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Supplementary Materials and Methods  1 
 2 

1. Sample Acquisition and Pathology Review 3 

 4 
1.1 METHODS 5 
1.1.1 Sample Acquisition 6 

MPM tumors were collected and shipped to the Biospecimen Core Resource 7 
(BCR) between September, 2012 and December, 2013. Qualifying tumor samples were 8 
obtained from patients who had received no prior treatment for their disease 9 
(chemotherapy or radiotherapy). Specimens were shipped overnight from 13 tissue 10 
source sites (TSS) using a cryoport that maintained an average temperature of less than 11 
-180°C. In addition to tumor samples, each frozen primary tumor specimen had a 12 
companion normal tissue specimen (blood or blood components, including DNA 13 
extracted at the tissue source site). Adjacent non-tumor tissue was also submitted for a 14 
subset of cases. 15 
 16 

Cases were staged according to the American Joint Committee on Cancer 17 
(AJCC) staging system. Pathology quality control was performed on each tumor and 18 
adjacent normal tissue (if available) specimen from a frozen section slide prepared either 19 
by the BCR or by the TSS. Hematoxylin and eosin (H&E) stained sections from each 20 
sample were subjected to independent pathology review to confirm that the tumor 21 
specimen was histologically consistent with mesothelioma and the adjacent tissue 22 
specimen contained no tumor cells. The percent tumor nuclei, percent necrosis, and 23 
other pathology annotations were also assessed. Tumor samples with >60% tumor 24 
nuclei and ≤20% necrosis were submitted for nucleic acid extraction. 25 
 26 
1.1.2 Sample Processing 27 

DNA and RNA were extracted and quality was assessed at the BCR. RNA and 28 
DNA were extracted from tumor and adjacent non-tumor tissue specimens using a 29 
modification of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen 30 
DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter 31 
step generated RNA preparations that included RNA <200 nt suitable for miRNA 32 
analysis. DNA was extracted from blood using the QiaAmp DNA Blood Midi kit (Qiagen). 33 
 34 



 2 

RNA samples were quantified by measuring Abs260 with a UV spectrophotometer 1 
and DNA quantified by PicoGreen assay. DNA specimens were resolved by 1% agarose 2 
gel electrophoresis to confirm high molecular weight fragments. A custom Sequenom 3 
SNP panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify that 4 
tumor DNA and germline DNA representing a case were derived from the same patient. 5 
Five hundred nanograms of each tumor and germline DNA were sent to Qiagen (Hilden, 6 
Germany) for REPLI-g whole genome amplification using a 100 µg reaction scale. RNA 7 
was analyzed via the RNA6000 Nano assay (Agilent) for determination of an RNA 8 
Integrity Number (RIN), and only analytes with a RIN≥7.0 were included in this study. 9 
Only cases yielding a minimum of 6.9 µg of tumor DNA, 5.15 µg RNA, and 4.9 µg of 10 
germline DNA were included in this study. 11 
 12 
1.1.3 Sample Qualification 13 

The BCR received tumor samples with germline controls from a total of 187 14 
cases, of which 87 cases qualified and were sent for further genomic analysis. Of the 15 
100 that failed to qualify, 21 cases were disqualified prior to processing, 15 failed for 16 
pathology screening, and 64 cases failed due to molecular criteria. 17 
 18 

Of the 15 that failed pathologic criteria, 14 failed for absence of tumor cells, and 19 
one 1 failed for necrosis. The majority of the 64 cases that failed molecular screening 20 
had low normal DNA yields (40 cases). The remaining cases had insufficient tumor DNA 21 
(5 cases) or low RNA integrity (19 cases). The difference of 8 samples represents those 22 
we removed at the very beginning of the AWG as 4 had neoadjuvant therapy, 3 were 23 
unpaired (i.e. tumor and normal appeared unmatched), and 1 did not have sufficient 24 
DNA.  25 
 26 
1.1.4 Pathology Review 27 
    Aperio© scanned H&E stained slides provided by the tissue source sites from 79 28 
tumors were reviewed according to the 2015 WHO classification as definite MPM 29 
subtyped as epithelioid, biphasic or sarcomatoid(1). Where subtyping could not be 30 
achieved, tumors were classified as not otherwise specified (NOS).  H&E stained slides 31 
from frozen sections were reviewed in all 79 cases. In 73 cases, an additional H&E slide 32 
was provided from a representative formalin fixed paraffin embedded (FFPE) tissue 33 
block. Whenever possible, immunohistochemical staining results were obtained from 34 
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primary pathology reports. Six pathologists participated in the pathology review and 1 
discrepant interpretations were resolved by consensus between two pathologists who 2 
reviewed all cases. 3 
 4 
1.2 PATHOLOGY REVIEW RESULTS 5 
    Tumors were reclassified as summarized in Supplementary Figure 1A.  A total of 6 
74 tumors were accepted as MPM with 52 epithelioid (Supplementary Figure 1B&C), 13 7 
biphasic (Supplementary Figure 2D&2E), 3 sarcomatoid (Supplementary Figure 2F&2G) 8 
and 6 NOS. Five tumors were excluded either because the diagnosis of MPM could not 9 
be confirmed (3 cases) or because the normal tissue submitted was not adequate (1 10 
case), or because the frozen sample submitted as tumor contained only normal tissue (1 11 
case). 12 

The following immunohistochemical stains had been performed at the primary 13 
institutions. Keratin showed positive staining with the following antibodies: AE1/AE3 14 
(n=25), CK7 (n=18), CAM5.2 (n=7) and keratin (not further specified, n=6). The following 15 
mesothelial stains were positive: calretinin (n=72), WT1 (n=55) and D2-40 (n=35). The 16 
following carcinoma markers were negative: CEA-NOS (n=25), CEA-polyclonal (n=7), 17 
CEA-monoclonal (n=7), CD15 (n=19, one focally positive tumor was excluded), BER-18 
EP4 (n=25, 2 were focally positive), MOC-31 (n=17, 2 focally positive, 2 positive), and 19 
TTF-1 (n=52, 1 positive case was excluded). 20 

 21 
 22 

2. Genome-wide LOH Validation Datasets  23 

 24 
2.1 ICGC cohort description 25 

Tumor-normal matched DNA samples from Japanese MPM cases were analyzed 26 
by whole exome sequencing. Data was analyzed using an in-house variant caller, 27 
Karkinos (http://sourceforge.net/projects/karkinos/), to detect single nucleotide variations 28 
(SNV) and allelic somatic copy number alterations (sCNA). Among 80 Japanese 29 
cases (48 frozen tissue samples and 32 primary cell lines from cancer patients within 20 30 
passages), two cases showed genome-wide LOH (Figure 2B in the main manuscript). 31 
 SNV detection and estimation of tumor cellularity were previously described(2, 3). 32 
We detected sCNA in an allelic manner and generated an allelic copy number plot from 33 
exome sequencing data using karkinos, which detects sCNA by calculating the ratio of 34 
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allele specific reads between matched tumor and normal samples at the positions with 1 
heterozygous SNPs, by normalization of raw data, adjustment of GC contents, wavelet 2 
de-noising, and multi-state HMM. 3 
 Both genome-wide LOH cases showed loss of one copy of most chromosomes, 4 
whilst retaining two copies of chromosomes 5 and 7. Allelic copy number plots for 5 
sample K2F2-A45 (primary cell line at passages 9), and sample K2F2-H60 (frozen tissue 6 
sample) are shown in Figure 2B of the main manuscript. K2F2-A45 has a homozygous 7 
deletion of SETDB1, and CDKN2A, but doesn’t have a driver mutation in TP53. K2F2-8 
H60 has a stopgain SNV of SETDB1, a splice site mutation of TP53, and a frameshift 9 
deletion of NF2. No somatic mutations in BAP1, SETD2, and PBRM1 were detected in 10 
either case. 11 

 12 
2.2 Brigham and Women’s genome-wide LOH cohort description  13 

As cytogenetic data were not available on the TCGA MPM cases, we sought 14 
independent validation of this finding in a series of 916 MPM cases prospectively 15 
karyotyped at Brigham and Women’s Hospital (BWH) in Boston, MA, between 1990 and 16 
2013. Among these, 16 pleural MPM cases (1.7%) with a near-haploid karyotype 17 
(Supplementary Table S3) have been identified.  18 

