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Summary

A new method for implementing digital filters is discussed. The method
maximises the output signal to noise ratio of a filter by aséigning at each
of the filter variables an optimal quahtization law. A filter optimised for
a gaussian process is considered in detail. An error model is developed and
applied to first and second order canonic form filter sections. Comparisons
are drawn between the gaussian optimised filter and the equivalent fixed point
arithmetic filter. The performance of gaussian optimised filters under sinu-
soidal input signal conditions is considered; it is found that the gaussian
optimised filter exhibits a lower approximation error than the equivalent
fixed point arithmetic filter. It is shown that when high order filters are
implemented as a cascade of second order sections - with if neéessary one first
order section - the section ordering has a very small effect on the overall
signal to noise ratio performance. A similar result for the pairing of poles
and zeroes is found. Bounds on the maximum limit cycle amplitude for first
and second order all-pole sections are presented. It is shown that for a
first order all-pole the maximum limit cycle amplitude is lower than would be
expected in the eguivalent fixed point arithmetic filter, whereas, for the
second order all-pole the bound is twice as large. Examples of a low-pass,
band-pass and wideband differentiating filter,designed using free quantization
law techniques,are presented.

This new design method leads to a filter whose arithmetic operations can
not be performed using fixed point arithmetic hardware. Instead, the filter
must be represented as a finite state machine and then implemented using
sequential logic circuit synthesis techniques. The logic complexity is found
to depend - amongst other considerations - on the so called state (code) assign-
ment. Some preliminary results on this problem are presented for the case of
a next state function computed using the AND/EXCLUSIVE-OR (ring-sum) logic

expansion. A review of the state assignment techniques in the literature is
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included. A part of the state assignment problem - for the case of AND/EX-OR
logic - requires the numerous and consequently rapid computation of the
Reed-Muller Transformation. A hardware processor - designed as an add-on

to a minicomputer - is described: speed comparisons are drawn with the

equivalent software algorithm.
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1. Introduction

1.1 General Introduction

(1~3}

ﬁigital Signal Processing is the term used to describe the
processing of sampled versions of signals by computer program or by
specially designed digital hardwaré. The signals may be intrinsically
sampled - discrete in time - or they may be observations of a process
that continually varies with time. Digital systems may be used to
replace analogue systems giving improved parameter stability, eliminating
production spreads and offering higher reliability. More importantly, }
digital systems make it possible to solve problems which were previously
considered intractable; an example is the rapid estimation of power
spectra using the Fast Fourier Transform. The catalogue of digital
signal processing applications continues to widen as the speed and
complexity of the assoicated microcircuits increases. An account of
some of these applications areas is to be found in 4 . This dissertation
is concerned with the implementatioﬁ of one of the building blocks of
signal processors, the infinite duration impulse response digital filter.
Analogue linear time invariant (LTI) systems are déscribed in the
time and frequency domains by linear constant coefficient (LCC) differential
equations and Laplace Transforms (transfer functions) respectively;
similarly, digital LTI systems are described in the time and frequency
domains by LCC difference equations and z-transforms = respectively.
A general N-pole, M-zero LTI digital filter is described by the LCC
difference equation:

M N

%i%n-1 = Yn +.z biyn—i (1.1:1)
0 i=1

Il o~

i

and by the z-domain transfer function:
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where the ai and bi are constants, g‘is a complex wvariable , and
xn—i' yn—i are the input and output respectively at time t=(n-i)T. When
each of the coefficients bi is zero the filter is said to have a finite
duration impulse response, and is called an FIR filter. The FIR filter
is so named because its output,in response to a digital impulse at its
input, cannot be non-zero for more than M samples. By contrast, if at
least one of the*bi in equation 1.1.1 is non-zero the filter, again in
response to a digital impulse, may be capable of producing a non-zero output
indefinitely. In this case the filter is said to have an infinite
duration impulse response, and is described as an IIR filter.

When a filters' input éignal xn is expressable in closed form its
response y, can be found using the z-transform method; however, when X

(7)

ié a stochastic process yn must be computed by iterating the

difference equation. In the seconq case either a program has to be written
for a general purpose digital computer or a special piece of digital
hardware has to be designed. Whether a software or a hardware implemen-
tation of a filtef‘is chosen, its parameters, that is its variable X,

and v, and its constants ai and bi, must be stored using finite word

length binary numbers. The process of choosing a finite word length

binary number to represent a signal sample value is called quantization;
the error in representation is called quantization error. Parameter

quantization has four effects on the performance of an IIR filter,

these are discussed in sections 1.2 through 1.5.

1.2 Signal Quantization

Quantizing signal samples has the effect of introducing noise into

the output of a filter,and hence imposing a lower bound on the signal




(29)

- A quantized signal sample is usually modelled as an

ampliﬁude
unquantized signal sample corrupted by the addition of a noise sample.
The spectral propérties of quantization noise have been studied by’
Bennett (27). To simplify noise anaiysis it is usually assumed that
quantization noise sources have white power spectra (30); necessary
and sufficient conditions for this to be true have been derived by
Stripad and Snyder (32).

In a fixed point arithmetic implémentation of a digital filter
there are two sources of quantization noise, the input signal quantizer
(analogue to digital converter) and the multipliers. Digital multipliers
produce quantization noise for the following reason: suppose each
register in a signal processor contains k bits, then the product of
any pair of registers contains 2k bits; since this product is to be
restored to a k bit register its least significant k bits must be dis-
carded. Floating point filter implementations(35_4o) produce quantization
noise following an addition also. The noise performance of a filter
implementation is analysed using the ideal (unlimited arithmetic precision)
filter as a model; following each arithmetic operation which the imple-
mentation performs imprecisely a noise source is added in. It is usual
to make the reasonable assumption that all such noise sources are un-
correlated with each other and with the input signal.

Although in a practical filter implementation quantization noise cannot
be eliminated completely, its effects can be reduced to an acceptable
level by the choice of a large enough word length. Another method of
reducing quantization noise is to perform the summation in equation 1.1.1
to 2k bits precision and then to quantize the result to k bits. The

desired output signal to noise ratio will ultimately determine the

required word length.




1.3 Coefficient Quantization

Coefficient éﬁantization causes perturbations in a filters' pole-zero
pattern; in turn this causes an error in the filters' complex magnitude
response relative to the design specification. The maximum permissible
error wili determine the coefficient word length to be used. The
coefficient quantization effect has receivéd attention in the literature
(13-26)

The selection of a large enough coefficient word length might proceed
as follows: let M(w) and MQ(w)‘be the complex magnitude response of a

filter with unquantized and quantized coefficients respectively, and

define the response error as:

M_ = [ ] M) - MQ(w) | l]p (1.3.1)

where Il Ilp denotes the LP—norm. Increase the coefficient word length
until Me is.smaller than the design tolerance. (Useful norms are p=2
and p=» corresponding respectively to the mean square and maximum value.)
The disadvantages of this method are:

(1) - it requires a lot of computation, and

(2) it does not account for the response error being more sensitive

to errors in some coefficients than in others.
A statistical method for selecting coefficient word lengths has been

(1) and modified by Crochiere 24) . with this method

proposed by Avenhaus
the magnitude response error is expressed as a weighted sum of the

coefficient errors the weights being the coefficient sensitivities:

S = e (1.3.2)

where ¢, is one of the coefficients a. or b,.
i i i

As well as increasing word length two further methods have been

proposed for reducing coefficient quantization effects. The first method




e ===

is called discrete optimisation; with this method an optimum set is
selected from among the discrete space of coefficient values. The
benefit of this method derives from the fact that rounding coefficient
values does not necessarily yield the best magnitude approximation.

(26)
The second method, cycled coefficient after McLeod or dithered

(25)
coefficient after Bolton ;, realises a desired coefficient value
using a time varying quantized coefficient. With this method the time

average of the magnitude response error is zero provided the time

averages of the coefficient errors are all zero.

1.4 Overflow Oscillations

When the result of an arithmetic operation is outside the range of
representable values overflow occurs. As an example consider the operation
c=a+b where a > r, b > ék - r and hence ¢ > ?k. Variébles a and b are
within the range of k bit two's complement arithmetic but ¢ is not. The
effect of arithmetic overflow on an iIR filter is to cause its output to
produce large amplitude overflow oscillations. This phenomenon has
received considerable attention in the literature (41149'53156158),

Arithmetic overflow can be detected and dealt with using some additional
hardware; usually out of range results are forced to the largest magnitude
representable value with the same sign. The effect of this is to replace
overflow oscillations by signal clipping which is a less disturbing  form of
signal distortion. Overflow effects can be avoided by restricting the
filters' input signal amplitude to a low enough value; as the number of bits
of arithmetic precision is increased so too is the maximum allowable signal
amplitude. It follows that the maximum achievable signal to noise ratio
is determined by the word length used.

To ensure stability high order filters (order > 2) are implemented as
a cascade or parallel connection of first or second order sub-filters as

in figure 1.4.1 rather than in the direct form as in figure 1.4.2. The
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signal amplitude at the input to the first sub-filter is chosen to be

consistent with no overflow effects in any of the sub-filters;
particularly when some of the sub-filters have a high gain, this leads
to certain filter variables occupying few of the quantization levels
available to them; in turn this 'leads to the filter operating with a

(29)
low signal to noise ratio. To circumvent this problem Jackson
proposes that scaling multipliers be introduced at the input to each of
the sub-filters. The value of each scaling multiplier is chosen using
a normed measure of its associated sub-filters' frequency response.

