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Summary. Change points are a very common feature of ‘big data’ that arrive in the form of
a data stream. We study high dimensional time series in which, at certain time points, the
mean structure changes in a sparse subset of the co-ordinates. The challenge is to borrow
strength across the co-ordinates to detect smaller changes than could be observed in any
individual component series.We propose a two-stage procedure called inspect for estimation of
the change points: first, we argue that a good projection direction can be obtained as the leading
left singular vector of the matrix that solves a convex optimization problem derived from the
cumulative sum transformation of the time series. We then apply an existing univariate change
point estimation algorithm to the projected series. Our theory provides strong guarantees on
both the number of estimated change points and the rates of convergence of their locations,
and our numerical studies validate its highly competitive empirical performance for a wide range
of data-generating mechanisms. Software implementing the methodology is available in the R
package InspectChangepoint.

Keywords: Change point estimation; Convex optimization; Dimension reduction; Piecewise
stationary; Segmentation; Sparsity

1. Introduction

One of the most commonly encountered issues with ‘big data’ is heterogeneity. When collecting
vast quantities of data, it is usually unrealistic to expect that stylized, traditional statistical
models of independent and identically distributed (IID) observations can adequately capture
the complexity of the underlying data-generating mechanism. Departures from such models may
take many forms, including missing data, correlated errors and data combined from multiple
sources, to mention just a few.

When data are collected over time, heterogeneity often manifests itself through non-stationa-
rity, where the data-generating mechanism varies with time. Perhaps the simplest form of non-
stationarity assumes that population changes occur at a relatively small number of discrete time
points. If correctly estimated, these ‘change points’ can be used to partition the original data
set into shorter segments, which can then be analysed by using methods designed for stationary
time series. Moreover, the locations of these change points are often themselves of significant
practical interest.

In this paper, we study high dimensional time series that may have change points; more-
over, we consider in particular settings where, at a change point, the mean structure changes
in a sparse subset of the co-ordinates. Despite their simplicity, such models are of great inter-
est in a wide variety of applications. For instance, in the case of stock price data, it may be
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that stocks in related industry sectors experience virtually simultaneous ‘shocks’ (Chen and
Gupta, 1997). In Internet security monitoring, a sudden change in traffic at multiple routers
may be an indication of a distributed denial of service attack (Peng et al., 2004). In func-
tional magnetic resonance imaging studies, a rapid change in blood oxygen level dependent
contrast in a subset of voxels may suggest neurological activity of interest (Aston and Kirch,
2012).

Our main contribution is to propose a new method for estimating the number and locations
of the change points in such high dimensional time series, which is a challenging task in the
absence of knowledge of the co-ordinates that undergo a change. In brief, we first seek a good
projection direction, which should ideally be closely aligned with the vector of mean changes.
We can then apply an existing univariate change point estimation algorithm to the projected
series. For this reason, we call our algorithm inspect, short for informative sparse projection
for estimation of change points; it is implemented in the R package InspectChangepoint (Wang
and Samworth, 2016).

In more detail, in the single-change-point case, our first observation is that, at the population
level, the vector of mean changes is the leading left singular vector of the matrix obtained as the
cumulative sum (CUSUM) transformation of the mean matrix of the time series. This motivates
us to begin by applying the CUSUM transformation to the time series. Unfortunately, comput-
ing the k-sparse leading left singular vector of a matrix is a combinatorial optimization problem,
but nevertheless we can formulate an appropriate convex relaxation of the problem, from which
we derive our projection direction. At the second stage of our algorithm, we compute the vector
of CUSUM statistics for the projected series, identifying a change point if the maximum abso-
lute value of this vector is sufficiently large. For the case of multiple change points, we combine
our single-change-point algorithm with the method of wild binary segmentation (Fryzlewicz,
2014) to identify change points recursively.

A brief illustration of the inspect algorithm in action is given in Fig. 1. Here, we simulated
a 2000× 1000 data matrix having independent normal columns with identity covariance and
with three change points in the mean structure at locations 500, 1000 and 1500. Changes occur
in 40 co-ordinates, where consecutive change points overlap in half of their co-ordinates, and
the squared l2-norms of the vectors of mean changes were 0:4, 0:9 and 1:6 respectively. Fig. 1(a)
shows the original data matrix and Fig. 1(b) shows its CUSUM transformation, whereas Fig.
1(c) shows overlays for the three change points detected of the univariate CUSUM statistics
after projection. Finally, Fig. 1(d) displays the largest absolute values of the projected CUSUM
statistics obtained by running the wild binary segmentation algorithm to completion (in practice,
we would apply a termination criterion instead, but this is still helpful for illustration). We see
that the three detected change points are very close to their true locations, and it is only for
these three locations that we obtain a sufficiently large CUSUM statistic to declare a change
point. We emphasize that our focus here is on the so-called offline version of the change point
estimation problem, where we observe the whole data set before seeking to locate change points.
The corresponding on-line problem, where one aims to declare a change point as soon as possible
after it has occurred, is also of great interest (Tartakovsky et al., 2014) but is beyond the scope
of the current work.

Our theoretical development proceeds first by controlling the angle between the estimated
projection direction and the optimal direction, which is given by the normalized vector of mean
changes. Under appropriate conditions, this enables us to provide finite sample bounds which
guarantee that with high probability we both recover the correct number of change points and
estimate their locations to within a specified accuracy. Indeed, in the single-change-point case,
the rate of convergence for the change point location estimation of our method is within a doubly
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(a) (b)
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Fig. 1. Example of the inspect algorithm in action: (a) visualization of the data matrix; (b) its CUSUM
transformation; (c) overlay of the projected CUSUM statistics for the three change points detected; (d) vis-
ualization of thresholding; the three change points detected are above the threshold ( ), whereas the
remaining numbers are the test statistics obtained if we run wild binary segmentation to completion without
applying a termination criterion

logarithmic factor of the minimax optimal rate. Our extensive numerical studies indicate that
the algorithm performs extremely well in a wide variety of settings.

The study of change point problems dates at least back to Page (1955) and has since found
applications in many areas, including genetics (Olshen et al., 2004), disease outbreak watch
(Sparks et al., 2010) and aerospace engineering (Henry et al., 2010), in addition to those already
mentioned. There is a vast and rapidly growing literature on different methods for change point
detection and localization, especially in the univariate problem. Surveys of various methods can
be found in Csörgó́ and Horváth (1997) and Horváth and Rice (2014). In the case of univariate
change point estimation, state of the art methods include the pruned exact linear time method
(Killick et al., 2012), wild binary segmentation (Fryzlewicz, 2014) and simultaneous multiscale
change point estimator (Frick et al., 2014).

Some of the univariate change point methodologies have been extended to multivariate set-
tings. Examples include Horváth et al. (1999), Ombao et al. (2005), Aue et al. (2009) and Kirch
et al. (2015). However, there are fewer available tools for high dimensional change point prob-
lems, where both the dimension p and the length n of the data stream may be large, and where
we may allow a sparsity assumption on the co-ordinates of change. Bai (2010) investigated the
performance of the least squares estimator of a single change point in the high dimensional
setting. Zhang et al. (2010), Horváth and Hušková (2012) and Enikeeva and Harchaoui (2014)
considered estimators based on l2-aggregations of CUSUM statistics in all co-ordinates, but
without using any sparsity assumptions. Enikeeva and Harchaoui (2014) also considered a
scan statistic that takes sparsity into account. Jirak (2015) considered an l∞-aggregation of the
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CUSUM statistics that works well for sparse change points. Cho and Fryzlewicz (2015) pro-
posed sparse binary segmentation, which also takes sparsity into account and can be viewed as
a hard thresholding of the CUSUM matrix followed by an l1-aggregation. Cho (2016) proposes
a double-CUSUM algorithm that performs a CUSUM transformation along the location axis
on the columnwise-sorted CUSUM matrix. In a slightly different setting, Lavielle and Teyssiere
(2006), Aue et al. (2009), Bücher et al. (2014), Preuß et al. (2015) and Cribben and Yu (2015)
dealt with changes in cross-covariance, whereas Soh and Chandrasekaran (2017) studied a high
dimensional change point problem where all mean vectors are sparse. Aston and Kirch (2014)
considered the asymptotic efficiency of detecting a single change point in a high dimensional
setting, and the oracle projection-based estimator under cross-sectional dependence structure.

The outline of the rest of the paper is as follows. In Section 2, we give a formal description of the
problem and the class of data-generating mechanisms under which our theoretical results hold.
Our methodological development in the single-change-point setting is presented in Section 3 and
includes theoretical guarantees on both the projection direction and location of the estimated
change point in the simplest case of observations that are independent across both space and
time. Section 4 extends these ideas to the case of multiple change points with the aid of wild
binary segmentation, and our numerical studies are given in Section 5. Section 6 studies in detail
important cases of temporal and spatial dependence. For temporal dependence, no change to
our methodology is required, but new arguments are needed to provide theoretical guarantees;
for spatial dependence, we show how to modify our methodology to try to maximize the signal-
to-noise ratio of the projected univariate series, and we also provide corresponding theoretical
results on the performance of this variant of the basic inspect algorithm. Proofs of our main
results are given in Appendix A, with the exception of the (lengthy) proof of theorem 2; the
proof of this result, together with additional results and their proofs are given in the on-line
supplementary material, hereafter referred to simply as the on-line supplement.

