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ABSTRACT

Wepropose a fully unsupervised framework for ad-hoc cross-lingual

information retrieval (CLIR) which requires no bilingual data at

all. The framework leverages shared cross-lingual word embed-

ding spaces in which terms, queries, and documents can be rep-

resented, irrespective of their actual language. The shared embed-

ding spaces are induced solely on the basis of monolingual cor-

pora in two languages through an iterative process based on ad-

versarial neural networks. Our experiments on the standard CLEF

CLIR collections for three language pairs of varying degrees of lan-

guage similarity (English-Dutch/Italian/Finnish) demonstrate the

usefulness of the proposed fully unsupervised approach. Our CLIR

models with unsupervised cross-lingual embeddings outperform

baselines that utilize cross-lingual embeddings induced relying on

word-level and document-level alignments. We then demonstrate

that further improvements can be achieved by unsupervised en-

semble CLIR models. We believe that the proposed framework is

the first step towards development of effective CLIR models for

language pairs and domains where parallel data are scarce or non-

existent.
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1 INTRODUCTION

Retrieving relevant content across languages (i.e., cross-lingual in-

formation retrieval, termed CLIR henceforth) requires the ability
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to bridge the lexical gap between languages [8, 16]. Traditional IR

methods based on sparse text representations are not suitable for

CLIR, since languages, in general, do not share much of the vocab-

ulary. Even in the monolingual IR, they cannot bridge the lexical

gap, being incapable of semantic generalization [6]. A solution is

to resort to structured real-valued semantic representations, that

is, text embeddings [2, 6, 10]: these representations allow to general-

ize over the vocabularies observed in labelled data, and hence offer

additional retrieval evidence and mitigate the ubiquitous problem

of data sparsity. Their usefulness has been proven for monolingual

[15] and cross-lingual ad-hoc IR models [21].

Besides the embedding-based CLIR paradigms, other approaches

to bridging the lexical gap for CLIR exist. 1) Full-blown Machine

Translation (MT) systems are employed to translate either queries

or documents [8, 9], but these require huge amounts of parallel

data, while such resources are still scarce for many language pairs

and domains. 2) The lexical chasm can be crossed by grounding

queries and documents in an external multilingual knowledge source

(e.g., Wikipedia or BabelNet) [4, 20]. However, the concept cov-

erage is limited for resource-lean languages, and all content not

present in a knowledge base is effectively ignored by a CLIR sys-

tem.

Bilingual text embeddings, while displaying a wider applicabil-

ity and versatility than the two other paradigms, still suffer from

one important limitation: a bilingual supervision signal is required

to induce shared cross-lingual semantic spaces. This supervision

takes form of sentence-aligned parallel data [5], pre-built word

translation pairs [11, 19] or document-aligned comparable data

[21].1

Recently, methods for inducing shared cross-lingual embedding

spaces without the need for any bilingual signal (not even word

translation pairs) have been proposed [1, 3]. These methods ex-

ploit inherent structural similarities of induced monolingual em-

bedding spaces to learn vector space transformations that align the

source language space to the target language space, with strong

results observed for bilingual lexicon extraction. In this work, we

show that these unsupervised cross-lingual word embeddings of-

fer strong support to the construction of fully unsupervised ad-

hoc CLIR models. We propose two different CLIR models: 1) term-

by-term translation through the shared cross-lingual space, and

2) query and document representations as IDF-weighted sums of

constituent word vectors. To the best of our knowledge, our CLIR

1For a complete overview we refer the reader to a recent survey [18].
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methodology is the first to allow the construction of CLIR models

without any bilingual data and supervision at all, relying solely on

monolingual corpora. Experimental evaluation on standard CLEF

CLIR data for three different language pairs shows that the pro-

posed fully unsupervisedCLIRmodels outperformcompetitive base-

lines and models that exploit word translation pairs or comparable

corpora. Our CLIR code and multilingual embedding spaces are

publicly available at: https://github.com/rlitschk/UnsupCLIR.