Typically the L, or the L, norms would be used.

2

1.5 The Deadband Effect - Limit Cycle Oscillations

When studying the effects of quantization noise it is assumed that a
noise source is not correlated with the signal to which it adds; this
is made possible by assuming that the signal, from sample to sample, makes
an excursion of many quantization levels. If a filters! input signal
is simple - for example a constant value - then this assumption is un-
reasonable and the analysis breaks down. 1In the steady state a filter
would be expected to produce a constant output in respense to a constant
input, however, due to the deadband effect limit cycles, superimposed
on the expected signal, are possible.

In a fixed point implementation limit cycles result when one or more
of a filters' poles is temporarily placed on the z-plane unit circle;
in turn this is caused by rounding arithmetic giving a coefficient an
effective value of 1. For example, 0.95 x 4 rounded = 4.

The magnitude of limit cycles increases as a filters' poles approach
the z-plane unit circle. The acceptable level of limit cycles may be
thought of as placing an upper bound on the achievable 'Q' of a filter.
Increasing word length reduces limit cycle amplitude relative to peak

signal'amplitude. As already mentioned equation 1.1.1 is never implemented




in the direct form for order greater than 2. This is because as the

order of a filter section increases so too does the maximum limit cycle
amplitude.

A method for analysing limit cycles was proposed by Jackson (12).

Further analysis of 1imit cycles is to be found in (43_52’51—57).

Methods for suppressing limit cycles are proposed in (49—54). Bounds

on the maximum amplitude of limit cycles have been derived by Sandberg

and Kaiser (44) (46) (50)

(51)

, Long and Trick , Chang and Rahman, Maria and

Fahmy

1.6 Data Sampling Rate

The parameter quantization effects discussed in sections 1.2 through
1.5 all have a detrimental influence on the performance of a filter.
Although other cures have been proposed it is universally true that an
increase in word length leads to an improved performance. For a given
implementation increasing the word length reduces the maximum data sampling
rate. It follows that if a filter is to be used at high data rates it
is desirable to use just the right word length consistent with meeting
the specification.

For a first order all-pole filter there are three basically different
implementation structures, these are shown in figures 1.6.1la-c. When a
constant coefficient filter is required the structure in figure 1.6.1a
is redundant; this structure should, where possible, be avoided as its
multipliers will usually have to be sequential devices; instead the
structure in figure 1.6.1Db, where multiplication is performed using a
read only memory, should be used. The fastest implementation of the
three is shown in figure 1.6.lc; here the code for Y, is a two.level

. This method will be

logical function of the codes for X and Y1

used as a basic model throughout this dissertation. With this

method the shortest possible word length should be used so as to minimi se
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1.7 A New Method for Implementing Digital Filters

A fixed point arithmetic digital filter can be thought of as an
ideal filter with a uniform law quantizer introduced at the input to
each of the delay stores and at the input of the filter. The purpose
of each of the quantizers is to reduce a continuous infinite valued
variable to a discrete finite valued variable which is capable of being \
stored in a finite word length register. As this is the only h
fundamental purpose for each quantizer the associated quantization law
need not necessarily be uniform; indeed, not all quantizers need’
employ the same quantization law; The new implementation method proposed

obtains performance improvements, over the fixed point implementation,
by judicious choice of the various quantization laws. In turn this
leads to a reduced word length requirement for a given signal to noise
ratio.

Each quantization law is chosen to best match the signal which it
will quantize. The measure of best match can be defined in a variety of
ways (66); among these are minimum mean square error (m.m.s.e.),
maximum entropy and constant fractional error. Much work is to be found
in the literature on the subject of quantizer optimisation (59_67), the

(59)

earliest results being presented by Max As signal to noise is

defined as the ratio of powers the m.m.s.e. optimised quantizer will be

used in this wofkf The maximum entropy quantizer is designed to have
equiprobable quantization levels; the constant fractional error quantizer
is designed to produce an errof which in magnitude is no greater than

a certain percentage of the absolute signal value.

In this work filters will be optimised for operation on gaussian
input processes. This is because the shape of a gaussian process
probability density function is invariant under a linear transformation
and hence each filter variable employs the same quantizer but at a

i different variance level. Also, for high order filters the variables
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towards the latter sub-filters will exhibit gaussian statistics regardless
of the input statistics (central limit theorem). Without loss of
generality the input process will always be assumed to be white. A
coloured input process can be modelled using a white process and a spectrum
colouring filter.

Filters which use optimal quantization laws can only be implemented
using the hardware structure shown in figure 1.6.1c. This is the basic
model of a finite state machine. An efficient implementation of a finite
state machine depends on the following:

(1) the choice of a logic form for function L (eg. minterm,

ring-sum or other),
(2) the choice of a low cost state (code) assignment, and
(3) the minimisation of the next state function (eg. Quine Mcéluskey
reduction for minterm).
These issues have received attention in the literature; Relative complexity

68-72
of different logic forms is considered in ( ) » State code assignment

is considered in (73_89). Logic minimisation for logic forms other

than minterm is a relatively new subject; in particular, in some work to

be published Rayner considers the minimisation of ring—sui forms. The

implementation of a recursive digital filter as a finite state machine was
(97)

first considered by Rayner i he proposed the method as a means of

increasing the data sampling rate of a fixed point arithmetic filter.

1.8 Layout of Dissertation

In chapter 2 the design of optimal memoryless quantizers is reviewed;
the optimal quantizer for a gaussian process is obtained. The optimum
Step size for a uniform quantizer applied to a gaussian process is
evaluated for different numbers of quantization levels; these values are
needed in order to make a fair comparison between free and uniform

quantization law filters. The remainder of the chapter is concerned with
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the design and error analeis of a first order pole, zero and pole.-zero
(section);  experimental results are presented in support of the
theoretical model. An analysis of the effects of.section ordering is i
|
presented. The chapter concludes with some results on the limit cycle i
behaviour and magnitude approximation error response of free
quantization law filters.
Chapter 3 is concerned with the design and error analysis of a free
quantization law second order pole-zero section Different structures
for a second order section are considered, the canonic form, figure-1.8.1, !
is shown to give the highest signal to noise ratio. Although the section
ordering problem defies exact analysis, experimental results on its effects :
are presented. The pole-zero pairing problem is also treated. Finally,
an analysis of the limit cycle behaviour of second order poles is given. |
As already mentioned, the efficient implementation of free quantization

law filters is by no means trivial. 1In chapter 4 the various stages in ‘

the sequential circuit (finite state machine) implementation of a digital

filter are considered. The chapter begins with a review of finite state
machines- and their applicationto digital filter modelling. The following

section deals with the choice of logic form. Two of the state (code)

assignment algorithms in the literature are reviewed and é new algorithm

is presented. The chapter concludes with some work on logic minimisation.

In chapter 5 a hardware Reed-Muller Transform (98) Processor is
presented. The procéssor is intended to speed up the new state (code)
assignment algorithm presented in chapter 4.

Three examples of higher order free quantization law filters are
presented in chapter 6. For each a comparison is drawn with the equivalent
fixed point arithmetic filter. The examples are:

(1) a Wiaeband Differentiator

(2) a Low Pass All-Pole filter designed to be optimally linear phase

in the passband, and
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(3) a 6th order Band Pass elliptic filter.

Chapter 7 concludes the dissertation and contains some suggestions
for further work. |

To enable all experimental results to be repeated, experimental

techniques are outlined in Appendix A.
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2. First Order Free Quantization Law Digital Filters

241 Intrdduction

In this chapter a new approach to the design of digital filters is
considered. In this approach each of the variables of an ideal-unlimited
arithmetic precision-digital filter is assigned its own optimal quantization
law. The object of the method is to achieve the maximum possible signal to
noise ratio, for a given wordlength,at the output of the filter. Use of the
method relies on having a-prioriknowledge of the statistics of the signal to
be filtered. The entire class of filters designed by this method will be
called free quantization law filters. Specific examples, for instance a filter
optimised for a gaussian input process, will be given the name of the input
process - in this case gaussian optimised filter. The essential difference
between a fixed point arithmetic filter and a free quantization law filter is
that the latter is not only designed around a frequency or time domain speci-
fication but also around the signal to be processedf It is reasonable to
suppose that this might give an improved output signal to noise ratio, and
indeed this will be shown to be the case.

The choice of an optimal quantizer for a particular variable will in
general depend on the following condiderations:

(1) the amplitude probability density function (pdf) of the signal

at thét variable,

(2) the number of amplitude levels to be used to quantize that

variable,

(3) the optimality criterion,
and (4) the quantization law at each of the other wvariables.

In section 2.4 the signal pdf will be considered. The number of quantization

levels is arbitrary, although for economy it is desirable to use as few as
possible. For the purposes of this research 255 levels will be used. The

optimality criterion used will be minimum mean square (mms) error as this is
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equivalent to minimising the time averaged distortion-power. Optimisation of

a quantizer on the bégis of considerations (1) - (3) is relatively straight-
forward. It is usually referred to as the optimisation of a memoryless
quantizer. The last consideration (4) complicates the optimisation so much

so that it willvbe ignored. This is justified by arguing that provided

sufficient levels are used at each variable the sYstem can be modelled by a

linear systems driven at various points by independent noise sources.

