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Summary

Holographic dualities are now an established tool in the study of universal properties of
strongly coupled field theories. Yet, theories without translational symmetry are still poorly
understood in this context. In this dissertation, we investigate three new approaches to this
challenging problem.

The first part of the dissertation concerns a class of phenomenological holographic models
in which momentum relaxation can be achieved without breaking translational symmetry
in the dual geometry. In particular, we focus on an example in which the dual geometry
is similar to anti-de Sitter (AdS) Brans-Dicke theory. We study the thermodynamic and
transport properties of the model and show that for strong momentum relaxation and low
temperatures the model has insulator-like behaviour.

In the second part, we go beyond the e�ective description and consider holographic
theories which explicitly break translational symmetry. From the perspective of gravity, these
theories translate to geometries that vary explicitly in the boundary space-like coordinates.
We refer to these geometries as ’inhomogeneous’ and investigate two approaches to study them.
The first is motivated by the question: "what happens to a homogeneous geometry when coupled
with a field varying randomly in space?". Starting from an AdS geometry at zero or finite
temperature, we show that a spatially varying random Maxwell potential drives the dual field
theory to a non-trivial infra-red fixed point characterised by an emerging scale invariance.
Thermodynamic and transport properties of this disordered ground state are also discussed.
The second is motivated by the complementary question: "how does a random geometry a�ect
a probe field?". In the weak disorder limit, we show that disorder induces an additional
power-law decay in the dual correlation functions. For certain choices of geometry profile,
this contribution becomes dominant in the infra-red, indicating the breaking of perturbation
theory and the possible existence of a phase transition induced by disorder.

The third and last part of this dissertation switches from the gravity to the field theoretical
side of the duality. We discuss the Sachdev-Ye-Kitaev (SYK) model, a disordered many-
body model with distinctive black hole-like properties. We provide analytical and numerical
evidence that these holographic properties are robust against a natural one-body deformation
for a finite range of parameters. Outside this interval, this system undergoes a chaotic-
integrable transition.
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1 | Introduction and overview

The holographic duality relating strongly-coupled quantum field theories in d dimensions
and classical theories of gravity in d + 1-dimensional anti-de Sitter (AdS) spacetime has
become an important tool in the modern repertoire of techniques employed to study strongly-
interacting systems. Despite undoubtful progress, the field remains limited by the artificial
set of symmetries commonly imposed when solving Einstein’s equations analytically. This
dissertation is part of a collective research e�ort in relaxing these symmetry constraints,
and focus in particular on the problem of translational symmetry breaking and disorder in
holographic field theories.

We start with a brief storyline of the developments that are at the heart of our research
questions.

The birth of applied holography

Fruit of years of collaborative work [1], the holographic duality, also known as AdS/CFT
correspondence, first formally appeared in the work of Maldacena in 1997 [2]. In his seminal
paper, Maldacena proposed that the strong coupling regime of N = 4 super Yang-Mills
(SYM) theory admitted a dual description in terms of the AdS5 × S5 solution of general
relativity [2]1. With a few exceptions - such as integrable theories at low dimensions - the
strong coupling regime of generic field theories is inaccessible by conventional perturbative
techniques. On the other hand, general relativity is concerned with finding solutions for
Einstein’s equations, a hard but well-understood problem. It is precisely in this imbalance
that lies the appeal of the duality.

Maldacena’s proposal unfolded in several generalizations. Works by Witten [3], Gubser,
Klebanov and Polyakov [4] have drawn a practical dictionary to translate observables from the
field theory side to geometric quantities in general relativity. New dualities were established,
and a fast-paced research field started gaining shape [5]. Indeed, it took less than four years
from Maldacena’s work to the first application of the holographic duality to a practical
problem in nuclear physics, the quark-gluon plasma [6].

Heavy-ion collisions in the LHC produce a strongly-interacting deconfined phase of
quantum chromodynamics (QCD) known as the quark-gluon plasma. Experiments suggest

1Note that Sn denote the n-dimensional unit sphere
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that this soup of quarks and gluons interacts strongly and behave as an almost ideal fluid [7].
Research for an e�ective model describing the experiments requires an estimate of the
thermodynamic and transport coe�cients governing the hydrodynamical expansion of
QCD. Conventional techniques, such as diagrammatic expansions and lattice simulations are
conceptually limited to the weak coupling regime of QCD, providing poor extrapolated
results at strong-coupling. Starinets, Policastro and Son were the first to realise the potential
of applying the holographic duality to this problem. Regarding the strongly-coupled phase
of N = 4 super Yang-Mills as a toy-model for the quark-gluon plasma, they employed
the duality to estimate that the shear viscosity to entropy ratio is given by the constant
η/s = (4π)−1 [6, 8]. Surprisingly, this value is in good agreement with the heavy-ion
collision experiments in the LHC [9]. Based on the previous weak coupling result for η/s,
that suggested it is an increasing function of the coupling parameter, and on the notion of
universality of the hydrodynamical description, Kovtun, Starinets and Son later conjectured
that the value (4π)−1 should be a lower bound for the shear viscosity to entropy ratio of
fluids [10,11]. Although this celebrated result was shown later to be violated in generalised
holographic field theories, it is astoundingly satisfied by most real-life fluids [9].

The KSS bound, as it is now known, has laid the groundwork of applied holography,
and became a landmark for how the duality can be employed to provide insight about some
universal properties of strongly-coupled field theories [12].

Holography and criticality

Behind the unreasonable e�ectiveness of the holographic approach to the quark-gluon
plasma, is the key notion of universality. Holographic field theories should be thought as
phenomenological, rather than microscopic descriptions for a system. For instance, it would be
misleading to picture N = 4 SYM as a faithful description of deconfined quarks. Instead, we
can motivate this similarity by thinking in terms of the renormalization group flow. Despite
being radically di�erent in the ultra-violet, at strong coupling, these theories flow to a
common infra-red fixed point described by a universal hydrodynamic expansion, which can
be e�ectively studied using the holographic duality.

The idea of studying holographic field theories to intuit the universal behaviour of
strongly-interacting fixed points found a fertile ground in the field of condensed matter,
where universality has been a paradigm since the work of Kadano� and Wilson [13–15]. At
the core of condensed matter theory is the classification of phases of matter and the transitions
between them. In the vicinity of a phase transition, critical theories develop long-range corre-
lations characterised by an emerging scale invariance of the physical observables. Correlation
functions in the system become independent of the underlying microscopic theory at large
scales and can be described by an e�ective quantum field theory. From the renormalization
group perspective, classifying the universality classes of phase transitions is translated to classi-



23

fying the long-range behaviour of scale-invariant quantum field theories [16,17]. In d = 1, 2

dimensions, scale invariance is strong enough to provide a comprehensive classification of
the critical points. However, at higher dimensions, the conventional techniques are limited
to weak coupling. Holography is a promising tool to address the strong coupling limit. As
we will discuss in Chapter 2, the holographic duality can be thought as a geometrization of
the renormalization group flow, naturally embodying scale invariance on the asymptotically
AdS boundary conditions.

The pioneering work of Hartnoll, Sachdev, Müller and Kovtun [18] have laid the ground-
work for a fast-paced research program inspired by criticality, drawing ever-growing at-
tention from high energy and condensed matter physicists alike [19–23]. However, it was
soon realised that the simplest holographic field theories fail to capture some of the im-
portant features of critical condensed matter systems. For instance, the early holographic
field theories were all relativistic, a limitation which was rapidly addressed [20,21,24–26].
Since the first works from 2008, many similar questions have been addressed, and the list of
e�ective holographic theories motivated by condensed matter systems is ever-growing. As
a side e�ect, general relativity has also benefited from the outburst engendered by applied
holography. To cite an example, superconductivity was the driving motivation behind the
discovery of the first hairy black hole in AdS [27–30].

Despite these unquestionable successes, the field of applied holography is far from mature,
and many ubiquitous concepts in condensed matter physics still lack a holographic counter-
part. A key example is provided by disordered field theories. Disorder is widely employed
in condensed matter to model phenomena that vary from sample to sample, such as defects
and impurities in metals, frustration in glasses, turbulence in fluids and more broadly noise
in experiments [31]. It is of paramount importance whenever translational symmetry is
broken at the microscopic scale, and essential for predicting realistic experimental results,
as for example the finite dc-conductivity of standard metals [32]. From the perspective of
gravity, a disordered field theory is dual to a random metric solving stochastic Einstein’s
equations [22, 33]. Due to the non-linearity of the field equations, a brute force approach to
this problem is doomed. Finding novel clever approaches to this problem thus constitutes a
essential part of the applied holography program, and is at the core of this dissertation.

Disorder can be regarded, to first order, as a mechanism for breaking translational
symmetry. As it was previously mentioned, translational invariant theories can lead to
unphysical results, particularly when it comes to transport. The linear response coe�cient
of any operator coupling to the conserved momentum operator is infinite, translating the
fact that all frames are equivalent. A concrete example is the infinite dc-conductivity of the
homogeneous free electron gas. In this case, a small disordered potential can be introduced
as a mechanism to relax momentum, leading to the expected finite result given by Drude’s
formula [34]. Disorder induces a crossover in the kinetic behaviour of the electrons from
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ballistic to di�usive, the last being closely related to the dc-conductivity through Einstein’s
relations. But the phenomenology associated with disorder can be richer than only relaxing
momentum. As it was first remarked by Phil Anderson in 1958, the interplay between
quantum coherence and disorder yield the total suppression of quantum di�usion in d = 1, 2

dimensions [35], translating to an insulating behaviour of the disordered electron gas. In
higher dimensions d > 2, a metal-insulator transition occurs as a function of disorder
strength [35–39]. Anderson localization has been experimentally observed in optical [40–43]
and acoustic systems [44] and in a Bose-Einstein condensates [45], but it was long believed
that electron-electron interactions spoil localization [46–48], impeding an experimental
observation in the solid state. It was only in 2006 that Basko, Aleiner and Altshuler have
shown using diagrammatic techniques that the strongly-disordered Anderson localised phase
is stable against weak interactions [49,50]. This novel state of quantummatter usually referred
to as many-body localised, became an area of intense investigation, with many standing
open questions regarding its properties (see [51,52] for two recent reviews). Many-body
localisation is yet another example of the rich phenomenology associated with disordered
systems.

In a close analogy with the free electron gas, the dc-conductivity of the simples charged
holographic theory - the Reissner-Nordström (RN) black hole - is divergent, a direct
consequence of the translation invariance of the geometry. Motivated by the limitations
of the RN solution as a realistic model for a charged strongly-coupled plasma, research in
incorporating translational symmetry breaking and momentum relaxation in the Einstein-
Maxwell theory has flourished [33,53–65]. We can roughly separate the to-date literature
on this front in two rough categories.

E�ective field theories of momentum relaxation

The first category is composed of theories which judiciously capture the phenomenology
of momentum relaxation but avoid dealing with Einstein’s equations in the presence of
spatially inhomogeneous sources. For this reason, we refer to these theories as e�ective field
theories of momentum relaxation. In holographic field theories, the momentum operator is
encoded in the tx-component of the boundary energy-momentum, dual to the geometry
metric tensor. Since the metric couples to all fields in the theory through the volume form,
translational symmetry can be broken by introducing a field, in the simplest case a scalar
φ, that explicitly depends on the boundary spacelike coordinates. As we will discuss in
detail in Section 2.3, the scalar field introduce a source s that couples to a scalar operator O
of the dual field theory, through a term ∼

∫
ddx s(t,x)O(t,x) in the field theory action.

The relationship between the source s, operator O and momentum px is given by a Ward
identity, ∂t〈px〉 = ∇xs 〈O〉. Relaxation of momentum would be represented by a term
∂t〈px〉 = −τ−1〈px〉+ . . . in the equation above, with τ parametrising the typical relaxation



25

time. This term can be introduced by choosing a spatially-dependent source s(x) (say in
the x-direction) that couples to the momentum operator. However, note that a generic
inhomogeneous source inevitably leads to solving non-linear partial di�erential equations for
the geometry. The first works to consider relaxation introduced such term by hand [18,22],
avoiding to solve for the geometry. The major breakthrough was achieved only five years
later, when it was realised that, since Einstein’s equations couples to a massless source only
through second derivative terms, engineering a source term s(x) = τ−1x introduced a
relaxation term in the boundary Ward identity without introducing explicit x dependent in
the field equations [53,54]. It turns out that implementing this idea on the gravity side of
the duality is closely related to the Stueckelberg mechanism in massive gravity [53]. The major
success of this model is that, since Einstein’s equations are symmetric, the dual geometry can
be found explicitly and the dc-conductivity can be computed analytically. Interestingly, the
simplest flavour of this geometry provides a model for the crossover between a standard (or
coherent) and a bad (or incoherent) metal. This celebrated result will be discussed in detail
in Section 2.5.2.

Similar mechanisms for relaxing momentum while keeping the geometry spatially ho-
mogeneous have also been studied in holography. Two notable examples are the helical
lattices [58, 66–69] and the Q-lattices [70–72]. These models rely on the symmetries of a
class of known string theory solutions supported by complex one-forms that are also linear in
the spacelike boundary coordinates. The addition of other fields allows for engineering other
phases in the infra-red (IR). As a trade-o� between complexity and flexibility, these models
can reproduce not only the coherent/incoherent crossover of the simple Stueckelberg-based
models but can also be tuned to have an insulating behaviour IR [67].

In Chapter 3 we discuss a new model that introduces a non-minimal coupling between
the Stueckelberg fields and the Ricci scalar, similar to the Brans-Dicke theory in cosmology.
The non-trivial coupling enriches the phenomenology of the previous Stueckelberg-based
models, introducing an insulator-like behaviour when the relaxation parameter is large.

It is important to stress that, despite the working simplicity of the aforementioned
holographic models, they fail to capture the rich phenomenology of strongly-disordered
systems previously discussed. For instance, there is no sign of coherence e�ects at any value
of the relaxation parameter. The investigation of models in which the geometry explicitly
depends on the spacelike boundary coordinates is essential to go beyond relaxation.

Inhomogeneous holographic theories

In contrast with the e�ective models discussed above, the second category consists of theories
dual to geometries that are an explicit function of the spacelike boundary coordinates. This
can be achieved, for instance, by coupling the geometry to non-linear inhomogeneous
source s(x), and we here refer to the dual of these geometries as inhomogeneous holographic
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theories.
Motivated by the ubiquitous role that lattices play in Condensed Matter systems - and in

particular in the context of band theory - the first steps in this direction have studied the
dual field theory in the presence of periodic sources s(x) ∝ cos(kx), the so-called holographic
lattices [73–77]. Early numerical results indicated that, as expected, the ac-conductivity in the
presence of a holographic lattice followed Drude’s formula for low frequencies. Furthermore,
a cross-over to power-law scaling σ(ω) ∼ ωγ with γ = 2/3 at intermediate frequencies was
observed [75, 76]. This scaling behaviour is consistent with cuprates, a family of high-Tc
superconducting materials largely believed to be described by a strongly-interacting field
theory [78–81]. It was later shown that the holographic lattices introduced an e�ective
mass in the gravity side, establishing a bridge with the aforementioned Stueckelberg-based
models [64]. An important progress in this field was the introduction by Donos and Gauntlett
of a simpler approach to computing the dc-conductivity which allowed to establish a generic
formula in terms of the behaviour of the geometry at the horizon [82, 82–85]. The same
authors later showed that the holographic conductivities are closely related to the di�usion
of charge and heat in the black hole horizon [86].

The second major line in the investigation of inhomogeneous holographic theories is
motivated by disorder. Early works on disorder in the context of holography have avoided
directly dealing with disordered sources, and instead studied e�ective mechanisms such as the
memory function method [63] and replica theories [22]. Disordered sources were first studied
in the probe limit, neglecting the e�ect of disorder in the geometry, which is fixed [87–89].
Clearly, the probe limit avoids the kernel of the problem. However, these works bair merit
for introducing a model of disorder which is particularly adapted to the context of gravity.
The idea is to decompose the disordered source as a finite sum of oscillating terms with i.i.d.

uniform random phases s(x) =
N∑
n=1

An cos (knx+ γi), γi ∈ [0, 2π). In the large N limit, this

sum provides a discrete and smooth representation of a random Gaussian process. For this
reason, it is particularly suited for holography and was adopted by most of the later works.
A detailed discussion of general spectral representations for disorder is given in Chapter 2.3.3.

The dc-conductivity of a charged holographic field theory is closely related to the near-
horizon region of the geometry. As will be discussed in 2.3.3, this region encodes the IR
behaviour of the dual field theory. The probe limit where the geometry is fixed by hand
is only justified when the disordered source is an irrelevant deformation of the boundary
field theory. According to the renormalization group (RG), when disorder is a relevant
deformation of the ultra-violet (UV) Lagrangian, it is expected to grow in the IR, driving the
theory to a disordered fixed point [90]. In terms of the gravity dual, this is the regime where the
back reaction cannot be neglected and corresponds to a genuine inhomogeneous solution of
Einstein’s equations. The first analytical attempt to study disorder in this regime was by Adam
and Yaida, who investigated the marginal case in perturbation theory [91]. It was found that
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disorder, in this case, is marginally relevant, yielding logarithm divergences in the free energy
of the dual field theory. Drawing on this result and on the previously introduced spectral
representation of disorder, Santos and Hartnoll proposed a resummation scheme for the
logarithm divergence [33,92]. Surprisingly, the resummed geometry acquires an emergent
scale invariance in the IR, known in the holography literature as Lifshitz scaling [93]. The
scalar source considered by Hartnoll and Santos can be chosen to be a marginal deformation
by appropriately tuning the mass. The lack of a mass parameter was a hindrance to generalise
this result to charged systems, where the chemical potential is always relevant. A first attempt
was made by Peet and O’Kee�e who found higher order divergences that precluded a simple
resummation [94]. In Chapter 4, we discuss a solution for this problem involving a judicious
choice for the distribution of disorder. We carry the resummation for the disordered Einstein-
Maxwell system and find that the geometry interpolates between AdS in the ultra-violet and
a Lifshitz fixed point in the infra-red. We establish a close relationship between the disorder
correlation and the emergent scale invariance, suggesting that the IR Lifshitz scaling is closely
related to the marginally relevant disorder. At T = 0, the dc-conductivity of the disordered
plasma increases, reflecting the presence of the weakly-disordered chemical potential. In
contrast, at T > 0 the dc-conductivity is not a�ected to lowest order in disorder.

Other works on disordered sources in holographic field theories include branemodels [95]
and e�ective hydrodynamical theories [96]. It is worth mentioning a recent front of research
focusing in bounds for the transport coe�cients of disordered holographic theories [97–99].
The general expressions for the holographic conductivities obtained by Donos and Gauntlett
allow to establish bounds for a class of disordered theories exempt from the full geometry.

It is important to emphasise that research in disordered holographic theories is a fairly
recent topic. Introducing disorder in boundary source fields has been the driving set-up for
studying this problem. Ideally, one would hope to observe signs of coherence e�ects in the
strong-disorder limit. But going beyond perturbation theory is challenging both analytically
and numerically, severely limiting the study of relevant strongly-disordered geometries.
Although it is early to be assertive, the perturbative results so far contain no footprint of
coherence e�ects, and the bounds in transport seem to preclude a metal-insulator transition
for a wide class of systems. In Chapter 5 we propose a new setting to study disordered
systems in holography in which coherence e�ects between a disordered geometry and a
probe source can be implemented, opening a new direction of research in this field.

A disordered many-body toy-model for holography

Most of the research e�ort highlighted in this introduction focus on pushing the boundaries of
the holographic toolbox. In the last chapter we switch gears and discuss a solvable quantum
many-body model introduced by Kitaev in 2015 [100] for an explicit realisation of the
holographic duality in one dimension. Curiously, disorder makes yet another appearance as
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a key ingredient in this model named after Sachdev, Ye and Kitaev (SYK).
Interest in the SYK model is manifold. It is by far the simplest example of holographic

theory, being dual to Jackiw-Teitelboim gravity [101]. It thus o�ers unique insight into
the mechanisms of the duality. From the perspective of gravity, the SYK model can be
studied as a toy-model for the microscopic degrees hidden behind black hole horizons, and
there is hope it can shed light into quantum properties of black holes [101–104]. Finally,
the SYK model has drawn the attention of condensed matter physicists as a rare example of
an interacting quantum many-body theory which is solvable at strong coupling. An ever-
growing number of works have employed generalised SYK models to investigate strongly-
correlated metals [105], chaotic/non-chaotic transitions [106–108], Mott insulators [109]
and many-body localised phases [110,111]. Even experimental realisations of the SYK model
have been proposed in cold atoms systems [112] and in condensed matter [113,114].

Due to the lack of locality, the SYK model is better understood as an e�ective model
for the infra-red behaviour of some higher dimensional quantum field theory. From the
renormalization group perspective, a central question is understanding to which extent the
appealing holographic properties survive the presence of relevant deformations of the theory.
Chapter 6 addresses this question in detail. We carry an analytical and numerical investigation
of the natural one-body relevant deformation of the theory. Our results suggest that while
the thermodynamical properties of the deformed theory are dominated by the relevant
one-body term, there is a finite region of parameters where the model retains some of its
holographic features, such as the exponential growth of the OTO four-point function. Our
perturbative results suggest that outside this region there is a chaotic-integrable transition,
in line with the cross-over of spectral correlations from Wigner-Dyson to Poisson statistics
observed in [115].

Overview

The first chapter of this dissertation is dedicated to setting the concepts and conventions
that will be used in what follows and contains no original work by the author. We start
by introducing the toolbox of applied holography. The holographic dictionary and how it
can be used to compute thermodynamic and transport properties are explained. Next, we
work two celebrated examples that illustrate the philosophy and modus operandi of applied
holography. The first example is the ac-conductivity of a strongly-coupled charged plasma in
d = 3 dimensions, dual to the Reissner-Nordström black hole. As expected for a translational
invariant geometry, the zero frequency limit of the conductivity is divergent. This naturally
leads us to introduce the Stueckelberg fields as a mechanism for relaxing momentum. It is
shown that the resulting dc-conductivity is finite and consistent with Drude’s formula.

Chapters 3 to 6 are the bulk of the dissertation, and contain my original contribution to
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the field. Chapter 3 investigates a model where gravity is coupled to a scalar field, similarly
to Brans-Dicke gravity in anti-de Sitter. The motivation for studying this model is that,
when the field is chosen to depend linearly on the spatial coordinates, this model presents
insulator-like features. More precisely, for strong relaxation and low temperatures, the electric
conductivity is a decreasing function of temperature. We also study the thermodynamics
and the shear viscosity to entropy ratio, which is always lower than the celebrated Kovtun-
Son-Starinets (KSS) bound.

In Chapter 4 we study Einstein’s equations in the presence of a charged disordered
field. The probability distribution of disorder is chosen to be a centred normal, with the
standard deviation parametrising the amplitude of the field. The equations can be solved
explicitly in the perturbative regime of weak disorder when the charged field represent
a random deformation of the fixed homogeneous geometry. The holographic dual is a
strongly-interacting plasma in the presence of a random chemical potential. We explore
the consequences of this deformation both at zero and finite temperature and study the
dc-conductivity of the random geometry.

Chapter 5 pursues the investigation of explicitly random geometries from a complemen-
tary perspective. Instead of sourcing disorder as a random deformation of a translational
invariant geometry, we study a family of three-dimensional inhomogeneous geometries
which solve Einstein’s equations. This family is indexed by an arbitrary function which we
take to be either oscillating or random. By studying the dynamics of a probe scalar field
in this disordered geometry, we are able to observe, for the first time, signs of coherence
e�ects. This result opens new directions in the investigation of disorder in the AdS/CFT
correspondence.

In chapter 6 we change sides in the duality and discuss the celebrated Sachdev-Ye-Kitaev
(SYK), model. The SYK model is a rare example of a disordered interacting many-body
model that is analytically tractable in the strongly-coupled regime. It has been the object of
intense research recently since Kitaev showed that it shares many properties with the near-
horizon geometry of extremal AdS black holes [102]. These holographic properties suggest the
SYK model is an explicit realisation of the AdS/CFT correspondence. In this chapter, we
investigate the robustness of the holographic properties against the most natural one-body
deformation of the model.





2 | A brief guide to holography

The holographic or AdS/CFT duality is a correspondence between strongly-coupled quantum
field theories in d dimensions and asymptotically AdSd+1 solutions of classical general relativ-
ity. Its history is rooted in years of research in string theory, and most notably in the period
known as second superstring revolution [1], when non-perturbative properties of string theory
started being uncovered. Although string theory is necessary for a deep understanding of the
mechanism underlying the duality, it can be motivated and formulated without reference
to strings. This philosophy, commonly referred as bottom-up approach, is the perspective
adopted throughout this dissertation. Therefore, for the interest of conciseness, we will
avoid references to string theory outside the preamble, focusing on the modus operandi of the
holographic duality instead. The curious reader can find more information on the stringy
history of the duality in the seminal papers on the subject [3, 5, 116], or in the excellent
recent reviews [117–121].

2.1 Preamble

It was long known that gauge theories and general relativity coexisted in di�erent sectors of
string theory. Gauge theories emerge naturally as low-energy excitations in the spectra of
open strings. The celebrated work of t’ Hooft matching the large N expansion of interaction
diagrams in SU(N) Yang-Mills theory with the topological expansion of string diagrams is
probably the first concrete example of the gauge theory/string connection [122]. On the
other hand, general relativity corresponds to the low-energy limit of type IIB, a theory
of closed strings. The prolific research on the landscape of gravitational solutions in string
theory was motivated by the attempt to describe the degrees of freedom responsible for the
thermodynamic properties of black holes, the so-called information paradox [118,123,124].
Although the low-energy sectors of closed and open strings are limits of the same theory,
in principle there is no reason for them to overlap. The bridge was only established in
1995, with a celebrated work by Polchinski, who showed that D-branes - extended objects
that naturally appear in the open string low-energy sector - are actually non-perturbative
solutions of string theory, valid at all energies. In particular, they are also present in type
IIB, and surprisingly play an important role supporting the black hole solutions on this side
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of the theory.
This result motivated Juan Maldacena, about twenty years ago, to match the symmetries

of two well-known solutions on each side of the two low-energy sectors. The equivalence
between the symmetries ofN = 4 super Yang-Mills (SYM) with the isometries of AdS5×S5

allied to Polchinski’s result led Maldacena to conjecture that they were two faces of the
same Dp-brane configuration, and should, therefore, be equivalent [116]. This construction
became known as AdS/CFT correspondence or holographic duality2.

Maldacena’s conjecture holds in a conjunction of two limits:

a) First, the large-N limit. In the field theory side, N is the number of colours in the
gauge group, and for large-N the path integral can be expanded around the classical
saddle-point solution of the theory. Therefore it corresponds to a semi-classical or mean
field expansion. From the perspective of closed strings, this is the limit in which type IIB
reduces to classical supergravity (SUGRA).

b) Second, the strong-coupling limit. From the perspective of the field theory, this limit
corresponds to taking the interaction term in the Lagrangian to be dominant. Together
with large-N , it is known as the t’ Hooft limit, since it corresponds to the original limit
used by t’ Hooft in [122]. From the perspective of closed strings, this limit corresponds
to an asymptotic AdS region of the Dp-brane solution of SUGRA.

N = 4 super Yang-Mills is one of the manyU(N) gauge theories that can be engineered from
Dp-brane configurations in string theory. Maldacena’s conjecture led to a research e�ort in
the directions of extending the duality to other gauge theories. In the years that followed,
other dualities between large-N strongly coupled gauge theories and asymptotically AdS
solutions of SUGRA have been established [119].

Later, it was shown that the role played by supersymmetry could be attenuated [126], and
it was conjectured that the AdS/CFT correspondence should hold beyond the low-energy
string sectors [4,119]. In 1998, Gubser, Klebanov, Polyakov [4] andWitten [3] gave a generic
prescription to compute the generating function of the dual gauge theory in terms of the
on-shell action of the SUGRA solution. The GKPW prescription, also broadly referred as the
holographic dictionary was an important step towards an operational formulation of the duality
independently from string theory. The systematic mapping between the QFT generating
functional and the dual SUGRA action became a shortcut to the lengthy and technical
process of identifying the appropriate QFT dual to a given SUGRA brane configuration.
Furthermore, by following the GKPW prescription for any geometry satisfying asymptotic
AdS boundary conditions, one can compute properties of a potential dual field theory -

2The holographic principle was proposed in 1995 by ’t Hooft and Susskind, and postulate that a state
corresponding to a region in a quantum gravity theory can be characterised entirely by the information in
the boundary of the region [125]. The AdS/CFT correspondence, being a duality between a theory in four
dimensions (N = 4 SYM) and a gravity theory in five dimensions (AdS5), realises the holographic principle.
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which is, however, not guaranteed to exist. This bottom-up approach3 became the motor of
an intense research program consisting of studying the field theory properties of known
asymptotically AdS backgrounds. However, it is important to mention that most of the
celebrated bottom-up theories have a rigorous embedding in string theory, even if sometimes
the embedding was found after these geometries had been proven useful for the purpose of
holography, as in the case of the holographic superconductor [29, 127]. Throughout this
dissertation, we will often use the term holographic field theory as a short for a QFT defined
via the holographic dictionary.

In the next section, we introduce the AdS geometry and discuss the coordinate charts
used throughout this dissertation. The holographic dictionary is discussed next, and we
illustrate the modus operandi of the bottom-up approach to holography with two examples
that are closely related to the discussion in the following chapters.

2.2 The geometry of anti-de Sitter spacetime

Anti-de Sitter spacetime is a vacuum solution of the Einstein’s field equations with negative
cosmological constant Λ < 0:

Rab −
1

2
(R + 2Λ)gab = 0 (2.1)

In d+ 1 dimensions, we will usually parametrise Λ = −d(d−1)

l2AdS
. AdSd+1 can be seen as a

hyperboloid embedded in R2,d given by the equation:

X2
0 +X2

d+1 −
d∑
i=1

X2
i = l2AdS, (2.2)

where lAdS > 0 is a positive length scale called AdS radius. From now on we set l2AdS = 1

unless stated otherwise. The induced metric has signature (2, d):

ds2 = −dX2
0 − dX2

d+1 +
d∑
i=1

dX2
i

Figure 2.1 shows a plot of AdS2 as embedded in R1,2. Note that by construction the

3As opposed to the top-down approach which consists of carefully establishing dualities from sensible low-
energy limits of string configurations.
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Figure 2.1: Hyperboloid x2 + y2 − z2 = 1

isometry group of this spacetime is SO(2, d). We can solve 2.1 by choosing global Coordinates:

X0 = cosh(ρ) cos τ

Xd+1 = cosh(ρ) sin τ

Xi = ri sinh(ρ) sin τ

where the constraint is now
d∑
i=1

(ri)
2 = 1 and we have τ ∈ [0, 2π), r ∈ (0,∞) and ρ ∈ R. The

induced metric in these coordinates become:

ds2 = − cosh2(ρ) dτ 2 + dρ2 + sinh2(ρ) dΩ2
d−1,

where dΩ2 is the metric element of the Sd−1 sphere. Often one works with the universal
covering of AdSd+1 by allowing τ ∈ R to avoid unphysical periodic timelike directions.

2.2.1 A note on coordinate charts

Di�erent coordinate charts are useful in holography applications, and it is fairly common
to see di�erent coordinates systems being used throughout the literature. As a reflection of
that, we will employ three di�erent coordinate charts throughout this dissertation. These
charts only di�er in the definition of the AdS radial component, thus not changing the
physics of the boundary dual field theory. To avoid confusion, when employing each of
these coordinate systems, we will consistently use the same notation as defined in this section.
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Poincaré chart I

The first useful coordinate chart we will define is the Poincaré chart xa = (u, t,x). It is defined
by making the following change of coordinates with respect to embedding coordinates
Eq.(2.1),

X0 = 1
2u

[
1 + u2

(
1 +

d−1∑
i=1

(xi)
2 − t2

)]
, Xd+1 = ut,

Xd = 1
2u

[
1− u2

(
1 +

d−1∑
i=1

(xi)
2 − t2

)]
, Xi = uxi, for i ∈ {1, . . . , d− 1},

with x ∈ Rd−1, t ∈ R and u ∈ [0,∞). These coordinates make explicit the invariance under
scaling transformations (u, t,x) → (λ−1u, λt, λx). Note that, in contrast with the global
coordinates, these coordinates only cover part of AdSd+1. The induced metric in Poincaré
Coordinates is given by

ds2 = u−2du2 + u2
(
−dt2 + dx2

)
. (2.3)

From where is clear that each constant u slice is conformally equivalent to Md. Note that t is
a nontrivial function of (τ, ρ, ri) and so global time τ is di�erent from Poincaré time t. In
holography applications, the Poincaré time is always used, since it is the physical timelike
coordinate in the boundary spacetime. These coordinates will be used in Chapter 3.

Poincaré chart II

A closely related flavour of Poincaré chart is given by taking r = u−1. The metric is given
in the chart xa = (r, t,x) by

ds2 = r−2
(
dr2 − dt2 + dx2

)
. (2.4)

This chart has the convenience that all coordinates have the same dimensions, and under a
conformal transformation they scale uniformly (r, t,x)→ λ(r, t,x). These coordinates will
be used in Chapter 4.

Fe�erham-Graham coordinates

The Fe�erham-Graham coordinate chart xa = (ρ, t,x) is defined by taking ρ = r2 in the
Poincaré chart II. The metric reads,

ds2 =
dρ2

4ρ2
+

1

ρ

(
−dt2 + dx2

)
. (2.5)



2.3. The dictionary 36

These coordinates are going to be used in Chapter 5. The name is an allusion to the geometers
Fe�erham and Graham, who used this coordinates in their work to prove an important
general theorem about asymptotically AdS geometries [128],

Theorem 1 Any solution of the d+1 dimensional Einstein Equations 2.1 with negative cosmological
constant can be written locally in the chart xa = (ρ, xµ) as

ds2 =
dρ2

4ρ2
+

1

ρ
gµν(ρ, x

µ)dxµdxν (2.6)

for µ, ν ∈ {0, 1, . . . , d}. Moreover, the following near-boundary expansion holds,

gµν(ρ, x) ∼
ρ=0

g(0)
µν (xµ) + ρ g(2)

µν (xµ) + · · ·+ ρd/2 g(d)
µν (xµ) + ρd/2h(d)(xµ) log ρ+ . . . (2.7)

where only even coe�cients g(d), h(d) are present in the expansion.

2.3 The dictionary

2.3.1 Matching symmetries and dimensions

As was previously discussed in the Preamble, the first instance of the holographic duality
was the equivalence between the strongly-coupled phase of N = 4 Super Yang-Mills (SYM)
in four-dimensional Minkowski Spacetime M4 and classical supergravity in AdS5 × S5.
The motivation for this relationship was the observation that these theories have the same
symmetries. On one side, fields of N = 4 SYM transform under the representations of
PSU(2, 2|4). For example, bosons transform under SO(4, 2)× SO(6), which is exactly the
isometry group of AdS5 × S5. A similar argument applies to the fermionic sector 4. This
example carries over for any dimension and conformal theory since it is a general fact that
the isometries of AdSd+1 are exactly given by the d-dimensional conformal group.

Matching symmetries provides the right track to find the map between observables on
both sides of the correspondence since any sensible map must preserve the symmetries of
gauge invariant objects. Take for example a composite scalar operator O∆ of conformal
dimension ∆ (given, for example, by the trace 5 over some fields in N = 4). This operator
transforms under a representation of SO(6) with Dynkin label [∆, 0, 0]. The possible dual
fields in the gravity side should be those transforming under the same representation of
SO(6).

Since the discovery of the equivalence between N = 4 and the AdS5 × S5 geometry,
other dualities have been established by looking at other embeddings of supersymmetric

4See for example references in [116].
5The trace ensures gauge invariance.
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gauge theories in string theory. On general grounds, the dualities give the equivalence
between conformal field theories in Md and AdSd+1 ×X geometries, where X is a compact
Einstein manifold of dimension 10− d+ 1 which we will omit from now on. The matching
of symmetries was the object of intense study in the early days of AdS/CFT (see for example
[129]), and led to a dictionary between operators in d dimensional CFTs and gravitational
fields in the d+ 1 dimensional AdS space, which we summarise in table 2.1.

Type of gravity field Relation between mass and conformal dimension
massive scalars and spin 2 fields m2l2AdS = ∆(∆− d)
massless spin 2 field (graviton) m2l2AdS = 0, ∆ = d

p-forms m2l2AdS = (∆− p)(∆− d+ p)

spin 1/2 or 3/2 |m|L = ∆− d
2

Table 2.1: Holographic dictionary.

2.3.2 The GKPW prescription

The above formulation of the AdS/CFT correspondence is of little practical use. It establishes
a relationship between gravitational fields and gauge invariant operators, but gives no
information on how to compute observables such as correlation functions. A practical
prescription was given independently in 1998 by Gubser, Klebanov, Polyakov, andWitten [3,
4]. Accounting for the mismatch of dimensions, Witten has proposed that the d-dimensional
conformal field theory lives on the boundary of the dual AdSd+1 geometry, which is exactly
given by ∂AdSd+1 = Md. Witten’s proposal is enough to establish a mathematical relationship
between the observables in both sides of the duality. As we discuss now, this relationship is
given by matching the generating functional in both sides of the duality.

Let SCFT be the action for a d-dimensional conformal field theory living in Md, and
consider a global chart xµ = (t,x) with x ∈ Rd−1, µ = 0, . . . , d6. Usually the observables of
interest in a CFT are the correlation functions, which give information about the statistics of
excitations in the theory. Consider a generic conformal operatorOI∆(x) with mass dimension
∆ in the CFT and with some generic index I , which can be either a spin, colour or spacetime
index. Suppose we are interested in calculating the n-point correlation function of this
operator. Following a general prescription in quantum field theory [130], we introduce an
auxiliary source field sI(x) and add the following term to the CFT action,

SCFT → SCFT − i
∫

ddx sI(x)OI∆(x). (2.8)

The correlation functions can then be computed by taking functional derivatives with respect
6To lighten notation, we often omit the spacetime hypersrcipt µ. In this case, spacelike coordinates x are

always in bold, to contrast with the spacetime coordinates x.
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to the generating functional and setting the source field to zero,

〈OI1∆ (x1) . . .OIn∆ (xn)〉 = (−i)n δnW [s(x)]

δsI1(x1) . . . δsIn(xn)

∣∣∣∣
s=0

. (2.9)

whereW is the generating functional CFT. Based on the symmetry arguments discussed
in Section 2.3, adding the source sI(x) on CFT side is equivalent to adding a field in the
gravity side. The exact nature of this field will depend on the nature of the index I , with the
most common pairs given in Table 2.1. For example, if O∆ is a scalar operator with mass
dimension ∆, s(x) should also be taken to be a scalar, with mass dimension d−∆, and the
field to be added in the gravity side is a scalar field with mass m2 = ∆(∆ − d). Another
common example is when OI∆ = Ei is an electric field in the i-th direction. In this case,
sI = J i is an electric current also in the i-th direction, and the dual gravity field should be a
massless vector potential.

For the sake of illustration, let’s focus on the simplest case of a scalar operator O∆.
According to Witten’s proposal, the CFT should live in the boundary of AdSd+1. Fixing
Fe�erham-Graham coordinates xa = (ρ, xµ),

ds2 =
dρ2

4ρ2
+

1

ρ
(−dt2 + dx2). (2.10)

Note that indeed the boundary ρ = 0 is conformally equivalent to Md with the previously
fixed chart xµ = (t,x). As we previously argued, the addition of the term ∼

∫
s(x)O(x) in

the CFT action should correspond to the addition of a minimally coupled scalar field with
mass m2 = ∆(∆− d) in the AdSd+1 geometry,

SSUGRA → SSUGRA −
i

2

∫
dρddx

(
dψ ∧ ?dψ +m2ψ2

)
. (2.11)

Note that we denoted SSUGRA the supergravity action supporting the AdSd+1 ×X solution
dual to our CFT. Technically, this action is composed by a consistent reduction of type
IIB string theory and depends on the specific duality in question. For the purpose of the
bottom-up approach we follow throughout this dissertation, the exact form of SSUGRA will
not be relevant, and we refer the curious reader to [118,119]. Note that we can relate the
addition of this scalar field term to the addition of a term in the boundary of AdSd+1 by
integrating by parts and using Stoke’s theorem,∫

dρddx
(
dψ ∧ ?dψ +m2ψ2

)
= −

∫
dρddx ψ

(
d ? dψ −m2ψ

)
+

∫
ρ=0

ddx ψ ? dψ. (2.12)
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When varied, the first term gives the scalar field equations of motion,

(
∆g −m2

)
ψ = 0, (2.13)

where∆g = d?d is the Laplace-Beltrami operator, written in a chart xa as∆g = 1√
−g∂a

(√
−ggab∂b

)
.

According to Witten’s proposal, the boundary term corresponds to the addition of a term in
the CFT action. Precisely this term should be compared to Eq.(2.8). In order to evaluate it,
we need to solve Eq.2.13.

It is possible to find a full solution of Eq.(2.13) for the metric (2.10) by exploiting homo-
geneity and working in Fourier space. This technical computation is given in Appendix A.1,
and is also discussed in the specific case of d = 2 in Chapter 5. However, for evaluating the
boundary term we only need the near-boundary expansion of ψ. We take this opportunity to
present a more general result valid for a scalar field in any asymptotically AdSd+1 geometry.
It states that solutions of Eq.(2.13) written in Fe�erham-Graham coordinates Eq.(2.6) admit
the following near-boundary expansion,

ψ(ρ, x) ∼
ρ=0

ρ
d−∆

2

(
ψ(0)(x) + ρψ(2) + · · ·+ ρ

2∆+d
2

(
ψ(2∆+d) + φ(2∆+d) log ρ

))
. (2.14)

where all coe�cients ψ2, ψ(4), . . . , φ(2∆+d) can be fixed as functions of ψ(0) by evaluating
Eq.(2.13) close to the boundary, with the exception of ψ(2∆+d), which requires solving the
equation outside the near-boundary region [131].

In the coordinates of Eq.(2.10), the on-shell action reads,

Son-shell = − i
2

∫
ρ=0

ddx
√
−γ ψna∂aψ (2.15)

where n = −2ρ∂ρ|ρ=0 is the normal unit vector pointing in the outward normal direction
along the boundary, and γ is the induced metric at the boundary ρ = 0. Note that naively
inserting the expansion Eq.(2.14) in Eq.(2.15) lead to a diverging on-shell action at the
boundary for any m2 > −d2/4. We therefore introduce a cuto� at ρ = λ� 1 and evaluate
Eq.(2.15) at this hypersurface instead,

Son-shell = − i
2

∫
ρ=λ

ddx
√
−γ ψna∂aψ

= i

∫
ddx

(
λ
d−2∆

2 (d−∆)ψ(0)(x)2 + · · ·+ d ψ(0)(x)ψ(2∆+d)(x)
)
. (2.16)

Note that we have singled out only the most diverging term ∝ ψ2
(0), and omitted the

others in the ellipsis. Comparing with Eq.(2.8), this expansion suggests that, up to these
diverging terms, we should identify the source with the normalisable mode s ∝ ψ(0) and the
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expectation value of the dual scalar operator with the non-normalisable mode 〈O〉 ∝ ψ(2∆+d)
7.

Recalling that all other coe�cients ψ2, ψ(4), . . . , φ(2∆+d) can be expressed as functions of
ψ(0), with this identification, the diverging terms are all proportional to the square of the
source. These correspond to contact terms in the field theory correlation function, and should
be systematically removed by adding counter-terms. In holography, the counter-terms
correspond to boundary terms in the action Eq.(2.11), and the systematic procedure of
removing the divergences is known as holographic renormalization [131,132]. We discuss an
explicit example of this procedure in Appendix A.2.

Our discussion can be summarised in the following identification between the generating
functional in the CFT and the on-shell, renormalised SUGRA action,

W [s(x)] =

〈
exp

(∫
ddx s(x)O(x)

)〉
CFT

= SSUGRA[ψ]|
lim
ρ→0

ρ
∆−d

2 ψ(ρ,x)=s(x)
. (2.17)

This relation, also known as GKPW prescription, can be easily generalised for other fields. For
example, a current Jµ(x) of conformal dimension ∆ will be sourced by a vector potential Aµ
through a coupling ∼ i

∫
ddx A

(0)
µ (x)Jµ(x). In this case we solve for the Einstein-Maxwell

system in AdSd+1 with boundary condition A(0)
µ = lim

r→0
Aµ. Since Aµ is a massless 1-form,

table 2.1 indicates it must have conformal dimension 1.