We conclude this section by introducing some notation that is used throughout the paper. For
a vector u= .u1, : : : , uM/T∈RM , a matrix A= .Aij/∈RM×N and for q∈ [1,∞/, we write ‖u‖q :=
.ΣM

i=1|ui|q/1=q and ‖A‖q := .ΣM
i=1ΣN

j=1|Aij|q/1=q for their (entrywise) lq-norms, as well as ‖u‖∞ :=
maxi=1,:::,M |ui| and ‖A‖∞ :=maxi=1,:::,M,j=1,:::,N |Aij|. We write ‖A‖Å :=Σmin.M,N/

i=1 σi.A/ and
‖A‖op :=maxi σi.A/ respectively for the nuclear norm and operator norm of matrix A, where
σ1.A/, : : : , σmin.M,N/.A/ are its singular values. We also write ‖u‖0 :=ΣM

i=11{ui �=0}. For S ⊆
{1, : : : , M} and T ⊆{1, : : : , N}, we write uS := .ui : i∈S/T and write MS,T for the |S|× |T | sub-
matrix of A obtained by extracting the rows and columns with indices in S and T respectively.
For two matrices A, B∈RM×N , we denote their trace inner product as 〈A, B〉= tr.ATB/. For
two non-zero vectors u, v∈Rp, we write

� .u, v/ := cos−1
( |〈u, v〉|
‖u‖2‖v‖2

)

for the acute angle bounded between them. We let Sp−1 := {x∈Rp : ‖x‖2= 1} be the unit Eu-
clidean sphere in Rp, and let Sp−1.k/ :={x∈Sp−1 :‖x‖0 �k}. Finally, we write an	bn to mean
0 < lim infn→∞ |an=bn|� lim supn→∞ |an=bn|<∞.

2. Problem description

We initially study the following basic independent time series model: let X1, : : : , Xn be indepen-
dent p-dimensional random vectors sampled from

Xt∼Np.μt , σ2Ip/, 1� t �n, .1/
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and combine the observations into a matrix X= .X1, : : : , Xn/∈Rp×n. Extensions to settings of
both temporal and spatial dependence will be studied in detail in Section 6. We assume that the
mean vectors follow a piecewise constant structure with ν+1 segments. In other words, there
are ν change points

1� z1 <z2 < : : :<zν �n−1

such that

μzi+1= : : :=μzi+1 =:μ.i/, ∀0� i�ν, .2/

where we adopt the convention that z0 :=0 and zν+1 :=n. For i=1, : : : , ν, write

θ.i/ :=μ.i/−μ.i−1/ .3/

for the (non-zero) difference in means between consecutive stationary segments. We shall later
assume that the changes in mean are sparse in the sense that there exists k∈{1, : : : , p} (typically
k is much smaller than p) such that

‖θ.i/‖0 �k .4/

for each i= 1, : : : , ν, since our methodology performs best when aggregating signals spread
across an (unknown) sparse subset of co-ordinates; see also the discussion after corollary 2
below. However, we remark that our methodology does not require knowledge of the level of
sparsity and can be applied in non-sparse settings as well.

Our goal is to estimate the set of change points {z1, : : : , zν} in the high dimensional regime,
where p may be comparable with, or even larger than, the length n of the series. The signal
strength of the estimation problem is determined by the magnitude of mean changes {θ.i/ : 1�
i�ν} and the lengths of stationary segments {zi+1− zi : 0� i�ν}, whereas the noise is related
to the variance σ2 and the dimensionality p of the observed data points. For our theoretical
results, we shall assume that the change point locations satisfy

n−1 min{zi+1− zi : 0� i�ν}� τ , .5/

and the magnitudes of mean changes are such that

‖θ.i/‖2 �ϑ, ∀1� i�ν: .6/

Suppose that an estimation procedure outputs ν̂ change points at 1� ẑ1 < : : :< ẑν̂ �n−1. Our
finite sample bounds will imply a rate of convergence for inspect in an asymptotic setting where
the problem parameters are allowed to depend on n. Suppose that Pn is a class of distributions
of X∈Rp×n with sample size n. In this context, we follow the convention in the literature (e.g.
Venkatraman (1992)) and say that the procedure is consistent for Pn with rate of convergence ρn if

inf
P∈Pn

PP.ν̂=ν and |ẑi− zi|�nρn for all 1� i�ν/→1 .7/

as n→∞.

3. Data-driven projection estimator for a single change point

We first consider the problem of estimating a single change point (i.e. ν=1) in a high dimensional
data set X∈Rp×n. Our initial focus will be on the independent time series setting that was
outlined in Section 2, but our analysis in Section 6 will show how these ideas can be generalized
to cases of temporal dependence. For simplicity, write z := z1, θ= .θ1, : : : , θp/T :=θ.1/ and τ :=
n−1 min{z, n− z}. We seek to aggregate the rows of the data matrix X in an almost optimal
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way to maximize the signal-to-noise ratio, and then to locate the change point by using a one-
dimensional procedure. For any a∈Sp−1, aTX is a one-dimensional time series with

aTXt∼N.aTμt , σ2/:

Hence, the choice a= θ=‖θ‖2 maximizes the magnitude of the difference in means between the
two segments. However, θ is typically unknown in practice, so we should seek a projection
direction that is close to the oracle projection direction v := θ=‖θ‖2. Our strategy is to perform
sparse singular value decomposition on the CUSUM transformation of X. The method and
limit theory of CUSUM statistics in the univariate case can be traced back to Darling and Erdó́s
(1956). For p∈N and n�2, we define the CUSUM transformation Tp,n : Rp×n→Rp×.n−1/ by

[Tp,n.M/]j,t :=
√{

t.n− t/

n

}(
1

n− t

n∑
r=t+1

Mj,r− 1
t

t∑
r=1

Mj,r

)

=
√{

n

t.n− t/

}(
t

n

n∑
r=1

Mj,r−
t∑

r=1
Mj,r

)
: .8/

In fact, to simplify the notation, we shall write T for Tp,n, since p and n can be inferred from the
dimensions of the argument of T . Note also that T reduces to computing the vector of classical
one-dimensional CUSUM statistics when p=1. We write

X=μ+W ,

where μ= .μ1, : : : , μn/∈Rp×n and W = .W1, : : : , Wn/ is a p×n random matrix with indepen-
dent Np.0, σ2Ip/ columns. Let T :=T .X/, A :=T .μ/ and E :=T .W/, so by the linearity of the
CUSUM transformation we have the decomposition

T =A+E:

We remark that, when σ is known, each |Tj,t| is the likelihood ratio statistic for testing the
null hypothesis that the jth row of μ is constant against the alternative that the jth row of μ
undergoes a single change at time t. Moreover, if the direction v∈Sp−1 of the potential single
change at a given time t were known, then the most powerful test of whether or not ϑ= 0
would be based on |.vTT/t|. In the single-change-point case, the entries of the matrix A can be
computed explicitly:

Aj,t=

⎧⎪⎪⎨
⎪⎪⎩

√{
t

n.n− t/

}
.n− z/θj, if t � z,

√(
n− t

nt

)
zθj, if t>z:

Hence we can write

A=θγT, .9/

where

γ := 1√
n

(√(
1

n−1

)
.n− z/,

√(
2

n−2

)
.n− z/, : : : ,

√{z.n− z/},
√(

n− z−1
z+1

)
z, : : : ,

√(
1

n−1

)
z

)T

: .10/

In particular, this implies that the oracle projection direction is the leading left singular vector
of the rank 1 matrix A. In the ideal case where k is known, we could in principle let v̂max,k be a
k-sparse leading left singular vector of T , defined by
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v̂max,k ∈ arg max
ṽ∈Sp−1.k/

‖T Tṽ‖2, .11/

and it can then be shown by using a perturbation argument akin to the Davis–Kahan ‘sin.θ/’
theorem (see Davis and Kahan (1970) and Yu et al. (2015)) that v̂max,k is a consistent estimator
of the oracle projection direction v under mild conditions (see proposition 1 in the on-line
supplement). However, the optimization problem (11) is non-convex and hard to implement. In
fact, computing the k-sparse leading left singular vector of a matrix is known to be ‘NP hard’
(e.g. Tillmann and Pfetsch (2014)). The naive algorithm that scans through all possible k-subsets
of the rows of T has running time exponential in k, which quickly becomes impractical to run
for even moderate sizes of k.