Whilst the mean age of the patients in the BWH MPM cohort was >65, the mean 19 
age of the near-haploid subset is 54. Moreover, this subgroup had a significantly higher 20 
percentage of female patients (10/16; 62.5%) compared to the overall BWH cohort 21 
(211/916; 23% female) (P = 0.005). 22 
 23 
 24 

3.      Whole Exome Sequencing and Multicenter Variant Calling  25 

 26 
3.1 Exome enrichment and sequencing 27 

Genomic libraries were prepared using the Illumina Paired End Sample Prep Kit 28 
following the manufacturer’s instructions. Enrichment was performed as described 29 
previously(4) using the Agilent SureSelect Human All Exon 50Mb kit following the 30 
manufacturer’s recommended protocol. 31 
 Each exome was sequenced using a 75bp paired-end protocol on an Illumina 32 
HiSeq DNA Analyzer, to produce approximately 10Gb of sequence per exome. 33 
Sequencing reads were aligned to the human genome (NCBI build 37) using the 34 



 5 

Burrows-Wheeler Aligner (BWA) algorithm with default settings(5). Reads which were 1 
unmapped, PCR-derived duplicates, or outside the targeted region of the genome, were 2 
excluded from the analysis. The remaining uniquely mapping reads provided 70–90% 3 
coverage over the targeted exons at a minimum depth of 30x. 4 
  5 
3.2.      Whole Exome Sequencing and Multicenter mutation calling 6 
3.2.1 Wellcome Trust Sanger Institute  7 

The CaVEMan (Cancer Variants through Expectation Maximization) algorithm 8 
was used to call single-nucleotide substitutions(4). To call insertions and deletions, we 9 
used split-read mapping implemented as a modification of the Pindel algorithm(6, 7). 10 
Mutations were annotated to Ensembl version 58 using the VAGrENT algorithm(8). Post-11 
processing of mutation calls was performed to remove recurrent artifacts from the set of 12 
initial variant calls as described elsewhere(9). Briefly, regions of recurrent mis-mapping 13 
or sequencing errors are removed through excluding regions near homopolymer tracts, 14 
germline indels, or with highly recurrent errors in a panel of normal exomes. All indels 15 
(n=548) and all putative driver substitutions (n=80) were reviewed by manual inspection 16 
of the sequence data. For the indels, 303 variants were true positive, 173 false positive, 17 
and 72 ambiguous. False positive indels were excluded from subsequent analyses. 18 
From the subset of inspected substitutions 77/80 were true positive. 19 
 20 
3.2.2 Broad Institute 21 

The Firehose pipeline (http://www.broadinstitute.org/cancer/cga/Firehose) performed 22 
quality control (QC) on the BAM files, point mutation calling, small insertion and deletion 23 
detection, annotation of detected mutations, filtering for OxoG artifacts and filtering by 24 
“panel-of-normals”. These steps are described in further detail below. 25 

1. QC on BAM files: The sample cross-individual contamination levels were 26 
estimated using the ContEst program(10). 27 

2. Somatic point mutation calling: The MuTect algorithm(11) was used to detect 28 
somatic single nucleotide variants (SNV). 29 

3. Small insertion and deletion detection: The Indelocator algorithm 30 
(https://www.broadinstitute.org/cancer/cga/indelocator) was used to detect small 31 
insertions and deletions (InDel). 32 

4. SNV and InDel annotations: variants detected by MuTect and Indelocator were 33 
annotated using Oncotator(12). Oncotator mapped somatic mutations to 34 
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respective genes, transcripts, and other relevant features. These annotations 1 
correspond to the fields in the TCGA Mutation Annotation Format (MAF) files 2 
version 2.4 3 
(https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Spec4 
ification). 5 

5. Filtering for OxoG artifacts: 1741 G>T/C>A transversions that are a consequence 6 
of heating, shearing, and oxidative damage to the DNA during genomic library 7 
preparation(12) were filtered out of the Broad call set. 8 

6. Filtering by “panel-of-normals”: The sites of detected SNV and InDel were 9 
examined against a panel of 8313 normal samples (PoN). This identified any 10 
SNV or InDel that is a recurrent artifact and removed variants that were found 11 
outside coding regions. As a result of the filtering, 865 SNVs and 15639 InDels 12 
were removed, leaving a total 3361 mutations in the final MAF (3011 SNVs, 66 13 
insertions and 284 deletions). 14 

 15 
3.2.3 University of British Columbia Cancer Research Centre 16 

Strelka(13) v1.0.6 was used to identify somatic SNVs, and short InDels from the 17 
WES dataset. All parameters were set to defaults, with the exception of 18 
"isSkipDepthFilters", which was set to 1 in order to skip depth filtration given the higher 19 
coverage in the dataset. Blood or normal tissue was used as matched normal specimen. 20 
The variants were subsequently annotated using SnpEff(14), and the COSMIC(15) v61 21 
and dbSNP(16) v137 databases. 22 
 23 
3.2.4 Multicenter Mutation Calling 24 

SNV and InDels data from three centers, Broad Institute (BI; 4067 SNVs, 186 25 
deletions, and 52 insertions), Sanger Institute (SI; 3687 SNVs, 434 deletions, and 114 26 
insertions) and University of British Columbia (UBC; 8370 SNVs, 167 deletions, and 40 27 
insertions) were used in the creation of the MCC MAF file. In order to create the set of 28 
SNVs, any SNV that appeared in at least two of the three centers was included in the 29 
MCC MAF file used for subsequent analysis. Also, any non-coding SNV or InDel was 30 
removed from the final set. In cases where coding status from SI was specified, that 31 
coding annotation was prioritized and used to determine the coding status of the SNV or 32 
InDel; otherwise, BI's annotations were used. Consequently, 3011 SNVs were included 33 
in the final MCC MAF file. For insertions and deletions, all SI's manually reviewed InDels 34 

https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specification
https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specification
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(278 deletions and 64 insertions) and 8 additional InDels (6 deletions and 2 insertions) 1 
that weren't manually reviewed by SI, but called by both BI and UBC and manually 2 
reviewed by BI, were included in the final set of InDel calls. Thus, 350 InDels (284 3 
deletions and 66 insertions) were included in the final MCC MAF file.  4 

Because BAP1 alterations are of specific interest in MPM, RNA-Seq InDels (18 5 
InDels) and exome calls in BAP1 from BI, SI and UBC were closely analyzed by 6 
Analysis Working Group members at the University of North Carolina. Combining the 7 
calls across all centers yielded 26 BAP1 SNVs and InDels (9 SNVs and 17 deletions). 8 
Three additional BAP1 mutations (two SNVs and one deletion) that were deemed to be 9 
affecting cancer progression by the Analysis Working Group were included in the final 10 
set of calls as well. The three BAP1 mutations were: intragenic SNV that affected BAP1 11 
expression level in ZN-A9VS, low allelic fraction SNV in 3U-A98G, and 48 basepair long 12 
intronic deletion in 3U-A98G. In all, 29 BAP1 mutations (11 SNVs and 19 deletions) were 13 
in the MCC MAF file (See Supplementary Table S2A for details).  14 

In order to determine the alternate and reference allele counts for mutations, BI and 15 
SI computed allele counts. For SNVs, alternate and reference allele counts were 16 
determined by the BI’s Mutation Validator tool. For InDels, SI calculated allele counts for 17 
all but 8 InDels in the MCC MAF file. The allele counts for these remaining InDels, which 18 
were called by BI and UBC, were determined by BI’s Mutation Validator tool. 19 
 20 
3.2.5. Mutational spectrum 21 

The observed mutational spectrum of somatic SNVs for each sample in the cohort 22 
was extracted by considering each variant in its pyrimidine context (that is, C>A, C>G, 23 
C>T, T>A, T>C and T>G). Each of the six types of base substitution were further split 24 
into 16 subcategories by the reference base immediately 5’ and 3’ to the mutated base. 25 
For each patient, counts of SNVs in each of these 96 channels then represent the 26 
observed mutational spectrum. The dataset did not have sufficient information content 27 
for a formal signature extraction for two reasons. First, the low number of variants in 28 
each tumor (due to the low overall mutation burden combined with a footprint of only 29 
30Mb in an exome) limits statistical power to detect signatures. Second, across patients 30 
(allowing for the aforementioned low numbers), there was very little evidence for 31 
variation in mutation spectrum, with the exception of the one hypermutated patient. 32 
Given that formal signature extraction relies on having individual signatures distributed 33 
unequally across patients, any such extraction would be unreliable. Although mutation 34 
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burden was too low for signature extraction at the level of individual patients, we felt that 1 
an analysis comparing the mutational spectra combined across asbestos-exposed 2 
patients versus asbestos-unexposed was well powered. This analysis was performed 3 
using a chi-squared test. 4 