2.3.3 An interpretation of the extra dimension

Consider a generic quantum field theory in Md with action S(g), where g is one of the
theory’s coupling constants. Under the flow of the renormalization group (RG) the coupling
runs according to

u
∂g(u)

∂u
= β(g(u)),

where u parametrises the local RG energy scale, and β(u) is the theory’s beta function. At
the critical point, β(g(u)) = 0 and the theory become scale invariant, i.e. invariant under
scaling transformations of the coordinates xµ → λxµ. In principle, the RG energy scale u is
unrelated to the field theory spacetime coordinates xµ = (t,x). However, one can attempt
to "geometrise" u by promoting it to a coordinate in a d+ 1-dimensional field theory that
e�ectively accounts for the flow of the RG as part of the spacetime dynamics. The set of
new coordinates (u, t,x) transforms now under (t,x, u)→ (λ−1u, λt, λx) since u has energy
dimensions. The right metric that encodes this invariance is naturally given by the AdSd+1

7Note that in the mass window where both ψ(0) and ψ(2∆+d) are normalisable, the role of source and
operator can be interchanged, leading to equivalent quantisation schemes (see Appendix A.1). The exact
prefactors depend on the boundary counter-terms required to remove the contact terms and on the quantisation.
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metric in Poincaré I coordinates,

ds2 =
l2AdS
u2

du2 +
u2

l2AdS
ηµνdxµdxν .

This observation is just a re-statement of the previous claim about the isometries of AdSd+1

being exactly the conformal group in d-dimensions8. This construction suggests a RG
interpretation of the holographic coordinate r =

l2AdS
u
. The hypersurfaces r = constant,

which are isomorphic toMd, correspond to field theories at di�erent energy scales. Dynamics
in this direction is given by the flow of the RG group, and the boundary theory corresponds
to the critical point of the flow, where the geometry is conformal.

Figure 2.2: Holography as geometrization of the RG flow. Field theories of di�erent
lengthscales live in di�erent r slices.

2.3.4 Generalization to thermal States

So far we only considered the duality for CFTs at zero temperature. Temperature can
be introduced in CFTs by the standard procedure of compactifying the Euclidean time
direction in the Matsubara formalism for equilibrium field theory. This procedure is similar
to the Gibbons-Hawking prescription in the context of black holes [133], which consists in
avoiding conic singularities of the spacetime metric by imposing periodicity on the Euclidean
time coordinate. Due to their thermodynamic properties, black holes are thus the natural
candidates for the gravity duals of finite temperature CFTs. Further evidence is given by the
observation that the radius of the compactified time circle increases with the radial direction

8The constant l is a length scale required for the metric to have the right dimension, and is known as the
AdS radius.
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and asymptotes to ~
kBTH

, where TH is the Hawking temperature associated with a black hole.
But, in these coordinates (Poincaré I) , radial infinity is exactly where our CFT lives, and
therefore the radius of the compactified Euclidean quantum field theory must coincide with
the asymptotic radius of the Euclidean black hole.

The conclusion is that thermal states in holographic field theories are encoded by a black
hole in the bulk of spacetime. This is also consistent with our RG picture for holography: since
the correspondence takes place in the boundary of the d+ 1 spacetime (which corresponds
to the ultra-violet (UV) of the field theory) any asymptotically AdS spacetime that solves the
appropriate equations of motion complies with the conjecture. This encodes how di�erent
infra-red (IR) geometries that are not necessarily pure AdS but rather asymptotically AdS can
influence the ultra-violet (UV) physics living in the boundary.

2.4 Holographic toolbox

In the previous sections we have introduced the AdS/CFT correspondence between strongly-
coupled CFTs inMinkowski spacetime and the AdSd+1 geometry. We have discussed how the
idea that the CFT lives in the boundary AdSd+1 can be combined with symmetry arguments
to provide a well-defined relationship between the generating functional of the CFT and
the renormalised on-shell action of the gravitational field. We have crucially remarked that
the GKPW prescription only relates the CFT to the near-boundary behaviour of AdSd+1,
suggesting that the duality should hold for generic asymptotically AdS geometries. This
important observation is in line with a renormalization group picture of the duality, where
the near-boundary region correspond to the UV energy scales. As an example, we briefly
motivated how to heat the CFT up by introducing an asymptotically AdS black hole in
the bulk of the spacetime. An explicit calculation involving thermal field theories will be
discussed in Section 2.5.1. But before, we discuss in detail the subtleties using the relation in
Eq.(2.17) to compute two particular observables of interest: the two-point functions and
transport coe�cients.

2.4.1 Two-point function

The GKPW prescription gives a well-defined recipe to compute the partition function of
holographic field theories. At finite temperature, the thermodynamical properties can be
obtained by calculating the corresponding thermodynamical potentials and their derivatives.
An observable of interest that characterises the statistics of the theory is the two-point
function. For weakly-interacting field theories, the two-point function gives information
about the single-particle spectrum of the theory. Even though a quasi-particle picture is not
well-adapted to strongly-coupled theories - and holography in particular - the two-point
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function still provides rich information. As we will see in Section 2.4.2, it is related to the
transport coe�cients through Kubo’s formula.

Formally, Eqs.(2.17) and (2.9) provide all ingredients one needs to compute the two-point
correlation function. It suggests that for computing the two-point functions all we need is
to solve for the gravity dynamics, insert the near-boundary behaviour of the solution in the
renormalised on-shell action and take two functional derivatives with respect to the source.
But, in principle, how can one di�erentiate an Euclidean two-point function from a real-time
retarded or advanced two-point function? This was an important question in the early days
of the duality, and was addressed in the works of Son, Starinets [134] and Herzog [135].
When the covariant momentum k2 = −ω2 + k2 in the Fourier decomposition of the field ψ
is negative k2 < 0, there are two solutions corresponding to an incoming and an outgoing
wave at the Poincaré horizon. It is precisely this ambiguity that account for the di�erent
correlators. It can be shown, by explicit comparison in both sides of this simple case, that the
advanced/retarded two-point functions correspond to the choice outgoing/incoming wave
boundary condition at the horizon [135]. Note that in Euclidean signature we always have
k2 > 0, and therefore there is only one choice of propagator: the Euclidean propagator. We
now illustrate this construction in the Euclidean scalar field case.

Following the calculation in Section 2.3.2, the renormalised on-shell action reads

Sren
on-shell ∝

∫
ddx ψ(0)(x)ψ(2∆+d)(x) ∝

∫
ddk

(2π)d
ψ(0)(−k)

ψ(2∆+d)(k)

ψ(0)(k)
ψ(0)(k). (2.18)

where in the last equality we have simply written in Fourier space and multiplied and divided
by ψ(0). As previously discussed, the exact prefactor depend on renormalisation, see Appendix
A.2 for an example or [131] for the general case. From the general solution discussed in
Appendix A.1, we can show that the ratio is independent of ψ(0). Therefore the two-point
function in Fourier space is simply given by

〈O(k)O(−k)〉 =
δ2Sren

on-shell
δψ(0)(k)δψ(0)(−k)

=
ψ(2∆+d)(k)

ψ(0)(k)
∝ k2ν (2.19)

where ν =
√

d2

4
+m2. In real Euclidean coordinates this corresponds to 〈O(x)O(0)〉 ∝

|x|−2∆ which is precisely the expected result for an Euclidean two-point function of a
conformal operator with mass dimension ∆. The advanced/retarded two-point functions
can be obtained following exactly the same procedure, with the only di�erence that the ratio
in Eq.(2.19) will be given by the coe�cients corresponding to the outgoing/incoming wave
boundary condition at the Poincaré horizon.

The procedure outlined above is general for other types of operators in Table 2.1 and
for other asymptotically AdS geometries. In particular, the finite temperature two-point
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functions are obtained from black hole geometries. Belowwe give a step-by-step summary of
the discussion for a general field φ (not necessarily a scalar) and asymptotically AdS geometry.

1. Following Table 2.1, determine the gravity field φ which is dual to the operator of
interest.

2. Introduce the corresponding field in the gravity action. Solve the equations of motion
for the gravity field imposing the following boundary condition

s(x) = lim
ρ→0

ρ
d−∆

2 φ(ρ, x) (2.20)

together with regularity (if in Euclidean signature) or outgoing/incoming wave bound-
ary condition (if in real time) at the horizon (or Poincaré horizon, if at zero temper-
ature). The function s(x) represents a source in the boundary field theory, which
should be kept arbitrary. Note that we have written this relation in Fe�erham-Graham
coordinates, and it can be easily adapted to the other coordinates in Section 2.2.1.

3. Insert the solution in the on-shell action and renormalise if needed. Schematically, the fi-
nal action in Fourier space will take the form Sren

on-shell = K
∫ ddk

(2π)d
s(−k)F(ρ, k)s(k)

∣∣∣ρh
ρ=0

,

where ρh =∞ in the case of pure AdS (zero temperature) or the horizon position for
a black hole geometry (finite temperature).

4. The two-point correlation function of interest is given by G(k) = −2 F(ρ, k)|ρ=0.

Note that, in contrast with the usual quantum field theory procedure of computing the
two-point function, the recipe above makes no allusion to the basis the operators are written,
and therefore can be calculated independently of a quasiparticle description. An alternative
procedure is to relate the two-point function in the boundary to the gravity two-point
function in the bulk. This alternative is illustrated in Appendix A.3 for the massive scalar
field case, and will be used throughout Chapter 5.

2.4.2 Transport coe�cients

Consider a generic QFT with action S0, and let sI(x) be a source coupling to an operator
of the theory OI(x) (again, I is a generic index that can denote spin, colour, spacetime
coordinates, etc.),

S = S0 + i

∫
ddx sI(x)OI(x). (2.21)

What is the e�ect of this new term in the expectation value 〈O〉0 to first order in s? The
answer is given by Kubo’s formula, which states that the change δ〈OI〉 = 〈OI〉 − 〈OI〉0 is
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given by

δ〈OI(x)〉 =

∫
ddy χIJ(x, y)sJ(y) +O

(
s2
)
, (2.22)

where the function χ is generically refereed as a transport coe�cient, and is given by

χIJ(x, y) = iθ(t− t′)〈[OI(x),OJ(y)]〉 = GIJ
R (x, y), (2.23)

Note that, quite surprisingly, the response of the system is completely determined by the
retarded Green’s function GR of the operators coupling to the perturbation. This result is
non-trivial sinceGR is a measure of the statistics of the theory, and is completely independent
of the source profile s(x). The transport coe�cients are usually referred by specific names
depending on the operators O. For instance, when the operator is an electric current J i

in the spacelike direction xi ∈ Rd−1, the corresponding transport coe�cient is the electric
conductivity σij . Some of the most common pairs are given in Table 2.2. In the chapters that

Transport Coe�cient Source Associated operator
Susceptibility χ scalar fluctuation δψ Scalar operator O
Conductivity σ vector fluctuation δAµ Current Jµ
Shear Viscosity η metric fluctuation δhij T ij

Table 2.2: Transport coe�cients and the respective sources

follow we will be mostly interested in the conductivity σij . As mentioned before, the indices
i, j are spacelike indices. When i = j, we refer to σi = σii as the longitudinal conductivity in
direction i, and when σij for i 6= j as the transversal conductivity. In particular, we will be
interested in the longitudinal ac-conductivity (in the direction x, for example), which is the
response of the system to an electric field constant in space but oscillating in time. Since the
field is homogeneous, it is convenient to work in a Fourier basis, where Eq.(2.22) simplifies
to

δ〈Jx(ω)〉 = σx(ω)Ex(ω) (2.24)

and therefore the ac-conductivity can be obtained by simply dividing the observed fluctuation
in the current by the sourced field. From the ac-conductivity, we can compute the dc-
conductivity, defined as the zero-frequency limit σdc = lim

ω→0
σx(ω). In the next section we

study how Kubo’s formula can be used to measure the longitudinal ac-conductivity of the
simplest charged holographic field theory.
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2.5 Case studies

In the previous sections, we have introduced the holographic dictionary and explained how
transport coe�cients of holographic field theories can be computed by following a systematic
prescription. In this section, we illustrate this methodology in two important examples
that are cornerstones of discussion that will follow in the next chapters. The first is the
computation of the ac-conductivity of the Reissner-Nordström black hole - a background
dual to a charged strongly-interacting plasma. The upshot of the calculation is that the
zero-frequency limit or dc-conductivity is divergent due to the translational symmetry of
the geometry. The second example introduces the Stueckelberg mechanism discussed in
the introduction to break translational symmetry and induce momentum relaxation. The
resulting dc-conductivity is shown to be finite and consistent with Drude’s formula.

2.5.1 Conductivity of the Reissner-Nordström black hole

We now compute the electric conductivity of the simplest strongly-coupled holographic
QFT with a charge density ρ and a constant chemical potential µ at finite temperature
T . Following the bottom-up philosophy, the first step consists in finding a geometry that
supports these properties. Charge is introduced by minimally coupling the metric to a
Maxwell term

S =

∫
dd+1

x
√
−g
(
R− 2Λ− 1

4e2
F 2

)
, (2.25)

where e is the Maxwell coupling constant. The equations derived from the action in Eq.(2.25)
are known as the Einstein-Maxwell system. For simplicity, we focus on d = 3. Since we want
a theory at finite temperature, according to the discussion in Section 2.3.4 we should look
for black hole solutions. The simplest black hole solution for the Einstein-Maxwell system is
the Reissner-Nordstrom (RN) geometry, given in d+ 1 = 4 dimensions by

ds2 = r−2

[
−f(r)dt2 +

dr2

f(r)
+ dx2 + dy2

]
,

f(r) = 1−
(
1 +Q2

)( r

r0

)3

+Q2

(
r

r0

)4

,

A = µ

(
1− r

r0

)
dt, (2.26)

where r0 is the location of the black hole horizon and Q =
µ2r2

0

4
is defined for notational

convenience. Note that we have set the AdS radius l2AdS = 1 and the Maxwell coupling e = 1

for simplicity. The free parameters of the model are (r0, µ).
Thermodynamically, the RNblack hole is similar to a charged plasma at finite temperature.
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Its temperature is obtained by following the Hawking-Gibbons prescription, giving T =
f ′(r)
4π

= 1
4πr0

(3−Q2). The entropy density of the black hole is proportional to the horizon
area s =

∫
r=r0

d2
x
√
−γ = 4πr2

0. Finally, the charge density is given by the timelike
component of the current, ρ = 〈J t〉 = F tr = µr−1

0 , and the energy density by the tt-
component of the energy momentum tensor ε = 〈T tt〉 = 2(1+Q2). The free energy is given
by computing the on-shell action, i.e. inserting Eq.(2.26) back into the action Eq.(2.25). One
can show that the free energy density computed in this way satisfy the usual thermodynamic
relation for a charged system f = ε − Ts − µρ. Varying the free energy with respect to
(ρ, T ), it can be shown that the first law of thermodynamics holds

df = −s dT − ρdµ (2.27)

In Section 2.3.3 we heuristically argued that the r-slices can be thought as an energy scale
for the dual field theory. While the boundary r = 0 corresponds to the UV, the horizon
parametrise the IR scale of the dual theory. By construction, the boundary condition at
r = 0 fix the UV geometry to be AdS4. However note that the near-horizon geometry is
not fixed. To find it for the RN solution, we change coordinates to ρ = r − r0 and do a
Taylor series expansion of Eq.(2.26). Inserting f(ρ) = 4πTρ+ O(ρ2) in the expression for
ds2, it is easy to see that the near-horizon geometry is conformally equivalent to AdS4, with
a renormalised AdS radius proportional to the temperature T . Note that this argument is
not specific to the RN, but apply identically to any simple black hole solution with metric
ds2 ∝

(
−fdt+ f−1dr + dx2

)
and T > 0. However note that for Q =

√
3, we have T = 0

even though r0 < ∞. This is not possible for the Schwarzschild solution corresponding
to µ = 0, since in this case T = T (r0) and the only way to tune T = 0 is to have no
horizon, r0 → ∞. Black holes which have T ∝ f ′(r0) = 0 with finite horizon radius are
known as extremal. At extremality, we let r = r0 + λρ + O(λ2) for λ � 1 and expand
f(ρ) = f ′′(0)λ2ρ2 +O(λ3), and the near horizon geometry is given by

ds2 ∼ −
(
ρ

r0

)2

dτ 2 +

(
ρ

r0

)−2

dρ2 + r−2
0

(
dx2 + dy2

)
, (2.28)

where we have rescaled τ = λt. This metric corresponds to a AdS2 × S2 geometry. The
field theory dual to the extremal RN geometry has a non-trivial RG flow given by AdS4 →
AdS2 × S2. According to the holographic dictionary, this result indicates that the quantum
critical IR fixed point of the strongly-coupled charged plasma is governed by an e�ective
conformal field theory in d = 1. The infra-red physics correspond to the long-time, large-
scale behaviour of the system. Indeed, as it was shown in [82, 136], the dc-conductivities
(zero-frequency, long-times) is completely determined from the knowledge of the near-
horizon region. A distinctive property of this fixed point is that the entropy density s is
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positive at T = 0. This unusual property is typical of frustrated systems, although there
is no sign of frustration in the gravity side. As it is evident from the calculation, a large
class of extremal black holes share this same AdS2 × S2 fixed point. There is a consensus
in the literature that the ubiquitous AdS2 × S2 geometry carries deep meaning in terms
of the universal IR behaviour of strongly-coupled theories [137, 138]. However, a clear
understanding of this statement remains an open question. Early research in the nature of
the AdS2 fixed point was motivated by the black hole information paradox [139–146]. The
debate was revived recently with the proposal by Kitaev of a one-dimensional many-body
model that share the key distinctive properties with the AdS2 fixed point. These holographic
properties suggest that the model, known as the Sachdev-Ye-Kitaev model, is an e�ective
microscopic description of extremal black hole horizons. In Section 6 we introduce the SYK
model and discuss the stability of the holographic properties.

According to the discussion in Section 2.4.2, to compute the longitudinal ac-conductivity
of the dual theory we need to introduce a time-dependent electric field. In the gauge invariant
formulation, this is achieved by sourcing a time-dependent fluctuation in the vector potential
A→ A+ δAx(t)dx. In principle, Einstein’s equations can couple this fluctuation to all metric
components, which would oblige us to consider further fluctuations δgµν for consistency.
However, it can be shown that δAx only couples to δgtx, and we can consistently set all other
metric fluctuations to zero [147]. The equations of motion for these perturbations are given
by the linearised Einstein’s equations and the Maxwell equations. We can combine both
non-trivial equations to eliminate δgtx, giving one-second order ODE for δAx:

(f(r)δA′x)
′ +

ω2

f(r)
δAx − 4Q2 r

2

r2
0

δAx = 0 (2.29)

According to the holographic dictionary (Table 2.1), near the boundary r = 0 we have
δAx = δAx(0) + rAx(1) + . . . , where 〈jx〉 = Ax(1), and the electric field at the boundary is
given by Ei = lim

r→0
iωδAx = iωδAx(0). Combining the prescription from section 2.4.1 and

Eq.(2.24),

σx(ω) =
1

iω

δAx(1)

δAx(0)

. (2.30)

We are left with a completely technical task: solve Eq.(2.29), apply incoming boundary
conditions at r = r0 and insert the near-horizon expansion of the solution in Eq.(2.30).
Unfortunately, this equation cannot be solved analytically, and we recur to numerical
integration. Figure 2.3 show the behaviour of the real and imaginary part of the conductivity
σx as a function of the frequency for di�erent choices of chemical potential µ. Note however
that at the neighbourhood of ω = 0 these numerical results should be taken with a pinch
of salt. Indeed, it can be shown that the imaginary part of the ac-conductivity diverges
as Imσx ∼

ω→0
ω−1. According to the Kramers-Kronig relations, this implies that Re(σx) =
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Figure 2.3: Electrical conductivity for the Reissner-Nörsdtrom geometry for di�erent
chemical potentials µ.

P
∫
R

dω′
π

Im(σx)
ω−ω′ ∼ω→0

Kδ(ω). The delta function is, of course, not captured by the numerics. It
can be shown that the precise behaviour of the dc-conductivity in the neighbourhood of
ω = 0 is given by

σ(ω) =
ω→0

σQ +K

(
δ(ω)− 1

iω

)
+O

(
ω2
)
, (2.31)

where the regular part of the dc-conductivity σQ and the Drude weight K are completely
determined by the near-horizon data [148]. Note that the Drude weightK can be computed
by taking the limit lim

ω→0

1
ω
Im(σ(ω)). In Chapter 3 we will discuss the analytic calculation of

the regular part σQ for a more general charged model. One way to think about the delta
function divergence of σ at low-frequencies is as a Drude peak with infinite scattering time.
As it was discussed in the introduction, this behaviour is typical of translational invariant
systems. It is easy to see that the metric Eq.(2.26) is invariant under translations along the
spacelike boundary coordinates (x, y) → (x + x0, y + y0). Note that momentum is also
conserved at every r-slice, since ∂0T

0i = 0. The RN black hole thus behaves as a typical
translational invariant charged QFT.

2.5.2 A simple model for momentum relaxation

We now introduce the Stueckelberg mechanism for the specific example of the Einstein-
Maxwell system in d + 1 = 4 dimensions. The key idea is to introduce a family of d − 1

massless scalar fields which depend only linearly on the spacelike boundary coordinates.
To be precise, we fix a coordinate chart xa = (r, t, x, y), and define the Stueckelberg fields
φa = αδajx

j = α(0, 0, x, y), i ∈ {x, y}. The action is given by minimally coupling the scalars
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to gravity,

S =

∫
d4
x
√
−g
(
R + 6− 1

4
F 2 − 1

2
(∂xφx)

2 − 1

2
(∂yφy)

2

)
. (2.32)

Since the wave equation for the scalars is second order in the derivatives, the linear profile
trivially satisfy the equations of motion. However, the energy momentum tensor associated
with the scalars has constant non-zero components given by T φii = −1

2
(αi)

2 for i ∈ {x, y}.
Since the equations of motion do not depend explicitly on (x, y), the Einstein-Maxwell
system can be solved, as before, by imposing radial symmetry, and is given by

ds2 = r−2

[
−f(r)dt2 +

dr2

f(r)
+ dx2 + dy2

]
,

f(r) = 1− α2r2

2
−
(

1 +Q2 − α2r2
0

2

)(
r

r0

)3

+Q2

(
r

r0

)4

A = µ

(
1− r

r0

)
dt, φx = αx, φy = αy. (2.33)

As with the RN geometry, r0 is the black hole horizon and we defined Q2 =
µ2r2

0

4
for

convenience. The free parameters of the model are (r0, µ, α). To have an intuition for
this new parameter, it is useful to look at the thermodynamics of the model. For instance,
the temperature and the energy density now depend on α, T = 1

4πr0

(
3−Q2 − 1

2
α2
)
, ε =

〈T tt〉 = 2
(
1 +Q2 − 1

2
α2
)
, while the entropy and charge density remain the same s = 4πr−2

0

and ρ = µr−1
0 . Again, the free energy of the system satisfy f = ε− sT − ρµ. However it can

be shown that the first law of thermodynamics picks a contribution from the new parameter
α [54]:

df = −s dT − ρdµ− r−1
0 d(α2). (2.34)

This shows that the Stueckelberg fields a�ect the dual field theory similarly to applying a
constant magnetic field of strength α. Note that, as with the RN geometry, it is possible to
tune (µ, α) to get T = 0 with r0 <∞, and the IR fixed point at extremality is also given by
AdS2 × S2.

The longitudinal ac-conductivity in the x-direction can be computed analogously to the
RN background. Since the Stueckelberg field φx couples to the vector potential A through
the geometry, for consistency we also have to consider a fluctuation in this direction. We
are thus led to consider the following set of time-dependent fluctuations,

A→ A+ ax(r, t)dx, ds2 → ds2 + 2gtx(r, t)dxdt, φx → φx + χ(r, t). (2.35)

One could proceed by writing the equations of motion for the fluctuations in Fourier space
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and solving them numerically, as exemplified in Section 2.5.1. However, we now illustrate
an alternative approach introduced by Gauntlett and Donos to analytically compute the
dc-conductivity directly [82]. It consists of making the following ansatz for the fluctuations

ax(r, t) = ax(r)− Et, gtx(r, t) = gtx(r), χ(r, t) = χ(r). (2.36)

Note that by construction the ansatz for the vector potential fluctuation corresponds to a
constant electric field E at the boundary. Denoting ′ = ∂r, Maxwell’s equations imply that
the electric current in the x direction is radially conserved,

Jx = f(r)a′x − ρ gtx = constant (2.37)

By definition, the dc-conductivity in this context is given by Jx = σdcE, and thus all we
need is to show that Eq.(2.37) is proportional to the electric field E at the boundary. Since
this quantity is radially conserved, the strategy is to evaluate it in the horizon where the the
boundary conditions can be applied to fix the terms. For instance, the term f(r)a′x can be
fixed straightaway. Following the holographic dictionary, close to the horizon r = r0, we
must impose ingoing boundary conditions for ax. In Eddington-Finkelstein coordinates
(u, v) = (t + r∗, t − r∗), dr∗ = f−1dr, this means that ax(r, t) ∝ v, which imply that close
to the boundary we must impose a′x ∼

r=r0
f−1E. For the second term, we evaluate the

(xt) components of Einstein’s equation close to the horizon, giving gtx ∼
r=r0
− r0µ

α2 E. The

dc-conductivity is thus given by

σdc = 1 +
µ2

α2
= 1 +

4πρ2

s α2
. (2.38)

Di�erent from the RN geometry example, the dc-conductivity now reflects the break of
translation invariance and is finite. As expected, it is proportional to the charge density and
inversely proportional to the parameter α, which measures the amplitude of the Stueckelberg
field. In the limit α → 0, the dc-conductivity diverges as expected for a translational
invariant system. The parameter α can be thought as an inverse "relaxation time". Consider
for instance the Ward identities of the dual boundary theory in the x-direction

∂tδ〈px〉 = −αδ〈O〉+ ρ∂ta
(0)
x , (2.39)

where a(0)
x is the vector potential fluctuation evaluated at the boundary, and δ〈px〉, δ〈O〉

are the boundary operators dual to the fluctuations (gtx, χ). The second term has a clear
interpretation: it is the flux of momentum generate by the applied external field. By solving
the equations of motion for χ, it can be shown that for small α/µ� 1, 〈O〉 ∝ px, suggesting
that α−1 can be interpreted as a relaxation rate. However for α/µ� 1, 〈O〉 has higher order
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contributions which are not simply proportional to the flux of momentum [56,149, 150].
This is known in the literature as the incoherent regime, in which the underlying strongly-
coupled degrees of freedom do not respond well to the external field. The dc-conductivity
in the incoherent phase asymptotically approaches a constant for any fixed charge density
and driving electric field. For this reason, this geometry is thought to model the crossover
between a standard strongly-coupled metal and a bad metal [151].

Note however that the well-defined limit of strong relaxation α/µ→∞ is still metallic,
which is both odd and unphysical. In Chapter 3, we discuss a solution to the lack of insulating
behaviour at strong relaxation by introducing a simple model in which the Stueckelberg
fields are coupled to the Ricci scalar in the action.



3 | Momentum relaxation in
Brans-Dicke holography†

In this chapter we study holographic models where a scalar is coupled to the Ricci scalar R.
Similar models have been studied in the cosmology literature, where they are known as AdS
Brans-Dicke (BD) models. In terms of the holographic duality, they can be interpreted as
e�ective models of metals with a varying coupling constant. We show that, for translational
invariant backgrounds, the regular part of the dc-conductivity σQ deviates from the universal
result of Einstein-Maxwell-Dilaton (EMD) models. However, the shear viscosity to entropy
ratio saturates the Kovtun-Son-Starinets (KSS) bound. Similar results apply to more general
f(R) gravity models. In four bulk dimensions we study momentum relaxation induced
by Stueckelberg fields coupled to the gravity and electromagnetic sectors. For su�ciently
strong momentum dissipation induced by the former, a recently proposed bound on the
dc-conductivity σ is violated for any finite electromagnetic axion coupling. Interestingly,
in more than four bulk dimensions, the dc-conductivity for strong momentum relaxation
decreases with temperature in the low-temperature limit. In line with other gravity back-
grounds with momentum relaxation, the shear viscosity to entropy ratio is always lower than
the KSS bound. The numerical computation of the ac-conductivity reveals a linear growth
with the frequency in the limit of low temperature, low frequency and large momentum
relaxation. We also show that the module and argument of the ac-conductivity for inter-
mediate frequencies are not consistent with cuprates experimental results, even assuming
several channels of momentum relaxation.

3.1 Introduction

Einstein general relativity assumes that gravity is mediated by a tensor two particle. Despite
its immense conceptual and phenomenological success, generalizations [153] of general
relativity, where gravity is also mediated by a scalar or a vector, have been intensively

2This Chapter is based on Ref. [152], and was done in collaboration with Antonio M. García-García and
Aurelio Romero Bermúdez. The author would like to acknowledge A.R. Bermúdez for the numerical work in
Section 3.2.
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studied mostly for its potential interest in cosmology but also simply as toy models of new
ideas in gravity. One of the most influential, though not the earliest [153], is the so called
Brans-Dicke gravity [154] that aimed to reconcile Mach’s principle with general relativity.
Gravity is also mediated by a scalar coupled linearly to the Ricci tensor. The action also has
a kinetic term for the scalar so BD has two coupling constants. Physically this scalar can be
understood as a gravitation constant G that varies in time and space. General relativity is
usually preferred as it predicts the same physics with less free parameters. Interestingly, after
a conformal transformation, BD gravity maps into Einstein gravity with a dilaton field. As a
result of this mapping, explicit analytical solutions of the BD gravity equations of motion
are known not only for Einstein gravity but also for asymptotically dS and AdS spaces even
if the theory also contains massless photons modelled by the Maxwell tensor. For a certain
region of parameters it is also possible [155] to map onto BD more general f(R) models
where the action is not linear in the Ricci tensor R.

In light of this rich phenomenology, we study BD backgrounds with AdS asymptotic as
e�ective duals of strongly coupled metals. Previous holographic studies [156,157] involving
BD backgrounds were restricted to thermodynamic properties only. By contrast here we
focus on transport observables such as the optical, dc-conductivity and shear viscosity in
asymptotically AdS Brans-Dicke backgrounds. Our motivation is to explore the impact of
the BD scalar running in the radial dimension, that acts as an e�ective gravitational constant,
on the transport properties of holographic metals [158,159].

More specifically we address whether the universality of the shear viscosity [6] and the
dc-conductivity [57,160–162], reported in translational invariant Einstein-Maxwell-Dilaton
(EMD) [158,159] backgrounds with massless photons and no dilaton coupling to the Maxwell
tensor also holds in BD background. We have found that, while the universal shear viscosity
ratio also holds in BD background, the dc-conductivity deviates from the universal result of
EMD theories.

We also investigate momentum relaxation by gravitational Stueckelberg fields, namely,
Stueckelberg fields coupled to the Ricci tensor, a simplified form of BD backgrounds where
the scalar has no dynamics. Stueckelberg fields [54] together with massive gravitons, or
simply a random chemical potential [33, 61, 88–90, 94, 95], break translational invariance
which modifies substantially the conductivity and other transport properties. For weak
momentum relaxation the conductivity is to a good extent described by Drude physics.
For low temperatures or frequencies the conductivity is large, the so called Drude peak,
and decreases monotonously. It was observed, in all models studied, that no matter the
strength of the momentum relaxation the conductivity of Einstein-Maxwell holographic
metals was always above a certain bound which precludes a metal-insulator transition. In
part based on this numerical evidence, it was conjectured [97] the existence of a lower
bound in the conductivity of more complicated holographic models. However, in two
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recent papers [163,164] violations of this bound have been reported in models where the
Stueckelberg field is coupled to the Maxwell tensor, e�ectively screening charge. Here we
show that gravitational Stueckelberg fields, that do not screen charge, also lead to violations
of the bound in the limit of strong, although still parametrically small with respect to the
rank of the gauge group, Stueckelberg field gravity coupling. For three space dimensions
the dc-conductivity decreases with T for low temperatures even without any other source
of momentum relaxation.

We also study the ac-conductivity in BD backgrounds. The ac-conductivity in EMD
models with translational invariance in the limit of small frequencies and temperatures
is controlled by the infrared (IR) geometry that for Reissner-Nordstrom background is
AdS2 leading to σ ∼

ω→0
ω2. The e�ect of momentum relaxation in the ac-conductivity of

EMD theories was investigated in [159] but it is not yet fully understood whether, for
low-frequencies and strong momentum relaxation, the conductivity scales as a power-law
faster than linear as in Mott insulators and many-body localised states [165].

By contrast, in a model in which momentum relaxation occurs by an oscillatory chemical
potential, it was claimed [166] the modulus of the ac-conductivity for intermediate frequen-
cies decays as a power-law with an exponent equal to that observed in most cuprates. Here
we find that, even assuming several channels of momentum dissipation, we cannot reproduce
the modules and argument observed in cuprates. However, we have found that, for strong
momentum dissipation and close to zero temperature, the ac-conductivity increases linearly,
not quadratically with the frequency, for both gravitational and electromagnetic Stueck-
elberg fields. Finally, we have computed the ratio of the shear viscosity and the entropy
density in BD holography with momentum relaxation. We have observed that, unlike the
translational invariant case, the ratio is temperature dependent. It decreases as the strength
of momentum relaxation increases and it is always below the KSS bound. It can be made
arbitrarily small for a finite amount of momentum relaxation.

The organization of the chapter is as follows: in section two we compute analytically the
dc-conductivity and show that the shear viscosity to entropy ratio in translational invariant
BD backgrounds and other generalised theories of gravity is given by the KSS bound. In
section three we study the dc-conductivity in BD like backgrounds with momentum re-
laxation induced by coupling the Stueckelberg field and the Ricci tensor in two boundary
space dimensions. In section four we address momentum relaxation by gravitational Stueck-
elberg fields in higher space dimensions. In section five we study the ac-conductivity in BD
backgrounds. We also compute the module and argument of the complex conductivity in
order to compare with results in cuprates. In section six we compute the shear viscosity to
entropy density ratio including di�erent sources of momentum relaxation. We end up with
a list of interesting problems for further research and a short summary of the main results.

Next we introduce the BD action, the equations of motion and its analytical solution.
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3.2 Dc-conductivity in translationally invariant BDholog-
raphy

We start our analysis by introducing the BD action and the equations of motion. We then
compute the conductivity for a general background ansatz and show it is expressed in terms
of thermodynamic quantities and the value of the scalar at the horizon. This is di�erent from
EMD models with no coupling between the dilaton and the Maxwell field where it only
depends on thermodynamic quantities.

We then find that a calculation in the Einstein frame, resulting from a conformal trans-
formation, leads to the same result. Finally, we discuss other modified gravity models that
fall within the BD universality class.

3.2.1 Brans-Dicke Action and equations of motion

The Brans-Dicke-Maxwell action in a d+ 1-dimensional manifold is given by

S =

∫
M
dd+1

x
√
−g
[
φR− ξ

φ
(∇φ)2 − V (φ)− Y

4
F 2

]
. (3.1)

Note that we are working in units where 2κ2 = 16πGN = 1 and we include a non-trivial
coupling Y (φ) between the Brans-Dicke scalar φ and the Maxwell term, as well as a (for now
arbitrary) scalar potential V (φ). In this model gravity is not only mediated by the massless
symmetric rank two tensor g but also by the real scalar field which has its own dynamics
and a kinetic term parameterise by ξ ≥ 09. Intuitively the non-minimal coupling φR can be
interpreted as the running of Newton’s constant "G(x) ≡ GN/φ(x)" [155].

Variation of this action gives the following equations of motion:

φ

(
Rab −

1

2
Rgab

)
=
ξ

φ

(
∇aφ∇bφ−

1

2
(∇φ)2 gab

)
− 1

2
V (φ) + (∇a∇bφ−�φ gab)

− Y

2

(
FacF

c
b +

1

4
F 2 gab

)
,

∂a
(√
−gY (φ)F ab

)
= 0,

�φ =
1

2(d− 1)ξ + 2d

(
(d− 1)φV ′(φ)− (d+ 1)V (φ)− (d− 3)

4
F 2 − Y ′(φ)

4
φF 2

)
.

First, note that there is an extra term (∇a∇bφ − �φ gab) for the scalar in the Einstein’s
equations. This term comes from the Palatini identity δgR = Rabδg

ab −∇c

(
δΓcab − gacδΓbcb

)
which in Einstein gravity can be integrated to give a boundary term. Evaluating this term in

9The standard notation in the literature for the Brans-Dicke coupling is ω. We refrain from this notation
to avoid confusion with the frequency ω in the ac-conductivity σ(ω).
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normal coordinates and using Stoke’s theorem yields the extra term previously mentioned.
Second, terms on the left hand side of the scalar equation come from the Ricci scalar factor
that is solved by taking the trace of Einstein’s equations.

An important observation is that for Y = 1 and d = 3 the Maxwell term in the scalar
equation vanishes. This is a consequence of the fact that in d = 3 the electromagnetic
energy-momentum tensor is conformal and therefore traceless, and do not source the Ricci
scalar. This invariance will play later a crucial role in our analysis.

3.2.2 Regular part of the dc-conductivity for a general ansatz

We now present the computation of the conductivity at zero-frequency in a generic static and
spherically symmetric AdSd+1 black brane. As usual in translationally invariant theories, for
vanishing frequency σ(ω) ∼

ω→0
σQ +Kδ(ω), where we use the standard notation introduced

in Section 2.5.1: K for the Drude weight and σQ for the regular part of the dc-conductivity.
In this section we are only interested in the latter. We derive a general expression for σQ that
highlights the universality of our results. An explicit solution for the background is worked
out in Appendix C.1.

Background and conserved charges

Consider the following static and spherically symmetric ansatz for the field equations,

ds2 = −A(u)dt2 +B(u)du2 + C(u)δijdxidxj, (3.2a)

A = at(u)dt, (3.2b)

φ = φ(u). (3.2c)

We assume this chart is globally defined and describes an asymptotically AdSd+1 black
hole. More precisely, we require that A(u) = B(u)−1 = C(u) = u2 as u→∞ (assymptotic
boundary) and that A(u) ∼ B(u)−1 ∼ 4πT (u− u0) for u0 > 0. In what concerns the fields,
we need to require that Y (∞) = 1, φ(∞) 6= 0 and V (φ) ∼ 2Λφ close to the boundary and
that they are regular at the horizon u = u0. Moreover we impose at(u0) = 0.

For this ansatz we use the existence of two radially conserved charges in order to simplify
the computation of the conductivity. The simplest one is the charge density, that can be
obtained by looking at the (t) component of Maxwell’s equations,

∂a
(√
−gY (φ)F at

)
= ∂u

(√
−gY (φ)guugtta′t

)
= 0 .
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Therefore the charge density

ρ =
Y C

d−1
2

√
AB

a′t (3.3)

is radially conserved. The second conserved quantity is related to the geometry. Consider
the (tt) and the (xx) components of the Brans-Dicke equations with one raised index

φ

(
Rt

t −
1

2
R gtt

)
= −Y

2
FtuF

tu +

(
−Y

8
F 2 +

ξ

2φ
(∇φ)2 +

1

2
V −�φ

)
gtt +∇t∇tφ ,

φ

(
Rx

x −
1

2
R gxx

)
=

(
−Y

8
F 2 +

ξ

2φ
(∇φ)2 +

1

2
V −�φ

)
gxx +∇x∇xφ.

Note that the assumption ∂tφ = ∂xφ = 0 is crucial in this analysis. For our ansatz, gtt =

gxx = 1 and therefore we subtract the above expression to give

φ
(
Rt

t −Rx
x

)
= −Y

2
FutF

ut +∇t∇tφ−∇x∇xφ . (3.4)

In order to write this as a total derivative, we will make use of the following identities

√
−gRt

t = −1

2
∂u

(
1√
AB

C
d−1

2 A′
)
,

√
−gRx

x = −1

2
∂u

(√
A

B
C

d−3
2 C ′

)
.

Which is subtracted to give

√
−g(Rt

t −Rx
x) = −1

2
∂u

(
1√
AB

C
d+1

2

(
A

C

)′)
.

Regarding the right hand side, we have

∇t∇tφ−∇x∇xφ = gtt∇t∇tφ− gxx∇x∇xφ = −
(
gttΓrtt − gxxΓrxx

)
φ′ =

1

2B

(
A′

A
− C ′

C

)
φ′,

and therefore

√
−g
(
∇t∇tφ−∇x∇xφ

)
=

C
d+1

2

2
√
AB

(
A

C

)′
φ′.

Taking into account that
√
−gY F ut = ρ, we finally rewrite Eq. (3.4) as

φ ∂u

(
1√
AB

C
d+1

2

(
A

C

)′)
= ρa′t −

C
d+1

2

√
AB

(
A

C

)′
φ′.
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which is expressed as a total derivative,

∂u

(
φ√
AB

C
d+1

2

(
A

C

)′
− ρat

)
= 0 . (3.5)

In previous works, this conserved charge was related to thermodynamical quantities [148,
160, 161]. Indeed, by integrating it, evaluating it at the horizon and using the boundary
condition at(u0) = 0 we get

φ√
AB

C
d+1

2

(
A

C

)′∣∣∣∣
u=u0

=
φ(u0)√
AB

C(u0)
d−1

2 A′(u0) = sT

which is exactly the same results obtained previously. Note that we use the fact that the
entropy in BD theory satisfies

S =
1

4

∫
u=u0

ddx φ
√
−g

instead of the standard area law. This is another simple manifestation that the strength of
gravity in BD backgrounds is not constant, as in Einstein gravity, but governed by the scalar
"G/φ"10 [155]. Surprisingly, the scalar field fits nicely to produce the same thermodynamic
result.

For a general r, we then have

sT =
φ√
AB

C
d+1

2

(
A

C

)′
− ρat. (3.6)

Note that in particular at(∞) = µ. Therefore using the Smarr relation sT + µρ = ε+ P and
the above expression evaluated at the boundary u→∞ we get

ε+ P =
φ√
AB

C
d+1

2

(
A

C

)′∣∣∣∣
u=∞

.

Fluctuations

In order to compute conductivities, we need to study fluctuations around the background
solutions. It is su�cient to consider the following set of consistent fluctuations

ds2 → ds2 + 2htx(u, t)dtdx , A→ A+ ax(u, t)dx .

10Note that in standard units the area law is S = 1
4G

∫
u=u0

ddx
√
−g
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The equation of motion for ax is obtained by linearizing the (x) component of Maxwell’s
equations,

∂a
(√
−gY gacgxdFcd

)
= ∂u

(√
−gY guugxx∂uax

)
− ∂u

(√
−gY guugxta′t

)
+ ∂t

(√
−gY gttgxx∂tax

)
= ∂u

(√
A

B
C

d−3
2 Y ∂uax

)
−
√
B

A
C

d−3
2 Y ∂2

t ax + ρ∂u (gxxhtx) = 0 .

To eliminate the htx term in the above expression we look at the constraint equation given
by the linearised (rx) Brans-Dicke equation,

∂u (gxxhtx) = −g
xx

φ
Y a′tax .

Inserting this in the above expression and solving for a′t in function of the charge density we
get

φ C
d+1

2

√
AB

∂u

(√
A

B
C

d−3
2 Y ∂uax

)
−
√
B

A
C

d−3
2 Y ∂2

t ax − ρ2ax = 0 .

We now use the conserved charge (3.5) to rewrite the above equation as,

∂u

(
Cd−1Y φ

B

(
A

C

)′
∂uax −

A

C
ρ2ax

)
−
√
B

A
C

d−3
2 Y ∂2

t ax = 0 .

As long as we are ony interested in the regular part of the dc-conductivity, we can set
∂2
t ax = 0. The resulting equation is easily integrated to give,

Cd−1Y φ

B

(
A

C

)′
∂uax −

A

C
ρ2ax = constant .