A natural approach to remedy this computational issue is to work with a convex relaxation
of the optimization problem (11) instead. In fact, we can write

max
u∈Sp−1.k/

‖uTT‖2= max
u∈Sp−1.k/,w∈Sn−2

uTT w

= max
u∈Sp−1,w∈Sn−2,‖u‖0�k

〈uwT, T 〉= max
M∈M

〈M, T 〉, .12/

where M := {M ∈Rp×.n−1/ : ‖M‖Å= 1, rank.M/= 1, M has at most k non-zero rows}. The fi-
nal expression in equation (12) has a convex (linear) objective function M �→ 〈M, T 〉. The re-
quirement rank.M/= 1 in the constraint set M is equivalent to ‖σ.M/‖0= 1, where σ.M/ :=
.σ1.M/, : : : , σmin.p,n−1/.M//T is the vector of singular values of M. This motivates us to absorb
the rank constraint into the nuclear norm constraint, which we relax from an equality constraint
to an inequality constraint to make it convex. Furthermore, we can relax the row sparsity con-
straint in the definition of M to an entrywise l1-norm penalty. The optimization problem of
finding

M̂ ∈arg max
M∈S1

{〈T , M〉−λ‖M‖1}, .13/

where S1 := {M ∈Rp×.n−1/ : ‖M‖Å � 1} and λ > 0 is a tuning parameter to be chosen later, is
therefore a convex relaxation of problem (11). We remark that a similar convex relaxation has
appeared in the different context of sparse principal component estimation (d’Aspremont et al.,
2007), where the sparse leading left singular vector is also the optimization target. The convex
problem (13) may be solved using the alternating direction method of multipliers algorithm (see
Gabay and Mercier (1976) and Boyd et al. (2011)) as in algorithm 1 (Table 1). More specifically,
the optimization problem (13) is equivalent to maximizing 〈T , Y〉−λ‖Z‖1− IS1.Y/ subject to
Y =Z, where IS1 is the function that is 0 on S1 and∞ on Sc

1. Its augmented Lagrangian is given
by

L.Y , Z, R/ :=〈T , Y〉− IS1.Y/−λ‖Z‖1−〈R, Y −Z〉− 1
2‖Y −Z‖22,

with the Lagrange multiplier R being the dual variable. Each iteration of the main loop in
algorithm 1 first performs a primal update by maximizing L.Y , Z, R/ marginally with respect to
Y and Z, then followed by a dual gradient update of R with constant step size. The function ΠS1.·/
in algorithm 1 denotes projection onto the convex set S1 with respect to the Frobenius norm
distance. If A=UDV T is the singular value decomposition of A∈Rp×.n−1/ with rank.A/= r,
where D is a diagonal matrix with diagonal entries d1, : : : , dr, then ΠS1.A/=UD̃V T, where D̃ is
a diagonal matrix with entries d̃1, : : : , d̃r such that .d̃1, : : : , d̃r/

T is the Euclidean projection of
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Table 1. Algorithm 1: pseudocode
for an alternating direction method
of multipliers algorithm that com-
putes the solution to the optimiza-
tion problem (13)

Input: T ∈Rp×.n−1/, λ> 0
Set: Y =Z=R=0∈Rp×.n−1/

repeat
Y←ΠS1 .Z−R+T/
Z← soft.Y +R,λ/
R←R+ .Y −Z/

until Y −Z converges to 0
M̂←Y

Output: M̂

the vector .d1, : : : , dr/
T onto the standard .r−1/-simplex

Δr−1 :=
{

.x1, : : : , xr/
T ∈Rr :

r∑
l=1

xl=1 and xl �0 for all l

}
:

For an efficient algorithm for such simplicial projection, see Chen and Ye (2011). The soft func-
tion in algorithm 1 denotes an entrywise soft thresholding operator defined by .soft.A, λ//ij :=
sgn.Aij/ max{|Aij|−λ, 0} for any λ�0 and matrix A= .Aij/.

We remark that one may be interested to relax problem (13) further by replacing S1 with the
larger set S2 := {M ∈Rp×.n−1/ : ‖M‖2 � 1} defined by the entrywise l2-unit ball. We see from
proposition 2 in the on-line supplement that the smoothness of S2 results in a simple dual
formulation, which implies that

M̃ := soft.T , λ/

‖soft.T , λ/‖2
=arg max

M∈S2

{〈T , M〉−λ‖M‖1} .14/

is the unique optimizer of the primal problem. The soft thresholding operation is significantly
faster than the alternating direction method of multipliers algorithm in algorithm 1. Hence by
enlarging S1 to S2, we can significantly speed up the running time of the algorithm in exchange
for some loss in statistical efficiency caused by the further relaxation of the constraint set. See
Section 5 for further discussion.

Let v̂ be the leading left singular vector of

M̂ ∈arg max
M∈S

{〈T , M〉−λ‖M‖1}, .15/

for either S=S1 or S=S2. To describe the theoretical properties of v̂ as an estimator of the oracle
projection direction v, we introduce the following class of distributions: let P.n, p, k, ν, ϑ, τ , σ2/

denote the class of distributions of X= .X1, : : : , Xn/∈Rp×n with independent columns drawn
from distribution (1), where the change point locations satisfy condition (5) and the vectors of
mean changes are such that conditions (4) and (6) hold. Although this notation accommodates
the multiple-change-point setting that is studied in Section 4 below, we emphasize that our focus
here is on the single-change-point setting. The error bound in proposition 1 below relies on a
generalization of the curvature lemma in Vu et al. (2013), lemma 3.1, presented as lemma 6 in
the on-line supplement.
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Proposition 1. Suppose that M̂ satisfies expression (15) for either S=S1 or S=S2. Let v̂ be
the leading left singular vector of M̂. If n�6 and if we choose λ�2σ

√
log{p log.n/}, then

sup
P∈P.n,p,k,1,ϑ,τ ,σ2/

PP

{
sin � .v̂, v/>

32λ
√

k

τϑ
√

n

}
� 4

{p log.n/}1=2 :

The following corollary restates the rate of convergence of the projection estimator in a simple
asymptotic regime.

Corollary 1. Consider an asymptotic regime where log.p/=O{log.n/}, σ is a constant, ϑ	
n−a, τ 	n−b and k	nc for some a∈R, b∈ [0, 1] and c�0. Then, setting λ :=2σ

√
log{p log.n/}

and provided that a+b+ c=2 < 1
2 , we have for every δ > 0 that

sup
P∈P.n,p,k,1,ϑ,τ ,σ2/

PP{ � .v̂, v/>n−.1−2a−2b−c/=2+δ}→0:

Proposition 1 and corollary 1 illustrate the benefits of assuming that the changes in mean
structure occur only in a sparse subset of the co-ordinates. Indeed, these results mimic similar
findings in other high dimensional statistical problems where sparsity plays a key role, indicating
that one pays a logarithmic price for absence of knowledge of the true sparsity set. See, for
instance, Bickel et al. (2009) in the context of the lasso in high dimensional linear models, or
Johnstone and Lu (2009), or Wang et al. (2016) in the context of sparse principal component
analysis.

After obtaining a good estimator v̂ of the oracle projection direction, the natural next step is to
project the data matrix X along the direction v̂, and to apply an existing one-dimensional change
point localization method on the projected data. In this work, we apply a one-dimensional
CUSUM transformation to the projected series and estimate the change point by the location
of the maximum of the CUSUM vector. Our overall procedure for locating a single change
point in a high dimensional time series is given in algorithm 2 (Table 2). In our description of
this algorithm, the noise level σ is assumed to be known. If σ is unknown, we can estimate it
robustly using, for example, the median absolute deviation of the marginal one-dimensional
series (Hampel, 1974). For convenience of later reference, we have required algorithm 2 to
output both the estimated change point location ẑ and the associated maximum absolute post-
projection one-dimensional CUSUM statistic T̄ max.

From a theoretical point of view, the fact that v̂ is estimated by using the entire data set X

makes it difficult to analyse the post-projection noise structure. For this reason, in the analysis
below, we work with a slight variant of algorithm 2. We assume for convenience that n=2n1 is
even, and define X.1/, X.2/ ∈Rp×n1 by

Table 2. Algorithm 2: pseudocode for a single high dimen-
sional change point estimation algorithm

Input: X∈Rp×n, λ> 0
Step 1: perform the CUSUM transformation T←T .X/
Step 2: use algorithm 1 or equation (14) (with inputs T
and λ in either case) to solve for an optimizer M̂ of
expression (15) for S=S1 or S=S2
Step 3: find v̂∈arg maxṽ∈Sp−1 ‖M̂Tṽ‖2
Step 4: let ẑ∈arg max1�t�n−1 |v̂TTt |, where Tt is the
tth column of T , and set T̄ max←|v̂TTẑ|
Output: ẑ, T̄ max
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Table 3. Algorithm 3:pseudocode for a sample splitting variant of algorithm
2

Input: X∈Rp×n, λ> 0
Step 1: perform the CUSUM transformation T .1/←T .X.1// and T .2/←
T .X.2//

Step 2: use algorithm 1 or equation (14) (with inputs T .1/, λ in either
case) to solve for M̂

.1/ ∈arg maxM∈S{〈T .1/, M〉−λ‖M‖1} with S=
{M ∈Rp×.n1−1/ :‖M‖Å �1} or S={M ∈Rp×.n1−1/ :‖M‖2 �1}
Step 3: find v̂.1/ ∈arg maxṽ∈Sp−1 ‖.M̂.1/

/Tṽ‖2
Step 4: let ẑ∈2 arg max1�t�n1−1 |.v̂.1//TT

.2/
t |, where T

.2/
t is the tth

column of T .2/, and set T̄ max←|.v̂.1//TT
.2/
ẑ=2|

Output: ẑ, T̄ max

X
.1/
j,t :=Xj,2t−1 and X

.2/
j,t :=Xj,2t for 1� j �p, 1� t �n1: .16/

We then use X.1/ to estimate the oracle projection direction and use X.2/ to estimate the change
point location after projection (see algorithm 3 (Table 3)). However, we recommend using
algorithm 2 in practice to exploit the full signal strength in the data.