 5 

4. Copy number analysis 6 

 7 
4.1 METHODS 8 
Affymetrix SNP 6.0 arrays were used to hybridize genomic DNA from each tumor and 9 
normal sample using standard protocols at the Genome Analysis Platform of the Broad 10 
Institute(17). Briefly, from raw CEL files, Birdseed was used to infer preliminary copy 11 
number at each probe locus(18). For each tumor, tangent normalization was applied to 12 
estimate genome-wide copy number. Tangent normalization is based on the observation 13 
that the linear combination of all normal samples that are most similar to the tumor tends 14 
to match the noise profile of the tumor better than any set of individual normal samples; 15 
this linear combination is therefore used to divide the tumor signals 16 
(19) (http://www.broadinstitute.org/cancer/cga/copynumber_pipeline). Individual copy-17 
number estimates then underwent segmentation using Circular Binary Segmentation(20), 18 
during which regions corresponding to germline copy number alterations were removed. 19 
Ziggurat Deconstruction was then applied to assign a length and amplitude to each 20 
identified copy number change, in a way that accounts for different copy number values 21 
inferred across the locus from the heterogeneous cell population(21). 22 
 23 
Allelic CN, whole genome doubling, subclonality, and purity and ploidy estimates were 24 
calculated using the ABSOLUTE algorithm(22) and CBS-derived segmented CN values 25 
were re-centered using the In Silico Admixture Removal (ISAR) procedure(23) and 26 
significant focal CN alterations were identified from using GISTIC 2.0.22(21).  27 
CN clustering was based on total integer arm-level CN, normalized over 4 copies for 28 
tumors estimated to have been whole genome doubled once, and 8 copies for tumors 29 
estimated to have been whole genome doubled twice. Tumors were clustered based on 30 
thresholded CN at re-occurring alteration peaks from GISTIC analysis 31 
(all_lesions.conf_99.txt file). Clustering was done in R based on Manhattan distance 32 
using Ward's method. Allelic CN derived from ABSOLUTE was used along with visual 33 

http://www.broadinstitute.org/cancer/cga/copynumber_pipeline
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inspection of relative CN to determine regions of loss of heterozygosity (LOH) and 1 
homozygous deletions. 2 
The FACETS algorithm(24) was used to perform allele-specific copy number and LOH 3 
analysis from WES data. Briefly, read count information was extracted from paired 4 
tumor-normal whole-exome sequencing BAM files. Total log-copy-ratio (logR) was 5 
computed from the total read count across germline SNP sites in tumor versus normal. 6 
GC-normalization was done using loess regression. Allelic imbalances were assessed 7 
using the variant allele log-odds-ratio (logOR) at heterozygous SNP sites. A joint 8 
segmentation analysis was applied to identify regions of the genome with copy number 9 
alterations by extending the Circular Binary Segmentation (CBS) algorithm to a 10 
bivariate change-point detection method based on the Hotelling T2 statistic. Integer 11 
copy number was estimated using a genotype-mixture model correcting for tumor purity, 12 
ploidy and clonal heterogeneity. Software is available at 13 
https://github.com/mskcc/facets. 14 
 15 
4.2 RESULTS 16 
The SCNA landscape of MPM was characterized by frequent recurring focal and arm-17 
level deletions, but no recurrent focal amplifications. Using ABSOLUTE-inferred allelic 18 
CN information(22), we were able to determine if deletions at each locus were 19 
homozygous, hemizygous, or heterozygous. Several tumor suppressor genes 20 
previously found to be altered in MPM (25) were recurrently homozygously deleted, 21 
including CDKN2A (36/74), BAP1 (12/74), NF2 (6/74), PBRM1 (3/74), SETD2 (3/74), 22 
and PTEN (2/74). PTPRD and RBFOX1 were also recurrently deleted, but both have 23 
previously been reported to be fragile sites in cancer genomes and their mRNA 24 
expression did not correlate with CN(26, 27). Additionally, many of the focally deleted 25 
tumor suppressors were also significantly recurrently mutated in the cohort (Fig. 1 in 26 
main manuscript).  27 
While CN and mutational status of BAP1 and SETD2 were not correlated with overall 28 
survival, NF2 status (stratified by homozygous deletion, mutation, 1-copy LOH, 2-copy 29 
LOH, and wild-type; Cox model P=0.024) and CDKN2A status (stratified by 30 
homozygous deletion and other; Cox model P=7.3x10-6) conferred significant 31 
differences in overall survival. Biallelic inactivation of NF2 was also significantly 32 
enriched in tumors of patients with no history of asbestos exposure (Chi-square 33 
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P=0.0027). The 19/74 tumors harboring biallelic inactivation of BAP1 were all 1 
epithelioid (Chi-square P=0.019). 2 
Hierarchical clustering revealed 6 distinct CN clusters (Supplementary Figure 2A). One 3 
group (cluster 1) consisted of tumors with focal deletions in chromosome 3p around the 4 
BAP1/PBRM1/SETD2 locus as well as partial or whole deletion of chromosome 22, but 5 
few other SCNAs. Cluster 4 consisted of tumors either lacking broad SCNAs entirely or 6 
exhibiting high levels of genome-wide LOH. With one exception, no homozygous 7 
deletions were found in this group. Cluster 2 consisted of 4 hyperdiploid/hypotriploid 8 
samples with more arm-level gains than losses. Cluster 3 was enriched for CDKN2A 9 
homozygous deletions but was otherwise generally chromosomally stable. Clusters 5 10 
and 6 were both characterized by chromosomal instability, but tumors in cluster 5 had 11 
partial telomeric loss of chromosome 1p, whereas those in cluster 6 tended to have 12 
whole-arm or partial centromeric loss of 1p. The majority of 1p deletions affected only 13 
the telomeric or the centromeric ends of 1p, suggesting positive selection for deletion of 14 
either, or negative selection for deletion of the genomic region. 15 
In GISTIC 2.0 analysis of MPM with wild type or 2-hit BAP1 inactivation, we found no 16 
significant differences in focal SCNAs, other than 3p focal deletions containing BAP1 17 
itself. However, there were more overall SCNAs in tumors without BAP1 alterations. 18 
Total numbers of amplifications and deletions in chromosomal arms were significantly 19 
greater in tumors with wild type BAP1 (median 15.5 vs. 9.5, P<0.01). All tumors in CN 20 
cluster 4, which contain few SCNAs apart from the 3p focal deletion containing BAP1 21 
and chromosome 22/6q deletion, had at least one allele with a BAP1 alteration 22 
(Supplementary Figure 2D).  23 
FACETS and ABSOLUTE analyses identified three cases with extensive loss of 24 
heterozygosity (Supplementary Figure 2E, 2F and 2G) and these cases were further 25 
analyzed using complementary methodologies to characterize their molecular features.  26 
 27 
 28 

5.      Gene Expression (RNA sequencing) 29 

 30 
5.1 RNA library construction, sequencing, and analysis 31 

One μg of total RNA was converted to mRNA libraries using the lllumina mRNA 32 
TruSeq kit (RS-122-2001 or RS-122-2002) following the manufacturer’s directions. 33 
Libraries were sequenced 48x7x48bp on the Illumina HiSeq 2000 as previously 34 
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described(28), with FASTQ files generated by CASAVA. RNA reads were aligned to the 1 
hg19 genome assembly using MapSplice(29) 0.7.4. Gene expression was quantified for 2 
the transcript models corresponding to the TCGA GAF2.1 (http://tcga-3 
data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.g4 
af), using RSEM(30) and normalized within-sample to a fixed upper quartile.  Further 5 
details on this processing are available in the Description file at the DCC, under the 6 
V2_MapSpliceRSEM workflow (https://tcga-7 
data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/meso/cgcc/unc.edu/8 
illuminahiseq_rnaseqv2/rnaseqv2/unc.edu_MESO.IlluminaHiSeq_RNASeqV2.mage-9 
tab.1.0.0/DESCRIPTION.txt) or at CGHUB 10 
(https://cghub.ucsc.edu/docs/tcga/UNC_mRNAseq_summary.pdf). 11 
 12 
5.2 RESULTS 13 

