
Theory of the Josephson Junction Laser

Steven H. Simon1 and Nigel R. Cooper2

1Rudolf Peierls Centre, Oxford University, OX1 3NP, United Kingdom
2T.C.M. Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

(Dated: June 24, 2018)

We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science
355, 939, 2017). By working in the time-domain representation (rather than the frequency-domain)
a single non-linear equation is obtained for the dynamics of the device, which is fully solvable in
some regimes of operation. The nonlinear drive is seen to lead to mode-locked output, with a period
set by the round-trip time of the resonant cavity.

The physics of Josephson junctions has been studied
intensely for over half a century[1, 2]. These devices
are fairly unique as the only lossless nonlinear low tem-
perature circuit elements[3]. Due to interest in using
Josephson physics for quantum computing applications,
enormous attention has focused on the combination of
Josephson junctions and low loss resonant cavities[4, 5].

Based on these same electrical components, a remark-
able experiment by Cassidy et al.[6] recently demon-
strated the operation of a so-called Josephson junction
laser. The device is a resonator cavity (a half-wave copla-
nar waveguide) with a Josephson junction coupled to one
end of the cavity near an antinode of the cavity electric
field and biased with a DC voltage (See Fig. 1a). While
this general experimental configuration has been used in
numerous experiments previously (see for example [7–
12]), Ref. [6] observes for the first time many features
of lasing. It is quite surprising that this effect has pre-
viously been overlooked. Such a device, as a very nar-
row band controllable in-situ, or even on-chip, microwave
source could have great practical value for microwave ap-
plications, and therefore fully understanding its opera-
tion is essential. In the context of quantum computing
applications,[3–6], such a device could provide a uniquely
practical way to generate in-situ microwaves for switch-
ing transmon qubits without having to send microwave
power externally into a cryostat, which is problematic for
thermal isolation.

In Ref. [6], a theory to describe the newly observed
phenomena was proposed (see also Refs. [12, 13] where
similar theoretical work is developed). This theory gives
a set of many simultaneous differential equations describ-
ing the many excitation modes of the resonator cavity.
The numerical solution of this system of equations repro-
duces much of the experiment. Unfortunately, due to the
complexity of this system of equations, it is quite hard to
develop much intuition or, without extensive numerical
simulation, predict any of its properties. The purpose of
the current paper is to reformulate the physics in a much
more transparent way to advance our understanding as
well as our ability to accurately numerically simulate this
type of experiment.

To describe the dynamics of multiple excitation modes

of a transmission line cavity we write equations for
damped and driven oscillators:

φ̈n = −ω2
nφn − 2γφ̇n + αnF (t) (1)

where ωn is the frequency of the nth cavity mode, γ is
the damping, F (t) is a forcing function, and αn is the
coupling of the nth mode to the force. In the case of a
Josephson junction coupled to the cavity, biased with a
DC voltage V , the forcing function is (up to a constant)
the current injected by the junction[1, 2]

F (t) = λ sin (V t+
∑
n αnφn) (2)

where λ = 2EJ/C with EJ the Josephson energy and C
the total capacitance of the waveguide (capacitance per
unit length times length).

The equations of motion (Eqs. 1 and 2) have been pre-
viously derived in Supplemental Materials of Ref. [6] and
[12]. See also the Supplemental Material of the current
paper[14] for a detailed rederivation. Note that φn rep-
resents the time-integrated voltage of the nth mode, and
the argument of the sin is the superconducting phase
difference across the junction. For an ideal waveguide
ωn = nω0 with ω0 the fundamental frequency of the
cavity, αn = 1 meaning all modes feel the same force,
and γ = 0. However, these assumptions are not crucial
(See Supplemental Material[14]). In Ref. [6] lasing was
found in numerical simulations when many modes of the
junction were considered (αn nonzero and approximately
unity for n up to about 20), thus giving a system of many
simultaneous differential equations. We will simplify this
complicated system to a single equation of motion.

The key to our analysis is to work in a real-time picture
rather than in terms of the individual modes of the cavity.
We find solutions in which the many modes of the cavity
coherently combine to form discrete pulses which reflect
back and forth in the cavity, as in a mode-locked laser,
and which have a natural description in the time domain.