We summarize the overall estimation performance of algorithm 3 in the following theorem.

Theorem 1. Suppose that σ > 0 is known. Let ẑ be the output of algorithm 3 with input X∼
P ∈P.n, p, k, 1, ϑ, τ , σ2/ and λ :=2σ

√
log{p log.n/}. There exist universal constants C, C′>0

such that, if n�12 is even, z is even and

Cσ

ϑτ

√[
k log{p log.n/}

n

]
�1, .17/

then

PP

[
1
n
|ẑ− z|� C′σ2 log{log.n/}

nϑ2

]
�1− 4

{p log.n=2/}1=2 −
17

log.n=2/
:

We remark that, under the conditions of theorem 1, the rate of convergence obtained is
minimax optimal up to a factor of log{log.n/}; see proposition 3 in the on-line supplement. It is
interesting to note that, once condition (17) is satisfied, the final rate of change point estimation
does not depend on τ .

Corollary 2. Suppose that σ is a constant, log.p/=O{log.n/}, ϑ	n−a, τ 	n−b and k	nc

for some a∈R and b∈ [0, 1] and c � 0. If a+ b+ c=2 < 1
2 , then the output ẑ of algorithm 3

with λ := 2σ
√

log{p log.n/} is a consistent estimator of the true change point z with rate of
convergence ρn=o.n−1+2a+δ/ for any δ > 0.

Finally in this section, we remark that this asymptotic rate of convergence has previously been
observed in Csörgó́ and Horváth (1997), theorem 2.8.2, for a CUSUM procedure in the special
case of univariate observations with τ bounded away from zero (i.e. b=0 in corollary 2 above).

4. Estimating multiple change points

Our algorithm for estimating a single change point can be combined with the wild binary
segmentation scheme of Fryzlewicz (2014) to locate sequentially multiple change points in high
dimensional time series. The principal idea behind a wild binary segmentation procedure is
as follows. We first randomly sample a large number of pairs, .s1, e1/, : : : , .sQ, eQ/ uniformly
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from the set {.l, r/∈Z2 : 0 � l < r � n}, and then apply our single-change-point algorithm to
X[q], for 1 � q � Q, where X[q] is defined to be the submatrix of X obtained by extracting
columns {sq+1, : : : , eq} of X. For each 1�q�Q, the single-change-point algorithm (algorithm
2 or 3) will estimate an optimal sparse projection direction v̂[q], compute a candidate change
point location sq + ẑ[q] within the time window [sq + 1, eq] and return a maximum absolute
CUSUM statistic T̄

[q]
max along the projection direction. We aggregate the Q candidate change

point locations by choosing one that maximizes the largest projected CUSUM statistic, T
[q]
max,

as our best candidate. If T
[q]
max is above a certain threshold value ξ, we admit the best candidate

to the set Ẑ of estimated change point locations and repeat the above procedure recursively on
the subsegments to the left and right of the estimated change point. Note that, while recursing
on a subsegment, we consider only those time windows that are completely contained in the
subsegment. The precise algorithm is detailed in algorithm 4 (Table 4).

Algorithm 4 requires three tuning parameters: a regularization parameter λ, a Monte Carlo
parameter Q for the number of random time windows and a thresholding parameter ξ that
determines termination of recursive segmentation. Theorem 2 below provides choices for λ, Q

and ξ that yield theoretical guarantees for consistent estimation of all change points as defined
in expression (7).

We remark that if we apply algorithm 2 or 3 on the entire data set X instead of random
time windows of X, and then iterate after segmentation, we arrive at a multiple-change-point
algorithm based on the classical binary segmentation scheme. The main disadvantage of this
classical binary segmentation procedure is its sensitivity to model misspecification. Algorithms
2 and 3 are designed to optimize the detection of a single change point. When we apply them
in conjunction with classical binary segmentation to a time series containing more than one
change point, the signals from multiple change points may cancel each other out in two dif-
ferent ways that will lead to a loss of power. First, as Fryzlewicz (2014) pointed out in the
one-dimensional setting, multiple change points may offset each other in CUSUM computa-
tion, resulting in a smaller peak of the CUSUM statistic that is more easily contaminated by

Table 4. Algorithm 4: pseudocode for the multiple-change-point algo-
rithm based on sparse singular vector projection and wild binary seg-
mentation

Input: X∈Rp×n, λ> 0, ξ > 0, β > 0, Q∈N

Step 1: set Ẑ←∅: draw Q pairs of integers .s1, e1/, : : : , .sQ, eQ/ uniformly
at random from the set {.l, r/∈Z2 : 0� l< r �n}
Step 2: run wbs(0, n) where wbs is defined below
Step 3: let ν̂←|Ẑ| and sort elements of Ẑ in increasing order to yield
ẑ1 < : : : < ẑν̂
Output: ẑ1, : : : , ẑν̂
Function wbs(s, e)

Set Qs,e←{q : s+nβ � sq <eq � e−nβ}
for q∈Qs,e do

run algorithm 2 with X[q], λ as input, and let ẑ[q], T̄
[q]
max be the output

end
Find q0 ∈arg maxq∈Qs,e T̄

[q]
max and set b← sq0 + ẑ[q0]

if T̄
[q0]
max > ξ then

Ẑ← Ẑ∪{b}
wbs.s, b/
wbs.b, e/

end
end
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the noise. Moreover, in a high dimensional setting, different change points can undergo changes
in different sets of (sparse) co-ordinates. This also attenuates the signal strength in the sense
that the estimated oracle projection direction from algorithm 1 is aligned to some linear com-
bination of θ.1/, : : : , θ.ν/, but not necessarily well aligned to any one particular θ.i/. The wild
binary segmentation scheme addresses the model misspecification issue by examining subinter-
vals of the entire time length. When the number of time windows Q is sufficiently large and τ
is not too small, with high probability we have reasonably long time windows that contain each
individual change point. Hence the single-change-point algorithm will perform well on these
segments.

Just as in the case of single-change-point detection, it is easier to analyse the theoretical per-
formance of a sample splitting version of algorithm 4. However, to avoid notational clutter, we
shall prove a theoretical result without sample splitting, but with the assumption that, whenever
algorithm 2 is used within algorithm 4, its second and third steps (i.e. the steps for estimating the
oracle projection direction) are carried out on an independent copy X′ of X. We refer to such a
variant of the algorithm with an access to an independent sample X′ as algorithm 4′. Theorem
2 below, which proves theoretical guarantees of algorithm 4′, can then be readily adapted to
work for a sample splitting version of algorithm 4, where we replace n by n=2 where necessary.

Theorem 2. Suppose that σ > 0 is known and X, X′ ∼IID P ∈P.n, p, k, ν, ϑ, τ , σ2/. Let ẑ1
< : : : < ẑν̂ be the output of algorithm 4′ with input X, X′, λ := 4σ

√
log.np/, ξ :=λ, β and

Q. Define ρ= ρn :=λ2n−1ϑ−2τ−4, and assume that nτ � 14. There are universal constants
C, C′> 0 such that, if C′ρ<β=2� τ=C and Cρkτ2 �1, then

PP.ν̂=ν and |ẑi− zi|�C′nρ for all 1� i�ν/�1− τ−1 exp.−τ2Q=9/−6n−1p−4 log.n/:

Corollary 3. Suppose that σ is a constant, ϑ	n−a, τ 	n−b, k	nc and log.p/=O{log.n/}.
If a+ b+ c=2 < 1

2 and 2a+ 5b < 1, then there exists β = βn such that algorithm 4′ with
λ := 4σ

√
log.np/ consistently estimates all change points with rate of convergence ρn =

o.n−.1−2a−4b/+δ/ for any δ > 0.

We remark that the consistency that is described in corollary 3 is a rather strong notion, in
the sense that it implies convergence in several other natural metrics. For example, if we let

dH.A, B/ :=max{sup
a∈A

inf
b∈B
|a−b|, sup

b∈B

inf
a∈A
|a−b|}

denote the Hausdorff distance between non-empty sets A and B on R, then result (7) implies
that, with probability tending to 1,

1
n

dH.{ẑi : 1� i� ν̂}, {zi : 1� i�ν}/�ρn:

Similarly, denote the L1 Wasserstein distance between probability measures P and Q on R by

dW.P , Q/ := inf
.U,V/∼.P ,Q/

E|U−V |,

where the infimum is taken over all pairs of random variables U and V defined on the same
probability space with U ∼P and V ∼Q. Then result (7) also implies that, with probability
tending to 1,

1
n

dW

(
1
ν̂

ν̂∑
i=1

δẑi
,

1
ν

ν∑
i=1

δzi

)
�ρn,

where δa denotes a Dirac point mass at a.
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5. Numerical studies

In this section, we examine the empirical performance of the inspect algorithm in a range of
settings and compare it with a variety of other recently proposed methods. In both single-
and multiple-change-point scenarios, the implementation of inspect requires the choice of a
regularization parameter λ > 0 to be used in algorithm 1 (which is called in algorithms 2 and
4). In our experience, the theoretical choices λ= 2σ

√
log{p log.n/} and λ= 4σ

√
log.np/ used

in theorems 1 and 2 produce consistent estimators as predicted by the theory but are slightly
conservative, and in practice we recommend the choice λ=σ

√
[2−1 log{p log.n/}] in both cases.

