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Abstract

Killer cell immunoglobulin-like receptors (KIRs), expressed on natural killer cells and T cells, have considerable
biomedical relevance playing significant roles in immunity, pregnancy and transplantation. The KIR locus is one of
the most complex and polymorphic regions of the human genome. Extensive sequence homology and copy
number variation makes KiRs technically laborious and expensive to type. To aid the investigation of KIRs in human
disease we developed a high-throughput, multiplex real-time polymerase chain reaction method to determine
gene copy number for each KIR locus. We used reference DNA samples to validate the accuracy and a cohort of
1698 individuals to evaluate capability for precise copy number discrimination. The method provides improved
information and identifies KIR haplotype alterations that were not previously visible using other approaches.
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Background

Complex and multi-allelic copy number variation
(mCNV) is abundant in the human genome and is a po-
tential source of genetic diversity in relation to disease
[1]. Genes involved in immunity and defence seem to be
especially prone to mCNV [2], presumably driven by
selection pressure from pathogens. Human leukocyte anti-
gen (HLA) DRB, complement component 4 (C4) loci in
the MHC and leukocyte immunoglobulin-like receptor
(LILR) loci are recognised examples of multicopy gene
families with mCNYV linked to disease susceptibility [3-7].
Another genomic region of interest in this regard encom-
passes the killer cell immunoglobulin-like receptor (KIR)
genes [8, 9]. KIR were discovered nearly 20 years ago by
serological methods [10, 11]. Subsequently they have been
shown to have important physiological and biomedical
relevance in wide-ranging conditions including pregnancy,
infection, autoimmunity, cancer and transplantation [12].
KIR associations involve epistasis with their variable cog-
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nate HLA ligands. Complex interactions of unlinked loci
like these may account for some of the heritability void left
by genome-wide association studies (GWAS).

KIR genes, which are part of the leukocyte receptor
complex (LRC) in human chromosomal region 19q13.4,
have evolved rapidly in parallel with their HLA ligands
through varying types of selection. As such, KIR genes
exhibit high diversity in copy number and haplotypes.
Unlike normal homologous recombination, chromo-
somal crossovers in the KIR cluster may misalign be-
cause the genes are closely arranged head-to-tail and
they are homologous in sequence to one another. The
process, known as non-allelic homologous recombin-
ation (NAHR), generates novel expanded and contracted
haplotypes with duplication or deletion of whole genes
(between ~11 and 18 kb in size), multiple genes and for-
mation of novel fusion genes [3]. Gene dose effects at
the mRNA and protein level have been seen for KIR
genes, namely KIR2DL2/L3 and KIR3DS1. KIR expression
is stochastic and the number of NK cells expressing a
given KIR correlates linearly with the total number of cop-
ies of the gene carried by the individual [13]. Thus, the
overall responsiveness of the NK cell repertoire directly
relates to KIR haplotype content. This has implications for
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NK cell-mediated alloreactivity in hematopoietic stem cell
transplantation, where donors with a high proportion of
alloreactive NK cells have higher levels of cytolytic activity
against leukemic cells [14]. Furthermore, KIR copy
number variation (CNV) has been shown to correlate
with protection from certain viruses such as HCV
and HIV [15, 16].

The current KIR typing techniques that employ spe-
cific primers (PCR-SSP) [17-19] or oligonucleotides
(PCR-SSO) [20] have drawbacks when applied to large-
scale studies of genetically complex diseases; they are
time-consuming, expensive and labour-intensive. KIRs
are refractory to high throughput methods because of
extensive sequence homology, allelic and copy number
variation. For this reason, KIR studies have been limited
to date by their relatively small scale and they have been
ignored in GWAS to date. In addition, recent studies
indicate that structural variations in haplotypes have
been overlooked. The conventional methods, such as
PCR-SSP, PCR-SSO and MALDI-TOF [21] cannot detect
such variation as they lack the ability to quantify gene
number, instead providing only ‘presence/absence’ status
for a gene.

In this paper, we describe a high-throughput method to
determine copy number of each KIR locus, using quantita-
tive polymerase chain reaction (PCR) with dual-labelled
hydrolysis probes, which we have called qKAT for quanti-
tative KIR semi-automated typing. This method can help
simplify disease analysis by identifying unusual haplotypes
so that the major haplotypes can be analysed separately.
We extend the approach to LILR loci, demonstrating that
the underlying strategy of qKAT offers a model for analys-
ing and visualizing other highly variable mCNV regions.