2 METHODOLOGY

The proposed unsupervised CLIR models rely on the existence of

a shared cross-lingual word embedding space in which all vocab-

ulary terms of both languages are placed. We first outline three

methods for the shared space induction, with a focus on the un-

supervised method. We then explain in detail the query and docu-

ment representations as well as the ranking functions of our CLIR

models.

2.1 Cross-Lingual Word Vector Spaces

For our proposed CLIR models, we investigate cross-lingual em-

bedding spaces producedwith state-of-the-art representative meth-

ods requiring different amount and type of bilingual supervision:

1) document-aligned comparable data [21], 2)word translation pairs

[19]; and 3) no bilingual data at all [3].

Cross-Lingual Embeddings fromComparable Documents (CL-CD).

The BWE Skip-Gram (BWESG) model from Vulić and Moens [21]

exploits large document-aligned comparable corpora (e.g.,Wikipedia).

BWESGfirst creates amerged corpus of bilingual pseudo-documents

by intertwining pairs of available comparable documents. Then it

applies a standard monolingual log-linear Skip-Gram model with

negative sampling (SGNS) [10] on the merged corpus in which

words have bilingual contexts instead of monolingual ones.

Cross-Lingual Embeddings fromWord Translation Pairs (CL-WT).

This class of models [1, 11, 19] focuses on learning the projec-

tions (i.e., mappings) between independently trained monolingual

embedding spaces. Let {vS
w i }

VS
i=1,v

S
w i ∈ Rds be the monolingual

word embedding space of the source language LS with VS vec-

tors, and {vT
w i }

VT
i=1,v

T
w i ∈ Rdt the monolingual space for the tar-

get language LT containing VT vectors; ds and dt are the respec-

tive space dimensionalities. The models learn a parametrized map-

ping function f (v |θ) that projects the source language vectors into

the target space: f (v |θ) : Rds → R
dt
. The projection parame-

ters θ are learned using the training set of K word translation

pairs: {wS
i ,w

T
i }

K
i=1, typically via second-order stochastic optimi-

sation techniques.

According to the comparative evaluation from [18], all projection-

based methods for inducing cross-lingual embedding spaces per-

form similarly. We therefore opt for the recent model of Smith

et al. [19] to serve as a baseline, due to its competitive performance,

large coverage, and readily available implementation.2 Technically,

the method of Smith et al. [19] learns two projection functions

fS (vS |θS ) and fS (vT |θT ), projecting the source and target mono-

lingual embedding spaces, respectively, to the new shared space.

2https://github.com/Babylonpartners/fastText_multilingual

Cross-Lingual Embeddingswithout Bilingual Supervision (CL-UNSUP).

Most recently, Conneau et al. [3] have proposed an adversarial

learning-based model in order to automatically, in a fully unsu-

pervised fashion, create word translation pairs that can then be

used to learn the same projection functions fS and fT as in the

model of Smith et al. [19]. Let X be the set of all monolingual word

embeddings from the source language, and Y the set of all target

language embeddings. In the first, adversarial learning step, they

jointly learn (1) the projection matrix W that maps one embed-

ding space to the other and (2) the parameters of the discriminator

model which, given an embedding vector (eitherWx where x ∈ X ,

or y ∈ Y ) needs to predict whether it is an original vector from

the target embedding space (y),nor a vector from the source em-

bedding space mapped via projectionW to the target embedding

space (Wx). The discriminator model is a multi-layer perceptron

network. In the second step, the projection matrixW trained with

adversarial objective is used to find the mutual nearest neighbors

between the two vocabularies – this set of automatically obtained

word translation pairs becomes a synthetic training set for the re-

fined projection functions fS and fT computed via the SVD-based

method similar to the previously described model of Smith et al.

[19].

2.2 Unsupervised CLIR Models

With the induced cross-lingual spaces we can directly measure se-

mantic similarity of words from the two languages, but we still

need to define how to represent queries and documents. To this

end, we outline two models that exploit the induced cross-lingual

embedding spaces for CLIR tasks.

BWE aggregation model (BWE-AGG). In the first approach, we

derive the cross-lingual embeddings of queries and documents by

aggregating the cross-lingual embeddings of their constituent terms.