Fig. 2 illustrates the dependence of the performance of our algorithm on the regularization
parameter and reveals in this case (as in the other examples that we tried) that this choice of λ
is sensible. In the implementation of our algorithm, we do not assume that the noise level σ is
known, nor even that it is constant across different components. Instead, we estimate the error
variance for each individual time series by using the median absolute deviation of first-order
differences with scaling constant 1:05 for the normal distribution (Hampel, 1974). We then
normalize each series by its estimated standard deviation and use the choices of λ given above
with σ replaced by 1.

In step 2 of algorithm 2, we also have a choice between using S=S1 and S=S2. The following
numerical experiment demonstrates the difference in performance of the algorithm for these two
choices. We took n= 500, p= 1000, k= 30 and σ2= 1, with a single change point at z= 200.
Table 5 shows the angles between the oracle projection direction and estimated projection direc-
tions by using both S1 and S2 as the signal level ϑ varies from 0:5 to 5:0. We have additionally
reported the benchmark performance of the naive estimator by using the leading left singular
vector of T , which illustrates that the convex optimization algorithms significantly improve the
naive estimator by exploiting the sparsity structure. It can be seen that further relaxation from S1
to S2 incurs a relatively low cost in terms of the quality of estimation of the projection direction,
but it offers great improvement in running time due to the closed form solution (see proposition
2 in the on-line supplement). Thus, even though the use of S1 remains a viable practical choice
for offline data sets of moderate size, we use S=S2 in the simulations that follow.

We compare the performance of the inspect algorithm with the following recently proposed
methods for high dimensional change point estimation: the sparsified binary segmentation

Table 5. Angles between oracle projection direction v and
estimated projection directions v̂S1

(using S1), v̂S2
(using S2)

and v̂max (leading left singular vector of T ), for various choices
of ϑ†

ϑ � (v̂S1 ,v) (deg) � (v̂S2 ,v) (deg) � (v̂max,v) (deg)

0.5 75.3 75.7 83.4
1.0 60.2 61.7 77.2
1.5 44.6 46.8 64.8
2.0 32.1 34.4 57.1
2.5 24.0 26.5 51.5
3.0 19.7 21.7 47.4
3.5 15.9 18.1 44.5
4.0 12.6 15.2 40.8
4.5 10.0 12.2 38.1
5.0 7.7 10.2 35.2

†Each reported value is averaged over 100 repetitions. Other sim-
ulation parameters: n=500, p=1000, k=30, z=200 and σ2=1.



70 T. Wang and R. J. Samworth

(a)

(b)

Fig. 2. Dependence of estimation performance on λ: (a) mean angle in degrees between the estimated
projection direction and oracle projection direction over 100 experiments; (b) mean-squared error of the esti-
mated change point location over 100 experiments (nD1000, pD500, k D3 (red) or 10 (orange) or 22 (blue) or
100 (green), z D400, ϑD1 and σ2 D1; for these parameters, our choice of λ is σ

p
[2�1 log{p log.n/}]�2:02)
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algorithm sbs (Cho and Fryzlewicz, 2015), the double-CUSUM algorithm dc of Cho (2016), the
scan-statistic-based algorithm scan derived from the work of Enikeeva and Harchaoui (2014),
the l∞ CUSUM aggregation algorithm agg∞ of Jirak (2015) and the l2 CUSUM aggregation
algorithm agg2 of Horváth and Hušková (2012). We remark that the latter three works pri-
marily concern the test for the existence of a change point. The relevant test statistics can be
naturally modified into a change point location estimator, though we note that optimal testing
procedures may not retain their optimality for the estimation problem. Each of these methods
can be extended to a multiple-change-point estimation algorithm via a wild binary segmenta-
tion scheme in a similar way to our algorithm, in which the termination criterion is chosen by
fivefold cross-validation. Whenever tuning parameters are required in running these algorithms,
we adopt the choices that were suggested by their authors in the relevant references.

5.1. Single-change-point estimation
All algorithms in our simulation study are top-down algorithms in the sense that their multiple-
change-point procedure is built on a single-change-point estimation submodule, which is used
to locate recursively all change points via a (wild) binary segmentation scheme. It is therefore
instructive first to compare their performance in the single-change-point estimation task. Our
simulations were run for n, p∈ {500, 1000, 2000}, k ∈ {3, �p1=2�, 0:1p, p}, z= 0:4n, σ2= 1 and
ϑ=0:8, with θ∝ .1, 2−1=2, : : : , k−1=2, 0, : : : , 0/T∈Rp. For definiteness, we let the n columns of X

be independent, with the leftmost z columns drawn from Np.0, σ2Ip/ and the remaining columns
drawn from Np.θ, σ2Ip/. To avoid the influence of different threshold levels on the performance
of the algorithms and to focus solely on their precision of estimation, we assume that the
existence of a single change point is known a priori and we make all algorithms output their
estimate of its location; estimation of the number of change points in a multiple-change-point
setting is studied in Section 5.3 below. Table 6 compares the performance of inspect and other
competing algorithms under various parameter settings. All algorithms were run on the same
data matrices and the root-mean-squared estimation error over 1000 repetitions is reported.
Although, in the interests of brevity, we report the root-mean-squared estimation error only for
ϑ=0:8, simulation results for other values of ϑ were qualitatively similar. We also remark that
the four choices for the parameter k correspond to constant or logarithmic sparsity, polynomial
sparsity and two levels of non-sparse settings. In addition to comparing the practical algorithms,
we also computed the change point estimator based on the oracle projection direction (which
of course is typically unknown); the performance of this oracle estimator depends only on n,
z, ϑ and σ2 (and not on k or p), and the corresponding root-mean-squared errors in Table 6
were 10:0, 8:1 and 7:8 when .n, z, ϑ, σ2/= .500, 200, 0:8, 1/, .1000, 400, 0:8, 1/, .2000, 800, 0:8, 1/

respectively. Thus the performance of our inspect algorithm is very close to that of the oracle
estimator when k is small, as predicted by our theory.

As a graphical illustration of the performance of the various methods, Fig. 3 displays density
estimates of their estimated change point locations in three settings. One difficulty in presenting
such estimates with kernel density estimators is the fact that different algorithms would require
different choices of bandwidth, and these would need to be locally adaptive, because of the
relatively sharp peaks. To avoid the choice of bandwidth skewing the visual representation, we
therefore use the log-concave maximum likelihood estimator for each method (e.g. Dümbgen
and Rufibach (2009) and Cule et al. (2010)), which is both locally adaptive and tuning parameter
free.

It can be seen from Table 6 and Fig. 3 that inspect has extremely competitive performance
for the single-change-point estimation task. In particular, despite the fact that it is designed for
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Table 6. Root-mean-squared error for inspect, dc, sbs, scan, agg2 and agg1 in
single-change-point estimation†

n p k z Root-mean-squared errors for the following methods:

inspect dc sbs scan agg2 agg∞

500 500 3 200 11.2 22:2 72:7 11:6 115:9 22:4
500 500 22 200 31.0 80:8 87:1 65:7 113:2 83:1
500 500 50 200 35.3 105:9 102:9 86:8 112:7 107:9
500 500 500 200 48.8 147:7 129:6 120:0 114:6 150:8
500 1000 3 200 13.0 21:3 83:6 14:3 145:6 19:6
500 1000 32 200 34.9 104:6 114:9 95:0 144:9 107:5
500 1000 100 200 45.0 124:8 132:0 122:9 145:3 133:6
500 1000 1000 200 55.0 140:4 146:5 146:8 144:2 159:5
500 2000 3 200 18.4 56:0 99:4 26:4 163:0 26:6
500 2000 45 200 43.5 152:3 133:8 126:8 164:9 132:6
500 2000 200 200 52.8 159:1 151:6 150:6 163:2 158:4
500 2000 2000 200 59.6 162:1 162:4 166:1 163:0 176:0

1000 500 3 400 8.4 12:5 101:1 8:6 65:4 13:9
1000 500 22 400 14.1 44:2 60:6 18:7 66:7 44:4
1000 500 50 400 19.7 61:5 72:1 24:7 66:7 62:4
1000 500 500 400 36.8 137:8 114:8 77:4 72:8 142:6
1000 1000 3 400 9:5 14:6 117:2 9.0 154:9 15:0
1000 1000 32 400 20.7 61:1 83:6 26:4 150:1 57:2
1000 1000 100 400 33.1 101:0 122:0 59:2 158:3 106:4
1000 1000 1000 400 57.7 159:9 186:3 145:2 152:7 195:2
1000 2000 3 400 10:8 15:4 132:9 10.3 232:8 15:5
1000 2000 45 400 29.6 121:0 137:0 39:1 237:5 73:4
1000 2000 200 400 47.4 176:8 187:7 123:6 235:4 158:2
1000 2000 2000 400 67.2 219:6 240:0 210:3 233:4 245:8
2000 500 3 800 8.6 15:5 159:7 8.6 22:6 15:5
2000 500 22 800 12.4 31:2 48:7 17:0 25:9 32:1
2000 500 50 800 14.6 39:6 57:7 20:4 25:3 38:6
2000 500 500 800 23.9 72:7 86:1 35:6 25:1 71:8
2000 1000 3 800 8.1 14:2 178:3 8:3 42:6 14:4
2000 1000 32 800 12.5 36:1 58:7 16:9 40:6 38:2
2000 1000 100 800 17.0 46:7 75:8 24:6 40:0 47:3
2000 1000 1000 800 31.0 89:0 111:2 45:4 39:9 91:0
2000 2000 3 800 9:3 15:9 215:7 9.0 143:6 16:1
2000 2000 45 800 16.7 35:8 100:7 21:3 152:5 39:2
2000 2000 200 800 25.6 56:7 126:5 32:0 151:8 59:1
2000 2000 2000 800 48.4 107:9 208:0 66:1 150:6 153:5

†The smallest root-mean-squared error is given in italics. Other parameters: ϑ=0:8 and
σ2=1.

estimation of sparse change points, inspect performs relatively well even when k=p (i.e. when
the signal is highly non-sparse).

