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ABSTRACT

A significant concern with deep learning based approaches is that
they are difficult to interpret, which means detecting bias in network
predictions can be challenging. Concept Activation Vectors (CAVs)
have been proposed to address this problem. These use representa-
tions - perturbations of activation function outputs - of interpretable
concepts to analyse how the network is influenced by the concept.
This work applies CAVs to assess bias in a spoken language assess-
ment (SLA) system, a regression task. One of the challenges with
SLA is the wide range of concepts that can introduce bias in training
data, for example L1, age, acoustic conditions, and particular human
graders, or the grading instructions. Simply generating large quan-
tities of expert marked data to check for all forms of bias is imprac-
tical. This paper uses CAVs applied to the training data to identify
concepts that might be of concern, allowing a more targeted dataset
to be collected to assess bias. The ability of CAVs to detect bias is
assessed on the BULATS speaking test using both a standard system
and a system to which bias was artificially introduced. A strong bias
identified by CAVs on the training data matches the bias observed in
expert marked held-out test data.

Index Terms— spoken language assessment, bias in deep learn-
ing, concept activation vectors.

1. INTRODUCTION

The demand for foreign language learning is growing, so is the need
for standardised, universally accepted examination processes to eval-
uate candidates’ language proficiency. This high demand leads to a
shortage of capable examiners, especially for spoken language as-
sessment. Significant progress has been made in applying various
techniques from speech processing, machine learning (ML) and Ar-
tificial Intelligence (AI) to automate the language assessment pro-
cess [1, 2, 3, 4]. With ML/AI based systems a concern, however,
arises about potential bias within the system. For example, system-
atic biases with respect to gender, race and age have been found in
analyses of facial recognition [5] and gender classification [6] com-
puter vision systems, and social biases detected in nature language
processing (NLP) models [7, 8].

It is crucial for trust in an exam’s results that any automated spo-
ken language assessment (SLA) system is unbiased. In other words,
the system should be insensitive to factors that should not affect the
candidate’s exam score (e.g. first language (L1), gender, age, etc.).
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Bias typically arises in ML/AI systems due to uneven training data
and/or human biases in the training set. The data used to train SLA
systems is susceptible to both of these. The training data gener-
ally consists of recorded speech responses to questions and scores
awarded by human examiners. There are likely to be variations such
as the number of candidates available for each L1 (or accent) and
the proficiency distribution of candidates per L1. In addition, the
recording conditions and levels of background noise can vary con-
siderably across countries and test centres. This affects the accuracy
of automatic speech recognition (ASR) used to hypothesise what the
candidate said. There will typically be a range of examiners used.
Whereas the scores awarded by expert examiners have over 95%
agreement, this drops for examiners in the field. Humans may also
have unconscious biases to particular groups of candidates.

Analysis of bias in deep learning-based systems can be used to
help understand a system’s behaviour. If bias is detected, actions
can be made to compensate, then to improve the fairness of the sys-
tem. With a working high-performance system, it is more effective
to analyse the behaviour of the system without retraining or modify-
ing the model. Instead the network is perturbed in some way and the
impact of the perturbations on the network’s performance checked.
One way to achieve this is to use data points [9] or perturbed fea-
tures [10]. With these methods, however, there is a concern that the
analysis is only true for a particular set of data

Researches have shown that linear classifiers can learn mean-
ingful directions from the latent space of the networks [11, 12]. Kim
et al. [13] proposed Test with Concept Activation Vector (TCAV)
to quantify the sensitivity of model predictions to a human-defined
high-level concept using directional derivatives and applied this to
image classification. For each class, TCAV computes the fraction of
inputs whose activation vectors are positively related to a concept.
It measures how important a concept (e.g ‘striped’) is for the pre-
diction of a given class (e.g ‘zebras’). [13] also showed that TCAV
can reveal biases e.g. it found the ‘female’ concept highly relevant
to the ‘apron’ class. This technique (referred to as Attribute Vectors
in [13]) was extended in [14] to measure the sensitivity to a con-
cept directly from the model predictions for bias detection. Bias is
detected in their smiling classifier model by assessing how a predic-
tion changes if characteristics of an image are altered in a specific
targeted manner.