This chapter is concerned with the design of first order recursive filters.
Where appropriate comparisons will be drawn between free and uniform - fixed
point arithmetic - quantization law filters.: .The chapter continues with a

review of optimal memoryless :quantizers.

2.2 Optimal Quantizers

A bandlimited stationary stochastic process is sampled every T seconds.

The sample values x(nT) which are distributed in the interval |—w,+ml with a
probability density p(x) are then quantized by an N-level quantizer. This
quantizer is to be designed to produce minimum signal distortion.

The‘function Pp(x) is assumed to be even. It follows that the corresponding
signal is zero mean. Obviously this does not limit the generality of the
analysis to follow, for if a signal has a probability density p(x - ) then
subtracting u from each sample will change its density to p(x). That p(x) is
even is a reaéonable assumption for many naturally occurring signals.

Following some definitions the conditions under which a quantizer is
optimal and hence produces least signal distortion wiil be derived. This
derivation is based on the work of Méx(59),

Let x be the value of an unquantized signal sample and define a set of

decision levels, di, and a set of quantization levels, q; constrained by

the inequality:

—o = g < q, <d2<<q2< . <qN<idN+l= +00 | (2.2.1)
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such that if x 1lies in the interval |d. for 1 € 1 £ N then it is

1'di+l

quantized to (replaced by) - qi.The resulting instantaneous error, e, is given

by:

e = X = qi (2-2.2)

Further define an error measuring function f£(.) having the following
properties:

£(0) =0 ) (2.2:3)

f(a) = £(-a)

f(a) < £(b) <=> 0<a<b

The distortion introduced by the quantizer, denoted by D, is defined
as:

D = E[£(e)] (2.2.4)
where E is the expectation operator.

Now, as mentioned in the introductionhto this chaptér, the error measure
is minimum mean square (m.m.s.) and so function f£(.) becomes:

f(x) = x° (2.2.5)

Equation 2.2.4 can now be rewritten as:

di+1
N
D= 3 J (x - .02 p(x) ax (2.2.6)
i=1 -
d.

L

Equating to zero each of the partial derivatives of D with respect to
each of the qi and di the following necessary conditions for optimality are

obtained: dj41

N
R

N
Z

(2.2.7a)

9. = for 1
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and
a. *+ q,
g, . ==t for 1 € i€ N-1 (2.2.7b)
i+l 2
. (60) o . ;
Fleischer has shown that if the inequality:

ég;- [In(px))] < 0o (2.2.8)
holds and relation 2.2.1 is satisfied then the set of equations 2.2.7 have
a unique solution.
Analytical solution of equations 2.2.7 is only possible if p(x) = constant
(in which case the result is a uniform quantizer). Numerical solution is

straightforward; the details will now be presented for the case of a zero mean

gaussian white process described by the probability density funétion:

5 554
o
o(x) = —2— ¢ O (2.2.9)

ovam

where 0 is the standard deviation. The reason for this choice of p(x) will
be explained later in this chapter.
Since p(x) is an even function the quantization and decision levels obey

the following relations:

N - odd
W1 = (2.2.10a)
2 i
= - S S e Lo
Do gerl Ay for 1 KN (2.2,10b)
= - < < N+ el
dN—K+2 dK for ; K € N+1 (2.2.10c)

These equations enable the amount of computing required in the solution

of 2.2.7 to be halved.

4
Following Wood(6 ), define two sets of dependent variables Ai and 6i by:
Ai = di+l - di (2.2.11)
+
s i+l di

S — for 2 € 1 € N-1
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substitute them for di and di+l in equations 2.2.7a and expand the integrals
as Taylor Series. Provided the expansion of p(x) about 6i exists equations

2.2.7a become:

L AN
g. = 6, + L a2 p'(81) for 2 £ i € N-1 (2.2.12)
i i 12 i 0(8:)
i
Now from equation 2.2.9:
]
' (8;) _
Q(@i) i
and so:
+ d
— L A2y _ _itl i 1 _ 9
a; = Gi (1 17 Ai ) 5 (1 17 (di+l dl) )

which when rearranged leads to the following recurrence formula:

d? -d d2 - (d? + 12) 4,
1 Jit

2
- + = 0
- 134 + d, (d, 12) 24q, (2.2.13)

1
The Taylor Series expansion may not be used to solve equation 2.2.7a

when i = N since the upper integral limit is infinite. Instead, the following

relation is used:

p(dN)
YT T-p@E) (2.2.14)
N
where
an
P(dN) = J»D(x) dx

is obtained using a rational approximation. Appendix B.
From equations 2.2.7b and 2.2.10a it can be seen that the quantization

and decision levels immediately to the right of the origin are related by:

@z = 24, (2.2.15)

The strategy for obtaining an optimal quantizer for a gaussian process
which is based on the bisection method of iterative equation solving,

and employs equations 2.2.7a, 13, 14,15 is shown in figure 2.2.1. The graph
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I
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Algorithm to find the decision and quantization levels
of the m.m.s.e. optimal quantizer for a gaussian process .

Figure 2.2.1
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in figure 2.2.2 shows q; versus i. The optimum 255-level quantizer for a

gaussian process gives a signal to noise ratio of 44 dB.
An important property of the m.m.s. optimised quantizer is that it
produces an instantaneous distortion which is orthogonal to its output. This

can be seen by combining equations 2.2.7a and equation 2.2.6 to give:

e . Xi+1
D = J x? p(x) dx - X yi2 J p(x) dx.
i=1
- 00 X-,
i

which is recognised as:

ol = o; - 0;, | (2.2.16)
where OZ is the distortion power induced by the quantizer,

O§ is the power of the input signal,
and O;, is the power of the output signal.

In addition, the quantizer input, y, and output, y',6are related to the

instantaneous quantization distortion, e, by:

Iy = y' +e

and so:
02 = o¢% +20 , +0° (2.2.17)
y y y'e e

This is important because it is always assumed to be true when analysing

the signal to noise performance of a digital filter implementation (1).

2.3 Optimum Step Size for a Uniform Law Quantizer used to OQuantize a

Gaussian Process

In order to make a valid comparison between a free quantization law

filter and a uniform quantization law filter - fixed point arithmetic filter
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gaussian process gives a signal to noise ratio of 44 dB.
An important property of the m.m.s. optimised quantizer is that it
produces an instantaneous distortion which is orthogonal to its output. This

can be seen by combining equations 2.2.7a and equation 2.2.6 to give:
+ oo X,
N i+l
D = J x? p(x) dx - % yi2 p(x) dx.

—© 1=1 X

which is recognised as:

I = T =, (2.2.16)
where Oé is the distortion power induced by the quantizer,

G; is the power of the input signal,
and O;, is the power of the output signal.

In addition, the quantizer input, Yy, and output, y', are related to the

instantaneous quantization distortion, e, by:

y = y' +e

and so:
02 = o%, + 20, + o2 ' (2.2.17)
y Yy y e e

From equation 2.2.16 and 2.2.17 it follows that:

o = 0
yve

This is important because it is always assumed to be true when analysing

the signal to noise performance of a digital filter implementation (1).

2.3 Optimum Step Size for a Uniform Law Quanti zer used to Quantize a

Gaussian Process

In order to make a valid comparison between a free quantization law

filter and a uniform quantization law filter - fixed point arithmetic filter
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{ _ it is of course necessary to use the same wordlength for corresponding filter
variables. It is also necessary to drive the uniform gquantization law filter
with a signal the power level of which is chosen to give maximum output signal
to noise ratio. In order to find the appropriate power level the following
problems must be solved:
(1) To find the bptimum step size for a uniform law quantizer used
to quantize a gaussian process of known variance,
and (2) To find the signal to noise ratio derating on deviating from the
optimum step size found in (1).
Tn this section a formula for the optimum step size as a function of
the probability and cumulative density functions of the quantizer input
signal is derived. The formula is evaluated for various numbers of quantization
levels for the case of a gaussian process.
The formula is derived as follows. Define x, ¢(x) and ®(x) as the value,
probability density function and cumulative density function respectively

of a gaussian process. Define, 2A, the quantization step size as:

20 = - g for 1 € i € N-1 (2.3.1)

95+1 i

where the gquantization levels, q, are as defined in section 2.2.

|
|
|
Substituting the constraint equation 2.3.1 into eguations 2.2.7 it j
follows that the optimum value of 2A is the solution of:

N-1
2
T $((2n-1)4)
20 = n=lN_l 7 (2.3.2)
5 g
‘N—:l;l—)— - I (2n-1)® ((2n-1)A)
n=1

where, N, the number of quantization levels is odd.
The solution to equation 2.3.2 is most readily obtained using the

recurrence:
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where f(Ak) is the value of the right hand side of 2.3.2 at A = Ak' For

some useful values of N the optimum step size is given in figure 2.3.1.

No. of quantization | Optimum step size h

levels, N 2A ’

63 0.105485 F

L 127 0.057254 i
} 255 0.030856 |
511 0.016504

1023 0.008752 M

Figure 2.3.1

Attention now turns to how the signal to noise ratio performance of é (
uniform law quantizer varies with step size. Using the definition of |
distortion, D, given in equation 2.2.6 the signal to noise ratio performance I
of a uniform law quantizer was computed for the same set of values of N as ‘
in figure 2.3.1. The graph in figure 2.3.2 shows noise to signal ratio as

a function of step size.

