Adapting deep neural networks as
models of human visual perception

Patrick S. McClure

MRC Cognition and Brain Sciences Unit
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Trinity College July 2018

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 60,000 words including appendices, bibliography, footnotes,

tables and equations.

Patrick S. McClure
July 2018

Acknowledgements

I would like to thank Dr. Nikolaus Kriegeskorte for giving me the opportunity to pursue a
Ph.D. at the University of Cambridge. His encouragement and insightful comments have
been instrumental in my growth as a researcher. I would also like to thank all of the Visual
Objects lab members. Specifically, I want to thank Johannes Mehrer, Courtney Spoerer,
and Tim Kietzmann for their invaluable assistance throughout my time in Cambridge. I
would also like to thank Sergii Strelchuk and Francisco Pereira for their extremely helpful
comments regarding this thesis.

My deepest thanks goes to my family, especially my parents. Their love and support has
been instrumental not just in my completion of a Ph.D., but also in every aspect of my life. |
also want to thank my brother for his comments on my research and papers and my sister for
her encouragement.

Too many people remain for me to acknowledge them all. However, I want to thank
everyone who has given their time and energy to help me throughout my life. They have all

contributed to allowing me to complete this achievement.

Abstract

Deep neural networks (DNNs) have recently been used to solve complex perceptual and
decision tasks. In particular, convolutional neural networks (CNN) have been extremely
successful for visual perception. In addition to performing well on the trained object
recognition task, these CNNs also model brain data throughout the visual hierarchy better
than previous models. However, these DNNs are still far from completely explaining visual
perception in the human brain. In this thesis, we investigated two methods with the goal of
improving DNNs’ capabilities to model human visual perception: (1) deep representational
distance learning (RDL), a method for driving representational spaces in deep nets into
alignment with other (e.g. brain) representational spaces and (2) variational DNNs that
use sampling to perform approximate Bayesian inference. In the first investigation, RDL
successfully transferred information from a teacher model to a student DNN. This was
achieved by driving the student DNN'’s representational distance matrix (RDM), which
characterises the representational geometry, into alignment with that of the teacher. This
led to a significant increase in test accuracy on machine learning benchmarks. In the future,
we plan to use this method to simultaneously train DNNs to perform complex tasks and to
predict neural data. In the second investigation, we showed that sampling during learning and
inference using simple Bernoulli- and Gaussian-based noise improved a CNN’s representation
of its own uncertainty for object recognition. We also found that sampling during learning
and inference with Gaussian noise improved how well CNNs predict human behavioural data
for image classification. While these methods alone do not fully explain human vision, they

allow for training CNNSs that better model several features of human visual perception.

Table of contents

List of figures

List of tables

1

2

3

Deep neural networks in computational neuroscience
1.1 The brain is a deep neural network
1.2 Brain-inspired neural network models are promising for artificial intelligence
and computational neuroscience
1.3 Deep neural network models can be tested with brain and behavioural data .
1.4 Drawing insights from complex models
1.5 What neurobiological details matter to brain computation?
1.6 Whatisnext? e

Adapting neural networks with deep representational distance learning

2.1 Introduction L

22 Methods oL
2.2.1 Representational Distance Matrices
2.2.2 Representational Distance Learning

2.3 Experiments e e e
23.1 MNIST e
232 CIFAR-100o e

24 Discussion e e e

Adapting deep neural networks by using stochasticity to robustly represent un-

certainty

3.1 Introduction

32 Methods e
3.2.1 Bayesian Deep Neural Networks

3.2.2 Variational Distributions

Table of contents

3.3

34

Experiments L 42
3.3.1 LogisticRegression. 42
3.3.2 Convolutional Neural Networks 46
Discussion 49

4 Adapting Bayesian deep neural networks to model human visual perception 51

4.1
4.2

4.3

Introduction L 52
Methods 53
4.2.1 Approximating Bayesian neural networks using Monte Carlo Gaus-
siandropout. 53
4.2.2 Relationship between Monte Carlo Gaussian dropout and deep latent
Gaussianmodels oL 53
4.2.3 Architecture and datasets 54
Results. o . e 56
4.3.1 Sampling improves accuracy for large-scale object recognition . . . 56

4.3.2 Sampling improves the representation of uncertainty for large-scale
objectrecognition. 58

4.3.3 Sampling improves the prediction of human confidence for image

classification Lo 58

4.4 DISCUSSION e 59

S Conclusion 61
References 63
Appendix A 77
A.1 L2 regularisation and the KLD between Gaussians 7
A.2 Gaussian "reparameterization trick"o 78
A.3 MC Gaussian Dropconnect and Dropout 78
A.3.1 MC spike-and-slab Dropout 79

A.3.2 MC spike-and-slab Dropout 81

A.4 Additional Section3.3.2Resultso 83

List of figures

1.1

1.2

1.3

2.1

2.2

Testing the internal representations of DNNs against neural data. (A)
An example of neuron-level encoding with a convolutional neural network
where the CNN-based neural response prediction (red) closely matches the
recorded biological neural response (black) (adapted from (Yamins and
DiCarlo, 2016)). (B) The representational geometries of a trained CNN’s
representations (center) and human (left) and monkey (right) brain activa-
tion patterns as defined by the distance matrices between the representa-
tion/activation patterns for different stimuli (adapted from Khaligh-Razavi
and Kriegeskorte (2014)).
Convolutional neural network structure. (A) An example feed forward
convolutional neural network (CNN) with 3 convolutional layers followed by
a fully-connected layer. Bottom-up filters for selected neurons are illustrated
with blue boxes. (B) The bottom-up (blue), lateral (green), and top-down
(red) filters for two example neurons in different layers of a recurrent convo-
lutional neural network (RCNN).
Visualising the preferred features of internal artificial neurons. Activa-
tions in a random subset of feature maps across layers for strongly driving
ImageNet images projected down to pixel space (adapted from Zeiler and
Fergus (2014)). e

Example CNN-based representational distance matrices (RDMs). The
RDMs of the output layer of CNNs for ten random images of each class from
MNIST (left) and CIFAR-10 (right) made using the RSA toolbox (Nili et al.,
2014). . . e
Train and test errors of the MNIST trained CNNs throughout training
as the tested convolutional neural.

24

xii

List of figures

2.3

2.4

2.5

2.6

3.1

3.2

Representational distance matrices (RDMs) for different layers of the
MNIST trained CNNs. RDMs using the Euclidean distance for the first
and second convolutional layers as well as the fully connected (FC) and
softmax layers of the CNN tested methods, the raw pixel data, and the target
labels for 10 random class exemplars from MNIST. Note that the target RDM
was generated by computing the RDM of the one-hot vectors used as labels
during training.
RDL pulls internal representations towards the representations of the
teacher for MNIST. 2-D multi-dimensional scaling (MDS) visualisation
of the distances between the representational distance matrices (RDMs) for
selected layers of the MNIST trained networks. RDMs were generated for
each model using 20 bootstrapped samples of 100 images from the test set.
For each sampled image set, the correlation distance between the RDMs of
the different networks were calculated. These values were then averaged to
generate the MDS plot. L L L
Train and test errors of the CIFAR-100 trained NiNs throughout train-
ing as the tested convolutional neural.
RDL pulls internal representations towards the representations of the
teacher for CIFAR 100. 2-D multi-dimensional scaling (MDS) visualisation
of the distances between the representational distance matrices (RDMs) for
selected layers of the CIFAR-100 trained networks. RDMs were generated
for each model using 20 bootstrapped samples of 100 images from the test
set. For each sampled image set, the normalised Euclidean distance between
the RDMs of the different networks were calculated. These values were then

averaged to generate the MDS plot.

Sampling either weights or units from different variational distribu-
tions can be constructed as multiplicative noise (of various statistical
structure) imposed on the weight matrix.
Independent weight (i.e. dropconnect-based) sampling during training
and testing makes models much more uncertain further away from the
training data. The probabalistic logistic regression decision boundaries
of a linear network for: (top row) the MAP network and the dropconnect
and dropout methods that only sample during training and (bottom row) the
stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011)
network and the Monte Carlo (MC) dropconnect and dropout methods that
sample during training and testing. L. L.

31

31

List of figures

xiii

3.3

3.4

3.5

3.6

Sampling during training and testing prevents overfitting on MNIST.
The MNIST (a) training error, (b) training loss, (c) test error, and (d) test
loss for for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC),
Bernoulli dropout (BDO), Gaussian dropout (GDO), and spike-and-slab
dropout (SSD) with and without MC sampling using 10 samples.
Sampling during training and testing prevents overfitting on CIFAR-10.
The CIFAR-10 (A) training error, (B) training loss, (C) test error, and (D)
test loss for for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC),
Bernoulli dropout (BDO), Gaussian dropout (GDO), and spike-and-slab
dropout (SSD) with and without MC sampling using 10 samples.
Sampling during training and testing improves CNN calibration on
MNIST in the presecence of input noise. The MNIST (A) classification
error for additive Gaussian noise using standard deviations St.D of O, 1, 2,
3,4, and 5, (B) mean squared error (MSE) between the x = y line and the
calibration plot (i.e. the frequency of the true label vs predicted probability
of that label) for varying Gaussian image noise StD., and (C) calibration
MSE versus the classification error for predicitons across all noise StD.
for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli
dropout (BDO), Gaussian dropout (GDO), and spike-and-slab dropout (SSD)
with and without MC sampling using 10 samples.
Sampling during training and testing improves CNN calibration on
CIFAR-10 in the presecence of input noise. The CIFAR-10 (A) classi-
fication error for additive Gaussian noise using standard deviations St.D of
0, 0.25, 0.5, 0.75, and 1, (B) mean squared error (MSE) between the x =y
line and the calibration plot (i.e. the frequency of the true label vs predicted
probability of that label) for varying Gaussian image noise StD., and (C)
calibration MSE versus the classification error for predicitons across all
noise StD. for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC),
Bernoulli dropout (BDO), Gaussian dropout (GDO), and spike-and-slab
dropout (SSD) with and without MC sampling using 10 samples.

47

xiv

List of figures

3.7

3.8

4.1

4.2

Sampling during training and testing improves CNN calibration curves.
The x = y line (Ideal) and the calibration plot (i.e. the frequency of the true
label vs predicted probability of that label) for varying Gaussian image noise
StD. for the (a) MNIST or (b) CIFAR-10 trained Bernoulli dropconnect
(BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO), Gaussian
dropout (GDO), and spike-and-slab dropout (SSD) networks with and with-
out MC sampling using 10 samples.
Sampling during training and testing (1) improves the robustness of
CNNs to dropout hyperparmeter choice and (2) allows for increased
dropout regularisation. The classification error for the CIFAR-10 test set
using different p hyperparameter values. For spike-and-slab dropout, py,
was varied, while py. wasfixed.

Sampling during training and testing improves CNN calibration for
large-scale object recognition. The CNN calibration curves for (A) the
ImageNet trained CNN on the ImageNet validation set and (B) the Eco-set
trained CNNs on the Eco-settestset.
Sampling during training and testing improves the correlation between
CNN-based predicted probabilities and human confidence scores. The
mean and standard errors for the (A) accuracies and (B) correlations with
human confidence scores for the logistic regression models trained at each
CNN. * denotes the "MC Training and Testing" models have significantly
higher (p-value<0.05,uncorr.) correlations with human confidence scores
than both the "MAP" and "MC Training" models per a paired t-test across

the five image sets.

List of figures

XV

Al

A2

Sampling at test time allows for higher variance sampling to be used
during training without inducing network failure. The CIFAR-10 (A)
classification error for additive Gaussian noise using standard deviations
St.D of 0, 0.25, 0.5, 0.75, and 1, (B) mean squared error (MSE) between
the x = y line and the calibration plot (i.e. the frequency of the true label
vs predicted probability of that label) for varying Gaussian image noise
StD., and (C) calibration MSE versus the classification error for predicitons
across all noise StD. for Bernoulli dropconnect (BDC), Gaussian dropconnect
(GDC), Bernoulli dropout (BDO), Gaussian dropout (GDO), and spike-and-
slab dropout (SSD) with and without MC sampling using 10 samples. For all
dropconnect and dropout methods, p = 0.5. For spike-and-slab, pg, = 0.5
and pg. =0.1. L
Sampling at test time allows for higher variance sampling to be used
during training without causing underfitting and underconfidence. The
x =y line (Ideal) and the calibration plot (i.e. the frequency of the true
label vs predicted probability of that label) for varying Gaussian image
noise StD. for the CIFAR-10 trained Bernoulli dropconnect (BDC), Gaussian
dropconnect (GDC), Bernoulli dropout (BDO), Gaussian dropout (GDO),
and spike-and-slab dropout (SSD) networks with and without MC sampling
using 10 samples. For all dropconnect and dropout methods, p = 0.5. For
spike-and-slab, pg, =0.5and pge =0.1.

83

84

List of tables

2.1
2.2

23

24

2.5

3.1

3.2
3.3

4.1

4.2

The convolutional neural network (CNN) architecture used for MNIST.

Test errors for MNIST trained convolutional neural networks (CNNs) and
the CIFAR-100 trained "Network in Network" (NiN) models. (Note: The
performance of the teacher for the CIFAR-100 classification is not shown,
since it was trained on CIFAR-10 and, therefore, predicted across 10 not 100
classes, making it unable to perform the CIFAR-100 task.)
The McNemar exact test p-values for the tested CNNs trained on MNIST.
Arrows indicate a significant difference (p < 0.05,uncorr.) and point to the
bettermodel.
The "Network in Network" (NiN) architecture with batch-normalisation (BN)
(Ioffe and Szegedy, 2015) used for CIFAR-100.
The McNemar exact test p-values for the tested "Network in Network" (NiN)
models trained on CIFAR-100. Arrows indicate a significant difference
(p < 0.05,uncorr.) and point to the better model.

MNIST and CIFAR-10 mean and standard deviation of test errors for the
trained convolutional neural networks (CNNs) with and without Monte-Carlo
(MC) across 5 runs, each MC run using 10 samples.
The convolutional neural network (CNN) architecture used for MNIST.

The convolutional neural network (CNN) architecture used for CIFAR-10. .

The convolutional neural network (CNN) architecture used for ImageNet
and Ecoset.
The accuracies for the ImageNet trained CNN on the ImageNet validation
set and the Eco-set trained CNNs on the Eco-set test set. For MC sampling,
the mean and standard deviation of the accuracies across 5 MC runs, each

computed with I0 MC samples.

26

32

Chapter 1

Deep neural networks in computational

neuroscience

This chapter is based on a manuscript by Kietzmann, McClure, and Kriegeskorte (2017b).
Sections 1.1-1.5 of the paper were jointly written by all three authors. Section 1.6 was solely
authored by Patrick McClure.

Summary

One of the goals of computational neuroscience is to find mechanistic explanations of how
the nervous system processes information to support cognitive function and behaviour. At
the heart of the field are its models, i.e. mathematical and computational descriptions of the
system being studied. These models typically map sensory stimuli to neural responses and/or
neural to behavioural responses and range from simple to complex. Recently, deep neural
networks (DNN5s) have come to dominate several domains of artificial intelligence (Al). As
the term “neural network™ suggests, these models are inspired by biological brains. However,
current DNN models abstract away many details of biological neural networks. These
abstractions contribute to their computational efficiency, enabling them to perform complex
feats of intelligence, ranging from perceptual tasks (e.g. object recognition) to cognitive
tasks, and on to motor control tasks. In addition to modelling complex intelligent behaviours,
the learned representations of DNNs have been shown to predict neural responses to novel
sensory stimuli that cannot be predicted with any other currently available type of model.
DNNSs can have millions of parameters (connection strengths), which are required to capture
the domain knowledge needed for task performance. These parameters are often set by task

training using stochastic gradient descent. The advances with neural nets in engineering

2 Deep neural networks in computational neuroscience

provide the technological basis for building task-performing models of varying degrees of

biological realism that promise substantial insights for computational neuroscience.

1.1 The brain is a deep neural network

One of the goals of computational neuroscience is to find mechanistic explanations for
how the nervous system processes information to support cognitive function and adaptive
behaviour (Marr and Poggio, 1976). Computational models, i.e. mathematical and computa-
tional descriptions of component systems, capture the mapping of sensory input to neural
responses and explain representational transformations, neuronal dynamics, and the way the
brain controls behaviour.

The overarching challenge is therefore to define models that explain neural measurements
as well as complex adaptive behaviour. Computational neuroscientists have had early
successes with shallow, linear-nonlinear “tuning”, modelling lower-level sensory processing
(e.g. Hubel and Wiesel (1959)). Relatively shallow models have fueled progress in the past
and will continue to do so. Yet, the brain is a deep recurrent neural network that exploits
multistage non-linear transformations and complex dynamics. It therefore seems inevitable
that computational neuroscience will come to rely increasingly on deep recurrent models.
The need for multiple stages of nonlinear computation has long been appreciated in the
domain of vision, by both experimentalists (Hubel and Wiesel, 1959, 1962) and theorists
(Fukushima and Miyake, 1982; LeCun and Bengio, 1995; Riesenhuber and Poggio, 1999;
Wallis and Rolls, 1997).

The traditional focus on shallow models was motivated both by the desire for simple
explanations and by the difficulty of fitting complex models. Hand-crafted features, which
laid the basis of modern computational neuroscience (Jones and Palmer, 1987), do not carry
us beyond restricted lower-level tuning functions. As an alternative approach, researchers
started directly using neural data to fit model parameters (Dumoulin and Wandell, 2008;
Marmarelis and Marmarelis, 1978; Wu et al., 2006).

Despite its elegance, importance, and success, this approach is limited by the amount of
neural observations that can be collected, both on an individual and group level. Even with
neural measurement technology advancing rapidly (multi-site array recordings, two-photon
imaging, or neuropixels, to name just a few), the amount of recordable data does not provide
enough constraints to fit realistically complex neural models. For instance, while novel
measurement techniques may record separately from hundreds of individual neurons, and
the number of stimuli used may approach 10,000, the numbers of parameters in deep neural

networks (DNNs) used to perform complex tasks, such as object recognition, are many

1.2 Brain-inspired neural network models are promising for artificial intelligence and
computational neuroscience 3

orders of magnitude larger (e.g. the influential object recognition network “AlexNet” has 60
million parameters (Krizhevsky et al., 2012) and a more recent object recognition network,
VGG-16, has 138 million parameters (Simonyan et al., 2013)). While these networks may not
directly model the receptive field of individual neurons, they have been successfully utilized
as models of neuron activity patterns (Yamins and DiCarlo, 2016) and population-level
representations (Khaligh-Razavi and Kriegeskorte, 2014) (Figure 2.1).

An important lesson in the history of Al is that intelligence requires a lot of domain
knowledge. Transferring this knowledge into the model parameters through the bottleneck
of neural measurements alone is too inefficient for complex models. A key insight that
opened the path for the use of very complex models for prediction of neural responses
is the idea that rather than fitting parameters based on neural observations, DNNs could
instead be trained to perform relevant behaviour in the real world. This approach brings
machine learning to bear on models for computational neuroscience, enabling researchers to
constrain the model parameters via training on a variety of tasks. In the domain of vision, for
instance, category-labelled sets of training images can easily be assembled using web-based
technologies, and the amount of available data can therefore be expanded more easily than
for measurements of neural activity. Of course a model trained to excel at a relevant task
(such as object recognition, if we are trying to understand the computations in the primate
ventral stream) might not be able to explain neural data. Testing which model architectures,
input statistics, and learning objectives yield the best predictions of neural activity in novel
experimental conditions (e.g. a set of images that has not been used in fitting the parameters)
is a powerful way to learn about the computational mechanisms that might underlie the
neural responses. The combined use of task training- and neural data enables us to build
complex models with massive knowledge about the world in order to explain how biological
brains implement cognitive function. Deep learning provides a very efficient tool to transfer
this knowledge into the parameters of the model.