Unsupervised gene expression using variably and highly expressed genes was 14 
used to identify 4 mRNA-based clusters.  Using ClaNC, we identified a set of 1,800 15 
genes that strongly classified each of the four clusters and associated them with clinical 16 
and genomic features (Supplementary Figure 3A). Cluster 1 was predominantly 17 
epithelioid, and significantly less likely to have loss of CDKN2A/B (Fisher’s exact test, 18 
p<0.001, Supplementary Figure 3B), contained 5/8 SETD2 mutations (Fisher’s Exact 19 
Test, P=0.03), had high expression of innate immune cells, MSLN (concordant with 20 
serum levels), and had the best overall survival (Supplementary Figure 3C).  In contrast, 21 
cluster 3 predominantly contained non-epithelioid histologies and had significantly poorer 22 
outcomes compared to cluster 1 (HR 4.3, P=0.00009).  Samples in this cluster 23 
expressed genes involved in NOTCH and WNT signaling and had high levels of cell 24 
cycle gene expression. This group of patients was also significantly older than the other 25 
three (t test, P=0.0008, Supplementary Figure 3D). Cluster 4, while epithelioid, was 26 
similar to 3 -  with high expression of cell cycle genes and a poor overall survival 27 
compared to 1 (HR 6.8, P=0.00003).  Cluster 2 was defined by high expression of BAP1 28 
and CLDN genes.  This group was significantly less likely to have BAP1 alterations (t 29 
test, P=0.001, Supplementary Figure 3A, 3B, 3E), and had similar survival to cluster 1, 30 
with a younger age at diagnosis. Using the gene signatures from Bueno(25) and de 31 
Reynies(31) for validation, samples clustered similarly to our TCGA analysis, with the 32 
highest concordance observed for non-epithelioid samples.  33 

 34 
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 1 

6.      DNA Methylation Profiling 2 

 3 
6.1 METHODS 4 

The Illumina Infinium HM450 array(32) was used following standard protocols. 5 
Briefly, genomic DNA (1 μg) was treated with sodium bisulfite and recovered using the 6 
Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA). Bisulfite-converted DNA 7 
samples were amplified, fragmented and hybridized to BeadChips, followed by a locus-8 
specific base extension with labeled nucleotides (cy3 and cy5). BeadArrays were 9 
scanned and the raw data imported into custom programs in the R computing language 10 
for pre-processing and calculation of DNA methylation β values for each probe and 11 
sample. Quality control and probe exclusions were performed using standard protocols 12 
as described(33).  13 

Unsupervised consensus clustering was performed in the Bioconductor package 14 
ConsensusClusterPlus(34) v1.22.0, with Euclidean distance and partitioning around 15 
medoids (PAM) and was applied to the DNA methylation data using the most variable 16 
1% of CpG probes. Fisher’s exact test was used to test for associations of DNA 17 
methylation clusters with other platform clusters and significantly mutated genes.  18 

Leukocyte fraction was estimated as described previously(22). As a source of 19 
leukocyte DNA methylation level, we used DNA methylation data of peripheral blood 20 
mononuclear cells from six healthy donors(35) (GSE35069).  21 

To identify CpG probes associated with BAP1 and SETD2 status, we used 22 
empirical Bayes-modified t-tests as implemented in the limma package(36). The 23 
correlations between SETD2 and BAP1 status and DNA methylation was strong enough 24 
to support two criteria for probe selection - signature genes with FDR<0.01, and the 25 
mean difference of β values between altered and wild type samples of more than 0.3.  26 
 27 
6.2 RESULTS 28 

Three robust DNA methylation clusters were identified based on the most 29 
variable CpG loci on the Illumina array (Supplementary Figure 4A). Cluster 3 had a 30 
higher leukocyte fraction and lower purity than the other two and was associated with 31 
miRNA cluster 5, lncRNA cluster 4, PARADIGM cluster 4, and iCluster 4 (Supplementary 32 
Figure 4A and 4B). Cluster 2 was enriched with SETD2 mutations, which have been 33 
associated with altered DNA methylation in cancer(33, 37). To explore further the 34 
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correlation of SETD2 mutations and DNA methylation, we looked for CpG sites that 1 
associated with SETD2 status and found more than 200 differentially methylated CpG 2 
sites (Supplementary Table S6A). The association between BAP1 status and DNA 3 
methylation was strong enough to support two criteria for probe selection, signature 4 
genes were selected to have FDR<0.01 and the mean difference of beta values between 5 
altered and wild type samples was more than 0.3. We found 84 CpG probes that had 6 
significantly higher methylation in BAP1 inactivated samples (Supplementary Figure 4C). 7 
For most of the probes, higher methylation was associated with low expression for the 8 
corresponding gene (Supplementary Table S6B). 9 
 10 
 11 

7. Noncoding RNA (lncRNAs and miRNAs) expression analyses 12 

 13 
7.1 METHODS 14 
7.1.1 RNA-seq read mapping 15 

RNAseq FASTQ files for TCGA data (n=74) were downloaded from CGHub(38), 16 
while those for from the validation cohort (Bueno(25), n=211) were downloaded from the 17 
European Genome-phenome Archive (EGAS00001001563). For both datasets, FASTQ 18 
files were processed using STAR(39) v2.3.0e with the following parameters: 19 
minimum/maximum intron size set to 30 and 500,000, respectively, noncanonical, 20 
unannotated junctions were removed, the maximum of tolerated mismatches set to 10, 21 
and the outSAMstrandField intron motif option enabled. The Cuffdiff command included 22 
with Cufflinks(40) v2.0.2 was used to calculate the fragments per kilobase of exon per 23 
million fragments mapped (FPKM) with upper quartile normalization, fragment bias 24 
correction, and multiread correction enabled. All other options were set to default. 25 
Ensembl v82 gene annotations were used. 26 
 We generated microRNA sequence (miRNA-seq) data using methods described 27 
previously(41, 42) with miRBase v16 annotations, and assigned 5p and 3p mature 28 
strand names using miRBase v20. 29 
 30 
7.1.2 Unsupervised consensus clustering 31 

For the TCGA cohort, we extracted 347 expressed (mean FPKM ≥1) and highly 32 
variable (95th percentile, FPKM variance) lncRNAs from a normalized abundance matrix 33 
of 8167 lncRNAs (7671 lincRNA and 496 processed transcripts).  We identified groups 34 
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of samples with similar abundance profiles by unsupervised consensus clustering with 1 
ConsensusClusterPlus v1.36.0. Calculations were performed using Pearson correlations, 2 
hierarchical clustering, 20,000 iterations, and a random gene fraction of 0.975 in each 3 
iteration.  4 
 For the Bueno validation cohort, we clustered 420 expressed, high-variance 5 
lncRNA profiles using Pearson correlations, partitioning around mediods, 5000 iterations, 6 
and a random 0.95 gene fraction in each iteration. We selected a four-cluster solution for 7 
both cohorts. 8 

For miRNA mature strand data, we selected an input file containing reads-per-9 
million (RPM) data for the 303 (25% of 1212) most-variant 5p or 3p mature strands. We 10 
used unsupervised consensus clustering with ConsensusClusterPlus v1.36.0, using a 11 
Pearson distance, hierarchical clustering, 20000 iterations and a gene fraction of 0.95.  12 

To generate a heatmap for subtypes, we first used a SAM multiclass analysis(43) 13 
to identify differentially abundant lncRNAs or miRNAs (FDR<0.05), which we filtered to 14 
retain lncRNAs or miRs that were expressed at least a mean of 5 FPKM or 25 RPM 15 
respectively(44). We transformed each row of the matrix by log10(RPM+1), then used 16 
the pheatmap R package (v1.0.2) to scale and cluster only the rows, and to generate the 17 
heatmap. 18 

An FDR threshold of 0.05 was set for both miRNA and lncRNA. 19 
 20 
7.1.3 Maximal-search associations with survival 21 