In real-time PCR, the fluorescent threshold value (cycle
of quantification, Cg) correlates linearly with logarithmic
value of starting DNA copy number [22]. This method can
determine the quantity of target DNA sequence specifically
and accurately, therefore it has been used extensively for
gene quantification, especially in gene expression studies.
Compared with complementary DNA quantification in
gene expression studies, copy numbers of target gene de-
rived from both chromosomes is slightly different. The
relative DNA copy number measured against a reference
gene is always an integer ratio. In addition, it is a very small
change compared to gene expression (2x and 1.5x for 1-2
and 2-3 copy changes, respectively).

Multiplex quantitative PCR has the advantage of simul-
taneously amplifying several products in the same tube,
using spectrally distinct fluorophores to detect each amp-
lification. The method allows reduction of DNA require-
ments, reagent costs, human labour and time. Using
internal controls increases the reliability of the results.
The optimised multiplex assays considerably reduce the
cost and setup time by high throughput. Well-to-well
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variation is minimised in multiplex PCR since target assay
and reference assay are run in the same tube at the same
time, providing extra confidence in the results.

Methods

Multiplex quantitative PCR assay

For KIR assays, ten multiplex quantitative PCR reactions
were carried out in a triplex format that included three
probes targeting three different amplicons. The optimi-
sations of primer and probe concentrations are shown in
Additional file 1: Figures S1 and S2. The overall per-
formance of each reaction was tested using standard
curves (see Additional file 1: Figure S3) and the PCR ef-
ficiencies of each reaction are given in Additional file 1:
Table S1. Each multiplex reaction detects two KIR genes
and one endogenous reference gene (STAT6) that is lo-
cated on a different chromosome and always has two
copies in a diploid genome [23] (Fig. 1) as corroborated
using the Database of Genomic Variants (http://
dgv.tcag.ca/dgv/app/). Altogether, copy numbers of 20
markers were ascertained for 17 KIR genes and their im-
portant variants (2DL1-5, 2DS1-3, 2DS4 (separate as-
says for the gene, full-length variant [FL] and deletion
variant [del]), 2DS5, 3DL1-3, 3DS1, 2DPI and 3DPI).
For 3DLI and 3DL2, two reactions were used to target
different parts of the gene to identify known fusion
genes [24]. LILR gene copy number was determined
using duplex reactions including one LILR target and
the reference gene (Additional file 1: Table S2).

The reaction mix containing genomic DNA, primers,
probes, Taq polymerase and buffer was dispensed into
384-well plates. Five nanograms of each DNA sample
were plated into 384-well plates with four replicates.
Three control samples of known copy number were in-
cluded in each run. Multiplex PCR reactions were per-
formed on a Roche LightCycler 480 using absolute
quantification settings. Fluorescent signals were col-
lected at the end of each cycle for further analysis.

After PCR amplification, C, values were calculated
using either the Second Derivative Maximum Method or
the Fit Points Method. The copy number was deter-
mined by relative quantification analysis using the com-
parative C; method (also known as delta delta Cq
method, AAC,). This method compares the cycle of
quantification between the test sample and a calibrator
sample with known copy number. In cases where a copy
number calibrator sample was not available, the copy
number analysis could be performed using the most fre-
quent copy number expected in the samples.

Primer design

Based on PCR-SSP (PCR amplification with sequence-
specific primers), our method used primers with 3' ends
specifically matching a nucleotide which is unique to a
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Fig. 1 Schematic view of the KIR multiplex gPCR assay gKAT. Sequence specific primers are used for relative quantification of target KIR genes against a
reference gene of fixed copy number. Each multiplex gPCR assay detects the simultaneous amplification of two target KIR genes and one reference
gene. Two sets of primers target different exons of the two KIR genes and one pair of primers amplify the reference gene. Dual-labelled hydrolysis
probes that are specific to each amplicon are used to monitor the PCR amplification in real-time

given KIR/LILR gene. The gene-specific primers were de-
signed to detect all the alleles of the given gene (Additional
file 1: Table S3). In this assay, 21 primer pairs were used to
detect all 16 KIR genes, important KIR gene variants and
one reference gene. Primers were designed to produce
amplicons in the range of 78-210 bp in size. Compared
with the previous PCR-SSP and PCR-SSO methods, the
short amplicons allowed the PCR reactions to achieve
maximum efficiency. The Tm (melting temperature) of
each primer was adjusted to between 48 °C to 57 °C, by
adjusting the length of primers.