This paper proposes applying CAVs to spoken language assess-
ment to look for concepts that may be of concern. They provide a
way to analyse the trained model and training data to efficiently de-
tect concepts to further analyse through held-out, expert graded test
data. Since only concepts of concern need to be tested on the lat-
ter, this can reduce time and costs of expert grading. Since the SLA
scoring is a regression task CAVs are here extended from their pre-



vious use in classification. Perturbations in the direction of a CAV
are assessed to see if they impact the predicted SLA score of a well
trained high performing SLA system. The impact of the CAV di-
rectly on the score is also considered. Concepts identified by CAVs
on the training data as potentially a source of bias were verified on
held-out test data. Both concepts expected to affect (e.g. grade) and
be independent of the score (e.g. L1) were investigated.

In the rest of this paper, Section 2 discusses the CAV-based
methods to assess the sensitivity of a network to a concept. The
experiments and results are presented in Section 3, followed by con-
clusions.

2. CONCEPT ACTIVATION VECTORS (CAVs)

The aim of this work is to assess the sensitivity of a regression task
network to a particular, human interpretable, concept. It is assumed
that there is supervised training data, D, comprising feature vectors,
x(i), and associated score, y(i), that is used to train the network
parameters, θ, and assess predictions, ŷ(i),

D =
{
{x(i), y(i)}

}N
i=1

; ŷ(i) = F(x(i);θ) (1)

The predictions from the network can be split into two distinct
stages, mapping from the input to the activation function output
from a particular layer, h(i), and then from that activation vector to
the output

h(i) = Fh(x
(i);θ); ŷ(i) = Fy(h

(i);θ) (2)

In this work the perturbations are applied at the function activation
vector level. Thus the perturbed output for a particular concept Cc,
ỹ
(ci)
α , can be expressed as

ỹ(ci)α = Fy(h
(i) + α∆h(c);θ) (3)

where α indicates the level of perturbation being applied for that
concept. The aim is to derive the appropriate perturbation on the
activation function vector related to a particular concept Cc, ∆h(c),
to examine whether that concept perturbation alters the score.

In this work CAVs will be assessed in terms of the direction of
the CAV and also the assessment system will be analysed at two lev-
els: the individual speaker; averaged over all speakers. The direction
of the CAV, d(c), is obtained by minimising the following hinge-loss
function (with an L2-norm penalty on d(c))

L(d(c), b) =

N∑
i=1

max
{

0, 1− t(i)(d(c)Th(i) + b)
}

(4)

where t(i) ∈ {1,−1} is the target defined by splitting the training
dataD according to concept Cc. When analysing the impact of CAVs
on the system, especially when comparing over different network
configurations, it is useful to have consistent magnitudes of the CAV
vectors compared to the activation function outputs that they act on.
In this work the average activation L2-norm for all the training data
is used. The CAV for concept Cc, ∆h(c), is

∆h(c) = hµd
(c)/||d(c)||2; hµ =

1

N

N∑
i=1

||h(i)||2 (5)

The concepts can be split into two distinct groups based on: pre-
dicted score values; more general concepts such as gender. For ex-
ample for the spoken language assessment presented, the first set of

CAVs will be based on grades, such as the concept, <B2, of having
a score less than 4.0 corresponding to CEFR level [15] grades below
B2. For the extracted CAVs it is then necessary to examine whether
perturbations in the direction of the CAV impact the score. Three
metrics are considered. The first two are gradient based

B(c)
∇ = cos

(
∆h(c),

1

N

N∑
i=1

∂Fy(h;θ)

∂h

∣∣∣∣
h(i)

)
(6)

B(c)
gr =

1

N

N∑
i=1

cos

(
∆h(c),

∂Fy(h;θ)

∂h

∣∣∣∣
h(i)

)
(7)

where cos(a, b) = 1−aTb/(||a||2||b||2). CAVs that are orthogonal
to the gradients, with a cosine distance of 1.0, will not be expected to
impact the scores. Otherwise the CAV may influence the score, un-
less that direction is removed by subsequent layers of the network.
Eq (6) is efficient to compute and rapidly examine any CAV. Con-
versely Eq (7) requires examining all, or a sufficiently large sub-
set, training examples but enables the distance to individual samples
B(ci)
gr to also be computed.

The final metric is the impact that the CAV has on the score,
relative to the predicted score with no CAV:

B(c)
as =

1

N

N∑
i=1

(ỹ(ci)α − ŷ(i)); (8)

This metric is sensitive to the absolute value of the CAV vector, in
addition to the direction but directly assesses the impact on the score.