Black brane boundary conditions set A(u0) ∼ 1/B(u0) = 0. Regularity of the fields at
the horizon fixes the constant above to zero. Moreover,without loss of generality we set
lim
u→∞

φ(u) ≡ 1 at the boundary. With this information the equation for the fluctuation is
easily integrated:

a(0)
x (u) = exp

{
−
∫ ∞
u

ABρ2

Y φ(A/C)′Cd−2
du
}

= exp

{
−
∫ ∞
u

Y (a′t)
2

φC(A/C)′
du
}
,

where a(0)
x (u) is the independent solution of the equation that tends to one at the boundary

and determines the regular part of the conductivity 11. We can use the charges (3.3) and

11The second solution can be obtained using the Wronskian. For further details see [148].
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(3.6) to perform the integral explicitly:∫ ∞
u

Y (a′t)
2

φC(A/C)′
du =

∫ ∞
u

a′t
at + sT/ρ

du = log(at(u)ρ+ sT )|∞u = log
ε+ P

at(u)ρ+ sT
,

where we have used the Smarr relation. This implies that

a(0)
x (u) =

at(u)ρ+ sT

ε+ P
,

and in particular

a(0)
x (u0) =

sT

ε+ P
,

where we use the boundary condition at(u0) = 0. Finally, the regular part of the dc-
conductivity is given by

σQ = Y (u0)C(u0)
d−3

2 (a(0)
x (u0))2 = Y (u0)C(u0)

d−3
2

(
sT

ε+ P

)2

.

This result is the same as the one obtained in EMD models [148,160,161]. It is interesting
to observe that in these works T tt = T xx is given as a necessary condition for the universality
of σQ. Here this condition is clearly violated, but we can still write the equation for the
fluctuation as a total derivative. However, we need to take into account the modified area
law for the entropy density, yielding

σQ =
Y (u0)

φ(u0)
d−3
d−1

( s

4π

) d−3
d−1

(
sT

ε+ P

)2

. (3.7)

Note the explicit dependence of σQ on the BD field φ. For d > 3, we thus expect the scalar
field to renormalise the universal contribution to the conductivity. To understand better the
possible e�ects of φ, we need to evaluate its behavior at the horizon, in particular, the low
and high temperature scaling of φ(u0).

In contrast with the previous discussion, those questions do not have a universal answer. It
depends on the particular solution for the background. In next section, we will see that the BD
model can be formally mapped onto an EMD model by a conformal transformation. Explicit
solutions for the latter have been widely studied in both the context of gravity [167,168]
and of holography [158,169] (and references therein). As an illustration of this method we
study in Appendix C.1 a particular solution, and show explicitly how it is mapped to BD.

A simple numeric fit for the solution (C.1) suggests two scaling regimes. For low
temperature, φ(T ) ∼ a tends, for a fixed charged density, to a temperature independent
constant 0 < a < 1. This indicates that close to extremality the temperature scaling of σQ
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coincides with EMD result, although up to a numerical prefactor a. For high temperatures,
we find that φ(T ) ∼ T−δ for δ ≥ 0, suggesting that φ→ 0 asymptotically at the horizon for
su�ciently high temperatures. Here δ is a function of both the Brans-Dicke parameter ξ
and the dimensionality d, and monotonically decreases with ξ ≥ 0 for fixed d. For example,
for d = 4 and ξ = 0, we have δ ≈ 0.4, while δ ≈ 0.22 for ξ = 1. In particular we have δ → 0

as ξ →∞ for any dimension d > 2.
One can interpret this behavior in a heuristic way. First note that Newton’s constant G

is related to the string coupling constant gs ∼ G. If we naively interpret the BD coupling
“G/φ” as a dynamical Newton’s constant, the flow of φ can be interpret as a flow from weaker
(φ � 1) to stronger (φ � 1) coupling. More specifically, for the background solution
of Appendix C.1 φ ∈ [0, φ(u0)] with 0 < φ(u0) ≤ 1. Therefore the running of φ from
the boundary to the horizon corresponds in the dual field theory to a flow from weaker
to stronger coupling. For the purpose of the conductivity, this running has the e�ect of
increasing σQ by a factor φ(u0)−

d−3
d−1 . Although tempting, one needs to be cautious with this

heuristic interpretation. In the saddle point approximation, exact only in N →∞ limit, we
always have gs � 1 and λ = gsN � 1. Thus this interpretation should not be taken seriously
in the limit of fixed large N and φ(u0)→ 0, where the saddle point is clearly not valid.12

Conformal transformations and universality

The explicit result for the regular part of the dc conductivity (3.7) is also expected from a
well known trick broadly used in the Brans-Dicke literature that we now discuss (see for
example [170] and references within).

Consider the following conformal mapping of the metric g,

ḡ = φ
2
d−1 g .

Taking into account the transformation in the volume element and in the Ricci scalar, the
action reads

S̄ =

∫
M
dd+1

x
√
−g
[
R̄− 4

d− 1
(∇̄φ̄)2 − V̄ (φ̄)− Ȳ (φ̄)

4
F̄ 2

]
,

where we have defined

α =
d− 3

2
√

(d− 1)ξ + d
φ̄ =

d− 3

4α
log φ (3.8)

V̄ (φ̄) = φ−
d+1
d−1V (φ) Ȳ (φ̄) = Y (φ̄)e−

4αφ̄
d−1 , (3.9)

and all bar ¯. . . quantities are computed with respect to the metric ḡ. Note that for d = 3

12For this reason we employ the term "weaker" instead of "weak".
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the Maxwell coupling is not a�ected by the conformal mapping. This is a consequence of
the fact that electromagnetism is conformal in d = 3. It is also useful to note that φ̄ is well
defined for d = 3 since α has a factor d− 3 as well.

This is nothing but the well known Einstein-Maxwell-Dilaton action. This action
has been widely studied in the context of string theory and e�ective holographic models
[157–159, 171]. This map provides a useful way of constructing solutions to BD gravity,
since solutions of EMD theory are well known. A particular explicit solution that illustrates
this point is given in Appendix C.1. More interestingly, it is known that the regular part of
the dc-conductivity in such models take the (almost-)universal form

σ̄Q = Ȳ (u0)
( s̄

4π

) d−3
d−1

(
s̄T̄

ε̄+ P̄

)2

.

It is not hard to check that the thermodynamic quantities (s̄, T̄ , ε̄, P̄ ) are invariant under the
conformal mapping 13. The only part of σ̄Q that is not invariant is the non-universal charge
coupling Ȳ , which transforms as Ȳ (φ̄) = φ−

d−3
d−1Y (φ) and give the explicit result computed

in the previous section.

This raises the interesting question of whether there are other theories of modified gravity
that can be cast as an EMD theory in the Einstein frame, and if so, which those theories are.
Indeed, this question has been much discussed in the gravity literature [172–174]. There
has been a controversial debate on whether theories that are related by field redefinition
or conformal transformation describe gravitationally 14 the same theory or not [175]. A
full discussion of those intricate questions is beyond the scope of this work. Here we limit
our discussion to the fact that conformal transformations are a convenient tool to study
dynamically equivalent theories.

A well known class of theories that can be mapped into BD are f(R) theories of gravity,
defined through the action

S =

∫
M
dd+1

x
√
−gf(R) + Smatter ,

where f(R) is a generic function of the Ricci scalar R and Smatter include any other fields
coupled to the metric, but not to R. One can introduce an auxiliary field χ to rewrite the
above equation as

S =

∫
M
dd+1

x
√
−g [f(χ) + f ′(χ)(R− χ)] + Smatter .

13This is essentially a consequence of the regularity of φ at the horizon.
14By gravitationally we mean the geodesics, conservation of the energy-momentum tensor, energy condi-

tions, etc.
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Variation with respect to χ give f ′′(χ) (R− χ) = 0, so as long as f ′′(χ) 6= 0 this constraint
imposes χ = R and we recover the initial action. Note that this is also a su�cient condition
for f(R) to be invertible. Now defining φ = f ′(χ) and V (φ) = χ(φ)φ − f(χ(φ)) we can
write

S =

∫
M
dd+1

x
√
−g (φR− V (φ)) + Smatter ,

which is precisely a BD action with ξ = 0 and potential V (φ). This procedure is nothing but
the Legendre transform of the action with respect to the conjugate field φ. Taking Smatter =

−1
4

∫
Y (u)F 2, we proceed with the computation of the regular part of the conductivity as

before to get

σQ =
Y (u0)

f ′(R(u0))
d−3
d−1

( s

4π

) d−3
d−1

(
sT

ε+ P

)2

.

This illustrates how a combination of a conformal transformation and a Legendre transform
can be used to considerably simplify calculations. Indeed, this procedure is much more
general, and can be applied to other theories such as Palatini gravity or f(φ) couplings to
the Ricci [175]. An interesting example of the latter is a conformal coupling f(φ) = 1 + 1

6
φ2

that appears naturally in one-loop diagrams of string theory [176].

It is tempting to apply this construction to other theories of gravity such as Gauss-Bonnet,
which in holography e�ectively correspond to leading 1/N corrections in the dual field
theory. However, Gauss-Bonnet contain terms such as RabR

ab which introduce further
non-linearity and thus makes di�cult the Legendre transformation [174]. Therefore Gauss-
Bonnet gravity do not fall under BD universality.

A natural question to ask is what happens with other transport coe�cients. For example,
both the shear viscosity and the entropy contain the same power ofG, and therefore η/s does
not depend on G. As a consequence, we expect η/s = 1/4π in BD holography to saturate
the KSS bound. This is just a particular example of a general result that any theory related to
standard gravity via a conformal transformation indeed saturates the KSS bound [177,178].
However, quantities such as the entanglement entropy should be sensitive to φ in the expected
way (G→ Gφ−1). Indeed this was explicitly calculated in the context of f(R) theories, and
agrees with our discussion since φ = f ′(R) [179–181].

This discussion applies only to theories with no momentum relaxation. In the rest of
the section we focus on the description of transport in BD holography with momentum
dissipation.
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3.3 Momentum relaxation and dc-conductivity
in BD holography

We now study the e�ect of momentum relaxation in the transport properties of the field
theory dual of BD gravity. We consider the linear coupling to the Ricci scalar to be a
function of the gradient of the Stueckelberg fields, that explicitly break di�eomorphism
invariance in the boundary spacelike coordinates:

S =

∫
dd+1

x
√
−g
[
Z(TrX)R− 2Λ− V (TrX)− Y (TrX)

4
F 2

]
, (3.10)

where TrX = 1
d−1

∑
I ∇µX

I∇µXI and XI = αxI . We use the metric ansatz of Eq. (3.2)
with A = g, B = 1/g and C = u2c:

ds2 = −g(u)dt2 +
du2

g(u)
+ u2c(u)δijdx

idxj , i = 1, . . . , d− 1 , r ∈ [u0,∞) . (3.11)

Assuming that g → u2 and c→ 1 for large u, and that g has a (double) single zero at (zero)
finite temperature defining the horizon, we follow the procedure devised by Donos and
Gauntlett [182] to compute the dc-conductivity from the solution of the equations of motion
at the horizon.

We add a perturbation in Ax linear in time, while the Stueckelberg field and metric
perturbations are independent of time,

A→ A+ (ax(u)− Et) dx,

Xx → Xx + χ(u),

ds2 → ds2 + 2u2htx(u) dtdx+ 2u2hux(u) dudx.

Maxwell’s equation for ax is:

∂u
[
Y
√
−gguu(gtxFut + gxxFux)

]
= 0 , (3.12)

which leads to the radially conserved quantity:

J = −Y rd−3c
d−3

2 ga′x − htx
ρ

c
. (3.13)

This conserved quantity is evaluated at the horizon where htx and ax are obtained as we
discuss below.

The perturbation on the gauge field close to the horizon is obtained from Eq. (3.13) by
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choosing J such that ax is ingoing in the horizon:

a′x ∼ −
E

g
=⇒ ax ∼ −Ev , (3.14)

where v is the ingoing Eddington-Finkelstein coordinate v = t+ u∗, given in terms of the
tortoise coordinate du∗ = du

g
.

Eq. (3.14) gives the first term inside the parenthesis of Eq. (3.13). To obtain the second
term, we combine the (xt) and (xx) Einstein’s equations. Since we will evaluate them at
the horizon, we will only write down explicitly the non-zero terms after taking the limit
u→ u0.

For clarity we write down Einstein’s equations only for d = 3:

ZGab =
1

2
Tab +

1

2
Zab , (3.15)

Tab = Y

(
F c
aFbc −

1

4
gabF

2

)
− (2Λ + V )gab +

∑
I

∇aX
I∇bX

I

(
−V̇ − Ẏ

4
F 2 + ŻR

)
,

(3.16)

Zab = 2(∇a∇b − gab∇c∇c)Z, (3.17)

where the dot derivative stands for derivative with respect to TrX = 1
2
gab
∑
I

∂aX
I∂bX

I and

R is the Ricci scalar.15

The (tx) Einstein’s equation is,

O(h′tx, h
′′
tx) +

u2

2
Zhtxu

2

[
g′′ + g′

(
2

c
+
c′

c

)
+ . . .

]
= (3.18)

u2

4
htx
(
−4Λ− 2V + Y a′2t

)
+

1

2
gY ata

′
x +

1

2
u2gŻTrX ′h′tx −

rhtx
2c

[
2rcg′ŻT rX ′ + . . .

]
,

(3.19)

where the dots and the terms O(h′tx, h
′′
tx) are zero at the horizon, the prime derivative is with

respect to r and TrX ′ = ∂uTrX . The first two terms on the right-hand side come from Tab

and the last term from Zab. In order to simplify Eq. (3.18) we eliminate c′′(u) from the (tt)

Einstein’s equation and substitute it into the (xx) Einstein’s equation. The result is given in

15The full dynamical stability of the model Eq. (13) is beyond the scope of this work. We thank Oriol
Pujolàs and Matteo Baggioli for pointing out the occurrence of third order time derivatives. These occur
beyond the linear analysis and have the potential to further restrict the parameters for which the model is stable.
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Eq. (3.20) by specifying Gxx, Txx and Zxx separately,

ZGxx =
u2c

2
Zg′′ +

u2Z

4

(
c′

c
+

2

r

)
g′ +

r4Z

8

4Λ + 2V + Y a′2t
k2Ż − u2cZ

+ . . . , (3.20)

Zxx =
α2Żg′

2

(
c′

c
+

2

r

)
+
α2u2cŻ

4

4Λ + 2V + Y a′2t
α2Ż − u2cZ

+ . . . , (3.21)

1

2
Txx =

α2Ż

2
g′′ +

α2Ż

2

(
c′

c
+

2

r

)
g′ +

u2Z

4

u2c(4Λ + 2V − Y a′2t ) + α2(−2V̇ + Ẏ a′2t )

α2Ż − u2cZ

(3.22)

+
Ż

4

2α2V̇ + (2α2u2cY − α4Ẏ )a′2t
α2Ż − u2cZ

+ . . . , (3.23)

where the dots vanish at the horizon. Combining eqs. (3.20) and (3.18) allows to eliminate htx.
Its value at the horizon u = u0, is used to calculate the dc-conductivity from Re(σdc) = J/E.
Before we do so, we define the expansions of the metric functions g and c close to the horizon
as:

g ∼ g1

(
1− u0

r

)
+ . . . ,

c ∼ c0 + c1

(
1− u0

r

)
+ . . .

Restoring arbitrary bulk dimensionality d+ 1, the temperature is

T =
1

4π

c0u0

2c0 + c1

4Λ + 2V (u0) + Y (u0)a′t(u0)2

2α2Ż(u0)

u2
0c0

− (d− 1)Z(u0)
, (3.24)

where we have used TrX = α2

u2c
to simplify the denominator. The dc-conductivity, obtained

from eqs. (3.13), (3.14) and the value of htx at the horizon, calculated as indicated previously,
are given by the following compact expression,

Re(σdc) = Y0u
d−3
0 c

d−3
2

0 +
ρ2

m2
e�
,m2

e� = 2c
d−1

2
0 ud−1

0

(
TA+ Z2

0B + Ż0C
)
, (3.25)

where T is the temperature Eq. (3.24) and A, B and C are given in Eq. (3.26). The term
a′t = ρ

Y (u)rd−1c(u)
d−1

2
is also evaluated at the horizon. The subscripts ′0′ in eqs. (3.25) and

(3.26) indicate the variable is evaluated at the horizon. Equation (3.25) suggests that even at
zero temperature the conductivity receives a correction given by the Ż2

0C term. We note that
although this is a fully analytical expression for the conductivity the metric at the horizon
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may only be computed numerically.

A =
4π(2c0 + c1)

u3
0c

3
0

(d−1)(d−2)
4

u4
0c

2
0Z

2
0 − (d− 2)α2u2

0c0Z0Ż0 + 2α4Ż2
0

(d− 1)Z0 − 2α2Ż0

u2
0c0

, (3.26)

B =
(d− 1)c0

4
[
(d− 1)Z0 − 2α2Ż0

u2
0c0

]2

[
(d− 2)u2

0c0

(
4Λ + 2V0 + Y0a

′2
t

)
+ 2α2

(
2V̇0 − Ẏ0a

′2
t

)]
,

(3.27)

C =
α2

u2
0c

2
0

[
(d− 1)Z0 − 2α2Ż0

u2
0c0

]2

{
α2Ż0

(
4Λ + 2V0 − Y0a

′2
t

)
− (3.28)

Z0

[d− 1

2
u2

0c0

(
12Λ + 6V0 + Y0a

′2
t

)
+ α2

(
2V̇0 − Ẏ0a

′2
t

)]}
.

(3.29)

3.3.1 Conductivity reduction induced by charge screening

Our result for the dc-conductivity generalises those obtained previously from the AdS
RN+Stueckelberg background (Z = 1, Y = 1 V = TrX) [54], and from the backgrounds
studied in [163,164] with Z = 1, Y = e−κTrX V = TrX , κ > 0. In these models the Ricci
scalar is not coupled directly to the Stueckelberg field. However, the Stueckelberg-dependent
coupling Y has a crucial role in the dc-conductivity.

For su�ciently large κ and α, and for low temperature, the dc-conductivity increases
with temperature, a behaviour previously referred to as insulating [163,164]. We note that
the physical reason for this behavior is not a smaller scattering time but the simple fact that
Y screens the charge at low temperature and consequently reduces the conductivity which
is proportional to the charge. While the overall temperature dependence is similar to that
expected in a system approaching an insulating state, it should be noted the conductivity
is always finite so the system is metallic in all cases. Moreover, the scattering time, con-
trolled by the parameter α, in this model has the same temperature dependence than in
RN+Stueckelberg background for which no insulating behavior was observed. Very likely,
a truly insulating behavior would lead to a qualitative change in the background something
that is not observed in [163,164].

In the following sections we identify a region of parameters in BD holography where
we have found similar features which are not induced by charge screening. However, we do
not claim that our system is an insulator because the conductivity is always finite even at
zero temperature.
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3.3.2 The dc-conductivity in BD-Stueckelberg backgrounds

In this section we explore the e�ect of the BD-type coupling Z on the background and on
the dc-conductivity in d = 3 boundary dimensions. More specifically, we break translational
invariance by using an Stueckelberg-dependent BD coupling Z(TrX). First we consider
the simpler case V = TrX = 1

d−1

∑
I ∇µX

I∇µXI = 0 in Eq. (3.10) and later study a more
general BD-like model where V = TrX 6= 0 is also present. Initially we restrict our analysis
to two space dimension. The dependence on dimensionality of our results is discussed in the
last part of the section.

We note physically Z(TrX) is an Stueckelberg-dependent gravitational coupling con-
stant that runs from the boundary to the horizon. For that reason we will refer to these
Stueckelberg fields coupled to the Ricci tensor as gravitational Stueckelberg fields. The
qualitative e�ect of this running in the holographic dimension, fromweak to strong coupling,
is less obvious than for Y 6= 1 or in the translational invariant case.

Momentum relaxation with Z 6= 1, Y = 1 and V = 0

We start our analysis with the simpler case of no Stueckelberg field potential and trivial
coupling to the Maxwell tensor,

Z = eλTrX , Ż = λZ , TrX =
α2

u2c
, (3.30)

V = 0 , V̇ = 0 , (3.31)

Y = 1 , Ẏ = 0, (3.32)

Although, a priori, λ and α are independent parameters, it is easy to see from Eq. (3.30)
that these parameters appear only in Z as a single parameter λe� = λα2. Translational
symmetry is broken for both λe� > 0 and λe� < 0. In the first case c(u0) < 1 while in
the second c(u0) > 1. However, for λ < 0 the squared ’e�ective mass’ m2

e� in Eq. (3.25) is
negative. Therefore, λe� should be constrained to positive values.16

At high temperature, the background tends to AdS RN+Stueckelberg [54] (Z = 1, Y = 1,
V = TrX): it has a similar blackening factor and c→ 1 for all r. The e�ect of the coupling Z
in the background is more evident at low temperatures where c(u) has a stronger dependence
on the radial dimension.

Regarding the dc-conductivity, this model has qualitatively similar properties to that of
the RN+Stueckelberg. For example, for the allowed range of parameters, the dc conductivity
increases as the temperature decreases and Re(σdc) > Y0 = 1. Moreover, it is known [54]
that for RN+Stueckelberg in four bulk dimensions, this condition is Re(σdc) > ud−3

0 . In the

16As we will demonstrate later in a similar background we have observed that λ < 0 also leads to the violation
of the null energy condition. Therefore, we restrict to positive λe�.
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model Eq.(3.30) the condition is Re(σdc) > (u2
0c0)

d−3
2 , where c(u0) = c0.

It would be interesting to compare the dc-conductivity for a fixed scattering time in
the model of Eq.(3.30) with the well-studied AdS RN+Stueckelberg model. However, it
is clear that both models display similar features since the respective actions are related by
a conformal transformation. As was explained in detail in sec. 3.2.2.3 for the translational
invariant case, under a conformal transformation, the action of Eq. (3.10) can be transformed
into an action with Z = 1. The change of the Ricci scalar under this transformation involves
additional terms which depend on TrX and contain the usual kinetic term proportional to∑

I ∇µX
I∇µXI , XI = αxI .

Moreover, as mentioned in sec. (3.2.2.3), in d = 3 dimensions electromagnetism is conformal,
therefore, the conformal transformation does not change the coupling of the F 2 term in
the action, see Eq. (3.8). This is consistent with the fact that for the choice of couplings
given in Eq. (3.30), the zero temperature dc-conductivity is larger than one, as in the
RN+Stueckelberg model [54]. In higher dimensions, however, it is expected the model
specified by Eq. (3.30) will yield Re(σdc) < 1 in some range of parameters. Indeed we will
see that this is the case in sec. 3.4.

In the next section we study a more general model with a finite potential (V ) and
non-trivial BD (Z) and Maxwell (Y ) couplings in four bulk dimensions.

Momentum relaxation with Z 6= 1, Y 6= 1 and V 6= 0

Before showing the results for the dc-conductivity, it is illuminating to comment the general
features of the gravitational background given in Eq. (3.11) for the following choice of
couplings,

Z = eλTrX , Ż = λZ , (3.33)

V = TrX =
α2

u2c(u)
, V̇ = 1 , (3.34)

Y = e−κTrX , Ẏ = −κY, (3.35)

where α, κ > 0 and λ is real.
The extremal charge density is:

ρe = u2
0c0

√
Y (−2Λ− V ) . (3.36)

It is clear that ρe decreases as Y decreases, which for the choice of Eq. (3.33) corresponds to
increasing α and κ. Similarly, for smaller c(u0) = c0 the extremal charge density is smaller.

We now comment on the allowed range of the BD coupling parameter λ according
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to the properties of the background. Similarly to sec. 3.3.2.1, λ > 0 (Z > 1) is allowed,
in which case the g/u2 and c(u) increase monotonically towards the boundary. Contrary
to the model of sec. 3.3.2.1, λ = 0 is also allowed due to the presence V , which breaks
translational invariance. In this case the BD coupling is trivial Z = 1 and has been studied
previously [163,164].

Moreover, we also find backgrounds satisfying all boundary conditions for λ < 0 (Z < 1).
However, in this case g/u2 does not increase monotonically towards the boundary; there exists
a point inside the bulk where the derivative of g/u2 vanishes. This suggests the odd feature
that the background displays a repulsive behavior between this point and the boundary,
which may violate energy null condition.17 In [183] the energy conditions in theories of
gravity di�erent from Einstein’s gravity have been re-derived from Raychaudhury’s equation
and imposing gravity to be attractive. For the action given in Eq.(3.10) the null energy
condition reduces to

1

Z
(Tab + Zab)nanb ≥ 0 , (3.37)

for all null vectors na and where Tab and Zab are defined in Eq. (3.15). We have found that
for λ < 0 the background violates the null energy condition Eq. (3.37). This is easily seen by
expressing the background Eq. (3.11) in the variable u = u0/r and plugging the following
null vector: N t = 1/

√
g, Nu =

√
g, N i = 0 in Eq. (3.37), which reduces to

(Tab + Zab)NaN b ∝ Z̈T rX ′2 + ŻT rX ′′ ∝ c′(u)2 − 2c(u)c′′(u) ≥ 0 . (3.38)

For λ ≥ 0, c′′(u) ≤ 0 and the null energy condition for this null vector is satisfied, however
we have observed that for any λ < 0 this condition is violated.

Regarding the metric function c(u), as the temperature increases, it becomes almost
independent of the holographic coordinate c(u) ≈ c(u0) = c0 → 1. The blackening function
is also modified in such a way that the geometry approaches that of AdS RN+Stueckelberg.
In the allowed region: λ ≥ 0, the horizon value of c satisfies c0 ≤ 1 and c0 decreases for larger
λ. We have already observed this behavior in the model of Sec. 3.3.2.1 (Y = 1 and V = 0).
On the other hand, in the forbidden region λ < 0, c(u0) = c0 > 1 and c0 increases for
smaller λ. We note that, at low temperatures the spatial metric functions gii = u2c(u) could,
in principle, be better understood in terms of Lifshitz and hyperscaling violation anomalous
exponents, similarly to EMD theories [159]. While we do not rule out the behavior of gii
close to the horizon may actually be cast using various anomalous exponents, we have not
been able to re-express the metric at low temperatures using a single anomalous exponent.

Finally, in this model, contrary to that of sec. 3.3.2.1, λ and α are independent parameters.
In the presence of V = TrX = α2

u2
0c0

, the parameter α appears independently of the parameter
λ in the action and the equations of motion. Therefore, it is expected that these two cannot

17We thank Roberto Emparan for discussion and suggestions on this matter.
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be relabelled into a single parameter. For more explicit results regarding the background for
di�erent choices of the parameters, see the Appendix C.2.

The dc-conductivity

We depict in Figs. 3.1 and 3.2 the dc-conductivity Eq.(3.25), in two space dimensions as a
function of temperature for a wide range of the BD parameter λ and the charge screening
parameter κ. The e�ect of λ and κ is very similar: both control the strength of momentum
dissipation.
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Figure 3.1: Temperature dependence of the dc-conductivity Eq. (3.25) for fixed axion
parameter α = 1 and charge density ρ = 1. The charge screening parameter κ and the
BD-coupling parameter λ are indicated in the plots. The e�ect of increasing λ for fixed
κ is similar to increase κ for fixed λ. The case λ < 0 suggests that the e�ect of a weaker
gravitational coupling Z < 1 on the dc-conductivity is to weaken momentum dissipation.
However, we stress this limit violates the null energy condition Eq. (3.38) and should be
excluded.

In Fig. 3.1 we observe that the increase of either the charge screening or the e�ective
gravitational coupling (Z > 1) yields a lower dc-conductivity especially for low temperatures
and su�ciently large values of λ > 0, κ. We note that that in this range of parameters the
conductivity is below the bound only because of charge screening.

However, in Fig. 3.2 we observe that, even though the BD parameter does not appear
explicitly in theMaxwell coupling Y , its e�ect is to renormalise the charge screening parameter
κ through the change in the geometry. More explicitly, through the value of the metric
function c(u) at the horizon: c0. This is possible even for small κ. As mentioned before,
increasing λ leads to a smaller c0 and BD coupling which manifests as stronger momentum
dissipation. This is a quite interesting and unexpected feature of the model. For instance,
the bound in the conductivity of [97] is violated, even for very weak charge screening
κ = 0.1 provided that momentum dissipation by gravitational Stueckelberg fields is strong
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Figure 3.2: Temperature dependence of the dc-conductivity Eq. (3.25) for fixed axion
parameter α = 1 and charge density ρ = 1. The charge screening parameter κ and the
BD-coupling parameter λ are indicated in the plot. The e�ect of the BD parameter is similar
to the charge screening parameter. Increasing λ yields a smaller u2

0c0; as a consequence the
first term in Eq. (3.25): Y0 = exp [−κα2/(u2

0c0)] decreases. The bound of [97] is violated for
large λ even for weak charge screening.

enough λ ≥ 0.3. The change in the temperature dependence of the dc-conductivity at low
temperature for di�erent values of the parameters is not caused by charge screening but by
the e�ective running of the gravitational coupling. As anticipated in sec. 3.3.1, a decrease
in the conductivity for low temperatures sometimes occur in systems that approach an
insulating transition. However, in our case the conductivity, though substantially suppressed,
it never vanishes. Therefore the model we study is never an insulator.

Notice that in the left plot of Fig. 3.1 we have included a case in the forbidden range
of the BD parameter: λ < 0, which corresponds to a BD coupling satisfying Z < 1 and
Ż = ∂TrXZ < 0. We have included this value only to tentatively suggest that the e�ect of a
weaker gravitational interaction could be to e�ectively reduce the strength of momentum
dissipation. Moreover, we have observed that the e�ective mass in Eq. (3.25) becomes
negative for some λm < 0, which depends on the rest of the parameters. A negative e�ective
mass has been linked to instabilities of the theory [163]. However, we emphasise that, even
for our choice of the BD coupling Z there is a region λm < λ < 0 in which the e�ective
mass is positive but the null energy condition Eq.(3.38) is violated.
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3.4 BD holography in higher dimensions

So far we have restricted our analysis to d+ 1 = 4 bulk dimensions. Here we briefly discuss
the most salient features of higher dimensional backgrounds. The motivation to study d > 3

is to observe the explicit e�ect of the running of the gravitational constant associated to the

extra factor g
d−3

2
xx = ud−3

0 c
d−3

2
0 in the first term of the conductivity Eq. (3.25),

Re(σdc) = Y0u
d−3
0 c

d−3
2

0 + . . . . (3.39)

The presence of this term is not exclusive to the BD model. Indeed, in EMD models where
translational invariance is broken by axion fields, the same factor is present, [55]. We note
however that, at least in EMD theories where the Stueckelberg fields and the dilaton are
coupled minimally through a dilaton-dependent coupling constant, [55,159,162], the metric
function c is trivial, c = 1, 18. Therefore, in EMD-axion theories , c0 = 1.

We now discuss the two models of Secs. 3.3.2.1 and 3.3.2.2 for d = 4, 5 boundary
spacetime dimensions. In Fig. 3.3 we plot the metric function c(u) used in the ansatz Eq.
(3.11), in the model of Eq. (3.33). In the absence of V (TrX), Eq. (3.30), the background has
similar features.

The results, depicted in Fig. 3.3, indicate that increasing dimensionality decreases the
curvature of the metric function c. This is more easily seen at low temperature (top row),
where c0 = c(u = u0) increases for λ > 0 and decreases for λ < 0. Though not shown in the
figure, a similar e�ect is also observed in the blackening function. This is a manifestation
of the large-dimensionality limit, [184, 185] where the shape of g and c is such that the
gravitational e�ects are stronger closer to the horizon but weaker far from it.

Dimensionality e�ects on the dc-conductivity Eq. (3.39) are directly related to the
dependence of c0 and u0 on the dimension. The quantities with tilde are in d̃ dimensions
and those without tilde in d dimensions. If d̃ > d, we observe that:

• For λ > 0 and low (high) temperature: c̃0 > (<)c0 and ũ0 < (>)u0.

• For λ < 0 (forbidden by the null energy condition) and low (high) temperature:
c̃0 < (>)c0 and ũ0 > (<)u0.

For the temperature range studied, ũ2
0c̃0 < u2

0c0. Moreover, for low temperature u2
0c0 < 1 but

for large temperature u2
0c0 > 1. Therefore, for low temperature one expects the suppression

of the dc-conductivity to be smaller for larger dimensionality.

We show in Fig. 3.4 that the term g
d−3

2
xx in Eq. (3.39) leads to a suppression of σdc at low

temperature in three space (boundary) dimensions (d = 4). In order to isolate the e�ect

18An additional di�erence in the background is that in the metric ansatz given in Eq. (3.11), gtt = −1/grr,
which is not the case in a EMD plus axion theory, [159,162].
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Figure 3.3: Metric function c , Eq. (3.11), in d+ 1 = 5 (left column) and d+ 1 = 6 (right
column) bulk dimensions for the model given in Eq.(3.33). The temperature is indicated in
the plots and the charge density is ρ = 1. The charge screening parameter κ = 1 and the
axion parameter α = 1. The BD-coupling parameter λ is indicated in the legend, which
refers to all figures. While the boundary conditions for λ < 0 are satisfied, this case leads to
violation of the null energy condition.

of the background we couple the Maxwell field minimally by setting Y = 1, namely, the
couplings used are those given in Eq. (3.40).

Z = eλTrX , Ż = λZ , (3.40)

V = TrX =
α2

u2c(u)
, V̇ = 1 , (3.41)

Y = 1 , Ẏ = 0. (3.42)

A similar e�ect, depicted in Fig. (3.5), is observed even in the absence of V (TrX) in
the action (3.10), namely, we choose the couplings of Eq. (3.30). As was explained in
Sec. 3.3.2.1, in the absence of V , there is a single parameter that controls momentum
dissipation λe� = λα2 > 0. In summary, our results suggest that for higher dimensions
gravitational e�ects, including those of the gravitational Stueckelberg fields are suppressed
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Figure 3.4: zero-frequency conductivity Eq. (3.25) in d+ 1 = 5 bulk dimensions in a model
with a minimally coupled Maxwell field, Eq.(3.40). When the BD coupling λ is larger than
some positive value the dc-conductivity at zero temperature is below 1. This e�ect is due to
the background rather than to an axion-dependent Maxwell coupling as in Fig. 3.1. The
charge density is fixed ρ = 1.
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Figure 3.5: zero-frequency conductivity Eq. (3.25) in d+ 1 = 5 bulk dimensions in a model
with a minimally coupled Maxwell field and V (TrX) = 0, Eq.(3.30). Similar behavior as
in Fig.3.4 is observed despite the absence of the usual kinetic term in the action (V = 0).
Again, the e�ective change in the gravitational interaction, through the BD coupling ZR,
parametrised by λeff = α2λ, allows to decrease the dc-conductivity despite the absence of
charge screening Y = 1. The charge density is fixed ρ = 1.

except close to the horizon. As a consequence, the conductivity is closer to the RN limit
for high temperature. However close to zero temperature, where gravitational e�ects are
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still important, the dc-conductivity is heavily suppressed for strong momentum relaxation
induced by the gravitational axion only.19 Therefore, also in this case, the background
induces a important suppression of the conductivity without the need of any external source
of charge screening. Obviously the system studied in this chapter is always a metal, however it
would be interesting to explore whether there are other backgrounds within BD holography
that reproduce genuine insulating features in the dual field theory.

3.5 Ac-conductivity inBDholographywithmomentum
relaxation

We continue our analysis of transport properties of BD holography by investigating the ac-
conductivity. We focus first in the low frequency scaling of the real part of the conductivity.
We found that the conductivity grows linearly with the frequency for low temperatures but
strong momentum relaxation. In the second part of the section we show that BD holography,
even if combined with other sources of momentum relaxation, does not reproduce the
intermediate-frequency scaling of the absolute value and argument of the ac-conductivity
observed in cuprates.

3.5.1 Low-frequency behavior of the conductivity

In the context of massive gravity the equation for the perturbation leading to the ac-
conductivity at extremality has been solved analytically for low frequencies by using the
method of matched asymptotic expansions [186]. In [54] it was shown that, in the previous
model, the dc conductivity is equivalent to that obtained in the RN+Stueckelberg model,
upon a convenient identification of the parameters. Using the method of matched asymptotic
expansions we have observed (not shown) that, as in massive gravity, the low-frequency
behavior of the ac-conductivity of the extremal RN+Stueckelberg model is also linear in
frequency with an always negative slope, which is consistent with Drude physics.

Although we have not been able to obtain analytical results of the low-frequency scaling
for arbitrary couplings Z and Y , we observe numerically, see Fig. 3.6, the same linear scaling
of the conductivity for small frequencies. Interestingly, provided that momentum relaxation
is strong enough, the slope of this linear growth is positive, namely, the conductivity increases
with the frequency. This is not exclusive of BD holography, it is also observed for λ = 0 in
the limit of strong momentum relaxation induced by the axion coupled to the Maxwell field.
This is an interesting feature which we are not aware to have been reported in holographic
systems which do not include charge screening.

19Although, as the case with charge screening of sec. 3.3.2.2, the conductivity never vanishes.
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Figure 3.6: Zero temperature [extremal background of Eqs.(3.10), (3.33)] ac-conductivity
for strong breaking of translational symmetry. The charge screening parameter is κ = 1 and
the axion parameter is α = 1 (blue lines), α = 1.5 (red lines) and α = 2 (black continuous
lines). The BD-coupling parameter λ, given in the legend, is fixed close to the maximum
value allowed by the background boundary conditions. The extremal charge density is ρ = 1.
The dashed black lines correspond to the linear scaling βω, where β is fixed from the lowest
frequency point of the numerical data.

At nonzero temperature, the numerical results of Fig.3.7 show that the subleading term
depends quadratically on the frequency. We conclude therefore that for the general class of
models with action Eq.(3.10), and for low frequency, the ac-conductivity is

Re(σ)− Re(σdc) = aω + bω2 + . . . (3.43)

where b→ 0 for T → 0 and, for T � 0, both constants tend to zero, but a does it faster than b.
In other words, at large temperature we have observed a subleading contribution dominated
by ω2 while in the limit of zero temperature is proportional to ω1. As was mentioned above,
for Z = 1 and a minimally a coupled Maxwell field (Y = 1), the constants a and b are always
negative, describing the broadening of the Drude peak. For Y 6= 1 and both Z 6= 1 and
Z = 1, a is negative when Re(σdc) > 1 and positive when Re(σdc) < 1.

For Y 6= 1 and both at zero (not shown) and nonzero temperature (bottom left plot
in Fig. 3.7), we have observed a range of parameters for which the ac-conductivity has
a local maximum for relatively small frequencies. In Fig. 3.7 we observe that in the high
temperature limit the local peak is smeared. A similar feature in the dc-conductivity has been
recently reported in [163]. Similarly to the phenomenology observed in the temperature
dependence of the dc-conductivity, we believe that, in the range of parameters of Fig.
3.7, this intermediate peak is a consequence of charge screening induced by a non-trivial
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Figure 3.7: Ac-conductivity at finite temperature in the background given in Eqs. (3.10)
and (3.33). Each line corresponds to a fixed temperature, indicated in the legend of the
right-hand side plots. The dashed-dotted black lines correspond to the quadratic scaling
and are fixed in the same way as in Fig. 3.6. As temperature decreases (blue lines) a slight
disagreement is observed. We expect for near extremal solutions the frequency scaling is
given by Eq.(3.43). The charge density ρ = 1, α = 1, λ = 0.15 and κ is indicated in the
left-hand side plots.

axion-dependent Maxwell coupling and therefore it is not a precursor of insulating behavior.
Indeed the conductivity is always finite.

We have observed that a stronger gravitational interaction (larger BD coupling Z) has
a similar impact on the intermediate peak as increasing momentum dissipation. As was
mentioned in Sec. 3.3.2.2, in d = 3 boundary dimensions this is a nontrivial e�ect: a
conformal transformation of the action Eq. 3.10 with d > 3 renormalises the Maxwell
coupling in an analogous way to the conformal transformation of the BD model, see Eq.
(3.8). However, for d = 3 the Maxwell coupling is invariant under such transformation
and one could expect therefore the Maxwell coupling to be unchanged by a change in
the BD coupling. Nonetheless, from a holographic point of view, it is known that the
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observables in the boundary theory are roughly determined by the gravitational background
(plus boundary values of bulk fields). Therefore, at intermediate energy scales, and despite
the fact the Maxwell coupling is invariant under a conformal transformation for d = 3, one
should expect the features of the BD background at intermediate length-scales to determine
the ac-conductivity.

3.5.2 Argument and modulus of the ac-conductivity in BD gravity
with momentum relaxation

A well known property of the ac-conductivity in most cuprates is that for intermediate
frequencies the module of the conductivity scales as ω−2/3. It has been recently claimed
[166] that a holographic setup where momentum relaxation is introduced by a modulating
chemical potential share similar properties. However, we note that this holographic setup
does not reproduce another property of the ac-conductivity in cuprates: the argument of the
conductivity is constant in the same range of frequencies. In this section we study whether
field theory duals of gravity models with di�erent channels of momentum dissipation can
reproduce these features of the ac-conductivity in cuprates.

Results for di�erent values of the parameters are depicted in Fig. 3.8. Either the constant
argument or the desired 2/3 power-law decay can be observed for some values of the
parameters. However, it is clear from our results that even by fine tuning all the available
parameters we could not reproduce both features for a single set of parameters.

3.6 Ratio of shear viscosity and entropy density in BD
with momentum relaxation

In this section we study the ratio η/s between the shear viscosity η and the density of entropy
s for BD holography with momentum relaxation. In a quantum field theory the viscosity is
defined through the Kubo formula:

η = − lim
ω→0

1

ω
ImGR

TxyTxy(ω, q = 0) , (3.44)

where T xy is the xy component of the stress-energy tensor. In order to compute the viscosity
in the model of Eq.(3.10) we use the membrane paradigm in a similar way as it has been
used in sec. 3.2.2 for the calculation of the regular part of the dc-conductivity. While we
restrict ourselves to numerical results we expect that, as shown in [187], it should be possible
to derive quasi-analytical approximations at low and large temperatures.20

20An analytical calculation in terms of the background expansion close to the boundary is possible, however,
the background needs to be computed numerically.
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Figure 3.8: Absolute value and argument of the ac-conductivity for di�erent values of
the parameters. The temperature and charge density are T = 0.05 and ρ = 1. The BD
model with the couplings of Eq. (3.33) does not describe the experimental behavior for
intermediate frequencies observed for cuprates. The dashed lines are the exponent ξ, |σ| = ωa,
a = 1.35− 2 = −0.65, and arg(σ) = π

2
(2− 1.35) = 1.01 Rad, according to experiments.

Previously it has been reported that in the presence of momentum relaxation [72,187–190]
or anisotropy [191–193]21 the ratio is temperature dependent and in most cases below the
KSS bound. We find similar results in the case of BD holography. For our analysis we use
the couplings of Eq. (3.33) with V = TrX (Fig. 3.9) and V = 0 (Fig. 3.10) which include,
as a particular case, some of the previously studied cases of AdS RN+Stueckelberg [72,187].
In the full range of parameters we have explored, the ratio decreases with temperature and
is always below the KSS bound. It also decreases as the strength of momentum relaxation
increases, by any of the channels explored. It seems that it can be made arbitrarily close
to zero even for a finite momentum relaxation. We do not have a clear understanding of

21We note that in these models the e�ective mass of the graviton is nonzero. As shown in [194] this is
a necessary condition to observe violation of the KSS bound. However, in theories without translational
invariance and massless graviton [194] the KSS bound remains valid. Our model falls in the first class of
theories.
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Figure 3.9: Shear viscosity to entropy density ratio (η/s) for the couplings of Eq. (3.33) in
the model defined in eqs.(3.10) and Eq.(3.33). The axion parameter α = 1 and the charge
density ρ = 1.

the physical reasons behind this behavior however we note that similar results have been
observed [195] in the context of the quark-gluon plasma with quenched impurities in the
limit in which the phenomenon of Anderson localization becomes important.