1.2 Brain-inspired neural network models are promising

for artificial intelligence and computational neuroscience

Neural network models inspired by biological brains have become a central class of models in
machine learning (Figure 1.2). Driven by optimizing task-performance, they developed and
improved model architectures, hardware and training schemes that eventually led to today’s
high-performance deep neural network models. These models have revolutionized several

domains of Al, including computer vision (LeCun et al., 2015). Starting with the seminal

4 Deep neural networks in computational neuroscience

HCNN top
hidden layer
response
prediction

IT site 56

IT neural
response

Test images (sorted by category)

animate | inanimate
human |not human| natural|artificial

animate | inanimate
human [not human natural|artificial
body|face

animate | inanimate
human |not human| natural|artificial

uewny jou| uewny

Q Q
® 3,
£ 35
c Q
< o
2 5
© Q
£ 3.
c 3
] 2
£)

teroyne jeameu

human IT IT-geometry-supervised monkey IT
deep conv. network

Fig. 1.1 Testing the internal representations of DNNs against neural data. (A) An ex-
ample of neuron-level encoding with a convolutional neural network where the CNN-based
neural response prediction (red) closely matches the recorded biological neural response
(black) (adapted from (Yamins and DiCarlo, 2016)). (B) The representational geometries of a
trained CNN’s representations (center) and human (left) and monkey (right) brain activation
patterns as defined by the distance matrices between the representation/activation patterns
for different stimuli (adapted from Khaligh-Razavi and Kriegeskorte (2014)).

1.2 Brain-inspired neural network models are promising for artificial intelligence and
computational neuroscience 5

A

i =l

Fig. 1.2 Convolutional neural network structure. (A) An example feed forward convolu-
tional neural network (CNN) with 3 convolutional layers followed by a fully-connected layer.
Bottom-up filters for selected neurons are illustrated with blue boxes. (B) The bottom-up
(blue), lateral (green), and top-down (red) filters for two example neurons in different layers
of a recurrent convolutional neural network (RCNN).

6 Deep neural networks in computational neuroscience

work by Krizhevsky et al. (2012), who won the ImageNet competition in visual object
recognition by a large margin, deep neural networks now dominate computer vision (He
et al., 2016; Simonyan et al., 2013; Szegedy et al., 2015), and drove reinforcement learning
(Lange and Riedmiller, 2010; Mnih et al., 2014, 2015), speech-recognition (Sak et al., 2014),
machine translation (Sutskever et al., 2014; Wu et al., 2016), and many other domains
to unprecedented performance levels. In terms of visual processing, deep convolutional,
feed-forward networks now achieve human-level classification performance (VanRullen,
2017).

Although inspired by biology, current DNNs abstract from all but the most essential
features of biological neural networks. They are composed of simple units that typically
compute a linear combination of their inputs and pass the result through a static nonlinearity
(e.g. setting negative values to zero). To what extent they can nevertheless bring insights
to computational neuroscience is controversial (Kay, 2017; Kriegeskorte, 2015; VanRullen,
2017). Optimised to perform, DNNs differ substantially from biological neural networks,
but they also exhibit architectural similarities. Consider the particularly successful variant of
feedforward convolutional neural networks. Inspired by biological vision, these networks
process images through a sequence of visuotopic representations. Each unit “sees” a restricted
local region of the visuotopic map in the previous layer (its receptive field). Moreover, units
are grouped into sets that detect the same visual feature all over the image (feature maps).
The units within a feature map jointly learn a single connection weight template. The
restriction to local receptive fields and sharing of weights among units in the same feature
map greatly reduce the number of parameters that need to be learned. Like the primate visual
system, convolutional neural networks perform a deep cascade of non-linear computations,
their neurons exhibit spatially restricted receptive fields that increase in size, invariance,
and complexity along the hierarchical levels and similar feature detectors exist for different
spatial locations in a given layer (although this is only approximately true in the primate
brain). At the same time, however, these models are simplified in radical ways. They do
typically not include lateral or top-down connections, compute continuous outputs (real
numbers that could be interpreted as firing rates) rather than spikes. The list of features of
biological neural networks not captured by these models is endless.

Despite abstracting from many features of biology, deep convolutional neural networks
predict functional signatures of primate visual processing at multiple hierarchical levels.
Trained to recognize objects, they develop V1-like receptive fields in early layers, and are
predictive of single cell recordings in macaque IT (Cadieu et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Yamins and DiCarlo, 2016; Yamins et al., 2014). In particular, the

explanatory power of DNNs was on par with the performance of linear prediction based on

1.3 Deep neural network models can be tested with brain and behavioural data 7

an independent set of I'T neurons and beyond linear predictions based directly on the category
labels on which the networks were trained (Yamins et al., 2014). DNNs thereby constitute
the only model class in computational neuroscience that is capable of predicting responses to
novel images in I'T with reasonable accuracy. DNNs explain about 50% of the variance of
windowed spike counts in IT across individual images (Yamins et al., 2014), a performance
level comparable to that achieved with Gabor models in V1 (Olshausen and Field, 2005).
DNN modelling has also been shown to improve predictions of intermediate representations
in area V4 over alternative models (Yamins and DiCarlo, 2016). This indicates that, in order
to solve the task, the trained network transforms the image through a similar sequence of
intermediate representations as the primate brain.

In human neuroscience similarly, DNNs proved capable of predicting representations
measured with functional magnetic resonance imaging across multiple levels of processing in
a hierarchical fashion: lower network levels better predict lower level visual representations,
and subsequent, higher-levels better predict activity in higher- more anterior cortical areas
(Giiclii and van Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014). In line with results
from macaque IT, DNNs were furthermore able to explain within-category neural similarities,
despite being trained on a categorisation task (Khaligh-Razavi and Kriegeskorte, 2014). At a
lower spatial, but higher temporal resolution, DNNs have also been shown to be predictive of
visually evoked magnetoencephalography (MEG) data (Cichy et al., 2016, 2017; Seeliger
et al., 2017). On the behavioural level, deep networks exhibit similar behaviour (Hong et al.,
2016; Kheradpisheh et al., 2016; Kubilius et al., 2016) and are currently the best-performing
model in explaining human eye-movements in free viewing paradigms (Kiimmerer et al.,
2015). These early examples clearly illustrate the power of DNN models for computational

neuroscience.

1.3 Deep neural network models can be tested with brain

and behavioural data

DNN s are typically trained to optimise external behavioural objectives rather than being
derived from neural data. Thus, model testing with activity measurements is crucial to
assess how well a network matches cortical responses. DNNs excel at task performance, but
even human-level performance does not imply that the underlying computations employ the
same mechanisms. In particular, no one-to-one mapping from a DNN unit to a biological
neuron can be guaranteed. Fortunately, computational neuroscience has a rich toolbox at

its disposal that allows researchers to probe even highly complex models, such as DNNs

8 Deep neural networks in computational neuroscience

(Diedrichsen and Kriegeskorte, 2017). One such tool is encoding models, which use external,
fixed feature spaces in order to model neural responses across a large variety of experimental
conditions (e.g. different stimuli, Figure 1.2A). The underlying idea is that if the model
and the brain compute the same features, then linear combinations of the model features
should enable successful prediction of the neural responses for independent experimental
data (Naselaris et al., 2011). For visual representations, the model feature space can derive
from simple filters, such as Gabor-wavelets (Kay et al., 2008), from human labeling of the
stimuli (Mitchell et al., 2008; Naselaris et al., 2009), or responses in different layers of a
DNN (Gii¢lii and van Gerven, 2015). Probing the system on the level of multivariate response
patterns, representational similarity analysis (RSA) (Kriegeskorte et al., 2008) provides
another approach to comparing internal representations in DNNs and the brain (Figure 1.2B).
RSA characterizes the representational geometry in a given system by the representational
pattern dissimilarities among the stimuli. A model representation is considered similar
to a brain representation to the degree that it emphasizes the same distinctions among
the stimuli. Stimulus-by-stimulus representational dissimilarity matrices can be directly
compared between brain regions and model layers, side-stepping the problem of defining the
correspondency mapping between the units of the model and the channels of brain-activity
measurement (e.g. voxels in fMRI) (Khaligh-Razavi and Kriegeskorte, 2014; Kietzmann
et al., 2012), single-cell recordings (Kriegeskorte et al., 2008; Leibo et al., 2017), M/EEG
data (Cichy et al., 2017; Kirkpatrick et al., 2017), and behavioural measurements including
perceptual judgements (Mur et al., 2013).

On the behavioral level, recognition performance (Cadieu et al., 2014; Hong et al., 2016;
Majaj et al., 2015), perceptual confusions, and illusions provide valuable clues as to how
representations in brains and DNNs may differ. For instance, it can be highly informative
to understand the detailed patterns of errors (Walther et al., 2009) and reaction times across
stimuli, which may reveal subtle functional differences between systems that exhibit the same
overall level of task performance. Visual metamers (Freeman and Simoncelli, 2011; Wallis
et al., 2016) provide a powerful tool to test for similarities in internal representations across
systems. Given an original image, a modified version is created that matches the original in the
model representation (for instance, a layer of a DNN), while features that do not change the
representation are altered. If the human brain processed the stimuli through the same stages,
it should similarly be insensitive to the two stimuli that are indistinguishable (“metameric”) to
the model. Conversely, an adversarial example (Goodfellow et al., 2014; Nguyen et al., 2015)
is a minimal modification of an image that elicits a different category label from a DNN. For
convolutional feedforward networks, minimal changes to an image (say of a bus), which

are imperceptible to humans, lead the model to classify the image incorrectly (say as an

1.4 Drawing insights from complex models 9

ostrich). Adversarial examples can be generated using the backpropagation algorithm down
to the level of the image, to find the gradients in image space that change the classification
output. This method requires omniscient access to the system, making it impossible to
perform a fair comparison with biological brains, which might likewise be confused by
stimuli designed to exploit the idiosyncratic aspects (Kriegeskorte, 2015). The more general
lesson for computational neuroscience is that metamers and adversarial examples provide
methods for designing stimuli for which different representations disagree maximally. This
may enable us in the future to optimise our power to adjudicate between alternative models
experimentally.

Ranging across levels of description and modalities of brain-activity measurement, from
responses in single neurons, to array recordings, fMRI and MEG data, and behavioral
responses, the above methods enable computational neuroscientists to investigate the similar-
ities and differences between brains and DNNs. Future studies can explore a wide range of
model units and network architectures, adding features consistent with neurobiology so as to

best predict brain activity and behaviour.

1.4 Drawing insights from complex models

Deep learning has transformed machine learning and only recently found its way back into
computational neuroscience, where it originated. Despite their high performance, DNNs
have met with scepticism regarding their explanatory value as models of brain information
processing (e.g. Kay (2017)). One of the arguments commonly put forward is that DNNs
merely exchange one impenetrably complex system with another (the “black box™ argument).
That is, while DNNs may be able to predict neural data, researchers now face the problem of
understanding what exactly the network is doing.

The black box argument is best appreciated in historical context. Shallow models are
easier to understand and supported by stronger mathematical results. For example, the weight
template of a linear-nonlinear model can be directly visualized and understood in relation to
the concept of an optimal linear filter. Simple models can furthermore enable researchers to
understand the role of each individual parameter. Overall, a model with fewer parameters is
considered more parsimonious as a theoretical account.

It is certainly true that simpler models should be preferred over models with excessive
degrees of freedom. Many seminal explanations in neuroscience have been derived from
simple models. This argument only applies, however, if the two models provide similar
predictive power. Models should be as simple as possible, but no simpler. Because the brain

is a complex system with billions of parameters (presumably containing the domain knowl-

10 Deep neural networks in computational neuroscience

edge required for adaptive behaviour) and complex dynamics (which implement perceptual
inference, cognition, and motor control), computational neuroscience will eventually need
complex models. The field has to find ways to draw insight from such models. One way to
draw insight from complex models is to consider their constraints at a higher level of abstrac-
tion. The computational properties of DNNs are the result of four manipulable elements: the
network architecture, the input statistics, the objective function, and the learning algorithm.

A worthwhile thought experiment for neuroscientists is to consider what cortical repre-
sentations would develop if the world were different. Governed by different input statistics,
for instance, a different distribution of category occurrences or different temporal dependency
structure, the brain may develop quite differently. This knowledge would provide us with
principal insights into the objectives that it tries to solve during development. Deep learning
allows computational neuroscientists to make this thought experiment a simulated reality.
Investigating which aspects of the simulated world are crucial to render the learned repre-
sentations more similar to the brain thereby serves an essential function in understanding of
representational characteristics.

In addition to experiments with different input statistics, the network architecture can
be altered to test how anatomical structure gives rise to computational function, and which
features of the biological brain are required to explain a given neural phenomenon. For
instance, it can be asked whether neural responses in a given paradigm are best explained
by a feed-forward or a recurrent network architecture. Moreover, starting from an abstract
level, biological details can be integrated into DNNs in order to see which ones prove to be
required ingredients for predicting neural responses and behaviour. Current DNNs derive
their power from bold abstractions. Although complex in terms of their parameter count,
they are simple in terms of their component mechanisms. Biological brains draw from a
richer set of dynamical primitives. It will be interesting to see to what extent incorporating
more biologically inspired mechanisms can further enhance the power of DNNs and their
ability to explain neural activity and animal behaviour.

Given input statistics and architecture, the missing determinants that transform the
randomly initialized model into a trained DNN are the objective function and the learning
algorithm. The idea of normative approaches is that neural representations in the brain can
be understood as being optimised with regard to one or many overall objectives. These
define what the brain should compute, in order to provide the basis for successful behaviour.
While experimentally difficult to investigate, deep learning based on different cost functions
allows researchers to ask the directly related inverse question: what cost functions need
to be optimised such that the resulting internal representations best predict neural data?

Various objectives have been suggested in both the neuroscience and machine learning

1.4 Drawing insights from complex models 11

community. Feed-forward convolutional DNNs are often trained with the objective to
minimize classification error (Krizhevsky et al., 2012; Simonyan et al., 2013; Yamins and
DiCarlo, 2016). This focus on classification performance has proven quite successful, leading
researchers to observe an intriguing correlation: classification performance is positively
related to the ability to predict neural data (Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014). That is, the better the network performed on a given image set, the better it
could predict neural data, although the latter was not part of the training objective.

The objective to minimize classification error in a DNN for visual object recognition
requires millions of labelled training images. Although the trained DNN provides the
best current predictive model of ventral stream visual processing (Khaligh-Razavi and
Kriegeskorte, 2014), the process by which the model is obtained is not biologically plausible.
The image labels are best viewed as a crutch for semantics, which replaces the contribution
of the rest of the brain and the body in interaction with a complex dynamic environment.
It is unlikely that the human brain is only trained using supervised learning, which limits
the conclusions that can be made about biological learning using most current DNNs. As a
result, investigating other learning paradigms is needed (Marblestone et al., 2016). Objective
functions from the unsupervised domain have been suggested, which would allow the brain
(and DNNSs) to create error signals without external feedback. One influential suggestion is
that neurons in the brain aim at an efficient sparse code, while faithfully representing the
external information (Olshausen and Field, 1996; Simoncelli and Olshausen, 2001). Similarly,
compression-based objectives aim to represent the input with as few neural dimensions as
possible (Barlow, 1961; Bell and Sejnowski, 1997; Hyvérinen et al., 2004). Autoencoders
are one example of this coding principle (Hinton and Salakhutdinov, 2006).

Harnessing information from the temporal domain, the temporal stability or slowness
objective is based on the insight that latent variables that vary slowly over time are useful
for adaptive behaviour. Neurons should therefore detect the underlying, slowly changing
signals, while disregarding fast changes likely due to noise, potentially simplifying readout
from downstream neurons (Berkes and Wiskott, 2005; Kayser et al., 2001; Kording et al.,
2004). Slow feature analysis methods can be viewed as a probabilistic modelling approach fit
using maximum likelihood estimates (Turner and Sahani, 2007). Stability can be optimised
across layers in hierarchical systems, if each subsequent layer tries to find an optimally
stable solution from the activation profiles in previous layer. This approach was shown to
lead to invariant codes for object identity (Franzius et al., 2008) and viewpoint-invariant
place-selectivity (Franzius et al., 2007; Wyss et al., 2006). Experimental evidence in favour
of the temporal stability objective has been provided by electrophysiological and behavioral
studies (Li and DiCarlo, 2008, 2010; Wallis and Biilthoff, 2001).

12 Deep neural networks in computational neuroscience

Many implementations of classification, sparseness and stability objectives ignore the
action repertoire of the agent. Yet, different cognitive systems living in the same world may
exhibit different neural representations because the requirements to optimally support action
may differ. Deep networks optimizing the predictability of the sensory consequence (Weiller
et al., 2010), or cost of a given action (Mnih et al., 2015) have started incorporating the
corresponding information. Finally, there does not have to be one true objective that the
brain optimises, as neural cost functions are not necessarily constant across regions or time
(Marblestone et al., 2016).

As a result, one way to draw theoretical insights from DNN models is to explore what
architectures, input statistics, objective functions, and learning algorithms yield models
predictive of neural activity and behaviour. This approach does not elucidate the role of
individual units or connections in the brain, but it can reveal what features of biological
structure support what aspects of a system’s function and what objectives the biological
system might be optimizing.

In addition to contextualizing the black box in this way, we can also open the black box
and look inside. Given a model that accounts for neural activity and behaviour, much is
won. Unlike a biological brain, a model is entirely accessible to scrutiny and manipulation,
enabling, for example, high-throughput “in silico” electrophysiology. One method for
visualizing a unit’s preferences is to approximately undo the operations performed by a
convolutional DNN (Zeiler and Fergus, 2014) to visualize what image features drive a given
unit deep in a neural network in the context of a particular image. This results in visualisations
such as those shown in Figure 1.3. A closely related technique is to use backpropagation
(Rumelhart et al., 1986) to calculate the change in the input needed to drive or inhibit the
activation of any unit in a DNN (Simonyan and Zisserman, 2014; Yosinski et al., 2015). We
can select an image that strongly drives the unit and compute the gradient in image space
that corresponds to enhancing the unit’s activity even further. The gradient image shows
how small adjustments to the pixels affect the activity of the unit. For example, if the image
strongly driving the unit is a person next to a car, the corresponding the gradient image might
reveal that it is really the face of the person driving the unit’s response. In that case, the
gradient image would deviate from zero only in the region of the face and adding the gradient
image to the original image would accentuate the facial features. To understand the unit’s
response, we might have to look at its gradient in image space for many different test images
to get a sense of the orientation of its tuning surface around multiple reference points (test
images).

Backpropagation can also be used to iteratively optimise images to strongly drive a

particular unit, starting from a noise image. This yields complex psychedelic looking patterns

1.4 Drawing insights from complex models 13

[
g
>
3
P k- >
Q.
: a
©
x
[}
)
g - @
= -
© —
=
: -
©
X
(V]
6}
g
3
3
p R
ey
1S
©
x
(9]
layer 1 layer 2 layer 3 layer 4 layer 5

Fig. 1.3 Visualising the preferred features of internal artificial neurons. Activations in a
random subset of feature maps across layers for strongly driving ImageNet images projected
down to pixel space (adapted from Zeiler and Fergus (2014)).

containing features and forms, that a network has learned through its task training. It is
important to note that the tuning function of a unit deep in a network cannot be characterized
by a single visual template. If it could, there would be no need for multiple stages of
nonlinear transformation. However, visualisations of receptive field properties provide
intuitions about the neuronal selectivity at different layers or time-points. In summary, “in
silico” electrophysiology enables researchers to measure and manipulate every single neuron,
if required. In addition, researchers can gain an understanding at a more abstract level, by
observing the effects of predictive performance of changes to the architecture, input statistics,
objective function, and learning algorithm.