5.2. Other data-generating mechanisms
We now extend the ideas of Section 5.1 by investigating empirical performance under sev-
eral other data-generating mechanisms. Recall that the noise matrix is W = .Wj,t/ :=X−μ
and we define W1, : : : , Wn to be the column vectors of W . In models Munif and Mexp, we re-
place Gaussian noise by Wj,t∼IID Unif[−√3σ,

√
3σ] and Wj,t∼IID Exp.σ/−σ respectively. We

note that the correct Hampel scaling constants are approximately 0:99 and 1:44 in these two
cases, though we continue to use the constant 1:05 for normally distributed data. In model
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(a) (b)

(c)

Fig. 3. Estimated densities of location of change point estimates by inspect ( ), dc ( ), sbs
( ), scan ( ), agg2 ( ) and agg1 ( ): (a) .n, p, k, z,ϑ,σ2/D .2000, 1000, 32, 800, 0:5, 1/;
(b) .n, p, k, z,ϑ,σ2/D .2000, 1000, 32, 800, 1, 1/; (c) .n, p, k, z,ϑ,σ2/D .2000, 1000, 1000, 800, 1, 1/

Mcs,loc.ρ/, we allow the noise to have a short-range cross-sectional dependence by sampling
W1, : : : , Wn∼IID Np.0, Σ/ for Σ := .ρ|j−j′|/j,j′ . In model Mcs.ρ/, we extend this to global cross-
sectional dependence by sampling W1, : : : , Wn∼IID Np.0, Σ/ for Σ := .1− ρ/Ip + .ρ=p/1p1T

p ,
where 1p∈Rp is an all-1 vector. In model Mtemp.ρ/, we consider an auto-regressive AR(1) tem-
poral dependence in the noise by first sampling W ′j,t∼IID N.0, σ2/ and then setting Wj,1 :=W ′j,1
and Wj,t := ρ1=2Wj,t−1 + .1− ρ/1=2W ′j,t for 2 � t � n. In Masync.L/, we model asynchronous
change point location in the signal co-ordinates by drawing change point locations for individ-
ual co-ordinates independently from a uniform distribution on {z−L, : : : , z+L}. We report
the performance of the various algorithms in the parameter setting n=2000, p=1000, k=32,
z=800, ϑ=0:25 and σ2=1 in Table 7. It can be seen that inspect is robust to spatial dependence
structures, noise misspecification and moderate temporal dependence, though its performance
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Table 7. Root-mean-squared error for inspect, dc, sbs, scan, agg2 and agg1 in single-change-point esti-
mation, under different data-generating mechanisms

Model n p k z ϑ Root-mean-squared errors for the following methods:

inspect dc sbs scan agg2 agg∞

Munif 2000 1000 32 800 1.5 2.7 9.6 17.1 4.9 4.3 10.2
Mexp 2000 1000 32 800 1.5 2.6 9.6 42.6 5.0 4.7 9.6
Mcs,loc.0:2/ 2000 1000 32 800 1.5 3.5 9.7 19.2 7.0 5.4 9.8
Mcs,loc.0:5/ 2000 1000 32 800 1.5 5.8 9.7 24.6 8.7 9.3 9.6
Mcs.0:5/ 2000 1000 32 800 1.5 1.5 7.7 14.9 3.0 3.6 6.7
Mcs.0:9/ 2000 1000 32 800 1.5 2.7 9.9 18.6 4.7 4.7 9.6
Mtemp.0:1/ 2000 1000 32 800 1.5 6.1 20.3 102.8 9.4 10.9 20.2
Mtemp.0:3/ 2000 1000 32 800 1.5 30.1 32.4 276.4 38.8 38.2 34.8
Mtemp.0:5/ 2000 1000 32 800 1.5 85.1 57.0 379.6 61.8 83.4 76.6
Mtemp.0:7/ 2000 1000 32 800 1.5 243.6 177.3 456.7 189.0 239.5 190.5
Masync.10/ 2000 1000 32 800 1.5 5.8 11.5 18.5 7.8 7.0 11.3

deteriorates slightly relatively to other methods in the presence of strong temporal correlation,
apparently due to slight under-regularization in these latter settings.

5.3. Multiple-change-point estimation
The use of the ‘burn-off’ parameter β in algorithm 4 was mainly to facilitate our theoretical
analysis. In our simulations, we found that taking β= 0 rarely resulted in the change point
being estimated more than once, and we therefore recommend setting β=0 in practice, unless
prior knowledge of the distribution of the change points suggests otherwise. To choose ξ in the
multiple-change-point estimation simulation studies, for each .n, p/, we first applied inspect to
1000 data sets drawn from the null model with no change point and took ξ to be the largest
value of T̄ max from algorithm 2. We also set Q=1000.

We consider the simulation setting where n=2000, p=200, k=40, σ2=1 and z= .500, 1000,
1500/. Define ϑ.i/ :=‖θ.i/‖2 to be the signal strength at the ith change point. We set .ϑ.1/, ϑ.2/,
ϑ.3//= .ϑ, 2ϑ, 3ϑ/ and take ϑ∈ {0:4, 0:6} to see the performance of the algorithms at various
signal strengths. We also considered different levels of overlap between the co-ordinates in
which the three changes in mean structure occur: in the complete-overlap case, changes occur
in the same k co-ordinates at each change point; in the half-overlap case, the changes occur in
co-ordinates

i−1
2

k+1, : : : ,
i+1

2
k

for i= 1, 2, 3; in the no-overlap case, the changes occur in disjoint sets of co-ordinates. Table 8
summarizes the results. We report both the frequency counts of the number of change points
detected over 100 runs (all algorithms were compared over the same set of randomly generated
data matrices) and two quality measures of the location of change points. In particular, since
change point estimation can be viewed as a special case of classification, the quality of the
estimated change points can be measured by the adjusted Rand index ARI of the estimated
segmentation against the truth (Rand, 1971; Hubert and Arabie, 1985). We report both the
average ARI over all runs and the percentage of runs for which a particular method attains
the largest ARI among the six. Fig. 4 gives a pictorial representation of the results for one
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Table 8. Multiple-change-point simulation results†

(ϑ.1/,ϑ.2/,ϑ.3/) Method Results for the following ARI % best
values of ν̂:

0 1 2 3 4 5

.0:6, 1:2, 1:8/ inspect 0 0 20 72 8 0 0.90 55
dc 0 0 21 54 23 2 0.85 22
sbs 0 0 12 64 22 2 0.86 15
scan 0 0 72 27 1 0 0.77 8
agg2 0 0 18 73 8 1 0.87 1
agg∞ 0 0 29 57 13 1 0.83 17

.0:4, 0:8, 1:2/ inspect 0 0 62 34 4 0 0.74 50
dc 0 0 62 32 5 1 0.69 19
sbs 0 0 54 44 1 1 0.70 21
scan 0 2 95 3 0 0 0.68 19
agg2 0 0 81 17 2 0 0.71 2
agg∞ 0 0 68 29 3 0 0.68 8

.0:6, 1:2, 1:8/ inspect 0 0 20 70 10 0 0.90 51
dc 0 0 24 58 17 1 0.87 27
sbs 0 0 17 61 17 5 0.85 11
scan 0 0 74 26 0 0 0.78 15
agg2 0 0 30 67 2 1 0.86 3
agg∞ 0 0 32 58 9 1 0.85 15

.0:4, 0:8, 1:2/ inspect 0 0 65 31 4 0 0.73 44
dc 0 0 73 25 2 0 0.70 18
sbs 0 0 65 29 6 0 0.68 16
scan 0 2 96 2 0 0 0.70 29
agg2 0 0 83 14 3 0 0.71 5
agg∞ 0 0 82 17 1 0 0.69 12

.0:6, 1:2, 1:8/ inspect 0 0 19 71 9 1 0.90 55
dc 0 0 28 53 17 2 0.85 22
sbs 0 0 18 67 14 1 0.85 14
scan 0 0 74 26 0 0 0.78 14
agg2 0 0 23 66 10 1 0.87 0
agg∞ 0 0 32 58 9 1 0.85 10

.0:4, 0:8, 1:2/ inspect 0 0 66 30 4 0 0.74 50
dc 0 0 75 23 2 0 0.70 18
sbs 0 0 62 30 7 1 0.69 11
scan 0 1 98 1 0 0 0.70 29
agg2 0 0 86 12 2 0 0.72 5
agg∞ 0 0 82 15 3 0 0.70 7

†The top, middle and bottom blocks refer to the complete-, half- and no-overlap
settings respectively. Other simulation parameters: n= 2000, p= 200, k= 40,
z= .500, 1000, 1500/ and σ2=1.

particular collection of parameter settings. Again, we find that the performance of inspect is
very encouraging on all performance measures, though we remark that agg2 is also competitive,
and scan tends to output the fewest false positive results.