2.4 Signal and System Characteristics

Except where otherwise stated all filters will be driven by a zero mean,
l gaussian and white stochastic process. All signals will be assumed to be
ergodic and hence the words variance and power will be used interchangeably
according to the context.
Filters will be modelled using an ideal linear system driven at various
points by white noise processes. Filter structures will be presented using
a variant on the signal flow graph. For example a box labelled T will be used
in place of z_l. The following properties of linear systems will be required.
(1) If a stable time invariant linear system is driven by a gaussian

process then each of the nodes of that system exhibits a gauss-markov process( 8

F




26

Number of quantization levels

NSR (dB)

8 i : 1 i 1 : L ]
[

0.00 - 0.02 0.04 0.08 0.08 2.10

Uniform quantizer step size

: Noise to Signal Ratio as a function of step size
for a uniform quantizer operating on a
unit variance gaussian process,
and for various numbers of quantization levels

Figure 2.3.2

I




27

(2) If a stable time invariant linear system described by a pulse
transfer function H(z) is driven by a white process of variance Oi then the

variance at the output.O; is given by:

T H(z) H(z D) 271 az (2.4.1)
c
where c 1is the z-plane unit circle.
Equation 2.4.1 is a special case of the complex convolution integral(1’3)

If a linear system is driven by a zero mean process then its output

also is a zero mean process. This follows from the linearity equation.

L (ax + by) = aL(x) + bL(y) (2.4.2)

where a and b are constants.

2.5 First Order All-Pole - Design

The signal flow graph for a first order all-pole is shown in

figure 2.5.1.

Figure 2.5.1

This system is stable provided K lies in the closed interval l-l, +1.] 4
and is said to be marginally stable if K = +1 or K = -1l. Assuming stability
and given'thatzgl, the input sample at time nT, is distributed with gaussian
statistics the output sample Yn is distributed with gauss-markov statistics.

The pulse transfer function corresponding to figure 2.5.1, denoted by

==J

H(z), is given by:




28

_ |
H(z) = —— (2.5.1)

Substituting 2.5.1 into 2.4.1and performing the contour integration it
is seen that the power of process yn,denoted by Oyz,is related to ze' the

power of process Xn' by:

0?2 = g% 1 o (2.5.2)

a > 0o (2.5.3)
y x
Let GXZ = 1 then the optimum quantizer for X is the one shown in

figure 2.2.2. The optimum quantizer for o A is also the one shown in figure 2.2.2
but with all the quantization levels multiplied by YG. The parameter G will

be called the integrated power gain. It is given by:

¢ = 1= (2.5.4)

This design procedure makes one of the assumptions mentioned in the
introduction. It assumes that the optimal quantizers for Xn and Y, do not

depend on each other.

2.6 »First Order AIl-Pole - Error Model

An error mbdel for the gaussian optimised free quantization law first
order all-pole will now be presented.

A block diagram showing all the arithmetic operations of the filter is
shown in figure 2.6.1.

The boxes QX and QY are the input and output quantizers respectively.

Primed variables are quantized versions of unprimed variables.
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In section 2.2 it was shown that if quantizers Qx and Q
y

=Ouy;

Figure 2.6.1

are optimised

using an m.m.s. error criterion then the following statistical model is

exact.

. )

where p is the ungquantized input sample
- :

p' is the quantized output sample,

and Q is the optimum quantizer for process ..
n

Replacing quantizers Q and Qy in figure 2.6.1 by the model in 2.6.2
% By

the following signal flow graph is obtained:

1 is the instantaneous error and is orthogonal +o Py

*OP/

n

Figure 2.6.2
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g—s{ + }

(

Figure 2.6.3

where un is the noise which results from quantizing X and e is the noise

due to quantizing.yn.

2

Denoting by Qll

the power of noise process y and by Oe2 the power of
n

noise process . it is seen that:

2 2
Gy B (Te
- = — (2.6.1)
(9] (0]
X u

. 'y Toxz (2.6.2)

Assume that processes 'y and e are uncorrelated with each other and
- n
further assume that both have white power spectra; then the output noise

power, denoted by Oyi,is given by:

O‘; _ u e (2.6.3)
¥ 1 = X* ‘

which using equation 2.6.2 becomes:

2 o 1
= 1 R :
Oyn = l——K_Z []_ + 1—~—K—§—} (2.6.4a)
= guz 2 - g2 (2.6.4Db)
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'Now the output signal power, denoted by G&;’ is given by:
0?2 = o*_ 1 : : (2.6.5)
ys ¥ 1 -x?
From equations 2.6.4b and 2.6.5 it follows that the output signal to
noise ratio, SNRO, in dB is:
2
SNR_ .= 10 lo % [1-x dB (2.6.6a)
o 90 52 |2 -x2 -0
u
2
Ox 2 - K2
= 10 lOglO [w:, - 10 loglo [W] dB (2.6.6Db)
The left term is simply the signal to noise ratio performance of the
optimal memoryless quantizer for process Xn' It may be thought of as the
input signal to noise ratio SNR 1. The signal to noise equation becomes:
SNR = SNR; - 10 lo A Sl (2.6.6c)
o T JiI0 [T - %2 ' 8

The graph in figure 2.6.4 shows theoretical and measured signal to noise
ratio performance of a first order all-pole as.a function of pole
position K. The error model is seen to be accurate.

It is not obvious how the SNR performance of an optimal gaussian quantizer
changes with variations in the input signal power. This is because the
distortion power depends on the signal level. By experiment though 2.6.6c

was found to fall by 6 dB each time OXZ was halved.

2.7 Uniform Quantization Law First Order All-Pole Driven by a Gaussian

Process - Error Model

In this section the results presented in section 2.3 are used to estimate
the step size to be used in a uniform quantization law digital filter, as a
function of the variance of the input gaussian process, such that the output

signal to noise ratio performance is maximised.

B — -
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(1)

The error model to be used is shown in figure 2.7.1 Rabiner and Gold ™

x, O /ﬁg?\

() -

Yn

e

Figure 2.7.1

where . and y, are input and output samples,
u is a noise process introduced by the input quantizer,

and ud‘is a noise process introduced by quantization after the xK multiplier.

The following usual assumptions about noise sources u and u; will be
made:

(1) Both have white power spectra,

(2] They are uncorrelated with each other,
and (3) Both are uncorrelated with the input signal.

From the graph in figure 2.3.2. it can be seen that the signal to noise
ratio pefformance of a uniform quantizer rapidly reducesvfor only small amounts
of overdrive above the optimum level. However, the reduction in SNR due to
underdrive is much less, being approximately 6 dB each time the signal power
is halved. It is therefore reasonable té assume that a filter system,
implemented using a uniform quantization law, will give best performance when
each of its variable is operating at the highest possible power level such
that none of them are overdriven. Clearly, it is necessary to find the

variable with the highest power level and to arrange that it operates at the

optimum point. The input level is then given by the reciprocal of the integrated

power gain from the input to that variable.

For the case of the filter in figure 2.7.1 the input and output power

levels obey the inequality:
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R (2.7.1)
y b4
Since Uyz is the larger it will be treated as a reference. Making
Oy2= 1, the optimum step size for a 255-level quantizer and the input variance

are given by:

step size, 2A = 0.030856 from figure 2.3.1,

and, input variance, 0%2 = 1-K?> from equation 2.5.2.

It follows that the noise power at the output of the filter, denoted

by @ 2, is given by:

yn
(g ? + 0,7)
G; _ (2.7.2)
¥ (L - K2) - |
. (2 A)? 1
- 12 * I-xe2

and hence the output signal to noise ratio is given by:

SNR

(24) 2 1
10 loglO [l/ (2 X —15 x l—KZ.):l dB (2.7.3)

37.995 + 10 log,, (1 - k%) 4B

To assess the accuracy of this analysis the filter in figure 2.7.1 was
simulated by computer. It was driven by a unit variance gaussian process
fed through a scaling multiplier. The filter step size was set as above.
The scaling multiplier was varied by small amounts from 0.2 to 1.2 and at each
point the signal to noise ratio was measured. The experiment was repeated
for five different values of the filter coefficient K. The graphs in figure.
2.7.2 shows the results. The predicted optimum value for the scaling multiplier
is Y1-K2. It is found in each case that the SNR is no‘more than 1 dB lower
than the optimum.

It is now possible to present a compaiison between the gaussian optimised

and the uniform quantization law filters. The graph in figure 2.7.3 shows the
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signal to noise ratio performance for both implementations of a first order

all-pole. The independent variable is the pole position, K. Only positive
values of K are shown, however, the SNR was found to be an even function of
K. The graph in figure 2.7.4 shows the variation in SNR for both filters

as a function of input signal standard deviation.
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2.8 'Section Ordering - Two First Order All-Poles

are defined in the usual way.

are given by:

it follows that, if Xn is a white process of variance ng, the variances at

The system to be analysed is shown below in Figure 2.8.1.