We first think about the response of each mode to a
driving force at the position of the junction. We denote
the retarded Green’s function of the nth simple harmonic
oscillator asGn(t), which in the absence of damping takes
the simple form G0

n(t) = Θ(t) sin(ωnt)/ωn with Θ the
step function. (The superscript 0 indicates no loss.) Since
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all of the modes couple to the same source, we group them
all together by defining

Ψ =
∑
n αnφn . (3)

The voltage across the junction is simply VJ = V + Ψ̇.
The retarded Green’s function for Ψ is then just K(t) =∑
n α

2
nGn(t). The dynamics of the system may then be

recast as a single equation

Ψ(t) = λ

∫ t

−∞
dt′K(t− t′) sin[V t′ + Ψ(t′)] (4)

This is a highly nonlinear equation. As is often the case
with such equations, many solutions may exist and solu-
tions may depend on initial conditions as well.

To understand the form of the kernel K(t), consider
first the ideal case of no damping γ = 0 with ωn = nω0

and αn = 1. Then K has a sawtooth form K0(t) =
(1/2)[T/2− (t mod T )] where T = 2π/ω0 is the “round-
trip” time of the cavity. Once one adds damping, with
γ � ω0, to a very good approximation the response is the
decaying sawtooth (See also Supplemental Material[14])

K(t) = e−γtK0(t). (5)

It is important to note that even if one adds random-
ness to the frequencies ωn and to the couplings αn the
general sawtooth form persists (See also Supplemental
Material[14]). The sudden step reflects the fixed time
delay associated with the round-trip time of the cavity.

Note that in the case where Ψ� 1, which results from
either small λT 2 or large γT , we can treat Eq. 4 perturba-
tively. At zeroth order, we drop Ψ on the right hand side
and have a simple integral on the right. For example, in
the case of large γT , one obtains Ψ(0)(t) = (λT/4γ) sinV t
with the superscript here meaning at zeroth order. We
can then plug this Ψ(0) into the right hand side of Eq. 4
and again perform the integral, to obtain an improved
approximation Ψ(1) at first order, and so forth. It is
easy to establish that this procedure only ever generates
harmonics of the frequency V , i.e., the time period of
oscillation is 2π/V . At large γT , this arises because the
function K(t) has decayed to almost zero before reaching
T , so its sawtooth form has been lost and the time period
T forgotten.

However, for small γT (believed to be appropriate for
the experiment[6]) with large λT 2 there is a different type
of solution where the oscillation period will instead be T .
Most of the remainder of this paper will explore this case.

Using the form of Eqs. 5, we can transform Eq. 4 to

Ψ(t) = Ψ(t− T )e−γT + λ

∫ t

t−T
dt′K(t− t′) sin[V t′ + Ψ(t′)]

(6)
The first term on the right represents the integration from
−∞ to t−T . The interpretation is that a signal Ψ(t−T )

EJ
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FIG. 1. (a) Circuit diagram for the Josephson junction laser
(From Refs [6, 12, 13]). The cavity can be thought of as
an LC chain (See Supplemental Material[14]). (b) Numerical
form of Ψ(t) obtained by integration of Eq. 6 for parameters
V = 2, γ = .01, λ = 6 in units where T = 2π so ω0 = 1. The
waveform has constant negative slope with discrete steps of
2π. Note that the two steps within each cycle are not equally
spaced but the pattern is periodic with period T .

has gone down the waveguide and returned after time T
having decayed by e−γT . The resulting signal Ψ(t) is this
decayed signal plus the result of driving by the Josephson
junction during the period t− T to t.

Let us consider first the special case of γ = 0 and a
voltage V that is commensurate with the period T . I.e.,
we set V = Vm = 2πm/T for some integer m. Looking
for a periodic solution we set Ψ(t−T ) = Ψ(t). Eq. 6 can
then be satisfied by having the sin be a constant since
the integral of K0 over a period vanishes. Thus we set

Ψ(t) mod 2π = −Vmt+ β (7)

for some constant β. The right hand side is a linearly
decreasing function of time, but can be made periodic by
inserting m phase slips of 2π during the cycle (i.e., mak-
ing it a sawtooth). The phase slips may be at any point
in the cycle of time T , although they need to be the same
from one cycle to the next to ensure T -periodicity. This
analytic solution matches numerical solutions for small γ
and commensurate V quite well as shown, for example, in
Fig. 1b. This form of solution remains valid for any form
of K0(t) so long as its integral over a period vanishes.
In particular this will be true for any parameters αn we
choose in Eq. 3 (See also Supplemental Material[14]). We
emphasize that this is the first completely analytic un-
derstanding of this experimental system.