5.4. Real data application
We study the comparative genomic hybridization microarray data set from Bleakley and Vert
(2011), which is available in the ecp R package (James and Matteson, 2015). Comparative
genomic hybridization is a technique that allows detection of chromosomal copy number ab-
normality by comparing the fluorescence intensity levels of DNA fragments from a test sample
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Fig. 4. Histograms of estimated change point locations by (a) inspect, (b) dc, (c) sbs, (d) scan, (e) agg2
and (f) agg1 in the half-overlap case (parameter settings: n D 2000, p D 200, k D 40, z D .500, 1000, 1500/,
.ϑ.1/,ϑ.2/,ϑ.3//D .0.6, 1.2, 1.8/, σ2 D1)

and a reference sample. This data set contains (test-to-reference) log-intensity-ratio measure-
ments of 43 individuals with bladder tumours at 2215 different loci on their genome. The log-
intensity-ratios for the first 10 individuals are plotted in Fig. 5. Whereas some of the copy number
variations are specific to one individual, some copy number abnormality regions (e.g. between
loci 2044 and 2143) are shared across several individuals and are more likely to be disease re-
lated. The inspect algorithm aggregates the changes in different individuals and estimates the
start and end points of copy number changes. Because of the large number of individual-specific
copy number changes and the presence of measurement outliers, direct application of inspect
with the default threshold level identifies 254 change points. However, practitioners can use the
associated T̄

[q0]
max-score to identify the most significant changes. The 30 most significant identified

change points are plotted as red broken lines in Fig. 5.

6. Extensions: temporal or spatial dependence

In this section, we explore how our method and its analysis can be extended to handle more
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Fig. 5. Log-intensity-ratio measurements of microarray data (only the first 10 patients are shown): , change
points estimated by using all patients in the data set

realistic streaming data settings where our data exhibit temporal or spatial dependence. For
simplicity, we focus on the single-change-point case and assume the same mean structure for
μ=E.X/ as described in Section 2, in particular expressions (2), (3), (4), (5) and (6).

6.1. Temporal dependence
A natural way of relaxing the assumption of independence of the columns of our data matrix is
to assume that the noise vectors W1, : : : , Wn are stationary. Writing K.u/ := cov.Wt , Wt+u/, we
assume here that W= .W1, : : : , Wn/ forms a centred, stationary Gaussian process with covariance
function K. As we are mainly interested in the temporal dependence in this subsection, we assume
that each component time series evolves independently, so that K.u/ is a diagonal matrix for
every u. Further, writing σ2 :=‖K.0/‖op, we shall assume that the dependence is short ranged,
in the sense that ∥∥∥∥

n−1∑
u=0

K.u/

∥∥∥∥
op

�Bσ2 .18/

for some universal constant B>0. In this case, the oracle projection direction is still v :=θ=‖θ‖2
and our inspect algorithm does not require any modification. In terms of its performance in this
context, we have the following result.

Theorem 3. Suppose that σ, B> 0 are known. Let ẑ be the output of algorithm 3 with input
X and λ :=σ

√{8B log.np/}. There are universal constants C, C′> 0 such that, if n � 12 is
even, z is even and

Cσ

ϑτ

√{
kB log.np/

n

}
�1, .19/

then

P

{
1
n
|ẑ− z|� C′σ2B log.n/

nϑ2

}
�1− 12

n
:
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6.2. Spatial dependence
Now consider the case where we have spatial dependence between the different co-ordinates of
the data stream. More specifically, suppose that the noise vectors satisfy W1, : : : , Wn∼IID Np.0,
Σ/, for some positive definite matrix Σ∈Rp×p. This turns out to be a more complicated setting,
where our initial algorithm requires modification. To see this, observe now that, for a∈Sp−1,

aTXt∼N.aTμt , aTΣa/:

It follows that the oracle projection direction in this case is

vproj :=arg max
a∈Sp−1

|aTθ|√
.aTΣa/

=Σ−1=2 arg max
b∈Sp−1

|bTΣ−1=2θ|= Σ−1θ

‖Σ−1θ‖2
:

If Θ̂ is an estimator of the precision matrix Θ :=Σ−1, and v̂ is a leading left singular vector of
M̂ as computed in step 3 of algorithm 2, then we can estimate the oracle projection direction by
v̂proj := Θ̂v̂=‖Θ̂v̂‖2. The sample splitting version of this algorithm is therefore given in algorithm
5 in Table 9. Lemma 16 in the on-line supplement allows us to control sin{ � .v̂proj, vproj/} in
terms of sin{� .v̂, v/} and ‖Θ̂−Θ‖op, as well as the extreme eigenvalues of Θ. Since proposition
1 does not rely on the independence of the different co-ordinates, it can still be used to control
sin{� .v̂, v/}. In general, controlling ‖Θ̂−Θ‖op in high dimensional cases requires assumptions
of additional structure on Θ (or, equivalently, on Σ). For convenience of our theoretical analysis,
we assume that we have access to observations W ′1, : : : , W ′m∼IID Np.0, Σ/, independent of X.2/,
with which we can estimate Θ. In practice, if a lower bound on τ were known, we could take
W ′1, : : : , W ′m to be scaled, disjoint first-order differences of the observations in X.1/ that are within
n1τ of the end points of the data stream; more precisely, we can let W ′t := 21=2.X

.1/
2t −X

.1/
2t−1/

for t=1, : : : , �n1τ=2� and W ′�n1τ=2�+t :=21=2.X
.1/
n1−2t−X

.1/
n1−2t+1/, so that m=2�n1τ=2�. In fact,

lemmas 17 and 18 in the on-line supplement indicate that, at least for certain dependence
structures, the operator norm error in estimation of Θ is often negligible by comparison with
sin{� .v̂, v/}, so a fairly crude lower bound on τ would often suffice.

Theoretical guarantees on the performance of the spatially dependent version of the inspect
algorithm in illustrative examples of both local and global dependence structures are provided
in theorem 4 in the on-line supplement. The main message of these results is that, provided that
the dependence is not too strong, and we have a reasonable estimate of Θ, we attain the same rate
of convergence as when there is no spatial dependence. However, theorem 4 also quantifies the

Table 9. Algorithm 5:pseudocode for a sample splitting variant of algorithm
2 for spatially dependent data

Input: X∈Rp×n, λ> 0
Step 1: perform the CUSUM transformation T .1/←T .X.1// and T .2/←
T .X.2//

Step 2: use algorithm 1 or equation (14) (with inputs T .1/ and λ in
either case) to solve for M̂

.1/ ∈argmaxM∈S{〈T .1/, M〉−λ‖M‖1} with S=
{M ∈Rp×.n1−1/ :‖M‖Å �1} or {M ∈Rp×.n1−1/ :‖M‖2 �1}
Step 3: find v̂.1/ ∈argmaxṽ∈Sp−1 ‖.M̂.1/

/Tṽ‖2
Step 4: let Θ̂.1/= Θ̂.1/

.X.1// be an estimator of Θ: let v̂
.1/
proj← Θ̂.1/

v̂.1/

Step 5: let ẑ∈2 argmax1�t�n1−1 |.v̂.1/
proj/

TT
.2/
t |, and set T̄ max←

|.v̂.1/
proj/

TT
.2/
ẑ=2|

Output: ẑ, T̄ max
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Fig. 6. Mean angle between the estimated projection direction and the optimal projection direction vproj
over 100 experiments (n D 1000, p D 500, k D 10 ( , ) or k D 100 ( , ), z D 400, ϑ D 3, (a) Σ D .Σi,j / D
2�ji�j j or (b) ΣD Ip C1p1T

p=2): , , vanilla inspect algorithm; , , algorithm 5
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way in which this rate of convergence deteriorates as the dependence approaches the boundary
of its range.