For both the TCGA and the validation cohorts, we identified miRNAs and 22 
lncRNAs that were associated with overall survival. We used R functions from 23 
CutoffFinder(45) v2.1 to determine the RPM or FPKM value that stratified samples into 24 
two groups(46), then adjusted the corrected p values for multiple testing with the 25 
Benjamini-Hochberg method. 26 

 27 
7.1.4 Correlations with EMT scores  28 

We used MatrixEQTL(47) to calculate Spearman correlations (FDR<0.05) 29 
between RNAseq-based EMT scores (Supplementary Section 10) and miR RPMs or 30 
lncRNA FPKMs. 31 
 32 
7.2 RESULTS 33 
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We assessed two types of noncoding RNAs that may offer molecular insights into 1 
MPM(48): microRNAs (miRNAs) and long noncoding RNAs (lncRNAs).  2 

miRNA mature strands (miRs) are associated with MPM (48-51). Here, we used 3 
unsupervised consensus clustering to identify five miR subtypes (Figure 6H). These 4 
were associated with purity (P=1.0x10-7), leukocyte fraction (P=1.1x10-6), EMT scores 5 
(P=1.7x10-7), and 5-year survival (P=6.6x10-4). They were concordant with subtypes for 6 
lncRNAs (see below, P=1.2x10-12), mRNA (P=1.2x10-14), iCluster (P=1.3x10-12), 7 
PARADIGM (P=3.0x10-13), and were associated with subtypes for SCNA (P=2.6x10-4), 8 
and DNA methylation (P=1.6x10-4). 9 
 LncRNA expression can be more specific for cell type than coding gene 10 
expression(52-54). To our knowledge, only one expression lncRNA profiling report, 11 
based on NCode long noncoding microarrays, is available for MPM(55). Recently, 12 
multiplatform data that included transcriptome sequencing, and analyses focused on 13 
protein-coding genes, were reported for a large MPM cohort(25); this ‘Bueno’ 14 
transcriptome data served as an independent lncRNA data source. 15 

For the TCGA cohort, we used unsupervised consensus clustering with 16 
transcriptome sequence data to identify 4 lncRNA subtypes (Figure 6A). These were 17 
associated with leucocyte fraction (P=3.2x10-4), EMT scores (P=1.8x10-4), and 5-year 18 
survival (log-rank P=1.4x10-4) (Figures 6A-D). They were strongly concordant with 19 
subtypes from mRNA (P=3.5x10-17), iCluster (P=7.7x10-14), PARADIGM (P=2.1x10-21), 20 
and miRNA (P=1.4x10-12), and were associated with subtypes for SCNA (P=0.011), and 21 
DNA methylation (P=0.025). Samples in lncRNA cluster 1 (n=20, 27%) had better 22 
survival, while cluster 4 had a relatively high leukocyte fraction and low purity, many of 23 
the non-epithelioid samples, and relatively shorter survival.  24 

We noted that the iCluster, PARADIGM, miRNA and lncRNA subtypes that had 25 
the best and worst survival were strongly concordant. 26 

For the Bueno validation dataset(25), we identified 4 lncRNA subtypes that were 27 
concordant with the four RNA-seq-based subtypes reported in that work (P=3.4x10-28) 28 
and were associated with 5-year survival (P=1.1x10-3) (Figure 6E). For both the TCGA 29 
and the Bueno cohorts, lncRNAs that were differentially abundant between the better-30 
survival subtype and other samples included those known to be associated with cancers 31 
in general (e.g. H19, LINC00152, MEG3) or with MPM in particular: NEAT1 and 32 
SNHG8(55), and GAS5(56). 33 
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 EMT is a factor in MPM(31, 57). Many miRNAs(58-60) and lncRNAs(61) have 1 
been associated with EMT. We noted that the miR-based and lncRNA-based 2 
unsupervised clusters that had better survival had the lowest median EMT scores. In the 3 
TCGA cohort, we identified miRs and lncRNAs that were statistically correlated (FDR < 4 
0.05) with RNA-seq-based EMT scores (Table S5A). As expected, miR-200 family 5 
members, members of an Xq27.3 genomic miRNA cluster(62), and miR-29 family 6 
members(63) were correlated with the scores, as was the oncogenic LINC00152(64) 7 
(ρ=0.41). 8 
 Next, we assessed miRs and lncRNAs that were differentially abundant in the 9 
subtypes that had better survival (Figures 6F,G,L; Table S5B). For the TCGA cohort, 10 
miR-126, 143-3p and 145-5p(65, 66) were less abundant in miR cluster 1, while miR-11 
193a-3p(67) was more abundant.  Among the differential lncRNAs in both the TCGA 12 
(lncRNA cluster 1) and the Bueno (lncRNA cluster 4) cohorts (Figures 6F,G), the most 13 
highly differential lncRNA RP11−263K4.5 showed a positive fold-change of 63.6 in 14 
TCGA and 9.1 in the validation datasets, suggesting that this lncRNA may be a tumor 15 
suppressor in MPM.  16 

Finally, for all samples and then for only epithelioid samples, we identified 17 
miRNAs that were statistically associated with survival in the TCGA cohort, and lncRNAs 18 
that were that were associated with survival in both TCGA and Bueno cohorts (Table 19 
S5C). For the full TCGA cohort, miRs with significant adjusted p-values (e.g. miR-514a-20 
3p, 508-3p, 29b-2-5p, 101-3p, Hazard Ratio<1) included those that were negatively 21 
correlated to EMT scores, and those that were relatively abundant in the miR cluster with 22 
the best survival. For the epithelioid cases in the TCGA cohort, miR-148b-3p (P=5.7x10-23 
4) and miR-148a-5p (P=9.9x10-4) were statistically significant, though miR-148b-3p was 24 
not statistically significant for the full cohort. miR-148b-3p is well known in lung and other 25 
cancers(68). A number of lncRNAs were statistically associated with survival in the full 26 
TCGA and validation cohorts. For example, GS1-600G8.5 (P=1.1x10-3 and 0.036, 27 
respectively, Hazard Ratio>1) was less abundant in the good-survival lncRNA subtypes 28 
in both cohorts, and was positively associated with TCGA EMT scores. Taken together, 29 
the above results suggest that both miRNAs and lncRNAs may be important regulators 30 
of EMT and of survival in MPM. 31 
  32 
 33 

8.      Microbial sequences  34 
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 1 
8.1 METHODS 2 

We screened RNA and DNA sequence reads with a microbial detection pipeline 3 
based on BioBloomTools (BBT), v1.2.4.b1, a Bloom filter-based method for rapidly 4 
classifying RNA-seq or DNA-seq read sequences(69). We ran BBT in paired-end mode 5 
to screen FASTQ files from 74 tumor RNA-seq libraries, 74 tumor and their respective 6 
normal whole exome libraries within the TCGA MPM cohort. In a single-pass scan for 7 
each library, BBT categorized each read pair as matching the human, a unique microbial, 8 
more than one (multi-match), or no-match filters. We then calculated a reads-per-million 9 
(RPM) abundance for each filter. 10 
 To detect integration of human herpes virus (HHV) and human papilloma virus 11 
(HPV), we performed de novo assembly with ABySS v1.3.4. We assembled only the 12 
reads classified by BBT, then merged the sets with Trans-ABySS(70) 1.4.8 to generate a 13 
contig working set. We identified breakpoint locations by using BLAT(71) v34 to align to 14 
the GRCh37/hg19 and to either 109 HHV or 268 HHV reference sequences. We 15 
retained contig alignments in which: a) the aligned human and viral sequences summed 16 
to at least 90% of the contig length, and b) the human and viral aligned overlapped by 17 
less than 50%. Human breakpoint coordinates were annotated against RefSeq and 18 
UCSC gene annotations(72). Breakpoints that had at least 3 spanning mate-pair reads 19 
or 5 flanking mate-pair reads were considered potential integration sites. 20 
 21 
8.2 RESULTS 22 

We assessed microbes using RNAseq and WES data for 74 MPM samples 23 
(Supplementary Table S7). The RNAseq libraries returned signals for common microbial 24 
contaminants. We found no evidence for genomic integration in 9 libraries that returned 25 
positive RPMs: one RNAseq library that showed weak signals for HPV and 8 tumor WES 26 
libraries that showed weak signals for HHV4 (EBV). Notably, there were no hits for 27 
polyomavirus (including SV40) sequences in any of the libraries. 28 
 29 
 30 