The power absorbed by the waveguide is P = (VJ −
V )I = Ψ̇EJ sin(V t+ Ψ). Here VJ −V = Ψ̇ is the voltage
from the injection point of the waveguide (the connec-
tion of the Josephson junction to the waveguide) to the
ground. Thus the energy absorbed by the waveguide per
cycle is Eabsorbed =

∫ t
t−T dt

′EJΨ̇(t′) sin(V t′ + Ψ(t′)) =
−V TEJ〈sinβ〉 where we have integrated by parts (and
disregarded boundary terms assuming a periodic or al-
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FIG. 2. Numerical form of Ψ(t) obtained by integration of
Eq. 6 for parameters V = 4.02, γ = .05, λ = 12 in units where
T = 2π. (a) Oscillations of Ψ over several hundred periods.
(b) Plot of 〈Ψ〉 which is Ψ averaged over a period T with
vertical scale on the left, and also a plot of 〈sinβ〉 which is
sin[V t + Ψ] averaged over a period T with vertical scale on
the right. The two vertical scales are in ratio of λT 2/24 as
predicted by Eq. 9. The two curves (〈sinβ〉 and 〈Ψ〉) overlay
so precisely that they are not both visible on this figure. The
diagonal dashed line is the predicted slope −δV t as discussed
in the text. Note that when sinβ reaches −1 (the horizontal
dashed line) the form of solution changes for a short period
of time.

FIG. 3. As in Fig. 2 but for parameters closer to those of the
experiment: λ = 3, γ = .0005 and voltage V = 12.01. Again
the plots of 〈Ψ〉 and 〈sinβ〉 overlap so one cannot distinguish
the two curves. More examples and details are given in the
Supplemental Material[14].

most periodic solution), and the brackets indicate the
average of the sin over the cycle.

If there is a damping γ > 0 then there will be a loss
per cycle of Estored(1−e−2γT ) where Estored is the stored
energy in the waveguide. For a steady state, we thus
require that Estored = −V EJ〈sinβ〉/(2γ), for small γT .
From this we can estimate the maximum waveguide volt-
age (maximum Ψ̇).

Since Ψ is basically a sum of sawtooth waves, we
consider a sawtooth with a single 2π step which has
Fourier modes sin(2πnt/T ) of amplitude 2/n. To de-
termine the energy stored in each of these modes, re-
fer back to Eq. 1 and note that the energy stored in
a single oscillator is[15] Estored = C

4 V
2
max = C

4 (φ̇n)2 =

C
4

(
2πn
T

2
n

)2
= 4π2C

T 2 . To represent the finite slope of the
steps, we cut off the higher Fourier modes by using in-
stead Fourier modes of amplitude (2/n)fn where fn is
a some cutoff function which is unity at small n and
decays for large n. The total energy stored is then
Estored = (4π2C/T 2)

∑
n f

2
n whereas the maximum value

of the voltage will be Vmax = Ψ̇max = (4π/T )
∑
n fn.

Given that there are m = V T/(2π) phase slips per cycle
we add together all the energy in all of these pulses to get
Estored = ξCV Vmax/2 where ξ =

∑
f2n/

∑
n fn. For fn

chosen as a sharp cutoff, ξ = 1 whereas for an exponen-
tial cutoff fn = e−an instead we obtain ξ = 1/2. Setting
the energy stored to −V EJ〈sinβ〉/(2γ) with λ = 2EJ/C
we obtain the result |Ψ̇max| = |Vmax| = λ

2ξγ |〈sinβ〉| with
ξ the unknown constant of order unity. Numerically we
find that this formula holds with 1/2 . ξ < 1 whenever
the solution has near to T -periodicity.