©n €n
o o
J\ P
Xn H@ \"" rk? —0O y,
® K1 ¢ K2

o o— T T

Figure 2.8.1

Sources u e and e}l are white noise processes. All other parameters

The pulse transfer functions from input to pn and from‘input to Yn

P(z) Z

Hp(z) = 50 T ;LKl ' (2:84.1)
and
3
_ Y(z) z
BT x@ T Ry (248.2)
respectively.

Using equations 2.8.1, 2.8.2 and the complex convolution theorem in 2.4.1

2 and @ % respectively are given by:

0 and yn,denoted by Op y

c? = 0’——5 (2.8.3)
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s g TTEK 1 (2.8.4)

and J
® T _ _ 2 — 2
b x 1 ..Kle a Kl 1 (1 K2 )

Now 1if Ouz is the noise power produced by the input quantizer then from

equations 2.8.3 and 2.8.4 it follows that noise sources e, and e;l have powers

2 2, _.a
o and O iven by:
a e g Y

1

2 = 2

O = 9y T -x2 (2.8.5)
_ 1 |
1l + KK 1

2 2 12 :
o, = 0 - — ——— (2.8.6)
e’ u 1 - KK, (L - K 2) (1 - K,2)

The noise appearing at the filters output results from
un and en filtered by both sections and Ffrom en' filtered by the second
section only. It can be shown‘that the output signal to noise ratio, SNR_,

0]

is given in terms of the input signal to noise ratio, SNRI, by: ‘

g *
X 1 L
—s +
SNR. 10 log,, ’:Ouz / (1 + T K2 1- K22>] (2.8.7a)

= SNR,

L 1
- ] + :
SNR; - 10 log,, |1 + 7= KZ I- Kzz] (2.8.7b)

Since equation 2.8.7b is symmetrical in parameters Ky and K, it follows
that the overall signal to noise ratio SNRy is insensitive to the section

ordering.

2.9 First Order All-Zero - Design

So far only the design of a first order all-pole has been considered.

Before considering the design of a pole-zero section the design procedure for

a single zero will be presented.

Let X and Yo be the input and output respectively of a first order zero

described by the constant coefficient difference equation:
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vy = x +Ix (2.9.1)
The corresponding’pulse transfer function:

H(z) = 1 +r1z-1 (2.9.2)

has a single zero at z =-LPl.

By the complex convolution theorem the integrated power gain, G, from
the input to output is given by:

G=1+12 : : (2.9.3)

The optimum quantizer for xn.assuming OXZ = 1,is the one shown in
Figure 2.2.2. The optimum quantizer for Y, is similar except that its levels

are scaled by a factor V1+I12,

2.10 First Order All-Zero - Error Model

The first order zero described by the difference equation:

yn - Xn * an—l (2.10.1)

is shown together with noise sources appropriate to a gaussian optimised

realisation in figure 2.10.1.

 o—(1) A,

en Figure 2.10.1
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\

\
' |
The integrated power gain from X to 2 was found in the last section ‘
to be:

G = 1+1 (2.10.2)

From 2.10.2 it follows that the noise sources un and e have power

levels related by:

O.2
e

|
(1 +1% o?2 : (2.10.3) “
u

The total power at the output of the zerovdenoted by Oynz is given by:

o ? = 020+1% + o 2(1+1?) (2.10.4)
yn u u
L - J A /
N v
input filter

The total signal power at the output ngz is given by:

G 2

= ¢ 2(1+12%) (2.10.5)
ys X

From equations 2.10.(4,5) it follows that the output signal to noise
ratio is given by:

2

o
X
SNRy = 10 loglo 20 2
- u
= _SNRI - 3 dB (2.10.6)

This result is in agreement with experiment.

By contrast the uniform quantization realisation of a first order zero

prescaled to prevent output overflow;. see Figure 2.10.2, is found to have an

output signal to noise ratio given by:

— _ 2 ‘
SNR, = SNR 10 1oglO (3 + L9 (2.10.7)

The  parameter Ovz, in Figure 2.10.2, is given by:

where 2q is the quantizer step size.




0,2 @2 Figure 2.10.2

2.11 First Order Pole-Zero Design

In‘this section the signal to noise ratio performance for two different
realisations of a first order pole-zero will be studiéd. It will be shown
that of those two realisations, the so-called direct and canonic forms, the
canonic form unconditionally yields a higher signal to noise ratio.

The direct form (zero first) realisation is considered first; its=signal

flow graph is shown in figure 2.11.1.

Figure 2.11.1
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Each of the noise sources un, e and eﬂn is orthogonal to the signal to
which it adds. Additionally, all three are assumed uncorrelated with each

other and:ﬁith the input Xn' In section 2.9 it was shown that the power

of noise source & is related to the power of u by:

o? = oﬁz (L + L?) (2.11.1)

The power of noise source e}l is also related to the power of un by:

0.2 = co (2.11.2)

where G is the integrated power gain from Xn to yn. Now the filters transfer

function is:

z + L

H(z) = P (2.11.3)

and so the'filters integrated power gain:

- i1 -1, dz
G = _—-_ 1 ==
73 f H(z) H(z ™) =
c
where c is the unit circle, is:
1 (K+1L) (1 +KL)
& = £ [ 1 - %2) = ;J (2.11.4)

The noise power appearing at the filters output, which will be denoted

by Gynz’ is given by:

2 _ 2 2 e'
Gyn = Gou + Goe + = (2.11.5)

and the signal power at the filters output, denoted by Oysz' is given by:

2 2

o) = GO (2:11568
Vs b4
and hence the:.signal to noise ratio is:
Goy” i 7)
_ X (2 L
N =
SNR, 10 log, G2 +02) +0 02
u e e

L 1-K2
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., which after substitution and rearrangement gives:

SNR., = SNR, - 10 1 3ok ok (2.11.8)
o L 910 | -85 ~Twr+nD)

Making a similar analysis of the canonic form, Figure 2.11.2, the signal

to noise ratio at the output is found to be:

(2.11.9)

_ (2 -x?)
SNRO = SNRI - 10 lOglO [—“—(l -—K2):]

7;/ /*\;i;/ —O y,

n

Figure 2.11.2

Comparing equations 2.11.8 and 2.11.9 it can be seen that for all values

of XK and irrespective of the value of I, the canonic form gives a higher output

signal to noise ratio. This result has been checked by experiment for a wide

range of pole-zero configurations.

2.12 Stability In First-Order Systems

Only recursive systems are capable of becoming unstable and so only a

first-order pole will be considered here.

Consider the first order pole whose input x ~and output Y, are related

by the difference equation:

ey X (2.12.1)
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Such a system is asymptotically stable provided that its only pole z = K
lies inside the unit circle. It follows that the ideal system with all
arithmetic performed to unlimited precision is stable if K lies in the closed

interval
K = [-1, +1] (2.12.2)

In a digital realisation of 2.12.1 K and v, _q are represented by p-bit
values and hence their productrrequires 2p-bits. In order to restore this
product to A the least significant p-bits must be discarded. There are-
two ways to do this. The first, Truncation, makes equation 2.12.2 both
necessary and sufficient for stability. The second, rounding, makes 2;12.2
insufficient. It is, however, desirable to employ rounding as this leads to
a less noisy realisation. The instability which results from rounding manifests
itself as a, hopefully, low level oscillation whén K is negative and a constant
value when K is.positive. This instability which is referred to as a limit
cycle is said to result from the deadband effect.

The limit cycle amplitude ]qu which can be supported by the filter in

2.12.1 is given by the standard result:

Nlq < -If?TéT- a ) (2.13.3)
where g is the quantization step size.

No general analytical result has been found for the free quantization
law first-order filter. There are, however, two ways in which progress can
be made with the gaussian optimised filter.

In section 2.2 the  decision and quantization levels for a gaussian
optimal quantizer were found. From these it is possible to ascertain for a
given value of K the maximum limit cycle amplitude. This is done by noting

that for limit cycling the following inequality holds:

ai "¢ X qj (2.12.4)
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where qd_is the '‘quantization level represeﬁting the previous filter output
and dj is the nearest smaller decision level.  When inequality 2.12.4 holds
K is said to have an effective absolute valﬁe of one,

From 2.12.4 it follows that for a limit cycle of amplitude, q; K is

bounded by:

d.
1>K 3 — (3,12 5
Qi

The graph in Figure 2.12.1 shows limit-cycle power level in dB,relative
to the quantizer saturation levél'as a function of coefficient K. The gauséian
optimised filter is seen to be some 5 dB quieter for a given value of K.

A second approach is to consider the gaussian optimal quantizer to be
piecewise linear in the region where limit cycles will occur. Referring to
Figure 2.2.2 this is seen to be true for approximately 100 levels centred
around dy,g° The effective step size is found to be 0.01682. The optimum

step size for a 255 level uniform quantizer applied to a gaussian process is

found to be 0.03086. The limit cycle power level is therefore 5.3 dB lower I

in the case of the gaussian optimised filter.

2.14 First Order All-Pole . - Frequency Response

It s well known that the effect of parameter quantization, in a digital
filter is to cause that filter to have a frequency-phase response different
from the design épecification. A further complicating factor is that a filters
response to a sinusoid differs with the peak to peak amplitude of that sinusoid.
' The exact interaction between parameter quantization, signal amplitude and
filter frequency response defies exact analysis.