3. EXPERIMENTS

3.1. Spoken Language Assessment Systems

The data used for these experiments are from candidates taking the
BULATS, Use of Business English test [16]. It comprises five sec-
tions: an initial short answer section; a read-aloud section; three
general free speaking prompt-response answers. The models were
trained on data from 4303 candidates over a range of L1s, genders,
ages and candidate grades (the Training data). Scores for each sec-
tion of the test were generated by trained graders, operating within
local test centers. The scores were then averaged over all sections to
yield a score in the range 0 to 6, which can then be mapped to the
appropriate CEFR level. The Evaluation data comprises 225 held-
out candidates from 6 L1s (all L1s were seen in training): Arabic,
Dutch, French, Polish, Thai and Vietnamese. For this test set can-
didates are approximately evenly distributed over CEFR levels A1,
A2, B1, B2 and C (C1 and C2 merged). The grades of the Evaluation
data are given by expert graders with inter-grader agreement of 0.95
to 0.97, which are assumed to have no bias for assessment. These
expert graders score each section, which are then averaged to again
yield a score in the range 0 to 6.

A deep density network (DDN) based assessment system was
built using the same architecture and features as [17]. The ASR
system, used to derive the features, had an average WER on the
evaluation data of 19.5%, for more details of the ASR architecture
see [1, 17]. A Gaussian distribution is predicted by the DDN across
all the test sections, with the Gaussian mean taken as the predicted
score. The DDN comprised 2 hidden layers of 180 units activated
with Leaky Rectified linear activation (LReLU) functions. In ad-
dition to the standard grader, a deliberately biased grader was con-
structed. This had an identical architecture, but all the training scores
associated with the Thai L1 were increased by one CEFR grade, an



increase of 1.0, yielding a biased network. The standard grader will
be denoted as Ge (general grader) and the Thai-biased grader as Geb.

For the final score prediction from both graders an ensemble of 5
models were combined, using random seeds to generate diversity in
the ensemble [18]. The performance on the evaluation data of the in-
dividual models and ensembles are shown in Table 1. Standard per-
formance metrics are shown: Pearson Coefficient (PCC), Root Mean
Square Error (RMSE), percentage of the predictions that are within
0.5 (%<0.5) or 1.0 (%<1.0) grades of the expert score. Scatter plots
for the evaluation data predictions for the two graders are shown in
Figure 1. The biased system, scored against the expert grades, per-
forms less well, with the Thai L1 speakers badly predicted.

Grader PCC RMSE %< 0.5 %< 1.0

Ge Ind 0.89±0.00 0.55±0.01 65.7±1.3 95.0±0.6

Ens 0.89 0.55 65.8 96.4

Geb
Ind 0.84±0.00 0.71±0.01 57.0±1.2 82.9±1.2

Ens 0.83 0.71 56.3 83.3

Table 1: Individual model (Ind) and ensemble (Ens) performance
of standard (Ge) and Thai-biased (Geb) graders on Evaluation data
against expert scores. Range indicates ±σ.

Fig. 1: Ensemble standard (Ge) and Thai-biased (Geb) grader scores
against expert scores on Evaluation data.

3.2. Concept Activation Vector Analysis

CAVs for both the standard and biased system were constructed us-
ing the Training data and Biased Training data. Three distinct groups
of CAVs were built: grade, based on <B1 (<3.0), <B2 (<4.0) and
<C1 (<5.0); L1, for which there was a reasonable quantity in the
training data; and gender. These CAVs were estimated using acti-
vation function outputs from the first hidden layer of the individual
models for both graders. An important aspect of the CAVs is whether
the decision that determines the CAV can appropriately partition the
space to yield a high accuracy of concept classification. The clas-
sification performance on the training data is shown as Acc(%) in
Table 2, it measures the performance of the linear classifier trained
in Eq (4). High accuracy can be observed for all concepts.

Table 2 also shows the cosine distance for each of the CAVs to
the average score gradient for each of the graders. A cosine distance
of 1.0 would indicate a CAV is orthogonal to the average gradient
and so the concept has no effect on predictions. For both the standard
and biased graders the grade CAVs all indicate the CAVs direction
is towards lower grades showing the grade concepts all have a neg-
ative impact on scores. In general the L1 and gender CAVs indicate
that the scores are not sensitive to these concepts. The CAV cosine

distance indicates that Dutch may have a bias for the standard grader
and Thai for the biased grader, both indicating positive score biases.