9. Reverse-Phase Protein Array analysis 31 

 32 
9.1 METHODS 33 
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Protein was extracted using RPPA lysis buffer from tumors and RPPA was 1 
performed as described previously(73-77). SDS-reduced lysates were adjusted to 1 2 
µg/µL and manually serially diluted. An Aushon Biosystems 2470 arrayer (Burlington, 3 
MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs), which were 4 
probed with 219 validated primary antibodies followed by corresponding secondary 5 
antibodies.  6 

Signal was captured using a colorimetric, DAB-based DakoCytomation-catalyzed 7 
system. Slides were scanned in a CanoScan 9000F. Spot intensities were analyzed and 8 
quantified using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate 9 
spot signal intensities (Level 1 data). SuperCurveGUI(75, 77) was used to estimate EC50 10 
values of the proteins in each dilution series(73). A QC metric(77) was returned to help 11 
determine the quality of each slide: if the score was less than 0.8 on a 0-1 scale, the 12 
slide was omitted. In most cases, the staining was repeated and the highest QC scoring 13 
slide was used for analysis (Level 2 data). 14 

Protein measurements were corrected for loading(75, 77, 78) using median 15 
centering across antibodies (level 3 data). Final selection of antibodies was also driven 16 
by the availability of high quality antibodies, as assessed by specificity, sensitivity and 17 
dynamic range for quantification(79). In total, 219 antibodies and 52 MPM samples were 18 
used for the analysis. RPPA arrays were quantitated and processed as described 19 
previously(73, 75). Raw data (level 1), SuperCurve nonparameteric model fitting (level 2), 20 
and loading corrected data (level 3) were deposited at the DCC. 21 
 22 
9.2 RESULTS 23 

MPM samples were consensus clustered using 1-Pearson correlation as the 24 
distance metric and Wards’ linkage algorithm. We identified five robust clusters with 25 
differential pathway expression (Supplementary Figure 5A and 5B).  26 
 The role of cell signaling networks in MPM was illustrated by computing 12 27 
pathway scores described previously(80). The analysis showed that there were 28 
differences among the RPPA clusters for many of these pathways (Supplementary 29 
Figure 5C).  30 

RPPA cluster 1 (n=11) showed higher EMT, Hormone receptor, RAS/MAPK, 31 
Breast reactive and Core reactive pathway expressions. Significantly higher 32 
FIBRONECTIN and COLLAGEN VI, and lower E-CADHERIN and BETA CATENIN 33 
expression levels contributed to higher EMT in 1, which also showed high apoptosis 34 
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activity; lower expression in PCNA associated with Cell cycle pathway; CHK1PS345, 1 
CHK2PT68, MRE11 and RCC1 associated with high DNA damage response pathway 2 
activity; and high expression of MYH11 from the Breast reactive pathway activity. Cluster 3 
2 showed relatively high Hormone signaling (breast) pathway activity, which was due to 4 
a higher expression of BCL2. Cluster 3 showed relatively low apoptosis, EMT, Hormone 5 
receptor and Core reactive activity, and high PI3K/AKT and TSC/mTOR pathway activity, 6 
whilst cluster 4 showed high Cell cycle, DNA damage response and EMT activity, 7 
coupled with low RAS/MAPK and Breast reactive activity, and had the worst prognosis. 8 
Cluster 5 (n=11) had the best prognosis. It showed high activity of DNA damage 9 
response pathway, and low activity of EMT, RAS/MAPK, TSC/mTOR, Breast reactive 10 
and Core reactive pathways. The most differentially expressed proteins between clusters 11 
5 (best prognosis) and 4 (worst prognosis) were PAI1, CYCLINB1, CAVEOLIN1, EPPK1 12 
and EEF2K. The worst prognosis cluster had significantly higher expression of PAI1, has 13 
been associated with poor prognosis in previous studies, and could be a potential 14 
therapeutic target in MPM(81, 82). CYCLINB1(83), CAVEOLIN1, EPPK1 and EEF2K(84) 15 
could also be prognostically and/or therapeutically relevant. 16 

 17 
 18 

10.    Epithelial-Mesenchymal Transition Analysis  19 

 20 
10.1 METHODS 21 

74 MPM samples were scored based on expression of epithelial-mesenchymal 22 
transition (EMT) signature genes using a method previously developed by our group(85). 23 
Briefly, the EMT score for each sample is calculated as the mean expression of epithelial 24 
markers subtracted from the mean expression of mesenchymal markers. Higher EMT 25 
scores correlate with a more mesenchymal profile.  26 
 27 
10.2 RESULTS 28 

EMT is known to be common in MPM(31, 57). Across multiple tumor types, MPM 29 
possessed the second highest overall EMT score after sarcoma (Fig. 7B). Although the 30 
vast majority of MPM tumors had EMT scores greater than 0, indicating higher 31 
expression of mesenchymal versus epithelial genes, the individual scores varied 32 
significantly. Histology correlated with EMT score, with epithelioid MPM possessing the 33 
lowest EMT score (Figure 7A). However, a few epithelioid tumors possessed high EMT 34 
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scores), atypical for this histology and suggesting distinct epithelial and mesenchymal 1 
biologies exist within otherwise similar histologies that may predict distinct responses to 2 
targeted therapies. Across all histologies, increasing EMT scores were significantly 3 
correlated with higher leukocyte fraction (r=0.30; P=0.008). EMT is known to contribute 4 
to immune escape1 and we have previously observed an association between EMT 5 
score and increased expression of immune checkpoint and other potentially targetable 6 
immune genes. In light of these data and recent clinical data suggesting a subset of 7 
MPM patients respond to immune checkpoint blockade, we investigated whether EMT 8 
was associated with expression of immune genes in MPM. As in other solid tumors(86), 9 
EMT score was significantly associated with the expression of many potentially 10 
targetable immune checkpoint genes, including OX40 ligand (OX40L), Transforming 11 
Growth Factor Beta 1 (TGFB1), B7-H3 (aka Cluster of Differentiation 276, CD276), 12 
OX40 receptor (OX40) and Programmed Death-Ligand 2 (PD-L2) (P<0.001), while the 13 
V-domain Ig suppressor of T cell activation (VISTA), a negative regulator of T cell 14 
proliferation and T-cell cytokine production(87) was strongly associated with low EMT 15 
score (r=-0.476, P=1.56x10−5). However, VISTA expression was higher in MPM 16 
compared to all other tumor types available in the TCGA due to high VISTA expression 17 
in most epithelioid MPM samples. Thus, EMT score could be used to predict enrichment 18 
of specific immune checkpoint targets for selection from already available 19 
immunotherapy agents. The correlation between EMT and immune checkpoint gene 20 
expression also supports combinatorial strategies to target both immune checkpoint and 21 
EMT simultaneously. Additionally, these data suggest that epithelioid histology, with its 22 
relatively low EMT score, may predict response to targeting of VISTA, a negative 23 
immune checkpoint molecule that, when blocked or removed, appears to slow tumor 24 
growth in a mechanism distinct from PD-1 signaling in preclinical models(88, 89). As 25 
previously observed(90), we found that EMT scores were also significantly associated 26 
with subgroup classification via unsupervised analysis across multiple platforms 27 
including integrative platforms such as iCluster and PARADIGM, as well as individual 28 
platforms like mRNA, miRNA, lncRNA, methylation and RPPA (Fig. 7A).  29 
 30 
 31 

11. iCluster Supplementary Information 32 

 33 
11.1 METHODS 34 
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We utilized iCluster(91), which formulates the problem of subgroup discovery as 1 
a joint multivariate regression of multiple data types with reference to a set of common 2 
latent variables that represent the underlying tumor subtypes 1-4. 3 
 Five molecular assay platforms - SCNA, DNA methylation, mRNA expression, 4 
lncRNA and miRNA expression were provided as input. Data were pre-processed using 5 
the following procedures. CBS-segmented SCNA data was further reduced to a set of 6 
non-redundant regions as described(92). For methylation data, the median absolute 7 
deviation was employed to select the top 4000 most variable CpG sites after β-mixture 8 
quantile normalization(93). Methylation probes with >20% or more missing data and 9 
those corresponding to SNP and autosomal chromosomes were removed. For mRNA, 10 
lncRNA, and mature strand miRNA sequence data, poorly expressed genes were 11 
excluded based on median-normalized counts, and variance filtering led to a list of 12 
reduced features for clustering. mRNA, lncRNA and miRNA expression features were 13 
log2 transformed, normalized and scaled before using as an input to iCluster. 14 
 15 
11.2. VALIDATION COHORTS   16 
11.2.1 Bueno Cohort 17 