Initially, 37 primer pairs were designed for all 16 KIR
genes and some variants. There was more than one reac-
tion for most genes. Gel electrophoresis was used to check
each PCR reaction using a known positive DNA sample
and two negative DNA samples (for non-framework
genes) and a non-template control. Any reactions with
non-specific bands, weak amplification and strong primer-
dimer were excluded. Due to the limited choice of unique
nucleotides for KIR-specific priming, some primers were
designed with GC content of up to 70.6 %.

Probe design
Due to the high sequence similarity between KIR/LILR
genes, it is difficult to design specific probes. Dual-

labelled probes were designed to exons sequences that
are conserved between more than one gene (Additional
file 1: Table S4). The same probe could therefore be used
in different multiplex assays. Generic probes were feas-
ible because the specificity for each reaction is controlled
by the primers and never the same region for different
targets was amplified in the same multiplex assay. Using
generic probes between different reactions greatly re-
duced the cost since probes account for a large part of
reagent costs. The primer and probe sequences for
qKAT are given in Additional file 1 to allow judgment of
whether they are appropriate for defining the currently
known polymorphisms and variants discovered in the
future. Primer and probe combinations used in each
reaction are given in Additional file 1: Table S5.

The fluorophores used in the multiplex assays were
FAM, Dragonfly Orange and Cy5. The maximum emis-
sion wavelengths of the three dyes are: 518 nm, 576 nm
and 667 nm, respectively. These three dyes have distant
emission spectra, which minimise the fluorescence signal
from one dye bleeding into adjacent channels (signal
crosstalk). Non-fluorescent black-hole quenchers (BHQ)
were used because they have advantages over the other
quenchers such as TAMRA, since they absorb the exci-
tation energy from fluorophore and convert it into heat
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rather than re-emit this energy as light with a different
wavelength. This is useful for multiplex PCR reactions,
since there is no emitted light from the quencher to
interfere with the reporter fluorophores, resulting in less
background signals and hence have better signal/back-
ground ratios.

Determination DNA copy number using relative
quantification analysis

KIR and LILR copy number of genomic DNA sample
was determined using comparative Cy (AAC,) relative
quantification analysis [25-28]. The relationship be-
tween calculated copy number without efficiency correc-
tion and true copy number is illustrated in Additional
file 1: Figure S4. Calculated copy number without effi-
ciency correction and true copy number diverge signifi-
cantly as the AC, in reference assay increases. This
explains that apart from PCR efficiency, the AC in ref-
erence assay could affect the copy number calculation.
The ACq in the reference assay actually reflects the dif-
ference of DNA concentrations between sample and
calibrator. If the DNA concentration is well quantified
and controlled in a reasonable range, then the copy
number calculation will not be affected much even with-
out PCR efficiency correction. In addition, the parame-
ters from our assays are slightly better than the assumed
values. For example, the PCR efficiencies in the experi-
ments have a mean value of 0.9883 with standard devi-
ation of 0.0470. In this case, the ratio change caused by
different PCR efficiencies between different genes are
even smaller. Therefore, relative quantification using
AAC, method without efficiency correction could be
used to determine DNA copy number.

Copy number analysis

Quality control was performed after each PCR run. After
checking amplification plots and base lines, failed reac-
tions and outlier values (C, of reference assay is greater
than 32 or data point >4 standard deviations from the
mean ACg of the four replicates) were removed. Then
the C, values were exported for comparative Cq calcula-
tion using the equations presented above. Zero was
assigned to reactions with target assay’s C4 more than 35
and reference assay’s Cq less than 32. The calculation
could be performed using either CopyCaller software
from Applied Biosystems (Thermo Fisher Scientific) or
Excel. CopyCaller provides two additional quality met-
rics: confidence metric and absolute z-score metric.
Confidence metric estimates the confidence that the
assigned copy number is the true copy number. Abso-
lute z-score metric estimates how many standard devia-
tions for AC, value of one sample varies from the mean
AC, value assigned with the same copy number. The
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calculated copy numbers were rounded up to an integer
(known as predicted copy number) for further analysis.