3.7 Outlook and Conclusions

The potential interest of BD backgrounds in holography is well beyond the problems
discussed in this work. For instance, the entanglement entropy depends explicitly on the
gravity coupling constant and it is also very sensitive to the strength of bulk interactions.
Therefore we expect that the holographic entanglement entropy in inhomogeneous BD
backgrounds may reveal interesting features not found in previous holographic duals. These
features would not only be present to leading order (area of minimal surface) but also in
the quantum correction originated by the entanglement between the bulk and the minimal
surface [196]. Another topic of potential interest is that of holographic superconductivity.
It is well known that the ratio between the order parameter at zero temperature and the
critical temperature, or the width of the coherence peak are useful indicators of the strength
of the interactions binding the condensate. For the former, values much larger than the
Bardeen-Cooper-Schrie�er prediction, suggesting strong interactions, are expected. It would
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Figure 3.10: Shear viscosity to entropy density ratio (η/s) for the couplings of Eq.(3.33) in the
model defined in eqs. (3.10) and Eq.(3.33) but taking V = 0 and V̇ = 0. The axion parameter
α = 1 and the charge density ρ = 1. As discussed in Sec. 3.3.2.1, for κ = 0 =⇒ Y = 1(dots)
the theory has a single parameter that controls momentum dissipation, namely λe� = λα2.

be interesting to investigate whether it is possible to tune this ratio in BD backgrounds.
That would be a smoking gun that the scalar in BD backgrounds e�ectively controls the
interactions in the bulk. Finally, we note that the introduction of randomness in the scalar
is qualitatively di�erent from other forms of disorder used in holography. It amounts to a
random strength of the gravitational interaction. Mobile charge introduced through the
gauge field will feel these random interactions not very di�erently from the way in which
electrons felt quench impurities. This is in stark contrast with the e�ect of a random chemical
potential, quite popular in holography, where the mobile carriers are by construction
randomly but homogeneously distributed through the sample. Coherence phenomena like
Mott-Anderson localization could not be observed in this setting.

In summary, we have investigated the transport properties of strongly coupled field
theories whose gravity-dual is a Brans-Dicke action where gravity is mediated by both a
tensor, the graviton, and a scalar that depends on the radial dimension. In the translational
invariant limit we have computed analytically several transport properties. The finite part
of the dc-conductivity σQ, expressed in terms of thermodynamic quantities, is di�erent
from the universal prediction for EMD backgrounds [161] however the shear viscosity ratio
is still given by the KSS bound. Similar results apply to other generalised f(R) gravity
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backgrounds that can be mapped onto BD. The di�erence with EMD models is that the
entropy does not hold an area law as it also depends on the value of the scalar at the horizon.

Momentum relaxation is induced by a gravitational axion, namely, the linear coupling of
the Ricci tensor and the axion. Following the procedure pioneered by Donos and Gauntlett
[182] we compute analytically the dc-conductivity as a function of the metric at the horizon
which is evaluated numerically. In d+ 1 = 4 bulk dimensions momentum relaxation by a
BD Stueckelberg field is qualitatively similar to the results obtained by other mechanism of
momentum relaxation [54,163,164] in the limit of strong charge screening. Interestingly for
strongly coupled gravitational Stueckelberg fields, that induce strong momentum relaxation,
the conductivity bound [97] is violated for any finite charge screening induced by the
electromagnetic axion [163,164].

In higher spatial dimensions the dc-conductivity for su�ciently strong momentum relax-
ation decreases in the low temperature limit. This suggests that the analogous conductivity
bound is violated even if there is no coupling between the axion and the Maxwell field. We
have also computed numerically the ac-conductivity in BD backgrounds with momentum
relaxation. For su�ciently strong breaking of translational invariance, the conductivity
grows linearly with the frequency in the limit of small frequencies and very low tempera-
tures though it remains finite for any temperature and frequency. We have also evaluated
numerically the modulus and the argument of the ac-conductivity for di�erent momentum
relaxation channels in order to find out whether the phenomenology of this model is similar
to that of the cuprates for intermediate frequencies. Our results are not very encouraging.
For any value of the parameters we could not reproduce the experimental results for both
quantities simultaneously. Finally, we have shown that the shear viscosity to entropy ratio
decreases with temperature and the KSS bound is violated by any strength of the momentum
relaxation.



4 | Marginal and IrrelevantDisorder in
Einstein-Maxwell backgrounds†

In this chapter we study analytically the e�ect of a weak random chemical potential of zero
average in an Einstein-Maxwell background. For uncorrelated disorder this perturbation
is relevant however we show that it can become marginal or even irrelevant by tuning
disorder correlations. At zero temperature we find that, to leading order in the disorder
strength, the correction to the conductivity for irrelevant perturbations vanishes. In the
marginal case, in order to renormalise a logarithmic divergence, we carry out a resummation
of the perturbative expansion of the metric that leads to a Lifshitz-like geometry in the
infrared. Disorder in this case also induces a positive correction to the conductivity. At finite
temperature the black hole acquires an e�ective charge and the thermal conductivity has
the expected Drude peak that signals the breaking of translational invariance. However the
electric conductivity is not a�ected by the random chemical potential to leading order in the
disorder strength.

4.1 Introduction

Disorder plays an important role on the transport properties of interacting electrons in solids.
A small amount of disorder in systems with translational symmetry makes the dc-conductivity
finite. Similarly, disorder slows down the classically di�usive dynamics of electrons in solids
at finite temperature. In real materials disorder is typically introduced by chemical doping
which in some cases obscures its e�ect: the conductivity may increase because the slow down
of the motion caused by disorder is counterbalanced by the addition of new carriers.

By contrast, in the limit of vanishing temperature and interactions quantum coherence
phenomena enhance dramatically the e�ect of disorder. According to the one parameter scal-
ing theory of localisation [38], classical di�usion in two and lower dimensions is completely
arrested for any disorder and su�ciently long times. This quantum coherence phenomenon,
usually referred to as Anderson localisation [35], also occurs in higher dimensions [197] for
su�ciently strong disorder. Qualitative calculations [49, 50] in the physics literature and

2This Chapter is based on Ref. [61], and was done in collaboration with Antonio M. García-García.
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more rigorous, but restricted to mean-field interactions, mathematical results [198] agree
that Anderson localisation for su�ciently strong disorder still persists in the presence of weak
interactions. This novel state of quantum matter is usually referred to as many-body localised.
However the stability of the many-body localised phase in strongly-interacting regimes
remain an open question. The detailed understanding of the interplay between disorder and
interactions is seriously hampered by computational limitations and the lack of analytical
tools to tackle strong interactions. This rich repertoire of disorder-induced phenomenology
summed to the challenging open problems regarding the interplay between disorder and
strong-interactions in electronic systems o�er su�cient motivation for studying disorder in
the context of charged holographic theories.

Indeed there are already several studies of the role of disorder in a strongly-coupled field
theorywith a gravity-dual. Originally disorder was introduced [22,63,74] as a deformation of
the boundary field theory that coupled the random potential to an operator of the conformal
field theory. The addition of this perturbation breaks translational invariance so e�ectively the
role of disorder was to induce momentum relaxation which alters substantially the transport
properties of the dual field theory.

In the context of holographic superconductors the e�ect of a random chemical potential
has been studied numerically but only in the probe limit where disorder does not backreact in
the metric [87,88]. Disorder has also been considered in hyperscaling violating backgrounds,
also in the probe limit [199–201]. Backreaction e�ects of a weak but marginally disordered
scalar at zero temperature leads to logarithmic divergences in the infrared that suggest an
instability of the perturbation theory [90,91]. However it was later proposed [33] that that
these divergences were an artefact of the perturbation theory in non-linear problems that
could be cured by the Poincaré-Lindstedt method. The resulting metric in the infrared, after
an e�ective resummation of logarithmic corrections, becomes Lifshitz-like with a dynamical
critical exponent that depends on the strength of disorder. In the infinite temperature
case [92, 202] it seems that the presence of a horizon prevents any Lifshitz scaling in the
infrared. Numerical simulations for stronger disorder [33,202], still for a disordered scalar at
zero and finite temperature, have not shown any qualitative change to these results.

In the context of Einstein-Maxwell theories it has been recently proposed [59, 83] a
general expression for the averaged conductivity in gravity-duals, modified by disorder or
any other source of inhomogeneity, in terms of the solution of the Einstein equations for the
metric. The study of these solutions has just started: the e�ect of weak disorder in the Einstein-
Maxwell theory induced by a random chemical potential including backreaction e�ects,
recently studied by O’Keefe and Peet [94], reveals surprising features like a conductivity
that increases with disorder. We note that the disorder investigated in Ref. [94] is a relevant
perturbation that leads to linear, instead of logarithmic, divergences in the metric. Although
the Poincaré-Lindstedt method is technically applicable in this case it is less clear that these
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divergences are really an artefact of the perturbation theory.
Here we revisit this problem by studying an Einstein-Maxwell background with a

random, but in general correlated, chemical potential of zero average at zero and finite
temperature. By modifying the correlations of the disordered chemical potential we tune
the conformal dimension of the gauge field so that we can also investigate irrelevant and
marginal perturbations. In the limit of zero temperature we have found that, to leading order,
irrelevant perturbations do not modify the conductivity in the limit of zero temperature.
By contrast, for marginal disorder the corrections to the conductivity are positive. In this
case the metric develops perturbative logarithmic singularities in the infrared that can be
resummed by using the Poincaré-Lindstedt method [33]. The resulting geometry is Lifshitz-
like in the infrared with a dynamical critical exponent that depends on the disorder strength.
In the finite temperature case the e�ect of perturbative disorder is weaker. The electrical
conductivity does not get corrections in the disorder strength to leading order though the
black-hole becomes charged even in this limit.

We start by introducing the Einstein-Maxwell theory with a random but correlated
chemical potential.

4.2 Correlated Disorder in the Einstein-Maxwell back-
ground

We investigate the interplay of disorder and interactions in field theories with a gravity
dual. For that purpose we study an asymptotic AdS Einstein-Maxwell theory in d+ 1 = 4

space-time dimensions with a random chemical potential given by the action

S =

∫
d4
x
√
−g
(
R + 6− 1

4
F 2

)
, (4.1)

where F is the Maxwell tensor, R the scalar curvature. For convenience we have set
lAdS4

= 2κ2
4 = e2 = 1. We choose to work in Fe�erman-Graham coordinates ds2 =

r−2
(
dr2 + gµν(r, x

µ)dxµdxν
)
which we suppose are globally defined. Here r = 0 is the AdS

boundary, with coordinates xµ = (t, x, y). The equations of motion are given by

Rab + 3gab =
1

4
F c

aFbc −
1

8
gabF

2, (4.2a)

∂a
(√
−gF ab

)
= 0. (4.2b)

We are only interested in spatially inhomogeneous solutions of the equations above, for
which neither the metric components nor the gauge field depend on time. Therefore the
U(1) gauge field A = at(r,x)dt, which we assume is the only non-zero component, and the
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metric gµν(r,x) depends explicitly on the bulk (r) and the boundary spacelike coordinates
(x). This system of equations support both zero and finite temperature solutions, which are
specified by the IR and UV boundary conditions. For the zero temperature case, we require
all metric components and the gauge field to be regular at the Poincaré horizon r →∞. For
the finite temperature case, we require the existence of a horizon, i.e. a point r0 ∈ (0,∞) such
that gtt(r,x) ∼ γtt(x)(r − r0) +O ((r − r0)2) and grr(r,x) ∼ γrr(x)

r−r0 +O (1) for |r − r0| � 1,
with all other components gij regular. Similarly, close to the boundary we impose,

lim
r→0

gabdxadxb = r−2
(
dr2 − dt2 + dx2 + dy2

)
, (4.3a)

lim
r→0

at(r,x) = µ(x). (4.3b)

According to the holographic dictionary the bulk action Eq.(4.1), with the above boundary
conditions, is dual to a d = 3 conformal field theory at finite chemical potential µ(x) =

lim
r→0

at(r, x). Disorder is introduced, in one or both boundary directions, through a random
chemical potential in the boundary µ(x). Next we give a detailed account of the properties
of this random chemical potential so that we can use it to model irrelevant and marginal
perturbations in the dual field theory.

4.2.1 Correlated disorder and relevance of perturbations

We introduce disorder in the holographic setting by imposing that the chemical potential
µ(x) is a stochastic field depending on the spacelike boundary coordinates. This random
boundary condition promotes the vector potential A = at(r,x)dt and the metric components
to stochastic processes indexed by x. Similarly the equations of motion Eqs.(4.2a) and (4.2b)
becomes stochastic equations.

We specify the distribution of µ(x) by a spectral decomposition

µ(x) = V̄

∫
Rn

dnk
(2π)n

eik·xµk, (4.4)

where n = 1 if disorder is only in one direction or n = 2 if disorder is in both directions and
the parameter V̄ measures the amplitude of the source (µ ∼ O

(
V̄
)
). Further, we assume µk is

a spectral stochastic process taking values in a normal distribution with zero averageE[µk] = 0

and variance σ2
k, with E[. . . ] denoting the average with respect to the normal distribution.

From now on we will restrict ourselves to isotropic disorder µk = µk so that Eq.(4.4) can be
written e�ectively as a one-dimensional integral

∫
Rn d

n
k = Vol(Sn)

∫∞
0+ dk kn−1. We stress

that even though µk is normally distributed, this does not imply µ(x) is also normal. This
will be the case only if σ2

k is independent of k. It was shown recently [94] that when σ2
k = 1,

the weak disordered chemical potential V̄ � 1 is relevant perturbation in the RG sense,
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casting some doubts on the reliability of their perturbative approach.

Interestingly the relevance, or not, of the deformation depends on the disorder correlations
as the mass dimension of V̄ is controlled by the mass dimension of σ2

k. Specifically, we have
[µ] = [V̄ ] + n + [µk] = [V̄ ] + 1

2
(n + [σ2

k]). Therefore introducing powers of k in σk makes
disorder more and more irrelevant. For instance assuming σ2

k ∝ ks

[V̄ ] = 1− n+ s

2
. (4.5)

Therefore disorder is relevant (V̄ > 0) when n+ s < 2, marginal (V̄ = 0) when n+ s = 2

and irrelevant (V̄ < 0) when n + s > 2. In the following we will restrict to marginal and
irrelevant perturbations by employing correlated potentials such that n+s ≥ 2. Surprisingly,
we shall see that this a priori naive power counting actually determines the perturbative flow
of the RG in the Einstein-Maxwell system. Finally we note that for a fixed s, increasing the
number of dimensions in which we introduce disorder makes disorder less relevant. The fact
that translation invariance is left unbroken in a bulk direction constrains the dynamics of the
fields to the orthogonal directions. It is therefore no surprise that disorder is more relevant
in this case. Indeed it is a well known result in condensed matter systems that disorder is
more relevant in lower dimensional systems [38].

4.2.2 Explicit implementation of disorder

We have now all the ingredients to define the correlated disordered potential to be employed
in the rest of the paper. For most of the analytical calculations we shall employ Eq.(4.4)
assuming isotropic disorder 22 and a normal µk with zero average E[µk] = 0 and variance
given by

σ2
k = 2s+1kse−2ka. (4.6)

Note that the exponential factor assures convergence of the boundary deformation by
smoothly suppressing high-momenta modes. This introduces a UV length scale a = 1/k0,
necessary to cure divergences for irrelevant perturbations, which can be interpreted as a
lattice constant that e�ectively suppresses modes with wavelength smaller than the lattice
spacing. We stress that since we are interested on averaged quantities that are computed
analytically an explicit expression for µ(x) is not necessary.

However in the finite temperature case we shall find more convenient at times to employ
the following discrete representation of the random chemical potential commonly used in

22When working in higher dimensions, we denote k = |k|. In one dimension we explicitly include the
modulus to avoid ambiguities.
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the holography literature [33,87–89,92,94,202,203],

µ(x) = V̄
N−1∑
{mi}=1

A{mi}

n∏
i=1

cos(kmix
i + γm). (4.7)

where A{mi} = V̄ (
√

∆kσ{mi})
n with ∆k = k0/N and kmi = mi∆k. Here γm ∈ [0, 2π) are

i.i.d. uniform random phases. Further, we define ∆k = k0/N and kmi = mi∆k. Averages
E[· · · ] in this representation are taken with respect to uniformly distributed random phases
γm, the variance is given by Eq. (4.6). Note that, di�erent from the continuous representation
in Eq.(4.7), here the UV cuto� k0 = 1/a is sharp and applied directly to the sum. Note that
in this representation there is also a natural IR scale k∗ = 1/L = 1/Na which is only taken
to zero in the averaging procedure.

Both the discrete and the continuous representations are equivalent in the limit a→ 0

and L→∞. For finite values of the cuto�s we still expect qualitatively similar results.

4.3 Random chemical potential at zero temperature

In this section we study the d+ 1 = 4 Einstein-Maxwell action at zero temperature in the
presence of a weak and correlated random chemical potential. We investigate the cases
of disorder acting in one and two boundary space dimensions. Although both cases are
quantitatively di�erent, they have a similar IR behaviour as long as correlations are chosen so
that disorder is marginal. For marginal disorder we find logarithmic IR divergences in the
metric that can be resummed by the Poincaré-Lindstedt method leading to a Lifshitz-like
metric. We proceed with the calculation of the DC conductivity for both irrelevant and
marginal disorder. We find the perturbative correction vanishes for irrelevant disorder and
is positive for marginal disorder. The divergence of the marginal flow signals an instability
of the system towards, possibly to a charged ground state at finite temperature.

4.3.1 Metric corrections for disorder in one dimension

Consider the action (4.1) with boundary conditions (4.3) at zero temperature. We fix
coordinates xµ = (t, x, y) in the boundary and restrict disorder to act only in the x direction.
Following the discussion in section 4.2.1, we introduce disorder by requiring µ(x) to be a
homogeneous random field with spectral decomposition

µ(x) = V̄

∫
R

dk
2π

eikxµk,

where µk is a gaussian spectral process with zero mean. Finding exact solutions of the
system (4.2) is a hard task so we restrict ourselves to a perturbative analysis in disorder
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strength V̄ . According to Eq.(4.5), for σk = 1 we have [V̄ ] = 1/2 > 0 and therefore
disorder is relevant in this case. A perturbative analysis is therefore inadequate, as disorder
can drive the theory to a new fixed point far from AdS4. This lead us to consider correlated
disorder with σk = 2s+1|k|se−2|k|a. It is easy to see that by choosing s = 1 disorder will be
marginal. Therefore we might be able to find new disordered fixed points close to AdS4 by
adapting the analysis of Hartnoll and Santos [33] for a scalar coupled to gravity to the case
of Einstein-Maxwell theory.

To set up the perturbation theory, we write the most general static line element in
Fe�erman-Graham coordinates compatible with our boundary conditions

ds2 = r−2
[
−A(r, x)dt2 + dr2 +B(r, x)dx2 +D(r, x)dy2

]
,

and proceed with a perturbative expansion in V̄ � 1

A(r, x) = 1 + V̄ 2α(r, x) +O(V̄ 2), B(r, x) = 1 + V̄ 2β(r, x) +O(V̄ 2),

D(r, x) = 1 + V̄ 2δ(r, x) +O(V̄ 2), at(r, x) = V̄ ϕ(r, x) +O(V̄ 3),

where all α, β, δ, ϕ have been lifted to stationary stochastic processes via the boundary
conditions and Einstein’s Equations. Note that to order V̄ 0 the background is pure AdS4. To
order V̄ 1, Maxwell’s Equation (4.2b) is a Laplace equation

∂2
rϕ+ ∂2

xϕ = 0,

which can be solved by decomposing ϕ(x) =
∫ dk

2π
eikxϕk(r) and imposing the boundary

conditions (4.4) together with regularity at r →∞:

ϕ(r, x) =

∫
dk
2π

e−|k|r+ikxµk. (4.8)

We now need to insert this into the O(V̄ 2) Einstein’s Equations, that can be reorganised
to give:

∂r
[
r−2∂r (α + δ)

]
=

1

2

[
(∂rϕ)2 − (∂xϕ)2

]
, (4.9a)

r2∂r
(
r−1∂rβ

)
= −∂r (α + δ) , (4.9b)

∂r∂x(α + δ) = r2∂rϕ∂xϕ, (4.9c)

2r3∂r
[
r−2∂r (α− δ)

]
+ 2r∂2

x (α− δ) = 2r3
[
(∂rϕ)2 + (∂xϕ)2

]
. (4.9d)

In practice this can be solved explicitly by inserting Eq. (4.8) in the right hand side of
the above equation, developing α, β, γ in harmonics and integrating the resulting einstein-
max:eq:eom’s. However, since we are not interested in the specific realizations of the random
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geometry but rather in the possible IR averaged fixed points, we take the average of the
above equations:

E[(∂rϕ)2 − (∂xϕ)2] = 0, (4.10a)

E[(∂rϕ)2 + (∂xϕ)2] =

∫ ∞
0+

dk
2π

2s+2ks+2e−2k(r+a) =
Γ(s+ 3)

4π(r + a)s+3
. (4.10b)

where we assumed s > −3 23. From the above it is clear that the solutions of equations
(4.9a) and (4.9b) are regular for all r ≥ 0 while solutions of (4.9d) can develop divergences
depending of the value of s. Explicitly we have:

E[α + δ] = η, (4.11a)

E[β] = η, (4.11b)

E[α− δ] = − Γ(s+ 3)

4π(s+ 2)

∫
dr

(r + a)s
∝

{
log(r + a) for s = 1,

(r + a)1−s for s 6= 1.
(4.11c)

where we have imposed regularity at r →∞ and the boundary conditions E[(α− δ)(x, 0)] =

const. Note that this result reproduces exactly what we naively expect from the power
counting analysis: for s < 1, disorder is relevant and therefore the perturbation scheme
breaks down with the appearance of power law divergences in the deep IR r → ∞. For
s > 1, disorder is irrelevant, and indeed the background flows to pure AdS4 in the IR. For
s = 1 disorder is marginally relevant, as signalled by a log divergence as we flow towards the
IR. This log behaviour was first observed in [91] and later reproduced in [33,92] in the case
of a disordered scalar. Our analysis for the charged case suggests that the log divergences for
marginal deformations are a quite general feature of holographic disorder.

Resummation of the metric for marginal disorder

In a perturbative RG analysis, one is interested in how the deformation of a given action
can change the IR behaviour of the theory. Divergences signal an instability of the flow
towards new fixed points. In particular, logarithmic divergences are usually associated with
marginal deformations which can sometimes be resummed, to all orders, to give the explicit
IR e�ective action [16]. A similar procedure to resum log divergences in Holography was
first proposed by Hartnoll and Santos [33]. As was mentioned in the introduction, the
upshot is that log divergences in holography are associated with IR geometries that can
be characterised by their scaling properties. In the case of scalar deformations, they found
an emergent Lifshitz scaling with dynamical critical exponent z̄(V̄ ) which is an increasing
function of disorder.

23We are not interested in the range s < 0 since we already know disorder is relevant in this case a
perturbative approach is not adequate.
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The general idea is to modify the metric ansatz by including a function that regularise
the divergences order by order in perturbation theory, similar to the Poincaré-Lindsteadt
method used in the study of non-linear oscillators. Our ansatz is

ds2 =
1

r2

[
− A(r, x)

F1(r)p(V̄ )
dt2 + dr2 +B(r, x)dx2 +

D(r, x)

F2(r)q(V̄ )
dy2

]
,

and consists of corrections only to the IR diverging components of the metric. Since
divergences appear in the second order of perturbation theory, we can expand p(V̄ ) =

p2V̄
2 +O(V̄ 4) and q(V̄ ) = q2V̄

2 +O(V̄ 4) and require lim
r→0

F1,2 = 1 in order to preserve the
UV physics. The equations of motion (4.9) now read:

∂r
[
r−2∂r (α + δ − logF p2

1 F q2
2 )
]

=
1

2

[
(∂rϕ)2 − (∂xϕ)2

]
,

r2∂r
(
r−1∂rβ

)
= −∂r (α + δ − logF p2

1 F q2
2 ) ,

∂r∂x(α + δ) = r2∂rϕ∂xϕ,

r2∂r

[
r−2∂r

(
α− δ − log

F p2

1

F q2
2

)]
+ ∂2

x (α− δ) = r2
[
(∂rϕ)2 + (∂xϕ)2

]
.

From the above it is clear that choosing F1 = F2 = F and tuning p = 1/4 = −q leaves α+ δ

and β unchanged while shifts α− δ → α− δ− logF (r)1/2 by the log of an arbitrary function
F (r). Any choice of F (r) satisfying the constraint F (0) = 1 and such that F (r) ∼ r2 as
r →∞ will regularise the IR log divergence previously found (e.g. F (r) = 1 + (r/a)2). Up
to a rescaling of the coordinates by a constant, the averaged IR metric can then be written
as:

E[ds2
IR] ∼ − dt2

r2b1
+

dr2 + dx2

r2
+

dy2

r2b2
,

for b1 = 1 + V̄ 2/4 + O(V̄ )4 and b2 = 1 − V̄ 2/4 + O(V̄ )4. The emergent IR metric has an
anisotropic scaling symmetry in the bulk directions. This should not be a surprise since
isotropy is broken by disorder. Next we show isotropy is recovered by considering disorder
in both boundary space directions.

4.3.2 Metric corrections for disorder in two dimensions

In the previous section, we found that working with the averaged geometry is enough
to determine the instability of the RG flow. The way the metric diverges is intimately
connected to the emergent scaling behaviour of the IR disordered fixed points. In this
section we show that a similar log divergence emerges when disorder is considered in all
space boundary directions. The advantage is that isotropy is recovered, making easier to
generalise to higher dimensions and finite temperature. As expected, the resulting metric
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has an emergent Lifshitz scaling in the IR.

The framework used above can be generalised to include disorder in both bulk directions
(x, y) with the changes:

k → k = (kx, ky), x→ x = (x, y),

∫
dk →

∫
d2
k.

The power counting (4.5) now give us [V̄ ] = −s/2, and disorder is marginal for s = 0. This
is not surprising, since by performing the above changes in Eq. (4.10b), it is clear that the
double integral contributes with an additional power of k.

The only di�erence in the averaged equation of motion is the appearance of non-trivial
y dependence in the gauge field A components. They can be conveniently rearranged as 24:

4∂r
[
r−2∂rα

]
= E

[
3(∂rϕ)2 + (∇ϕ)2

]
=

3

2π
(r + a)−4, (4.12a)

2∂r
[
r−2∂r (β + δ)

]
= −E

[
(∂rϕ)2 + (∇ϕ)2

]
= − 3

4π
(r + a)−4, (4.12b)

∂r
[
r−2∂r (β − δ)

]
= E

[
(∂xϕ)2 − (∂yϕ)2

]
= 0, (4.12c)

2∂r
[
r−2∂r (α + β + δ)

]
= r E

[
(∂rϕ)2 − (∇ϕ)2

]
= 0, (4.12d)

where we introduced the bulk gradient ∇ = (∂x, ∂y). As advertised, now disorder does not
break isotropy in the bulk, and this is reflected in the equations of motion (4.12b). In the
one dimensional case E[∂yϕ] = 0 and the average in the right hand side do not vanish. The
equations above can be easily solved to give:

α = −(β + δ) = − 1

8π
log(r + a),

which is in agreement with marginally relevant deformations. In analogy with the one di-
mensional case, it is again possible to resum these logarithmic corrections. Up to a coordinate
redefinition, the IR geometry will take the form:

E[ds2
IR] ∼ −dt

2

r2z̄
+

dr2

r2
+

dx2 + dy2

r2
.

with z̄ = 1 + V̄ 2/2 + O(V̄ 4). This IR fixed point corresponds to a quantum field theory
with Lifshitz scaling, since it is invariant under (t, x, y)→ (λz̄t, λx, λy). The emergence of
Lifshitz scaling in the context of disordered holography was first observed in [33]. It is an
interesting fact that Lifshitz-like scaling emerges in di�erent dimensions and for di�erent
random sources. This suggests that Lifshitz geometries in the IR are a robust feature of
marginal disorder in holography.

24To avoid charging the notation, we conveniently denote E[α(r, x)] = α(r), etc.
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4.3.3 Conductivity of the dual field theory

We now turn our attention to how disorder a�ects the transport of the dual theory. In
condensed matter, the e�ect of weak disorder in a metal is to decrease the conductivity [204].
This is the first sign that for strong enough disorder the system undergoes a metal-insulator
transition. According to the scaling theory of localisation [38,205] (or [204] for a review) the
knowledge of the scaling of the conductance with the system size allows to derive a real
space RG equation and eventually to establish the existence of the metal-insulator transition.

In holography, it was established that a range of theories in both zero and finite tem-
perature have a finite and constant incoherent contribution to the conductivity in addition
to the usual coherent contribution coming from a finite charge density [57]. In particular
this contribution is also present at zero temperature and charge density [8,136]. Our aim
is to understand how disorder a�ects this contribution. For simplicity, we work with dis-
order in one dimension and compute the dc-conductivity in this direction. We will show
that an irrelevant disordered chemical potential does not contribute to the conductivity,
while a marginal deformation has the e�ect of increasing it. In both cases disorder does
not suppress the incoherent contribution to the conductivity. It is an open question why
those degrees of freedom seem to be protected from relaxation. In principle this is di�erent
from the behaviour expected in condensed matter systems where disorder always suppresses
the conductivity. We note that a direct comparison is di�cult as our perturbation may also
induce a net increase of carriers that enhance the conductivity.

Computing transport coe�cients in inhomogeneous backgrounds is an involved task.
Since we are only interested in the DC conductivity, we are going to take a shortcut first
proposed by Donos and Gauntlett in Ref. [59] which consist in applying a constant electric
field Ex ≡ E in the disordered direction at the dual boundary theory. In the bulk, this is
implemented by a fluctuation in the vector potential that solves the time dependence of the
Maxwell’s Equations,

δA = (ax(r, x)− Et)dx.

This fluctuation generates a non-trivial boundary current obtained via the usual holographic
dictionary jx = lim

r→0
∂rax. The conductivity is then defined as

σ =
E[jx]

E

∣∣∣∣
r=0

. (4.13)

The fluctuation above also couples to the metric via the Einstein’s Equations, and consistency
require turning on metric fluctuations. In a radial gauge hra = 0 for a ∈ {r, t, x, y}, the
Einstein’s Equations decouple in two sectors, and is su�cient to consider only the metric
fluctuation htx.
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As in the previous section, we proceed with a perturbative analysis. Inspection of the
equations of motion to first order in E and second order in V̄ requires

ax(r, x) = a(0)
x (r, x) + V̄ 2a(2)

x (r, x) +O(V̄ 4), htx(r, x) = V̄ h
(1)
tx +O(V̄ 3).

Note in particular that we need to expand the fluctuation ax to O(V̄ 2) in order to respect the
holographic dictionary and match the boundary current jx = lim

r→0
∂rax to the bulk current

√
−gF xr. To compute the conductivity fromEq.(4.13) we need to solve the Einstein-Maxwell

system order by order for {a(0)
x , a

(2)
x , h

(1)
tx } and take the relevant average over disorder. As

boundary conditions for the fluctuations, we require δAx to be ingoing and the dual field
theory Minkowski metric to be fixed, or in other words lim

r→0
r2htx = 025.

To order V̄ 0, the (r) and (x) Maxwell’s Equations give

∂r∂xa
(0)
x (r, x) = 0,

∂2
ra

(0)
x (r, x) = 0,

which implies ∂ra
(0)
x = constant. To fix this constant, we need to apply ingoing boundary

conditions. Note that r̄ = t − r and v = t + r are the two null coordinates in AdS4.
Therefore for the fluctuation to be ingoing, we require δAx(r, t, x) = δAx(x, v) which fixes
∂ra

(0)
x = −E. This gives the orderO(V̄ 0) contribution to theDC conductivity σ = 1+O(V̄ 2),

which agrees with the pure AdS4 value.

The order O(V̄ 2), the (r) and (x) Maxwell’s Equations read

∂r

[
E(α− β + δ)− 2r2h

(1)
tx ∂rϕ− 2∂ra

(2)
x

]
= 0, (4.14)

∂x

[
E(α− β + δ)− 2r2h

(1)
tx ∂rϕ− 2∂ra

(2)
x

]
= 0, (4.15)

Note that these are exactly the equations for the conservation of the bulk current to O(V̄ 2).
They fix

∂ra
(2)
x = c− 2r2h

(1)
tx ∂rϕ+

E

2
(α− β + δ), (4.16)

for an arbitrary constant c. Note that the average of the above is exactly the numerator
in (4.13). Since E[α − β + δ] = 0 everywhere in the bulk from Eqs. (4.11a), (4.11b) and
lim
r→0

E[r2h
(1)
tx ∂rϕ] = 0 to avoid deformations of the dual field theory Minkowski metric, c is

exactly the correction the the conductivity we are after. To fix c, we need to impose ingoing
boundary conditions in the Poincaré horizon r = ∞, or in other words δAx(r, t, x) =

25We are grateful to Andrew Lucas for pointing this out.
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δAx(v, x) for v = t+ r. This fixes lim
r→∞

∂ra
(2)
x (r, x) = 0, and we can formally write

c = lim
r→∞

2E[r2h
(1)
tx ∂rϕ]. (4.17)

As we mentioned before, the Einstein’s equations for h(1)
tx decouple from the background

∂r∂x

(
r2h

(1)
tx

)
= r2E∂xϕ,

∂r

(
r−2∂r(r

2h
(1)
tx )
)

= E∂rϕ,

and can be readily solved by inserting the source (4.8) and integrating,

r2h
(1)
tx (r, x) = E

∫
dk
2π
µk2

s+1k−3e−kr+ikx
(
2 + 2kr + k2r2

)
+ C(x),

where C(x) is a (random) integration constant. We suppose C(x) admits a spectral represen-
tation with gaussian measure and write C(x) =

∫ dk
2π
eikxµkck for a deterministic constant ck.

The boundary condition lim
r→0

r2htx = 0 then fixes ck = −2k−3. Note that with this choice we

have in particular lim
r→0

E[r2h
(1)
tx ∂rϕ] = 0 as claimed before. We can now explicitely fix c by

computing the average in Eq. (4.17)

c =

{
0 for s > 1,

8 log 2−5
π

for s = 1.

Therefore for irrelevant disorder there are no corrections to the background conductivity to
second order, σ = 1 +O(V̄ 4), while for marginal disorder we have

σ = 1 + V̄ 2γ +O(V̄ 4),

for γ = π−1(8 log 2− 5) > 0. This result is consistent with the previously discussed fact that
for irrelevant deformations the background AdS4 remains the IR fixed point of the system,
while for marginal deformations the background geometry receives logarithmic corrections.
Note that for s < 1 the deformation is relevant. In this case c diverges polynomially and
perturbation theory breaks down.

One might ask if the resummation carried out in the last sections alters the computation
of the conductivity. This is not the case since as we argued before the metric fluctuations
decouple from the background equations of motion. Resumming the background IR
divergence for marginal deformations therefore does not change the conductivity, which is
finite in the IR.
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4.4 Random chemical potential at finite temperature

A natural generalization of the previous discussion is to include the e�ects of temperature. In
practice, this is equivalent to imposing an AdS black hole boundary condition to the vacuum,
around which we carry out a perturbative calculation. From the field theory perspective,
we will be studying the perturbative e�ect of a random chemical potential in a quantum
field theory at finite temperature. In practice, the presence of a horizon spoils the symmetry
between the boundary coordinates (t, x, y), which makes the calculations more involved.
Following some previous ideas [92], we will see that the problem can be analysed in two
opposite limits: high and low momenta modes. The high momenta modes will be exactly
those that will contribute to the leading divergences of the metric components, therefore
determining the emerging IR scaling. On the other hand, low momenta modes are constant
along the bulk and will have the e�ect of renormalizing the temperature and charge of
the black hole. We shall see that the initially uncharged black hole geometry develops an
e�ective net charge proportional to the strength of the perturbation. Moreover to leading
order in the disorder strength the thermal conductivity, but not the electrical conductivity,
develops a Drude peak consistent with the breaking of translational symmetry by the random
chemical potential.

4.4.1 Equations of Motion

Consider again the action (4.1). If A = 0, this action supports a finite temperature vacuum
given by a d+1 = 4 AdS Schwarzschild black hole. Introducing a random chemical potential
(4.4) in the boundary can be seen as perturbation around this vacuum as long as T � V̄ .
However, in order for disorder to be still relevant we need k0 = 1/a� T . Therefore we are
working with the hierarchy k0 � T � V̄ . In analogy with the zero temperature case, we
can set up a perturbative calculation around this background by looking at solutions of the
system (4.2) with the ansatz:

ds2 = r−2

[
−f(r)A(r)dt2 +

dr2

f(r)
+B(r)(dx2 + dy2)

]
, (4.18a)

A = at(r,x)dt. (4.18b)

Following our previous discussion we are working directly with the averaged metric A(r) =

E[A(r,x)], B(r) = E[B(r,x)] and with disorder in both boundary directions (x, y), for
which we can imposed isotropy. We also suppose that f is a function of the holographic
coordinate r with a first order pole at a point r0. It will be convenient to consider the
rescaling r̄ = r/r0, such that f(r̄ = 1) = 0. As before, we set up our perturbation theory by
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letting

A(r̄) = 1 + V̄ 2α(r̄) +O(V̄ 2), B(r̄) = 1 + V̄ 2β(r̄) +O(V̄ 2),

at(r̄, x) = V̄ ϕ(r̄, x) +O(V̄ 3).

The task is to solve the system (4.9) together with the boundary conditions α(0) = β(0) and
lim
u→0

ϕ(r̄,x) =
∫ d2

k
2π
eik·xµk. Further, we impose regularity and ingoing boundary conditions

at the horizon r̄ = 1.

To order V̄ 0, the equations of motion are those for the AdS Schwarzschild background,

−6 + 6f − 4r̄f ′ + r̄2f ′′ = 0,

3− 3f + r̄f ′ = 0,

which are trivially satisfied by f = 1− r̄3. To order V̄ , we have Maxwell’s Equations for the
vector potential, while no further metric equations are sourced:

f∂2
r̄ϕ+ r2

0∂
2
xϕ = 0.

Again, we decompose ϕ =
∫ d2

k
(2π)2 e

ik·xϕk(r̄) to get:

fϕ′′κ − κ2ϕk = 0, (4.19)

where we have defined the dimensionless momentum κ = r0|k|. Unfortunately we cannot
solve the above equation explicitly. However we will be interested in two limits, the low (or
zero) κ� 1 and high κ� 1 momentum modes. In the first limit, we have ϕ′0 = η which is
constant, while in the second limit κ� 1 we can rely on the WKB approximation

ϕk(r̄) = µkf
−1/4e−κ

∫
f−1/2

.

To order V̄ 2, Einstein’s Equations give:

fα′′ +
(r̄f ′ − 2f)

2r̄
(3α′ + β′) = − r̄

2r2
0

2f
E
[
f(∂r̄ϕ)2 + r0r

2
0(∇ϕ)2

]
,

fα′′ + 2fβ′′ +
3r̄f ′ − 2f

2r̄
α′ +

r̄f ′ − 2f

2r̄
β′ =

r̄2r2
0

2f
E
[
−f(∂r̄ϕ)2 + r2

0(∇ϕ)2
]
,

fβ′′ − f

r̄
α′ − r̄f ′ − 4f

r̄
=
r̄2r2

0

2f
E
[
f(∂r̄ϕ)2 − r2

0(∂xϕ)2 + r2
0(∂yϕ)2

]
,

fβ′′ − f

r̄
α′ − r̄f ′ − 4f

r̄
=
r̄2r2

0

2f
E
[
f(∂r̄ϕ)2 + r2

0(∂xϕ)2 − r2
0(∂yϕ)2

]
.

where we made use of the zeroth order equations. These can be explicitly decoupled in two
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second order equations

(3 + f)2f−1/2∂r̄

(
f 3/2

r̄2(3 + f)
∂r̄α

)
= r2

0 E[3(∂r̄ϕ)2 + r2
0(∇ϕ)2], (4.20a)

4f 3/2∂r̄

(
f 1/2

r̄2
∂r̄β

)
= −r2

0 E[f(∂r̄ϕ)2 + r2
0(∇ϕ)2]. (4.20b)

4.4.2 High momenta modes

The e�ect of modes with κ� 1 was first discussed in Ref. [92] in the context of a random
scalar deformation. Since the calculations for the high momenta modes for the charged
deformation is similar, we only review the results and direct the reader to Ref. [92] for the
technical details.

An explicit calculation shows that for κ � 1 the main contribution to integrating
equations (4.20a) and (4.20b) comes from the near boundary region r̄ = 0. Note that in this
region these equations reduce to (4.12b) and (4.12a), giving logarithmic corrections to the
metric coe�cient α ∼ log r0/a. The important remark is that the second order correction
to the surface gravity of the background is proportional to α. In particular, this implies that
the temperature of the black hole receives second order logarithmic corrections from the
high momenta modes. If we further assume that these corrections can be resummed as in
the zero temperature setting, the temperature will develop a Lifshitz scaling T ∼ r−z̄0 with
the horizon. The upshot is that all other thermodynamic quantities are a�ected by the way
they scale with temperature. It is important to note that this is a direct consequence of the
logarithmic corrections for the metric coe�cient α. Since we find a similar correction, the
results of Ref. [92] should apply here.

What about lower momenta modes? From Eq. (4.19), it is clear that for κ� 1 the source
is approximately constant in the bulk, and therefore does not contribute to the singular
behaviour of the metric. From the RG point of view, these modes are irrelevant and can
only possibly renormalise the background geometry. As we will discuss below, this is indeed
the case.

4.4.3 Low momenta modes

We will show that low momenta modes play the role of renormalizing the background by
introducing a charge Q ∼ V̄ in the originally neutral black hole.

Consider the renormalised blackening factor f = f̄ + V̄ 2δf where f̄(r̄) = 1− r̄3 with
ansatz (4.18). This shift has no e�ect in the zeroth and first order equations. However, it
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introduces an extra factor in Eq. (4.20b):

(
r̄−3δf

)′ − f̄ 1/2∂r̄

(
f̄ 1/2

r̄2
∂r̄β

)
=
r2

0

4f̄
E[f̄(ϕ′κ)

2 + κ2ϕ2
κ].

In particular, for κ� 1 the left hand side is constant, since by Maxwell’s Equations (4.19)
(ϕ′κ�1)2 = µ2

0. This is precisely the statement that low momenta modes are constant along
the bulk. Close to the horizon r̄ = 1 the first term on the right hand side drops, giving:

(r̄−3δf)′ =
r2

0

4
µ2

0,

which can be easily solved by δf(r̄) =
r2
0

4
µ2

0 (r̄4 − r̄3) and requiring δf(0) = δf(1) = 0. This
correction gives precisely the blackening factor f(r̄) = 1− (1 +Q2)r̄3 +Q2r̄4 expected for
an AdS Reissner-Nordstrom black hole with charge,

Q2 =
r2

0

4
µ2

0V̄
2.

Therefore the constant low momenta modes have the e�ect of renormalizing the near
horizon geometry of the initially uncharged black hole, adding a charge proportional to
the sourced disorder. However note that this only contributes to the previous discussion at
order O(V̄ 4).This explains why to leading order it is justified to look only at high momenta
modes when analysing the divergences of the metric under the flow of the renormalization
group. We expect the full non-linear solution to be a charged black hole with a temperature
reflecting both contributions discussed above.

4.4.4 Conductivity and momentum dissipation

Recent works by Donos, Gauntlett [59, 82, 84, 85], built upon previous membrane paradigm
ideas [136], have simplified enormously the task of computing averaged DC conductivities
in inhomogeneous backgrounds at finite temperature. Specifically, in [59] they provide
an explicit formula for the DC conductivity of the Einstein-Maxwell system sourced by a
periodic potential in terms of near horizon data. The generalization of their results to our
model read

σ = 1 + V̄ 2X−1E
[
ϕ(0)

A(0)

]2

, (4.21)

where X = E
[(

ϕ(0)

A(0)

)2
]
− E[B−3

(0)∂xB(0)] − E
[
ϕ(0)

A(0)

]2

and the metric and gauge field are

evaluated at the horizon r̄ = 1. In order to compute the corrections to the conductivity is
necessary to take averages of fractions, which is usually a hard task. However we can still get
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a qualitative picture without having to compute the averages explicitly. First, it is clear that
generically X 6= 0 since the first term is an average over a second moment. The same is a
priori not clear for the numerator, which is an average over a first moment.