Normalized gene expression profiles for 211 MPM samples previously 18 
described(25) (Bueno cohort) were log-transformed and row-centered. For each sample, 19 
Pearson correlation was computed between the profile and the centroids of the four 20 
iClusters across the detected 2,606 of the 2,807 signature genes; the sample was 21 
assigned to the iCluster with the highest correlation. Kaplan-Meier plots were generated 22 
and multivariable Cox regression analysis was performed on the assigned tumor 23 
samples, where iCluster assignment, histology, and age were considered as covariates. 24 
We performed a similar analysis for the 141 epithelioid samples, employing 2,123 of the 25 
2,292 signature genes for this histological subtype. Kaplan-Meier survival curves were 26 
generated and Cox regression analysis was performed on the assigned epithelioid tumor 27 
samples, where iCluster assignment and age were considered as covariates. 28 
  29 

No significant predictive value of iCluster assignments was confirmed for the 30 
whole 211-case cohort (Supplementary Figure 6A and 6B), which could be attributed to 31 
the vastly different histological type distributions between the TCGA and the Bueno 32 
cohorts. However, when the analysis was restricted to the epithelioid cases, cases 33 
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assigned to epithelioid iCluster 1 had a significant survival advantage, even when 1 
adjusted for age (Fig. 4D, Supplementary Figure 6C) 2 
 3 
11.2.2 Lopez-Rios Cohort: 4 
 We log-transformed and row-centered the gene expression data (Affymetrix 5 
U133A arrays) from 52 previously published MPM cases(94) (Lopez-Rios) for 1,995 6 
genes from the 2,807 signature genes present on the Affymetrix chip. The cohort size 7 
was too small to allow histology-based stratification, so we did not perform an 8 
epithelioid-only analysis. Pearson correlation coefficients were computed between each 9 
sample’s profile and the centroids of the four iCluster groups. Each sample was 10 
assigned to the iCluster with the highest correlation (Supplementary Figures 6D and 6E). 11 
Log rank test was performed on the 49 samples with survival data, and demonstrated a 12 
significant survival difference between clusters (Supplementary Figure 6F). Multivariable 13 
Cox regression analysis was performed, with histology and age as covariates 14 
(Supplementary Figure 6G).  15 
 16 
 17 

12. PARADIGM supplementary Information  18 

 19 
12.1 METHODS 20 

We used median centered, log scaled mRNA expression and SCNA 21 
GISTIC2(21) data to calculate inferred pathway activity levels using PARADIGM(95). 22 
Integrative PARADIGM analysis of the 74 MPM cases clustered using 23 
ConsensusClusterPlus(34) identified 4 distinct clusters. To compare Cluster 4 (worst 24 
prognosis) to Cluster 1 (best prognosis), we ran PATHMARK(37) on the statistically 25 
significant differential activities obtained from SAM to extract connected components of 26 
the global PARADIGM regulatory network. Activities that fall outside 2 standard 27 
deviations outside of the empirical distribution of the statistically significant differentials 28 
are included the final result. A network connection is extracted if both vertices in that 29 
connection pass the filter. Networks are then visualized using Cytoscape(96) and 30 
CircleGraph(97). 31 
 32 
12.2 RESULTS  33 
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Cluster 4 patients have significantly worse survival and show upregulation in 1 
AURKA, E2F targets, G2M checkpoints, as well as PI3K and mTOR pathways. This 2 
cluster faithfully recapitulates platform-specific clustering. Cluster 1 patients have the 3 
best prognosis, and have upregulation in EGFR signaling, whilst kinase subnetworks are 4 
downregulated. There is an enrichment of epithelioid patients in this cluster, however, 5 
even upon correction, the group remains distinct. Patients are also more likely to have 6 
undergone pneumonectomy. Patients in clusters 2 and 3 have similar prognosis, but are 7 
genomically distinct. 8 
 9 
 10 

13. Regulome Explorer  11 
 12 
13.1. METHODS 13 
13.1.1 Integrated Analysis and Interactive Exploration 14 

We have integrated all of the data types produced by TCGA and described in this 15 
paper into a single “feature matrix” for MPM. From this comprehensive dataset, 16 
significant pairwise associations have been inferred and can be visually explored using 17 
Regulome Explorer, an interactive web application 18 
(http://explorer.cancerregulome.org). This application allows interactive exploration of 19 
significant associations between molecular features, between molecular features and 20 
derived numeric features, and between molecular and categorical features, such as 21 
clinical parameters or cluster assignments. In addition to associations inferred directly 22 
from the TCGA data, additional sources of information are integrated into the 23 
visualization (e.g., NCBI Gene, miRBase, UCSC Genome Browser, etc).  24 
 25 
13.1.2 Feature Matrix Construction and Pairwise Statistical Significance 26 

A feature matrix was constructed using all available clinical, sample, and 27 
molecular data for 74 unique patient/tumor samples. The molecular data includes all 28 
analytical platforms described here.  For mRNA and miRNA expression, quantification 29 
files were log2 transformed, and filtered to remove low-variability targets (bottom 25%). 30 
For methylation data, probes were filtered to remove the bottom 25%. For somatic 31 
mutations, several binary features indicating the presence or absence of a mutation in 32 
each sample were generated.  33 

http://explorer.cancerregulome.org/


 24 

Statistical association among data types was evaluated by pairwise comparisons 1 
within the feature matrix. P values for the associations between and among clinical and 2 
molecular data were computed using appropriate statistical tests for each pair. To 3 
account for multiple-testing bias, the p value was adjusted using the Bonferroni 4 
correction. 5 

 6 

 7 

  8 



 25 

14. VISTA Immunohistochemistry 1 

 2 
14.1. Methods 3 
Two epithelioid MPM cases contributed to the TCGA cohort by MSKCC (TCGA-SC-4 
A6LQ-01 and TCGA-SC-A6LM-01) were selected for VISTA immunohistochemical 5 
studies based on availability of additional FFPE tumor tissue. Blocks were sectioned, de-6 
paraffinized, and stained with a fully automated system (Benchmark ULTRA; Ventana 7 
Medical Systems, Tucson, AZ), using the rabbit monoclonal anti-VISTA antibody, clone 8 
D1L2G, 0.1 μg/mL (Cell Signaling Technology, Danvers, MA, USA). Additionally, VISTA 9 
expression was assessed in normal mesothelial lining from pleura and benign pleuritis 10 
with reactive mesothelial proliferation (derived from the Department of Pathology at 11 
MSKCC). Spleen and colon FFPE tissue was used as positive control for antibody 12 
specificity. 13 

 14 

 15 
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Supplementary Figures and Figure Legends  1 

 2 

Supplementary Figure S1: Pathology Review. A: Reclassification based on 3 

pathology review. B-G: Histologic patterns of MPM: Epithelioid with tubules of 4 

uniform tumor cells showing abundant eosinophilic cytoplasm (B); epithelioid 5 

consisting of solid sheets of epithelioid cells (C); biphasic with bundles of spindle-6 

shaped tumor cells surrounded by nests of epithelioid tumor cells (D); biphasic 7 

with malignant spindled tumor cells (left) and epithelioid cells (right) (E); 8 

sarcomatoid with cytologically malignant spindle cells showing hyperchromatic 9 

nuclei (F); sarcomatoid with malignant spindle cells infiltrating among fat cells (G). 10 

 11 

Supplementary Figure S2: Copy Number Analyses. A: Unsupervised 12 

hierarchical clustering of DNA copy number profiles of Mesotheliomas into six 13 

SCNA cluster groups. In the heatmap, SCNAs in tumors (x axis) are plotted by 14 

genomic location (y axis).  Red bars designate regions of amplification, while 15 

blue bars designate deleted regions.  B: The heatmap shows SCNAs in tumors 16 

grouped by either those with biallelic inactivation of BAP1 or those that have two 17 

active wild type BAP1 alleles. C: CDKN2A vs. MTPA mRNA expression.  Co-18 

deleted samples tend to exhibit lower levels of expression in both genes.     D: 19 