While studying gaussian optimised high order filters it has been observed
that, compared with similar uniform quantization law filters, their frequency
response is closer to that of the ideal system. Despite the difficulties of
analysis sighted above it is essential to find a justification for this

observation.
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In this section a statistical treatment of the problem is presented
for the case of a first order all-pole
Consider the filter described by the difference equation:
= K v+ ) 2.13.
Yn [ky, 1"+ % (2.13.1)

»

where X and y, are members of a discrete finite set, the set of quantization
levels, and [»]' is the operation of re-quantization.
As it is the frequency response which is being investigated only the

natural response of the filter need be considered. Let the value of Yo-1 be

q, the i th. quantization level. This maps after multiplication and .re-guantization

to Ein] . In the equivalent ideal system the apparent value of K corresponding

to quantization. level d; and denoted by K; is given by:

[kq, ]

i q;

(2.13.2)

Now,if q; is bracketed by decision levels di and di+l and assumiﬁg
gaussian signal statistics the probability of occurence of -rquantization level
95 denoted by pP;, is:

di+l
p. = ¢ (x) dx (2.13.3)
di
where ¢ (x) is the gaussian probability density function.
It follows that in the long term the expected value of Ki denoted by K'

is given by:

N
i =
K ‘Z piKl
i=1 a
i+1
1
B g [xq, ] ¢ (x) dx’ (2.13.4)
i=1 | 94
dj

This analysis hads assumed that a system with a pole a z = K is still
representable by a single pole at z = K'. TIf k' is different from X.then,

of course, a change in the frequency response has occured. The name 'expected!
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rather than ‘'effective' coefficient will be given to K'. This is to avoid
confusion with the analysis of limit cycles presented by Ja;kson (42{

A graph of K'-K versus K is shown in figure 2.13.1. Both the uniform
and the gaussian optimal quantizer are considered. It is clear that for all
but a small set of values 6f K the gaussian filter compared with the uniform

filter has an expected pole nearer to that of the ideal system.
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3. Second Order Free Quantization Law Digital Filters

3.1 Introduction

A digital filter implemented using rounding type fixed point
arithmetic is subject to the deadband effect. The number of limit cycle
modes becomes too large to analyse in filters of order 3 or higherf
In addition the maximum possible limit cycle émplitude bécomes comparable
to the signal amplitude as the filter order is increased. For these
reasons the direct form implementation of filters of order 3 or above is
never used; instead either a cascade or parallel composition of sub-
filters is used, each sub-filter being of order 1 or 2. 1In this chapter
free quantization law design techniques are applied to a second order
pole-zero section .. Comparisons are drawh between free and uniform

quantization law implementations of second order structures.

3.2 Second Order All-Pole - Design

The filter to be considered is a second order all-pole with input

X and output yn related by the difference equation:

Yy

= + ' - D
n Klyn-—l ¥ K2yn—2 xn : (32,1}

The corresponding signal flow graph is shown in figure 3.2.1. This
configuration is not the only one possible. In principle the operations
xn +-Klyn_1 F K2yn—2 could be combined into one mapping
f(xn, yn_l, yn_2) -+ yn; however, this will be seen in the nex?

chapter to lead to an intractable implementation problem. It is for

this reason that the variable \/n has been introduced.
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Y2 Yn-1 Figure 3.2.1

The filter described by equation 3.2.1 will be asymptotically

stable provided that p and p*, the conjugate roots of:
2 — B
z" - K,z - K, = (3.2.2)

lie inside the z-plane unit circle. For convenience p will be expressed

in polar form as:

p = reJe (3.2.3a)
where r = V—Kz (3.2.3b)
=1 2
and 0 = cos —K1 (3.2.3¢)
4K2

The design of the filter in figure 3.2.1 proceeds as follows. Assume
’ . . . 2 :
xn 1S a zero mean, guassian and white process of variance Oy, . Since X
is zero mean it follows that vh and yn are zZero mean. The variance of
2 2 ;
procesees v and LA denoted by o, and Gy respectively, can be found

from the complex convolution theorem; their values are:

o =0 1+ o i =Gco (3.2.4)

2
1 - r 1 - 2r2c0526 + r4

-




(3.2,5)

2 2 2 4r2c0526

4
1—2r2cos2e+r

I
0]
Q

The optimum quantizers for X v and y  are all similar in shape
to the one shown in figure 2.2.2; the scale factors by which each of
the quantization and decision levels are multiplied are given, for each

variable, in figure 3.2.2.

Signal variable Variance Scale factor
b4 o 2 =1 1
n x
2 2
v o =G0 14€,
n v V' X v
2 2
v o) =Go VG
n y y x y

figure 3.2.2

3.3 Second Order All-Pole - Error Model

A second order all-pole filter, which is described by the difference

equation

2
= - +
y 2rcosey 1 ry 2 X (3.3.1)

where X and y, are the input and output respectively,
r is the pole radius
and 6 is the pole angle,
is shown, together with noise sources appropriate to a gaussian optimised
implementation, in the signal flow graph in figure 3.3.1.
Using the same notation as in the previous section, if noise process

. 2
u has variance Gu then noise processes e and &  have variances
n

g =GO (3.3.2a)




-r ® 2rcosB

U, O—— T T
Y2 Ynt Figure 3.3.1

and

(3.3.2b)
e v u

The noise which appears at the output of the filter is given by:

2 2 2 2

a =G [ o] + 0 + O~ ] (3.3.3)
yn v u e e
2
=Go 1+G_+aG
v
: 2
The signal power at the cutput of the filter, denoted by GYS , is
given by:

2 3
o =G0 2 (3.3.4)
s Yy x

and hence the signal to noise ratio at the output of the filter is:




s G o '
SNRo = 10 log10 vV x dB (3.3.5)
2
G O G
v u [1+Gv+yJ
5 2
= 10 log X 1 - ds
10 5 -
o 1 +¢G + G
u v Y

SNRI 0 1og10 (1 GV + c;y ) dB

where SNRI is recognised as the input signal to noise ratio.

The validity of this model has been experimentally confirmed. The
graph in figure 3.3.3. shows both experimental and theoretical SNR
measurements for a wide range of values of r and 6. The signal to noise
ratio performance of the uniform quantization law filter, whose error
model signal flow graph appears in figure 3.3.2, is shown in figure 3.3.4;
also included on this graph is the theoretical SNR performance of the

gaussian optimised filter illustrating its improved performance.

Figure 3.3.2
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3.4 Second Order All-Zero - Design
The signal flow graph for the second order all-zero described by the |
' difference equation: ol
i |
|
F 2
I = - + “
? yn X 2scos¢>xn_1 s xn_2 (3.4.1)
|
I
: is shown in figure 3.4.1.
| |
i it
I
il
Xn% H
‘\
“1
“\‘
I
I
i
! Il
} |
|
I
T T
|
[ Xn-1 X2 I
[ ‘ It
i Figure 3.4.1 1
| The extra signal variable Vo is introduced to seperate the adders thereby
|
l 1
1 making a three to one mapping into a pair of two to one mappings. ”
5 The purpose of the following analysis is to establish the signal w
A I
variance at variables v and yn given that Xn is gaussian_white_of
2
variance U and mean O,
\ |
In the time domain LN and x are related by: ' |
= _ 2 |
v xn scos¢xn_1 (3.4.2) !‘
5 |
and so the variance of v denoted by o, is given by:
u‘
2 2 2 2 ,
(o] =E v = B X - 4scos¢x X + 4dg cos2¢x2 (3.4.3a)
v n n n n-1 n-1 ‘
2 2 |
=g [ 1 + 4s c032¢ J (3.4.3b)

' |
|
|
I
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where E f J is the expectation operator. For examples of this kind,

A |
FIR filters, the use of the complex convolution theorem is unnecessary

2 ?

By a similar derlvatlon thée value of cy , the variance of Y, is

obtained:
2 2 4 .
0Y2 =0 [ 1+ 4szcos o + s ] (3.4.4)
by

The quantizers employed at nodes Ve and Y5 will be similar in
shape to the one at X but their levels will be larger in magnitude by

the multiplying factors in figure 3.4.2.

\
\
Variable | Scale factor \
|
v jzl + 4szcos2¢)
4
v Jil + 4szcosz¢ + s )

n

figure 3.4.2

3.5 Second Order All-Zero - Error Model

The signal flow graph to be used in the following analysis is the
same as the one in figure 3.4.1 with three noise sources introduced; it is

shown in figure 3.5.1.

X, O—= /i;?\

N
p
(+

¢

u,O ' ? —2scos¢ ¢ s

Xa-1 Xp-2

Figure 3.5.1
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The power level of noise processes e, and e’ as a function of the

input power and zero positions are given by:

2
o 2 = Qg 2 [ 1 + 4s cos2¢ ] (3.5.1)
e u

2 2
ceg = 0u2 [ 1 + 4s"cos ¢ + s4 ] _ (3.5.2)

It follows, from equations 3,5.1 and 3.5.2 that the output noise

ower o 2 is given b
p r yn g y:

-

2 ' 2
o =0 2 [ 1 + 452cos ¢ + s4 J + 0 2 [ 1+ 4s2cosz¢ ]
vn u u

f f

due to noise at due to noise at
variable x variable v
n n
2 2 4
+ Guz [ 1 + 4s"cos™¢ + s ] (3.5.3)

I

due to noise at
variable Y

. 2
Now, the signal power at the output, denoted by Gys ; 1s given by:

2 2 4
o} 2 =g 2 [ 1 +4s cos™ ¢ + s ] (3.5.4)
Vs X

and hence the output signal to noise ratio is given by:

2
SNR, = SNR_ - 10 log ., [ 25%a(1 +4s%coss) 7 aB (3.5.5)
2 2 4 ' '
1 + 4s"cos ¢ + s

where SNRI is the input signal to noise ratio.