In perturbation theory, A = 1 + V̄ 2α, and we can expand the denominator for small
V̄ : E

[
ϕ(0)/A(0)

]
∼ E

[
ϕ(0)]− V̄ 2E[α(0)ϕ(0)

]
+O(V̄ 4). By construction we have E[ϕ(0)] = 0,

and the problem simplifies to computing E[α(0)φ(0)]. In principle to compute this average
explicitly one needs the exact background to second order. However by looking at the most
general spectral decomposition of α that solves the equations of motion one can compute
the average (4.21) in function of the coe�cients αk. Without loss of generality we can
write α = αhom(r̄) + αinh(r̄,x). It is clear that only αinh contributes to the perturbative
corrections of the conductivity, since any homogeneous part (which is a constant at the
horizon) vanishes when averaged with the source φ(0). From the equations of motion we
can write (c.f. Appendix D.1 for further details)

αinh(r̄,x) =
∑
k

α0
k(r̄)

∏
i

cos 2θi,k +
∑
k 6=l

α+
k,l(r̄)

∏
i

cos θ+
i,k,l +

∑
k 6=l

α−k,l(r̄)
∏
i

cos θ−i,k,l,

where we used a discrete representation for simplicity (c.f. Eq. (4.7)), and defined θ±i,ki,li =

θi,ki ± θi,li . Letting ϕ =
∑
k

ϕk(r̄)
∏
i

cos θi,k and evaluating at r̄ = 1, one check that

E[αinh(0)φ(0)] = 0 and therefore

σ = 1 +O(V̄ 4).

One could be tempted to extend this argument to fourth or higher orders in V̄ . However
this is a really hard task as it would also require the computation at least of the third order
contribution to the vector potential as well as the fourth order contribution to the metric.

It is intriguing that the random chemical potential does not contribute, to leading order
at least, to the background electric conductivity. The likely physical reason for that behaviour
is a peculiar feature of this realisation of disorder: charge carriers, whose average charge
vanishes, and that naturally contributes to the electrical conductivity, are at the same time the
source of disorder in the system. This dual role is rather unusual in condensed matter systems
where scatterers are typically uncharged and quenched and therefore do not contribute to
the electrical conductivity.

We confirm that this unexpected result is a peculiarity of the electrical conductivity in
this model of disorder by computing the thermal conductivity κ 26, which describes transport

26Not to be mistaken with the dimensionless momentum we defined before.
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of energy instead of charge. Following again the results of [59], κ is given by,

κ =
(4π)2T

X + E
[
ϕ(0)

A(0)

]2 .

It is straightforward to check that now the thermal conductivity depends on disorder, even to
leading order, since we have an average over a secondmoment of the sourceϕ insideX , which
gives a non-zero contribution to second order. We can estimate this in the high temperature
limit T � k0 where the main contribution to the geometry is ϕκ�1 = (1 − r̄)µ(x, y).
Therefore κ = (4π)4T 3

9
1

E[µ2]
which leads to,

κ =
(4π)3

9

T 3

k0V̄ 2
. (4.22)

As was expected, in the absence of disorder V̄ → 0, κ diverges as 1/V̄ 2 since for no disorder
translational invariance is recovered. The expression (4.22) also suggests that the relaxation
scale of momentum is given by τ−1 ∼ k0V̄

2. This is in full agreement with recent results
in a set up similar to ours where disorder is introduced by a random scalar field in the
boundary [202].

Finally, it is important to stress that all these results are restricted to averaged conductivities.
It would be interesting to know higher moments and the full probability distribution of the
relevant observables. That for instance could provide additional information on the e�ect
of a random chemical potential on the electrical conductivity for which we have clearly
observed that a simple average misses important features.

4.5 Conclusions

We have studied analytically the role of weak disorder in Einstein-Maxwell theory and its
relation, by holography, with the transport properties of the dual field theory. Disorder is
introduced through a random correlated chemical potential whose conformal dimension
can be tuned by modifying the strength of the correlations. In that way we can investigate,
within the Einstein-Maxwell theory, irrelevant, marginal or relevant perturbations. We
have focused in the first two cases where we have found that, to leading order, irrelevant
perturbations do not alter the conductivity while marginal perturbations induce a positive
correction. Both results are in agreement with the recently proposed bound [96–98] for
the dc-conductivity at finite temperature. Curiously disorder does not seem to suppress
incoherent transport even at zero temperature. It would be interesting to understand why
these field theory degrees of freedom are protected from disorder. In the marginal case at
zero temperature we also found infrared logarithmic singularities in the metric that, after
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resummation as in Ref. [33], lead to a Lifshitz-like geometry. At finite temperature we
have shown that despite the fact that the chemical potential has zero average the black hole
develops some net charge. The thermal conductivity is consistent with a disordered potential
that induces relaxation of momentum. However the average electrical conductivity, as in
the zero temperature case, is still not a�ected by disorder to leading order in perturbation
theory.



5 | Coherence e�ects in disordered
geometrieswith a field-theory dual†

In this chapter we investigate the holographic dual of a probe scalar in an asymptotically
anti-de Sitter disordered background which is an exact solution of Einstein’s equations in
three bulk dimensions. Unlike other approaches to model disorder in holography, we are able
to explore quantum wave-like interference e�ects between an oscillating or random source
and the geometry. In the weak-disorder limit, we compute analytically and numerically the
one-point correlation function of the dual field theory for di�erent choices of sources and
backgrounds. The most interesting feature is the suppression of the one-point function in
the presence of an oscillating source and weak random background. We have also computed
analytically and numerically the two-point function in the weak disorder limit. We have
found that, in general, the perturbative contribution induces an additional power-law decay
whose exponent depends on the distribution of disorder. For certain choices of the gravity
background, this contribution becomes dominant for large separations which indicates
breaking of perturbation theory and the possible existence of a phase transition induced by
disorder.

5.1 Introduction

Holographic dualities, that relate classical theories of gravity to strongly-coupled quantum
field theories, are now a forefront research area not only in high energy physics but also
in quantum information and condensed matter physics. In the latter, it is emerging as a
powerful tool to describe universal properties of strongly-correlated quantum systems. One
of the main challenges for the application of holographic techniques in this context is the
description of disorder, which is ubiquitous in realistic systems and directly responsible for a
broad variety of phenomena ranging from momentum relaxation to quantum interference
leading to di�erent forms of localization [35,37,50,207,208]. The introduction of disorder in
gravity backgrounds with a negative cosmological constant relevant for holography requires

2This Chapter is based on Ref. [206], and was done in collaboration with Antonio M. García-García and
Tomás Andrade. The author would like to acknowledge T. Andrade for the numerical work in Section 5.4.
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the solution of spatially inhomogeneous Einstein’s equations, in general a di�cult task.

Di�erent approximation schemes have been proposed to make the problem technically
tractable while keeping some of the expected phenomenology related to the introduction of
disorder. For instance, momentum relaxation, a rather general consequence of any form
of disorder, can be achieved by adding a massless scalar [54,209–211] that depends linearly
on the boundary coordinates. Since the scalar field only couples to gravity through its
derivatives, translation invariance is broken by the background but the equations of motion
are still independent of the spatial coordinates which facilitates substantially the calculation,
in many cases analytical, of transport properties.

As was expected, the electrical conductivity is always finite and depends directly on the
strength of the translational symmetry breaking characterised by the slope, with respect to
the spatial coordinates, of the scalar field in the boundary. For weak momentum relaxation,
the electrical conductivity reproduces the expected phenomenology of Drude’s model, which
includes a peak at low frequencies, remnant of the broken translational symmetry, followed
by a decay for higher frequencies. For stronger relaxation the Drude peak is suppressed,
leading to an incoherent ’bad-metal’ behaviour [57,149,212,213]. However even in the limit
of infinite relaxation no insulating behaviour is observed. Recently, models that consider the
coupling of the scalar field to the gravity and the Maxwell term managed to reproduce a
vanishing conductivity in the limit of infinite relaxation [152,163,164]. Yet, in this limit
the e�ective charge in these models vanish, so strictly speaking they cannot be considered
insulators. Other e�ective models of momentum relaxation in holography include the
memory matrix formalism [22,200,201,214], helical and Q-lattices [60,67,182] and massive
gravity [53,65,186,215]. Similar results [59,73,75,76,216–218] have been obtained even
for Maxwell fields with a spatially oscillating chemical potentials in the boundary leading to
inhomogeneous Einstein’s equations. We note that e�ects such as localization are precluded
by design since a random but homogeneously distributed, and therefore delocalised, chemical
potential is an input in this approach.

Disorder has also been introduced at the level of the action by a random source coupled
to the dual conformal field theory operator [63, 219]. By using the replica trick, it is possible
to integrate out the random coupling resulting in a double trace deformation of the non-
disordered theory. For marginal perturbations, renormalization group techniques suggest
the existence of logarithmic corrections in the two-point correlation function that spoils
conformal symmetry. Interestingly, this is in agreement with the expected behaviour of
certain two dimensional conformal field theories perturbed by disorder (see [220] and
references therein).

Another popular approach is to consider a random field in the boundary, in most cases a
random chemical potential (source) for gauge (scalar) fields, but neglecting the backreaction
in the gravity background (probe limit) [62, 87–89, 95, 200, 203, 221, 222]. Analytical
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attempts to go beyond this probe limit have found logarithmic infra-red (IR) divergences
in the gravity background, signaling the breakdown of perturbation theory [90, 91]. A
resummation scheme for the divergent expansion was proposed in [92,151,187,202] resulting
in an averaged gravity background with an emerging Lifshitz scaling symmetry, which was
shown to be a generic feature of marginal disordered deformations [94,152]. For geometries
with a horizon, the most general result in this context is that of Gauntlett, Donos and
collaborators [59,70,82–84,86] who found closed expressions for the dc conductivity and
other averaged transport coe�cients in generic inhomogeneous backgrounds. As a direct
consequence, bounds on the electric and thermal conductivity were proposed [96–99].

The conclusion of this more direct approach is similar to the one from the phenomeno-
logical models of momentum relaxation discussed previously, namely, it is not possible to
reach an insulating state which is believed to be a distinctive feature of strong disorder in
condensed matter systems. Even simpler coherence e�ects such as weak-localization [223],
which are precursors of a metal-insulator transition, have not yet been clearly identified.

In this manuscript we propose a new approach to model disorder in holography which
has the potential to reproduce some of these coherent e�ects. We switch perspectives and
consider the e�ect of a disordered geometry with no horizon on a probe scalar field. This is
accomplished by considering a family of three dimensional random geometries that solve
Einstein’s equations exactly27 and neglecting the backreaction of the scalar in the geometry.
This family is indexed by a parameter which we take to be a random function of the boundary
coordinates. The scalar field feels the geometry as an e�ective inhomogeneous coe�cient in
the equations of motion. This is reminiscent, though we cannot establish a precise mapping,
of a one-dimensional wave equation with a random refractive index [207,208] plus additional
terms that control the evolution in the radial direction which are related to interactions in
the boundary.

According to the holographic dictionary, the geometry is dual to a strongly-coupled
disordered plasma living at the boundary, and the scalar field sources a boundary dual
operator. We investigate numerically and analytically the properties of this disordered
plasma by looking at one and two-point functions of this scalar operator. For the one-
point function our main result is the observation of coherence e�ects, due to interference
between an oscillating source and the random geometry, that, in some cases, leads to the
strong suppression of oscillations even for weak disorder. The contribution to the two-point
function for a weak random Gaussian geometry is still a power-law decay for large distances
with an exponent that depends on both the scalar mass and disorder correlations modelled
by a non-trivial power spectrum. In some cases, this correction becomes dominant for large
distances which suggests the breaking of perturbation theory and the possible transit of the

27We can find an exact solution of Einstein’s equations involving a free function due to the fact that all
vacuum solutions are pure di�eomorphisms in three dimensions. The generalization to higher dimensions
would involve solving the equations numerically.
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system to a new disorder-driven fixed point.
The chapter is organised as follows. In the next section we introduce the geometry we

will be studying and discuss the equation of motion for the probe scalar. In section 5.3 we
solve these equations analytically in the limit of a weak-disordered background. The one
and two-point functions of the dual operator are computed for di�erent choices of both
sources and inhomogeneous geometries. In section 5.4, we solve the equation of motion
by numerical techniques and compute in certain cases the one and two-point correlation
function of dual scalar. Section 5.5 is devoted to a comparison of our results with previous
approaches to disorder in holography. We conclude in section 5.6 with a summary of results
and ideas for future work. The appendices o�er a wider discussion of technical points which
are used throughout the main body of the paper.

5.2 Setup

In this section we introduce our objects of study. First, we introduce a family of geometries
in d + 1 = 3 spacetime dimensions. This family is characterised by an arbitrary function
which we can take to be random. We next introduce a minimally coupled scalar field and
discuss its equation of motion and associated boundary conditions. The aim is to use this
field to probe the properties of the inhomogeneous geometry, which holographically can be
interpreted as a strongly-coupled disordered field theory.

5.2.1 Geometry

Solutions of the vacuum d+1-dimensional Einstein’s Equations with a negative cosmological
constant have been classified in the pioneering work of Fe�erham and Graham [128,224].
For d > 2, we can integrate Einstein’s Equations in a neighbourhood of the boundary by
requiring that the Weyl tensor vanish. This condition constrains the boundary metric to be
conformally flat. However, in d = 2 the Weyl tensor vanishes exactly, leaving the conformal
class of the boundary metric arbitrary [225].

In this manuscript we will be mainly interested in the following family of metrics defined
by a global coordinate patch xa = (ρ, t, x) as

ds2 =
dρ2

4ρ2
+

1

ρ

(
−dt2 + dx2 + 2gtx(x)dtdx

)
, (5.1)

where gtx(x) is an arbitrary function of the boundary coordinate x. In line with our discussion
above, it is easy to check that this family satisfies Einstein’s Equations in d = 2 dimension
with a negative cosmological constant for any gtx. In these coordinates, the conformal
boundary is located at ρ = 0 and the induced conformal metric g(0) is given by ρ ds2|ρ=0 =
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−dt2 + dx2 + 2gtx(x)dtdx. The Poincare horizon is parametrised by ρ =∞.
From a holographic perspective, this space-time encodes the degrees of freedom of a

strongly-coupled field theory living on the boundary metric described above. However,
the dual stress tensor vanishes since this change in the boundary metric does not induce
sub-leading terms in the bulk metric. This resembles the situation we encounter in the
axion model of [54], where the marginal, spatially dependent, scalar sources do not excite a
vacuum expectation value. In the next sections we will be interested in studying the family
of geometries in Eq.(5.1) for di�erent choices of gtx. In particular, we will be interested in
the case where gtx(x) is a random Gaussian process, as introduced in Appendix B. We will
study the dynamics of a minimally coupled scalar field as a way of probing the e�ects of the
disordered geometry. The aim is to get an insight into the nature of the strongly-coupled
disordered dual field theory.

5.2.2 Scalar Field and Equations of Motion

We consider a probe scalar field ψ of mass m minimally coupled to the geometry in Eq.(5.1).
The equation of motion is given by (∆g −m2)ψ = 0, where the curved Laplacian can be
written in a chart xa as ∆g = 1√

−g∂a
(√
−g gab∂b

)
. Since ∂t is a killing vector for Eq.(5.1),

we can restrict our attention to static configurations ψ = ψ(ρ, x). In these coordinates, the
equation of motion thus reads

4ρ2∂2
ρψ − ρ

gtx∂xgtx
(1 + g2

tx)
2
∂xψ + ρ

1

1 + g2
tx

∂2
xψ −m2ψ = 0. (5.2)

We are interested in solutions satisfying the following boundary conditions,

lim
ρ→∞

ψ(ρ, x) <∞, (5.3a)

lim
ρ→0

ρ
ν−1

2 ψ(ρ, x) = s(x), (5.3b)

where we have defined ν =
√

1 +m2. The first boundary condition assures regularity of the
solution at the Poincaré horizon ρ =∞. As discussed in Appendix A.2, the second boundary
condition defines a field s(x) living in the boundary ρ = 0 with conformal dimension
∆− = 1 − ν. This field sources a dual boundary operator O(x) ∼ ρ−

ν+1
2 ψ of conformal

dimension ∆+ = 1 + ν.
Even for simple choices of gtx, Eq.(5.2) remains largely intractable analytically. However

when gtx is small we can compute perturbative corrections to the plain AdS3 result analytically,
helping us to build an intuition of the e�ects of the weakly disordered geometry. We will
recur to numerical methods to test the analytical prediction and also to explore the region of
stronger disorder not accessible to an analytical treatment.
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5.3 Perturbative analysis of the one-point and two-point
correlation functions

In this section we study Eq.(5.2) perturbatively for di�erent choices of gtx. For convenience,
we will set m2 = −3

4
throughout this section, which is equivalent to choosing ν = 1

2
. Note

this choice respects the Breitenlohner-Freedman bound, m2 ≥ −1 in d = 2, [226,227]. We
will divide our discussion by order in perturbation theory, and focus in two observables: the
expectation value of the dual boundary operator (one-point function) and the two-point
function. We can obtain both these quantities by solving the perturbative equations with
the appropriate boundary conditions.

5.3.1 Zeroth Order

To set up the perturbative analysis, let gtx(x) = ε g(x) for a parameter ε� 1 measuring the
amplitude of gtx fluctuations. For ε = 0, Eq.(5.2) reduces to the equation of a massive scalar
field in AdS3 given by

4ρ2∂2
ρψ(0) + ρ∂2

xψ(0) +
3

4
ψ(0) = 0.

Letting ψ(0)(ρ, x) =
∫
R

dk
2π
eikxfk(ρ), the equation above reduces to

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = 0, (5.4)

which has general solution

fk(ρ, x) = akρ
1/4e−k

√
ρ + bkρ

1/4ek
√
ρ. (5.5)

Regularity at the Poincaré horizon Eq.(5.3a) requires that ak = 0 for k < 0 and bk = 0 for
k > 0, which can be written compactly as fk(ρ) = akρ

1/4e−|k|
√
ρ for a di�erent constant ak.

Now letting s(x) =
∫
R

dk
2π
eikxsk, boundary condition Eq.(5.3b) can be imposed coe�cient

wise to yield ak = sk. The full solution therefore reads

ψ(0)(ρ, x) = ρ1/4

∫
R

dk
2π
eikxe−|k|

√
ρsk. (5.6)

Note that this depends directly on the Fourier components of the source. We are interested
in a few particular cases that we outline below.

Constant source If s(x) = s =
∫
R

dk
2π
eikx2πδ(k)s is constant, we have ψ(0)(ρ, x) = ρ1/4s.

This sources a dual boundary operatorwith expectation value 〈O(x)〉 = 2ν lim
ρ→0

ρ−
ν+1

2 ψ(0) =
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0.

Oscillating source If s(x) = s cos qx = s
∫
R

dk
2π
eikxπ [δ(k − q) + δ(k + q)] for q ∈ R, we

have ψ(0)(ρ, x) = sρ1/4e−|q|
√
ρ cos qx. This sources a dual boundary operator with

expectation value given by 〈O(x)〉 = −s|q| cos qx.

Superposition of oscillations Consider now a source given by a superposition of N oscil-

lating modes s(x) =
N∑
n=1

sn cos(qnx + γn), where sn, qn and γn can be freely chosen.

Noting that the finite sum can be exchanged with the integral and following the same

steps as above mode-wise we find ψ(0)(ρ, x) = ρ1/4
N∑
n=1

sne
−|qn|

√
ρ cos(qnx + γn). The

one-point function thus reads 〈O(x)〉 = −
N∑
n=1

sn|qn| cos(qnx+ γn).

Delta source and two-point function As discussed in Appendix A.3, the boundary-to-
bulk propagator is given by solving the equations of motion with a delta source,
s(x) = δ(x) =

∫
R

dk
2π
eikx. We thus have,

K(0)(ρ, x− y) = ρ1/4

∫
R

dk
2π
eik(x−y)e−|k|

√
ρ =

1

π

ρ3/4

(x− y)2 + ρ
.

which follows the shape of a Lorentzian (or Cauchy) distribution. Following the
discussion in Appendix A.2, the boundary two-point function can be obtained by

〈O(x)O(y)〉 = 2ν lim
ρ→0

ρ−
1+ν

2 K(0)(ρ;x− y) =
1

π

1

(x− y)2
. (5.7)

Note this is not the expected result for an operator of conformal dimension 2∆+ = 3

but rather for an operator of conformal dimension 2∆+ = 2. This is because, by
considering a static field, we e�ectively reduce the conformal dimension of the problem.
Since we will be interested in static inhomogeneous configurations in what follows,
this is the object we will be computing corrections for.

5.3.2 Second Order

Note that since gtx appears only quadratically in Eq.(5.2), there are no non-trivial order one
corrections to ψ(0). It is thus su�cient to consider ψ = ψ(0) + ε2ψ(2) +O(ε4). Inserting into
Eq.(5.2) and expanding up to second order leads to

4ρ2∂2
ρψ(2) + ρ ∂2

xψ(2) +
3

4
ψ(2) = ρ g(x)2∂2

xψ(0) + ρ g(x)∂xg(x)∂xψ(0). (5.8)

Note that the zeroth order solution act as a source for the perturbative correction. Since
the full solution has to satisfy the boundary conditions, we have to apply them order by
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order. For instance every term in the ε-expansion has to be regular at the Poincaré horizon.
However since we have enforced boundary condition Eq.(5.3b) at zeroth order, we have
to set lim

ρ→0
ρ
ν−1

2 ψ(2) = 0 for the inhomogeneous geometry not to correct the fixed boundary

source s(x). Summarizing, we have to solve Eq.(5.8) subjected to

lim
ρ→∞

ψ(2)(ρ, x) <∞, (5.9a)

lim
ρ→0

ρ
ν−1

2 ψ(2)(ρ, x) = 0. (5.9b)

If gtx is of Schwarz class, we can attempt to solve Eq.(5.8) in Fourier space as we did for
the zeroth-order result. Letting ψ(2)(ρ, x) =

∫
R

dk
2π
eikxfk(ρ) and g(x) =

∫
R

dk
2π
eikxgk, we can

rewrite Eq.(5.8) in Fourier space as

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = −ρ

5/4

2

∫
R
dl
∫
R
dq (k − l)(2k − l)e−|k−l|

√
ρgl−qgqsk−l (5.10)

where the right-hand side has been evaluated applying the convolution theorem with the
zeroth order solution Eq.(5.6)28. This integral-di�erential equation cannot be solved in a
closed form. In the following subsections we discuss solutions for specific inhomogeneous
configurations. For each choice of g, we can consider di�erent choices of source and study
the interplay between the source, the geometry and the resulting expectation value and
two-point function of the dual boundary operator.

Constant geometry

The simplest example is given by taking g(x) = 2π g to be a constant. In this case gk = gδ(k)

and for generic source

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = −ρ5/4k2e−|k|

√
ρskg

2.

Note that the linear di�erential operator on the left-hand side is exactly the same as for the
zeroth-order equation. This is generic and hold at all orders in perturbation theory. The
only di�erence is the source term on the right-hand side. By linearity, the general solution
will be a linear combination of the solution for the homogeneous equation plus a particular
solution. As before, the homogeneous solution has one exponentially diverging piece which
should be set to zero by regularity at the Poincaré horizon. This leads to

fk(ρ) = akρ
1/4e−|k|

√
ρ +

g2

4
ρ1/4e−|k|

√
ρ (1 + 2|k|√ρ) sk,

28Note that the convolution representation is not unique, but all representations are equivalent up to a
translation in the momentum integration.
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where ak is an integration constant. Close to the boundary ρ = 0, the solution behaves as

fk(ρ) ∼
ρ=0

(
ak +

g2

4
sk

)
ρ1/4 +O

(
ρ3/4

)
,

and therefore boundary condition Eq.(5.9b) imposes ak = −g2

4
sk. Finally, we can write

ψ(2)(ρ, x) =
1

2
ρ3/4g2

∫
R

dk
2π
eikx|k|e−|k|

√
ρsk.

As in the zeroth-order solution, we discuss below a few cases of interest.

Constant source Let s(x) = s be a constant. Inserting in the above leads trivially to
ψ(2)(ρ, x) = 0. Therefore the o�-diagonal constant metric does not a�ect the zeroth
order boundary one-point function.

Oscillating source Let s(x) = s cos qx. Inserting in the above leads to

ψ(2)(ρ, x) =
ρ3/4g2

2
|q|e−|q|

√
ρs cos qx.

At the boundary ρ = 0 this induces a correction to the zeroth-order one-point function
which is proportional to g,

〈O(x)〉 = −|q|
(

1− ε2

2
g2 +O(ε4)

)
s cos qx.

Superposition of oscillations Let s(x) =
N∑
n=1

sk cos (qnx+ γn). This case is similar to the

above, since we can integrate term by term in the sum to give,

ψ(2)(ρ, x) = ρ3/4 g
2

2

N∑
n=1

|qn|e−|qn|
√
ρsn cos(qnx+ γn).

The correction to the boundary one-point reads

〈O(x)〉 = −
N∑
n=1

|qn|
(

1− ε2

2
g2 +O(ε4)

)
sn cos(qnx+ γn).

Again, it represents just a renormalization of the amplitude of the zeroth one-point
function.

Delta source and two-point function Recall that, as discussed in the previous section
and in the Appendix A.3 that the boundary-to-bulk propagator K(ρ;x, y) can be



5.3. Perturbative analysis of the one-point and two-point correlation functions 114

computed by solving the equations of motion with s(x) = δ(x). We thus have
K(2)(ρ;x) = g2

2π
ρ3/4 x2−ρ

(ρ+x2)2 . Evaluating at the boundary leads to a correction to the first
zeroth-order two-point function,

〈O(x)O(y)〉 =

(
1− ε2

2
g2 +O(ε4)

)
1

π

1

|x− y|2
. (5.11)

Note that for all the cases above the constant o�-diagonal metric element perturbatively
decreases the amplitude of the boundary one-point function and two-point function. Since
in perturbation theory the equations are linear this case can be interpreted as the mean result
for a inhomogeneous geometry. The amplitude damping raises the question on whether
in a non-perturbative setup the geometry can e�ectively suppress the boundary correlation
functions.

Oscillating geometries

We now consider a generic superposition of N oscillating modes, g(x) =
N∑
n=1

Ane
iωnx for

ωn ∈ R. For example, an interesting particular case is ω1 = −ω2 = ω, A1 = A2 = g
2
and

An = 0 for n > 2 which correspond to g(x) = g cosωx. The Fourier modes are given by

a Dirac comb gk =
N∑
n=1

Anδ(k − ωn) and for a generic source the equations of motion in

Fourier space read,

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = −ρ5/4

N∑
n=1

N∑
m=1

AnAm(k−ωn − ωm)(2k − ωn − ωm)×

× e−|k−ωn−ωm|
√
ρsk−ωn−ωn .

By linearity, we can solve the equation above term by term. The regular solution at the
Poincaré horizon is given by the homogeneous solution Eq.(5.5) plus the sum of each
individual particular solution

fk(ρ) =
ρ1/4

2

N∑
n=1

N∑
m=1

AnAm
k − ωn − ωm
ωn + ωm

[
e−|k−ωn−ωm|

√
ρ − e−|k|

√
ρ
]
sk−ωn−ωm .

Taking the Fourier transform, we arrive at an implicit solution for the generic source

ψ(2)(ρ, x) =
ρ1/4

2

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

∫
R

dk
2π
eikx(k − ωn − ωm)

[
e−|k−ωn−ωm|

√
ρ− e−|k|

√
ρ
]
×

×sk−ωn−ωm . (5.12)
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As before, we now analyse some interesting particular cases where the above integral can be
done explicitly.

Constant source Let s(x) = s be a constant, i.e. sk = δ(k). As before, the above integral
trivially gives ψ(2) = 0. There are no corrections to the boundary dual operator.

Plane wave source Let s(x) = seiqx, i.e. sk = sδ(k− q). The Fourier transform is given by

ψ(2)(ρ, x) = ρ1/4seiqx
q

2

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

ei(ωn+ωm)x
[
e−|q|

√
ρ − e−|ωn+ωm+q|√ρ] .

Close to the boundary, this gives a correction to the dual one-point function

δ〈O(x)〉 = seiqx
q

2

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

ei(ωn+ωm)x (|ωn + ωm + q| − |q|) .

There are a couple of particular cases of special interest,

• g(x) = ge−iωx (A1 = g, ω1 = −ω, all other zero):

〈O(x)〉 = −q
(

1− ε2

4ω
(|q − 2ω| − |q|) g2e−2iωx

)
seiqx,

= −q
(

1− ε2

4ω
(|q − 2ω| − |q|) g(x)2

)
s(x).

Consider q, ω ≥ 0 and define the relative correction ∆(x) = δ〈O〉
〈O〉(0)

, where 〈O〉(0)

is the zeroth order one-point result. We can identify three distinct regimes.
For q > 2ω, the relative correction to the one-point function is positive and
simply proportional to the geometry ∆(x)q≥2ω = − ε2

2
g(x)2 = −1

2
gtx(x)2, while

for q < 2ω the result depends explicitly on the relative strength of the modes,
∆(x)q<2ω = − ε2

2

(
q
ω
− 1
)
g(x)2 = −1

2
( q
ω
−1)g2

tx. For q < ω the relative correction
will be positive, while in the window ω < q < 2ω it becomes negative. Therefore
the inhomogeneous geometry can either suppress (q > ω) or enhance (q < ω) the
expectation value of the dual operator, depending on the coherence between the
modes. The discussion is summarised in Fig.5.1.

0 ω 2ω+ − −

Figure 5.1: Sign of the relative correction ∆(x) for di�erent q ≥ 0 and fixed ω.

• g(x) = g cosωx (A1 = A2 = 1
2
g, ω1 = −ω2 = ω, all other zero):
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By linearity, this case can be obtained by summing the above with the reversed
q → −q. The relative correction ∆(x) = δ〈O〉

〈O〉(0)
is given by

∆(x) = −ε2 g
2

8

[
|q + 2ω| − |q|

2ω
e2iωx − |q − 2ω| − |q|

2ω
e−2iωx + 2

]
.

Note that, di�erent from the above in general it is not possible to rewrite the
relative correction as an explicit function of the geometry. First, lets consider the
case q, ω ≥ 0. Then q + 2ω ≥ 0 and we have two subcases: q ≥ 2ω and q < 2ω.
These are given by

∆(x)q≥2ω = −ε
2

4
g2 (cos 2ωx+ 1) = −ε

2

4
g2 cos2 ωx = −1

2
g2
tx

∆(x)q<2ω = −ε
2

8
g2
[
e2iωx +

( q
ω
− 1
)
e−2iωx + 2

]
The two modes e2iω and e−2iω can interfere constructively or destructively de-
pending on the relative sign of q and ω. Note that the correction is symmetric
under ω → −ω as expected. The q, ω < 0 case is similar up to a change of sign.

Oscillating Source We now build on the previous results to analyse more intricate cases.
Let s(x) = s cos qx. Linearity of Eq.(5.12) together with the example above can be
used to get the following correction,

δ〈O(x)〉 = ε2s
q

4

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

[
ei(ωn+ωm+q)x (|ωn + ωm + q| − |q|) +

−ei(ωn+ωm−q)x (|ωn + ωm − q| − |q|)
]
.

Consider the particular sub-cases:

• g(x) = g cosωx (A1 = A2 = 1
2
g, ω1 = −ω2 = ω, all other zero). The correction

can be conveniently rearranged to give

δ〈O(x)〉 = ε2q
g2s

4

[
|q + 2ω| − |q|

2ω
cos ((2ω + q)x)

−|q − 2ω| − |q|
2ω

cos ((q − 2ω)x) + cos qx

]
,

which is, as expected, a real result. However note that the source modes are now
coupled with the geometry. We can still write the relative correction ∆(x) by
dividing by the source, and being careful to take into account that when the
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source vanishes the result is zero and not divergent.

∆(x) = −ε2 g
2

4

[
|q + 2ω| − |q|

2ω

cos ((2ω + q)x)

cos qx
− |q − 2ω| − |q|

2ω

cos ((q − 2ω)x)

cos qx
+ 1

]
.

This can be analysed as before, giving

∆(x)q≥2ω = −ε2 g
2

4

[
cos ((2ω + q)x)

cos qx
+

cos ((q − 2ω)x)

cos qx
+ 2

]
= ε2

g2

4
[cos 2ωx+ 1] =

1

2
g2
tx, (5.13)

∆(x)q<2ω = −ε2 g
2

4

[
cos ((2ω + q)x)

cos qx
+
( q
ω
− 1
) cos ((2ω − q)x)

cos qx
+ 1

]
. (5.14)

Interestingly, as with all the examples we considered above, the relative correction
for the case q > 2ω factors into a contribution that only depends on the underlying
geometry. This can be interpreted intuitively as follows. If the wavelength of
the source (∝ q−1) is much smaller than the wavelength of the geometry, the
dual operator will not ’feel’ the inhomogeneity, leading to a coupling similar to
the constant geometry case discussed in Section 5.3.2.1. In Fig.5.2 we plot the
correction for di�erent configurations of (ω, q) and inhomogeneity strength ε.

Figure 5.2: Expectation value of the boundary operatorO Eq. (5.13) for source s(x) = cos qx
and inhomogeneous geometry g(x) = cosωx with di�erent configurations of (q, ω)
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• g(x) =
N∑
n=1

An cosωnx. This polychromatic case is a direct extension of the above.

It can be obtained by taking N → 2N and taking An → 1
2
An for n = 1, . . . , 2N ,

ωn → ωn for n = 1, . . . , N and finally ωn → −ωn for n = N + 1, . . . , 2N . By
carefully splitting the sum and rearranging the terms, we get ∆(x) = ∆>(x) +

∆<(x) with

∆>(x) = −ε
2

8

N∑
n=1

N∑
m=1

AnAm

[
|ωn + ωm + q| − |q|

ωn + ωm

cos ((ωn + ωm + q)x)

cos qx

−|ωn + ωm − q| − |q|
ωn + ωm

cos ((ωn + ωm − q)x)

cos qx

]
,

∆<(x) = −ε
2

8

N∑
n=1

N∑
m=1

AnAm

[
|ωn − ωm + q| − |q|

ωn − ωm
cos ((ωn − ωm + q)x)

cos qx

−|ωn − ωm − q| − |q|
ωn − ωm

cos ((ωn − ωm − q)x)

cos qx

]
.

Note that since both terms are symmetric under the exchange n↔ m, we can
split the sum into a diagonal and an upper diagonal part,

∑
n,m

=
∑

1≤n≤N
+2

∑
1≤m<n≤N

.

The expressions can suggest that the diagonal part in ∆< diverges. However this
is not the case, since the denominators also vanish, and we have to take the limit
carefully.

This polychromatic case is of particular interest since it can be used to simulate a
discrete representation of disorder, as discussed in Appendix B. Defining∆ω = π

Na

for some constant lattice spacing a > 0 and letting An =
√

∆ω, ωn = n∆ω for
n = 1, . . . , N and adding random phases i.i.d. uniformly γ ∈ [0, 2π) in the
cosine arguments, g(x) become a discrete representation of the Gaussian random
process for large N � 1. As we will discuss in the next section, continuous
disorder is more subtle, and we have to take the average at an early stage to make
progress. Moreover, it is harder to implement it numerically since it can usually
have discontinuous derivatives. For these reasons, this implementation is a useful
representation and is specially suited for holography calculations, having been
used in Chapter 4 and in many previous works in the literature [61,88,151]. In
this case all modes ωn are positive, and we can assume without loss of generality
that q > 0. For convenience, we separate the sum in the correction in a diagonal
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and a non-diagonal part, ∆ = ∆d + ∆nd with

∆d(x) = −ε
2

4

N∑
n=1

A2
n [2− |2ωn − q| − |q|

2ωn

cos ((2ωn − q)x+ 2γn)

cos qx
+

+
cos ((2ωn + q)x+ 2γn)

cos qx

]
(5.15)

∆nd = −ε
2

4

∑
1≤m<n≤N

AnAm
cos qx

[
cos
(
(ω−nm + q)x+ γn − γm

)
+

+ cos
(
(ω+

nm + q)x+ γn + γm
)

+

− |ω
+
nm − q| − |q|

ω+
nm

cos
(
(ω+

nm − q)x+ γn + γm
)

+

− |ω
−
nm − q| − |q|

ω−nm
cos
(
(ω−nm − q)x+ γn − γm

) ]
.

(5.16)

where for convenience we abbreviated ω±nm = ωn ± ωm. Note that only the
constant term in the diagonal part survives averaging over the i.i.d. phases γn. As
expected, we reproduce the results for the constant geometry in Section 5.3.2.1
on average. In Fig.5.3 we plot the expectation value of the dual operator for
N = 10 modes and fixed source q =

√
2 for a fixed realization of phases.

Figure 5.3: Expectation value of the boundary operator O Eq. (5.15) for source s(x) =

cos
√

2x and discrete implementation of a disordered geometry g(x) =
N∑
n=1

An cos (ωnx+ γn)

for di�erent amplitudes of disorder.

Delta source and two-point function We now consider the case sk = 1 that leads to the
corrections to the boundary-to-bulk propagator K. The integral Eq.(5.12) can be
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done explicitly,

K(2)(ρ;x) =
ρ1/4

2

N∑
n,m=1

AnAm
ωn + ωm

∫
R

dk
2π

(k − ωn − ωm)
(
e−|k−ωn−ωm|

√
ρ − e−|k|

√
ρ
)
eikx,

=
1

2π

ρ3/4

x2 + ρ

N∑
n,m=1

AnAm

[
1−

4ei
(ωn+ωm)x

2 sin (ωn+ωm)x
2

ωn + ωm

x

x2 + ρ

]
. (5.17)

Recall that the two-point function of the dual boundary operator is obtained by
evaluating the boundary-to-bulk propagator at the boundary. Recalling that the
zeroth order result is given by 1

πx2 , this yields to a relative correction to two-point
function given by

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

=
ε2

2

N∑
n,m=1

AnAm

[
1−

4ei
(ωn+ωm)x

2 sin (ωn+ωm)x
2

(ωn + ωm)x

]
. (5.18)

Note that both terms are symmetric over n ↔ m. Thus we can split the sum into a
diagonal term and a term where n < m,

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

=
ε2

2

N∑
n=1

A2
n

(
1− 2eiωnx sinωnx

ωnx

)
+

+ ε2
∑

1≤n<m≤N

AnAm

(
1−

4ei
(ωn+ωm)x

2 sin (ωn+ωm)x
2

(ωn + ωm)x

)]
.

Consider the following interesting examples,

• g(x) = g cosωx.

In this case we simply have

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

= −ε2 g
2

2

sin 2ωx

2ωx
, (5.19)

which is proportional to a sinc function. Recall that we are looking at correlations
of the point x with the origin. Thus the correction induced by the oscillating
geometry suppress correlations of points closer to the origin. Note that for ω � 1,
the peak is sharper, while for ω � 1 it is broader. Thus the bigger the wavelength
of the inhomogeneous geometry, the less is the correction localised at x = 0, see
Fig.5.4. We can check that the limit ω → 0 reduces to the constant case discussed
in Section 5.3.2.1.

• g(x) =
N∑
n=1

An cos (ωnx+ γn).
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Figure 5.4: Two-point function 〈O(x)O(0)〉 = 〈O(x)O(0)〉(0) + ε2δ〈O(x)O(0)〉 for the
oscillating geometry gtx = ε cosωx, from Eq.(5.19). On the left, we fix the frequency and
plot di�erent amplitudes of ε, on the right we fix ε and plot di�erent frequencies, in a log-log
scale.

The result above can be easily generalised for many modes. Following the
discussion in for the single cosine source, we have:

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

=
ε2

4

N∑
n=1

N∑
m=1

AnAm

[
1− sin (ω+

nmx+ γn − γm)

ω+
nmx

− sin (ω−nmx+ γn − γm)

ω−nmx

]
,

=
ε2

4

N∑
n=1

A2
n

[
1− sin(2ωnx+ 2γn)

2ωnx

]
+
ε2

2

∑
1≤m<n≤N

AnAm

[
1− sin (ω+

nmx+ γn − γm)

ω+
nmx

− sin (ω−nmx+ γn − γm)

ω−nmx

]
.

(5.20)

Interestingly this discrete random process has mean zero.

Disordered Geometries

We now study the case where g(x) is a centred random Gaussian field. As discussed in
Appendix B, we can decompose g in its spectral modes g(x) =

∫
R

dk
2π
gke

ikx, with gk also given
by a centered Gaussian process with E[gk] = 0 and E[gkgl] = g2δ(k − l). Equation (5.10)
becomes a stochastic integro-di�erential equation, and is still intractable. However since it
depends on the square of the geometry we can consider its non-trivial average. Defining
f̄k = E[fk] and averaging over g yield

4ρ2f̄ ′′k −
(
ρk2 − 3

4

)
f̄k = −ρ5/4g2

∫
R
dq (k − 2q)(k − q)e−|k−2q|√ρsk−2q,

= −ρ
5/4g2

4

∫
R
dl l(k + l)e−|l|

√
ρsl. (5.21)

As before, the constant source case give a trivial result. We now analyse non-trivial settings.
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Plane wave source Let s(x) = seiqx with q > 0. Integrating Eq.(5.21) gives

4ρ2f̄ ′′k −
(
ρk2 − 3

4

)
f̄k = −1

4
ρ5/4g2sq(k + q)e−|q|

√
ρ. (5.22)

The solution satisfying boundary conditions Eq.(5.9a) and (5.9b) is given by

f̄k(ρ) =
1

4
ρ1/4g2s

q

k − q
[
e−|q|

√
ρ − e−|k|

√
ρ
]
. (5.23)

Note that the case k = q can be treated by taking the limit of the above. Fourier
transforming back,

ψ̄(2)(ρ, x) =

∫
R

dk
2π
eikxf̄k(ρ) =

1

4
ρ1/4g2seiqx

[
e−|q|

√
ρE1 (iqx− q√ρ)− e|q|

√
ρE1 (iqx+ q

√
ρ)
]
.

(5.24)

The correction to the one-point function is given by

∆(x) =
δ〈O〉
〈O〉0

=
ε2

2
g2

[
ie−iqx

qx
+ E1(iqx)

]
. (5.25)

Oscillating source Let s(x) = s cos qx. As before, by linearity of Eq.(5.21), we can build
the oscillating case by summing two plane waves. Using that E1(z) = E1(z̄) we can
simplify E1(iqx) + E1(−iqx) = 2Re [E1(iqx)] = −2Ci(iqx), where Ci(x) is the cosine
exponential function29. This leads to

∆(x) = −ε2g2

[
sin qx

qx
+ Ci(qx)

]
. (5.26)

Delta source and two-point function Consider sk = 1. Integrating the right-hand side
of Eq.(5.21),

4ρ2f̄ ′′k − ρk2f̄k +
3

4
f̄k = −ρ−1/4g2. (5.27)

The regular solution at ρ =∞ for the above is given by

fk(ρ) = akρ
1/4e−|k|

√
ρ − g2

2ρ1/4
+
g2

4
ρ1/4ke−k

√
ρEi(k

√
ρ)− g2

4
ρ1/4kek

√
ρEi(−k√ρ),

(5.28)

29Note that here the bars refer to the complex conjugate, and not to the average.
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where Ei(x) =
∫∞
−x t

−1e−tdt is the exponential integral functions. Close to the boundary
ρ = 0 we have

fk ∼
ρ=0
− g2

2ρ1/4
+ akρ

1/4 +
g2

2
(γ − 1− log k

√
ρ) ρ3/4 + . . . . (5.29)

Therefore in order to preserve the zeroth order boundary condition we need to set
ak = 0. Note the appearance of two divergences: one proportional to ρ−1/4 and the
other proportional to log k

√
ρ. As we will see next, they recombine when taking the

Fourier transform and lead to a finite result.

Using the following Fourier transform that can be calculated from the definition of
Ei(x), ∫ ∞

−∞

dk
2π
e−akEi(ak)eikx = −1

2

|x| − ia sgn(x)

x2 + a2
, a > 0 (5.30)

we can deduce that∫ ∞
−∞

dk
2π

[
e−akEi(ak)− eakEi(−ak)

]
eikx =

ia sgn(x)

x2 + a2
. (5.31)

Now using that F [ikfk] = ∂xf(x),∫ ∞
−∞

dk
2π

k

4

[
e−akEi(ak)− eakEi(−ak)

]
eikx = −1

2

a2|x|
(a2 + x2)2

+
1

2
δ(x). (5.32)

Letting a =
√
ρ > 0 and taking into account the constant term leads to

K(2)(ρ;x) =

∫
R

dk
2π
fk(ρ)eikx = −g

2

2

ρ3/4|x|
(ρ+ x2)2

. (5.33)

Note that the first term in Eq.(5.28) leads to a delta function with opposite sign that
exactly cancels the one coming from the derivative of the sign function. As discussed
in Appendix A.3, this result is finite close to the boundary

K(2)(ρ;x) ∼
ρ=0
−g

2

2

1

|x|3
+ . . . . (5.34)

Therefore the correction to the two-point function can be written as

〈O(x)O(0)〉 =

(
1− ε2

2

π

|x|

)
1

π

1

x2
, (5.35)

The e�ect of disorder is similar to the inhomogeneous case discussed in Section 5.3.2.2.
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For points which are close together (x = 0) we have | δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

| � 1 which indicates
the breaking of the perturbative analysis. The minus sign of the correction indicates a
suppression of the zeroth order result, see Fig. 5.5. We shall see that the exponent for
which the correction blows up as x→ 0 depends on both the mass of the scalar field
(here fixed to m2 = −3/4) and on the type of disorder. In the following subsection,
we will relax these conditions and explore the dependence of our results on these
parameters.