With this maximum value of Ψ̇ the sharp steps of Ψ
occur over a time-scale δt ≈ 2π(2ξγ)/(λ|〈sinβ〉|). Dur-
ing this time the argument of the sin wraps by 2π and
sin[V t + Ψ] goes smoothly from 〈sinβ〉 to −1 to +1
and then back to 〈sinβ〉. The total area under this
spike should then be roughly −2〈sinβ〉δt ≈ 4πγ/λ. (If
〈sinβ〉 = −1 then it has to go all the way from −1 to 1
giving a height of 2 whereas if 〈sinβ〉 = 0 then the spike
goes symmetrically up to 1 and down to −1 having net
zero area.) Thus we can approximate

sin[V t+ Ψ(t)] = 〈sinβ〉+
∑
j(4πγ/λ)δ(t− tj) (8)

where tj are the particular times when the sawtooth steps
occur. This can then be plugged into Eq. 4 and inte-
grated. The second term is responsible for producing the
sawtooth steps in Ψ since it is being integrated with the
sawtooth function K. Note that the coefficient of the
delta function in Eq. 8 is exactly right to produce steps
of size 2π in Ψ. On the other hand, when we integrate
Eq. 8 in Eq. 4, using

∫ t
−∞ dt′K(t− t′) = T 2/24, the first

term gives the relationship

〈Ψ〉 = λT 2〈sinβ〉/24 (9)

where again the brackets mean an average over a full
cycle. This relationship is very accurately confirmed nu-
merically, not only for the case of commensurate voltage
that we have focussed on so far, but also more generally,
as shown in Figs. 2b and 3b.

We can now consider the case where V deviates from
being commensurate with the period T . We write V =
Vm + δV where TδV � 2π. We propose a solution of
the form of Eq. 7 with Vm still commensurate and now
β = −δV t is a slow function of time. We again assume
there are m phase slips of 2π per period and that they
will occur at the same points in each cycle. However now
Ψ is no longer periodic in T but rather shifts by −δV T
each cycle as seen in Figs. 2 and 3. The frequency of
oscillation, however, remains ω0 = 2π/T very accurately.
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Note that since | sinβ| cannot exceed 1, the form of
solution must change after a time period ∼ λT 2/(48δV )
as shown in the figure, before it locks back into quasi-
periodic behavior.

A few comments about the numerical solution of Eq. 6:
For small γT , the T -periodic solution seems to be fairly
stable. As γ increases, even for δV = 0 (commensurate
driving), β does change slowly as a function of time, with
a β̇ that appears to be proportional to γ2/(V λ2). Also,
for small γ, as |δV | gets larger (i.e, for V not very close
to an integer multiple of 2π/T ), the assumption of small
TδV breaks down and the near-periodicity of the solution
from one cycle to the next becomes imperfect. We also
note that for δV small and negative a solution with Ψ
having the periodicity of 2π/V rather than T is fairly
stable for γ not too small. We find numerically that for
|δV | & γT the numerical solution reliably switches back
to T -periodicity.

Data is shown for parameters close to those of the
experiment in Fig. 3 with results analogous to those of
Fig. 2. For these parameters, there is increased chaotic
behavior although much similar physics is seen. See Sup-
plemental Material[14] for further details.

In the actual experiment[6], the cavity Q factor (∼
1000) is mostly limited by the shunt conductance G of the
Josephson junction rather than the loss of the waveguide.
This conductance can be added into Eq. 4 by adding
a shunt[1] current G(V + Ψ̇) to the Josephson current
EJ sin[V t+Ψ]. For small enough shunt conductance this
does not significantly change the resulting dynamics. Ad-
ditional realistic effects can also be included in a similar
way, such as the junction capacitance[1] or changes to
the Josephson current when the voltage is on the order
of the gap. Thus our approach has many parameters that
might be tuned in an experiment, which are encoded in
the precise form of the driving force F as well as in the
form of the response kernel K as discussed above.

One of the more remarkable observations of the
experiment[6] is the phenomenon of injection locking
behavior[16, 17] reminiscent of laser physics. While some
of this physics is reproduced by our theory (See Supple-
mental material[14] for details) there are some features
that we are not yet able to reproduce in detail. This
remains a topic of current research.

The general behavior of Eq. 4 is extremely robust —
relatively independent of the chosen ωn, or αn and even
relatively independent of the form of the driving func-
tion, in that the sin can be replaced with a wide range
of periodic functions. We give a more detailed study of
this robustness in Supplemental Material[14].