Measurement of copy number discrimination

The standard deviation was used to quantify the amount
of variation or dispersion in each cluster with the same
assigned copy number for each test across different sam-
ples (n=1698). As the sample size increases, the AAC,
value tends to form approximately normal distribution.
As for normal distribution, approximately 95 % of the
values are within 2 standard deviations from the mean
and 99.6 % within 3 standard deviations. Assuming all
PCR reactions have 100 % efficiency, the AAC, value be-
tween one copy and two copies samples will be just 1. To
be able to distinguish the difference in more than 99.6 %
of the cases, the standard deviations should be less than
0.167 (allowing more than 6 standard deviations within 1).
To distinguish the difference in more than 95 % of the
cases, the standard deviations should be less than 0.25
(allowing more than 4 standard deviations within 1)
(Additional file 1: Table S6). It is progressively more
difficult to distinguish the difference between higher
copy numbers since the AAC, value narrows.

Assay validation

Currently there is no gold standard method available for
KIR typing, especially with copy number information.
Data generated from family-based segregation analysis
and allele typing could provide information closer to the
actual copy number. To validate our method, a reference
panel was used including the following DNA samples
which had previously been typed with standard methods
(PCR-SSP/SSO):

Three extended Centre d’Etude du Polymorphisme
Humain (CEPH) families’ DNA (Coriell Cell Repositor-
ies, NJ, USA) from Utah were included in this study,
CEPH/UTAH Pedigree 1332, 1347 and 1416. There are
15 members in each family. Pedigree data of these fam-
ilies are available from dbLRC [29]. In addition,
NA10832, NA10861 and NA11994 from other CEPH/
UTAH families were also included because they have
unusual copy numbers of KIR genes.

UCLA KIR Exchange panel DNA samples were from
UCLA Immunogenetics Center (CA, US, http://
www.hla.ucla.edu/cellDna.htm). In this study, UCLA69
to UCLA84 were selected. This cohort has consensus
KIR gene presence and absence data generated by PCR-
SSP or PCR-SSO methods from several laboratories
around the world. Copy number information is not
available for these samples.

Two KIR region fully sequenced cell lines, PGF and
COX [30], as well as one sequenced CEPH cell line,
NA10832 [3], were also included in this study.
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A total of 1698 individuals from 339 families from the
Human Biological Data Interchange (HBDI) were used
to evaluate the precision of a total of 20 KIR quantitative
PCR assays. The HBDI panel comprises Caucasian
(European-ancestry) families with type 1 diabetes from
the United States [31]. At present, qKAT is validated for
samples of European-origin only.

KIR haplotype inference in unrelated individuals

To help analyse samples, we developed a new tool, KIR
Haplotype Identifier. KIR copy number data from qKAT
is used as input and through matrix subtraction the pro-
gram outputs the possible combinations of haplotypes
for each sample. The tool is useful as a quick check for
identification of novel or unconventional haplotypes in a
cohort. The software processes KIR copy number sample
files submitted by the end user. For each sample, a string
of values is created through the concatenation of copy
numbers provided (referred to as markersig). A second
string is created comprising of a series of regular expres-
sions for each marker (referred to as regex). Each regular
expression denotes all possible haplotype values. For ex-
ample, if sample 1 has markers ‘a;’b’ and ‘¢’ each with
copy numbers of 2, 1 and 1, respectively, then the mar-
kersig string would be 211 and the regex string would
be (2|1]0)(1]0)(1|0), i.e. marker ‘@’ haplotype could be 2
or 1 or 0, marker ‘b’ haplotype could be 1 or 0 and so
on. Each regex string is checked against KIR haplotype
strings stored in a MySQL database. If a match is found
then the associated data (e.g. haplotype, count, fre-
quency, signature, cen motif, tel motif) is retrieved. The
haplotype pair is calculated by subtracting a matrix of
the matched string from a matrix of the markersig.