Figure 5.5: Averaged two-point function Eq. (5.35) for a disordered Gaussian geometry and
di�erent disorder strength ε. The plot on the right is the same as the one in the left, but in
log-log scale.

Comments on other masses and correlated disorder

In this subsection we discuss how the results for the averaged two-point function generalise
to di�erent masses and correlated disorder.

We start by considering di�erent masses. It is easy to check that for a generic mass
parametrised by ν2 = m2 + 1 the zeroth order solution of Eq.(5.4) that satisfies the boundary
conditions Eqs.(5.3a),(5.3b) is given by,

fk(ρ) =
|k|ν

2ν−1Γ(ν)
Kν (|k|√ρ) sk. (5.36)

The boundary-to-bulk propagator is, as before, obtained by setting sk = 1 and computing
the Fourier transform, giving

K(0)(ρ, x) =
ρ1/2

2ν−1Γ(ν)

∫
R

dk
2π
eikx|k|νKν (|k|√ρ) =

Γ
(
ν + 1

2

)
√
πΓ(ν)

ρ
ν+1

2

(x2 + ρ)ν+ 1
2

. (5.37)

Taking the near boundary limit, we obtain the expected dual two-point function,

〈O(x)O(0)〉(0) = lim
ρ→0

ρ−
1+ν

2 K(0)(ρ, x) =
Γ
(
ν + 1

2

)
√
πΓ(ν)

1

|x|2ν+1
=

Γ
(
ν + 1

2

)
√
πΓ(ν)

1

|x|2∆+−1
, (5.38)
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which the the expected result for the two-point function of a conformal operator with mass
dimension ∆+. The minus one factor is, as before, due to the time dimensional reduction.
The calculation of corrections induced by the disordered geometry are exactly as before, with
the only di�erence that we use the general solution above as a source in Eq.(5.8). Averaging
the right-hand side, we get the general equation

4ρ2f̄ ′′k −
(
ρk2 + ν2 − 1

)
f̄k = −

√
πΓ
(
ν + 3

2

)
Γ(ν)

ρ−ν/2, (5.39)

which reduces to Eq.(5.27) for ν = 1/2. The general solution for the above is a combination
of hypergeometric functions. So next we consider other values of ν for which the calculations
are less cumbersome. Take for instance ν = 3/2. In this case the solution satisfying the
boundary conditions is given by

fk(ρ) = − 1

ρ3/4
+

k

4ρ1/4

[
e−k
√
ρ (1 + k

√
ρ)Ei (k

√
ρ)− ek

√
ρ (1− k√ρ)Ei (−k√ρ)

]
. (5.40)

The Fourier transform of the above can be computed exactly in the same way as in Section
5.3.2.3 and is given by

K(2) = −ρ5/4 2|x|
(ρ+ x2)3

, ν = 3/2.

Noting that for ν = 3/2 we have ∆+ = 1 + ν = 5/2, the dual two-point function is given by

〈O(x)O(0)〉 =
2

π

(
1− ε2

2

π

|x|

)
1

|x|4
, ν = 3/2.

This result follow exactly the one for ν = 1/2, with the only di�erence that now the zeroth
order result has a di�erent mass dimension. It is not hard to check that the same is true for
ν = 5/2, where the averaged two-point function is given by

〈O(x)O(0)〉 =
8

3π

(
1− ε2

2

3π

|x|

)
1

|x|6
, ν = 5/2,

and now 2∆+ − 1 = 6. Although we have not manage to prove the general result, it seems
that white noise always induce the same relative corrections in the two-point function. As
we will discuss next, this is not completely surprising. For higher masses the dual operator is
a more relevant deformation, but we are not changing the mass dimension of disorder.

To see this explicitly, note that the metric element gtx should be dimensionless. Since
we are imposing gtx = ε

∫ dk
2π
eikxfk, we must have [ε] = −1− [fk]. On the other hand, for

Gaussian white noise E[fkfl] = δ(k− l) and thus 2[fk] = −1. Therefore in this case we must
have [ε] = −1 + 1/2 = −1/2, i.e. Gaussian white noise is irrelevant. To change the e�ective



5.3. Perturbative analysis of the one-point and two-point correlation functions 126

mass dimension of disorder, we can consider correlated disorder E[fkfl] = σ2
kδ(k − l) with

σ2
k = |k|α, α ∈ R. Note that since σ2

k is a variance, it needs to be a positive definite function.
Generalising the previous discussion, this gives

[ε] = −α + 1

2
.

This is precisely what we found in the previous section: corrections to the two-point function
decay faster in the IR limit |x| → ∞ than the leading order result. Choosing α > 0 will only
make disorder more irrelevant. It is easy to check that for α > 0, we get subleading powers
of ρ which do not contribute to the two-point function.

We now explore the case α = −2, when disorder becomes relevant. For simplicity, lets
consider again ν = 1/2. In this case, the integral in the right-hand side of Eq.(5.21) can be
written as∫

dq
(k − 2q)(k − q)

q2
e−|k−2q|√ρ = (2k

√
ρ+ 1)ek

√
ρE2(kρ)− (2k

√
ρ− 1)ek

√
ρE2(kρ)− 4,

= 2ρ−1/2 + k
[
(2k
√
ρ+ 3)ek

√
ρEi(−k√ρ)+

+ (2k
√
ρ− 3)e−k

√
ρEi(−k√ρ)

]
,

where Eα(z) = zα−1
∫∞
z

dt t−αe−t is the generalised exponential integral function, which in
the last line we related to the exponential integral through the following recursive relation

p Ep+1(z) + z Ep(z) = e−z.

together with E1(z) = −Ei(−z). The regular solution at the Poincaré horizon which does
not modify the source will be given by

fk(ρ) = −ρ3/4 − 1

2
ρ5/4

[
(k
√
ρ+ 2)ek

√
ρEi(−k√ρ)− (k

√
ρ− 2)e−k

√
ρEi(k

√
ρ)
]
,

= −ρ3/4 − ρ3/4F+(k
√
ρ) +

ρ5/4k

2
F−(k

√
ρ),

= −ρ3/4
[
1 + F+(ω)− ω

2
F−(ω)

]
,

where in the last equality we defined ω = k
√
ρ. We can compute the Fourier transform of the

above in following the same recipes as discussed above. The boundary-to-bulk propagator is
given by

K(2)(ρ, x) = −ρ3/4 x2|x|
(ρ+ x2)2

,
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and the correction to the boundary two-point function thus given by

〈O(x)O(0)〉 =
1

π

1

|x|2
− ε2

|x|
=

1

π

(
1− ε2π|x|

) 1

|x|2
.

Note that di�erent from the results in the previous section, the correction induced by the
correlated Gaussian disorder dominates the decay of the propagator at the IR, |x| → ∞. For
any fixed amplitude ε > 0 and for |x| > 1

ε2π
the correction becomes more important than

the zero order result, which signals a breakdown of perturbation theory.

5.4 Numerical analysis

We have also performed a numerical analysis which allows us to confirm and extend our
previous results beyond perturbation theory. Our first step is to compactify the interval of
the radial coordinate. Following [151], we define y via

ρ =
y2

(1− y)2
(5.41)

In this new coordinate, the boundary is located at y = 0 and the Poincaré horizon at y = 1.
We redefine the scalar as

ψ =
y1/2

(1− y)1/2
χ

We can check that the near boundary behaviour can be expressed in terms of χ as

χ ≈ χ(0) + y〈O〉+ . . . (5.42)

Here χ(0) and 〈O〉 correspond to the source and vacuum expectation value of the dual
operator. Comparing with the pure AdS solution given in (5.5), we see that, at least for
gtx = 0 modes with non-zero momentum decay or grow exponentially at the horizon. After
turning on gtx, the near-horizon asymptotics become harder to analyse, but by continuity
with the pure AdS case we demand that the field vanishes there.

We solve the equation of motion by discretising it on a homogeneous grid along both the
radial coordinate y and the boundary coordinate x, and solving the resulting matrix equation
in Mathematica. Since most of the variability occurs along x, we use Nx = 450 grid points
along this direction, and Ny = 50 for the radial direction. After solving the wave equation,
we extract the vacuum expectation value by taking a radial derivative of the solution at the
boundary, as seen in (5.42).

We compute approximations to the one and two-point functions, concentrating on the
case of disordered geometries. We do so by employing the spectral representation of disorder
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discussed in Appendix B.3. More specifically, we take gtx to be given Gaussian by using
(B.4) with σ(kn) = 1 with suitable modifications described in more detail below.

5.4.1 One-point correlation function

We consider one-point function of the scalar in the presence of the source

χ(0) = cos(k0x).

As explained above, the vacuum expectation value corresponds to the derivative of the field at
the boundary, as given by (5.42). Since the periodicities of the source and geometry need to
fit in the same computational domain, the expansion of the disordered geometry will contain
terms cos(2nk0x + γ) with integer n, see Eq. (B.4). As seen in Section 5.3.2.2, these are
potentially problematic since the commensurability of the source with the geometry induces
extra near horizon divergences. To avoid this undesirable behaviour, we only consider
cosines of odd momentum in the sum Eq.(B.4). We shall see that with this modification we
can still obtain some generic features of disorder which match well with the perturbation
theory results for small disorder amplitude, and extend them to higher values.

We extract the one-point function for k0 = 5, and N = 20 for varying values of the
disorder amplitude V̄ as defined in Appendix B.3. For every V̄ , we generate a random
geometry by providing random phases in Eq.(B.4). Once we have obtained a large number
of them, we take the arithmetic average at each point x. We write the average vacuum
expectation value as a suppression factor η(V̄ , x) times the translational invariant result, given
by 〈O〉0 := 〈O〉|V̄=0 = −k0 cos(k0x). Hence, we define η by

〈O〉(x) = −η(V̄ , x)k0 cos(k0x) (5.43)

For small disorder amplitudes the x-dependence of η(V̄ , x) is very mild. However, at larger
amplitudes the x-dependence of η becomes important. We show this in Fig. 5.6 where we
plot the average of δ〈O〉 := 〈O〉0 − 〈O〉, normalised by 〈O〉0, as a function of x.

In order to estimate the overall suppression, we track the value at the peak η(V̄ , x = 0).
We show our results in Fig 5.7. For small V̄ , we observe that the averaged one-point function
displays the quadratic behaviour obtained in perturbation theory, although with di�erent
proportionality constant. At larger amplitudes, the power-law behaviour becomes milder.
Moreover, we are able to fit the distribution of values of the vacuum expectation value at the
peak with a Gaussian centred at the average value, see Fig 5.8.
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Figure 5.6: Change of the one-point function due to the presence of disorder as a function
of x for di�erent disorder amplitudes. We plot δ〈O〉/〈O〉0 = 1 − η, where η is defined in
(5.43).
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Figure 5.7: Dependence of the suppression of the peak of the vacuum expectation value,
η, defined in (5.43), as a function of disorder. The solid red line is a fit we do for small V̄ ,
obtaining η(x = 0) ≈ aV̄ γ with a = 2.05, γ = 1.94. At higher V̄ the exponent of the power
law decreases.
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Figure 5.8: Distribution of the value of the vacuum expectation value at the peak, 〈O〉(x = 0)
, for V̄ = 0.3 for 150 runs. We fit this to a Gaussian, f(x) = A exp (−(x− µ)2/(2σ2)), with
parameters A = 53.3, µ = −0.21, σ = 8× 10−3
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5.4.2 Two-point correlation function

We now obtain an approximation to the two-point function in the presence of a disordered
geometry. In principle, this entails a highly expensive calculation which requires inserting
arbitrary sources at di�erent points and taking the variation of the action with respect to
them in the presence of a spatially dependent geometry. In order to gain some insight on
the behaviour, we consider the more tractable calculation corresponding to the two-point
function G(x, 0), which as explained above can be obtained by inserting a delta function
source at y = 0. In order to regularise the delta function, we follow the strategy of [228], i.e.
we take as a source the boundary-to-bulk propagator evaluated at a small cuto�. We stress
that we need to take into account the fact that in our numerics the x coordinate is periodic,
which changes the form of the boundary-to-bulk propagator even in the absence of disorder
V̄ = 0. In fact, it is easy to show that for a box of length 2π/k0 the boundary-to-bulk
propagator is given by

K(x, 0; y) =
sinh

(
− y

1−y

)
cos(k0x)− cosh

(
− y

1−y

)
Note that here y refers to the radial variable introduced in Eq.(5.41).

Therefore, we approximate the two-point function G(x, 0) by the one-point function
obtained in the presence of the source

χ(0)(x) = K(x, 0; δ) (5.44)

at small δ. To test our approximation scheme, we first derive the results for pure AdS3, V̄ = 0.
As expected, this approximation fails for x ≈ 0. In particular, the so-obtained vacuum
expectation values become very large and negative for small enough x. However, the results
near the edge of the computational domain x = π are well-behaved, and match well with
the analytic result, see Fig 5.9. Therefore, we will be able to extract meaningful results away
from the cores in this region30.

The quantity of interest will be the ensemble average value of the one-point function
in the presence of the source Eq.(5.44), 〈O〉(x)|V̄ . Normalizing this by the corresponding
one-point function at V̄ = 0, we define

σ(V̄ , x) =
〈O〉(x)|V̄
〈O〉|V̄=0

In order to capture the behaviour away from the core, we take the spatial average in the

30Note that since we are using periodic boundary conditions, we cannot go infinitely far away from the
cores of the delta functions.
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Figure 5.9: We show our numerical result for the inverse of the two-point function G(x, 0)
evaluated as the one-point function in the presence of the source Eq.(5.44) for δ = 0.01 and
V̄ = 0. The blue dots represent the numerical data. The behaviour away from the core
deviates only by a multiplicative factor ∼ 1.09 from the analytic result obtained without
cuto� 〈O(x)〉−1 = k0(1 − cosx). To illustrate this, we plot with the black dashed line the
function 1.09k0(1− cosx) showing good agreement with the numerics. The inset shows the
behaviour near x = 0. Here, the solid line shows interpolation of the numerical data, which
indicates that two-point function acquires large, negative values near the core. The red dot
marks the point where the numerics diverge.

interval (2π/3, π), which we denote by

σ̃(V̄ ) =
3

π

∫ π

2π/3

dx σ(V̄ , x) (5.45)

This gives an estimate of the suppression of the two-point function in the presence of disorder.
We plot our results for this quantity with k0 = 5, N = 20, δ = 0.01 and varying V̄ in Fig

5.10. Once again, we obtain a quadratic dependence of the suppression with the disorder
amplitude.

5.5 Comparison with previous results in the literature

In the introduction, we reviewed di�erent approaches to introduce disorder or spatial
inhomogeneities in the holography literature. Now we discuss similarities and di�erences
with the one introduced in this paper. A direct comparison is in general not possible in
most cases. For instance the prediction for transport coe�cients of [59, 70, 82–84, 86]
requires the existence of a horizon and therefore are not applicable to our case. Even
with no horizon, a comparison could be problematic because the assumption of a random
chemical potential prevents, at least for a non-random background, any coherence e�ect.
The addition of a random source, investigated in [63,219], is, to the best of our knowledge,
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Figure 5.10: behaviour of σ̃ defined in Eq.(5.45) as a function of V̄ . The solid line corresponds
to a fit with a model of the form a+ bV̄ γ with a = 0.99, b = 1.98, γ = 1.98

not clearly connected to our approach. Instead of turning a source for the charge density,
in our model we introduce a source for the stress energy tensor. From the gravitational
perspective, we expect this to have a more significant e�ect because all fields couple to gravity.
The equivalent field theory statement is that all operators propagate on the fixed boundary
geometry. Moreover the geometry in this approach is not random, so no coherence e�ects are
expected to be observed. It is an open question whether the observation of non-perturbative
logarithmic corrections for marginal disorder in the two-point function, reported in [63,219],
could occur in our setting. In order clarify these issues it would be necessary to carry out a
full renormalization group analysis, beyond the scope of the paper, for the parameters for
which the perturbative contribution from the disordered background becomes marginal.
The result of such calculation would not only shed light on the existence of logarithmic
corrections but also on the possible existence of a metal-insulator transition.

The approach closer to the one studied in the paper is maybe that of [61, 90, 94, 151]
where a spatially random chemical potential, or scalar, in the boundary, backreacts in the
gravity background that becomes inhomogeneous as well. However there are still important
di�erences. At least perturbatively, interesting coherence e�ects are strongly suppressed,
even if no horizon is present, because the only independent source of randomness comes
from the scalar or chemical potential whose profile in the boundary is fixed by boundary
conditions.

5.6 Conclusions

In this manuscript we have proposed a new approach to study disordered holographic
field theories. We have computed numerically and analytically corrections due to a weakly
disordered gravity background in the one and two-point function of the scalar dual boundary



133

operator for di�erent choices of source and random component of the geometry gtx (constant,
a superposition of plane waves and finally a Gaussian random function). The main results
can be summarised as follows:

• A constant geometry induces a negative constant correction that decreases the overall
amplitude of the scalar one and two-point functions.

• The corrections induced by an oscillating geometry have a richer behaviour, and
depend on the interaction with the source. In the simple case where the source is
also an oscillating function, the perturbative correction to the one-point function can
be positive or negative, depending on the relative sign of the geometry and source
frequencies. For instance, if the source frequency is much bigger than the geometry’s,
the correction is similar in form to the constant case outlined above. However if
the source frequency is smaller than the geometry’s, the correction flips sign, adding
constructively to the zeroth order one-point function.

• An oscillating sinusoidal geometry induces an oscillating but decaying correction to
the two-point function, with an envelope ∼ |x|−α that depends on the scalar mass.

• The case in which the geometry is a superposition of oscillating modes is given, by
linearity, by the sum of the single frequency results mentioned above.

• We have identified coherence e�ects between a sinusoidal source and the weakly
random geometry introduced by a spectral decomposition. In certain region of param-
eters, the one-point function, which is sinusoidal, in the absence of disorder, becomes
completely random even in the limit in which perturbation theory applies.

• The averaged corrections to the two-point function in the presence of a delta source
and a weakly random, Gaussian distributed, gravity background, is negative and, for
large distances, decays as a power-law with an exponent that depends on the type
of disorder and the scalar mass. We have identified a range or parameters for which
perturbation theory breaks down, as the power-law decay is slower than in the non-
random case. This suggest an instability to a novel disorder driven fixed point which
could eventually lead to a metal-insulator transition in the system.





6 | Chaotic-Integrable transition in the
Sachdev-Ye-Kitaev model†

Quantum chaos is one of the distinctive features of the Sachdev-Ye-Kitaev (SYK) model, N
Majorana fermions in 0 + 1 dimensions with infinite-range two-body interactions, which
is attracting a lot of interest as a toy model for holography. In this chapter, we show
analytically and numerically that a generalised SYK model with an additional one-body
infinite-range random interaction, which is a relevant perturbation in the infra-red, is
still quantum chaotic, and retains most of its holographic features, for a fixed value of the
perturbation and su�ciently high temperature. However a chaotic-integrable transition,
characterised by the vanishing of the Lyapunov exponent and spectral correlations given by
Poisson statistics [115], eventually occurs in the low-temperature limit.

6.1 Introduction

Fermionic models with random interactions of infinite range have been intensively investi-
gated in a variety of contexts: from nuclear physics [229–234] to quantum chaos [235–240]
and condensed matter physics [241]. Recently the study of these infinite range models has
received a new impetus after Kitaev [100] found intriguing similarities with black hole
physics that suggested its relevance in holography. More specifically, it was shown that the
pattern of spontaneous and explicit conformal symmetry breaking in a simple model of N
Majorana fermions with random two-body interactions of infinite range, from now on
referred to as the Sachdev-Ye-Kitaev model (SYK), in the strong-coupling limit is identical
to that of an anti-de Sitter background in two dimensions close to the horizon [101,242,243].
As it was discussed in Section 2.5.1, two-dimensional AdS is a ubiquitous geometry in applied
holography, since it generically emerges as the near-horizon geometry of extremal black
holes. As a consequence, it governs many of the important properties of quantum critical
theories dual to these zero-temperature black holes. Besides sharing the same symmetry-

2This Chapter is based on Ref. [115], and was done in collaboration with Antonio M. García-García,
Aurelio Romero-Bermúdez and Masaki Tezuka. The author would like to acknowledge A. M. García-García,
M. Tezuka and A.R. Bermúdez for the numerical work in Section 6.3.3.
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breaking patterns, both the SYK and AdS2 have quantum chaotic features as the exponential
growth for intermediate times of certain out-of-time correlation functions with the same
universal exponent [101, 102]. The thermodynamic coe�cients in the low-temperature
free energy expansion, such as the zero temperature entropy density and the specific heat
coe�cient, are also shared by both models. The SYK model provides thus an ideal candidate
for the field theory dual of the AdS2 fixed point.

Research on the SYK model has also drawn considerable attention beyond the high-
energy community. The astounding simplicity and intriguing non-Fermi liquid properties
of the model have attracted the attention of condensed matter physicists, who saw the
opportunity for using the solvable strongly-interacting model as a building block for engi-
neeringmore complex phase diagrams. Interesting research lines currently being investigated
include application to random matrix theory [104,244–248], possible experimental realiza-
tions [112, 113, 249] and extensions involving non-random couplings [250, 251], higher
spatial dimensions [106,108,110,252,253] and several flavours [254].

A natural question to ask [106,108,110,250,252–254] is to what extent the holographic
properties are present in generalised SYK models. For instance, similar features are observed
for non-random couplings [250] and in higher-dimensional realizations of the SYK [108,253]
model. However, in some cases, the addition of more fermionic species can induce a transition
to a Fermi liquid phase [106] or a metal-insulator transition [110, 252] which, at least
superficially, spoils the holographic interpretation. In particular, if we take the perspective
that the SYK model is an e�ective description for the infra-red fixed point of a higher theory,
it is natural to study the stability of the model under deformations. In this chapter, we address
this question by considering a simple relevant deformation of the SYK model, consisting in
the addition of a random all-to-all one-body "hopping" term. We employ analytical and
numerical techniques to study the thermodynamic and chaotic properties of this generalised
model, which from now on is referred as our model.

The structure of the chapter is as follows. In Section 6.2, we review some of the key results
concerning the vanilla SYK model. This section contains no original results, but illustrate
some of the useful techniques we will need in the investigation of our model. Section 6.3
is the bulk of our original work. We introduce our generalised model and proceed with
the analytical investigation of the thermodynamic and chaos properties of our model. Our
results, which are also supported by an exact numerical analysis, suggest that although the
thermodynamical properties of the model are dominated by the integrable deformation, there
is a window of temperatures where the model is chaotic. Outside this window, our model
undergoes a chaotic-integrable transition. Therefore, for a certain range of parameters, a
holographic interpretation of the model is still plausible.
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6.2 An overview of the SYK model

The SYK model is defined by N-Majorana fermions interacting via a q/2-body disordered
all-to-all Hamiltonian,

H = iq/2
∑

1≤i1<i2<···<iq≤N

Ji1i2...iqχi1χi2 . . . χiq . (6.1)

The Majorana fermions satisfy the usual anti-commutation relations {χi, χj} = δij . Note
that q is assumed to be even, and a factor of i is necessary to make the Hamiltonian hermitian
when q = 2 mod 4. The disordered couplings Ji1i2...iq are taken to be i.i.d. centred normal
random variables with variance E[J2

i1i2...iq
] = J2(q − 1)!N1−q, which is chosen such that the

averaged energy is extensive. The constant J parametrises the amplitude of the quenched
disorder fluctuations, and at T = 0 is the only length scale of the model, with [J ] = 1 (in
units of energy).

Note that since the disordered interaction term is all-to-all, there is no notion of spatial
locality in the model, and therefore one is only interested in studying the time evolution of
the model. At equilibrium, we can compute the partition function by performing a path
integral in Euclidean time over a circle with radius β = T−1,

Z =

∫
χ(τ)=χ(τ+β)

Dχ e−
∫ β
0 dτ(χ∂τχ−H(τ)), (6.2)

where L(τ) = χ∂τχ−H(τ) is the Lagrangian of the system. In particular, we are interested
in the averaged free energy −βF = E[logZ], which give us information about the phase
diagram of the model. However, as usual in quenched disorder models, it is hard to compute
the average over a logarithm [255]. We, therefore, recur to the replica trick:

−βF = E[logZ] = lim
n→0

1

n
(E [Zn]− 1) . (6.3)

The replicated partition functionZn is defined by taking the tensor product of n independent
copies of the original Hilbert space. Its average is easier to compute,

E[Zn] =

∫ n∏
a=1

Dχa E

[
e
−

n∑
a=1

∫ β
0 dτ(χa∂τχa−Ha(τ))

]
, (6.4)

where the index a = 1, . . . , n labels the di�erent replicas, and we have omitted the periodic
boundary conditions to lighten notation. Note that the analytic continuation implied by
the limit in Eq.(6.3) is not always well defined, a technical point which we avoid here. The
average in Eq.(6.4) can be taken by noting that if X is a centred and normally distributed
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random variable, then E[eX ] = e
1
2
σ2 , where σ2 is the variance of X . This yields a term

with 2q Majorana fermions that couple di�erent replica indices. Performing two Hubbard-
Stratonovich transformations and integrating out the Majoranas we obtain the following
e�ective action,

Se�

N
= −

n∑
a,b=1

Tr log

(
δabδ(τ − τ ′)∂τ − Σab(τ, τ

′)

)
+

− 1

2

∫ β

0

dτ
∫ β

0

dτ ′
[
Σab(τ, τ

′)Gba(τ
′, τ) +

J2

q
Gab(τ, τ

′)q
]

(6.5)

where Gab(τ, τ
′) = N−1

N∑
i=1

χi,a(τ)χi,b(τ
′) is a bilinear on the Majorana fields and Σab is

its Hubbard-Stratonovich conjugate. Note that, since the χ’s anti-commute we have
Gab(τ, τ

′) = −Gba(τ
′, τ). In terms of the e�ective fields (G,Σ), the average replicated

partition function is now given by E[Zn] =
∫
DGDΣ e−Se�[G,Σ]. Note that, since the e�ective

action is proportional to N , in the large-N limit the path integral is dominated by the
saddle-points that extremise Se�. In particular, we will be interested at replica symmetric saddle
points for which Gab = δabG and Σab = δabΣ, and the limit in Eq.(6.3) is trivial. The replica
symmetric saddle solve the following saddle-point equations,

∂τG(τ, τ ′)−
∫ β

0

dτ ′ Σ(τ, τ ′)G(τ ′, τ ′′) = −δ(τ − τ ′′), (6.6)

Σ(τ, τ ′) = J2G(τ, τ
′)q−1. (6.7)

Note these equations are the Wigner-Dyson equations for the two-point function of the
theory. It is convenient to first study the saddle-point equations at T = 0, which simply
means unwrapping the thermal circle and taking τ ∈ R. At a saddle, G gives the many-body
Green’s function and Σ the associated self-energy. For a time translational invariant ansatz,
G(τ, τ ′) = G(τ − τ ′) (same for Σ), it is convenient to write Eq.(6.6) in Fourier space

G(ωn) = − [iωn + Σ(ωn)]−1 , (6.8)

Σ(ωn) = J2

∫ β

0

dτ e−iωnτG(τ)q−1, (6.9)

where ωn = π
β
(2n+1) are the fermionic Matsubara frequencies. Once a solution to the saddle-

point equations is found, we can compute the equilibrium thermodynamic properties of the
model by inserting the pair of saddle solutions (Ḡ, Σ̄) back into the e�ective action Eq.(6.5).
For a replica symmetric, translational invariant saddle, the free energy density f = F/N can
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be written as,

−βf = −1

2
Tr log Ḡ− (βJ)2

2

(
1− 1

q

)∫ 1

0

dθ Ḡ(θ)q (6.10)

where we have defined θ = τ
β
∈ (0, 1). For low temperatures β � 1, we expect to write the

free energy as a power series in β−1,

−βF =
β→∞

−βE0 + S0 +
c

2β
+O(β−2), (6.11)

where E0 is the ground state energy, S0 the zero temperature entropy and c the specific heat
coe�cient. We start by discussing the simplest case of q = 2, where an exact solution of
the saddle-point equations can be found, and the thermodynamic coe�cients in the above
expansion computed exactly.

6.2.1 Integrable case, q = 2

In general Eqs.(6.6) and (6.7) do not have a closed form solution. The only exception is for
q = 2, when Σ(ω) = J2G(ω) and Eq.(6.8) is a quadratic polynomial in G. It can be solve
exactly to give

G(ωn) =
i

2J

(
−ωn
J

+

√
4 +

(ωn
J

)2
)

= J−1

∫ 2

−2

dλ
2π

√
4− λ2

λ− iωn/J
, (6.12)

where in the last equality we wrote the Green’s function in terms of its spectral representation.
The spectral representation allow us to analytically continue G(ωn) to the whole complex
plane by simply taking z = iω̄n.

G(z) = J−1

∫
R

dλ
2π

ρ(λ)

λ− z/J
, (6.13)

where ρ(λ) =
√

4− λ2 I[−2,2] is the spectral density, given by the Wigner semicircle law. This
result shouldn’t come as a surprise, since for q = 2 the system is non-interacting, and the
Hamiltonian is a simple Wigner matrix. From the spectral representation, it is possible to
obtain the real-time retarded and advanced Green’s functions by analytically continuing
down to the real-frequency axisGR/A(ε) = G(z = ε± i0+). The Matsubara Green’s function
can be computed from Eq.(6.12) by summing over the Matsubara frequencies,

Gβ(τ) =
1

β

∑
n∈Z

e−iωnτG(ωn) =
1

βJ

∫
R

dλ
2π

ρ(λ)e−λJτ

1 + eβλ
. (6.14)
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Note that, as expected, the Matsubara Green’s function is anti-periodic in τ , Gβ(τ + β) =

−G(τ). The free energy density f = F/N can be computed by inserting the saddle-point
solution Gβ(τ) back into the action Eq.(6.5). While there is not a closed form expression
for all β > 0, of particular interest are thermodynamic coe�cients in the low-temperature
expansion given in Eq.(6.11). By an explicit calculation it is easy to check that the integral
terms in Eq.(6.5) do not contribute to these lowest order coe�cients, and the leading
contributions come from the Tr log term. It can be conveniently written in terms of the
Matsubara frequencies as

Tr logG = β
∑
n∈Z

logG(iωn)eiωn0+

. (6.15)

We can rewrite the sum over frequencies as the residue of the complex integral
∫
γ

dz
2πi

logG(z)n(z)ez0
+

where n(z) = (1 + eβz)−1 and the contour γ englobes the poles at z = iωn. The integrand
also has a branch cut along the real axis. Since the integral decay at infinity, we can deform
γ to wrap around the branch cut in the real axis. This leads to

1

2
Tr logG = β

∫
γ

dz
2πi

logG(z)n(z)ez0
+

= β

∫
R

dε
2πi

n(ε)
[
logG(ε+ i0+)− logG(ε− i0+)

]
= β

∫
R

dε
π
n(ε)Im logGR(ε) = β

∫
R

dε
π

Arg GR(ε)

1 + eβε
, (6.16)

In our case, GR is simply obtained by analytically continuing Eq.(6.12). Thus,

Arg GR =


π
2
− tan−1

(
−ε/J√
4J2−ε2

)
for |ε| < 2J,

π for ε ≥ 2J,

0 for ε ≤ −2J,

(6.17)

giving

1

2
Tr logG = βJ

∫ 2

−2

dε
π

π
2
− tan−1

(
−ε√
4−ε2

)
1 + eβJε

+ β

∫ ∞
2

dε
1 + eβJε

=
β�1

βJ(π − 1) + log
(
1 + e−2βJ

)
+

π

12βJ
+O(βJ−3), (6.18)

where in the last equality we used the Sommerfeld expansion for the Fermi-Dirac distribution
n(ε) =

β�1
θ(−ε)− π2

6(βJ)2 δ
′(ε) +O(βJ−4). The log term is exponentially decaying, and does

not contribute in Eq.(6.11). Therefore we have E0 = (1− π) JN , s0 = 0 and c = π
6
N
J
.
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6.2.2 Large-q analysis

The case q = 2 is somehow less interesting since the model is not interacting. On the other
hand, for q > 0 an exact solution is not available, and one has to appeal to a perturbative
approach in coupling at strong coupling Jτ � 1, discussed in Section 6.2.3. But before, we
introduce another extreme limit where the model can be studied for all J > 0. The idea is to
make a large-q expansion around the free fermion solution G(τ) = 1

2
sgn(τ),

G(τ) =
q→∞

1

2
sgn(τ)

(
1 +

1

q
g(τ) +O

(
q−2
))

, (6.19)

Note however that at large-q the self-energy Σ would scale as,

Σ(τ) =
q→∞

J221−qsgn(τ)eg(τ) +O(q−1) (6.20)

Therefore to have a self-consistent large-q expansion where the self-energy is suppressed at
large-q, we have to rescale the coupling J → 2q−1q−1J2. 31 The q →∞ expansion around
the free solution is therefore well-defined in the rescaled model. Inserting the expansion in
the saddle-point Eq. (6.6) and simplifying, we get simple ordinary di�erential equation for g

∂θg(θ) = 2(βJ)2eg(θ), (6.21)

where again we work in the coordinate θ = τ/β ∈ (0, 1). The equation above is a standard
boundary value problem, with boundary conditions g(0) = g(1) = 0. The solution is simply
given by

eg(θ) =

[
cos πν

2

cos
(
πν
(

1
2
− θ
))]2

, βJ =
πν

cos πν
2

. (6.22)

Note that ν ∈ [0, 1] parametrises the flow of βJ . The weak-coupling regime βJ = 0 is given
by ν = 0, while the strong-coupling regime βJ =∞ is given by ν = 1. As in the previous
section, we compute the free energy density by inserting the solution Eq.(6.22) in Eq.(6.10),
keeping only the leading terms in q. A shortcut into the calculation is to first take a derivative
∂J(−βf), compute the integral term and then integrate the result to recover the full free
energy density [102],

−βf =
1

2
log 2 +

πν

q2

[
tan

πν

2
− πν

4

]
+O

(
q−3
)
. (6.23)

31Note that this rescaling represents a change in the variance of the original model.
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To obtain the low-temperature (or strong-coupling) expansion of the free energy density in
terms of βJ , we have to invert the power series of βJ in around ν = 1,

1− ν =
βJ→∞

2

βJ
− 4

(βJ)2
+ 8

(
1 +

π2

24

)
+O

(
βJ−4

)
. (6.24)

The low-temperature expansion of the free energy Eq.(6.23) is thus given by

−βf =
1

q2
βJ +

(
1

2
log 2− π2

4q2

)
+

2(6 + π2)

3q2

1

βJ
+O

(
βJ−2, q−3

)
, (6.25)

and therefore we can identify, to leading order in large-q, the thermodynamic coe�cients
E0 = q−2NJ , s0 = S0/N = 1

2
log 2 − π2

4q2 and c = 4(6+π2)
3q2J

N . Di�erently from the q = 2

result, the interacting large-q model has a residual zero temperature entropy s0 > 0 which is
one of the distinctive holographic properties of the SYK model. Extrapolating this result
down to q = 2, we can also observe a positive increase in the specific heat coe�cient. These
are generic features of q > 2.

6.2.3 Strong-coupling limit and conformal symmetry

For finite q > 2, there is no closed-form solution of the saddle-point equations. We, therefore,
resort to a perturbative analysis in the coupling J . For high-temperature or weak-coupling
βJ � 1, the system is well-described by free fermions. The interesting region is the strong-
coupling or low-temperature regime βJ � 1. In this limit, the non-linear interaction term
in the saddle-point Eq.(6.6) dominate over the derivative term. The saddle-point equation
reads,

J2

∫ β

0

dτ ′ G(τ − τ ′)G(τ ′ − τ ′′)q−1 = δ(τ − τ ′′). (6.26)

It is easy to check that this equation is invariant under time reparametrization symmetry
τ → f(τ), where the two-point functions transforms covariantly as

G(τ − τ ′)→ [f ′(τ)f ′(τ ′)]
∆
G(f(τ)− f(τ ′)), (6.27)

where we have defined ∆ = 1/q ∈
(
0, 1

2

)
, and ′ = ∂τ . This symmetry can be seen as an

emerging conformal symmetry of the model in the strongly-coupled limit, under which the
fermion-bilinear operator G transforms as an operator with conformal dimension ∆. The
conformal symmetry suggests a procedure to solve the saddle-point equation. First, without
loss of generality we can work at T = 0 by unwrapping the thermal circle and taking τ ∈ R,
since finite temperature solutions can be obtained from the zero temperature ones through
the reparametrization given by τ → tan πτ

β
. Second, conformal symmetry suggests we can
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find a particular solution with the scaling ansatz G(τ) = A sgn(τ)|τ |−α. Lastly, all other
equivalent solutions can be found by applying the conformal mapping τ → f(τ).

Inserting the scaling ansatz in Eq.(6.26) yield

Gc(τ) = b
sgn(τ)

|Jτ |2∆
, b =

[
tanπ∆

2π
(1− 2∆)

]∆

. (6.28)

Note that this solution spontaneously break the reparametrization symmetry of the conformal
action. It is not hard to check, however, that the scaling solution in Eq.(6.28) conserves a
residual symmetry given by the Möbius transformations SL2(R): f : τ 7→ aτ+b

cτ+d
with ad−bc 6=

0. According to Goldstone’s theorem, this implies the existence of Goldstone modes living in
the coset space f ∈ Di�(R)/SL2(R) which parametrise the set of di�erent, but conformally
equivalently set of solutions of Eq.(6.26). Among those, the finite temperature solution can
be obtained from the scaling ansatz by compactifying back the line f : τ → tan πτ

β
,

Gβ
c (θ) = b

[
1

βJ sin πθ

]2∆

, θ =
τ

β
∈ (0, 1). (6.29)

We can focus on the finite temperature landscape of solutions by restricting to the Goldstone
modes f ∈ Di�(S1)/SL2(R) which characterise further reparametrizations of the thermal
circle.

Note that, consistent with our assumptions, the scaling solution Eq.(6.28) is only well-
defined in the strong-coupling region |τJ | � 1. Similarly, at T > 0 the solution given by
Eq.(6.29) is well-defined away from the boundary points {0, 1}. These ultra-violet (UV)
divergence forbid us from simply inserting back the solutions in Eq.(6.10), as we did back
in Sections 6.2.1 and 6.2.2. Also, the thermodynamic coe�cients are not necessarily solely
determined by the strict conformal solution. Indeed, it is possible to adapt the argument in
Section 6.2.1 to include a UV regulator. As shown in Appendix E.2, by regularising the
UV divergences in the on-shell action, we can compute the contribution of the conformal
solution Eq.(6.29) to the low-temperature free energy density. The zero temperature entropy
density s0 = S0/N is completely determined by the conformal saddle, and is given by the
following integral, also plotted in Fig.6.1

s0 =
1

π

∫ 1

0

du
1− u2

[
π

(
1

2
−∆

)
− u tan−1(u cot π∆)

]
, (6.30)

Note that this result is consistent with the values we previously found for the cases q = 2

and q =∞, and is indeed consistent with the exact numerical results for any q [245]. On
the other hand, the specific heat cannot be computed from the conformal solution, and one
needs to go to higher other terms that break conformal symmetry. Indeed, as we have seen
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Figure 6.1: Zero temperature entropy density for the SYK model.

in both q = 2 or q =∞, c ∝ J−1, suggesting that strictly at the conformal saddle βJ =∞
we have c = 0. The same is true for all higher order terms in the free energy expansion.

When we include the derivative term in Eq.(6.6), the degeneracy in the infinite di-
mensional manifold of conformally equivalent solutions is lifted. A di�eomorphism that
previously connected equally good solutions of the saddle-point equations acquires a finite
action cost proportional to the symmetry breaking term. This scenario is similar to the
meson mass term that explicitly breaks chiral symmetry in QCD [256]. An e�ective field
theory describing the action cost of these pseudo-Goldstone bosons is given by the celebrated
Schwarzian action [102] (see [257] for a derivation),

Se�[f ] = N
m

J

∫
dτ {f(τ), τ}, (6.31)

where m > 0 is a positive real constant and {f, τ} =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)
is the Schwarzian

derivative. One can check that {f, τ} = 0 for f ∈ SL2(R), and therefore the Schwarzian
derivative does exactly what we expect: it assigns an action cost to di�eomorphisms in the
coset space Di�(S1)/SL2(R), and has kernel given by the residual symmetry group SL2(R).
Note also that, in the strict conformal limit τJ � 1 the action cost vanish, signalling that all
di�eomorphisms becomemassless. In particular, note that the cost associated with the thermal
saddle f(τ) = tan πτ

β
is given by Se� = 2π2m

βJ
N , which is precisely a contribution to the

specific heat term in the low-temperature expansion of the free energy. This contribution was
shown to be exact [246,258–260], and is coherent with the aforementioned discussion that the
specific heat coe�cient term is given by the lowest order conformal symmetry breaking term.
It was also recently shown that the density of states associated with the pseudo-Goldstone
modes, obtained by exactly performing the path integral over f ∈ Di�(S1)/SL2(R) weighted
by Se� follows Cardy’s formula, which is consistent with previous results of Carlip for black
holes [246,261].
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6.2.4 Out-of-time-order four point function and quantum chaos

The exponential growth of a certain out-of-time-order (OTO) four-point function has been
recently proposed as a measure of quantum chaos in quantum field theories [262, 263]. This
proposal was motivated by the remark that, in a semi-classical expansion of this correlator
there is an exponential growth in a window around the Ehrenfest time t∗ ∼ λ−1

L log ~/S,
where S is the action and λL is the classic Lyapunov exponent of the system [263–265].
The growth rate of the OTO correlation function became a common quantitative measure
of chaos for quantum mechanical systems. Research in this direction has gained further
momentum in the high-energy physics community after it was shown that holographic
field theories described by classic black holes are quantum chaotic in this sense [266,267].
Since strong interactions are intimately related to chaos, this result has motivated Maldacena,
Shenker and Stanford to conjecture a bound in the growth rate of the OTO correlator,
which is only saturated by the ’infinitely’ strongly-interacting holographic theories [268]. As
we will shortly see, the fact that the SYK model saturates this bound is the strongest evidence
of the holographic nature of the model [102].