Our description of the Josephson junction laser has
been entirely classical, since the Josephson phase is
treated as a classical dynamical variable. Quantum be-
haviour is encoded in the uncertainty relation, ∆N∆Ψ ≥
1/2, with ∆N the number of Cooper pairs and Ψ the
phase across the junction. Setting ∆N = C∆VJ/(2e),

with C the total capacitance of the stripline, and work-
ing in terms of the relevant dimensionless voltage ṼJ ≡
2eVJ/(~ω0), this becomes ∆ṼJ∆Ψ ≥ 4(e2/h)Z0 where
Z0 ≡

√
L/C is the impedance of the stripline. For the

parameters of the experiments[6], this is ∆ṼJ∆Ψ ≥ 0.01,
showing that quantum effects are expected to be small
in the regimes of laser operation, with ṼJ and Ψ both of
order unity or more. While one may wonder to what ex-
tent it is appropriate to call a classical system a laser, we
note that it has long been understood that the essential
physics of a laser is recovered in classical physics[18] and
the operation of a free-electron laser is well-described by
classical physics[19, 20]. The stimulated emission into
the cavity is fully accounted for by a classical description
of the (nonlinear) drive.

Many of the qualitative features of the Josephson junc-
tion laser also appear in other nonlinear dynamical sys-
tems, perhaps the most familiar of which are musical
instruments. A wide variety of sustained-tone musical
instruments can be viewed as consisting of a linear res-
onator (e.g. violin string or organ pipe) which is sub-
jected to a nonlinear drive (the violin bow, or organ reed).
The nonlinearity of the drive establishes mode-locked os-
cillations of the linear resonator, leading to output at a
fundamental and its pure harmonics even in situations
in which the linear resonator itself is anharmonic[21, 22].
For the same reason, the oscillations of the Josephson
junction laser are relatively insensitive to anharmonic-
ities in the waveguide. Another closely related system
is provided by the Gunn oscillator, where the negative
differential conductance provides a nonlinear drive of a
microwave cavity, leading to stable oscillations with sim-
ilar mode-locked characteristics[23]. There is however, a
feature that makes the equations of motion special for su-
perconducting devices —the superconducting phase, the
time integral of the voltage, being the physical quantity.
In particular this means that the argument of the nonlin-
ear driving term includes V t and the resulting measured
voltage is Ψ̇. Perhaps a better analogy is provided by a
mode-locked superfluorescent optical laser[24]. In Ref. 24
a laser coupled to a cavity dumper gives mode-locking as-
sociated with a round-trip time analogous to the current
work. There is, however, a difference that in Ref. 24, the
gain medium is extended rather than localized.

In summary we have presented an analytic framework
for analysis of the Josephson Junction laser device. The
presence of a non-linear element coupled to a cavity gives
mode-locked emission at the round-trip time of the cavity
at least in some regimes. Our time-domain framework
greatly simplifies both numerical and analytic work and
should aid further development of this field.
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Supplemental Materials: Theory of the Josephson Junction Laser

Supp. 1: Derivation of Eq. 1

Although Eq. 1 was given in Ref. [6] (see also Ref. [12])
and also for a single mode in [13] we give a re-derivation
of it here for completeness. For simplicity we will perform
the derivation in the absence of loss. The inclusion of loss
is quite straightforward.

We begin with the telegrapher’s equation for a waveg-
uide. Treating the system as a string of coupled inductors
and capacitors we have the consitituitive equations

∂xI = −C∂tV (S1)

∂xV = −L∂tI (S2)

where V is the electostatic potential, and I is the current.
Here C is the capacitance per unit length and L is the
inductance per unit length. One can view the system as
being made of discrete elements separated by distance a,
with La and Ca the inductance and capacitance of each
individual element.

The boundary conditions for a half-wave cavity of
length ` are I(x = 0) = I(x = `) = 0 and correspondingly
∂xV(x = 0) = ∂xV(x = `) = 0. Given these boundary
conditions, we can write

I =
∑
n>0

In(t) sin(2πnx/`) (S3)

V =
∑
n≥0

Vn(t) cos(2πnx/`) (S4)

We now couple in the Josephson junction at position
xi. This injects current Iin = Ej sin(ϕ) at position xi
where ϕ is the phase across the junction (which we will
determine later) and we have set 2e/~ = 1 as before. Due
to this current injection, we modify Eq. S1 to read

∂xI = −C∂tV + Iin(ϕ)δ(x− xi) (S5)

We can then decompose Eqns. S5 and S2 into spatial
Fourier modes giving (for m > 0)