Concept Ge Geb
Acc (%) B(c)

∇ Acc (%) B(c)
∇

<B1 88.9±0.2 1.58±0.02 86.6±0.4 1.67±0.02

<B2 87.7±0.2 1.61±0.03 86.6±0.3 1.73±0.02

<C1 96.8±0.1 1.47±0.06 96.2±0.1 1.45±0.02

Thai 94.6±0.2 1.04±0.02 95.9±0.2 0.73±0.05

Spanish 84.3±0.2 1.10±0.04 86.2±0.6 1.13±0.02

Arabic 88.1±0.4 0.96±0.06 90.1±0.5 1.13±0.01

Viet. 92.1±0.2 0.84±0.04 92.9±0.3 0.92±0.04

Polish 92.9±0.2 0.97±0.02 93.6±0.1 0.99±0.07

Dutch 95.5±0.1 0.78±0.03 96.2±0.2 0.91±0.04

Female 96.1±0.2 1.04±0.02 96.4±0.1 0.94±0.03

Table 2: CAV accuracy and cosine distance on Training data for
standard (Ge) and Thai-biased (Geb) graders. Range indicates ±σ.

The cosine distance of a subset of the concepts to the average
gradient cosine distance (B(c)

gr ) and average shift (B(c)
as ) on the train-

ing data are shown in Table 3. These show the same trends as the
cosine distance to the average gradient in Table 2, again indicating
possible concerns about Dutch for the standard grader and Thai for
the biased grader. Note for both gradient based measures only the
direction of the CAV is of importance. This makes the measure in-
variant to the need to normalise the length of the CAV. Conversely
the average shift in the score caused by the CAV depends on both the
direction and the magnitude. Thus this gives a better concept of the
impact of the CAV, but requires appropriate normalisation. The dif-
ference is illustrated in Table 3. The smallest cosine distance (Dutch
for Ge and Thai for Geb) have similar values, but the average shift
for Thai for the biased system is larger.

Concept Ge Geb
B(c)
gr B(c)

as B(c)
gr B(c)

as

<B2 1.57±0.03 -0.21±0.01 1.63±0.02 -0.31±0.02

Thai 1.05±0.02 -0.01±0.01 0.78±0.04 0.13±0.03

Arabic 0.96±0.05 0.02±0.02 1.12±0.01 -0.06±0.00

Viet. 0.85±0.04 0.06±0.01 0.93±0.03 0.04±0.02

Dutch 0.79±0.03 0.08±0.01 0.92±0.03 0.04±0.02

Female 1.03±0.02 -0.01±0.01 0.94±0.03 0.03±0.01

Table 3: Standard (Ge) and Thai-biased (Geb) graders CAV impact
on Training data, α = 0.1. Range indicates ±σ.

Tables 2 and 3 have assessed possible bias in terms of CAVs.
It is also possible to look at the performance of the concepts on the
Training data. Unfortunately as the networks themselves are trained
on this data, they will reproduce any bias present in the Training
data labels. For example examining the RMSE (between the net-
work prediction and training data) for each of the concepts for the
Thai biased grader, there’s little difference between Thai (0.436) and
Arabic (0.444). This is one of the reasons that CAVs are adopted as
system performance on training data (or associated dev data) will not
identify bias in that training data.

3.3. Concept Evaluation Data Performance

The previous section has used CAVs to analyse the network to detect
concepts for which there may be unwanted bias, in this case Dutch
for the standard grader and Thai for the biased grader. In practice
evaluation data focused on these concepts would then be collected



and accurately scored to enable complete analysis of whether there is
bias actually present. For this work the Evaluation data, with expert
scores, can be used. Two metrics are used for this analysis; RMSE
to give an overall assessment of the performance, and average error
(AveE) to assess whether the system performance for a concept over
or under-predicts on average. PCC is not used here as any concept
bias, for example a shift of all the scores, does not impact PCC.

Table 4 shows the performance of the two graders, standard (Ge)
and Thai biased (GEb), on the Evaluation data, as well as the per-
formance of the data associated with particular concepts 1. For the
standard grader it can be seen that Dutch as a concept does not seem
to indicate significant bias compared to the overall system perfor-
mance, either from the RMSE or average error. On this grader the
predicted grades for Thai were slightly generous, shown by a higher
average error, but the RMSE values were in-line with other concepts.
For the biased grader (Geb) the story is clearer as Thai performance
has both a large RMSE (1.076) and a large average error (0.927)
compared to both the system in general and the other concepts.

