there
exists r > 0 such that all complete and bounded solu-
tions to (27) with initial conditions at time T in S con-
verge to the largest weakly invariant 10 subset of the set
{ζ : V (x) = r} ∩ {ζ : ζ ∈ C,V̇ (x) = 0} ∩ S, which cor-
responds to a set of equilibria within S. The character-

10 The definition of a weakly invariant set to a hybrid system
is provided in [27, Dfn. 6.19].

ization of this invariant set and the fact that Ξ can be
arbitrarily large follows in a similar way as in the proof
of Theorem 1, noting that the equilibria of (27) are as
described by Proposition 4.

Noting that in part (a) we showed that for each initial
condition there exists a time T such that for each j ∈ N2

either (i) σj(t) = σ∗j , t ≥ T or (ii) ω∗ = ω1
j holds, allows

to deduce Theorem 4 and completes the proof. �

Proof of Theorem 3: In analogy to the proof of Theo-
rem 4, note that, when Design condition 1 holds, ω∗ ≤
ω0
j , j ∈ N1. The latter follows directly from the equa-

tions for power command and equilibrium frequency, de-
scribed in (12), (13). Alternatively, when j ∈ N2, the
same arguments as when Design condition 2 is consid-
ered hold, to deduce that that either σj converges to
some σ∗j , j ∈ N2 in some finite time T following the fact
that σj is not allowed to switch from 1 to 0 from (11), or
that ω∗ = ω1

j . The rest of the proof follows analogously
to the proof of Theorem 4. This is since, for given `, the
loads that satisfy pc ≥ pcj have constant demand and
hence those do not affect the dynamic behavior of (21),
which reduces to that of (11). �

Within the the proof of Theorem 5, we consider a relaxed
version of the H-OSLC problem (20) by allowing contin-
uous values for controllable loads. Furthermore, we relax
the discrete cost functions Ch,j to Ĉh,j as follows:

Ĉh,j(d
c
j) =

{
γjd

c
j , 0 ≤ dcj ≤ d̄j ,

∞, otherwise,
j ∈ N, (37)

where γj = cdj/d̄j . Hence, we define the following op-
timization problem, called the relaxed hybrid optimal
supply and load control problem (RH - OSLC)

RH - OSLC:

min
pM ,dc,du

∑
j∈N

(cj
2

(pMj )2 + Ĉh,j(d
c
j) +

1

2Aj
(duj )2

)
subject to

∑
j∈N

(pMj − duj − pLj ) =
∑
j∈N

dcj .

(38)

The RH-OSLC problem is convex since each component
of the cost function is convex. To solve the RH−OSLC
problem we shall make use of subgradient techniques
[37, Section 23] and the KKT conditions, as follows from

Proposition 6 below, where ∂Ĉh,j(d̄
c
j) denotes the subd-

ifferential of Ĉh,j at d̄cj (see e.g. [37]).

Proposition 6 A point (p̄M , d̄c, d̄u) is a global mini-
mum of (38) if and only if there exists λ ∈ R such that∑

j∈N
(d̄cj − (p̄Mj − d̄uj − pLj )) = 0, (39a)
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−λ = cj p̄
M
j , j ∈ N, (39b)

λ ∈ ∂Ĉh,j(d̄cj), j ∈ N, (39c)

λ = d̄uj /Aj , j ∈ N. (39d)

Proof of Proposition 6: The proof follows directly from
applying subgradient KKT conditions [37, Section 23]
to (38). �

Proof of Theorem 5: To prove Theorem 5, we solve the
continuous optimization problem (38) using Proposition
6 and then show that the equilibria are ε-optimal to (38)
which implies that they are also ε-optimal to (20). First,

note that (39c), i.e. λ ∈ ∂Ĉh,j(d̄cj), is equivalent to

d̄cj =


d̄j , λ > ω0

j ,

(0, d̄j), λ = ω0
j ,

0, λ < ω0
j ,

j ∈ N, (40)

since ω0
j = γj from (22a). This demonstrates the im-

portance of the constant λ, which determines the opti-
mum value of on-off load j, when λ 6= ω0

j , from (40).
Furthermore, λ needs to be sufficiently large to ensure
generation-demand balance, which is reflected in (39a)–
(39d). Letting ω∗ be the equilibrium frequency of (27),
which is equal for all buses due to (29a), it follows that
when λ = ω∗, then (39d) holds. Furthermore, when
αj = c−1

j , then (39b) also holds from (29d). Moreover,

condition (39a) follows from the summation of equilib-
rium equation (29b) over all j ∈ N . Hence, when λ = ω∗,
if (40) is feasible, i.e. if dcj ∈ {0, d̄j}, j ∈ N , then the
optimal cost to (38) is equal to that of (20). Below, we
explain when (40) is feasible and quantify the additional
cost incurred when not.