The disorder averaged out-of-time order four-point function investigated in [268] is
given by,

G4(t1, 0, t2, 0) =
1

N2

N∑
i,j=1

〈yχi(t1)yχj(0)yχi(t2)yχj(0)〉 (6.32)

where y = e−
1
4
βH and t1 > t2. Note that, instead of inserting the factor e−βH in front of

the operator insertions, we have divided the thermal circle in four insertions sandwiched
between the operators. It can be shown that this unusual definition act as a regularization for
an otherwise divergent four-point function [268]. Strictly at N =∞, the SYK four-point
function is given by a trivial product of two disconnected two-point functions. At large-N ,
the OTO correlation function reads

G4(t1, 0, t2, 0) = GR(t1)GR(t2) +
1

N
F (t1, t2) +O

(
N−2

)
(6.33)

where GR is the retarded Green’s function. The leading order non-trivial contribution

F (t1, t2) is given by a sum of ladder-diagrams F =
∞∑
n=0

Fn. Each Fn is a ladder-diagram with

n ’rungs’, and satisfy the following recursive Bethe-Salpeter equation

Fn+1(t1, t2) =

∫
dt1dt2 K(t1, t2, t3, t4)Fn(t3, t4), (6.34)
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with generating kernel K is given by

K(t1, t2, t3, t4) = J2(q − 1)GR(t13)GR(t24)G<(t34)q−2, (6.35)

where GR(t) = θ(t)〈{χ(t), χ(0)}〉 and G<(t) = 〈χ(t), χ(0)〉 are the retarded and lesser
Green’s function, and we have defined t12 = t1 − t2. These real-time Green’s function can
be obtained from the Euclidean time one-point function G(τ) by analytic continuation to
real time. Note however that for achieving the particular regularization in Eq.(6.32) the
lesser function need to be continued with t1 and t2 separated by half of the thermal circle,

GR(t) = θ(t)
[
G(τ = it− 0+) +G(τ = it+ 0+)

]
(6.36)

G<(t) = G

(
τ = it+

β

2

)
(6.37)

Denoting the convolution in the space of anti-symmetric two-dimensional functions by ?,
we can write Eq.(6.34) in a compact form Fn+1 = K?Fn. The sum of ladder diagrams can be

rewritten as a power series in K, F =
∞∑
n=0

Kn ? F0, which could be formally summed to give

F = (1−K)−1F0, which should be understood in the sense of operators. In principle, one
can diagonalise K in the space of anti-symmetric two-dimensional functions and insert the
operator (1−K) in terms of the spectral decomposition ofK. This cumbersome analysis was
pursued in [102]. Here we will take a shortcut proposed by Kitaev [100]. The asymptotic
behaviour of F is determined by ladder-diagrams with many rungs. One can therefore look
for solutions n→∞ of Eq.(6.34). Note that these are precisely the eigenfunctions ofK with
eigenvalue 1,

F∞(t1, t2) =

∫
dt1dt2 K(t1, t2, t3, t4)F∞(t3, t4) (6.38)

Since we are after solutions that grow exponentially when t1, t2 →∞, we make the following
separable ansatz: F∞(t1, t2) = eλL

t1+t2
2 f(t12). To proceed, we need an explicit expression for

K. We start by looking at the large-q case where we have exact solutions for G.

Large-q

The leading order large-q solutions for the Euclidean propagator are given in Eq.(6.22). To
leading order,

GR(t) = θ(t) +O(q−1), (6.39)

G<(t)q−2 = 22−qeg(τ=it+β/2) +O(q−1) =
22−q(πν)2

(βJ)2

1

cosh2 πν
β
t

+O(q−1) (6.40)
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Inserting in Eq.(6.35) we get,

F (t1, t2) = 2

(
πν

β

)2 ∫
dt3dt4

θ(t13)θ(t24)

cosh2 πν
β
t34

F (t3, t4). (6.41)

We can make this integral equation into a di�erential equation by taking derivates with
respect to t1 and t2 in both sides and noting that ∂xθ(x) = δ(x).

∂t1∂t2F (t1, t2) = 2

(
πν

β

)2
1

cosh2 πν
β
t34

F (t1, t2) (6.42)

Inserting the aforementioned growth ansatz F (t1, t2) = e
λ(t1+t2)

2 f(t12) and changing coordi-
nates to y = πν

β
t12 yield an ordinary di�erential equation for f ,

[
−∂2

y −
2

cosh2 y

]
fλL(y) = −

(
λLβ

2πν

)2

fλL(y) (6.43)

which is nothing but a one dimensional Schrödinger equation
(
∂2
y + V (y)

)
ψ = Eψ with the

well-known Poschl-Teller potential V (y) = −2sech2
y and energy spectrum parametrised

by EλL = −
(
λLβ
2πν

)2. It is easy to check it admits a bound state with energy EλL = −1 and
normalised eigenstate f(y) = 1√

2
sechy. This eigenvalue corresponds to a growth rate given

λL = 2πν
β
, which in turn imply the existence of an eigenfunction for the large-q generating

kernel given by,

F∞(t1, t2) =
1√
2
e

2πν
β

t1+t2
2 sech

πν

β
t12 (6.44)

Note that since ν ∈ [0, 1], this result is coherent with conjectured bound λL ≤ 2π
β
. Precisely

at the strong-coupling limit βJ =∞ (ν = 1) the Lyapunov exponent λL saturates the bound.
This result suggests that the conformal limit of the general q > 2 SYK model should also
saturate the bound.

Conformal limit

We now show that the generating kernel Eq.(6.35), when evaluated at the conformal limit
βJ =∞, also admits an eigenvector which exponentially grows with a rate that saturates
the chaos bound. Analytically continuing the Matsubara conformal one-point functions
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Eq.(6.29) to real time,

GR
c (t) = 2b cos π∆θ(t)

[
π

βJ sinh πt
β

]2∆

, (6.45)

G<
c (t) = b

[
π

βJ cosh πt
β

,

]
(6.46)

we can compute the conformal kernelK(t1, t2, t3, t4) = J2(q− 1)GR
c (t13)GR

c (t24)G<
c (t34)q−2.

The large-q eigenvalues Eq.(6.44) suggest a functional shape for an ansatz, F∞(t1, t2) ∝
e

2π
β
t1+t2

2 sechα πt12

β
for some exponent α. By direct integration, it we can check that choosing

α = 2∆ + 1 indeed gives an eigenfunction ofK with eigenvalue 1 [102]. This eigenfunction
corresponds to the exponential growth expected, with growth rate saturating the chaos
bound λL = 2π

β
.

The saturation of the chaos bound, together with the emergent conformal symmetry
at strong coupling and the finite entropy density at T = 0 are examples of the astounding
similarity between the SYK model and extremal black holes. They suggest the SYK model,
which is e�ectively described by a one-dimensional CFT in the infra-red as a strong candidate
for the dual of the ubiquitous AdS2 × S2 IR fixed point of extremal black holes. However,
from the point of view of condensed matter, the pure interaction Hamiltonian of the SYK
model is simplistic and should be understood as an e�ective theory describing a fixed point
from a more involved model. In the next section, we investigate whether these holographic
properties discussed above are stable under the simplest relevant one-body deformation of the
model.

6.3 A generalised SYK model

This section is the bulk of our original contribution to this field. We study the stability of the
holographic properties discussed in Section 6.2 under the relevant one-body perturbation.
For simplicity, unless otherwise stated, we restrict our analysis to the simplest non-trivial
SYK model with q = 4. The Hamiltonian of our generalised model is given by

H = i
∑

1≤i<j≤N

κijχiχj +
∑

1≤i<j<k<l≤N

Jijklχiχjχkχl, (6.47)

where we take both couplings κij and Jijkl to be uncorrelated and normally distributed
random variables, with mean zero and variances given by E[κ2

ij] = κ2

N
and E[J2

ijkl] = 6J2

N3 .
Since the random couplings are uncorrelated, terms which mix the two terms in Eq.(6.47)
vanish. Following the same replica argument as in Section 6.2 and focusing on the replica
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symmetric saddle yield the e�ective action

Se�

N
= −1

2
Tr log(∂τ − Σ) +

1

2

∫ β

0

dτ
∫ β

0

dτ ′
[
G(τ, τ ′)Σ(τ, τ ′)− J2

4
G(τ, τ ′)4 − κ2

2
G(τ, τ ′)2

]
.

(6.48)

As before, the saddle-point equations can be conveniently written in Fourier space as

G(ωn) = − [iωn + Σ(ωn)]−1 , (6.49)

Σ(ωn) = κ2G(iωn) + J2

∫ β

0

dτ e−iωnτG(τ)3, (6.50)

where ωn are the fermionic Matsubara frequencies. Our generalised model has two natural
energy scales κ, J . Recall that for the original SYKmodel with q = 2, which here corresponds
to J = 0, the saddle-point equations are exactly solvable. This case, which we will refer
as integrable, did not enjoy from the holographic properties: the entropy density vanishes
at T = 0, the specific heat coe�cient is the same as the one of Fermi liquid theory and
the semi-classical expansion of the OTO four-point function does not grow exponentially.
On the other hand, for any q > 2 (and even q = ∞) the SYK model becomes chaotic in
the sense we have previously defined in Section 6.2.4. But note that the one-body term is
more relevant than the two-body, in the sense of the renormalization group. Heuristically,
we expect that thermodynamic quantities that depend on the IR of the model, such as the
entropy density and specific heat, will be dominated by the one-body behaviour. This is less
clear for quantities such as the semi-classic growth rate of the OTO four-point function,
which takes place in timescales of the order of the Ehrenfest time.

We start our investigation of these considerations by treating the two-body term as
a deformation of the exact one-body theory and proceed by computing the corrections
induced by the interactions in the thermodynamic properties.

6.3.1 Perturbative analysis of the thermodynamic properties

We carry out an analytical calculation of the low-temperature thermodynamic properties
of the generalised one+two-body SYK model in the limit of large-N . Since the exact
solution for the one-body Hamiltonian is known analytically, it is convenient to develop the
perturbative approach around this exact ground state. For this purpose, we work in units
of κ = 1 and for convenience set J = κ̃. For κ̃ = 0, the model is integrable, and the exact
solution for the Euclidean one-point function was found in Section 6.2.1,

G0(ωn) =
−iωn + isgn(ωn)

√
4 + ω2

n

2
, (6.51)
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where we will use the subscript "0" to denote quantities with respect κ̃ = 0. For κ̃ >

0, Eq.(6.49) is an integral equation, and cannot be solved exactly. We proceed with a
perturbative solution in the limit κ̃� 1. Let

G(ωn) =
κ̃�1

G0(ωn) + κ̃2 g(ωn) +O
(
κ̃4
)
. (6.52)

Inserting in Eq.(6.49) and expanding in κ̃, we find

g(ωn) = − G0(ωn)

iωn + 2G0(ωn)
σ0(ωn) (6.53)

where we defined σ0(ω) =
∫
dτ eiωτG0(τ)3, which acts as a source for the first order

correction. The prefactor can be written exactly,

G0(ωn)

iωn + 2G0(ωn)
=

1

2

[
1−

ωn sgn(ωn)√
4 + ω2

n

]
. (6.54)

Note that the only temperature dependence of G0(ωn) is through the Matsubara frequencies,
and thus disappears upon analytic continuation iωn → ε+ i0+. This is expected since κ̃ = 0

is essentially a non-interacting system, and the spectral density should not be temperature
dependent. However, for any κ̃ > 0 the system is interacting, and we do expect non-trivial
temperature dependence in G(ωn). As we will see below, this comes exactly from the non-
linearity induced by the σ0 contribution. Since we do not have a closed form expression
for σ0, which involves the cube of the Matsubara propagator Eq.(6.14), we proceed with
a low-temperature expansion. The first step is to find a low-temperature expansion of
Eq.(6.14). Since the spectral density is compactly supported and the integrand is bounded,
by the Lebesgue dominated convergence theorem we can do a series expansion under the
integral. For a detailed discussion, see Appendix E.3. Integrating term by term results in

Gβ
0 (τ) =

β�1

(
− 5π8

32768β9
+

π6

1024β7
− π4

128β5
+

π2

8β3
+

1

β

)
csc πθ+

+

(
1025π8

4096β9
− 91π6

512β7
+

5π4

32β5
− π2

4β3

)
csc3 πθ +

(
−7245π8

2048β9
+

105π6

128β7
− 3π4

16β5

)
csc5 πθ+

+

(
4725π8

512β9
− 45π6

64β7

)
csc7 πθ − 1575π8

256β9
csc9 πθ +O(β−11), (6.55)

where as usual we defined θ = τ/β ∈ (0, 1). We now expand Gβ
0 (τ)3 in 1/β and perform the

Fourier transform to get σ0(ωn) =
∫ β

0
dτ eiωnτGβ

0 (τ)3. Inserting this into Eq.(6.53), together
with Eq.(6.54), we get an expression for g(ωn) that should be added to the zeroth order
solution Eq.(6.51). Analytically continuing this expression iωn → ε+ i0+ and expanding in
low frequencies gives an approximation for the analytic continuation of Eq.(6.52) GR(ε) =
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G(iωn → ε):

GR(ε) =
ε�1

ε

[(
− 3π7

8192β8
− 3π3

128β4
+

π

8β2

)
κ̃2 − 1

2

]
+

+ κ̃2ε3
(
− 3π7

65536β8
− 913π5

645120β6
− 17π3

3840β4
− π

64β2
+

1

8π

)
+ κ̃2ε7

(
− 9π7

1048576β8
− 913π5

5160960β6
− 41π3

20480β4
− π

384β2
+

1

128π

)
+ κ̃2ε7

(
− 15π7

8388608β8
− 913π5

27525120β6
− 121π3

393216β4
− 17π

30720β2
+

7

3840π

)
+

+ iε2
[(

913π5

322560β6
+

23π3

7680β4
+

π

16β2
− 1

4π

)
κ̃2 − 1

8

]
+ iε4

[(
311π3

122880β4
+

5π

1536β2
+

1

64π

)
κ̃2 − 1

128

]
+

+ iε6
[(

7π

15360β2
+

1

3840π

)
κ̃2 − 1

1024

]
+ iε8

[
59κ̃2

2580480π
− 5

32768

]
+O(ε9, κ̃4).

(6.56)

where we have conveniently separated the real and imaginary parts. The real part of the
retarded Green’s function is odd, while the imaginary part which gives the spectral density
is even. Note that the e�ect of interactions is mainly to renormalise the coe�cients of the
free κ̃ = 0 model, with both zero and finite temperature contributions. This reflects the fact
that the interactions are irrelevant compared to the one-body term. At zero temperature
β =∞, corrections only appear at order ε2. This means that the low-frequency behaviour
of the ground state of the system is unchanged.

The calculation of the low-temperature free energy density follows exactly the same
procedure as for κ̃ = 0, which we highlighted in Section 6.2.1. As before, the thermodynamic
coe�cients are determined by the Tr log term, which can be written as an integral over
the phase of the retarded Green’s function Eq.(6.16). For κ̃ > 0, we only have access to
the IR low frequency result in Eq.(6.56). Naively inserting this in Eq.(6.16) leads to UV
divergences due to unboundedness of the integrals. Note this was not needed for κ̃ = 0

since the compact support of the spectral function comes naturally from the exact solution.
This UV divergence is expected since the perturbative IR solution does not hold for large
frequencies. We, therefore, introduce an UV cuto� λ to regularise the integrals. We will
show that this leads to cuto� dependent ground state energy, but cuto� independent entropy
and specific heat. This is expected given that these coe�cients depend only on the IR
behaviour of GR. Indeed it is also possible to compute the exact specific heat coe�cient
in Eq.(6.18) by using only the low-temperature expansion of the exact GR

0 , as discussed in
Appendix E.1. Although there is some freedom in the choice of λ, it is largely constrained
by non-perturbative properties of the spectral function ρ(ε) = 2Im GR, which must satisfy
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the sum rule
∫ dε

2π
ρ(ε) = 1 and positivity ρ(ε) ≥ 0. These constraints give us a consistent way

to fix the cuto�: we choose λ such that
∫ λ
−λ

dε
2π
ρ(ε) = 1 32. This ensures that |ε| < λ saturates

the spectral weight, and therefore for |ε| ≥ λ the perturbative solution breaks down. It is
easy to check that this choice automatically satisfies positivity of ρ. With this discussion in
mind, we take

Arg GR =


π
2
− a(ε, κ̃, β) for |ε| < λ,

π for ε ≥ λ,

0 for ε ≤ −λ,

(6.57)

where we define a(ε, κ̃, β) = tan−1
(

Re GR
Im GR

)
with GR given in Eq.(6.56). As in Eq.(6.18),

the integral over (λ,∞) gives an exponentially decaying term that does not contribute to
the thermodynamic coe�cients. The remaining integral over (−λ, λ) can be integrated
numerically using the cuto� estimated from the sum-rule for ρ.33. To extract the specific heat
coe�cient, we subtract the zero temperature result and multiply by a factor β2. According
to Eq.(6.11), the result should asymptote to c/2 as β →∞. These are shown in Fig. 6.2 and
Fig. 6.3 respectively.

Figure 6.2: Numerical integration of β2(f − E0), which asymptotes to c/2N at low temper-
atures.

One can observe in Fig. 6.2 an order 10−3 correction in c/2N for small κ̃. While this
correction is consistent with the exact diagonalisation results in Section 6.3.3, it can also be
an artefact of perturbation theory. We thus study the dependence of c/2N in κ̃ as we go

32Note that since ρ is even, without loss of generality we can take a symmetric interval (−λ, λ).
33We have also checked numerically that, as long and positivity of ρ is respected, changes in the cuto� do

not a�ect the results for the thermodynamic coe�cients c and s0.
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Figure 6.3: Numerical integration of β(f −E0), which asymptotes to s0 at low temperatures.

higher orders in perturbation theory for GR(ε). This is shown in Fig. 6.4. The specific heat

Figure 6.4: Specific heat coe�cient c/2N , from Eqs.(6.16), (6.56), (6.11), as a function of κ̃
for di�erent orders in perturbation theory.

coe�cient c/2 increases with κ̃. However, the higher order we go in perturbation theory
for small frequencies ε, the smaller is the increase for a given κ̃. This suggests that a fully
non-perturbative calculation of c(κ̃) could lead to a κ̃ independent specific heat coe�cient at
least in the limit κ̃� 1.

Indeed this can also be understood analytically. First we need to identify which term
gives this contribution. The integral over the π/2 factor in Eq.(6.57) gives only a cuto�
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dependent contribution to the ground state energy βλ
2
, and is unimportant in what concerns

c. The remaining piece can again be studied using the Sommerfeld expansion,

−β
∫ λ

−λ

dε
π

a(ε, κ̃, β)

1 + eβε
=
β�1
− β

∫ 0

−λ

dε
π
a(ε, κ̃, β) +

π

6β

d
dε

a(ε, κ̃, β)|ε=0 +O(β−3). (6.58)

From Eq.(6.56), we can check that d
dε a|ε=0 = −1

2
for any κ̃ and β. Thus this term is identical

to the integrable κ̃ = 0 result. Since a is now temperature dependent, possible corrections
to the specific heat coe�cient can come from the integral of a over (−λ, 0) or from the
higher order odd derivatives. However a simple series expansion of a reveals that the leading
order temperature dependence in a comes at order O(ε9), which is beyond the scope of the
perturbative result in Eq.(6.56). One can check that, had we gone only to order O(ε4) in
GR, the first order temperature dependence would have been at order O(ε5). Going to order
O(ε6) pushes the leading order temperature dependence of a to order O(ε7), and finally
going to order O(ε8) pushes it to O(ε9). This analytical argument is fully consistent with the
evaluation of c from Eq.(6.16) depicted in Fig.6.4.

In Section 6.3.3 we give numerical exact diagonalisation results for the low-temperature
thermodynamic coe�cients. Corrections to the κ̃ = 0 specific heat coe�cient c = π/6 and
entropy density s0 = 0 for κ̃ � 1 are found to be of order O(10−3) or lower. Our large-
N perturbative results are in good agreement with the numerics. They also corroborate
the claim that the ground state of our model is dominated by the one-body term in the
Hamiltonian.

6.3.2 Perturbative large-q analysis of the Lyapunov exponent

In the previous section, we have shown that the thermodynamic properties of the modified
SYK are dominated by the relevant one-body term in the infra-red, a result which is
consistent with the naive expectations of power-counting. However, as we mentioned in
Section 6.3, it is not clear whether the same is true for the Lyapunov exponent, which is a
property of the model at shorter timescales.

In Section 6.2.2 we have shown that the Lyapunov exponent of the general q/2-body
SYK model could be computed exactly, at all coupling scales, in the limit where q � 1

and the rescaled coupling J2 → 2q−1q−1J2 is held fixed. Motivated by this result, in this
section, we develop a similar analysis for our mixed model, in the case where we generalise
the two-body term to a q/2-body term. Since the Lyapunov exponent of the q = 2 SYK
model vanishes, it is more natural to switch perspectives from the previous section and study
the perturbative e�ect of the integrable term in the chaotic q/2-body term. Note, however,
that this perturbative approach should be taken with a pinch of salt. The reason is that, as we
saw in the previous section, the one-body term is more relevant than the q/2-body term,
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and therefore a perturbative analysis can be ill-defined in the IR. With this disclaimer in
mind, by closely following the method presented in Section 6.2.2, we show that despite the
naive perturbative expansion in κ� 1 being singular, it captures the relevant physics we are
interested. For any fixed κ� 1, we identify a range of temperatures for which the Lyapunov
exponent is non-zero, though never saturates the bound on chaos. We also show that it
vanishes for su�ciently low temperatures. This striking result is in full qualitative agreement
with the numerics presented in Section 6.3.3 for the model Eq.(6.47), which corroborates
the existence of a chaotic-to-integrable transition in this type of generalised SYK model.

We will work with the following Hamiltonian,

H = i
∑

1≤i<j≤N

κijχiχj + iq/2
∑

1≤i1<i2<···<iq≤N

Ji1i2...iqχi1χi2 . . . χiq , (6.59)

which is the q/2-body generalization of the original model Eq.(6.47). As before Ji1i2...iq and
κij are uncorrelated normally distributed random variables with zero average and variance
2q−1

q
(q−1)!J2

Nq−1 and κ2

qN
respectively. Note that, following the discussion in 6.2.2, we have rescaled

the coupling constants: κ2 → κ2/q and J2 → J22q−1/q. The large-q limit is then defined by
taking q � 1 and keeping the rescaled couplings fixed [102]. We follow the same replica
procedure described in Section 6.2 to get the following e�ective action

Se�

N
= −1

2
Tr log(∂τ − Σ) +

1

2

∫ β

0

dτ
∫ β

0

dτ ′
[
G(τ, τ ′)Σ(τ, τ ′)− J2

21−qq2
G(τ, τ ′)q − κ2

2q
G(τ, τ ′)2

]
.

(6.60)

As opposed in Section 6.2.2, for q � 1 we can consistently expand

G(τ) =
βκ�1

1

2
sgn(τ)

(
1 +

1

q
g(τ) +O(q−2)

)
. (6.61)

Closely following the steps in Section 6.2.2, we insert the above expansion in the saddle-point
equations and simplify to get

∂2
θg = 2(βJ)2eg(θ) + (βκ)2, (6.62)

where as usual θ = τ/β ∈ [0, 1). This equation should be compared with Eq.(6.21). Together
with the finite temperature boundary conditions g(0) = g(1) = 0, this equation defines a
non-linear boundary value problem for g. For κ = 0, the solution was given in Eq.(6.22),
and we reproduce here for convenience,

eg(0)(θ) =

[
cos πν

2

cos
[
πν
(

1
2
− θ
)]]2

, βJ =
πν

cos πν
2

. (6.63)
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Note that, as before, ν ∈ [0, 1] parametrises the flow of βJ . In the limit κ/J � 1, we can
linearise Eq.(6.62) around g(0). More explicitly, we substitute g(θ) = g(0)(θ)+(κ/J)2 g(1)(θ)+

O(κ4J−4) into Eq.(6.62) to get the equation satisfied by g(1):(
∂2
x −

2

cos2(x)

)
g(1)(x) =

(
βJ

πν

)2

, (6.64)

where we changed the θ-coordinate to x = πν
(

1
2
− θ
)
∈
[
−πν

2
, πν

2

]
and the corresponding

boundary conditions in this coordinate are given by g(1)

(
πν
2

)
= g(1)

(
−πν

2

)
= 0. The solution

of this boundary-value problem is given by

g(1)(x) =

(
βJ

(πν

)2

[α(x) tanx+ log cos x+ x tanx+B(ν)(x tanx+ 1)] (6.65)

where we have defined,

α(x) =

∫ x

dt log cos t (6.66)

B(ν) = −
−α
(
−πν

2

)
tan
(
πν
2

)
+ α

(
πν
2

)
tan
(
πν
2

)
+ πν tan

(
πν
2

)
+ 2 log cos

(
πν
2

)
πν tan

(
πν
2

)
+ 2

(6.67)

Note that B(ν) is a negative monotonically decreasing function of ν bounded by B(0) = 0

and B(1) = log 2 − 1, and α is a transcendental function that can be explicitly written in
terms of dilogarithms. Similar to Section 6.2.4 the out-of-time order four point correlator is
generated by repeated convolution with a real-time retarded kernel, which in the generalised
large-q model is given by simplifies considerably,

KR(t1, t2, t3, t4) = θ(t13)θ(t24)
[
2J2eg(τ=it34+β/2) + q−1κ2

]
. (6.68)

Thus, at large-q the second term is sub-leading. As in Section 6.2.4, the asymptotic growth
rate of the OTO four-point function can be obtained from solving the eigenvalue problem
F∞ = KR ? F∞ on the space of antisymmetric two-dimensional functions for the eigenvalue
1. The integral eigenvalue equation can be converted to a partial di�erential equation by
taking partial derivatives with respect to ∂t1 and ∂t2 on both sides,

∂t1∂t2F (t1, t2) = 2J2eg(τ=it12+β/2)F (t1, t2). (6.69)

Searching for solutions with exponential growth, F (t1, t2) = e
λL(t1+t2)

2 f(t12) and changing
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coordinates to y = πν
β
t12, the above simplifies to[
∂2
y + 2

(
βJ

πν

)2

eg(x→iy)

]
f(y) =

(
βλL
2πν

)2

f(y) (6.70)

As in Section 6.2.2, the equation above has the form of a one-dimensional Schrödinger
equation for the eigenfunction f with eigenvalues Eλ = −

(
βλL
2πν

)2 in the potential V (y) =

−2
(
βJ
πν

)2
eg(iy). We have shown in Section 6.2.2 that for κ = 0 this equation admits an eigen-

value E(0)
λL

= −1 with eigenstate f (0)
λL

(y) = 1√
2
sechy, which corresponds to an exponential

growth with Lyapunov exponent given by λL = 2π
β
ν. We are interested in studying what

happens to this bound state when we add the κ/J � 1 correction to the potential. Or
in a more suggestive notation, when we consider V (y) = V(0)(y) + (κ/J)2V(1)(y) where
V(1)(y) = eg(0)(x→iy)g(1)(x → iy) with g(1)(x) given by Eq.(6.65). By standard quantum
mechanical perturbation theory, the correction in the energy Eλ = E

(0)
λ + (κ/J)2E

(1)
λ is

given by

E
(1)
λ =

〈
f (0)

∣∣∣∣ 2

cosh2(y)
g(1)(iy)

∣∣∣∣ f (0)

〉
=

1

2

∫
R
dy

g(1)(iy)

cosh4(y)
=

1

2

(
βJ

πν

)2 [
B(ν) +

19

18
− log 2

]
=

(
βJ

πν

)2

δE(ν), (6.71)

where 2δE(ν) ≡ B(ν) + 19
18
− log 2. Therefore the correction to the bound-state energy is

given by

EλL = −1 +

(
βκ

πν

)2

δE(ν) = −1 +
(κ
J

)2 δE(ν)

cos2 πν
2

. (6.72)

Letting EλL = −
(
βλL
2πν

)2 we obtain the correction to the Lyapunov exponent,

βλL
2π

=

√
1−

(κ
J

)2 δE(ν)

cos2 πν
2

=
βκ�1

ν −
(κ
J

)2 νδE(ν)

2 cos2 πν
2

+O
(
κ4J−4

)
. (6.73)

In Fig.6.5 we plot the Lyapunov exponent for di�erent values of κ with J = 1. This is to
be compared with the exact numerical data from Fig.(6.9). Although we do not get exact
agreement between the critical values of β∗ for which λL = 0, the qualitative behaviour
is similar. For κ = 0 we get the saturation of the bound at low temperatures. For any
finite κ > 0, there is a range of temperatures where a non-zero Lyapunov exponent persists,
although this range decrease rapidly as we increase κ.

We estimate the critical temperature β∗ for which λL crosses the real axis by doing a
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Figure 6.5: Lyapunov exponent λL, Eq.(6.73), as a function of the inverse temperature βJ ,
in units of 1/kB, for di�erent values of κ and J = 1. Note that βλL

2π
∼ |β − β∗| vanishes

linearly near the transition, with a slope of approximately −2κ
π
√

72
. These results are in good

quantitative agreement with those shown in Fig. 6.9.

low-temperature expansion of Eq.(6.73). For βJ � 1, we have

1− ν =
βJ�1

2

βJ
− 4

(βJ)2
+

24 + π2

3(βJ)3
+O

(
(βJ)−4

)
. (6.74)

Inserting in Eq.(6.73) and expanding,

βλ

2π
= 1− (βκ)2

π2

[
1

72
+

19− 18 log π

36βJ
+O

(
(βJ)−2

)]
. (6.75)

Thus, assuming the transition occurs for large βκ we obtain that, to lowest order in βκ, the
transition should occur when

(βκ)∗ =
√

72π. (6.76)

This estimate gives β∗ ≈ 133 for κ = 0.2 and β∗ ≈ 53 for κ = 0.5, which is in very good
agreement with Fig.6.5 and with the large-N result obtained numerically for q = 4 in Fig.
6.9.

Similarly, one can also expand Eq.(6.73) in βJ � 1. This gives the following high-
temperature behaviour

βλ

2π
=

βJ�1

βJ

π
− (βJ)3

8π
+

(βκ)2

π

[
−19 + 18 log 2

βJ
+O(βJ)

]
, (6.77)

where the O ((βκ)2) correction is negative, indicating that chaos is weakened also in this
regime of high temperatures.
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6.3.3 Numerical analysis

In Section 6.3.1 and 6.3.2 we argued that despite the fact that the thermodynamic properties
of our modified model are dominated by the one-body term, there is a stable range of
parameters where the model should still be chaotic. These analytical results relied on two
distinct perturbative settings. In this section, we give numerical support to this claim. The
numerical analysis is, alike the previous sections, divided into two parts: thermodynamics
and Lyapunov exponent. The thermodynamics of the model was computed using two
complementary numerical techniques: exact diagonalisation of the Hamiltonian Eq.(6.47) for
N ≤ 34 and exact solution of the replica symmetric saddle-point Eq.(6.49), valid at large-N .
The later was also used for in the numerical solution of the eigenvalue problem for the
exponential growth of the OTO four-point function. All the numerical results corroborate
with our analytical predictions.

I would like to acknowledge that all the numerical results presented here have been done
by my collaborators A.M. García-García, M. Tezuka and A.R. Bermúdez, and have been
published as part of a collaborative work in [115]. I present these results here for consistency.

Thermodynamics

We initiate our analysis of Eq. (6.47) with the study of thermodynamic properties by exact
diagonalisation. The results in this section are given in units where J = 1. For a given
set of parameters we have obtained at least 106 eigenvalues. We have computed, following
[104, 245], the low temperature limit of the entropy by using standard thermodynamic
relations and a finite size scaling. The latter is necessary as the zero temperature limit of the
entropy density s0 vanishes for any finite fixed N . For the standard SYK model s0 is finite,
however our results are consistent with a vanishing s0 for any κ. This is in agreement with
the theoretical expectation that, in the large-N limit and deep in the infrared, where the
conformal prediction applies, the first term in Eq. (6.47) is irrelevant. The entropy associated
to the second term in Eq. (6.47) vanishes at zero temperature [100].

We note that a vanishing s0 does not compromise the existence of a gravity-dual inter-
pretation [269]. The specific heat, linear in the low temperature limit with a slope c which is
proportional to the number of Majoranas fermions N , is qualitatively similar to the one in
the unperturbed SYK model [100]. This is the expected behaviour in a field theory with
the gravity dual. For small κ, the two-body random perturbation is not important and
c ≈ 0.5N/κ. However, for κ > 1 we have observed a steady increase of c with κ.

The zero temperature limit of the entropy, s0, was obtained by exact diagonalisation
of the Hamiltonian Eq. (6.48) for di�erent N and κ. We note that for any finite N the
entropy will vanish in the T → 0 limit 34. Therefore, to justify a zero entropy in this limit

34The reason is simply that for finite N there is a gap of the order 2−N so that degeneracy is not exact.
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Figure 6.6: Entropy S as a function of temperature T from the exact diagonalisation of
Eq.(6.48) for di�erent N ’s and κ where kB stands for the Boltzmann constant. The number
of eigenvalues employed is mentioned in the main text. The weak dependence on N is
consistent with a vanishing zero temperature entropy.

it is necessary to extrapolate the finite N numerical results to the N →∞ limit. However,
this does not seem strictly necessary as the N dependence, depicted in Fig. 6.6, is very
weak, especially for κ ≥ 1. A simple extrapolation of the curves for larger N to the T = 0

limit leads to a zero-temperature entropy which is smaller than 10−3 for all κ’s. These
results are fully consistent with the N → ∞ results, which have been obtained by fitting
logZ
N

= −E0β + s0 + c
2β

+ c1
β2 + c2

β3 for J = 1. In order to obtain logZ
N

we solve Eq. (6.49) as
described previously in Refs. [102, 253]. We use a Fast Fourier transform to switch between
frequency and time domains and solve iteratively until convergence. For ωn = 2πT (n+ 1/2)

we take −Nω/2 < n < Nω/2− 1, with Nω = 224 and Nt = 4Nω points in the frequency and
time domains.

We now move to the study of the low temperature limit of the specific heat C(T ) per
Majorana obtained by exact diagonalisation. For that purpose we employ the following
thermodynamic expression:

C(T ) =

〈
1

NZ

∑
k

(Ek − Ē)2

T 2
e−βEk

〉
, (6.78)

where Z is the partition function, 〈. . .〉 stands for ensemble average and k labels the eigen-
values for a given disorder realisation with average Ē.

We carry out quenched averages, namely, the specific heat is computed separately for
each disorder realisation. The final specific heat is the arithmetic average over all disorder
realisations. We then fit the low temperature limit by a low order polynomial in temperature.
The coe�cient of the linear term is the specific heat coe�cient, c, which in units of N and
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with the coupling constant set to one, is π/(6κ) for κ→∞ and ≈ 0.4 for the unperturbed
two-body SYK model (κ = 0) [102, 245]. As shown in Fig. 6.7, for large κ, c is indeed
very close to π/(6κ). Only for κ � 1 we observe a moderate increase of c. This is a
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Figure 6.7: Specific heat C(T ) as a function of temperature, in units of J/κB , obtained from
Eq.(6.78) and the exact diagonalisation of Eq.(6.48) forN = 34 and di�erent κ’s. The specific
heat is clearly linear in the low temperature limit with a slope that it is close to the κ = 0
prediction c = π/6 for any κ ≤ 1.

further confirmation that the ground state and lowest energy excitations of the Hamiltonian
Eq.(6.48) are mostly controlled by the random-mass term. We cannot study arbitrarily small
κ because it would require to reach very low temperatures that compromise the numerical
accuracy of the results. We have checked that the obtained specific heat coe�cient c is robust
to changes in the fitting interval. We have observed that for N ≤ 30 the value of c does
not have a monotonic dependence on N which makes it di�cult to carry out a finite size
scaling analysis. For that reason, unless otherwise stated, the fitting is restricted to the largest
N = 34 that can be reached numerically. Finally, in Fig. 6.8, we compare the specific heat
coe�cient c obtained from the large-N fitting of logZ

N
, as explained above with the exact

diagonalisation result given in Fig. 6.7. Deviations are consistent with 1/N corrections only
taken into account in the latter.

Lyapunov exponent

As discussed in Section 6.2.4 the exponential growth rate of OTO four-point functions
provide a measure of quantum chaos. In the SYK model, the OTO correlation function is a
sum of ladder diagrams recursively generated by convolution with a kernel composed of the
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Figure 6.8: Specific heat coe�cient c as a function of κ. The exact diagonalisation result,
shown in blue crosses, is the slope of the fitting curve in Fig. 6.7. The black dots are obtained
from fitting −β F

N
= logZ

N
obtained from the numerical solution of the large-N saddle point

equations Eq.(6.49). The dashed line corresponds to c = π/(6κ)N , the analytical value when
the Hamiltonian only contains the random-mass term [102]. Di�erences between the two
results are consistent with 1/N ∼ 0.03 corrections only retained in the exact diagonalisation
result.

retarded and lesser one-point functions. In our generalised model it can be written as

K(t1, t2, t3, t4) = GR(t1)GR(t2)
[
3J2G<(t3 − t4)2 + κ2

]
. (6.79)

Following our previous discussion in Sections 6.2.4 and 6.3.2, the growth rate of the OTO
is determined by the eigenfunction satisfying the following eigenvalue problem,

F (t1, t2) =

∫
R
dt3
∫
R
dt4 K(t1, t2, t3, t4)F (t3, t4). (6.80)

Therefore, to know whether our model is chaotic or not, it su�ce to solve the eigenvalue
problem and evaluate the asymptotic of F . In this section we pursue this strategy numerically.

In order to numerically compute the exact retarded and lesser one-point functions, we
follow the strategy employed in Refs. [102,106]. We analytically continue iωn → ε+ i0+ the
saddle point Eq.(6.49) and solve it using the spectral representation of the retarded Green’s
function. Substituting the ansatz: F(t1, t2) = eλL(t1+t2)/2f(t12), where t12 = t1 − t2, into
Eq. (6.38) and expressing it in the frequency domain, we obtain the following eigenvalue
equation for f(ω):

f(ε′) =

∣∣∣∣GR

(
ε′+i

λL
2

)∣∣∣∣2 [κ2f(ε′) + 3J2

∫
dε
2π
glr(ε

′−ε)f(ε)

]
(6.81)
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where ε′ = ε1 − iλL/2 and g<(ε) =
∫
dt eiεtG<(t)2. Finally, we compute λL by imposing the

existence of a non-degenerate eigenvalue equal to one so that Eq. (6.81) is satisfied.
Results, depicted in Fig. 6.9, show the system displays chaotic behaviour, namely, the

Lyapunov exponent λL is finite, for all studied values of κ and su�ciently high temperature.
However, even in the strong coupling limit, λL never approaches the bound λL = 2πkBT/~.
Indeed, for a given temperature, λL decreases as κ increases and eventually vanishes for
su�ciently strong κ or, for a fixed κ, for su�ciently low temperature. This is fully consistent
with the previous results that suggested a chaotic-integrable transition for a fixed κ and
su�ciently low temperature. Therefore, chaos is robust to the introduction of a relevant
one-body perturbation but the Lyapunov exponent never reaches the saturation value and
eventually vanishes.
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Figure 6.9: Lyapunov exponent λL in the model of Eq. (6.47) with J = 1 as a function of
β and κ. From top to bottom κ = 0, 0.2, 0.5, 1, 2. A finite λL, which is a signature of
quantum chaos, is observed for a fixed κ and not too low temperature. For su�ciently low
temperatures, and κ > 0, we identify a T ∗(κ) such that λL = 0 for any T < T ∗(κ) which
signals a chaotic-integrable transition. Inset: Zoomed in region in low temperature limit.
Except for κ = 0 (dark blue), λL vanishes for any T ≤ T ∗(κ).

6.4 Conclusion

In this chapter, we have discussed the stability of the holographic properties of the SYK
model under a relevant, one-body all-to-all deformation of the Hamiltonian. The model was
introduced in Section 6.3, where we have also derived the large-N saddle-point equations.
In Section 6.3.1, we introduced a perturbative scheme around the ground state of the model,
which is dominated by the one-body term. We proceeded by analytically computing the
low-temperature expansion of the free energy, and determined the zero temperature entropy
density and specific heat coe�cient. Since these thermodynamic coe�cients are determined
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by the long-time, infra-red properties of the model, they are consistent with the ones for the
pure integrable model and are largely una�ected by the leading order two-body perturbation.
While the long-time equilibrium properties of the model are expected to be dominated by
the relevant term, this is less clear for properties that depend on intermediate time scales,
such as the exponential growth of the OTO four-point function around the Ehrenfest time.
In Section 6.3.2 we pursued this question by studying the large-q expansion of the model
around the chaotic q/2-model. Although this expansion is singular, we showed that it
surprisingly captures the relevant physics. Our results suggest that chaos is stable for a range
of temperatures. Finally, in Section 6.3.3 we concluded by presenting exact numerical results
supporting to our analytical results. Both the exact diagonalisation and large-N numerical
estimate of the thermodynamic coe�cients agree with our analytical results in the region
they overlap. Furthermore, the numerical solution of the eigenvalue problem is in qualitative
agreement with our large-q analysis, and suggests that chaos is stable for a non-trivial range
of temperatures. We note that spectral statistics for this model has been studied in [115], and
further corroborates our conclusions.



7 | Conclusion

In this dissertation we have investigated several aspects in the study of translational symmetry
breaking in holographic field theories. Our journey started with a pragmatic introduction
to the tools and techniques of applied holography, followed by a review of the previous
literature that prompted our research questions. Translational symmetry breaking was first
motivated by the unphysical infinite dc-conductivity of the simplest charged holographic
theory. Although the early Stueckelberg-based models have been successful in addressing
this issue, and correctly reproduce the behaviour of standard metals, they fail to capture the
physics of metal-insulator transitions in the strong relaxation regime. We have shown that
introducing a non-minimal coupling between the axion field and the Ricci tensor can lead
to a crossover towards an insulator-like behaviour at strong relaxation. However, since the
e�ects of disorder are only incorporated in Stueckelberg-based models through momentum
dissipation, it became clear that this phenomenological approach is limited. A move towards
genuinely disordered models inevitably involves breaking translational invariance explicitly
at the level of the dual geometry. We investigated two complementary approaches in this
direction. The first consisted in introducing a disordered chemical potential in an initially
translational invariant theory. We have shown that this deformation drives the theory to a
non-trivial disordered fixed point which can be studied analytically by judiciously choosing
the distribution of disorder. Our second approach, instead, took as a starting point a non-
perturbative disordered solution of Einstein’s equations. We have studied how disorder
a�ects a probe scalar field living in this random geometry, and have found compelling signs
of coherence in the one and two-point functions of dual boundary operator. This is the first
time coherence e�ects are observed in a holographic field theory. Finally, we changed sides
in the duality and investigated the SYK model, an interacting many-body model which was
recently shown to possess black hole-like properties suggesting the existence of a gravity
dual. Our work has shown that these holographic properties of the model are robust against
the most natural one-body perturbation of the model.

We now summarise our key original results in more detail.
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Summary of results

In Chapter 3 we have introduced an asymptotically AdS Brans-Dicke (BD) model where
we coupled a scalar field to the Ricci tensor in the Einstein-Hilbert action. First, we studied
the model in the presence of translational symmetry, taking the scalar field to be a function
of the holographic radius. In this case, the background was found analytically and can be
heuristically pictured as the dual of a metal with a varying coupling constant. Although
the dc-conductivity is divergent - as expected for translational invariant geometries - we
obtained analytical results for the regular part of the dc-conductivity σQ, which was shown
to deviate from the result in Einstein-Maxwell-dilaton (EMd) theories. In contrast, the shear
viscosity to entropy ratio η/s was shown to saturate the KSS bound. As a consistency check,
we also reproduce these results using a shortcut consisting of mapping our Brans-Dicke
theory to EMd via a conformal transformation. Interestingly, we note that exactly the
same procedure can be applied to general f(R) theories, and find the analogous results for
σQ and η/s to this general family of translational invariant theories. In the second part of
the chapter, we break translational symmetry by taking the scalar to be a function of the
Stueckelberg field. The finite dc-conductivity of the model has been calculated analytically
and is given as a function of the background at the horizon. Unfortunately in this case
an analytical solution for the geometry is not available, and we proceed by solving the
field equations numerically. Although the dc-conductivity is always positive, we observe a
crossover between dσdc

dT < 0 and dσdc
dT > 00 as we increase the relaxation strength, a behaviour

commonly referred in the holography community as insulating-like. However, we argue that
this insulator-like behaviour is mostly due to the screening of charge in dual field theory.
We have also computed the ac-conductivity and showed that it scales linearly with frequency
for low-frequencies, strong relaxation and low-temperatures. Common to other e�ective
theories of momentum relaxation, the shear viscosity to entropy ratio is always above the
KSS bound.

In Section 4 we studied the break of translational invariance in a holographic field
theory by introducing a zero mean normally distributed chemical potential. Although this
deformation is a priori relevant, we showed that the power spectrum of disorder can be
tuned to make it marginal or irrelevant. We proceeded with a perturbative calculation
around the weak disorder limit. At zero temperature, the first order random correction
to the geometry can be found analytically and was shown to be suppressed in the IR for
irrelevant disorder. For marginal disorder, the perturbative corrections to the geometry
diverge logarithmically in the IR, indicating the breakdown of the perturbative expansion
around the translational invariant ground state. We showed that this divergence can be
resumed, and yield an emergent Lifshitz scaling in the IR geometry. The perturbative
correction to the dc-conductivity is positive, reflecting the fact that the weakly-disordered
chemical potential introduces charge into the system. The story is similar for the finite



167

temperature analysis, although in this case the analytical calculations are more intricate. At
finite temperature, the black hole acquires an e�ective charge and the thermal conductivity
has the expected Drude peak that signals the breaking of translational invariance. However,
the electric conductivity is not a�ected by the random chemical potential to leading order in
the disorder strength.