From equation 3.5.5 it can be seen that SNR. - SNR

o 17 the loss in

signal to noise ratio, is bounded by the inequality:

0 > SNRO - SNRI > -4.77 dB (3.3.6)

&




An experiment was performed to check the validity of equation 3.5.5;

the graph in figure 3.5.2 shows measured signal to noise ratio for two
values of zero radius, s, and in each case for 121 values of $. The

dotted lines are the theoretical SNR estimates.

3.6 Second Order Pole-Zero (Section)

As with the first order pole-zero (section), there are a number
of different signal flow graph topologies which will lead to the desired
second order transfer function. It has been observed by other workers
that different topologies, which realise the same transfer function, do
not necessarily give the same signal to noise ratio performance or the same
frequency-phase response accuracy. In section 2.11 an analytical result
was obtained; this result showed that a canonic form implemention of a
first order free quantization law p-z section gives a higher SNR
performance than the zero first implementatioq.

A similar analysis to that in section 2.11 is in principle possible
for the case of a second order P-2 section; however, it is lengthy and
does not lead to an obvious rule. To overcome this difficulty a random
test was performed; the details of this test are as follows. A pair of
conjugate poles and a pair of conjugate zeroes were randomiy placed inside
the z-plane unit circle. The section was then implemented using both the
zero first and canonic form implementation, in both cases the signal to
noise ratio was calculated. In all tests the canonic form gave an SNR

performance equal to or better than the zero first form.

N 2
H{z) = z= + le + LZ

2
+
z + Klz K2

E
-‘L.III--L
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Figure 3.6.1

3.7 Section Ordering and Pole-Zero Pairing

In fixed point implementations of high order (order > 2) recursive
digital filters it is usual to decompose the filter into either a
cascade or a parallel connection of first and second order sections
(sub-filters). With both decompositions a pairing of poles and zeroes
has to be chosen, and with the cascade decomposition a section ordering
has to be chosen. It is known that both ordering and pole-zero pairing
can have an effect on the output signal to noise ratio performance of a
filﬁer; in principle at least the filter configuration which gives the
maximum ouﬁput signal to noise ratio can be found by exhaustive search
of all possible configurations. For a filter constructed from N cascaded
sections_there are N . section orderings and N ! pole-zero pairings and
henceN.‘2 configuiations. For filters of order eight or less (N g 4)
an exhaustive search is practical since N}25'576; however, for N = 5
the number of possible configurations being 14400 ig becoming too large

to admit an exhaustive search.

There is no known analytical solution to the problems of section

ordering and pole-zero pairing, however, various heuristic and some

optimisation solutions have been proposed (30’91’93)_

In this section it will be shown that the output signal to noise

ratio of a cascade form free quantization law filter is essentially
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independent of sub-filter ordering and pole-zero pairing. These results |

were obtained experimentally; the details are as follows: |

Section Ordering

; Two pairs of poles were chosen at random; these will be denoted by ‘
E A and B. The radii and angles were obtained using uniform random number

| generators in the range [0,1] and [0,n] respectively. Only those

trials with A and B further than a certain minimum distance apart were |
considered. This was done to avoid numerical instability in the

computation of the

A-B
factors appearing in the contour integration. Two filters were then h
implemented; the first was a cascade connection of two second order all-
poles with pole pair A followed by pole pair B, and the second was the

converse. The respective signal to noise ratios SNRAB and SNRBA were then

calculated using the theoretical noise model. The statistics of

NR_ = SN - SNR
SRE _ RAB BA (3.7.2)

were found to be

mean value = 0.000 aB
standard deviation = 0.219 dm
maximum value = 1.600 dB

The histogram in figure 3.7.1 gives a coarse indication of the frequency
of various bands of error values. The maximum error in choosing the
wrong ordering is seen to be insignificant.

For each trial performed above,the SNR for the equivalent fixed point
arithmetic filter was calculated; in all cases thé wrongly ordered

gaussian optimised filter gave & higher signal to noise ratio than the

fixed point arithmetic filter.

B
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Pole-Zero Pairing

Two pole pairs A and B and two zero pairs C and D were selected at
random. Four filters were implemented, each using a cascade of two

second order sections. The filters had the following pole-zero pairings:

Filter lst section 2nd section
pole Zero pole Zero

1 A c B D

2 A D B (@

3 B C A D

4 B D A C

figure 3.7.2

For each of the four filters the SNR, denoted by SNRi (1 i< 4,

was calculated. The statistics of parameter ¢

SNR_ = max SNR, - min SNR, (3.7.3)
E i 1 i i

‘were found to be as follows:

mean value = 0.000 dm f
standard deviation = 0.321 dm

\
maximum value = 2.100 dam

The histogram was found to have the same shape as’ the one in figure 3.7.1.
It can be seen that the arbitrary choice of a pole-zero pairing is un- J

likely to yield an SNR which is significantly lower than the optimum.

3.8 Stability Considerations

The filter described by the constant coefficient difference equation:

Yn "% " Klyn—l - K2yn—2 : (3.8.1)

has the z-domain transfer function:
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H(z) = Y (%) = 1 (3.8.2)
X (2) -1 -2
1 - Klz K2z
| 2
i The poles of H(z) are both real if K1 > 4K2, and are conjugate
|
i complex if K, < 4K, in which case they are of the form:
!
{ 44
; zZ = re 36 (3.8.3)
|
where r f/— K2
-1 2
and 6 = cos —K1
4K2

When the filter described by equation 3.8.1 is implemented using finite
precision arithmetic it is possible for Vo to exhibit sustained oscillations
in the absence of an input signal. These oscillations are referred to as
limit cycles. 1In the analysis bresented by Jackson (42) two kinds of limit
cycle are shown to exist. The first results from a real effective pole at
z =+ 1 or z-=-1; the second results from conjugate complex effective
poles at z = e el -

In the case of a real effective pole Jackson shows that for a fixed

point arithmetic digital filter an upper bound on the limit cycle amplitude

is given by:

' Y < C.5 (3.8.4)

t - Ix [ -k,

n

A similar analysis will now be applied to a free quantization law all-pole.
Consider the signal flow graph in figure 3.8.1.
It is assumed that the limit cycles are constrained to a region of

the (yn_,yn_l,yn_z) space where the quantization laws at P, and y, are

piecewise linear. The parameters qx' qp and qy are the effective step sizes
at xn'pn and yn respectively. The values of qx’ qp are related by equations

3.2.4 and 3.2.5 as follows:

E

T T —— g ——
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Figure 3.8.1
(3.8.5)
(3.8.6)
The difference equation which describes the autonomous behaviour of
the filter in figure 3.8.1 is
p y
= + k4 b
Yn [Kl Yn-1 Ko F =2 ] ] (3.8.7)
where [ ]p and’[ ]Y denote quantization to an allowed value of pn and
v, respectively.
Given that:
[A:'p =Aa+oD | (3.8.8a)

and

[A:IY=A+D (3.8.8b)
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where D < 0.5 and D g 0.5 equation 3.8.7 becomes:
p* 7% y Iy =1
= + K. +D +D : 3.8.
Yn K1yn-1 K2yn—2 o) v (3.8.9)
Now, if equation 3.8.9 has a real effective pole at either z = + 1
or z = -1 then the response yn is either:
= 3.3.1
¥~ ¥ ‘ ( 0a)
or
n
yn =y (-1) (3.8.10Db)
where Y is a constant.
Substituting equations 3.8.10 for Y, in equation 3.8.9 and using the
inequalities for Dp and Dy' the upper bound on the limit cycle amplitude
is obtained; it is given by:
Y] < 0.5 (@ +q) (3.8.11)
t-Jg]-x P Yy
1 2
In order to compare this result with a fixed point arithmetic filter
it is necessary to divide the bound by a factor 1/qy giving:
POl 0.5 +aq ' (3.8.12)
1 - ,Kll - K2 @

From equations 3.8.5, 3.8.6 and 3.2.5 it can be seen that:

and hence the gaussian optimised second order all-pole is capable of

supporting limit cycles which are twice as large as in the fixed point

arithmetic counterpart.