(2πm)Im = −C ∂tVm + 2 cos(2πmxi/`)Iin(ϕ) (S6)

(2πm)Vm = L∂tIm (S7)

where C = C` is the total capacitance and L = L` the
total inductance. Defining

φm =

∫ t

−∞
Vm(t′)dt′

we have Eq. S7 written as

Im = 2πmφm/L

which we plug into Eq. S6 to obtain

(2πm)2

L
φm = −C∂2t φm + 2αmIin(ϕ) (S8)

where we have defined

αm = cos(2πmxi/`). (S9)

In the experiment, the injection point xi is very close to
the end of the cavity so αm ≈ 1 for m not too large.
However, there is no reason not to consider the more
general case.

Looking also at the voltage at the injection point we
have

V(xin) =
∑
m≥0

αmVm

The waveguide is DC-biased using the techinque of
Ref. [9], which couples to the V0 mode which we then
identify as the applied voltage V . We thus have

ϕ(t) =

∫ t

−∞
dt′V(xin, t

′) = V t+
∑
m>0

αmφm(t)

Plugging this into Eq. S8 obtains our final result Eq. 1,
except for the loss term which we have dropped only for
convenience of notation here.

Supp. 2: The Green’s Function

Given a damped harmonic oscillator with a δ function
source

φ̈ = −ω2φ− 2γφ̇+ δ(t), (S10)

it is easy to show that the response is

G(t) =
e−γt sin ω̃t

ω̃
Θ(t)

where

ω̃ =
√
ω2 − γ2.

Now defining

Ψ =
∑
n

αnφn

we get a response function for Ψ given by

K(t) =
∑
n

α2
n

e−γt sin ω̃nt

ω̃n
Θ(t). (S11)
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FIG. S1. This the ideal sawtooth K0 with αn = 1 and ωn =
nω0 and no loss, γ = 0.

For the simplest case discussed in the text (αn = 1, γ =
0), the form ofK is a simple sawtooth as shown in Fig. S1.

In the case where couplings αn have some randomness,
it is important to point out that the periodicity remains
strictly T , although the waveform changes. Nonetheless,
as shown in Fig. S2 the sharp step rise remains quite
robust. If αn is smoothly cut off above some scale of n

FIG. S2. This is K(t) if αn is chosen randomly between .8 and
1.2 and γ = 0. Notice that the step features remain robust,
and the periodicity is fully maintained.

(which appears to be what was used in the simulation of
Ref. [6]), then the form ofK will be smooth, and the slope
of the step will be limited by the cutoff. A more physical
situation is given by αn given by Eq. S9 corresponding to
the Josephson junction not being positioned quite at the
end of the cavity. In this case there will be peaks in K(t)
corresponding to the reflection times from either end of
the cavity. An example of this is shown in Fig. S3. The
sawtooth response of Ψ will reflect these multiple steps.

FIG. S3. This is K(t) if αn is given by Eq. S9 with the
injection point being at xi = .1` and γ = 0. The multiple
steps correspond to the time delays given by the round trip
times to either end of the cavity.

In the case with γ nonzero, as mentioned in the text
a very good approximation is to take K(t) = e−γtK0(t).
The difference between this form and the actual calcu-
lated K is due to the difference between ωn = nω0 and
ω̃n which is tiny. Strictly speaking the difference is order
γ2 but plotting the two different functions for γ even as
large as unity, they are essentially indistinguishable.

Adding randomness to the frequencies ωn does have
a strong effect on K as shown in Fig. S4, although the
sharp step remains a robust feature.

FIG. S4. This is K(t) if ωn is chosen randomly between (n−
.05)ω0 and (n + .05)ω0 and γ = 0. While the step features
remain robust, the periodicity is slowly destroyed.

Supp. 3: Numerical Results For Parameters Close
to That of Experiment

The parameters chosen for the figures in the main text
are used mainly for clarity of presentation and to eluci-
date some of the physics that can occur. (Note that as
mentioned in the main text, with nonlinear equations,
multiple types of solutions may be possble.) Much of the
physics we discuss in the main text is also observed in
the more experimentally relevant parameter regime. In
the experiment of Cassidy et al. [1] the voltage range of
lasing is between V = 6ω0−16ω0. The Q-factor is stated
as roughly 1000, so γ = 0.0005 since Q = ω0/(2γ). The
coupling constant is estimated as λ & 1 in units where
T = 2π. We take λ = 3 as an example.