We denote the minimum costs of the RH-OSLC and H-
OSLC problems by Copt and C∗opt respectively. It then

follows that Copt ≤ C∗opt since the optimal cost to (38)
provides a lower bound for the global minimum to (20)
as the former is a relaxed version of the latter, allowing
dc to take continuous values. Furthermore, let C∗ be the
cost associated with (20) at some equilibrium point to
(27). It then follows that C∗ − C∗opt ≤ C∗ − Copt, since

Copt ≤ C∗opt ≤ C∗.

Note that Design Condition 2 allows to deduce the fol-
lowing properties about the equilibria of (27). First,
when pc ∈ [pc

j
, pcj ] for some j ∈ N , then σ∗i = 1, i <

j, σ∗i = 0, i > j and σ∗j ∈ {0, 1}. Hence, if pc ∈ F :=⋃
j∈N [pc

j
, pcj ], then there exist two possible equilibria for

σ∗. Alternatively, if pc ∈ R/F then σ∗ is unique. Note
also that σ∗ determines ω∗ from (13) and that [pc

j
, pcj ] ∩

[pc
k
, pck] = ∅, j 6= k, as a result of design condition (22d).

Note also that (39) suggests that the value of λ is

uniquely determined from `, reminding that ` = −pc
from (12). In particular, when pc ∈ [pc

j
, pcj ] for some

j ∈ N then λ = ω0
j and when λ 6= ω0

j for any j ∈ N then
pc ∈ R/F . We split the rest of the proof by considering
the following two cases: (a) λ 6= ω0

j for any j ∈ N , (b)

there exists j ∈ N such that λ = ω0
j .

Part (a): When λ 6= ω0
j for any j ∈ N , then pc ∈ R/F

from Design condition 2. Hence, as explained above, ω∗ is
unique for given `. Furthermore, the solution (p̄M , d̄c, d̄u)
to (38) satisfies d̄ci ∈ {0, d̄i}, i ∈ N from (40). This sug-
gests that the solutions to (38) and (20) are identical,
since (p̄M , d̄c, d̄u) is a feasible solution to (20) and there-
fore λ = ω∗. Hence, the equilibria of (27) are global so-
lutions to (20).

Part (b): As already explained, when a solution to (38)
satisfies λ = ω0

j for some j ∈ N , there exist up to two
equilibrium frequency values ω∗ to (27) for given `. Fur-
thermore, in general it can hold that λ 6= ω∗. Now let
λ = ω0

j for some j ∈ N , define Sj = {l : ω0
l = ω0

j }
and consider a solution (p̄M , d̄c, d̄u) to (38). Then, d̄ci ∈
{0, d̄i}, i ∈ N/Sj and d̄ci ∈ [0, d̄i], i ∈ Sj , as follows di-
rectly from (40). Now, the optimal cost to (38), Copt

and the cost to (20) at an equilibrium point to (27), C∗,
when λ = ω0

j , satisfy

Copt =
∑
k∈N

(ck
2

(p̄Mk )2 + Ĉh,k(d̄ck) +
1

2Ak
(d̄uk)2

)
=
D
2

(ω0
j )2 +

∑
k∈N

Ĉh,k(d̄ck),

C∗ =
∑
k∈N

(ck
2

(pM,∗
k )2 + Ch,k(dc,∗k ) +

1

2Ak
(du,∗k )2

)
=
D
2

(ω∗)2 +
∑
k∈N

Ch,k(dc,∗k ).

Then, note that d̄ck = dc,∗k , k ∈ N \ Sj . This follows

since when λ = ω0
j , then pc ∈

⋃
i∈Sj

[pc
i
, pc
i

+ di] and

hence dc,∗k , k ∈ N \ Sj satisfy (40) from (22b)–(22d).
Then, consider an equilibrium point to (27) and design
condition 2 and note that for all ` such that λ = ω0

j

both possible equilibria satisfy q̂ = 1T|N |(d
c,∗ − d

c
) ∈

(−maxk∈Sj dk,maxk∈Sj dk). Furthermore, from (13),

the equilibrium frequency values satisfy ω∗ = ω0
j −

q̂
D .

Hence, it follows that
∑
k∈N

(Ch,k(dc,∗k )− Ĉh,k(d̄ck)) = q̂ω0
j

since for all k ∈ Sj , the cost per unit demand is ω0
j from

(22a). Hence, since ω∗ = ω0
j −

q̂
D , the difference between

the cost at equilibrium and the optimal cost satisfies

C∗ − Copt=
D
2

((ω0
j )2−2

q̂

D
ω0
j +

q̂

D2
−(ω0

j )2)+ q̂ω0
j .

(41)
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Simplifying (41) results to C∗ − Copt = q̂2

2D . Since q ∈
(−maxj∈N dk,maxj∈N dk), it follows that C∗ − C∗opt ≤
C∗ − Copt ≤ 1

2D maxk∈N (d̄k)2, completing the proof. �
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