14 Deep neural networks in computational neuroscience

1.5 What neurobiological details matter to brain computa-
tion?

A second concern about DNNGs is that they abstract too much from biological reality to be of
use as models for neuroscience. Whereas the black box argument states that DNNs are too
complex, the biological realism argument states that they are too simple. Both arguments
have merit. It is conceivable that a model is simultaneously too simple (in some ways) and
too complex (in other ways). However, this raises a fundamental question: Which features
of the biological structure should be modelled and which omitted to explain brain function?
Abstraction is the essence modelling and is the driving force of understanding. If the goal
of computational neuroscience is to understand brain computation, then we should seek the
simplest models that can explain task performance and predict neural data. The elements of
the model should map onto the brain at some level of description. However, what biological
elements must be modelled is an empirical question. Large-scale models should enable an
exploration of the level of detail required (Eliasmith and Trujillo, 2014). DNNs are important
not because they capture the biological features that matter to brain computation, but because
they provide a minimal functioning starting point for exploring what biological details matter
to brain computation. If, for instance, spiking models outperformed rate-coding models at
explaining neural activity and task performance (for example in tasks requiring probabilistic
inference (Buesing et al., 2011), then this would be strong evidence in favour of spiking
models.

Convolutional DNNs, like AlexNet and VGG, were built to optimise performance, rather
than biological plausibility. However, these models draw from a history of neuroscientific
insight and share many qualitative features with the primate ventral stream. The defining
property of convolutional DNN is the use of convolutional layers. These have two main
characteristics: (1) local connections that define receptive fields and (2) parameter sharing
between neurons across the visual field. Whereas spatially restricted receptive fields are a
prevalent biological phenomenon, parameter sharing is biologically implausible. However,
biological visual systems learn qualitatively similar sets of basis features in different parts of
a retinotopic map, and similar results have been observed in models optimizing a sparseness
objective (Gii¢lii and van Gerven, 2014; Olshausen and Field, 1996).

Moving toward greater biological plausibility with DNNs, locally connected layers that
have receptive fields without parameter sharing were suggested (Uetz and Behnke, 2009).
Researchers have already started exploring this type of DNN, which was shown to be very
successful in face recognition (Sun et al., 2015; Taigman et al., 2014). One reason for this
is that locally connected layers work best in cases where similar features are frequently

1.5 What neurobiological details matter to brain computation? 15

present in the same visual arrangement, such as faces. In the brain, retinotopic organisation
principles have been proposed for higher-level visual areas (Levy et al., 2001), and similar
organisation mechanisms may have led to faciotopy, the spatially stereotypical activation for
facial features across the cortical surface in face-selective regions (Henriksson et al., 2015).

Another aspect in which convolutional AlexNet and VGG deviate from biology is the
focus on feed-forward processing. Feedforward DNNs compute static functions, and are
therefore limited to modelling the feed-forward sweep of signal flow through a biological
visual system. Yet, recurrent connections are a key computational feature in the brain, and
represent a major research frontier in neuroscience. In the visual system, too, recurrence
is a ubiquitous phenomenon. Recurrence is likely the source of representational transitions
from global to local information (Matsumoto et al., 2004; Sugase et al., 1999). The timing
of signatures of facial identity (Barragan-Jason et al., 2013; Freiwald and Tsao, 2010) and
social cues, such as direct eye-contact (Kietzmann et al., 2017a), point towards a reliance on
recurrent computations. Finally, recurrent connections likely play a vital role in dealing with
occlusion (Spoerer et al., 2017; Wyatte et al., 2012, 2014).

The first generation of DNNs focused on feed-forward, but the general class of DNNs
can implement recurrence. Lateral recurrent connections are often used in neural networks to
normalize representations, as in local response normalisation (Krizhevsky et al., 2012) and
divisive normalisation (Carandini and Heeger, 2012). By using lateral recurrent connections,
DNNSs can implement visual attention mechanisms (Mnih et al., 2014). Lateral recurrent
connections can also be added to convolutional DNNs (Liang and Hu, 2015; Spoerer et al.,
2017), increasing the effective receptive field size of each unit. In addition to local feed-
forward and lateral recurrent connections, the brain also uses local feedback, as well as
long-range feedforward and feedback connections. While missing from the convolutional
DNN s previously used to predict neural data, DNNs with these different connection types
have been implemented (He et al., 2016; Liao and Poggio, 2016; Srivastava et al., 2015). The
field of recurrent convolutional DNN:Ss is still in its infancy, and the effects of lateral and top-
down connections on the representational dynamics in these networks, and their predictive
power for neural data are yet to be fully explored. Nevertheless, recurrent connections are
an exciting tool for computational neuroscience and will likely allow for insights into the
recurrent computational dynamics of the brain.

Apart from architectural considerations, backpropagation, the most successful learning
algorithm for DNNs, has classically been considered neurobiologically implausible. Rather
than as a model of biological learning, backpropagation may be viewed as an efficient way
to arrive at reasonable parameter estimates, which are then subject to further tests. That

is, even if backpropagation is considered a mere technical solution, the resulting model

16 Deep neural networks in computational neuroscience

may still be a good model of the dynamics in the system after learning. However, there
is also a growing literature on biologically plausible forms of error-driven learning. If the
brain does optimise cost functions during development and learning (which can be diverse,
and supervised, unsupervised, or reinforcement-based), then it will have to use a form
of optimisation mechanism, such as stochastic gradient descent techniques. The current
literature suggests several neurobiologically plausible ways in which the brain could adjust
its internal parameters to optimise such objective functions (Lee et al., 2015; Lillicrap et al.,
2016; O’Reilly, 1996; Whittington and Bogacz, 2017). These methods have been shown
to allow deep spiking neural networks to learn simple vision tasks (Guerguiev et al., 2017).
The brain might not be performing the exact algorithm of backpropagation, but it might have
a mechanism for modifying synaptic weights in order to optimise one or many objective
functions (Marblestone et al., 2016).

In addition to architectural considerations and optimisation, there are other ways in which
DNNSs abstract from biological detail. For instance, DNNs are generally deterministic, while
biological networks are stochastic. While much of this stochasticity is commonly thought to
be noise, it has been hypothesized that this variability could code for uncertainty (Fiser et al.,
2010a; Hoyer and Hyvirinen, 2003; Orbén et al., 2016a). Furthermore, current recurrent
convolutional DNNs often only run for a few time steps, and the roles of dynamical features
found in biological networks, such as oscillations, are only beginning to be tested (Finger
and Konig, 2014; Reichert and Serre, 2013; Siegel et al., 2012). The non-recurrent DNNs
also only consider static images, whereas humans receive time series sensory inputs. Another
abstraction is the omission of spiking dynamics. However, DNNs with spiking neurons
can be implemented (Tavanaei and Maida, 2016) and represent an exciting frontier of deep
learning research. These considerations show that it would be hasty to judge the merits of
DNNss based on the level of abstraction chosen in the first generation. The usage of DNNs in
computational neuroscience is still in its infancy. Integration of biological detail will require
close collaboration between and experimental neuroscientists and anatomists.

Computational neuroscience comprises a wide range of models, defined at various levels
of biological and behavioral detail. For instance, many conductance-based models contain
large amounts of parameters to explain single or few neurons at great level of detail but
are typically not geared towards behaviour. DNNSs, at the other end of the spectrum, use
their high number of parameters not to account for effects on the molecular level, but to
achieve behavioral relevance, while accounting for overall neural selectivity. Explanatory
merit is not only gained by biological realism (because this would render human brains
the perfect explanation for themselves), nor does it directly follow from simplistic models

that cannot account for complex animal behaviour. The space of models is continuous and

1.6 What is next? 17

neuroscientific insight works across multiple levels of explanation, following top-down and

bottom-up approaches (Craver, 2007).

1.6 What is next?

Deep neural networks provide a flexible framework for modelling neurocomputation. How-
ever, the DNN models built by the machine learning community will need to be adapted for
them to become more meaningful models of neural computation. There are many adaptations
that can be made to classical DNNs to either make them model neural or behavioural data
better or to make them more neurobiologically plausible (e.g. recurrent connections, more
biologically plausible objective functions, and stochasticity). While DNNs could potentially
be used to model many neural information processing systems in the future, DNNs have
thus far been most successful as models of human visual perception, particularly AlexNet
(Krizhevsky et al., 2012) and VGG-16 (Simonyan and Zisserman, 2014). In this thesis we
explore two methods for adapting DNNs to better explain neural data for human visual
perception: (1) actively constraining internal layers of a DNN using a known representa-
tional space and (2) using stochasticity and sampling to model human confidence for image
classification.

DNNs trained to perform a task are not guaranteed to have internal representations similar
to those found in the human brain. In Chapter 2, we propose deep representational distance
learning (RDL), a method for driving internal representational spaces of DNNs into alignment
with other representational spaces defined by a teacher (e.g. the human brain). In this chapter,
we use DNNSs as the teacher, but in the future we plan to use fMRI activation patterns as the
teacher.

As discussed in Section 1.5, stochasticity and sampling have been proposed as potential
methods for biological neural networks to code for uncertainty. In Chapter 3, we evaluate
how well Bayesian DNNs can represent their own predictive uncertainty by sampling during
training and testing. We demonstrate that approximate variational DNNs perform the trained
task well and robustly represent their own uncertainty. In order to compare to human
behaviour, we applied these methods to large-scale object recognition in Chapter 4. We show
that these Bayesian CNNs with sampling have improved accuracy and better represent their
own uncertainty. We also demonstrate that the stochastic representations of Bayesian CNNs
better explain human confidence scores during image classification. Our results demonstrate
two potential paths for adapting DNNs, a brain-inspired AI model class, in order to better
model biological brains.

Chapter 2

Adapting neural networks with deep
representational distance learning

This chapter is based on a publication by McClure and Kriegeskorte (2016).

Summary

Deep neural networks (DNNs) provide useful models of visual representational transfor-
mations. We present a method that enables a DNN (student) to learn from the internal
representational spaces of a reference model (teacher), which could be another DNN or, in
the future, a biological brain. Representational spaces of the student and the teacher are
characterised by representational distance matrices (RDMs). We propose representational
distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the
student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive
with other transfer learning techniques for two publicly available benchmark computer vision
datasets (MNIST and CIFAR-100), while allowing for architectural differences between
student and teacher. By pulling the student’s RDMs towards those of the teacher, RDL sig-
nificantly improved visual classification performance when compared to baseline networks
that did not use transfer learning. In the future, RDL may enable combined supervised
training of deep neural networks using task constraints (e.g. images and category labels) and
constraints from brain-activity measurements, so as to build models that replicate the internal

representational spaces of biological brains.

20 Adapting neural networks with deep representational distance learning

2.1 Introduction

Deep neural networks (DNNs) have recently been highly successful for machine perception,
particularly in the areas of computer vision using convolutional neural networks (CNNs)
(Krizhevsky et al., 2012) and speech recognition using recurrent neural networks (RNNs)
(Deng et al., 2013). The success of these methods depends on their ability to learn good,
hierarchical representations for these tasks (Bengio, 2012). DNNs have not only been useful
in achieving engineering goals, but also as models of computations in biological brains.
Several studies have shown that DNNs trained only to perform object recognition learn
representations that are similar to those found in the human ventral stream (Giiglii and van
Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014). The models
benefit from task training, which helps determine the large number of parameters and bring
the domain knowledge required for feats of intelligence such as object recognition into the
models. This is in contrast to the earlier approach in visual computational neuroscience
of using nonlinear systems identification techniques to set the parameters exclusively on
the basis of measured neural responses to large sets of stimuli (Naselaris et al., 2011). The
latter approach is challenging for deep neural networks, because the high cost of brain-
activity measurement limits the amount of data that can be acquired (Yamins and DiCarlo,
2016). Ultimately, task-based constraints will have to be combined with constraints from
brain-activity measurements to model information processing in biological brains.

Here we propose a method that enables the training of DNNs with combined constraints
on the desired outputs and the internal representations. We demonstrate the method by
using another neural net model as the reference system whose internal representations the
DNN is to emulate. One method for doing so would be to have a layer in a DNN linearly
predict individual measured responses (e.g. fMRI voxels or neurons), and backpropagate the
error derivatives from the linear measured-response predictors into the DNN. However, the
linear measurement prediction model has a large number of parameters (7upirs X Rresponses)-
An alternative approach is to constrain the DNN to replicate the representational distance
matrices (RDMs) estimated from brain responses. In this chapter, we take a step in that
direction by considering the problem of training a DNN (student) to model the sequence
of representational transformations in another artificial system (teacher), a CNN trained on
different data.

Our technique falls in the class of transfer learning methods. In the deep learning
literature, several such techniques have been proposed both for pulling a DNN’s internal
representations towards the task target and for transferring knowledge from a teacher DNN

to a student DNN. We begin by briefly considering the previous transfer learning approaches.

2.1 Introduction 21

Pulling internal representations toward the desired output using auxiliary classifiers

Recently, it has been investigated how the error signal reaching an internal layer through
backpropagation can be complemented by auxiliary error functions. These more directly
constrain internal representations using auxiliary optimization goals. A variety of methods
using auxiliary error functions to pull representations toward the desired output have been
proposed.

Weston et al. (2012) proposed semi-supervised embeddings to augment the error from
the output layer. A reference embedding of the inputs was used to guide representational
learning. The embedding constraint was implemented in different ways: inside the network
as a layer, as part of the output layer, or as an auxiliary error function that directly affected a
particular hidden layer. Weston et al. discussed a variety of embedding methods that could be
used, including multidimensional scaling (MDS) (Kruskal, 1964) and Laplacian Eigenmaps
(Belkin and Niyogi, 2003). The addition of these semi-supervised error functions led to
increased accuracy compared to DNNs trained using output layer backpropagation alone.

Lee et al. (2014) also showed that auxiliary error functions improve DNN representational
learning. Instead of using semi-supervised methods, they performed classification with
a softmax or L2SVM readout at a given intermediate hidden layer. The softmax layer
allowed the output of a network to be treated as a probability distribution by performing
normalised exponentiation on the previous layer’s activations (y; = ¢*/ Y. ;e*/). The error of
the intermediate-level readout was then backpropagated to earlier layers to drive intermediate
layers directly towards the target output. The gradients from these classifiers were linearly
combined with the gradients from the output layer classifier. This technique resulted in
improved accuracies for several datasets.

A challenge in training very deep networks is the problem of vanishing gradients. Layers
far from the output may receive only a weak learning signal via conventional backpropagation.
Aucxiliary error functions were successfully applied to these very deep networks by Szegedy
et al. (2015) to inject a complementary learning signal at internal layers by constraining
representations to better discriminate between classes. This was implemented in a very large
CNN which won the ILSVRC14 classification competition (Russakovsky et al., 2015). In
this DNN, two auxiliary networks were used to directly backpropagate from two intermediate
layers back through the main network. Similar to the method used in Lee et al. (2014), the
parameters for the layers in the main network directly connected to auxiliary networks were
updated using a linear combination of the backpropagated gradients from later layers and the
auxiliary network.

Wang et al. (2015) investigated the effectiveness of auxiliary error functions in very large
CNNs and their optimal placement. They selected where to place these auxiliary functions by

22 Adapting neural networks with deep representational distance learning

measuring the average magnitude of the conventional backpropagation error signal at each
layer. Auxiliary networks, similar to those used in Szegedy et al. (2015), were placed after
layers with vanishing gradients. These networks consisted of a convolutional layer followed
by three fully connected layers and a softmax classifier. As in Lee et al. (2014) and Szegedy
et al. (2015), the auxiliary gradients were linearly combined to update the model parameters.
Adding these supervised auxiliary error functions led to an improved accuracy for two very
large datasets, ILSVRC12 (Russakovsky et al., 2015) and MIT Places (Zhou et al., 2014).

Pulling the representations of a student towards those of a teacher using transfer learn-

ing

In transfer learning (Bengio, 2012), knowledge learned during training on one data distribu-
tion is then reused while training on a different data distribution. This is sometimes framed as
a teacher model trained on one task being used to improve training of new student model on
a new task. Different methods within transfer learning focus on improving different aspects
of the student’s training. Transfer learning can be used to increase accuracy on the new task,
allow generalization to new classes, increasing training sample efficiency, and decreasing
training time.

We seek to develop a method that can eventually constrain the internal representations
of an NN trained on a large number of classes using neural data. The method must enable
generalization from a few input examples from a few categories to many input examples
from many categories, since neural data often is only collected for a small number of stimuli.
The transferred knowledge would ideally be useful for the task that the NN is being trained
on and would ideally lead to an accuracy increase. Importantly, the method must not rely on
architectural similarity between the teacher and the student, since the network architecture of
the brain is unknown and certainly different from the exact model NN architecture.

One of the most prominent techniques for performing transfer learning is to initialise
the weights of the student network to those of the teacher. The network is then trained on a
different task or using different data. This can lead to improved training speed, and improved
network accuracy (Yosinski et al., 2014). However, this requires that the teacher and student
have the same, or very similar, architectures, which may not be desirable, especially if the
teacher is a biological neural network.

Another popular group of transfer learning methods is one-shot/k-shot learning (Burgess
et al., 2016; Li et al., 2006; Srivastava and Salakhutdinov, 2013). These techniques primarily
seek to increase sample efficiency when generalizing to new categories. As with weight
initialization, most of these methods assume very similar architectures between the teacher

and the student. This makes these methods non-ideal for our end goal.

2.2 Methods 23

One method that seeks to improve student accuracy, while not requiring similar architec-
tures, is linear prediction of internal teacher representations from selected internal student
representations. Romero et al. (2014) proposed a model compression method for transferring
the knowledge of a wide and shallow teacher network to a thin and deep student network,
called FitNet. This method Pre-trained a network by constraining an intermediate layer of the
student network to have representations that could linearly predict ‘hints’ from the teacher
network (i.e. activation patterns at a corresponding layer in the teacher network). After this,
the network was fine-tuned using the technique proposed in Hinton et al. (2015). The FitNet
method was shown to improve the student’s classification accuracy. This method, however
does not actively constrain the internal representations of the student and doing so at multiple
hidden layers would lead to a dramatic increase in learnable parameters.

In this chapter, we introduce an auxiliary error function that enables a student network
to learn from the internal representational spaces of a teacher that has either a similar or a
different architecture. The method constrains the student’s representational distances in a set
of layers to approximate those of the teacher. The student can thus learn the computational
transformations discovered by the teacher, leading to improved representational learning

during training.

2.2 Methods

Our method, representational distance learning (RDL), enables DNNs to learn from the
representations of other models to improve performance. As in Lee et al. (2014); Szegedy
et al. (2015); Wang et al. (2015), we utilise auxiliary error functions to train internal layers
directly in conjunction with the error from the output layer found via backpropagation. We
propose an error function that maximises the similarity between the representational spaces
of a student DNN and that of a teacher model.

2.2.1 Representational Distance Matrices

In order to compare the representational spaces of models, a method must be used to
describe them. As discussed in Weston et al. (2012), a representational space can be
characterised by the pairwise distances between representations. This idea has been used
in several methods such as MDS, which seeks to reduce the dimensionality of data while
minimizing the error between the pairwise distance matrix of the original data and the
reduced dimensionality data (Kruskal, 1964). Kriegeskorte et al. (2008) proposed using the
matrix of pairwise dissimilarities between representations of different inputs, which they

24 Adapting neural networks with deep representational distance learning

20UB)SI(] POZIeWIoN

SENGRANANES

Fig. 2.1 Example CNN-based representational distance matrices (RDMs). The RDMs
of the output layer of CNNs for ten random images of each class from MNIST (left) and
CIFAR-10 (right) made using the RSA toolbox (Nili et al., 2014).

called representational distance, or dissimilarity, matrices (RDMs), to compare computational
models and neurological data. More recently, Khaligh-Razavi and Kriegeskorte (2014) used
this technique to analyse several computer vision models, including the CNN proposed in
Krizhevsky et al. (2012), and neurological data. Any distance function could be used to
compute the pairwise dissimilarities, for instance the Euclidean or correlation distances. An
RDM for a DNN can be defined by:

RDM (X fn)ij = d(fon(xi: Wi), fon (X3 Win)) 2.1)

where X is a set of n inputs (e.g. a mini-batch or a subset of a mini-batch), f;, is the neuron
activations at layer m, x; and x; are single inputs, W, is the weights of the neural network up
to layer m, and some distance, or dissimilarity, measure d.