Let
−→
t be the embedding of the term t , obtained from the cross-

lingual embedding space and let d = {t1, t2, . . . , tNd
} be a docu-

ment from the collection consisting of Nd terms. The embedding

of the document d in the shared space can then be computed as:

−→
d =

−→
t1 ◦

−→
t2 ◦ . . . ◦

−−→
tNd

where ◦ is a semantic composition operator: it aggregates con-

stituent term embeddings into a document embedding.3 We opt for

vector addition as composition for two reasons: 1) word embedding

spaces exhibit linear linguistic regularities [12], and 2) addition dis-

plays robust performance in compositional and IR tasks [14, 21].

A representation of the query vector −→q is then the sum of em-

beddings of constituent terms: −→q =
∑Nq

i=1

−→
t
q
i . To obtain document

representations, we compare two aggregation functions. First, we

experiment with a simple non-weighted addition (BWE-Agg-Add):
−→
d =

∑Nd

i=1

−→
tdi . Second, we use weighted additionwhere each term’s

embedding is weightedwith the term’s inverse document frequency

(IDF) (BWE-Agg-IDF ):
−→
d =

∑Nd

i=1 idf (t
d
i ) ·

−→
tdi . BWE-Agg-IDF relies

3There is a large number of options for the composition operator, ranging from un-
supervised operations like addition and element-wise multiplication [14] to com-
plex parametrized (e.g., tensor-based) composition functions [13]. We discard the
parametrized composition functions because they require parameter optimization
through supervision, and we are interested in fully unsupervised resource-lean CLIR.
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on the common assumption that not all terms equally contribute to

the document meaning: it emphasizes vectors of more document-

specific terms.4 Finally, we compute the relevance score simply as

the cosine similarity between query and document embeddings in

the shared cross-lingual space: relAgg(q,d) =
−→q ·

−→
d

‖−→q ‖ · ‖
−→
d ‖
.

Term-by-termquery translationmodel (TbT-QT). Our secondCLIR

model exploits the cross-lingual word embedding space in a differ-

ent manner: it performs a term-by-term translation of the query

into the language of the document collection relying solely on the

shared cross-lingual space. Each source language query term tq is

replaced by the target language term tr(tq ), that is, its cross-lingual

nearest neighbour in the embedding space. The cosine similarity

is used for computing cross-lingual semantic similarities of terms.

In other words, the query q = {t
q
1 , t

q
2 , . . . , t

q
Nq

} in LS is substituted

by the query q′ = {tr(t
q
1 ), tr(t

q
2 ), . . . , tr(t

q
Nq

)} in LT .
5

By effectively transforming a CLIR task into a monolingual IR

task, we can apply any of the traditional IR ranking functions de-

signed for sparse text representations. We opt for the ubiquitous

query likelihoodmodel [17], smoothing the unigram languagemodel

of individual documents with the unigram language model of the

entire collection, using the Dirichlet smoothing scheme [23]:

relTbT (q
′
,d) =

∏Nq′

i=1 λ · P(t
q′

i |d) + (1 − λ) · P(t
q′

i |D).

P(t
q′

i |d) is the maximum likelihood estimate (MLE) of t
q′

i probabil-

ity based on the document d , P(t
q′

i |D) is the MLE of term’s proba-

bility based on the target collectionD, and λ = Nd /(Nd + µ) deter-

mines the ratio between the contributions of the local and global

language model, with Nd being the document length and µ the pa-

rameter of Dirichlet smoothing (= 1000 [23]). Note that the TbT-QT

model with unsupervised cross-lingual word embeddings is again

a fully unsupervised CLIR framework.

3 EXPERIMENTAL SETUP

Language Pairs and Training Data. We experiment with three

language pairs of varying degree of similarity: English (EN) – {Dutch

(NL), Italian (IT), Finnish (FI)}.6 We use precomputed monolingual

fastText vectors [2] (available online)7 as monolingual word em-

beddings required by CL-WT and CL-UNSUP embedding models.

For the CL-CDembeddings, the BWESGmodel trains on full document-

aligned Wikipedias8 using SGNS with suggested parameters from

prior work [22]: 15 negative samples, global decreasing learning

rate is .025, subsampling rate is 1e − 4, window size is 16.