Number of inactivated BAP1 alleles in copy number clusters in A.  For a Χ2 test 20 

across all cluster groups, p = 0.028. E: Allele-specific copy number analysis of 21 

TCGA-MQ-A6BR whole-exome sequencing data. Top panel shows total copy 22 

log-ratio, middle panel shows allelic log-odds-ratio revealing allelic imbalances. 23 

Red lines are joint segmentation using the FACETS algorithm. Integer copy 24 

number estimates (total and minor) along with cellular fraction (cf-em) estimates 25 

are shown in the bottom panel. F: Allele-specific copy number analysis of TCGA-26 

SC-A6LP whole-exome sequencing data. G: Allele-specific copy number 27 

analysis of TCGA-UD-AAC1 whole-exome sequencing data. 28 

 29 

Supplementary Figure S3: Gene Expression Analyses. Distinct expression 30 

subtypes of MPM associated with histology, clinical, and genomic features.  A: 31 
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Unsupervised gene expression clustering defined four distinct mRNA-based 1 

subtypes of MPM.  A predictive gene list of 1,800 genes are displayed in the 2 

heatmap with selected genes/pathways that are expressed in each group listed.  3 

Annotation tracks are displayed for the four expression clusters (K1-K4) and 4 

histology classification. K3 is enriched in non-epithelioid histologies. B: Selected 5 

genomic features significantly associated with expression subtypes. BAP1 6 

alterations annotation track includes single nucleotide variants (SNV), small and 7 

large insertions and deletions (INDEL), and structural variants (SV), loss of 8 

heterozygosity (LOH) events, and copy number (CN) loss events (blue). CN, 9 

GISTIC scores – pink, gain; light blue, loss; dark blue, deep loss.  C: Kaplan-10 

Meier survival curves of probability of overall survival with overall significance 11 

testing by log rank test and cox proportional hazards analysis using the good 12 

outcome group K4 as the reference. D: Patient age of diagnosis by expression 13 

subtype. Median and mean ages per subtype displayed below plot. Asterisk 14 

denotes a pvalue of 0.0008 for a t-test comparing ages of K3 vs all other 15 

subtypes.  E: Normalized BAP1 expression levels across subtypes. BAP1 16 

alterations are indicated by a red box and wildtype BAP1 by black circles.  F and 17 

G: Using gene sets from two previously published datasets: Bueno et al. (F) and 18 

de Reynies et al. (G), we observe samples clustering similar to our classification. 19 

H: Gene expression significantly associated with BAP1 inactivation.  20 

 21 

Supplementary Figure S4: DNA Methylation. A: Heatmap showing beta values 22 

of 74 samples ordered by unsupervised clusters of DNA methylation data. 23 

Samples are presented in columns and the CpG loci are presented in rows. An 24 

annotation panel on the right of the heatmap indicates location of CpG locus 25 

relative to CpG island status and gene. Annotation bars at the top of the heatmap 26 

show genomic variables associated with the methylation clusters. Features 27 

marked with (*) are significantly associated with DNA methylation clusters 28 

(Fisher’s Exact test p<0.01). B: Box plots of the leukocyte fraction and tumor 29 

purity by DNA methylation clusters. C: Heatmap showing differentially methylated 30 

probes between BAP1 altered and WT samples. An annotation panel on the right 31 
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of the heatmap indicates location of CpG locus relative to CpG island status and 1 

gene. An annotation bar at the top corresponds to the number of BAP1 2 

alterations in a sample. 3 

 4 

Supplementary Figure S5: RPPA analysis and mRNA immune signatures. 5 

A: Consensus matrix (k=5) for clustering 52 MPMs, based on 1-Pearson 6 

correlation as distance metric and Wards’ linkage algorithm. 80% samples used 7 

in each of the 1000 iterations. B: Heatmap of consensus clusters from RPPA 8 

Data. The columns and rows represent the 52 samples and 219 cancer-9 

associated antibodies respectively. Five clusters identified with significant 10 

differential protein expression and pathway activity. The annotation bars shown 11 

above the heatmap were not used for clustering. C: Box plots of pathway scores 12 

for each of the five RPPA clusters. P-values based on the ANOVA test. 13 

Pathways differentially expressed between the clusters include Apoptosis, Cell 14 

cycle, EMT, Hormone receptor, RAS/MAPK, TSC/mTOR, Breast reactive and 15 

Core reactive pathways. D: Kaplan-Meier survival curves for the five RPPA 16 

sample clusters. P-values based on the G-rho family of Harrington and Fleming 17 

[13] tests to evaluate the difference between two or more survival curves. The 18 

proteins differentially expressed between good prognosis cluster C5 and the poor 19 

prognosis cluster C4 were PAI1, CYCLINB1, CAVEOLIN1, EPPK1 and EEF2K 20 

as shown in panel B. E: GSEA-based mRNA immune signatures across iCluster 21 

clusters.  22 

 23 

Supplementary Figure S6: iCluster validation analyses. A: Correlation of 24 

Bueno cohort (n=211, all histologies) to iCluster centroids. B: Kaplan-Meier plot 25 

of survival analysis by Bueno iClusters across all histologies. C: Multivariate Cox 26 

regression of OS by Bueno iClusters adjusted by histology and age. D: Silhouette 27 

plot of Lopez-Rios cohort (n=52) iClusters. E: Breakdown of histology in Lopez-28 

Rios iClusters. F: Kaplan-Meier plot of survival analysis by Lopez-Rios iClusters 29 

(n=49). G: Multivaraiate Cox regression of OS by Lopez-Rios iClusters adjusted 30 

by histology and age. 31 
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 1 

Supplementary Figure S7: Integrated mRNA and SCNA PARADIGM analysis. 2 

A: Top heatmap shows molecular subtypes derived through unsupervised 3 

analysis of PARADIGM results. Major pathway groups characterizing these 4 

subtypes are annotated to the right of the heatmap. Middle and bottom heatmaps 5 

show mRNA expression and SCNA within PARADIGM-derived subtypes. B: 6 

Survival analysis of the PARADIGM-derived molecular subtypes. Kaplan–Meier 7 

plot shows significant difference in survival of the best-surviving and the worst-8 

surviving clusters. C: Differential activity pathway for BAP1 wild-type vs. 9 

inactivated samples based on PARADIGM results. Red nodes indicate genes 10 

that are active in BAP1 wild-type MPM. Blue nodes indicate genes with low 11 

activity in the same samples. The size of the nodes is inversely proportional to 12 

the differential p-value (larger nodes indicate higher significance). D: Top 13 

differentially active pathways between samples with BAP1 inactivation vs. wild-14 

type. PARADIGM IPLs for the genes in each pathway are aggregated per-patient 15 

and ANOVA test is used to compute significance in distributions of aggregated 16 

IPLs between the two groups (BAP1 wild-type and inactivated) of samples.  17 

 18 

 19 
 20 
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Cox Regression with iCluster, Histology and Age (n=74) 
 Characteristic HR (95% CI) P 
iCluster  group (ref iCluster 1)   
    iCluster 4 5.71 (2.49-13.10)  
    iCluster 3 1.49 (0.63-3.52) 4.6E-04 
    iCluster 2 2.50 (1.14-5.51)  
Histology (ref Epithelioid)   
    Non-Epithelioid 2.15 (1.17-3.94) 0.02 
Age (continuous) 0.98 (0.95-1.02) 0.37 

  Cox Regression with Paradigm Clusters, Histology and Age (n=74)

 

 Characteristic HR (95% CI) P 
Paradigm  group (ref  cluster 1)   
    Paradigm Cluster 4 23.63 (7.57-73.80)  
    Paradigm Cluster 3 3.58 (1.48-8.68) 6.4E-07 
    Paradigm Cluster 2 2.76 (1.23-6.17)  
Histology (ref Epithelioid)   
    Non-Epithelioid 1.60 (0.78-03.26) 0.20 
Age (continuous) 0.99 (0.96-1.03) 0.70 
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