In addition to characterizing the information present in a particular layer of a DNN,
RDMs can be used to visualise the representational space of a layer in a DNN (Figure
2.1). Currently, understanding and visualizing the information captured by internal layers
in a DNN is challenging. Zeiler and Fergus (2014) proposed a method for visualizing the
input features which activate internal neurons at varying layers using deconvolutional neural

2.2 Methods 25

networks. Yosinski et al. (2015) also proposed methods for visualizing the activations of a
DNN s for a given input. However, these methods do not show the categorical information of
each representational layer. Visualizing the similarity of labelled inputs at layers of interest,
via an RDM, allow clusters inherent to the learned representational transformations to be

viewed.

2.2.2 Representational Distance Learning

RDL uses an auxiliary error functions that maximises the similarity between the RDMs of a
student and the RDMs of a teacher at several layers. This is motivated by the idea that RDMs,
or distance matrices in general, can characterise the representational space of a model. DNNs
seek to learn a set of hierarchical representations. For classification, this culminates in finding
a representational space where different classes are separable. RDL allows a DNN to learn
from the representations of a different, potentially better, model by maximizing the similarity
between the RDMs of the DNN being trained and the target model at several layers. Unlike in
Ba and Caruana (2014); Bucilua et al. (2006) and Hinton et al. (2015), RDL not only directly
trains the output representation, but also the representations of hidden layers. As discussed in
Bengio (2012), however, large datasets can prohibit the use of pairwise techniques, since the
number of comparisons grows quadratically with dataset size. To address this, our technique
only uses a random subset of all pairwise distances for each parameter update. This allows
the speed of our method to be constrained by the subset size and not the overall number of
training examples, which is usually several orders of magnitude larger.

In order to maximise the similarity between the RDM of a DNN layer being trained and
a target RDM, we propose minimizing the mean squared error between the two RDMs. This

corresponds to making all possible pairwise distances as similar as possible:

2
Eaux(X;fm; Tm) -

RDM (X; fn)i i — Timii)? 22
=) 2 (RO Sy =T 2.2)

where X is a set of n inputs (e.g. a mini-batch or a subset of a mini-batch), f;, is the neuron
activations at layer m, and T;, ; ; is the distance between the teacher’s representations of input
x; and input x; at layer m. The function d used to calculate the RDMs (Eq. 1) could be any
dissimilarity or distance function, but we chose to use the mean squared error (MSE). This
results in the average auxiliary error with respect to neuron k of f,, f,, k, for input x; and the

weights of the neural network up to layer m, W,,,, being defined as:

aEaux(xi;X;fm;Y;n) 8 X;
= RDM (X5 fim)ij— T j) (fmkly 2.3
afm,k I’l(l’l—l)/“Z?él((f)7] ,J)(f k J) ()

26

Adapting neural networks with deep representational distance learning

Table 2.1 The convolutional neural network (CNN) architecture used for MNIST.

Layer Kernel Size | # Features | Stride | Non-linearity Other
Conv-1 5x5 32 1 RelLU -
MaxPool-1 3x3 32 3 Max -
Conv-2 5x5 64 1 ReLU -
MaxPool-2 2x2 64 2 Max -
FC 1500 200 - ReLU Dropout (p = 0.5)
Linear 200 10 - - -

where fm7k |§Ccl] = fm7k (xi; Wm) - fm7k (xj; Wm)
However, calculating the error for every pairwise distance can be computational expensive,
so we estimate the error using a random subset, P, of the pairwise distances for each update

of a network’s parameters. This leads to the auxiliary error gradient being approximated by:

aEaux(xi;X;fm;Y;n) -~ 8
afm,k ’XPHPX;‘ (

Y (RDM(X: fn)ij— T j) (fn k) (2.4)

i,j)EPy;

where Xp is the set of all images contained in P, P,, is the set of all pairs, (i, j), in P that
include input x; and another input, x;. If an image is not sampled, its auxiliary error is zero.

The total error of f,, x for input x; is calculated by taking a linear combination of the
auxiliary error at layer m and the error from backpropagation of the output error function and
any later auxiliary functions. These terms are combined using weighting hyper parameter «,
similar to the method discussed in Lee et al. (2014), Szegedy et al. (2015), and Wang et al.
(2015). In RDL, « is the weight of the RDL error in the overall error function. Subsequently,

the error gradient at a layer with an auxiliary error function is defined as:

aEaux(xi;X;fm; T;n)
af;n,k

aEtotal(xi§yi;X;fm; Tm) _ aEbackprop(xi;yi;fm)
&fm,k 8fm,k

(2.5)

This error is then used to calculate the error of earlier layers in the DNN using back-
propagation. As discussed by Lee et al. (2014) and Wang et al. (2015), the value of «
was decayed as training progressed. Throughout RDL training, @ was updated following
041 = O * (1 —1/t,4,) where t is the epoch number and 7, is the total number of epochs.
By using this decay rule, the auxiliary error function initially helps drive the parameters to
good values while allowing the DNN to converge predominantly using the output error by
the end of training.

2.3 Experiments 27

Table 2.2 Test errors for MNIST trained convolutional neural networks (CNNs) and the
CIFAR-100 trained "Network in Network" (NiN) models. (Note: The performance of the
teacher for the CIFAR-100 classification is not shown, since it was trained on CIFAR-10 and,
therefore, predicted across 10 not 100 classes, making it unable to perform the CIFAR-100
task.)

MNIST
Method Error (%)
Baseline CNN 0.63
Teacher 0.56
Teacher with Fine-tuning 0.48
Student with Deep Supervision 0.55
Student with Hints 0.56
Student with RDL 0.49
CIFAR-100
Method Error (%)
Baseline NiN 30.68
Teacher with Fine-tuning 29.39
Student with Deep Supervision 29.46
Student with Hints 29.37
Student with RDL 28.77

2.3 Experiments

We performed two experiments with the goal of determining whether transferring knowledge
from a teacher DNN to a student DNN led to a significant increase in the accuracy and led
to internal representations that were more similar to the teacher than those of the baseline
network, which was trained without any auxiliary error functions or transfer learning. We
compared RDL to four different methods: (1) a baseline without any transfer learning or
auxiliary functions, (2) fine-tuning after directly copying the weights of the teacher to test,
(3) pre-training an internal layer of the student to linearly predict a corresponding layer in
the teacher using ‘hints’, and (4) deep supervision using an auxiliary classifier.

For the two experiments, we used four different datasets, MNIST, InfiMNIST, CIFAR-10,
and CIFAR-100. These experiments show that the knowledge stored in the weights of a
teacher network can be transferred to a student network using the representational distances
learned by a teacher trained on a related task.

2.3.1 MNIST

MNIST is a dataset of 28x28 images of handwritten digits from ten classes, O through 9
(LeCun et al., 1998). The dataset contains 60,000 training images and 10,000 test images.

28 Adapting neural networks with deep representational distance learning

MNIST Train Error

—— Baseline CNN —— Baseline CNN
4 —— Teacher with Finetuning 4 —— Teacher with Finetuning

MNIST Test Error

—— Student with Deep Supervision —— Student with Deep Supervision
Student with Hints Student with Hints

—— Student with RDL —— Student with RDL

0 20 40 60 80 100
Epochs Epochs

Fig. 2.2 Train and test errors of the MNIST trained CNNs throughout training as the
tested convolutional neural.

A 10,000 image subset of the training data was used as a validation set for hyper-parameter
tuning. No pre-processing or data augmentation was applied. InfiMNIST is a dataset that
extends the MNIST dataset using pseudo-random deformations and translations (Loosli et al.,
2007). The first 10,000 non-MNIST InfiMNIST examples were used as a validation set
and the next 120,000 examples were used as a training set for the teacher network. Each
tested network had the same architecture (Table 3.2), excluding any auxiliary error functions.
The deeply supervised network had linear auxiliary softmax classifiers placed after the max
pooling layers and o was decayed using @41 = @ 0.1 % (1 —1 /tjex), as proposed in Lee
et al. (2014). For the fine-tuning network, the weights were initialised as the weights of the
teacher network instead of being randomly initialised. After this, the network was trained
normally. The RDL network had auxiliary error functions after both max pooling layers and
the fully connected layer. 5% (500) of the image pairs per mini-batch were used to calculate
the RDL auxiliary errors. A momentum of 0.9 and a mini-batch size of 100 were used for all
networks trained on MNIST and InfiMNIST.

In addition to the classification error (Figure 2.2 and Table 2.2), we used the McNemar
exact test (Edwards, 1948) to evaluate whether a network was significantly more accurate in
classifying a random image from the distribution from which the images in the training and
test sets were drawn. The results (Table 2.3) show that the fine-tuning and RDL methods
both significantly improve accuracy compared to the baseline CNN. They are, however, not
significantly different, showing the ability of RDL to indirectly transfer the knowledge of the
teacher network. The fine-tuned network is also significantly better than the teacher and the
‘hint’ network, unlike RDL, because RDL actively constrains the student network to imitate
the teacher, while ‘hint’ pre-training only affects initialisation.

In order to further compare the trained networks, RDMs were generated for each fully
trained model. Figure 2.3 shows RDMs for 100 random test images, 10 from each class. This
visualisation emphasises the class clustering as inputs are transformed from pixel space to

2.3 Experiments 29

Baseline
CNN

Teacher

Pixels

Teacher with
Finetuning

Student with
Deep Supervision

oue)sIq pazijewloN

Student with
Hints

Student with
RDL

Fig. 2.3 Representational distance matrices (RDMs) for different layers of the MNIST
trained CNNs. RDMs using the Euclidean distance for the first and second convolutional
layers as well as the fully connected (FC) and softmax layers of the CNN tested methods, the
raw pixel data, and the target labels for 10 random class exemplars from MNIST. Note that
the target RDM was generated by computing the RDM of the one-hot vectors used as labels
during training.

Table 2.3 The McNemar exact test p-values for the tested CNNs trained on MNIST. Arrows
indicate a significant difference (p < 0.05,uncorr.) and point to the better model.

Baseline | Teacher | Fine-tuning | Deep Supervision | Hints | RDL
Baseline — 0.38 0.00 1 0.11 034 | 00171
Teacher 0.38 — 0.01 1 0.66 0.89 0.20
Fine-tuning 0.00 < | 0.01 + — 0.14 0.04 <~ | 0.63
Deep Supervision 0.11 0.66 0.14 — 0.64 0.39
Hints 0.34 0.89 0.04 1 0.64 — 0.17
RDL 0.01 + 0.20 0.63 0.39 0.17 —

30 Adapting neural networks with deep representational distance learning

label space. Some classes are already clustered in pixel space. For instance, 1s, 7s and 9s
each have large blocks along the diagonal portion of the pixel RDM. However, by looking
at the rows and columns we can see that these classes are difficult to separate from one
another. After the first convolutional layer, class clustering increases, especially for the
baseline CNN. After the second convolutional layer, class clustering increases for every
model and other class relationships become apparent. For instance, 3s and 5s are becoming
increasingly different from other classes, but are still similar to each other. Also, 1s remain
similar to many other classes. The fully connected (FC) layer leads to stronger, but not
perfect, class clustering. As expected, the softmax layer leads to extremely strong class
distinction. However, most of the models still view 1s as similar to other classes, as seen by
the large horizontal and vertical grey stripes. The notable exception is the fine-tuned CNN,
which had the lowest testing error.

While viewing the RDMs directly can make certain facts about the transformations
performed by the models evident, it can be hard to compare RDMs to each other by visual
inspection. To better understand the relationships between the representations of the different
models, we calculate the correlation distance between each pair of RDMs and use MDS to
create a 2-D plot showing the relative position in representational space of the transformations
learned by the various trained networks (Figure 2.4). This allows for drawing several
qualitative conclusions. As expected, the RDMs of the networks start close to the pixel-based
RDM and become more similar to the target RDM the deeper the layer. The differences
between the evaluated techniques can most clearly be seen at the 2nd (Conv2) and 3rd (FC)
layers. As expected: (1) the network initialised with the weights of the teacher and then
fine-tuned has the most similar RDMs to the teacher, (2) deep supervision pulls the RDMs of
the student towards the target, (3) RDL pulls the RDMs of the student toward and the RDMs
of the teacher, especially at 3rd layer.

2.3.2 CIFAR-100

In order to test RDL on a more interesting problem, we performed transfer learning from
CIFAR-10 to CIFAR-100. This experiment consists of transferring knowledge learned in
an easier task to a harder one, something that is useful in many instances. CIFAR-100 is
a dataset of 32x32 color images each containing one of one hundred objects. The dataset
contains 50,000 training images and 10,000 test images. A 10,000 image subset of the
training data was used as a validation set for hyper-parameter tuning. CIFAR-10 is also a
dataset of 32x32 color images, but containing only ten distinct classes instead of one hundred.
CIFAR-10 also contains 50,000 training images and 10,000 test images. For both datasets,
the data were pre-processed using global contrast normalisation. During training, random

2.3 Experiments 31

® Baseline CNN

® Teacher

e Teacher with Finetuning

e Student with Deep Supervision

/‘\ Student with Hints
/‘\ o Student with RDL
Layer 3 (FC)
|

Layer 2 (Conv2)

'/%\\

e

Pixels

/i

Fig. 2.4 RDL pulls internal representations towards the representations of the teacher
for MNIST. 2-D multi-dimensional scaling (MDS) visualisation of the distances between
the representational distance matrices (RDMs) for selected layers of the MNIST trained
networks. RDMs were generated for each model using 20 bootstrapped samples of 100
images from the test set. For each sampled image set, the correlation distance between
the RDMs of the different networks were calculated. These values were then averaged to
generate the MDS plot.

Target

CIFAR-100 NiN Train Error CIFAR-100 NiN Test Error

100 100
—— Baseline NiN

80 —— Teacher with Finetuning 80
—— Student with Deep Supervision

—— Baseline NiN
—— Teacher with Finetuning

—— Student with Deep Supervision
Student with Hints

Student with RDL

60 Student with Hints 6
—— Student with RDL

% Error

20

0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs

Fig. 2.5 Train and test errors of the CIFAR-100 trained NiNs throughout training as
the tested convolutional neural.

32 Adapting neural networks with deep representational distance learning

Table 2.4 The "Network in Network" (NiN) architecture with batch-normalisation (BN)
(Ioffe and Szegedy, 2015) used for CIFAR-100.

Layer Kernel Size | # Features | Stride | Non-linearity Other

Conv-1 5x5 192 1 ReLU BN
MLPConv-1-1 1x1 160 1 ReLU BN
MLPConv-1-2 1x1 96 1 ReLU BN

MaxPool 3x3 96 2 Max -

Conv-2 5x5 192 1 ReLLU BN, Dropout (p = 0.5)
MLPConv-2-1 1x1 192 1 ReLU BN
MLPConv-2-2 1x1 192 1 ReLU BN
AveragePool-1 3x3 192 2 - -

Conv-3 5x5 192 1 RelLU BN, Dropout (p =0.5)
MLPConv-3-1 1x1 192 1 ReL.U BN
MLPConv-3-2 1x1 100 1 ReLU BN
AveragePool-2 8x8 100 - - -

horizontal flips of the images were performed and the learning rate was halved every 25
epochs.

To evaluate using RDL with a more complex network, we used a "Network in Network"
(NiN) architecture (Lin et al., 2013), which use MLPConv layers, convolutional layers that
use multi-layered perception (MLP) filters instead of linear filters (Table 2.4). The CIFAR-10
trained teacher network had the same architecture as the baseline CIFAR-100 NiN (Table
2.4) except with a 10-class output layer and had a testing error of 8.0%. The DSN had linear
auxiliary softmax classifiers after the first and second pooling layers and « was decayed as
proposed in Lee et al. (2014). The fine-tuning network’s weights were initialised using those
of the CIFAR-10 teacher network and a linear readout was added. The RDL network had the
same architecture as the baseline CIFAR-100 network with randomly initialised weights and
the addition of auxiliary error functions that used the RDMs from the CIFAR-10 teacher. For
RDL, an additional linear readout was added after the last MLPConv layer since RDL does
not specify that each neuron in a representation corresponds to an output class. For RDL,
2.5% (406) of the image pairs per mini-batch of 128 images were used to calculate the RDL
auxiliary errors.

As in the previous experiment, the performances of the networks (Figure 2.5 and Table
2.2) were statistically compared using the McNemar test. The results are shown in Table
2.5. The networks that were trained with fine-tuning, deep supervision, ‘hints’, and RDL
all significantly improved upon the baseline NiN. These results show that learning from
RDMs can extract meaningful information from a teacher network, which led to improved

2.3 Experiments 33

® Baseline CNN

® Teacher

e Teacher with Finetuning

e Student with Deep Supervision
Student with Hints

e Student with RDL

Layer 3 (MLPConv3)

Layer 2 (MLPConv2)
w 8
Target
” ‘/ .

Pixels & —

Fig. 2.6 RDL pulls internal representations towards the representations of the teacher
for CIFAR 100. 2-D multi-dimensional scaling (MDS) visualisation of the distances between
the representational distance matrices (RDMs) for selected layers of the CIFAR-100 trained
networks. RDMs were generated for each model using 20 bootstrapped samples of 100
images from the test set. For each sampled image set, the normalised Euclidean distance
between the RDMs of the different networks were calculated. These values were then
averaged to generate the MDS plot.

34 Adapting neural networks with deep representational distance learning

Table 2.5 The McNemar exact test p-values for the tested "Network in Network" (NiN)
models trained on CIFAR-100. Arrows indicate a significant difference (p < 0.05,uncorr.)

and point to the better model.

Baseline | Fine-tuning | Deep Supervision | Hints | RDL

Baseline — 0.00 1 0.00 1 0.00 1 | 0.00 1
Fine-tuning 0.00 « — 0.86 0.70 0.12
Deep Supervision | 0.00 < 0.86 — 0.86 0.08
Hints 0.00 0.70 0.86 — 0.05
RDL 0.00 < 0.12 0.08 0.05 —

classification performance. However, these methods affected the representational spaces
learned by the student differently.

To investigate the relationships between the representations of the different NiN models,
we calculated the correlation between each pair of RDMs and use MDS to create a 2-D plot
showing the relative position in representational space of the transformations learned by the
various trained networks (Figure 2.6). The MDS plots shows that: (1) RDMs of the network
initialised with the weights of the teacher and then fine-tuned were not close to the teacher’s
RDMs, likely due to the large class increase from CIFAR-10 to CIFAR-100 and the lack of
an active constraint, (2) deep supervision pulled the RDMs of the internal representations of
the student towards those of the target, (3) RDL pulled the RDMs of the student towards the
RDMs of the teacher, and (4) despite learning a series of transformations that do not map
directly to the target, the teacher contained useful information to the students’ task. This
demonstrates the ability of RDL to incorporate both the representational information from

the teacher as well as from the classification task.

2.4 Discussion

In this chapter, we proposed RDL, a technique for transferring knowledge from a teacher
model to a student DNN. The representational space of the student is pulled towards that of
a teacher model during training using stochastic gradient descent. This was performed by
minimizing the difference between the pairwise distances between representations of two
models at selected layers using auxiliary error functions. Training with RDL was shown
to improve classification performance by extracting knowledge from another model trained
on a similar task, while allowing architectural differences between the student and teacher.
This suggests that RDL can transfer the relationships between class examples learned by

the teacher. This information is not present when only constraining internal layers using

2.4 Discussion 35

class labels, as done in the deeply supervised method, since the target vectors for each class
are orthogonal. In particular, RDL allows a student network to learn similar sequential
transformations to those learned by a teacher network. This could be of potential use in
learning transformations similar to those performed in the human visual ventral stream. Such
a model might be able to generate brain-like RDMs for novel stimuli. In the future, we plan
to train such a model by constraining large DNNs using fMRI-based RDMs from the human
visual ventral stream. By learning from brain-activity patterns, RDL has the potential to help
build more realistic models of computations in biological brains.

Chapter 3

Adapting deep neural networks by using
stochasticity to robustly represent

uncertainty

This chapter is based on a manuscript by McClure and Kriegeskorte (2017).