Results
Assay validation
We tested 16 UCLA KIR exchange samples with KIR
presence/absence data and three CEPH/UTAH families
previously studied for KIR haplotypes. KIR haplotypes
were determined by segregation analysis in families (see
Additional file 1). For each pedigree, all non-
recombinant haplotypes were identified by the Merlin
program [32]. The results from KIR copy number assays
were compared to the KIR data generated with previous
methods [3, 24, 28]. For CEPH family samples, copy
numbers were previously determined by segregation
analysis of presence and absence data. Some of the du-
plicated genes were determined by allele typing [28] and
fusion genes were determined by inter-gene PCR [3].
Apart from two exceptions described below, our results
showed near complete concordance with previous data.
In pedigree 1416, we confirmed the presence of the
extended haplotype carrying duplication of KIR3DPI,
KIR2DL4 and KIR3DL1/S1 genes (Fig. 2). Pedigree 1416
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samples NA10834, NA12241, NA12243, NA12244,
NA12245, NA12246 and NA12251 showed one less
copy in 3DLI exon 4 than in exon 9. The previous
amplicon region of exon 4 was amplified and se-
quenced using another pair of primers (Forward 5'-
CGCTGTGGTGCCTCGA-3 and Reverse 5ACCAC-
GATGTCCAGGGGA-3’). Sequencing results revealed a
rare allele 3DL1%056, which contains a SNP in the probe
region that disrupts probe binding. The allele has only
been observed in this family [33]. As factored in the ori-
ginal design, the second test for KIR3DL1 does not miss
this rare allele and, therefore, the allele is identified by dis-
cordant results between the two tests for KIR3DLI.

In pedigree 1347, sample NA11882 showed multiple
copies for several genes. However only one offspring is
available from this person and it seems that the haplo-
type carrying duplicated genes has not been transmitted
to the next generation. Therefore, it was not visible by
previous segregation analysis.

For UCLA KIR Exchange panel DNA samples, only
presence and absence information was compared since
the original data did not include copy number informa-
tion. There was 100 % concordance between the two
methods for KIR presence and absence data. However,
additional information was given by copy number data.
For example, UCLA76 and UCLA77 have three copies
for 3DP1, 2DL4 and 3DL1/S1 loci. Potentially these two
samples carry an extended haplotype, described previously
[28] (Fig. 3). UCLA80 and UCLAS82 have a deletion from
3DL1 to 3DL2, which is similar to a haplotype carrying
the fusion gene 3DLI1/2v [24] (Fig. 3). For NA10861,
NA11994 and the sequenced cell line PGEF, COX and
NA10832, the copy numbers calculated from our assay
were the same as predicted from previous analysis [3, 30].

CNV is seen for LILRA3 and LILRA6 loci but not for
other LILR genes [34]. Copy number of LILRA6 had
previously been determined for the CEPH family sam-
ples using Tagman CNV assays [35]. Our results
showed complete concordance with this previous data
(Additional file 1: Table S7).

Measurement of copy number clustering

Representative examples of clustering results derived for
all the KIR are given in Fig. 4. The standard deviation in
each cluster with the same assigned copy number was
used to evaluate ability of clear copy number discrimination
in the 20 KIR quantitative PCR assays. A total of 1698
DNA samples were used in this analysis (Additional file 1:
Table S8). It was possible to confidently distinguish between
3 and 4 copies or even up to 5 copies with the data gener-
ated from KIR assays. Moreover, most of the data sets dis-
played a tighter distribution than a Gaussian distribution
(D’Agostino—Pearson normality test). In this situation, the
standard deviation usually overestimates the data variability.
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Fig. 2 KIR haplotype segregation analysis in CEPH/UTAH pedigree 1416. a, b, ¢, d, w, x, y and z are the haplotypes deduced by segregation
analysis. The gene content of each haplotype is shown. Haplotype c carries the fusion gene KIR2DL5/3DP1 and duplication of KIR3DP1, KIR2DL4
and KIR3DL1/ST genes [28]
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Fig. 4 Calculated copy number plotted against predicted copy
number. Each cluster represents samples assigned with the same
copy number. The line and error bar represent mean value and
standard deviation of each cluster. The KIR gene copy numbers can be
determined empirically or, as in this example, by using algorithms
incorporated into the CopyCaller software