Section 5 continued with the investigation of inhomogeneous holographic theories. We
have introduced a family of three-dimensional exact solutions of Einstein’s equations indexed
by a free function which was taken to depend on the spacelike boundary coordinate. We
introduced a massive scalar field to probe the e�ects of the inhomogeneous background. The
corrections to the translational invariant one and two-point functions of the dual boundary
scalar operator were calculated analytically, for di�erent choices of inhomogeneity in the
geometry. In particular, in the case where the source is also an oscillating function, the
perturbative correction to the one-point function can be positive or negative, depending on
the relative sign of the geometry and source frequencies. We have also identified coherence
e�ects between a sinusoidal source and the weakly random geometry introduced by a
spectral decomposition. In a certain region of parameters, the one-point function, which is
sinusoidal, in the absence of disorder, becomes completely random even in the limit in which
perturbation theory applies. The averaged corrections to the two-point function in the
presence of a delta source and a weakly random, normally distributed, gravity background,
is negative and, for large distances, decays as a power-law with an exponent that depends on
the type of disorder and the scalar mass. We have identified a range of parameters for which
perturbation theory breaks down, as the power-law decay is slower than in the translational
invariant case. This suggests an instability to a novel disorder driven fixed point which could
eventually lead to a metal-insulator transition in the system.

Finally, in Section 6 we have investigated the thermodynamic and chaotic properties of a
generalized SYK model consisting of a one plus two-body uncorrelated all-to-all random
terms. We have shown that the ground state of this generalised model is dominated by the
one-body term, which is relevant in the sense of the renormalisation group. Therefore,
we proceeded with a perturbative analysis of the model around the one-body solution and
calculated the low-temperature expansion of the free energy. The zero temperature entropy
density and specific heat coe�cients were found to be unchanged to leading order. Next,
we have generalized the two-body term to a q/2-body term and have studied the OTO
four-point function in the large-q limit. A singular perturbative expansion around the
interacting term revealed that the Lyapunov exponent characterising the exponential growth
of the OTO correlation function is finite for a range of temperatures. This result suggests
that chaos is stable in the generalised model. Outside the stability window, we speculate
that this model undergoes a chaotic-integrable transition. Numerical results supporting our
perturbative analytical calculations are also provided.
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A look into the future

In the course of writing this dissertation, at least five works motivated by disordered holo-
graphic theories have appeared [270–274], illustrating the dynamism of this fairly young field.
In these last lines, we draw the attention to a couple of open problems which we speculate
will drive the field in the years to come.

In Chapter 4 we have discussed how Lifshitz geometries arise in the infra-red from the
resummation of the perturbative expansion of weak marginal disorder. Our work suggests
that Lifshitz scaling is generic for marginal disorder in holographic theories. Very recent work
by Aharony and Narovlansky [270,273] takes a step forward in analysing the renormalization
group flow of general disordered quantum field theories35 and has shown that the emergence
of a dynamical scaling exponent is generic. This is yet an example of general quantum
field theory result which was first motivated by holography. Surprisingly, in this work,
the authors propose to take the dynamical critical exponent z as a beta function for the
renormalisation group flow and develop an analytical treatment of the Callan-Symanzik
equations. The analogy between Einstein’s equations and the renormalisation group flow
discussed in Section 2.3.3 could give valuable insight in transposing this non-perturbative
treatment to holography. It would be interesting to investigate the possibility of finding the
full disordered geometry, or at least its average, from the Einstein’s equations.

A similar direction which remains largely unexplored is the study of thermalisation in
disordered holographic theories. From the gravity perspective, thermalisation is related
to the problem of black hole formation. Work by Pretorius and Choptuik has identified
an emerging scale invariance near the black hole formation point, very similar to a phase
transition in critical systems [275]. Disorder has been recently shown to slow down or
even prevent thermalisation in some condensed matter systems, a phenomenon known as
many-body localisation [51,276,277]. It would be interesting to investigate whether disorder
can drive the gravitational collapse away from the black hole fixed point to the equivalent of
a many-body localised phase.

Our work in Chapter 5 have only studied one instance of a random geometry. Asymptotic
AdS3 solutions of Einstein’s Equations have been classified in [225], and there are other
families in which disorder could be introduced in a similar fashion. It would be interesting
to investigate whether introducing disorder in other metric components could lead to a
similar universal behaviour and, if not so, identify the physics behind these di�erences.
Second, since temperature tends to suppress coherence e�ects in disordered systems, in
this work we have chosen to study holographic field theories at strictly zero temperature.
However, finite temperature solutions in three dimensions have also been classified [278],
and our work could be therefore also generalized in this direction. In particular, it would be
interesting to study the low-temperature regime and compare it with our results. Third, we

35Not necessarily holographic or marginal.
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have only considered Gaussian distributed disorder with delta-like correlations. However,
our formalism is easily generalisable to more general forms of disorder where correlations
between points become important. Fourth, a renormalization group treatment, feasible
for marginal random perturbations, would shed light on the existence, or not, of a novel
non-trivial disordered driven fixed point which signals an instability toward a metal-insulator
transition in the system.





A | Auxiliary calculations

A.1 Scalar field dynamics in AdSd+1

Consider a massive scalar field ψ minimally coupled to a fixed AdSd+1 geometry. The action
is given by,

S[ψ] =
1

2

∫
dd+1

x
(
dψ ∧ ?dψ −m2ψ2

)
= −1

2

∫
dd+1

x
(
d ? dψ −m2ψ

)
ψ +

1

2

∫
ddx ψ ? dψ. (A.1)

The equations equation of motion are given by

(
∆g −m2

)
ψ = 0. (A.2)

We now fix a local Poincaré II chart xa = (r, t,x) (see Section 2.2.1) in which the metric is
given by ds2 = r−2

(
dr2 − dt2 + dx2

)
. We can exploit the fact that the geometry is static

and homogeneous to write the scalar field in Fourier space,

ψ(r, t,x) =

∫ ∞
−∞

dω
2π

∫
Rd−1

dd−1
k

(2π)d−1
e−iωt+ik·x ψω,k(r)

where Eq.(A.2) simplifies to a second order ordinary di�erential equation,

∂2
rψk −

d− 1

r
∂zψk +

(
k2 +

m2

r2

)
ψk = 0 (A.3)

with k2 = −ω2 + k2. Letting ψ = r(d+1)/2φ and defining ν2 = d2

4
+m2, Eq.(A.3) simplifies

to a modified Bessel Equation

(kr)2φ′′k + (kr)φ′k −
(
ν2 + (kr)2

)
φk = 0. (A.4)
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with general solution given by a linear combination of the modified Bessel Functions

φk(z) = akKν(kr) + bkIν(kr). (A.5)

Requiring that ν > 0 imply that m2 > −d2/4 (note that d > 0), which is the celebrated
Breitenlohner-Freedman (BF) bound. According to the holographic dictionary in Section (2.3),
we should impose that the solution remain bounded at the Poincaré horizon r =∞. The
behaviour of the Bessel functions in the asymptotic region r →∞ is given by

Kν(kr) ∼ e−kr, Iν(kr) ∼ ekr. (A.6)

Note that since k2 = −ω2+k2, it can be positive or negative, these cases need to be considered
separately.

Case k2 > 0 : In this case, the general solution solution blows up as r → ∞. Therefore
regularity at the Poincaré Horizon requires imposing bk = 0. Near the boundary
r = 0, Kν(kr) ∼ Γ(ν)

2
(kr

2
)−ν + Γ(−ν)

2
(kr

2
)ν . Therefore,

ψk(r) =
r→0

rd−∆ψ(0)(k) + r∆ψ(1)(k) + . . . , (A.7)

where we have defined ψ(0)(k) = ak2
ν−1Γ(ν) kd−∆, ψ(1)(k) = ak2

ν−1Γ(−ν) k∆ and
∆ = d/2+ν. Note that since∆ > 0 the first term in Eq.A.7 always decay as we approach
the boundary. This is not always the case for the second term, since d−∆ = d/2− ν
can either positive or negative. We say the mode ψ(0)(k) is normalisable, while the
mode ψ(1)(k) is only normalisable in the range −d2/4 < m2 < 1− d2/4. Within this
range, both modes can be used to construct a Hilbert space in the boundary space, and
each choice lead to a quantisation scheme. The Hilbert Spaces are related through a
canonical transformation, since

(
ψ(0), ψ(1)

)
are conjugated pairs [279]. Outside this

range, only one mode is normalisable and there is a natural choice of quantisation for
building the boundary Hilbert Space.

For later reference, we write the full solution for k2 > 0

ψ(r, x) = r
d+1

2

∫
ddk

(2π)d
eik·x ak Kν(kz)

Case k2 < 0 : In this case k is purely imaginary, and we can parametrise k = iβ for β ∈ R.
The results above are still valid, up to the change kr → iβr. The independent solutions
are now given by ψ± = K±ν(iβr), and have regular asymptotics ∼ e±iβr as r → ∞.
We therefore have two independent solutions for ψ, one corresponding to an incoming
plane wave at the Poincaré horizon and one being emitted by the horizon. In terms
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of the duality, these two independent regular solutions ultimately correspond to the
advanced and retarded real-time propagators. As before,m2 must satisfy the BF bound
and we have normalisable and non-normalisable modes. We refer the reader to [280]
for a detailed discussion.

A.2 Holographic renormalisation

In this Appendix we discuss the details of holographic renormalisation in our inhomogeneous
geometry. LetM be the underlying manifold defined by the geometry in Eq.(5.1). The
action for the probe scalar is given by

S[ψ] =
1

2

∫
M
d3
x
(
dψ ∧ ?dψ +m2ψ2

)
= −1

2

∫
M
d3
x ψ

(
d ? dψ −m2ψ

)
+

1

2

∫
∂M

d2
x ψ ? dψ.

Thus on-shell we have

Son-shell[ψ] =
1

2

∫
∂M

d2
x
√
−γ ψna∂aψ, (A.8)

where n is the normal unit vector pointing outwards of the boundary ∂M and γ is the
respective induced metric. Note that strictly at the conformal boundary ρ = 0 Eq.(A.8) is
divergent. To regularise this divergence, we evaluate the on-shell action at a slice ρ = λ� 1

which we later take to zero. The normal unit vector pointing outward the fixed ρ = λ

surface is then given by n = −2ρ ∂ρ|ρ=λ, while the induced metric is

ds2 = λ−1g(0)(x)dxµdxν = λ−1
(
−dt2 + dx2 + 2gtx(x)dtdx

)
and thus

√
−γ = λ−1√−g(0) with

√
−g(0) =

√
1 + g2

tx. Note that g(0) is interpreted holo-
graphically as the metric where the dual boundary field theory lives. Inserting in the on-shell
action,

Son-shell[ψ] = −
∫

dtdx
√
−g(0) ψ∂ρψ|ρ=λ.

As with the pure AdS case, the above on-shell action needs to be renormalised. Solutions to
Eq. (5.2) satisfy the following near-boundary expansion

ψ(ρ, x) = ρ
1−ν

2 s(x) + ρ
1+ν

2 A(x) + . . . ,
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where all higher order terms have positive exponents. Thus we have

Son-shell[ψ] = −
∫

dtdx
√
−g(0)

(
λ

1−ν
2 s(x) + λ

1+ν
2 A(x) + . . .

)
×

×
(1− ν

2
λ−

1+ν
2 s(x) +

1 + ν

2
λ
ν−1

2 A(x) + . . .
)
,

= −
∫

dtdx
√
−g(0)

(
1− ν

2
λ−νs(x)2 + s(x)A(x) + . . .

)
.

Note that the highest diverging is in the term ∝ s2. To remediate this particular divergence,
we add the following boundary counter-term to the action

S
(0)
ct =

1− ν
2

∫
∂M

d2
x
√
−γ ψ2|ρ=λ =

1− ν
2

∫
dtdx

√
−g(0)

(
λ−νs(x)2 + 2s(x)A(x) + . . .

)
.

In most of the manuscript we work with ν = 1/2, for which other divergences are not
present, and therefore the only counter term required is the above. However, for larger
values of ν there is a finite tower of higher divergences between the leading term ∝

∫
s(x)2

and the term ∝
∫
s(x)A(x) which we have omitted in the ellipsis, and which should also be

taken into account in order to obtain a finite one-point function. For instance, the next order
divergence would be of order O

(
λ−(ν−1)

)
, which can be remediated by adding a derivative

term S
(1)
ct = 1

2ν−2

∫
∂M d2√−γψ ∆γψ|ρ=λ. Higher order terms can be treated in the same

way, adding higher derivative terms S(k)
ct accordingly (for a complete discussion, see [131]).

However note these derivative terms do not contribute to the coe�cient of the one-point
function ∝

∫
s(x)A(x). Accounting for all the divergences, the renormalised action reads

Sren = lim
λ→0

(Son-shell + Sct) = −1

2

∫
dtdx

√
−g(0) 2ν s(x)A(x). (A.9)

The expression above makes clear that the leading coe�cient s(x) in the expansion of ψ acts
as a source for a dual operator 〈O(x)〉 = 2ν A(x). The expectation value of the dual is then
simply given by

〈O(x)〉 =
1

√−g(0)

δ (−Sren)

δs(x)
= 2ν A(x)

A.3 Boundary-to-bulk propagator and boundary two-point
function

Consider a probe scalar field ψ living in an asymptotically AdSd+1 geometry with met-
ric tensor g. As previously discussed, the equation of motion for the scalar is given by
(∆g −m2)ψ = 0. We define the bulk-to-bulk propagator G(x, y) as the Green’s function for
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this equation. In other words, it is the solution of

(∆g −m2)G(x, y) =
i√
−g

δd+1(x− y). (A.10)

Note that if we couple the scalar field with a source by adding a term (∆g −m2)ψ = J , then
knowing bulk-to-bulk propagator we can build a solution

ψ(x) =

∫
dd+1

y
√
−g G(x, y)J(y).

In a neighbourhood of the boundary, by the Fe�erman-Graham theorem we can write the
asymptotically AdS metric in a coordinate chart xa = (ρ, xµ) as

ds2 =
dρ2

4ρ2
+

1

ρ
gµν(ρ, x

µ)dxµdxν ,

g(ρ, xµ) ∼
ρ=0

g(0)(x
µ) + ρg(1)(x

µ) +O(ρ2),

where g(0)(x
µ) defines the metric at the conformal boundary located at ρ = 0. At a slice close

to the boundary ρ = λ� 1, we have

√
−g =

√−g(0)

2λ1+d/2
.

And therefore evaluating Eq.(A.10) at ρ = 0 for one of the arguments make the right-hand
side zero. This defines the so called Boundary-to-bulk propagator

(∆g −m2)K(ρ;xµ, yµ) = 0

which depends only on one radial variable. As we will see next, it propagates solutions from
the boundary to the bulk. Recall that according to the holographic dictionary solutions of
the bulk equations of motion define a dual source at the boundary according to

lim
ρ→0

ρ−∆−/2ψ(ρ, xµ) = s(xµ),

where ∆± = d
2
± ν with ν =

√
d2

4
+m2. Thus by imposing boundary conditions

lim
ρ→0

ρ−∆−/2K(ρ;xµ, yµ) = δd(xµ − yµ),

we find that the K satisfies

ψ(ρ, xµ) =

∫
ddy K(ρ;xµ, yµ)s(yµ).
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This justifies the terminology boundary-to-bulk propagator, since it propagates the source
s(xµ) living in the boundary into a scalar field satisfying the Bulk equations of motion.

From this relation it is also possible to see that the bulk-to-bulk and boundary-to-bulk
propagators are related to the boundary tree-level boundary two-point function. Since we
have

〈O(xµ)〉 = (2ν) lim
ρ→0

ρ−∆+/2ψ(ρ, xµ)

we see that if we define the boundary tree-level two-point function

G(0)(x
µ, yµ) = 〈O(xµ)O(yµ)〉 = (2ν) lim

ρ→0
ρ−∆+/2K(ρ;xµ, yµ)

it satisfies the usual linear-response relation

〈O(xµ)〉 =

∫
ddy G(0)(x

µ, yµ)s(yµ)

between the source and the expected value.



B | Notes on random fields

B.1 Implementation

Consider a random function f : Rd → R. A useful trick to parametrise the randomness in f
is to work in the spectral representation (a.k.a. Fourier space)

f(x) =

∫
Rd

ddk
(2π)d

f(k)eik·x, (B.1)

where f(k) are random Fourier coe�cients. In other words: we exchanged randomness in
real space for randomness in Fourier space. Without loss of generality we can parametrise
the Fourier coe�cients f(k) = ak + ibk where a−k = ak and b−k = −bk for reality of f(x).
We say f is a Gaussian random field when the Fourier coe�cients (ak, bk) are drawn from a
Gaussian distribution

P [f(k)] = P [ak, bk] =
1

πσk
e
−a

2
k+b2k
σ2
k =

1

πσk
e
− |f(k)|2

σ2
k , (B.2)

where σk is the standard deviation, and for simplicity we centred the distribution at zero.
In other words, we have E[f(k)] = 0 and E[f(k)f(q)] = σ2

kδ(k + q). It is important for the
distribution to be normalised:∫

Df(k) P [f(k)] =

∫ ∞
−∞

dak
∫ ∞
−∞

dbk P [ak, bk] = 1, ∀k. (B.3)

Moments of any functional Q[f(k)] of the random field can be easily computed using the
characterisation above:

E[Q[f(k)]] =

∫
Df(k) P [f(k)] Q[f(k)] =

∫ ∞
−∞

dak
∫ ∞
−∞

dbk
Q[ak, bk]

πσ2
k

e
−a

2
k+b2k
σ2
k .
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This can then be Fourier transformed to real space. As a simple example, lets compute a
two-point function of the random field,

E[f(x)f(y)] =

∫
ddk

(2π)d

∫
ddq

(2π)d
eik·xeiq·yE[f(k)f(q)]

=

∫
ddk

(2π)d

∫
ddq

(2π)d
eik·xeiq·yσ2

kδ(k + q)

=

∫
ddk

(2π)d
eik·(x−y) σ2

k

(2π)d
,

where (2π)−dσ2
k is commonly known as the power spectrum of the random field. For the

simple case where the power spectrum is a constant σ2
k = (2π)dV̄ 2, we have E[f(x)f(y)] =

V̄ 2δ(x− y) which means the distribution of f(x) in real space is also Gaussian. Conversely,
considering a non-trivial power spectrum lead to non-trivial correlations for the random field.
Therefore the spectral representation of a random field is a convenient way of generating
non-gaussian distributions while still working with Gaussian objects in Fourier space.

B.2 Cuto�s

However this construction is not very useful for actual applications. For instance, note that as
x approaches y we get an ultra-violet divergence. This for instance can be very inconvenient
in the case we are treating, since in our equations we have a lot of terms that go as ’disorder
squared’ at the same point. To remediate this problem, we will resolve this long wavelength
divergence by introducing an ultra-violet (UV) cuto� λ and integrate only over modes
|k| < λ. A pictorial way to interpret this cuto� is to say that λ introduce a length scale
a = π/λ that corresponds to an underlying lattice. Modes with frequencies below this scale
are then ignored. This would imply for instance that E[f(x)2] = V̄ 2/a. As we take the lattice
spacing a→ 0 we recover the expected UV divergence.

While UV divergences are a consequence of the way we introduce disorder, there can
be IR divergences that are emergent in the problem, and indicate a change of behaviour in
the system. Or in terms of the renormalisation group: the system flows towards a disordered
fixed point. To resolve these divergences one usually introduce a box of size L, and in the end
of calculation one aims to study how the system behaves as L is increased. IR singularities in
the thermodynamic limit L→∞ indicate a flow towards a new phase.

B.3 Discrete

Although the continuum implementation simplifies analytical calculations, numerically one
needs a discretisation that takes into account the aforementioned observations. From now on
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we restrict ourselves to the case of interest, namely d = 1. Note that according to Eq. (B.2)
the norm of |f(k)| is drawn from a Gaussian distribution, while the phase is drawn from
the uniform distribution on [0, 2π]. This remark leads to a useful discrete representation
of the continuous spectral decomposition. We start by discretising uniformly our box of
size L in N intervals of size a, i.e. L = Na. This implies the quantisation of the modes
kn = n∆k with ∆k = π

Na
= λ

N
. The thermodynamic limit then becomes N → ∞. The

spectral decomposition Eq. (B.1) becomes,

f(x) =
N∑

n=−N

fne
iknx =

N∑
n=1

An cos(knx+ γn), (B.4)

where An ∈ R>0 corresponds to the amplitude of the Fourier modes and γn ∈ [0, 2π] the
phase. As we remarked above, in this representation each An is a random variable taking
values in a Gaussian distribution, while each γn is a random variable taking values uniformly
in [0, 2π). However a useful simplification is to make An deterministic and only keep the
phases random. One can then check that takingAn = V̄

√
σ(kn)∆k and averaging uniformly

in [0, 2π),

E[· · · ] = lim
N→∞

∫ 2π

0

N∏
n=1

dγn
2π

(· · · ), (B.5)

imply that for σ(kn) = 1 in the thermodynamic limit E[f(x)f(y)] = V̄ 2δ(x− y). In other
words, we reproduce the Gaussian behaviour with a simpler setup in which only the phases
fluctuate. Similarly, we can obtain non-Gaussianity by choosing a non-trivial function
σ(kn).





C | Brans-Dicke Holography

C.1 An asymptotically AdS Brans-Dicke Black Hole

As we have previously discussed in section 3.2.2.3, the action (3.10) can be brought to the
Einstein frame via a conformal transformation. In this frame, the BD action maps to an
EMD model. Solutions for this action have been widely studied for di�erent choices of
potential [157–159,171]. For completeness, we give here a particular explicit black brane
solution with AdS assymptotics. In the language of ref. [159] this corresponds to a δ = γ

solution.

ds̄2 = −f(u)dt2 +
dr2

f(u)
+ r2R(u)δijdxidxj (C.1)

f(u) =
2Λ(α2 + 1)2b2γ

(d− 1)(α2 − d)
u2(1−γ) − m

u(d−1)(1−γ)−1
+

2q2(α2 + 1)2b−2(d−2)γ

(d− 1)(α2 + d− 2)
u2(d−2)(γ−1) (C.2)

R(u) =

(
b

u

)2γ

(C.3)

φ̄(r) =
(d− 1)α

2(1 + α2)
log

b

u
(C.4)

V̄ (φ̄) = 2Λe
4αφ̄
d−1 =

(
b

u

)2γ

(C.5)

ā′t = − qY

ud−1

(
b

u

)−(d−3)γ

, (C.6)

where we defined γ = α2/(1 + α2), with α as in Eq. (3.8). This solution has four free
parameters (γ, b, q, m). γ is a function of the Brans-Dicke parameter ξ

γ =
α2

1 + α2
=

1

1 + α−2
=

(d− 3)2

(d− 1)2 + 8 + 4(d− 1)ξ

The black brane horizon radius is found by imposing f(u0) = 0. This allow us to solve
for one of the parameters as functions of u0 and the others, e.g. m = m(u0, q, b, γ). The
parameter b sets the scale of the dilaton φ̄ and can be set to unit by a coordinate rescaling.

An interesting case is given by d = 3, where γ = α = 0 and the scalar field is constant.
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In this case the solution above reduces to the well known AdS Reissner-Nordstrom solution.
Note that γ = α = 0 also for ξ →∞, which is the well known Einstein limit of Brans-Dicke
theory. In this limit, the solution also reduces to d+ 1 dimensional Reissner-Nordstrom. q is
the charge density of the background and m is related to the energy density (ADM mass) as
we will discuss below.

To construct an asymptotically AdS black hole solution for our Brans-Dicke theory Eq.
(3.1) we take the inverse conformal mapping on the solution above. The Brans-Dicke black
hole is then given by

ds2 = −A(r)dt2 +B(r)dr2 + r2c(r)δijdxidxj

A(r) = φ−
2
d−1f(u) B(r) =

φ−
2
d−1

f(u)
, c(r) = φ−

2
d−1R(u) =

(
b

u

) 2(d−5)
d−3

γ

V (φ) = 2Λφ2

a′t = − qY

ud−1

(
b

u

)−(d−3)γ

φ(r) =

(
b

u

) 2(d−1)γ
d−3

.

Note that in particular this transformation preserves the position of the horizon u0. The
temperature can then be computed

4πT = |A(u0)| = (d− α2)m

α2 + 1
u

(d−1)(γ−1)
0 − 4q2(α2 + 1)b−2(d−2)γ

α2 + d− 2
u

(2d−3)(γ−1)−γ
0

which again reduces to the RN temperature for γ = α = 0. The free energy density can
be computed by the properly renormalised euclidean action. We refer the curious reader
to [281] for the details of the calculation and just quote the answer here,

f = β

(
(d− 1)b(d−1)γm

α2 + 1

)
− b(d−1)γu

(d−1)(1−γ)
0

4π
− β q2

2((d− 3)(1− γ) + 1)

1

u
1+(d−3)(1−γ)
0

= βε− s− βµq,

for β = T−1 and we defined

ε =
(d− 1)b(d−1)γm

α2 + 1
, s =

b(d−1)γu
(d−1)(1−γ)
0

4π
, µ =

q2

2((d− 3)(1− γ) + 1)

1

u
1+(d−3)(1−γ)
0

.

The energy density (ADM mass), entropy density and chemical potential. In particular note
that the above satisfy the first law dε = Tds+ µdρ for 4πρ =

∫
M ?F = q the charge density.
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C.2 Gravitational background with Z 6= 1, Y = 1 and
V 6= 1 in four bulk dimensions

In Fig. C.1 we show the metric functions, defied in Eq. (3.11), at nonzero temperature for
the model defined in Eq. (3.10) and couplings given in Eq. (3.30).
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Figure C.1: Metric functions g (blackening factor) and c, Eq. (3.11) for two di�erent
temperatures; top row: T = 10−4 and bottom row: T = 0.08. We fix the charge density
ρ = 1, κ = 1 and λe� = λα2 = 0.15. Each line corresponds to α2 = λe�/λ for the
corresponding λ, which is given in the legends. The legends also refer to the right-hand
side figures. Moreover, for a fixed temperature and λe�, the dc conductivity is di�erent for
the two choices of λ and α. We conclude that, in the presence of V in the action, λ and α
are two independent parameters associated with the translational symmetry breaking.

The lines correspond to a fixed λe� ≡ λα2 but di�erent λ and α, defined in Eq. (3.33).
Most notably, the function c at the horizon shows a di�erence of about 20%, while the
blackening factor is very similar throughout the bulk. Fig.C.1 shows that the model defined
in Eqs.(3.10) and (3.30) contains three independent parameters, κ, α and λ.





D | Disorder in Eintein-Maxwell back-
grounds

D.1 Conductivity at finite temperature

Consider the Einstein-Maxwell system at finite temperature with an inhomogeneous chemi-
cal potential in both boundary directions. We work in coordinates such that the horizon
is at r̄ = 1 and the boundary at r̄ = 0. To zeroth order in perturbation theory, Einstein’s
Equations fix the usual Schwarzschild blackening factor. Looking for solutions of the type

ds2 =
r2

0

r̄2

[
−f(r̄)(1 + V̄ 2α(r̄,x))dt2 +

r2
0dr̄2

f(r̄)
+ (1 + V̄ 2β(r̄,x))(dx2 + dy2)

]
,

A = V̄ ϕ(r̄,x)dt.

The second order equations read:

2r̄f∂2
r̄α + 2r̄r2

0∇2α + (3r̄f ′ − 6f)∂r̄α + 2(r̄f ′ − 4f)∂r̄β = −r̄3r2
0f
−1
[
f(∂r̄ϕ)2 + r2

0(∇ϕ)2
]
,

(tt)

2r̄f∂2
r̄α + 4r̄f∂2

r̄β + (3r̄f ′ − 2f)∂r̄α + 2(r̄f ′ − 2f)∂r̄β = r̄3r2
0f
−1
[
(f∂r̄ϕ)2 − r2

0(∇ϕ)2
]
,

(r̄r̄)

f ′∂xα + 2f∂x∂r̄(α + β) = −1

2
r̄2r2

0f
−1∂xϕ∂r̄ϕ, (r̄x)

2r̄f∂2
r̄β + 2r̄r2

0∇2β + 2r2
0∂

2
xα− 2f∂r̄α + 2(r̄f ′ − 4f)∂r̄β = r̄3r2

0f
−1
[
f(∂r̄ϕ)2 − r2

0

(
(∂xϕ)2 − (∂yϕ)2

)]
,

(xx)

f ′∂yα + 2f∂y∂r̄(α + β) = −1

2
r̄2r2

0f
−1∂yϕ∂r̄ϕ, (r̄y)

f∂y∂xα = r̄2r2
0∂xϕ∂yϕ, (xy)

2r̄f∂2
r̄β + 2r̄r2

0∇2β + 2r̄r2
0∂

2
yα− 2f∂r̄α + 2(r̄f ′ − 4f)∂r̄β = r̄3r2

0f
−1
[
f(∂r̄ϕ)2 + r2

0

(
(∂xϕ)2 − (∂yϕ)2

)]
,

(yy)
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where we introduced ∇ = (∂x, ∂y). It is convenient to look at the following linear combina-
tions,

4f 1/2∂r̄
(
r̄−2f 1/2∂r̄β

)
+ 2r̄−2∇2β = −r2

0f
−1
[
f(∂2

r̄ϕ)2 + r2
0(∇ϕ)2

]
,

(D.1)

(3 + f)2f−1/2∂r̄

(
f 3/2

r̄2(3 + f)
∂r̄α

)
+ 2r̄−2r2

0f∇2α + r̄−2r2
0(f − 3)∇2β = r2

0f
−1 E[3f(∂r̄ϕ)2 + r2

0(∇ϕ)2],

(D.2)

where we took −tt+ r̄r̄+ xx+ yy and 3/2(f + 1) + 1/2(f − 3)(r̄r̄− xx− yy) respectively.
Note in particular that these equations reduce to (4.20a) and (4.20b) over averaging. The
source can be expanded in the spectral basis as

ϕ(r̄,x) =
∑
k

ϕk(r̄)
∏

i∈{x,y}

cos (θi,k) ,

where k = (kx, ky) = (nx, ny)k0/N with nx, ny ∈ {1, 2, . . . , N − 1} and θi,ki = kix
i + γi

for γi ∈ [0, 2π) i.i.d. uniformly distributed random variables. We have opted for a discrete
representation here for clarity, but this should not change the result. Recall that ϕk(r̄) can
be obtained from Maxwell’s Equations (4.19), but an explicit solution is not needed for our
purposes.

Further, we can write

(∂r̄ϕ)2 =

(∑
k

ϕ′k
∏
i

cos θi,k

)(∑
l

ϕ′l
∏
i

cos θi,l

)
=
∑
k,l

ϕ′kϕ
′
l

∏
i

cos θi,k cos θi,l

=
1

2

∑
k,l

ϕ′kϕ
′
l

∏
i

(
cos θ−i,k,l + cos θ+

i,k,l

)
=

1

2

∑
k

(ϕ′k)2
∏
i

(1 + cos 2θi,k) +
1

2

∑
k 6=l

ϕ′kϕ
′
l

∏
i

(
cos θ−i,k,l + cos θ+

i,k,l

)
,

(∇ϕ)2 =
1

2

∑
k,l

(k · l)ϕkϕl

∏
i

(
cos θ−i,k,l − cos θ+

i,k,l

)
=

1

2

∑
k

k2(ϕk)2
∏
i

(1− cos 2θi,k) +
1

2

∑
k 6=l

(k · l)ϕkϕl

∏
i

(
cos θ−i,k,l − cos θ+

i,k,l

)
,

where we have defined θ±i,ki,li = θi,ki ± θi,li . This determines the spectral decomposition
of the metric coe�cients in terms of the sources. For example, we can write α(r̄,x) =
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αhom(r̄) + αinh(r̄,x) with

αinh(r̄,x) =
∑
k

α0
k(r̄)

∏
i

cos 2θi,k +
∑
k 6=l

α+
k,l(r̄)

∏
i

cos θ+
i,k,l +

∑
k 6=l

α−k,l(r̄)
∏
i

cos θ−i,k,l,

(D.3)

with a similar expression for β. By linearity, the task of solving equations (D.1) now reduces
to solving coupled ODEs for αhom, βhom, α0, β0 and α±, β±. This is in principle doable but
cumbersome, and does not bring any insight. Examples of explicit solutions for zero and
finite temperature backgrounds in a similar context were given in references [33, 92, 94].
However for the purposes of applying the formula (4.21) we do not need the full solution.

By linearity of the mean, we just need to compute terms like E[cos θk],E[cos 2θn cos θk]

and E[cos θ±nm cos θk] for n 6= m. The first is trivially zero since it is the integral of one
cosine over a full period. To compute the other terms, we use the angle sum rule cos θ±nm =

cos θn cos θm∓ sin θn sin θm. In order to have a nonzero integral we need all cosines and sines
to group into a single power, since any single cosine vanishes when integrated over. For the
second term, this will only happen when k = n, but in this case the integrals are over cos3 θ

and sin2 θ cos θ which vanish on a period. In the third term, there will be always a cosine
or sine left over since n 6= m. Thus E[cosαk] = E[cos 2θn cos θk] = E[cos θ±nm cos θk] = 0

generically. The result quoted in section 4.4.4 follows.





E | Auxiliarymaterial for the SYKmodel

E.1 Specific heat from low-frequencies

In this appendix we illustrate how the zero temperature entropy density and specific heat
coe�cients from the q = 2 model, calculated exactly in Section 6.2.1 can alternatively
computed only from the infra-red information. At low

The retarded Green’s function is obtained by analytically continuing ωn → ε+ i0+ in
Eq.(6.12),

GR(ε) =
−ε+ i

√
4J2 − ε2

2J2
, ε ∈ R, (E.1)

and the exact spectral density ρ(ε) = 2ImGR =
√

4− (ε/J)2I[−2J,2J ] is given by the cele-
brated Wigner semi-circle law. At low-frequencies ε/J � 1, the retarded Green’s function
is given by

GR(ε) = − ε

2J2
+

i

2J

[
1− 1

8

( ε
J

)2

− 1

128

( ε
J

)4

+O(ε−6)

]
(E.2)

Note that computing the spectral density from only this infra-red expansion we completely
miss the fact ρ is compactly supported, which is related to the fact that for |ε| > 2J the
retarded propagatorGR becomes real. Of course this should be expected, since the tails of the
spectral density are related to the high-frequency behaviour. Note that a naive extrapolation
of this result to the region ε/J � 1 gives an ultra-violet divergence, illustrated in Fig. E.1.
As a consequence, this UV divergence prevent us from computing the integral in Eq.(6.16)
which runs over frequencies in the whole real line. However, if we are only interested in
infra-red quantities, we can remediate this divergence by introducing a sharp UV cuto�
λ, which we consistently fix using the non-perturbative constraints that the spectral should
density satisfy:

•
∫ dε

2π
ρ(ε) = 1 (Conservation of spectral weight),

• ρ(ε) ≥ 0 (Positivity).
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Figure E.1: Exact semi-circle law against low-frequency expansion for J = 1, with and
without cut-o�.

Since the decay of the true ρ need to be such that this sum rule is satisfied, saturation of
spectral weight at a given interval indicates that the low frequency approximation starts to
break down at outside the interval. Let λ > 0 and consider the integral,∫ λ

−λ

dε
2π
ρ(ε) = λ

(
2

π
− λ2

12π
+O(λ4)

)
≤ 2λ

π
(E.3)

Note that we without loss of generality we can consider the symmetric interval (−λ, λ) since
ρ is an even function. Since higher order terms only improve our estimate, a conservative
choice is to take λ = πK

2
. This ensures that the sum rule is satisfied to leading order. Moreover,

note that for |ε| < λ we have ρ(ε) > 0, so positivity is also satisfied.

We can now take

argGR(ε) =


π
2
− tan−1

(
−ε/2K

1− 1
8

(ε/K)2− 1
128

(ε/K)4+...

)
for |ε| < λ,

π if ε ≥ λ,

0 if ε ≤ λ.

(E.4)

Following the same steps of Section 6.2.1, for ε ≥ λ the integral over the constant π factor
contributes with the exponentially decaying term log

(
1 + e−βK

)
which does not contribute

to the low temperature expansion. This last is completely determined by the integral over
|ε| < λ. This last is composed from two pieces. The first is

β

2

∫ λ

−λ

dε
1 + eβε

=
βλ

2
=
π

4
βJ (E.5)

which is a cuto� dependent contribution to the ground state energy. Note that, as we
discussed before, naively taking λ→∞ would lead to divergences here. The second integral
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is given by

−βJ
∫ λ

−λ

dε
π

tan−1

(
−ε/2

1− ε2
8
− ε4

128
+...

)
1 + eβJε

≈ (E.6)

− βJ
∫ λ

−λ

dε
π

tan−1

(
−ε/2

1− ε2

8
− ε4

128
+ . . .

)[
θ(−ε)− π2

6

δ′(ε)

(βJ)2
+O(βJ−4)

]

= βJ

∫ 0

−λ

dε
π

tan−1

(
−ε/2

1− ε2

8
− ε4

128
+ . . .

)
+

π2

12βJ
+O(βK−3)

= 0.208βJ +
π2

12βJ
+O(βJ−3) (E.7)

To this we have to add the factor π
4
βJ coming from the first integral. Putting together,

we have E0 = −0.993 KN , s0 = 0 and c = π
6
N
J
. As expected, we miss contributions to

the ground state energy, but it is easy to check that considering higher order terms in the
ε/J expansion improve this result. In the other hand the specific heat comes entirely from
the derivative of the phase factor (and therefore from the first order term in the ε � J

expansion), and the result from the expansion is exact.
Below we plot a comparison the the free energy density F (β)/N as computed via the

exact integral Eq.(6.18) against the one obtained via the approximation Eq.(E.4), up to order
(ε/J)2 and order (ε/J)4 for J = 1. On the left, we plot −β2(f(β)− E0) which, for β � 1

should go to c/2 = π/12. We have good agreement in both cases.

Figure E.2: Comparison between exact contribution to the free energy density from Eq.(6.18)
and the approximated one, from Eq.(E.4), for J = 1.

E.2 Regularisation of the conformal free energy

In this appendix we discuss the regularisation of the Tr log term for the conformal propagator.
The trace is written as a sum over Matsubara frequencies,

Tr logG = β
∑
n∈Z

logG(iωn)eiωn0+

. (E.8)
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In the conformal limit, the Matsubara propagator is divergent in the UV. Therefore, the
first step in computing this sum consists of adding and subtracting an also UV divergent free
fermion propagator G0(iωn) = (iωn)−1. One of the terms can be regularised by using zeta
function regularisation,

Tr logG0 = −β
∑
n∈Z

log iωn = − log 2

therefore the regularised Tr log term reads,

Tr logG = − 1

β
log 2 + β

∑
n∈Z

(logG(iωn)− logG0) eiωn0+

.

Next, we follow almost exactly the same steps as in the discussion of the q = 2 case in
Eq.(6.16) to rewrite the remaining sum in the real axis,

Tr logG = − log 2 + β

∫
R

dε
π

(
ArgGR(ε)− ArgGR

0 (ε)
)
n(βε) (E.9)

where we have defined n(βε) = (1 + eβε)−1. Note that since GR
0 = (ε − i0+)−1, we have

ArgGR
0 = π

(
θ(ε)− 1

2

)
, and the integral for the free propagator is simply given by

β

∫
R
dε
(
θ(ε)− 1

2

)
n(βε) = log 2− β

2

∫
R
dε n(βε). (E.10)

Therefore, we rewrite Eq.(E.9) as

Tr logG = β

∫
R

dε
π

(
ArgGR(ε)− π

2

)
n(βε). (E.11)

Noting that n(−βε) = 1− n(βε), we can further rewrite the above as

Tr logG =
β

2π

∫ 0

−∞
dε
[
ArgGR(ε)− π

2

]
+

β

2π

∫ ∞
−∞

dε
ArgGR(ε)sgn(ε)

eβ|ε| + 1
− log 2

2
(E.12)

We now proceed with the evaluation of ArgGR(ε). In the conformal limit, the Matsubara
propagator is given by

Gβ
c (θ) = b

[
1

βJ sin πθ

]2∆

, θ =
τ

β
∈ (0, 1). (E.13)

and therefore in Fourier space,

G(iωn) = 2i
(2π)2∆−1b∆(βJ)1−2∆ cos(π∆)

Γ(2∆) sin(2π∆)
Γ

(
∆ +

βωn
2π

)
Γ

(
∆− βωn

2π

)
sin

(
π∆− βωn

2

)
.
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where βω̄n = π(2n+ 1) are the usual fermionic Matsubara frequencies. We can now take an
analytic continuation iωn → ε− i0+ to the complex plane to get

GR(ε) = 2i
(2π)2∆−1b∆(βJ)1−2∆ cos(π∆)

Γ(2∆) sin(2π∆)
Γ

(
∆ + i

βε

2π

)
Γ

(
∆− i βε

2π

)
sin

(
π∆ + i

βε

2

)
(E.14)

and therefore,

ArgGR(ε) =
π

2
− a(ε) =

π

2
− tan−1

(
cot π∆ tanh

βε

2

)
. (E.15)

where a(ε) is defined for notational convenience. Note that all terms in Eq.(E.12) are
functions of βε only. Therefore we can write all the integrals in terms of the dimensionless
frequency ε̄ = βε. This integral should give the first terms in the expansion of the free
energy density −βf(β) = βE0 + s0 + O(β−1). However, it is not hard to show that the
first integral in Eq.(E.12) is divergent at ε = −∞, which is a statement that the conformal
ground state energy density E0 is divergent. To further remove this divergence, we subtract
the f(β =∞), which is equivalent to subtracting a(−∞) inside the integral. The remaining
integral is not a function of β, and therefore contribute only to the zero temperature entropy
density,

s0 =
1

2π

∫ 0

−∞
dε̄ [a(ε̄)− a(−∞)] +

1

2π

∫ ∞
−∞

dε̄
a(ε̄)sgn(ε̄)

e|ε̄| + 1
(E.16)

Note that since a(−∞) = cotπ∆, the integral of a(ω)− a(−∞) over (−∞, 0] is now finite,
as claimed. Letting t = cotπ∆ and u = tanh ω

2
gives the result in Eq.(6.30)

E.3 Expansion of integral in Eq.(6.14)

Consider the integral,

I(θ, a) =

∫ a

−a

dλ
π

e−xθ

1 + e−x

√
1−

(x
a

)2

=

∫ ∞
−∞

dλ
π

e−xθ

1 + e−x

√
1−

(x
a

)2

I(−2,2)(x), θ ∈ [0, 1).

(E.17)

which is related to Eq.(E.3) by G(θ) = (βJ)−1I(θ, βK) and I(−2, 2)(x) = 1 for x ∈ (−a, a)

and 0 otherwise. The question we want to answer is

lim
a→∞

∫ ∞
−∞

dλ
π

e−xθ

1 + e−x

√
1−

(x
a

)2

I(−a,a)(x)
?
=

∫ ∞
−∞

dλ
π

e−xθ

1 + e−x
lim
a→∞

√
1−

(x
a

)2

I(−a,a)(x)

(E.18)
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First, note that

0 <

√
1−

(x
a

)2

I(−a,a)(x) ≤ 1, ∀x ∈ (−a, a) (E.19)

Thus,∣∣∣∣∣
∫ ∞
−∞

dx
π

e−xθ

1 + e−x

√
1−

(x
a

)2

I(−a,a)(x)

∣∣∣∣∣ ≤
∫ ∞
−∞

dx
π

∣∣∣∣∣ e−xθ

1 + e−x

√
1−

(x
a

)2

I(−a,a)(x)

∣∣∣∣∣ ≤
∫ ∞
−∞

dx
π

e−xθ

1 + e−x

(E.20)

Since ∫ ∞
−∞

dx
π

e−xθ

1 + e−x
=

1

sin πθ
, θ ∈ (0, 1) (E.21)

By Lebesgue dominated convergence theorem we can exchange the limits for θ ∈ (0, 1).
Commutation of limits justifies the series expansion under the integral. Note however
that at the boundaries θ = 0, 1, the integral Eq.(E.21) diverges, and therefore dominated
convergence only applies at the open interval (0, 1).
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