Summary

As deep neural networks (DNNs) are applied to increasingly challenging problems, they will
need to be able to represent their own uncertainty. Modelling uncertainty is one of the key
features of Bayesian methods. Using Bernoulli dropout with sampling at prediction time has
recently been proposed as an efficient and well performing variational inference method for
DNNs. However, sampling from other multiplicative noise based variational distributions
has not been investigated in depth. We evaluated Bayesian DNNs trained with Bernoulli or
Gaussian multiplicative masking of either the units (dropout) or the weights (dropconnect).
We tested the calibration of the probabilistic predictions of Bayesian convolutional neural
networks (CNNs) on MNIST and CIFAR-10. Sampling at prediction time increased the
calibration of the DNNs’ probabalistic predictions. Sampling weights, whether Gaussian or
Bernoulli, led to more robust representation of uncertainty compared to sampling of units.
However, using either Gaussian or Bernoulli dropout led to increased test set classification
accuracy. Based on these findings we used both Bernoulli dropout and Gaussian dropconnect
concurrently, which we show approximates the use of a spike-and-slab variational distribution
without increasing the number of learned parameters. We found that spike-and-slab sampling

38 Adapting deep neural networks by using stochasticity to robustly represent uncertainty

had higher test set performance than Gaussian dropconnect and more robustly represented its

uncertainty compared to Bernoulli dropout.

3.1 Introduction

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have
recently been used to solve complex perceptual and decision tasks Krizhevsky et al. (2012);
Mnih et al. (2015); Silver et al. (2016). While these models take into account aleatoric
uncertainty via their softmax output (i.e. the uncertainty present in the training data), they do
not take into account epistemic uncertainty (i.e. parameter uncertainty) (Kendall and Gal,
2017). Bayesian DNNs attempt to learn a distribution over their parameters, thereby allowing
for the computation of the uncertainty of their outputs given the parameters. However, ideal
Bayesian methods do not scale well due to the difficulty in computing the posterior of a
network’s parameters.

As a result, several approximate Bayesian methods have been proposed for DNNs. Using
the Laplace approximation was proposed by MacKay (1992). Using Markov chain Monte
Carlo (MCMC) has been suggested to estimate the posterior of the networks weights given
the training data (Neal, 2012; Welling and Teh, 2011). Using expectation propagation has also
been proposed (Herndndez-Lobato and Adams, 2015; Jylédnki et al., 2014). However, these
methods can be difficult to implement for the very large CNNs commonly used for object
recognition. Variational inference methods have also been applied to NNs. These have the
advantage of making Bayesian NNs more tractable(Barber and Bishop, 1998; Blundell et al.,
2015; Graves, 2011; Hinton and Van Camp, 1993). Gal and Ghahramani (2016) and Kingma
et al. (2015) recently recently developed variational Bayesian DNN based on Bernoulli and
Gaussian dropout (Srivastava et al., 2014), respectively. Independent weight sampling with
additive Gaussian noise has been investigated (Barber and Bishop, 1998; Blundell et al.,
2015; Graves, 2011; Hinton and Van Camp, 1993). However, independent sampling weights
using multiplicative Bernoulli noise, i.e. dropconnect (Wan et al., 2013), or independent
sampling weights multiplicative Gaussian noise has not been thoroughly evaluated.

In addition to Bernoulli and Gaussian distributions, spike-and-slab distributions, a combi-
nation of the two, have been investigated, particularly for linear models (George and McCul-
loch, 1997; Ishwaran and Rao, 2005; Madigan and Raftery, 1994; Mitchell and Beauchamp,
1988). Interestingly, Bernoulli dropout and dropconnect can be seen as approximations to
spike-and-slab distributions for units and weights, respectively (Gal, 2016; Louizos, 2015).
Spike-and-slab variational distributions have been implemented using Bernoulli dropout with

additive weight noise sampled from a Gaussian with a learned standard deviation (Louizos,

3.2 Methods 39

2015). This approach more than doubled the number of learned parameters, since the mean
and the standard deviation of each weight as well as the dropout rate for each unit were
learned. However, this method did not consistently outperform standard neural networks.
Gal (2016) also discussed motivations for spike-and-slab variational distributions, but did
not suggest a practical implementation.

We evaluated the performance Bayesian CNNs with different variational distributions
on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky and Hinton, 2009). We also
investigate how adding Gaussian image noise with varying standard deviations to the test
set affected each network’s learned uncertainty. We did this to test how networks responded
to inputs not drawn from the data distribution used to create the training and test sets. We
also propose an approximation of the spike-and-slab variational inference based on Bernoulli
dropout and Gaussian dropconnect, which combines the advantages of Gaussian dropconnect
and Bernoulli dropout sampling leading to better uncertainty estimates and good test set

generalisation without increasing the number of learned parameters.

3.2 Methods

3.2.1 Bayesian Deep Neural Networks

DNNSs are commonly trained by finding the maximum a posteriori (MAP) weights given the
training data (D;,4;,) and a prior over the weight matrix W, p(W). However, ideal Bayesian
learning would involve computing the full posterior. This can be intractable due to both the
difficulty in calculating p(Dy4in) and in calculating the joint distribution of a large number of
parameters. Instead, p(W|D;,qin) can be approximated using a variational distribution g(W).
This distribution is constructed to allow for easy generation of samples. The objective of
variational inference is to optimise the variational parameters V so that the Kullblack-Leiber
(KL) divergence between gy (W) and p(W|Dy,4iy) is minimised (Barber and Bishop, 1998;
Blundell et al., 2015; Graves, 2011; Hinton and Van Camp, 1993):

V= argéninKL[qv(W)Hp(W)] - / qv(W)10g p(Dsrain|W)dW (3.1)

Using Monte Carlo (MC) methods to estimate £, [log p(Dyrain|W)], using weight
samples WX ~ gy (W), results in the following loss function:

1 & -
L= KL(QV(W)HP(W)) - ; Z logp(Dtmin’Wk) (32)
k=1

MC sampling can also be used to estimate the probability of test data:

40 Adapting deep neural networks by using stochasticity to robustly represent uncertainty

Dtest - Z Dtest‘Wk (33)

3

3.2.2 Variational Distributions

The number and continuous nature of the parameters in DNNs makes sampling from the entire
distribution of possible weight matrices computationally challenging. However, variational
distributions can make sampling easier. In deep learning, the most common sampling method
is using multiplicative noise masks drawn from some distribution. Several of these methods
can be formulated as variational distributions where weights are sampled by element-wise
multiplication of the variational parameters V, the n X n connection matrix with an element
for each connection between the n units in the network, by a mask M, which is sampled from

some probability distribution:

W =V oM where M ~ p(M) (3.4)

From this perspective, the difference between dropout and dropconnect, as well as
Bernoulli and Gaussian methods, is simply the probability distribution used to generate the
mask sample (Figure 3.1).

Bernoulli Dropconnect & Dropout

In Bernoulli dropconnect, each element of the mask is sampled independently, so 7; j ~
Bernoulli(1 — p) where p is the probability of dropping a connection. In Bernoulli dropout,
however, the weights are not sampled independently. Instead, one Bernoulli variable is
sampled for each row of the weight matrix, so ;. ~ Bernoulli(1 — p) where p is the

probability of dropping a unit.

Gaussian Dropconnect & Dropout

In Gaussian dropconnect and dropout, W; ; is sampled from a Gaussian distribution centred
at variational parameter v; ;. This is accomplished by sampling the multiplicative mask using
Gaussian distributions with a mean of 1 and a variance of 656 = p/(1 — p), which matches
the mean and variance of Bernoulli dropout when training time scaling is used Srivastava
et al. (2014). In Gaussian dropconnect, each element of the mask is sampled independently,
which results in iy j ~ A (1, ch). In Gaussian dropout, each element in a row has the same
random variable, so 7 5 ~ A (1, jS). It can be shown that using Gaussian dropconnect or

dropout with L2-regularisation leads to optimizing a stochastic lower-bound of the variational

3.2 Methods 41

E Bernoulli DropConnect

ﬁ Gaussian DropConnect

>1
H O E Bernoulli Dropout ! 1
0

E Gaussian Dropout

ﬁ Spike-and-Slab Dropout

* HHENEE
I

14 M

Fig. 3.1 Sampling either weights or units from different variational distributions can
be constructed as multiplicative noise (of various statistical structure) imposed on the
weight matrix.

objective function when using a mean zero Gaussian prior(See Section A.3 in the Appendix).
This differs from the methods proposed by Kingma et al. (2015), which used an improper

log uniform prior.

Spike-and-Slab Dropout

A spike-and-slab distribution is the normalised linear combination of a "spike" of probability
mass at zero and a "slab" consisting of a Gaussian distribution. This spike-and-slab returns a 0
with probability pir. or a random sample from a Gaussian distribution A4 (tap, Gszl) With
probability 1 — py,ir.. We propose concurrently using Bernoulli dropout and Gaussian drop-
connect to approximate the use of a spike-and-slab variational distribution and spike-and-slab
prior by optimizing a lower-bound of the variational objective function (See Supplementary
Material). In this formulation, m; j ~ b; ..+ (1, jS), where b; , ~ Bern(1 — pg,) for each
mask row and 03, = pac/(1 — pac). As for Bernoulli dropout, each row of the mask M is
multiplied by 0 with probability p,,, otherwise each element in that row is multiplied by
a value independently sampled from a Gaussian distribution as in Gaussian dropconnect.
During non-sampling inference, spike-and-slab dropout uses the mean weight values and,
per Bernoulli dropout, multiplies unit outputs by 1 — pg,.

42 Adapting deep neural networks by using stochasticity to robustly represent uncertainty

Bernoulli Gaussian Bernoulli Gaussian Spike-and-Slab
Weight Noise Weight Noise Unit Noise Unit Noise Noise

MAP
DropConnect
Dropout

SGLD
MC
DropConnect
MC
Dropout

Fig. 3.2 Independent weight (i.e. dropconnect-based) sampling during training and
testing makes models much more uncertain further away from the training data. The
probabalistic logistic regression decision boundaries of a linear network for: (top row) the
MAP network and the dropconnect and dropout methods that only sample during training
and (bottom row) the stochastic gradient Langevin dynamics (SGLD) (Welling and Teh,
2011) network and the Monte Carlo (MC) dropconnect and dropout methods that sample
during training and testing.

3.3 Experiments

3.3.1 Logistic Regression

In order to visualise the effects of each variational distribution, we trained linear networks
with five hidden units to classify data drawn from two 2D multivariate Gaussian distributions.
Multiple linear units were used so that Bernoulli dropout would not dropout the only unit in
the network. For the dropout methods, unit sampling was performed on the linear hidden
layer. For the dropconnect methods, every weight was sampled. Dropout and dropconnect
probabilities of p = 0.4 were used for each of these networks, except for the spike-and-slab
dropconnect probability which was 0.2. In Figure 3.2, we show the decision boundaries
learned by the various networks. Higher variability in the decision boundaries corresponds
to higher uncertainty. Ideally, the networks would predict with higher uncertainty as points
become further away from the training data, as demonstrated by the the stochastic gradient
Langevin dynamics (SGLD) network (Welling and Teh, 2011). All of the MC sampling
methods predict with higher uncertainty as points become further away from the training
data, but the dropconnect and spike-and-slab methods are much better than the methods that

only use dropout.

3.3 Experiments 43

Table 3.1 MNIST and CIFAR-10 mean and standard deviation of test errors for the trained
convolutional neural networks (CNNs) with and without Monte-Carlo (MC) across 5 runs,
each MC run using 10 samples.

MNIST CIFAR-10
Method Mean Error (%) Error Std. Dev. Mean Error (%) Error Std. Dev.
MAP 0.76 - 25.86 -
Bernoulli DropConnect 0.56 - 16.46 -
MC Bernoulli DropConnect 0.56 0.03 16.59 0.11
Gaussian DropConnect 0.56 - 16.78 -
MC Gaussian DropConnect 0.58 0.02 16.65 0.11
Bernoulli Dropout 0.49 - 11.23 -
MC Bernoulli Dropout 0.48 0.03 9.95 0.08
Gaussian Dropout 0.42 - 9.07 -
MC Gaussian Dropout 0.36 0.04 9.00 0.10
Spike-and-Slab Dropout 0.48 - 10.64 -
MC Spike-and-Slab Dropout 0.46 0.01 10.05 0.06

Table 3.2 The convolutional neural network (CNN) architecture used for MNIST.

Layer Kernel Size | # Features | Stride | Non-linearity
Conv-1 5x5 32 1 ReLLU
MaxPool-1 2x2 32 2 Max
Conv-2 5x5 64 1 ReLU
MaxPool-2 2x2 64 2 Max
FC 1500 500 - ReLU
FC 500 10 - Softmax

Table 3.3 The convolutional neural network (CNN) architecture used for CIFAR-10.

Layer Kernel Size | # Features | Stride | Non-linearity
Conv-1 3x3 64 1 ReLU
Conv-2 3x3 64 1 ReLU
MaxPool-1 2x2 64 2 Max
Conv-3 3x3 128 1 ReLLU
Conv-4 3x3 128 1 ReLLU
MaxPool-2 2x2 128 2 Max
Conv-5 3x3 256 1 ReLU
Conv-6 3x3 256 1 ReLU
Conv-7 3x3 256 1 ReLU
MaxPool-3 2x2 256 2 Max
Conv-8 3x3 512 1 ReLU
Conv-9 3x3 512 1 ReLU
Conv-10 3x3 512 1 ReLLU
MaxPool-4 2x2 512 2 Max
Conv-11 3x3 512 1 ReLLU
Conv-12 3x3 512 1 ReLLU
Conv-13 3x3 512 1 ReLU
MaxPool-5 2x2 512 2 Max
FC 512 512 - ReLU
FC 512 10 - Softmax

44 Adapting deep neural networks by using stochasticity to robustly represent uncertainty

0.02 ‘ ‘ ‘ ——
BDC
MC BDC
50.015 e coo
i HsaPe
2 0.01 e
c MC SSD
5 \
~ 0.005]
0.05
g 0.04
o
—0.03
()]
£
£002
=
0.01]]
% 200 400 600 800 1000
Epoch
(B)
0.02
S
|
(o))
=
3
° Y,
% 200 400 600 800 1000
Epoch
©

°
o
o

% 200 400 600 800 1000
Epoch

(D)

Fig. 3.3 Sampling during training and testing prevents overfitting on MNIST. The
MNIST (a) training error, (b) training loss, (c) test error, and (d) test loss for for Bernoulli
dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO), Gaussian
dropout (GDO), and spike-and-slab dropout (SSD) with and without MC sampling using 10
samples.

3.3 Experiments 45

% 100 200 300 400 500
Epoch
(A)
3 T
@
52
o |k
£k
[
hl;
'—
% 100 200 300 400 500
Epoch

(B)

Testing Loss

Fig. 3.4 Sampling during training and testing prevents overfitting on CIFAR-10. The
CIFAR-10 (A) training error, (B) training loss, (C) test error, and (D) test loss for for
Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO),
Gaussian dropout (GDO), and spike-and-slab dropout (SSD) with and without MC sampling
using 10 samples.

46 Adapting deep neural networks by using stochasticity to robustly represent uncertainty

3.3.2 Convolutional Neural Networks

We trained CNNs on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky and Hinton,
2009). For each dataset, a 10,000 image subset of the training set was used for validation,
which was used to set the hyperparameters. For MNIST, each CNN had two convolutional
layers followed by a fully connected layer and a softmax layer(3.2). For CIFAR-10, each CNN
had 13 convolutional layers followed by a fully connected layer and a softmax layer (3.3).
For the dropout networks, dropout was used after each convolutional and fully-connected
layer, but before the non-linearity. For the dropconnect networks, all weights were sampled.
All ps were treated as network-wide hyperparameters. No data augmentation was used for
MNIST. Random horizontal flipping was used during CIFAR-10 training. We evaluated the
trained CNNss using the original testing sets and using the testing images with added random
Gaussian noise of increasing variance in order to test each network’s uncertainty for the
regions of input space not seen in the training set.

Sampling during training is often used as a form of regularisation. To evaluate how well
the different methods achieved this, we plotted the training and testing classification error
and cross-entropy loss for MNIST (Figure 3.3) and CIFAR-10 (Figure 3.4). We found that
the dropout-based sampling during training consistently prevented overfitting, but sampling
during testing did not consistently lead to better testing classification error or cross-entropy
loss. However, only using dropconnect-based methods without test-time sampling often led
to increased testing loss due to overfitting. Surprisingly, this increase in testing loss was not
accompanied by an increase in classification error.

While the dropout-based methods were the most accurate on the test-set (Table 3.1), as
image noise was added they became increasingly worse compared to the dropconnect-based
networks (Figures 3.5.a and 3.6.A). Sampling only consistently improved the test accuracy
for Bernoulli and spike-and-slab dropout. However, sampling did consistently improve the
calibration of the networks as the image noise was increased (Figures 3.5.B and 3.6.B).
For a given accuracy across each set of noisy test images, sampling also generally led to
better calibration (Figures 3.5.C, 3.6.C, and 3.7). Gaussian dropout led to the highest test set
accuracy, but it also led to reduced robustness to noise. While slightly less accurate on the
test set, Bernoulli dropout and spike-and-slab dropout were much more robust.

Seemingly contradictory results have been reported in the literature regarding CIFAR-10
and MC Bernoulli dropout. Gal and Ghahramani (2015) found that standard Bernoulli
dropout methods led to relatively inaccurate networks when dropout was used at every
layer in a CNN, whereas MC sampling increased the accuracy of these networks. However,
Srivastava et al. (2014) found that using dropout at every layer led to increased generalisation
performance even without sampling at prediction time. In our CIFAR-10 experiments, but

3.3 Experiments 47

0.25 0.25
50.8 0.2 0.2
= L L
Ll) ()
506 2015 Z0.15
T 2 S
=04 5 01 5 01
@ ®© . | w
() © ; 7 9
0.2 0.05) 0.05
1 2 3 4 5 1T 273 4 s % 05 1
Noise StD. Noise StD. Classification Error
(A) (B) ©)

Fig. 3.5 Sampling during training and testing improves CNN calibration on MNIST in
the presecence of input noise. The MNIST (A) classification error for additive Gaussian
noise using standard deviations St.D of 0, 1, 2, 3, 4, and 5, (B) mean squared error (MSE)
between the x = y line and the calibration plot (i.e. the frequency of the true label vs predicted
probability of that label) for varying Gaussian image noise StD., and (C) calibration MSE
versus the classification error for predicitons across all noise StD. for Bernoulli dropconnect
(BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO), Gaussian dropout (GDO),
and spike-and-slab dropout (SSD) with and without MC sampling using 10 samples.

-

0.25 0.25
5 0.8 0.2 0.2
= 1] L
E 2 2
506 =0.15 =0.15
8 g 1 g
L2 K ©
=04 5 01 5 01
@ © - ©
) (@] & i ®> O
0.2 0.05 T 0.05
% 05 1 NG 1 % 05
Noise StD. Noise StD. Classification Error
(A) (B) ©

Fig. 3.6 Sampling during training and testing improves CNN calibration on CIFAR-
10 in the presecence of input noise. The CIFAR-10 (A) classification error for additive
Gaussian noise using standard deviations St.D of 0, 0.25, 0.5, 0.75, and 1, (B) mean squared
error (MSE) between the x = y line and the calibration plot (i.e. the frequency of the true
label vs predicted probability of that label) for varying Gaussian image noise StD., and
(C) calibration MSE versus the classification error for predicitons across all noise StD. for
Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO),
Gaussian dropout (GDO), and spike-and-slab dropout (SSD) with and without MC sampling
using 10 samples.

48 Adapting deep neural networks by using stochasticity to robustly represent uncertainty

Noise StD. =0 Noise StD. = 2 Noise StD. = 4

1 ! m— |deal
e MAP
==BDC

0.8 0.8 - mceDC
= GDC

> = = MCGDC
0.6 0.6 ==—BDO

[} = = MCDO

> = GDO

19} = = MCGDO
T 04 0.4 = SSD

0.2t J 0.2
00 0.5 1 0O 0.5 1
Predicted Probability
(A)
Noise StD. =0 Noise StD. = 0.5 Noise StD. = 1
1 L m— |deal
e MAP
=—=BDC
0.8 0.8/ - mceDC h
= GDC)
- = = MCGDC S
20.6 0.6 ==—BDO ’
g = = MCDO "
g ~ - Wceno .
C 04 0.4 = SSD ’
= = MCSSD

0.2

0.5
Predicted Probability

Fig. 3.7 Sampling during training and testing improves CNN calibration curves. The
x =y line (Ideal) and the calibration plot (i.e. the frequency of the true label vs predicted
probability of that label) for varying Gaussian image noise StD. for the (a) MNIST or (b)
CIFAR-10 trained Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli
dropout (BDO), Gaussian dropout (GDO), and spike-and-slab dropout (SSD) networks with
and without MC sampling using 10 samples.