on the same haplotype with the second copy of KIR3DS1
on the other haplotype. Approaches for inferring KIR
haplotype from copy number are detailed in Supplemen-
tary Material (Additional file 1: Tables S9-S11). To fa-
cilitate analysis of samples for KIR, an online tool was
developed using Perl and MySQL called ‘KIR Haplotype
Identifier’  (http://www.bioinformatics.cimr.cam.ac.uk/
haplotypes/) (Additional file 1: Figure S5). This is a tool
for imputing haplotype pairs using observed copy num-
ber for each KIR loci to help resolve KIR haplotypes
from unphased genotypes of unrelated individuals. The
default haplotype library used by this program is based
on European-origin KIR gene data but analysis can be
carried out using your own KIR haplotype frequency
data. This is important when analysing a different popu-
lation, otherwise the software may not give a proper rep-
resentation of the samples. The tool outputs the possible
combinations of haplotypes for each sample based on
the gene content of all haplotypes supplied in the haplo-
type file. Three output files are generated. The first file
(Haplotype Results) lists all possible haplotype pairs for
each sample, each haplotypes frequency (from the haplo-
type file) and the predicted combined frequency of each
haplotype pair (Additional file 1: Figure S5). The second
file is in the same format as Haplotype Results; however,
it lists only haplotypes with the highest combined fre-
quency (Haplotype 1 Frequency x Haplotype 2 Frequency)
for each sample. The third file (Log file) contains a list of
samples where haplotype pairs could not be assigned. In
these cases, possible single haplotypes are listed per sam-
ple. These results can be visualised by a ‘KIR Haplotype
Resolution Drawing Tool’ developed using R (Additional
file 1: Figure S6). The script is available upon request.

Discussion

In this paper, we describe a KIR typing method based on
real-time PCR. This method is able to detect the total
number of copies of each KIR locus. Clear discrimin-
ation between 0, 1, 2, 3 or even 4 copies could be ob-
tained using this method. We extended the approach to
LILR loci, demonstrating that the JKAT approach can be
used to analyse other mCNV loci.

This method is high-throughput and cost-effective.
Using a Roche LightCycler 480 real-time PCR instru-
ment with a 384-well Thermal Block Cycler we could
complete our PCR assay in 65 min. A Twister II Plate
Handler was used as an automation robotics system
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(Additional file 1: Figure S7). A MéCour Thermal Plate
Stacker was used to keep the stacked plates constantly at
4 °C. With automation, around 22 plates comprising
8448 reactions can be finished within 24 h. Since our full
KIR typing assay for each sample requires 40 reactions
in total (including quadruplicates), this system can pro-
duce full KIR typing for around 210 samples every day.

Copy number information provided by quantitative
PCR may be essential for accurate KIR determination.
Accurate genotype data are required for population gen-
etic studies and gene dosage effects [36]. Unlike standard
genotypes, some KIR genes (e.g. KIR2DLS5, KIR2DS3 and
KIR2DS5) can be missing and actual genotype cannot be
resolved without copy number information (e.g. —A and
AA). Furthermore, recently discovered structural varia-
tions make typing even more difficult [3, 24, 28]. For
truncated haplotypes carrying a multi-locus deletion,
conventional methods can only detect them in a homo-
zygote. For extended haplotypes carrying duplicated loci,
typing at the allelic level may be helpful when the mul-
tiple alleles are different to each other. Specially de-
signed inter-gene PCRs are useful approaches [3, 24, 37]
but from our data it seems there may be many more
truncated and extended haplotypes [38]. Nevertheless,
none of the approaches could provide precise genotype
without family data. Recently, pyrosequencing has been
used for KIR typing and this can also provide copy num-
ber information although there are throughput and cost
limitations [24, 39].