In Fig. 6, we compare the performances of the ‘vanilla’ inspect algorithm (algorithm 3) and
algorithm 5 on simulated data sets with local and spatial dependence structures. We observe
that algorithm 5 offers improved performance across all values of λ considered by accounting
for the spatial dependence, as suggested by our theoretical arguments.
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Appendix A: Proofs of main results

A.1. Proof (of proposition 1)
We note that the matrix A as defined in Section 3 has rank 1, and its only non-zero singular value is
‖θ‖2‖γ‖2. By proposition 7 in the on-line supplement, on the event ΩÅ :={‖E‖∞�λ}, we have

sin{� .v̂, v/}� 8λ
√

.kn/

‖θ‖2‖γ‖2
:

By definition, ‖θ‖2 � ϑ, and, by lemma 8 in the on-line supplement, ‖γ‖2 � 1
4 nτ . Thus, sin{� .v̂, v/} �

32λ
√

k=.ϑτ
√

n/ on ΩÅ. It remains to verify that P.Ωc
Å/ � 4{p log.n/}−1=2 for n � 6. By lemma 9 in the

on-line supplement,

P.‖E‖∞�2σ
√

[log{p log.n/}]/�2

√(
2
π

)
p�log.n/�√log{p log.n/}

[
1+ 1

log{p log.n/}

]
{p log.n/}−2

�6{p log.n/}−1√log{p log.n/}�4{p log.n/}−1=2, (20)

as desired.

A.2. Proof (of theorem 1)
Recall the definition of X.2/ in expression (16) and the definition T .2/ :=T .X.2//. Define similarly μ.2/=
.μ.2/

1 , : : : , μ.2/
n1

/∈Rp×n1 and a random W.2/= .W
.2/
1 , : : : , W.2/

n1
/ taking values in Rp×n1 by μ.2/

t :=μ2t and W
.2/
t =

W2t ; now let A.2/ :=T .μ.2// and E.2/ :=T .W.2//. Furthermore, we write X̄ := .v̂.1//TX.2/, μ̄ := .v̂.1//Tμ.2/,
W̄ := .v̂.1//TW.2/, T̄ := .v̂.1//TT .2/, Ā := .v̂.1//TA.2/ and Ē := .v̂.1//TE.2/ for the one-dimensional projected
images (as row vectors) of the corresponding p-dimensional quantities. We note that T̄ =T .X̄/, Ā=T .μ̄/
and Ē=T .W̄/.

Now, conditionally on v̂.1/, the random variables X̄1, : : : , X̄n1 are independent, with

X̄t |v̂.1/∼N.μ̄t , σ
2/,

and the row vector μ̄ undergoes a single change at z.2/ := z=2 with magnitude of change

θ̄ := μ̄z.2/+1− μ̄z.2/ = .v̂.1//Tθ:

Finally, let ẑ.2/ ∈ arg max1�t�n1−1 |T̄ t |, so the first component of the output of the algorithm is ẑ= 2ẑ.2/.
Consider the set

Υ :={ṽ∈S
p−1 : � .ṽ, v/�π=6}:

By condition (17) in the statement of theorem 1 and proposition 1,

P.v̂.1/ ∈Υ/�1−4{p log.n1/}−1=2: .21/
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Moreover, for v̂.1/ ∈Υ, we have θ̄ �√3ϑ=2. Note also that v̂.1/ and W.2/ are independent, so W̄ has
independent N.0, σ2/ entries. Define λ1 := 3σ

√
[log{log.n1/}]. By lemma 9 in the on-line supplement,

and the fact that n�12, we have

P.‖Ē‖∞�λ1/�√.2=π/�log.n1/�
[

3
√

log{log.n1/}+ 2
3
√

log{log.n1/}

]
log.n1/

−9=2 � log.n1/
−1: .22/

Since T̄ = Ā+ Ē, and since .Āt/t and .T̄ t/t are respectively maximized at t=z.2/ and t= ẑ.2/, we have on the
event Ω0 :={v̂.1/ ∈Υ, ‖Ē‖∞�λ1} that

Āz.2/ − Āẑ.2/ = .Āz.2/ − T̄ z.2/ /+ .T̄ z.2/ − T̄ ẑ.2/ /+ .T̄ ẑ.2/ − Āẑ.2/ /

� |Āz.2/ − T̄ z.2/ |+ |T̄ ẑ.2/ − Āẑ.2/ |�2λ1:

The row vector Ā has the explicit form

Āt=

⎧⎪⎪⎨
⎪⎪⎩

√{
t

n1.n1− t/

}
.n1− z.2//θ̄, if t � z.2/,√(

n1− t

n1t

)
z.2/θ̄, if t>z.2/:

Hence, by lemma 12 in the on-line supplement, on the event Ω0 we have that

|ẑ.2/− z.2/|
n1τ

� 3
√

6λ1

θ̄.n1τ /1=2
= 9
√

6σ

θ̄

√[
log{log.n1/}

n1τ

]
� 36σ

ϑ

√[
log{log.n/}

nτ

]
: .23/

Now define the event

Ω1 :=
{∣∣∣ s∑

r=1
W̄r−

t∑
r=1

W̄r

∣∣∣�λ1
√|s− t|, ∀0� t �n1, s∈{0, z.2/, n1}

}
: .24/

From expression (23) and condition (17), provided that C � 72, we have |ẑ.2/ − z.2/|� n1τ=2. We can
therefore apply lemmas 11 and 12 in the on-line supplement and conclude that, on Ω0∩Ω1, we have

|Ēz.2/ − Ēẑ.2/ |�2
√

2λ1

√( |z.2/− ẑ.2/|
n1τ

)
+8λ1

|z.2/− ẑ.2/|
n1τ

,

Āz.2/ − Āẑ.2/ � 2θ̄

3
√

6
|z.2/− ẑ.2/|.n1τ /−1=2:

Since T̄ z.2/ � T̄ ẑ.2/ , we have that, on Ω0∩Ω1,

1� |Ēz.2/ − Ēẑ.2/ |
Āz.2/ − Āẑ.2/

� 6
√

3λ1

θ̄|z.2/− ẑ.2/|1=2
+ 12

√
6λ1

θ̄.n1τ /1=2

� 36
√

2σ

ϑ

√[
log{log.n/}
|z− ẑ|

]
+ 144σ

ϑ

√[
log{log.n/}

nτ

]
:

We conclude from condition (17) again, that on Ω0∩Ω1, for C �288, we have

|ẑ− z|�C′σ2ϑ−2 log{log.n/}

for some universal constant C′> 0.
It remains to show that Ω0 ∩Ω1 has the desired probability. From expressions (21) and (22), as well as

lemma 10 in the on-line supplement,

P.Ωc
0∪Ωc

1/�4{p log.n1/}−1=2+ log.n1/
−1+16 log.n1/

−5=4 �4{p log.n1/}−1=2+17{log.n1/}−1

as desired.



82 T. Wang and R. J. Samworth

A.3. Proof (of theorem 3)
Writing E.1/ :=T .W.1// and n1 :=n=2, by lemma 15 in the on-line supplement and a union bound, we have
that the event ΩÅ :={‖E.1/‖∞�λ} satisfies

P.Ωc
Å/=P[‖E.1/‖∞�σ

√{8B log.n1p/}]� .n1−1/p exp{−2 log.n1p/}� 1
n1p

:

Moreover, following the proof of proposition 1, on ΩÅ,

sin{� .v̂.1/, v/}� 64
√

2σ
√{kB log.n1p/}
τϑ
√

n1
� 1

2
,

provided that, in condition (19), we take the universal constant C> 0 sufficiently large. Now following the
notation and proof of theorem 1, but using lemma 15 instead of lemma 9 in the on-line supplement, and
writing λ1 :=σ

√{8B log.n1/}, we have

P.‖Ē‖∞�λ1/� .n1−1/ exp{−2 log.n1/}� 1
n1

:

Similarly, using lemma 15 in the on-line supplement again instead of lemma 10, the event Ω1 defined in
expression (24) satisfies

P.Ωc
1/�4n1 exp

(
− λ2

1

4Bσ2

)
� 4

n1
:

The proof therefore follows from that of theorem 1.
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Darling, D. A. and Erdó́s, P. (1956) A limit theorem for the maximum of normalised sums of independent random

variables. Duke Math. J., 23, 143–155.
Davis, C. and Kahan, W. M. (1970) The rotation of eigenvectors by a pertubation: III. SIAM J. Numer. Anal., 7,

1–46.
Dümbgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log-concave density and its distribution

function: basic properties and uniform consistency. Bernoulli, 15, 40–68.



High Dimensional Change Point Estimation 83

Enikeeva, F. and Harchaoui, Z. (2014) High-dimensional change-point detection with sparse alternatives. Preprint
arXiv:1312.1900v2. Laboratoire Jean Kuntzmann, Grenoble.

Frick, K., Munk, A. and Sieling, H. (2014) Multiscale change point inference (with discussion). J. R. Statist. Soc.
B, 76, 495–580.

Fryzlewicz, P. (2014) Wild binary segmentation for multiple change-point detection. Ann. Statist., 42, 2243–2281.
Gabay, D. and Mercier, B. (1976) A dual algorithm for the solution of nonlinear variational problems via finite

element approximations. Comput. Math. Appl., 2, 17–40.
Hampel, F. R. (1974) The influence curve and its role in robust estimation. J. Am. Statist. Ass., 69, 383–393.
Henry, D., Simani, S. and Patton, R. J. (2010) Fault detection and diagnosis for aeronautic and aerospace missions.

In Fault Tolerant Flight Control—a Benchmark Challenge (eds C. Edwards, T. Lombaerts and H. Smaili), pp.
91–128. Berlin: Springer.
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