3.4 Discussion 49

o
~

o
@

Test Error
o
)

54
BN

% 01 02 03 0.4 05

p

Fig. 3.8 Sampling during training and testing (1) improves the robustness of CNNs
to dropout hyperparmeter choice and (2) allows for increased dropout regularisation.
The classification error for the CIFAR-10 test set using different p hyperparameter values.
For spike-and-slab dropout, p,, was varied, while p;. was fixed.

not our MNIST experiments, we have found that using sampling at prediction time makes
networks more robust to high variance dropout. Using lower variance dropout results in
standard and MC methods having similar accuracies, while using higher variance distributions
results in MC inference outperforming standard methods (Figure 3.8). (See the Appendix for
more results when using p = 0.5.) These results indicate that Bernoulli or Gaussian dropout
with MC sampling are less dependent on the exact value of p and can allow higher levels of
dropout regularisation to be used.

3.4 Discussion

L2 regularisation and Bernoulli dropout are widely used for regularisation and routinely lead
to increased testing accuracy. However, the predictive uncertainty learned when using these
methods does not generalise well. However, performing approximate Bayesian inference
via sampling during training and testing allowed CNNs to better model their uncertainty.
Dropconnect-based CNNs performed worse on the unmodified test set, but were much
more robust to deviations from the training distribution. On the other hand, dropout-based
networks, particularly MC Gaussian dropout, performed well on the unmodified test set,
but were not as robust. Using sampling and combining Bernoulli dropout and Gaussian
dropconnect to approximate the use of spike-and-slab variational distributions led to a CNN
that performed better near the test set than the dropconnect methods and more robustly
represented its uncertainty compared to the dropout methods.

Chapter 4

Adapting Bayesian deep neural networks
to model human visual perception

Summary

Dealing with sensory uncertainty is necessary for humans to operate in the world. Often,
multiple interpretations of an event are possible given the sensory evidence, even if one
interpretation is most likely. The exact neurobiological mechanism used for representing
uncertainty is unknown, but there is increasing evidence that the human brain could use its
inherent stochasticity to code for uncertainty. However, the prominent convolutional neural
networks (CNNs) currently used to model human vision implement deterministic mappings
from input to output. We seek to use stochasticity to improve CNNs as both computer vision
models and models of human visual perception. In this chapter, we used Gaussian unit noise
and sampling to implement Bayesian CNNs. We then tested how using sampling during
learning and inference affects a CNN’s accuracy, its ability to model its own uncertainty,
and its prediction of human confidence scores. We found that sampling during both training
and testing improved a CNN'’s accuracy and ability to represent its own uncertainty for
large-scale object recognition. We also found that sampling during both training and testing
improved the ability of linear classifiers trained on internal CNN representations to predict
human confidence scores for natural image classification. These results add to the evidence
that Bayesian models predict key aspects of human object categorisation behaviour and that
sampling in biological neural networks could be a means of representing uncertainty for

visual perception in the human brain.

52 Adapting Bayesian deep neural networks to model human visual perception

4.1 Introduction

Humans must deal with sensory uncertainty to operate in the world (Vilares and Kording,
2011). Often, multiple interpretations are possible given some sensory input, even if one
interpretation is most likely. This requires neural representations to code a distribution of
interpretations. It has been hypothesised that humans and animals perform near optimal in-
ference by integrating this probabilistically represented information using Bayesian decision
theory (Griffiths et al., 2008; Knill and Pouget, 2004). For vision, it has been shown that
humans model their own objective uncertainty (Barthelmé and Mamassian, 2009). Several
probabilistic neural coding frameworks have been suggested, such as probabilistic population
codes (PPC) (Ma et al., 2006) and neural sampling (Fiser et al., 2010b). For visual perception
in particular, there is evidence for a sampling-based probabilistic representation (Berkes
et al., 2011; Goris et al., 2014; Moreno-Bote et al., 2011; Orban et al., 2016b).

Despite this, current neural network models of high level vision are deterministic and do
not model the uncertainty of their learned representations. Specifically, deterministic deep
convolutional neural networks (CNNs) have become prominent models in computational
neuroscience for visual perception (Gii¢lii and van Gerven, 2015; Khaligh-Razavi and
Kriegeskorte, 2014; Yamins et al., 2014). These CNNs either use the maximum likelihood
estimate (MLE) or the maximum a posteriori (MAP) solution for the parameters and do not
model a distribution of parameters or representations. As shown in the previous chapter,
utilizing stochasticity can improve a CNN’s accuracy and its ability to represent its own
uncertainty. This is important in building computer vision systems, but also in building better
computational models of the human brain.

In the computational neuroscience literature, two main types of sampling-based models
have been proposed: (1) latent variable models (Aitchison and Lengyel, 2016; Goris et al.,
2014; Hoyer and Hyvirinen, 2003; Orban et al., 2016b) and (2) synaptic sampling (Aitchison
and Latham, 2015; Kappel et al., 2015). One major difference between the methods is that
latent variable models treat the neural activity as a random variable, while synaptic sampling
treats each weight as a random variable. Both of these methods can be implemented in CNNs.
This is similar to using unit noise and weight noise, respectively, in Bayesian NNs (Aitchison
and Latham, 2015; Rezende et al., 2014). The input can also be viewed as a random variable,
with input noise leading to regularisation (Bishop, 1995; Holmstrom and Koistinen, 1992).
However, we focus on internal network stochasticity.

In this chapter, we approximate a variational Bayesian CNN using MC Gaussian dropout,
which was discussed in the Chapter 3. We also show that this method is highly similar
to a deep latent variable CNN. We investigate how much using sampling affects a CNN’s

4.2 Methods 53

classification accuracy, predicted uncertainty, and the ability to predict human confidence

scores for natural image classification.

4.2 Methods

4.2.1 Approximating Bayesian neural networks using Monte Carlo Gaus-

sian dropout

In machine learning, noise has been traditionally injected into neural networks as a form of
regularisation during training followed by using the layerwise expectation during testing, as
done for AlexNet and VGG-16 (Krizhevsky et al., 2012; Simonyan et al., 2013; Srivastava
et al., 2014). However, sampling both during training and testing in Bayesian CNNs can lead
to better representation of uncertainty, as discussed in the previous chapter. Monte Carlo
(MC) sampling during training using Eq. 4.1 and testing using multiplicative Gaussian unit
noise with a mean of 1 and a variance of o = (1 — p)/p, where p is the dropout probability,
approximates Bayesian inference in neural networks. For an input image x and an image
label y, the matrix V of weight means v; ;, and weight noise o; j = \/0v; j, the optimization
objective for the Bayesian CNN is given by 4.1. (The derivation of this method is shown in
Appendix A.1.)

1 A
-V v.ehy -2 V)||? where £ ~ _47(0. 1 4.1
mvaxn;l ogp(ylx,V,€") 2||ve6()I|3 where & (0,1) 4.1)

4.2.2 Relationship between Monte Carlo Gaussian dropout and deep
latent Gaussian models

In a deep latent Gaussian model (DLGM) (Rezende et al., 2014), the goal is to learn a
hierarchy of latent Gaussian variables. In the context of natural image recognition, these
latent variable could define the relationship between images and class labels. Rezende
et al. (2014) construct DLGMs using additive variable noise, we however use multiplicative
Gaussian variable noise (Kingma et al., 2015; Srivastava et al., 2014). For input variable x,
output variable y, the matrix V,, of layer m weight means v; j, unit noise & ~ .4°(0, 1), and

non-linearity 4, each unit, h(zm’,-), is defined using the latent variables:

Nm—1 Nm—1

Im,i = Z h(szl,j)vi’j+8,-\/& Z h(zm,17j)v,~7j 4.2)
=1 =1

The weight means, V, are learned by optimising:

54 Adapting Bayesian deep neural networks to model human visual perception

maxlog p(y}x) = maxlog (/ p(ylx,Z)p(ZIX)dZ) (4.3)

Using the Gaussian "repramaterization trick" (Appendix A.2) for each unit, z = f(x,V,€), so

this objective can be rewritten as:

m‘axlogp(y\x) = m‘ilxlog </p(y|x,z)p(8)d8> where & ~ 47(0,1) 4.4)

Approximating the integral with MC sampling leads to:

1 n
m‘gxlogp(y|x) R~ m‘flxlog (r—lk;lp(y\x,zk)> where £X ~ (0, 1) 4.5)

If unit-based multiplicative Gaussian noise and n = 1 is used for training, which is done for
MC Gaussian dropout and is neurobiologically plausible (Goris et al., 2014), the loss of the
DLGM (Eq. 4.5) is equivalent to the loss of MC Gaussian dropout (Eq. 4.1) without L2
regularisation on the means of the network weights, since the latent variables are deterministic
functions of the inputs, weights, and random noise (i.e. z = f(x,V,€)). Therefore, the trained
CNN can be interpreted as either a synaptic sampling or a latent variable model.

4.2.3 Architecture and datasets
Large-scale object recognition

We tested three CNNs: (1) a baseline CNN with no sampling, (2) a CNN with Gaussian unit
noise before each ReLU non-linearity only during learning, and (3) a CNN with Gaussian
unit noise during learning and inference. For all CNNs with sampling during inference, 10
MC samples were used. Each CNN had 8 layers, 7 convolutional and a softmax readout
layer, which transforms an activation pattern into a probability distribution (Table 4.1).
CNN s with this architecture were trained on both ImageNet (Russakovsky et al., 2015) and
Eco-set (Mehrer et al., 2017) using stochastic gradient descent with momentum and weight
normalisation (Salimans and Kingma, 2016). ImageNet is a 1,000 class object recognition
problem with 1.2 million training images and 150,000 validation images. However, the
ImageNet categories are biased towards certain entry-level categories, such as birds and
dogs. As a computer vision task, this is reasonable, but from a human visual neuroscience
perspective models should be trained on the image distribution seen by humans. The Eco-set
project seeks to create a datasets that more closely matches the human visual diet. This
image set is a 578 class object recognition with 569,413 training images, 28,900 validation

images, and 28,900 testing images. We evaluated how much using MC sampling during

4.2 Methods 55

Table 4.1 The convolutional neural network (CNN) architecture used for ImageNet and
Ecoset.

Layer Kernel Size | # Features | Stride | Non-linearity
Conv-1 3x3 64 1 ReLLU
MaxPool-1 2x2 64 2 Max
Conv-2 3x3 128 1 RelLU
MaxPool-2 2x2 128 2 Max
Conv-3 3x3 256 1 ReLLU
MaxPool-3 2x2 256 2 Max
Conv-4 3x3 512 1 RelLU
MaxPool-4 2x2 512 2 Max
Conv-5 3x3 512 1 ReLU
MaxPool-5 2x2 512 2 Max
Conv-6 3x3 1024 1 RelLLU
MaxPool-6 2x2 1024 2 Max
Conv-7 3x3 1024 1 ReLLU
AveragePool-1 3x3 1024 0 Max
FC 1024 Nelasses - Softmax

testing, which approximates the expected prediction for an input, affected ImageNet and
Eco-set trained CNNs. For all of the CNNs with MC sampling, p = 0.2 was found to be the

best Gaussian dropout parameter value using validation testing.

Modelling human confidence using decision boundaries

The translation from internal representations in the human brain to decisions about object
categories has been modelled using linear decision boundaries (Carlson et al., 2014; Ritchie
and Carlson, 2016). These models successfully predict human reaction times, a proxy for
human confidence, for object recognition. A similar approach can be used to predict human
confidence scores from the internal representations of DNNs using the decision scores of
linear classifiers (Eberhardt et al., 2016). Eberhardt et al. (2016) created five non-overlapping
sets of 300 grey-scaled randomly sampled ImageNet images, each set containing 150 animal
and 150 non-animal images. For each image, 50 participants were asked to classify it as
animal or non-animal during a fixation task. Eberhardt et al. (2016) computed a human
confidence score for each image by considering the fraction of correct animal/non-animal
classifications across the 50 participants shown that image. In order to evaluate the ability
of sampling to improve prediction of human uncertainties, we trained logistic regression

models to classify animal and non-animal images from the internal representations of the

56 Adapting Bayesian deep neural networks to model human visual perception

Table 4.2 The accuracies for the ImageNet trained CNN on the ImageNet validation set and
the Eco-set trained CNNs on the Eco-set test set. For MC sampling, the mean and standard
deviation of the accuracies across 5 MC runs, each computed with 10 MC samples.

CNN ImageNet Accuracy (%) Eco-set Accuracy (%)
MAP 52.07 49.09
MC Training 55.43 53.36
MC Training and Testing 57.04 £0.13 55.06 £ 0.09

Eco-set trained CNNs. These logistic regression models were trained using leave-one-out
crossvalidation across the five non-overlapping image sets created by Eberhardt et al. (2016).
For the MAP CNN, the internal representation for layer m, z,,, for an image was deterministic,
leading to the logistic regression optimising:

For the stochastic CNN, the internal representation was stochastic, leading to logistic regres-

sion optimising:

max / POY1x, zm) p(zmlx)dz (4.6)

This integration is approximated using MC sampling with n samples:

1 n
max — Z p(y|x, zm) where 7 zm ~ p(zm|x) 4.7)
Won /=
For training, one MC sample was used, as in MC Gaussian dropout. For testing, ten MC
samples were used to approximate the predicted probability of class y for input x per:
1 n
Z (y|x,2%) where 25 ~ p(zn|x) (4.8)

p(ylx) ~

3 |

4.3 Results

4.3.1 Sampling improves accuracy for large-scale object recognition

Using random noise in deep neural networks during learning is often used to reduce overfitting
and increase generalisation performance (Srivastava et al., 2014). However, as discussed in
the previous chapter, sampling during testing can sometimes lead to accuracy improvements.
We found that for large-scale object recognition CNN that we trained, MC sampling at test
time led to significant accuracy improvements (Table 4.2) for both ImageNet and Eco-set.

4.3 Results

57

Frequency

Frequency

0.9r

0.8

0.7r

0.3f

0.2r

0.1

0.2

0.4 0.6 0.8
Predicted probability

(A) ImageNet

0.9r

0.8r

0.7p

0.3r

0.2r

0.1

—Ideal
No MC
—MC Training
- --MC Training and Testing

0.2

0.4 0.6 0.8
Predicted probability

(B) Eco-set

Fig. 4.1 Sampling during training and testing improves CNN calibration for large-scale
object recognition. The CNN calibration curves for (A) the ImageNet trained CNN on the

ImageNet validation set and (B) the Eco-set trained CNNs on the Eco-set test set.

58 Adapting Bayesian deep neural networks to model human visual perception

0.8—MC Training and Testing g 0.7H—MC Training and Testing

—Human (Avg.)

gon— 1 éo.e—
3 3
3
g o7t g o5
5 B
B 0eel] S04l
So. So.
2 °

5

Fig. 4.2 Sampling during training and testing improves the correlation between CNN-
based predicted probabilities and human confidence scores. The mean and standard
errors for the (A) accuracies and (B) correlations with human confidence scores for the
logistic regression models trained at each CNN. * denotes the "MC Training and Testing"
models have significantly higher (p-value<0.05,uncorr.) correlations with human confidence
scores than both the "MAP" and "MC Training" models per a paired t-test across the five
image sets.

4.3.2 Sampling improves the representation of uncertainty for large-

scale object recognition

Humans can accurately estimate their objective uncertainty for visual perception (Barthelmé
and Mamassian, 2009). A good computational model of human vision would also need
to properly represent its own uncertainty. A model correctly models its own uncertainty
(i.e. is well calibrated) if its predicted probabilities closely match the frequency of correctly
predicting the true label. To evaluate a network’s ability to model its own uncertainty, we
calculated the calibration of each of these methods’ probabilistic predictions to evaluate the
quality of the learned representations. We evaluated how calibrated a prediction was by: (1)
Binning test set predictions by predicted probability and then (2) calculating the frequency
that predictions in each predicted-probability bin correctly predicted a target label. The
larger the difference between these values and the x = y line, the worse the calibration of the
model. For both ImageNet and the Eco-set, sampling led to improved calibration of output

predictions (Figure 4.1).

4.3.3 Sampling improves the prediction of human confidence for image
classification
To evaluate whether sampling improved the prediction of human confidence scores, we

calculated the Pearson correlation coefficient between the output probabilities of the logistic
regression models trained using the representations of the Eco-set trained CNN layers and

4.4 Discussion 59

human confidence scores for animal/non-animal classification from ImageNet images. We
compared the correlations between the human confidence scores collected by Eberhardt et al.
(2016) and the CNN representation-based predicted probabilities of the MAP and the two
sampling models by performing pairwise paired t-tests across all layers and the five image
sets. MC sampling during both training and testing led to significantly improved correlation
between the human confidence scores collected by Eberhardt et al. (2016) and the CNN
representation-based predicted probabilities compared to the MAP and MC sampling only
during training. (p=1.31e-7 and p=2.23e-5, respectively). As found by Eberhardt et al. (2016),
the accuracy and correlation with human confidence scores of the linear classifiers generally
increases the deeper the layer, except that they decrease at the softmax layer (Figure 4.2.A).
This might have been caused by the reduced generality (Yosinski et al., 2014) and size of
the feature space. Using a paired t-test for each layer comparing across image sets showed
that MC sampling during training and testing improved prediction of human confidence
scores at deep hidden layers (Figure 4.2.B). This may be caused by the fact that sampling
only during training relies on the assumption of a linear network when approximating the
expectation of the output. This assumption is increasingly violated as we move up the layers
of the network, which may explain the widening of the gap between the human confidence

prediction accuracies of the two models.

4.4 Discussion

Biological neural networks are highly stochastic. This variance may code for uncertainty
in neural representations. In this work, we evaluated the effect of adding stochasticity (in
the form of Gaussian unit noise) and sampling-based inference on large scale CNNs. We
tested the effects of sampling during learning and during learning and inference on ImageNet
(Russakovsky et al., 2015) and Eco-set (Mehrer et al., 2017) trained CNNs. Sampling during
training and testing not only improved the accuracy and the representation of uncertainty
of CNNs for the ImageNet and Eco-set test sets, making the CNNs better computer vision
models, but also increased the correlation between the predictions of classifiers trained on
the internal representations of CNNs and human confidence scores, making them better
models of human visual perception. These improvements were caused by simply injecting
random Gaussian noise into the CNNs and integrating over different random noise samples.
This mechanism is not only simple, but also neurobiologically plausible. However, this is
likely not the only sampling paradigm that can lead to improvements, as discussed in the
previous chapter. While these results are far from conclusive, they do add to the evidence that

60 Adapting Bayesian deep neural networks to model human visual perception

Bayesian models predict human behaviour and that sampling in biological neural networks

could be a means of representing uncertainty for visual perception in the human brain.

Chapter 5
Conclusion

Deep neural networks (DNNs) have revolutionised machine learning and Al, and have
recently moved back into computational neuroscience. These models reach human-level
performance in certain tasks, and early experiments indicate that they are capable of capturing
characteristics of cortical function that cannot be captured with shallow models. DNNs offer
an intriguing framework that enables computational neuroscientists to address fundamental
questions about brain computation in the developing and adult brain, particularly for visual
perception. In this thesis we focus on two areas of investigation: (1) constraining the
representational spaces of DNNs using a reference representational distance matrix (RDM)
and (2) using stochasticity in DNNs to implement variational approximations to Bayesian
inference through sampling.