With units of T = 2π or ω0 = 1, we start by looking at
a commensurate case of V = 12 in Fig. S5. Here again we
see the characteristic sawtooth shape analogous to that
of Fig. 1. Note however, that the sawtooth here is not
perfect.

Other solutions to the nonlinear equation, which are
even less sawtooth-like, may also appear as shown in
Fig. S6. Again there is still some sawtooth-like behav-
ior, and clearly some periodicity, although obviously the
signal is more complex.

Moving slightly away from commensuration with V =
12.01 we see in Fig. 3 of the main text much of the same
features as we have in Fig. 2 in the main text. Note that
here the slope is very slightly different from prediction,
but otherwise seems to fit well and as with the main
text 〈Ψ〉 and 〈sinβ〉 overlay exactly on top of each other.
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FIG. S5. Pattern of Ψ for commensurate voltage with pa-
rameters close to that of the experiment. With units where
T = 2π we use λ = 3 with γ = .0005 and commensurate driv-
ing V = 12.0. The sawtooth structure is evident although not
perfect.

FIG. S6. Pattern of Ψ with parameters close to that of the
experiment. With units where T = 2π, we use λ = 3 with
γ = .0005 and commensurate driving V = 12.0.

Note that there are some imperfections in the periodicity
of the oscillations in the top half of the figure.

Moving slightly further away from commensuration
with V = 12.1 we see in Fig. S7 much of the same fea-
tures as we have in Fig. 2 in the main text and as in
Fig. 3 although the pattern is more complicated with a
higher number of regions where the quasiperiodicity is
lost. Note that in the lower half of this figure one can
discern the two separate curves for 〈Ψ〉 and 〈sinβ〉 al-
though they overlap very closely. Note that the average
of 〈sinβ〉 does not strike −1 before the pattern makes a
jump here.

Supp 4: Injection Locking Behavior

With the DC voltage applied, when an additional weak
signal is injected into the cavity with a frequency within
the range of the natural line width, the emitted sig-
nal sharpens and matches the injected frequency. The

FIG. S7. Pattern of Ψ for commensurate voltage with pa-
rameters close to that of the experiment. With units where
T = 2π, we use λ = 3 with γ = .0005 and voltage V = 12.1.

well-known detailed theory of oscillator locking behav-
ior by [16] seems to match the experimental work of [6].
One might expect that our Equation of motion Eq. 4
would display this locking behavior. We have found that
the current theory (Eq. 4) reproduces part of this phe-
nomenology, but not all of it.

We first spread the emission peak by giving some dis-
persion to the waveguide. We then find that an in-
jected signal can indeed sharpen the natural emission line
when the injected frequency is within the natural emis-
sion band. Further, in agreement with Refs. [6, 16] we
find that the frequency range over which injection locking
occurs is increased when the injected power is increased
as shown in Fig. S8.

In order to spread out the emission peak we add
some dispersion to the cavity by using a simple model
ωn = nω0x

n−1 with x = .998 (the random “detuning”
used by Ref. [6] has similar effect) . The natural emitted
frequency band is now at a frequency of about .9675ω0

with a bandwidth of about .0.005 due to this dispersion.
Injecting a tone at frequency Ω close to ω0 generates a
resonantly strong response of amplitude A ∼ ω0/(ω0−Ω).
This can be included in the dynamical equation Eq. 4 by
shifting Ψ → Ψ + A cos(Ωt). By a redefinition of vari-
ables this is most easily included by inserting the term
A cos(Ωt) inside the sin of Eq. 4. The equation of mo-
tion is the integrated numerically, with results shown in
Fig.S8. Here the spectral weight of the broadened peak
locks onto the injected frequency when the injected fre-
quency is close enough to the natural emission frequency.
As in the theory of Adler[16] and in the experiment, the
stronger the injected signal, the wider a range of fre-
quencies will lock the emitted signal as shown in Fig.
S8. Despite this similarity to the experiment[6] and to
the theory of Adler[16], there do seem to be some dif-
ferences. For example in those works additional reso-
nances are seen when the injected frequency is near to
the emitted frequency, but not near enough to fully lock
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FIG. S8. Injection locking behavior. At nonzero voltage, a
weak signal is injected into the cavity and the emitted fre-
quencies are observed. In these figures, the natural emission
frequency is approximately 0.9675, and has a spread in fre-
quency of about 0.005. When the injected signal is far enough
from the natural frequency, it does not appear to influence the
emitted signal. On the other hand, when the injected signal
is close enough the natural emission band, it locks the emis-
sion onto the injected frequency and the only frequency seen
to emit is the same as that of the injected frequency — this
is seen as the large gap in the center of the plot with only
the diagonal line passing through it. The bottom figure has a
50% stronger injected signal than the upper figure, and cor-
respondingly, the range of frequencies for which the emission
is locked to the injeced signal is increased. In these figures
V = 4.41, T = 2π, λ = 10, γ = 0.05. The waveguide is given
dispersion by using ωn = nω0(.998)n−1. In the top figure the
injected signal current is of amplitude 0.5 and in the lower
figure it is of amplitude 0.75.