Accuracy is extremely important for quantification.
We have shown that it is possible for real-time PCR to
accurately determine the copy number from genomic
DNA. Reference DNA samples were used to validate the
accuracy and a large panel of families (1698 samples) to
evaluate the precision. Since most CNVs follow Mendelian
inheritance, family information can be used to infer copy
number in each homologous chromosome after the total
copy numbers are obtained from quantitative PCR. This
method has been shown to enhance the accuracy of CNV
detection [40]. For example, in CEPH family 1347, copy
number information assisted in the deduction of gene
content for all haplotypes when family data were insuf-
ficient to resolve haplotypes for all members with KIR
presence/absence data. Our method could be further
improved by using probabilistic models to increase con-
fidence of chromosome-specific copy number estimates
using family information [41]. This approach can be
used for the future development of linkage and associ-
ation tests that require chromosome-specific copy
number information. However, like any other PCR-
based method, highly polymorphic sequences always
pose challenges for designing primers and probes. As
we found with the 3DLI1%056 allele in family
CEPH1416, there is always the possibility that some
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rare alleles may be missed due to polymorphism. The
primer and probes were designed to avoid known poly-
morphism in their annealing sites (Additional file 1:
Tables S3 and S5) but as more alleles are described,
care should be taken to continually review the assays
and redesign the primers/probes as required. If an assay
is disrupted by a rare SNP (true allele dropout) this will
be identified by the loss of linkage with an adjacent
gene that is known to be in high linkage disequilibrium;
all KIR loci have another KIR locus in tight linkage or
have an expected copy number, e.g. framework genes
are usually always two copies. One can, therefore, check
the data against these predefined ‘standard KIR haplo-
type rules’ (Additional file 1: Table S13) to identify un-
expected results and these samples can be further
investigated. Alternatively, inconsistencies can be found
using the KIR Haplotype Identifier online tool through
the appearance of an unusual haplotype in the results.
In rare instances when confirmation is required, a sec-
ond set of assays for each gene can be used for verifica-
tion (Additional file 1: Table S14).

There are opportunities for further development of the
copy number assay. For example, triplex real-time PCR
was used in this assay, but it may be possible to achieve
up to heptaplex real-time PCR [42] to improve the
throughput. Inclusion of an additional reference gene or
multicopy reference could provide superior normalisa-
tion for DNA input and avoid potential effects of local
genomic changes to the reference gene. Supporting our
current choice of reference gene, in our screening with
qKAT we have not yet identified a sample exhibiting al-
tered KIR copy number across all KIR loci, including
framework genes, indicative of a genomic alteration to
the reference gene. Currently, there are other methods
to discriminate gene copy number, e.g. DNA microarray,
multiplex ligation-dependent probe amplification (MPLA),
branched DNA testing, paralogue ratio test (PRT), digital
PCR [43] and next generation sequencing (NGS). In
addition, KIR haplotyping can be achieved through dye-
terminator sequencing of KIR gene amplicons [44]. Com-
paring current throughput, cost and complexity of assay
setup, quantitative PCR has advantages over the others for
KIR copy number analysis. Highly repetitive genomic in-
tervals with long stretches of identical sequence, as in the
KIR locus, have been less amenable to NGS. The present
short read lengths obtained by NGS, or the current in-
accuracy of long-read length single molecule sequencing,
makes sequence assembly and phasing (haplotype-reso-
lution) problematic for characterisation of mCNYV loci, es-
pecially when more than two copies of a gene are present.
As NGS methods improve and become cheaper, we antici-
pate that this approach will be useful, particularly at in-
creased scale and for precise typing of KIR alleles at the
nucleotide level. The two approaches will complement
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each other and be useful for cross-validation [45]. gKAT
offers a simple solution for, as example, initial assessment
KIR disease association at the gene-level or haplotype-
level before investing more time in complex analysis at the
allele-level. Once an association has been established, al-
lele resolution typing could be informative if a sufficient
number of samples are available for statistically powered
analysis. gKAT is simple, one-step and flexible, in that a
single gene, or combinations of genes, can be typed alone
at minimal cost or as required (e.g. KIR A/B haplotype-
defining genes). To date, 21 published studies (comprising
>20,000 samples in total) including investigations of KIR
disease association, function, expression and imputation
have utilised the method [13, 31, 34, 38, 43, 45-60]. A KIR
typing service using qKAT has also been established at the
Addenbrooke’s Hospital Histocompatibility and Immuno-
genetics (Tissue Typing) laboratory in Cambridge (UK).

Conclusion

This simple, high-throughput and cost-effective direct
KIR typing method can be used for disease association
studies. In these studies, large numbers of cases and
controls are usually needed for KIR-HLA interaction
analysis. Therefore, this method allows analysis of large-
scale studies that were previously labour-intensive, time-
consuming and cost-prohibitive. The underlying strategy
of qKAT offers a model for analysing any other highly
diverse genomic regions of interest.
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