It is important for potential models of neural computation to both match human behaviour
and explain neural data. Historically, models have been mainly constrained by neural data,
but the difficulty of collecting, and thus the scarcity, of this data makes constraining the
complex models models required for complicated tasks infeasible. DNNs are normally
trained only to perform a task. In this thesis, we proposed deep representational distance
learning (RDL), which constrains the internal representations of a DNN by pulling its RDM
towards a reference RDM. We showed that for machine learning benchmarks this method can
transfer information from a teacher model to a DNN through an RDM. This constraint led to
a significant increase in test accuracy. In the future, this method could be used to constrain
large scale DNNs using RDMs computed from neural data, such as single cell recordings or
functional magnetic resonance imaging (fMRI) data.

High-level human behaviour and decision making often mirrors Bayesian models. A
prominent computational neuroscience theory is that this is performed by sampling in the
human brain, either at neurons or synapses. In this thesis, we evaluated how stochasticity and

sampling affected DNNs trained to perform object recognition. We showed that sampling

62 Conclusion

DNN weights using a variety of Bernoulli- and Gaussian-based methods approximates
Bayesian inference in neural networks and leads to better representation of uncertainty for
benchmark object recognition datasets. We also found that sampling only using Gaussian
unit noise during learning and inference resulted in better prediction of human confidence
for image classification. This adds to the evidence that Bayesian methods can model human
perceptual decision making at the computational level. The tested methods were trained
only with supervised learning, which limits the claims that can be made about learning. An
approach that would be more realistic from a neuroscience perspective would seamlessly
interleave unsupervised and supervised training, since supervised examples are limited in
the real world. This is an area of research that we plan to explore in the future. In the future,
we will also test the effects of sampling on internal representations in DNNs and evaluate
whether sampling increases the similarity between DNN representational spaces and those
defined by neural data (e.g. RDMs calculated using fMRI recording of the visual ventral
stream).

DNNSs enhance the investigative repertoire of the computational neuroscientist. Under-
standing neural computations is ultimately an interdisciplinary endeavour. Experimental
neuroscientists will have to collaborate with machine learning researchers if we are to under-
stand how the brain works. With computers approaching the brain in computational power,

we are entering a truly exciting phase of computational neuroscience.

References

Laurence Aitchison and Peter E. Latham. Synaptic sampling: A connection between psp
variability and uncertainty explains neurophysiological observations. arXiv preprint
arXiv:1505.04544, 2015.

Laurence Aitchison and Mété Lengyel. The hamiltonian brain: Efficient probabilistic
inference with excitatory-inhibitory neural circuit dynamics. PLOS Computational Biology,
12(12):e1005186, 2016.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural
Information Processing Systems, pages 2654-2662, 2014.

David Barber and Christopher M. Bishop. Ensemble learning in bayesian neural networks.
NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 168:215-238, 1998.

Horace B. Barlow. Possible principles underlying the transformations of sensory messages.
1961.

Gladys Barragan-Jason, Gabriel Besson, Mathieu Ceccaldi, and Emmanuel J. Barbeau. Fast
and famous: looking for the fastest speed at which a face can be recognized. Frontiers in
Psychology, 4:100, 2013.

Simon Barthelmé and Pascal Mamassian. Evaluation of objective uncertainty in the visual
system. PLoS Computational Biology, 5(9):e1000504, 2009.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373—1396, 2003.

Anthony J. Bell and Terrence J. Sejnowski. The “independent components” of natural scenes
are edge filters. Vision Research, 37(23):3327-3338, 1997.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning.
Unsupervised and Transfer Learning Challenges in Machine Learning, 7:19, 2012.

Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire of complex
cell properties. Journal of Vision, 5(6):9-9, 2005.

Pietro Berkes, Gergd Orbdn, Mété Lengyel, and J6zsef Fiser. Spontaneous cortical activity
reveals hallmarks of an optimal internal model of the environment. Science, 331(6013):
83-87, 2011.

Chris M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural
Computation, 7(1):108-116, 1995.

64 References

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural network. In Proceedings of the International Conference on Machine
Learning, pages 1613-1622, 2015.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the ACM International Conference on Knowledge Discovery and Data
Mining, pages 535-541, 2006.

Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics as
sampling: a model for stochastic computation in recurrent networks of spiking neurons.
PLoS Computational Biology, 7(11):e1002211, 2011.

Jordan Burgess, James Robert Lloyd, and Zoubin Ghahramani. One-shot learning in discrim-
inative neural networks. In NIPS Bayesian Deep Learning Workshop, 2016.

Charles F. Cadieu, Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego Ardila, Ethan A.
Solomon, Najib J. Majaj, and James J. DiCarlo. Deep neural networks rival the representa-
tion of primate it cortex for core visual object recognition. PLoS Computational Biology,
10(12):e1003963, 2014.

Matteo Carandini and David J. Heeger. Normalization as a canonical neural computation.
Nature Reviews Neuroscience, 13(1):51, 2012.

Thomas A. Carlson, J. Brendan Ritchie, Nikolaus Kriegeskorte, Samir Durvasula, and
Junsheng Ma. Reaction time for object categorization is predicted by representational
distance. Journal of cognitive neuroscience, 26(1):132—-142, 2014.

Radoslaw M. Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva.
Deep neural networks predict hierarchical spatio-temporal cortical dynamics of human
visual object recognition. arXiv preprint arXiv:1601.02970, 2016.

Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, and Aude Oliva. Dynamics of
scene representations in the human brain revealed by magnetoencephalography and deep
neural networks. Neurolmage, 153:346-358, 2017.

Carl F. Craver. Explaining the brain: Mechanisms and the mosaic unity of neuroscience.
2007.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning
for speech recognition and related applications: An overview. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 8599—8603,
2013.

Jorn Diedrichsen and Nikolaus Kriegeskorte. Representational models: A common frame-
work for understanding encoding, pattern-component, and representational-similarity
analysis. PLoS Computational Biology, 13(4):e1005508, 2017.

Serge O. Dumoulin and Brian A. Wandell. Population receptive field estimates in human
visual cortex. Neurolmage, 39(2):647-660, 2008.

References 65

Sven Eberhardt, Jonah G. Cader, and Thomas Serre. How deep is the feature analysis

underlying rapid visual categorization? In Advances in Neural Information Processing
Systems, pages 1100-1108, 2016.

Allen L. Edwards. Note on the “correction for continuity” in testing the significance of the
difference between correlated proportions. Psychometrika, 13(3):185-187, 1948.

Chris Eliasmith and Oliver Trujillo. The use and abuse of large-scale brain models. Current
Opinion in Neurobiology, 25:1-6, 2014.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent,
and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of
Machine Learning Research, 11(Feb):625-660, 2010.

Holger Finger and Peter Konig. Phase synchrony facilitates binding and segmentation
of natural images in a coupled neural oscillator network. Frontiers in Computational
Neuroscience, 7:195, 2014.

Jozsef Fiser, Pietro Berkes, Gergd Orban, and Maté Lengyel. Statistically optimal perception
and learning: from behavior to neural representations, 2010a.

Jozsef Fiser, Pietro Berkes, Gergd Orban, and Maté Lengyel. Statistically optimal perception
and learning: from behavior to neural representations. Trends in Cognitive Sciences, 14(3):
119-130, 2010b.

Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparseness lead
to place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166,
2007.

Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant object recognition with

slow feature analysis. In International Conference on Artificial Neural Networks, pages
961-970, 2008.

Jeremy Freeman and Eero P. Simoncelli. Metamers of the ventral stream. Nature Neuro-
science, 14(9):1195, 2011.

Winrich A. Freiwald and Doris Y. Tsao. Functional compartmentalization and viewpoint
generalization within the macaque face-processing system. Science, 330(6005):845-851,
2010.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition. pages 267-285, 1982.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Insights and
applications. In ICML Deep Learning Workshop, 2015.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli
approximate variational inference. In ICLR Workshop, 2016.

Edward 1. George and Robert E. McCulloch. Approaches for bayesian variable selection.
Statistica Sinica, pages 339-373, 1997.

66 References

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Robbe L. T. Goris, J. Anthony Movshon, and Eero P. Simoncelli. Partitioning neuronal
variability. Nature Neuroscience, 17(6):858, 2014.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems, pages 2348-2356, 2011.

Thomas L. Griffiths, Charles Kemp, and Joshua B. Tenenbaum. Bayesian models of cognition.
Cambridge University Press, 2008.

Umut Giiglii and Marcel A. J. van Gerven. Unsupervised feature learning improves prediction
of human brain activity in response to natural images. PLoS Computational Biology, 10
(8):€1003724, 2014.

Umut Giiclii and Marcel A. J. van Gerven. Deep neural networks reveal a gradient in the

complexity of neural representations across the ventral stream. Journal of Neuroscience,
35(27):10005-10014, 2015.

Jordan Guerguiev, Timothy P. Lillicrap, and Blake A. Richards. Towards deep learning with
segregated dendrites. eLife, 6, 2017.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learning for image
recognition. pages 770-778, 2016.

Linda Henriksson, Marieke Mur, and Nikolaus Kriegeskorte. Faciotopy—a face-feature map
with face-like topology in the human occipital face area. Cortex, 72:156-167, 2015.

José Miguel Herndndez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In Proceedings of the International Conference on
Machine Learning, pages 1861-1869, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504-507, 2006.

Geoffrey E. Hinton and Drew Van Camp. Keeping the neural networks simple by mini-
mizing the description length of the weights. In Proceedings of the ACM Conference on
Computational Learning Theory, pages 5—13, 1993.

Lasse Holmstrom and Petri Koistinen. Using additive noise in back-propagation training.
IEEE Transactions on Neural Networks, 3(1):24-38, 1992.

Ha Hong, Daniel L. K. Yamins, Najib J. Majaj, and James J. DiCarlo. Explicit information
for category-orthogonal object properties increases along the ventral stream. Nature
Neuroscience, 19(4):613, 2016.

Patrik O Hoyer and Aapo Hyvirinen. Interpreting neural response variability as monte carlo
sampling of the posterior. In Advances in Neural Information Processing Systems, pages
293-300, 2003.

References 67

David H. Hubel and Torsten N. Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. Journal of Physiology, 148(3):574-591, 1959.

David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. Journal of Physiology, 160(1):106—154, 1962.

Aapo Hyvirinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis, vol-
ume 46. John Wiley & Sons, 2004.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the International Conference on
Machine Learning, pages 448—-456, 2015.

Hemant Ishwaran and J. Sunil Rao. Spike and slab variable selection: frequentist and
bayesian strategies. Annals of Statistics, pages 730-773, 2005.

Judson P. Jones and Larry A. Palmer. An evaluation of the two-dimensional gabor filter
model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6):
1233-1258, 1987.

Pasi Jylidnki, Aapo Nummenmaa, and Aki Vehtari. Expectation propagation for neural
networks with sparsity-promoting priors. Journal of Machine Learning Research, 15(1):
1849-1901, 2014.

David Kappel, Stefan Habenschuss, Robert Legenstein, and Wolfgang Maass. Synaptic
sampling: A bayesian approach to neural network plasticity and rewiring. In Advances in
Neural Information Processing Systems, 2015.

Kendrick N. Kay. Principles for models of neural information processing. Neurolmage,
2017.

Kendrick N. Kay, Thomas Naselaris, Ryan J. Prenger, and Jack L. Gallant. Identifying
natural images from human brain activity. Nature, 452(7185):352, 2008.

Christoph Kayser, Wolfgang Einhiuser, Olaf Diimmer, Peter Konig, and Konrad Koérding.
Extracting slow subspaces from natural videos leads to complex cells. pages 1075-1080,
2001.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? pages 5580-5590, 2017.

Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsu-
pervised, models may explain it cortical representation. PLoS Computational Biology, 10
(11):e1003915, 2014.

Saeed R. Kheradpisheh, Masoud Ghodrati, Mohammad Ganjtabesh, and Timothée Masque-
lier. Humans and deep networks largely agree on which kinds of variation make object
recognition harder. Frontiers in Computational Neuroscience, 10:92, 2016.

Tim C. Kietzmann, Jascha D. Swisher, Peter Konig, and Frank Tong. Prevalence of selectivity
for mirror-symmetric views of faces in the ventral and dorsal visual pathways. Journal of
Neuroscience, 32(34):11763-11772, 2012.

68 References

Tim C. Kietzmann, Anna L. Gert, Frank Tong, and Peter Konig. Representational dynamics
of facial viewpoint encoding. Journal of Cognitive Neuroscience, 2017a.

Tim C. Kietzmann, Patrick McClure, and Nikolaus Kriegeskorte. Deep neural networks in
computational neuroscience. bioRxiv, page 133504, 2017b.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local

reparameterization trick. In Advances in Neural Information Processing Systems, pages
2575-2583, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521-3526, 2017.

David C. Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural
coding and computation. Trends in Neurosciences, 27(12):712-719, 2004.

Konrad P. Kording, Christoph Kayser, Wolfgang Einhauser, and Peter Konig. How are com-
plex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology,
91(1):206-212, 2004.

Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological
vision and brain information processing. Annual Review of Vision Science, 1:417-446,
2015.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A. Bandettini. Representational similarity

analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuro-
science, 2:4, 2008.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images,
20009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems,
pages 1097-1105, 2012.

Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1):1-27, 1964.

Jonas Kubilius, Stefania Bracci, and Hans P. Op de Beeck. Deep neural networks as a
computational model for human shape sensitivity. PLoS Computational Biology, 12(4):
e1004896, 2016.

M. Kiimmerer, L. Theis, and M. Bethge. Deep gaze i: Boosting saliency prediction with fea-
ture maps trained on imagenet. In International Conference on Learning Representations,
2015.

Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In The International Joint Conference on Neural Networks, pages 1-8, 2010.

References 69

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time
series. 1995.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436444, 2015.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. arXiv preprint arXiv:1409.5185, 2014.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target prop-
agation. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 498-515, 2015.

Joel Z. Leibo, Qianli Liao, Fabio Anselmi, Winrich A. Freiwald, and Tomaso Poggio. View-
tolerant face recognition and hebbian learning imply mirror-symmetric neural tuning to
head orientation. Current biology, 27(1):62-67, 2017.

Ifat Levy, Uri Hasson, Galia Avidan, Talma Hendler, and Rafael Malach. Center—periphery
organization of human object areas. Nature Neuroscience, 4(5):533, 2001.

Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object categories. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(4):594-611, 2006.

Nuo Li and James J. DiCarlo. Unsupervised natural experience rapidly alters invariant object
representation in visual cortex. Science, 321(5895):1502—-1507, 2008.

Nuo Li and James J. DiCarlo. Unsupervised natural visual experience rapidly reshapes
size-invariant object representation in inferior temporal cortex. Neuron, 67(6):1062-1075,
2010.

Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object recognition.
In The IEEE Conference on Computer Vision and Pattern Recognition, pages 3367-3375,
2015.

Qianli Liao and Tomaso Poggio. Bridging the gaps between residual learning, recurrent
neural networks and visual cortex. arXiv preprint arXiv:1604.03640, 2016.

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random
synaptic feedback weights support error backpropagation for deep learning. Nature
Communications, 7:13276, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

Gaélle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines
using selective sampling. In Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason
Weston, editors, Large Scale Kernel Machines, pages 301-320. MIT Press, Cambridge,
MA., 2007.

70 References

Christos Louizos. Smart regularization of deep architectures. Master’s thesis, University of
Amsterdam, 2015.

Wei Ji Ma, Jeffrey M. Beck, Peter E. Latham, and Alexandre Pouget. Bayesian inference
with probabilistic population codes. Nature Neuroscience, 9(11):1432-1438, 2006.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Computation, 4(3):448-472, 1992.

David Madigan and Adrian E. Raftery. Model selection and accounting for model uncertainty
in graphical models using occam’s window. Journal of the American Statistical Association,
89(428):1535-1546, 1994.

Najib J. Majaj, Ha Hong, Ethan A. Solomon, and James J. DiCarlo. Simple learned weighted
sums of inferior temporal neuronal firing rates accurately predict human core object
recognition performance. Journal of Neuroscience, 35(39):13402-13418, 2015.

Adam H. Marblestone, Greg Wayne, and Konrad P. Kording. Toward an integration of deep
learning and neuroscience. Frontiers in Computational Neuroscience, 10:94, 2016.

Panos Z. Marmarelis and Vasilis Z. Marmarelis. The white-noise method in system identifi-
cation. In Analysis of Physiological Systems, pages 131-180. 1978.

David Marr and Tomaso Poggio. From understanding computation to understanding neural
circuitry. 1976.

Narihisa Matsumoto, Masato Okada, Yasuko Sugase-Miyamoto, Shigeru Yamane, and Kenji
Kawano. Population dynamics of face-responsive neurons in the inferior temporal cortex.
Cerebral Cortex, 15(8):1103-1112, 2004.

Patrick McClure and Nikolaus Kriegeskorte. Representational distance learning for deep
neural networks. Frontiers in Computational Neuroscience, 10:131, 2016.

Patrick McClure and Nikolaus Kriegeskorte. Representation of uncertainty in deep neural
networks through sampling. NIPS Bayesian Deep Learning Workshop, 2017.

Johannes Mehrer, Tim C. Kietzmann, and Nikolaus Kriegeskorte. Deep neural networks
trained on ecologically relevant categories better explain human it. In Conference on
Cognitive Computational Neuroscience, 2017.

Toby J. Mitchell and John J. Beauchamp. Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 83(404):1023-1032, 1988.

Tom M. Mitchell, Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L.
Malave, Robert A. Mason, and Marcel Adam Just. Predicting human brain activity
associated with the meanings of nouns. Science, 320(5880):1191-1195, 2008.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of

visual attention. In Advances in Neural Information Processing Systems, pages 2204-2212,
2014.

References 71

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Rubén Moreno-Bote, David C. Knill, and Alexandre Pouget. Bayesian sampling in visual
perception. Proceedings of the National Academy of Sciences, 108(30):12491-12496,
2011.

Marieke Mur, Mirjam Meys, Jerzy Bodurka, Rainer Goebel, Peter A Bandettini, and Nikolaus
Kriegeskorte. Human object-similarity judgments reflect and transcend the primate-it
object representation. Frontiers in Psychology, 4:128, 2013.

Thomas Naselaris, Ryan J. Prenger, Kendrick N. Kay, Michael Oliver, and Jack L. Gallant.

Bayesian reconstruction of natural images from human brain activity. Neuron, 63(6):
902-915, 2009.

Thomas Naselaris, Kendrick N. Kay, Shinji Nishimoto, and Jack L. Gallant. Encoding and
decoding in fmri. Neurolmage, 56(2):400-410, 2011.

Radford M. Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In The IEEE Conference on Computer
Vision and Pattern Recognition, pages 427-436, 2015.

Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Nikolaus
Kriegeskorte. A toolbox for representational similarity analysis. PLoS Computational
Biology, 10(4):e1003553, 2014.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607, 1996.

Bruno A. Olshausen and David J. Field. How close are we to understanding v1? Neural
Computation, 17(8):1665-1699, 2005.

Gergd Orban, Pietro Berkes, J6zsef Fiser, and Maté Lengyel. Neural variability and sampling-
based probabilistic representations in the visual cortex. Neuron, 92(2):530-543, 2016a.

Gerg6 Orban, Pietro Berkes, Jozsef Fiser, and Maté Lengyel. Neural variability and sampling-
based probabilistic representations in the visual cortex. Neuron, 92(2):530-543, 2016b.

Randall C. O’Reilly. Biologically plausible error-driven learning using local activation
differences: The generalized recirculation algorithm. Neural Computation, 8(5):895-938,
1996.

David P. Reichert and Thomas Serre. Neuronal synchrony in complex-valued deep networks.
arXiv preprint arXiv:1312.6115, 2013.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the International
Conference on Machine Learning, pages 1278-1286, 2014.

72 References

Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11):1019, 1999.

J. Brendan Ritchie and Thomas A. Carlson. Neural decoding and “inner” psychophysics:
a distance-to-bound approach for linking mind, brain, and behavior. Frontiers in Neuro-
science, 10:190, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. International journal of Computer Vision, 115(3):211-252,
2015.

Hasim Sak, Andrew Senior, and Frangoise Beaufays. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition. arXiv
preprint arXiv:1402.1128, 2014.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems, pages 901-901, 2016.