Concept Ge Geb
RMSE AveE RMSE AveE

— 0.551 0.125 0.710 0.307
Thai 0.559 0.343 1.076 0.927

Arabic 0.561 0.071 0.571 0.105
Viet. 0.617 0.160 0.711 0.386

Polish 0.509 -0.006 0.496 0.041
Dutch 0.484 0.043 0.577 0.140

Female 0.503 0.172 0.726 0.411
Male 0.593 0.081 0.693 0.207

Table 4: Standard (Ge) and Thai-biased (Geb) graders ensemble per-
formance against expert scores on Evaluation data.

From the results in Table 4 it is clear that when the CAVs have
indicated that the concept is unlikely to have bias, this is reflected in
the evaluation scores. Similarly strong bias observed in the Evalua-
tion data matches to CAVs indicating bias so limited evaluation data
aimed at assessing the bias for a particular concept can be used. A
CAV indicating bias may be present is not sufficient in itself. Given
that only limited data are often available for a particular concept
there will be noise on the results. A decision will need to be made as
to whether more data is needed to determine if there is bias.

Having examined the overall performance of the system and the
concept specific performance, it is interesting to examine the re-
lationship between the CAVs and individual candidates. Figure 2
shows the individual CAV distance for the gradients (B(ci)

gr ) and as-
sessment score shifts (B(ci)

as ) on the Evaluation data candidates. To
make the figures clearer the x-axis is based on predicted scores,
rather than expert scores. As expected the grade CAV has a large
impact on both graders and using both distances. For Thai there is
a clear difference between the standard and the Thai-biased graders.
As expected the biased grader shows a distinct shift down for the
cosine-distance, indicating the CAV is in-line with the gradient for
those candidates, and a positive shift for the assessment score. It is
interesting that for Dutch there is more of a difference in the gradi-
ent direction compared to the assessment shift. Finally for gender
(the female CAV) it can be seen that both graders have an orthog-
onal direction to the gradient (cosine distance of 1.0) and minimal
assessment shift.

1There is no Spanish data in the Evaluation data so this concept was not
examined. From the previous section, however, this L1 does not appear to be
a concept of concern.

(a) Candidate CAV gradient distance B(ci)
gr

(b) Candidate shift (B(ci)
as ) with α = 0.1

Fig. 2: Impact of CAVs on standard (Ge) and Thai-biased (Geb) en-
semble graders on Evaluation data candidates, x-axis predicted score
ŷ(i).

4. CONCLUSIONS

This paper has examined the problem of detecting bias in deep learn-
ing based systems for regression tasks, in particular for spoken lan-
guage assessment. One of the issues with these deep learning ap-
proaches is that the networks are highly distributed and non-linear
making network analysis very challenging. This means that it is hard
to determine whether there may be bias in the network simply given
the network parameters. Testing on held-out expert scored evalua-
tion data can show if bias exists. This, however, requires sufficient
examples of each concept to be checked. Given the large number of
possible concepts, for example L1 and gender, that can possibly have
biased output, it is a challenge to collect such evaluation data. This
means that alternative approaches for network analysis are required.

This paper examines the use of Concept Activation Vectors
(CAVs) for analysing possible bias in the network. A CAV is asso-
ciated with a particular activation layer output of the network, and
concept, such that moving in the direction of the CAV has the impact
of increasing the “quantity” of that concept on the input. If the score
is independent of the CAV then that concept is not an influence on
the system performance, otherwise the concept might be a source
of bias if its influence is unexpected. This approach, requiring only
training data or labelled development data which may include bias,
allows the analysis of a wide range of concepts. By using CAVs to
determine selected concepts of interest from a much larger initial
set, the amount of expert scored evaluation data required for full bias
analysis can be significantly reduced.

Both gradient-based and score-based CAV distance measures are
described and the performance evaluated on the BULATS speaking
test. From the results when a CAV indicates that there is no bias,
then this is reflected in the evaluation data results. When the CAV
indicates for the training data that there may be bias, then evaluation
data can be used to determine the impact of the concept on the score.
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