The CL-WT embeddings of Smith et al. [19] use 10K translation

pairs obtained from Google Translate to learn the linear mapping

functions. The CL-UNSUP training setup closely follows the de-

fault setup of Conneau et al. [3]: we refer the reader to the original

4Note that with both variants of BWE-Agg, we effectively ignore both query and doc-
ument terms that are not represented in the cross-lingual embedding space.
5If the representation of a query term t

q
i is not present in the cross-lingual embedding

space, we retain the query term t
q
i itself. We have also attempted eliminating out-of-

vocabulary query terms, but the former consistently leads to better performance.
6English and Dutch are Germanic languages, Italian is a Romance language, whereas
Finnish is an Uralic language (i.e., not Indo-European)
7https://github.com/facebookresearch/fastText
8http://linguatools.org/tools/corpora/wikipedia-comparable-corpora/

2001 2002 2003

Lang. #doc #tok #rel #doc #tok #rel #doc #tok #rel

NL 190K 29.6M 24.5 190K 29.6M 37.2 190K 29.6M 28.2
IT 108K 17.1M 26.5 108K 17.1M 21.9 22.3M 157K 15.9
FI – – – 55K 9.3M 16.7 55K 9.25M 10.7

Table 1: Basic statistics of used CLEF test collections: num-

ber of documents (#doc), number of tokens (#tok), and aver-

age number of relevant documents per query (#rel).

paper and the model implementation accessible online for more

information and technical details.9

Test Collections and Queries. We evaluate themodels on the stan-

dard test collections from the CLEF 2000-2003 ad-hoc retrieval Test

Suite.10 We select all NL, IT, and FI document collections from

years 2001-200311 and paired them with English queries from the

respective year. The statistics for test collections are shown in Ta-

ble 1. Following a standard practice [7, 21], queries were created

by concatenating the title and the description of each CLEF “topic”.

The test collections for years 2001-2003 respectively contain 50, 50,

and 60 EN queries. Queries and documents were lowercased; stop

words, punctuations and one-character words were removed.

Models in Comparison. We evaluate six different CLIR models,

obtained by combining each of the threemodels for inducing cross-

lingualword vector spaces –CL-CD,CL-WT, andCL-UNSUP –with

each of the two ranking models – BWE-Agg and TbT-QT. For each

cross-lingual vector space, we also evaluate an ensemble ranker

that combines the two ranking functions: BWE-Agg-IDF and TbT-

QT. If r1 is the rank of document d for query q according to the

TbT-QT model and r2 is the rank produced by BWE-Agg-IDF, the

ensemble ranker ranks the documents in the increasing order of

the scores λ · r1 + (1 − λ) · r2. We evaluate ensembles with values

λ = 0.5, i.e., with equal contributions of both models; and λ =

0.7, i.e., with more weight allocated to the more powerful TbT-QT

model (cf. Table 2). Additionally, we evaluate the standard query

likelihood model (LM-UNI ) [17] with Dirichlet smoothing [23] as

a direct baseline.12

4 RESULTS AND DISCUSSION

We show performance of all models in comparison on all test col-

lections, reported in terms of the standard mean average precision

(MAP) measure in Table 2.

Unsupervised vs. Supervised CLIR. First, CLIR models based on

CL-WT embeddings (the bilingual signal areword translation pairs)

outperform models based on CL-CD (requiring document-aligned

data) on average. This is an encouraging finding, as word transla-

tions pairs are easier to obtain than document-aligned comparable

corpora. Most importantly, the unsupervised CL-UNSUP+TbT-QT

CLIR model displays peak performance on all but one test collec-

tion (EN-FI, 2002). We find this to be a very important result: it

9https://github.com/facebookresearch/MUSE
10http://catalog.elra.info/product_info.php?products_id=888
11Finnish was included to CLEF evaluation only in 2002 and 2003.
12LM-UNI uses the same ranking function as TbT-QT, but without the prior term-
by-term query translation via the cross-lingual embedding space. LM-UNI is more
suitable for monolingual IR than for CLIR due to limited lexical overlap between
languages.
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EN→NL EN→IT EN→FI