the emission. We have not managed to replicate this phe-
nomenon, and this remains a subject of current research.

Supp 5: Varying Number of Modes

As in the theoretical work in the supplemental material
of Ref. [6], it is crucial to keep enough modes of the cavity
in order to obtain a strong emission. In the language of
the current paper the interpretation of this is fairly sim-
ple — it requires many Fourier modes to have a sharp
sawtooth response function K(t). If too few modes are
included, the response function does not have a sharp
step and there is no strong emission at the fundamen-
tal frequency of the cavity. In Fig. S9 we show that
roughly 10 modes are required before a strong emission
peak forms at the frequency corresponding to the round
trip time of the cavity.
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FIG. S9. Power spectrum of Ψ with different number of modes
of the cavity. In order to have a sharp response at the fre-
quency corresponding to the round trip time of the cavity, one
needs roughly 10 Fourier modes. Here we use ωn = nω0 and
αn = 1 for n ≤ number of modes. With units where T = 2π,
we use λ = 10 with γ = 0.05 and voltage V = 2.41. The plots
are offset for clarity.

Supp 6: Varying The Current Injection Function

As mentioned in the text, the general response of the
system is surprisingly robust to various changes in many
details. As an example in Fig. S10 we vary the current
injection function. Instead of using sin(V t + Ψ) we use
[sin(V t+ Ψ)]n. As can be seen there, the result is essen-
tially unchanged.
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FIG. S10. Here we vary the current injection function sin(V t+
Ψ) to [sin(V t+ Ψ)]n. From top to bottom, n = 1, 3, 5, 7. We
see that the physics is essentially unchanged. In all cases, the
signal is a sum of two sawtooth waves of amplitude 2π with
arbitrary temporal position in the cycle — and the period is
always T . Here using units where T = 2π, we use λ = 10
with γ = 0.05 and voltage V = 2.04

Supp 7: Varying The Coupling λ

We can consider varying the nonlinear coupling λ as
shown in Fig. S11. At weak coupling, as discussed in
the text, one obtains oscillations at frequency V . As λ
is increased, one sees harmonics of V . At large enough
coupling (here somewhere around λ approximately 4) the
solution strongly locks into the saw-tooth solution dis-
cussed in the text.

Supp 8: Comparison to simulations of Cassidy et
al.[6]

In Fig. S12 we show a few plots using some of the same
parameters as used for simulations in the supplemental
material of Ref. [6]. While the data is not identical to
that of Ref. [6] (it need not be identical, given that this
is a nonlinear equation that depends on initial conditions
and may also be chaotic), it has many similarities —
particularly the strong peak at integer multiples of the
fundamental frequency of the cavity. Some additional
features are visible in the upper plot that were not visible
in Ref. [6] — in particular one can see peaks in intensity
at frequencies mω0 ± V which show up as diamonds in
the upper plot (mostly visible at frequencies below ω0

and at high voltage).
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FIG. S11. Ψ with different values of the coupling constant
λ. With units where T = 2π, top to bottom we have λ =
.75, 1.5, 2.25, 3, 3.75, 4.25 and voltage V = 4.04 and γ = 0.01.
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FIG. S12. Power spectrum of Ψ for coupling constant λ =
2.46 as in Ref. [6]. Here ωn = nω0 and γ = 10−4. The shaded
graph intensity is log of the power in the Fourier spectrum of
Ψ. Lower plot is a zoom of the upper plot.