K. Seeliger, M. Fritsche, U. Giiclii, S. Schoenmakers, J.-M. Schoffelen, SE Bosch, and
M. A. J. van Gerven. Cnn-based encoding and decoding of visual object recognition in
space and time. bioRxiv, page 118091, 2017.

Markus Siegel, Tobias H. Donner, and Andreas K. Engel. Spectral fingerprints of large-scale
neuronal interactions. Nature Reviews Neuroscience, 13(2):121-134, 2012.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

Eero P. Simoncelli and Bruno A. Olshausen. Natural image statistics and neural representation.
Annual Review of Neuroscience, 24(1):1193-1216, 2001.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Courtney J. Spoerer, Patrick McClure, and Nikolaus Kriegeskorte. Recurrent convolutional
neural networks: a better model of biological object recognition. Frontiers in Psychology,
8:1551, 2017.

References 73

Nitish Srivastava and Ruslan R. Salakhutdinov. Discriminative transfer learning with tree-
based priors. In Advances in Neural Information Processing Systems, pages 2094-2102,
2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929-1958, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

Yasuko Sugase, Shigeru Yamane, Shoogo Ueno, and Kenji Kawano. Global and fine
information coded by single neurons in the temporal visual cortex. Nature, 400(6747):
869-873, 1999.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned face representations are sparse,
selective, and robust. 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104-3112,
2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. 2015.

Yaniv Taigman, Ming Yang, Marc’ Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In The IEEE Conference on
Computer Vision and Pattern Recognition, pages 1701-1708, 2014.

Amirhossein Tavanaei and Anthony S. Maida. Bio-inspired spiking convolutional neural net-
work using layer-wise sparse coding and stdp learning. arXiv preprint arXiv:1611.03000,
2016.

Michalis K Titsias and Miguel Lazaro-Gredilla. Spike and slab variational inference for
multi-task and multiple kernel learning. In Advances in Neural Information Processing
Systems, pages 2339-2347, 2011.

Richard Turner and Maneesh Sahani. A maximum-likelihood interpretation for slow feature
analysis. Neural Computation, 19(4):1022-1038, 2007.

Rafael Uetz and Sven Behnke. Locally-connected hierarchical neural networks for gpu-
accelerated object recognition. NIPS Workshop on Large-scale Machine Learning: Paral-
lelism and Massive Datasets, 2009.

Rufin VanRullen. Perception science in the age of deep neural networks. Frontiers in
Psychology, 8:142, 2017.

Iris Vilares and Konrad Kording. Bayesian models: the structure of the world, uncertainty,
behavior, and the brain. Annals of the New York Academy of Sciences, 1224(1):22-39,
2011.

74 References

Guy Wallis and Heinrich H. Biilthoff. Effects of temporal association on recognition memory.
Proceedings of the National Academy of Sciences, 98(8):4800-4804, 2001.

Guy Wallis and Edmund T. Rolls. Invariant face and object recognition in the visual system.
Progress in Neurobiology, 51(2):167-194, 1997.

Thomas S. A. Wallis, Matthias Bethge, and Felix A. Wichmann. Testing models of peripheral
encoding using metamerism in an oddity paradigm. Journal of Vision, 16(2):4, 2016.

Dirk B. Walther, Eamon Caddigan, Li Fei-Fei, and Diane M. Beck. Natural scene categories
revealed in distributed patterns of activity in the human brain. Journal of Neuroscience, 29
(34):10573-10581, 2009.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In Proceedings of the International Conference on Machine
Learning, pages 1058-1066, 2013.

Liwei Wang, Chen-Yu Lee, Zhuowen Tu, and Svetlana Lazebnik. Training deeper convolu-
tional networks with deep supervision. arXiv preprint arXiv:1505.02496, 2015.

Daniel Weiller, Robert Mirtin, Sven Dihne, Andreas K. Engel, and Peter Konig. Involving
motor capabilities in the formation of sensory space representations. PloS one, 5(4):
e10377, 2010.

Max Welling and Yee W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the International Conference on Machine Learning, pages 681-688,
2011.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via
semi-supervised embedding. pages 639-655, 2012.

James C. R. Whittington and Rafal Bogacz. An approximation of the error backpropagation
algorithm in a predictive coding network with local hebbian synaptic plasticity. Neural
Computation, 29(5):1229-1262, 2017.

Michael C.-K. Wu, Stephen V. David, and Jack L. Gallant. Complete functional characteri-
zation of sensory neurons by system identification. Annual Review of Neuroscience, 29:
477-505, 2006.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural

machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Dean Wyatte, Tim Curran, and Randall O’Reilly. The limits of feedforward vision: recurrent
processing promotes robust object recognition when objects are degraded. Journal of
Cognitive Neuroscience, 24(11):2248-2261, 2012.

Dean Wyatte, David J. Jilk, and Randall C. O’Reilly. Early recurrent feedback facilitates

visual object recognition under challenging conditions. Frontiers in Psychology, 5:674,
2014.

References 75

Reto Wyss, Peter Konig, and Paul FE. M. J. Verschure. A model of the ventral visual system
based on temporal stability and local memory. PLoS Biology, 4(5):e120, 2006.

Daniel L. K. Yamins and James J. DiCarlo. Using goal-driven deep learning models to
understand sensory cortex. Nature Neuroscience, 19(3):356, 2016.

Daniel L. K. Yamins, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and
James J. DiCarlo. Performance-optimized hierarchical models predict neural responses

in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23):
8619-8624, 2014.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features

in deep neural networks? In Advances in Neural Information Processing Systems, pages
3320-3328, 2014.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision, pages 818-833, 2014.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learn-
ing deep features for scene recognition using places database. In Advances in Neural
Information Processing Systems, pages 487-495, 2014.

Appendix A

A.1 L2 regularisation and the KLD between Gaussians

The Kullback—Leibler divergence (KLD) between A" (i, qu) and A (U, 0'3) can be calcu-
lated using:

(Uq _“p)z Op G‘? !
KL(g(w: ;)= aer e a3 !
(gowi)|l p(wi j)) 202 +log s, + 202 2 (A.1)

In the case where 4 (l,, Gg) is a pre-defined prior and oy is not a function of the
learnable parameters V':

(Hg — .up)z

A2
02 (A2)

argmin KL(gq(wij)||p(wi,;)) = argmin
%4 \%

For i, = 0, this is equivalent to L2 regularisation where the L2-coefficient is equal to
1/ O'I%. However, in the case where 0, is a function of V, such as for Gaussian dropout/dropconnect,
this equivalence does not hold. Kingma et al. (2015) used a log-uniform prior instead of
a Gaussian prior in order to bypass this and make the KLD not a function of V. In our
derivations, we minimise a lower bound of Equation A.1 constructed using the fact that the

sum of the terms that include o, and the constant term is greater than or equal to O:

(Mg — .up)z

A3
o2 (A3)

KL(g(wij)|lp(wij)) >

Note that a similar lower bound can be derived for the KLD between two multivariate

Gaussians.

78

A.2 Gaussian ''reparameterization trick"

As discussed in Kingma et al. (2015), for a matrix W of Gaussian random variables can be
sampled using the "reparamaterization trick":

wij~ A (vij vy) (A4)

wij = f(vij,&.j) = vij+ \/&Vi,jgi,j (A.5)

where g ; is sampled from .4°(0,1), o« = p/(1 — p), and p is the dropout or dropconnect
drop probability. Given a deterministic, differentiable, and monotonic mapping W = f(V, €),
qv(W)dW = p(&)de. As aresult:

[avmiwaw = [peywyde = [ple)ir(v.e)ae (A6)

A.3 MC Gaussian Dropconnect and Dropout

For approximate inference, variational distribution gy (W) is learned by maximising the
log-evidence lower bound over parameters V (Barber and Bishop, 1998; Blundell et al., 2015;
Graves, 2011; Hinton and Van Camp, 1993):

108(P(Diran)) = [108 P(DiranW)ay W)W = KLy W)l|p(W)) (AT

For either Gaussian dropout or dropconnect, each element of W is sampled from the
Gaussian distribution A" (v; j, Ocvl% j), similar to the methods discussed by Kingma et al.
(2015) and ?. W can then be sampled using the Gaussian "reparameterization trick", which

allows Equation A.20 to be rewritten as:

log(P(Drrain)) = /8 log p(Dirain|W)p(€)de — KL(qv(W)[[p(W)) (A.8)

where € is a vector containing each g; ;.

This results in the following minimisation objective function:

L= — / 10g(p(Dyrain|W)) p(€)de + KL(qy (W)|[p(W)) (A.9)

By using L2 regularisation, we are optimising a lower-bound of the KLD between gy (W)
and the prior p(w; ;) = 4 (0,A~1) as previously shown:

A.3 MC Gaussian Dropconnect and Dropout 79

— A’
L > D= / 1og p(Dirain|W)p(e)de + 5 |[vec(V)| (A.10)
€

where € is a vector containing each g; ;.
Approximating using Monte Carlo integration for training (Eq. A.24) and testing (Eq.
A.25):

— 1& A
Ly = Zlogp(Dtm,-n\Wk)—l—EHvec(V)H% (A.11)
k=1
1 n
Dtest 7_1 Z Dtestlw (A12)

where WX =V +V o ek and Sk- ~ 4(0,1) for Gaussian dropconnect or 8 ~ A (0,1) for

Gaussian dropout.

A.3.1 MC spike-and-slab Dropout

For MC spike-and-slab dropout, the weight matrix W = Bo G where b; , ~ Bern(1 — p,,) and
gij~N(ij, szi‘j), similar to the method discussed by Titsias and Lazaro-Gredilla (2011).
Instead of directly performing variational inference for p(W|Dy4in), we find a variational
distribution, gy (B, G) for p(B, G|D;4in) using:

108(p(Dirain)) > Y / 10g p(Dyrain| B, G)qv (B, G)dG
B /G (A.13)

~KL(gv(B.G)||p(B.G))

Assuming independence between the random variables B and G, ¢(B,G) = q(B)q(G),
so:

log(p(Dtrain)) ZZ/ logp(Dtrain|B7G)CI(B)CIV(G)dG
B /G (A.14)

—KL(q(B)||p(B)) — KL(qv (G)||p(G))

For a spike-and-slab distribution, each element of G is independently sampled from
a Gaussian distribution, .4 (v; j, 62) where o, = OC/,LV G can be sampled using the
Gaussian "reparameterization trick". ThlS allows Equatlon A 27 to be rewritten as:

80

log(p(Dirain)) ZZ/IOgP(Dtrain|BaG)P(e)Q(B)dS
B 7€ (A.15)

—KL(q(B)||p(B)) — KL(qv(G)|[p(G))

€ is a vector containing each §&; ;.

This results in the following minimisation objective function:

- /8 log p(Dirain|B, G)p(€)q(B)de + KL(q(B)||p(B)) + KL(qv (G)||p(G)
(A.16)

Using Bern(1 — py,) as a prior for each element of B, where py, is also used for the
spike-and-slab posterior, leads to KL(g(B)||p(B)) being equal to zero. Using a prior of
(0, 61%) for each element of G leads to L2-regularisation being a lowerbound of the KLD
between gy (G) and .4 (0,A~1):

— A
2,2 2y 1= =Y, [108p(DiranlB. O)p(e)q(B)de + 5 Ivec(V)| (A17)
B

where € is a vector containing each g; ;.
Approximating using Monte Carlo integration for training (Eq. A.31) and testing (Eq.
A.32):

—~ 1 & A
Z, = - Z logp(D,min|Bk, Gk) + 5||vec(V)||% (A.18)
k=1
1 ¢ k -~k
Dlesl Z Z DtesllB 7G) (A19)

where b}, ~ Bern(1— pg,), G* =V +Voek, and g ;j ~ .#(0,1).

For approximate inference, variational distribution gy (W) is learned by maximising the
log-evidence lower bound over parameters V (Barber and Bishop, 1998; Blundell et al., 2015;
Graves, 2011; Hinton and Van Camp, 1993):

log(p(Dtrain)) Z /logp(Dlrain|W)QV(W)dW_KL(QV(W)HP(W)) (AZO)

For either Gaussian dropout or dropconnect, each element of W is sampled from the
Gaussian distribution A4 (v; ;, avl% j), similar to the methods discussed in ? and Kingma et al.
(2015). W can then be sampled using the Gaussian "reparameterization trick", which allows

A.3 MC Gaussian Dropconnect and Dropout 81

Equation A.20 to be rewritten as:

108(p(Drrain)) = | 108 p(DivinW)p(e)de — KLgy (W) [p(W)) (A21)

where € is a vector containing each g; ;.

This results in the following minimisation objective function:

Ly = — / 10g(p(Dirain|W)) p(€)de + KL(qy (W)||p(W)) (A.22)

By using L2 regularisation, we are optimising a lower-bound of the KLD between gy (W)
and the prior p(w; j) = 4 (0,271) as previously shown:

~ A
2,2 Z; =~ [108p(DirunW)p(e)de + 5 [vec(V) 3 (A23)

where € is a vector containing each g; ;.
Approximating using Monte Carlo integration for training (Eq. A.24) and testing (Eq.
A.25):

—~ 1 ¢ A

Ly~ Y log p(Drrain|WX) + 5|yvec(V)|y§ (A.24)
k=1
Dtest ’; Z Dtestlwk (A25)

where WX =V 4V ok and €k~ ~ 4 (0,1) for Gaussian dropconnect or ek ~ A4 (0,1) for

Gaussian dropout.

A.3.2 MC spike-and-slab Dropout

For MC spike-and-slab dropout, the weight matrix W = Bo G where b; , ~ Bern(1 — p,,) and
gij~ AN (i, szivj), similar to the method discussed by Titsias and Lazaro-Gredilla (2011).
Instead of directly performing variational inference for p(W|Dy,4in), we find a variational
distribution, gy (B, G) for p(B, G|Dyr4in) using:

10g(p(Diyain)) > Y. / 10g p(Dyrain| B, G)qv (B, G)dG
B /G (A.26)

—KL(qv(B,G)||p(B,G))

82

Assuming independence between the random variables B and G, ¢(B,G) = q(B)q(G),

10g(p (Do) 2 % /G 10g p(Dyrain| B, G)q(B)qv (G)dG

—KL(q(B)[|p(B)) — KL(qv(G)||p(G))

For a spike-and-slab distribution, each element of G is independently sampled from

(A.27)

a Gaussian distribution, 4" (v; j, szij), where szij = oc,uvzij. G can be sampled using the

Gaussian "reparameterization trick". This allows Equation A.27 to be rewritten as:

log(p(Duin)) 2 1 / 0g p(Diyain| B, G) p(€)q(B)de

(A.28)
—KL(q(B)||p(B)) — KL(qv(G)||p(G))
€ is a vector containing each §&; ;.
This results in the following minimisation objective function:
&, ==Y, /8 log p(Dirain|B, G)p(€)q(B)de + KL(q(B)||p(B)) + KL(qv (G)||p(G)
B
(A.29)

Using Bern(1 — py,) as a prior for each element of B, wj, leads to KL(q(B)||p(B)) being
equal to zero. Using a prior of 4 (0,0) for each element of G leads to L2-regularisation
being a lowerbound of the KLD between gy (G) and .4 (0,A71):

—~ A
2, > Zy =~ Y, [108 p(DirainlB.G)p(e)a(B)de + 7 [vec(V)]} (A30)
B Y€
where € is a vector containing each g; ;.

Approximating using Monte Carlo integration for training (Eq. A.31) and testing (Eq.
A.32):

~ 1 & A
Ly Y log p(Dirain| B, G*) + §||vec(V)||% (A.31)
k=1
1 ¢ k ~k
P(Drest) = EZ p(Diest|B*, G) (A.32)

where bﬁ* ~ Bern(1 —pg,), Gk =V +Voek and g j ~ A (0,1).

A.4 Additional Section 3.3.2 Results 83

A.4 Additional Section 3.3.2 Results

0.25 0.25 =5
BDC
< 0.8 MCBDC
5 " 0.2 U 0.2]_gpc
w w | T) --MCGDC
506 Z0.15 = 0.15/_meoo
© 9 il
3 = =
=04 5 0.1 5 04
@ S S
5) (@] O
0.2 0.05 0.05
% 05 1 % 05 1 % 05 1
Noise StD. Noise StD. Classification Error
(A) (B) ©

Fig. A.1 Sampling at test time allows for higher variance sampling to be used during
training without inducing network failure. The CIFAR-10 (A) classification error for
additive Gaussian noise using standard deviations St.D of 0, 0.25, 0.5, 0.75, and 1, (B) mean
squared error (MSE) between the x = y line and the calibration plot (i.e. the frequency of
the true label vs predicted probability of that label) for varying Gaussian image noise StD.,
and (C) calibration MSE versus the classification error for predicitons across all noise StD.
for Bernoulli dropconnect (BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO),
Gaussian dropout (GDO), and spike-and-slab dropout (SSD) with and without MC sampling
using 10 samples. For all dropconnect and dropout methods, p = 0.5. For spike-and-slab,
Pdo — 0.5 and Pdc — 0.1.

84

Noise StD. =0 Noise StD. = 0.5 Noise StD. = 1
! 1 m— |deal
e MAP
===BDC
0.8 0.8f. - mceDC
= GDC
- = = MCGDC
20.6 0.6f|==—BDO
[} = = MCDO
> = GDO
204 0.4[| =7 VSSDO
= = MCSSD
0.2 0.2

0.5
Predicted Probability

Fig. A.2 Sampling at test time allows for higher variance sampling to be used during
training without causing underfitting and underconfidence. The x = y line (Ideal) and
the calibration plot (i.e. the frequency of the true label vs predicted probability of that label)
for varying Gaussian image noise StD. for the CIFAR-10 trained Bernoulli dropconnect
(BDC), Gaussian dropconnect (GDC), Bernoulli dropout (BDO), Gaussian dropout (GDO),
and spike-and-slab dropout (SSD) networks with and without MC sampling using 10 samples.
For all dropconnect and dropout methods, p = 0.5. For spike-and-slab, pg, = 0.5 and

pdczo.l.

	Table of contents
	List of figures
	List of tables
	1 Deep neural networks in computational neuroscience
	1.1 The brain is a deep neural network
	1.2 Brain-inspired neural network models are promising for artificial intelligence and computational neuroscience
	1.3 Deep neural network models can be tested with brain and behavioural data
	1.4 Drawing insights from complex models
	1.5 What neurobiological details matter to brain computation?
	1.6 What is next?

	2 Adapting neural networks with deep representational distance learning
	2.1 Introduction
	2.2 Methods
	2.2.1 Representational Distance Matrices
	2.2.2 Representational Distance Learning

	2.3 Experiments
	2.3.1 MNIST
	2.3.2 CIFAR-100

	2.4 Discussion

	3 Adapting deep neural networks by using stochasticity to robustly represent uncertainty
	3.1 Introduction
	3.2 Methods
	3.2.1 Bayesian Deep Neural Networks
	3.2.2 Variational Distributions

	3.3 Experiments
	3.3.1 Logistic Regression
	3.3.2 Convolutional Neural Networks

	3.4 Discussion

	4 Adapting Bayesian deep neural networks to model human visual perception
	4.1 Introduction
	4.2 Methods
	4.2.1 Approximating Bayesian neural networks using Monte Carlo Gaussian dropout
	4.2.2 Relationship between Monte Carlo Gaussian dropout and deep latent Gaussian models
	4.2.3 Architecture and datasets

	4.3 Results
	4.3.1 Sampling improves accuracy for large-scale object recognition
	4.3.2 Sampling improves the representation of uncertainty for large-scale object recognition
	4.3.3 Sampling improves the prediction of human confidence for image classification

	4.4 Discussion

	5 Conclusion
	References
	Appendix A
	A.1 L2 regularisation and the KLD between Gaussians
	A.2 Gaussian "reparameterization trick"
	A.3 MC Gaussian Dropconnect and Dropout
	A.3.1 MC spike-and-slab Dropout
	A.3.2 MC spike-and-slab Dropout

	A.4 Additional Section 3.3.2 Results