CL Embs Model 2001 2002 2003 2001 2002 2003 2002 2003

– LM-UNI .119 .196 .136 .085 .167 .137 .111 .142

BWE-Agg-Add .111 .138 .137 .087 .114 .147 .026 .084
BWE-Agg-IDF .144 .203 .189 .127 .157 .188 .082 .125

CL-CD TbT-QT .125 .196 .120 .106 .148 .143 .176 .140
Ensemble (λ = 0.5) .145 .216 .174 .120 .183 .216 .179 .189
Ensemble (λ = 0.7) .142 .216 .180 .127 .180 .207 .183 .197

BWE-Agg-Add .149 .168 .203 .138 .155 .236 .078 .217
BWE-Agg-IDF .185 .196 .243 .169 .166 .248 .086 .204

CL-WT TbT-QT .159 .164 .176 .129 .150 .218 .095 .095
Ensemble (λ = 0.5) .202 .198 .280 .187 .168 .228 .117 .190
Ensemble (λ = 0.7) .202 .198 .263 .181 .171 .230 .120 .164

BWE-Agg-Add .125 .153 .198 .119 .126 .213 .078 .239
BWE-Agg-IDF .172 .204 .250 .157 .161 .253 .102 .223

CL-UNSUP TbT-QT .229 .257 .299 .232 .257 .345 .145 .243
Ensemble (λ = 0.5) .258 .300 .330 .225 .248 .325 .154 .307
Ensemble (λ = 0.7) .259 .303 .336 .236 .253 .347 .151 .307

Table 2: CLIR performance on all three test language pairs for all models in comparison (MAP scores reported).

shows that we can perform robust CLIR without any cross-lingual

information, that is, by relying purely on monolingual data.

Ensemble CLIRModels. Ensembles generally outperform the best-

performing individual CLIR models, and for some test collections

(e.g., EN→NL 2002, EN→FI 2003) by a wide margin. For the CL-CD

and CL-WT spaces, we observe similar results for both values of

the interpolation factor (λ = 0.5 and λ = 0.7). This is not surpris-

ing, since the single models BWE-Agg-IDF and TbT-QT exhibit sim-

ilar performance for CL-CD and CL-WT. In contrast, the combined

model with λ = 0.7 (i.e., more weight for the TbT-QT ranking)

yields larger performance gains for CL-UNSUP spaces, for which

the TbT-QT model consistently outperforms BWE-Agg-IDF.

Language Similarity and Aggregation. The results in Table 2 im-

ply that the proximity of CLIR languages plays a role only to a cer-

tain extent. Most models do exhibit lower performance for EN→FI

than for the other two language pairs: this is expected since Finnish

is lexically and typologically more distant from English than Ital-

ian and Dutch. However, even though NL is linguistically closer

to EN than IT, for the unsupervised CLIR models we generally ob-

serve slightly better performance for EN→IT than for EN→NL.

We speculate that this is due to the compounding phenomenon in

word formation, which is present in NL, but is not a property of

EN and IT. The reported performance on bilingual lexicon extrac-

tion (BLE) using cross-lingual embedding spaces is also lower for

EN-NL compared to EN-IT (see, e.g., [19]). We observe the same

pattern (4-5% lower BLE performance for EN-NL than for EN-IT)

with the CL-UNSUP embedding spaces.

Theweighted variant of BWE-Agg (BWE-Agg-IDF) outperforms

the simpler non-weighted summationmodel (BWE-Agg-Add) across

the board. These results suggest that the common IR assumption

about document-specific terms beingmore important than the terms

occurring collection-wide is also valid for constructing dense doc-

ument representations by summing word embeddings.

5 CONCLUSION

Wehave presented a fully unsupervisedCLIR framework that lever-

ages unsupervised cross-lingual word embeddings induced solely

on the basis of monolingual corpora. We have shown the ability

of our models to retrieve relevant content cross-lingually without

any bilingual data at all, by reporting competitive performance on

standard CLEF CLIR evaluation data for three test language pairs.

This unsupervised framework holds promise to support and guide

the development of effective CLIR models for language pairs and

domains where parallel data are scarce or unavailable.
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