The second case to be examined is when equation 3.8.9 has complex

+96
conjugate effective poles at z = e —J . In this case equation 3.8.9 may
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be written as:

+ + + D =K + K>
St¥po1 T ¥, ¥ D D =Ky 4Ky (3.8.13)
where K; and K; are effective coefficient values. Since the filter has
complex conjugate effective poles on the z-plane unit circle it follows
that K2 = 1; it further follows that:
1 - = (K, - K}) vy + + .8.
Yo o ( K2) ( 1 1) Pl Dp Dy (3.8.14)
Assuming K, - K] to be small, equation 3.8.14 reduces to:
< 0.5 ( + ) (3.8.15)
’Y —2, 1 = K qp qy

2

After normalisation the upper bound on the limit cycle amplitude is found

to be:
’Y" s 0.5 t+aq (3.8.16)
1 - K2 —=
qY

Again, this is up to twice as large as in the fixed point arithmetic case.
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4. The Implementation of Free Quantization Law Digital Filters

4,1 Introduction

Digitalkfilters are usually implemented using binary adders, multipliers
and storage registers selected from an appropriate logic family. With this
implementation method the binary codes held in the storage registers bear
some simple relationship to the value of the signal samples which they '
represent. The two's complement coding scheme is an example; here the code
held in a register gives the sample value as an integer multiple of the
quantization step size. It follows that the quantization law used in the
filter is either uniform or piecewise uniform; the latter accounts for the
cases of floating and block floating point. As free quantization law filters
can, by definition, use non-uniform quantization laws they cannot be implemented,
except in special cases, using binary arithhetic hardware.

In this chapter an implementation method is proposed which places no
restriction on the filters quantization laws. The method is based on the use
of boolean polynomials as a means of computing the next state function of a
finite state machine. Some results on the minimisation of the complexity of
these polYnomials are included. The chapter continues with a description of

how digital filters may be represéhted as finite state machines.

4.2 The Representation of a Digital Filter as a Finite State Machine

The terminology to be used to describe a finite state machine is the
same as that used by Hartmanis(73).

A finite state machine, M, is a machine which comprises a finite set of
inputs T = < Tl, Té, I3, cee 4 INI > , a finite set of étates S =< Sl' So,
S3, WeE SNS > and a finite set of outputs 0 = < 01, Oy, 03/ eee ONO 25

The integers NI’ NS and No indicate the number of members in sets I, S and O
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respectively; they are referred to as the set cardinalities. Two rules D
and L are defined on sets I, S and O. The rule D, called the next state rule,

associates with the current state and the current input a new state. 1In set

notation it is written:

D: SXTI-=SgS (4.2.1)

where X denotes cartesian product (10). Rule L, the next output ruie,

depending on whether the machine is a Mealy or a Moore model, is defined as:
L:sSXI=>0 Mealy
L:sS - 0 Moore (4.2.2)

The product set S X I is called the 'total state' set.

A Moore model finite state machine is shown in figure 4.2.1.

x EI O—— y €S z E O
D:SxI —> S L:S => 0 =0

Delay

Figure 4.2.1

Only the Moore model will be required in this dissertation.

The two commonly used methods for describing rules D and L, for the case
(10)

of a Moore model, are the flow table (1o)and the state transition graph
The flow table is a rectangular table comprising Ns rows and Ny + 1 columns.
Each of the rows corresponds to a member of the state set S, and each of the

columns corresponds to a member of the input set I. The table entry at the

intersection of row Sj with column I (€3 < Ng; and 1 € k < NI) specifies
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respectively; they are referred to as the set cardinalities. Two rules D w
and L are defined on sets I, S and O. The rule D, called the next state rule,

»

associates with the current state and the current input a new state. In set

D: SXI=S (4.2.1)

‘ :
where X denotes cartesian product (10). Rule L, the next output rule,

|
|
|
notation it is written:
depending on whether the machine is a Mealy or a Moore model, is defined as:

L:SXI=>0 Mealy

L:s + 0 Moore (4.2.2)

The product set S X I is called the 'total state' set.

A Moore model finite state machine is shown in figure 4.2.1.

x EI O——— y €S z & O
D:SxI —> S L:S => 0 =0 ‘

Delay

Figure 4.2.1 %;

Only the Moore model will be required in this dissertation.

The two commonly used methods for describing rules D and L, for the case \

(10) (10)

of a Moore model, are the flow table and the state transition graph

The flow table is a rectangular table comprising N .rows and Np + 1 columns.

S

Each of the rows corresponds to a member of the state set S, and each of the

columns corresponds to a member of the input set I. The table entry at the

intersection of row~Sj with column I, (: < j < Ny and 1 € k € NI) specifies
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the next state. The last column §pecifies the next output.

The state transition graph is‘a directed graph with NS nodes and
Ny arcs. Each node is marked with a member of the state set and with a member
of the output set. Each of the arcs is marked with a member of the input w
set. As the name suggests each arc specifies a state transition. ‘

An example of a machine is shown using both method in figure 4.2.2.

\
Il I2 Z

“i

|

Sl Sl S2 Ol “‘

S2| 51 S, | 9 |

&

Flow Table State Transition Graph ‘

Figure 4.2.2 i

The machine in figure 4.2.1 is sometimes referred to as a first order

f finite state machine. A cascade of k such machines would be called a k th. ”
5 il
order finite state machine. Thiis is an unfortunate use of the term order Il
since a filter of any order may be represented by a so called 'first order'
finite state machine.

A finite state machine may be used to represent a first order all-pole j“
digital filter by assigning to each input quantization level a member of
the set I ana to ‘each output quantization level a member of the set S. 1In |
this case séts S and O are the same. An example follows: 1!1

Consider the filter, with input X and éutput yn, described by the

difference equation

X +y
n n-1
yn = 0Q ————E————- (4.2.3)

where Q denotes truncation, and X and y, are members of the set < -2, -1, 0,

1, 2 >, The body of the table in figure 4.2.3 shows T for all possible !
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combinations of x and y .
_ n n-1

X
yn n

I

-2 -2 -1 -1 0o o
| -1 -1 -1 o o o |
| |
i yn—]_ 0 -1 @) (0] (0] 1 \‘\‘
1 o o o 1 1
Il
It
2 o o 1 1 2 Figure 4.2.3 I

Making an arbitrary assigmment to each of the values of X and Y,

|
members of the sets I and S respectively the flow table for the filters ﬁ
finite state machine equivalent is obtained.
I
D: SxI '
I, LI, I I, L:s J‘}i
|
s, s, S, S, S, s, 0 H}
s, S, §; S, S, s, 0,
s, S, S, S, S, S5 0O, :\‘
|
°3 | 52 53 8, S3 83 04
S4 5, S, 83 83 5, ¢ . ploses 4,04 ‘
|

By expressing a free quantization law filter as a finite state machine,
all trace of the underlying arithmetic structure - the difference equation -
disappears. This is useful because, as already mentioned, conventional filter
implementation methods which relate strongly to the arithmetic structure are
unsuitable. In addition much effort has been devoted, by a number of workers, (
to finding efficient methods for synthesising sequential circuits. The results |

of this work can be used since a sequential circuit is just an implementation |

of a finite state machine.
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! A difficulty which will repeatedly appear in this work is problem ﬂ
dimensionality. The first example is that of representing the second order o

filter, described by the difference equation: j

i
= + + ‘ w2
Yn Klyn—l K2yn—2 *a W enaid

as a finite state machine. Let Sl be the set of quantization levels to which

the values of yn, yn—l and yn_2 belong. Denote by S, the cartesian product

2

\
of S, with itself: ‘
I

S, = S. x8 (4.2.5) W

; 2 . ; ;
The cardinality of set S, is N where Ns is the cardinality of set S

2 S . Now,

1 w
if the filter in equation 4.2.4 is to be modelled by a first order finite state
machine (figure 4.2.1) then the machine will have as its state set S2. The

next state function, D, will be the mapping |

| D : 82 > S5, (4.2.6)

which is considerably more complex than in the case of the first order filter. |

In addition, the output function will be non-trivial being the mapping:

D . S. > 0 (4.2.7)

In this section the association of a finite state machine with a recursive
digital filter has been considered. In particular, the way in which quantization
levels can be associated with .machine states and inputs has been described. i

This association will in future be called the ‘'value assignment’'.

4.3 The Implementation of a Finite State Machine as a Sequential Circuit

In order to implement a finite state machine as a sequential circuit

using binary logic it is necessary to assign to each member of the machine state

set a uniquely decodable binary code. A similar assignment must be made to

the input and output sets. The code used may be fixed or variable in length;
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here it will be assumed to be fixed length. Denoting by P_, PS and PO the

I

number of bits required to uniquely code sets I, S and O it can be seen that:

PI 3 [log2 N

.|
Py % |1og2 NS] - | (4.3.1)

Py % llog, n_|

where l l denotes next largest integer.

(79)
Among the names used to describe this assignment are code assignment

state assignment k¥l and internalbcode assignment (76{ Here the term 'code
assignment' will be preferred. The term 'state.assignment' will be used to
refer collectively to the value assignment and to the code assignment.

Having selected a code assignment the next step is to implement the next
state function, D, and the output function, L, using combinatorial logic
networks. The logic implementation of the abstract finite state machine of
figure 4.2.1 is shown in figure 4.3.1.

The combinatorial logic networks which implement functions D and L may
be constructed using read-only memories, logic arrays or random logic. Indeed,
they may be sequential circuits which appear from the viewpoint of the main
machines clock to be combinatorial.

The speed at which a machine is able to clock will bé determined mainly
by the time taken for the outputs of networks D and L to settle. This in turn
will depend on-the number of gates in the longest gate chain from any input
to any output. The length of the longest chain is usually referred to as the

level. The example in figure 4.3.2 is a three level logic network.

)_________

‘)_—ﬂ
lst. level 2nd. level 3rd. level

Figure 4.3.2
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|
|
(2 |
G f
I
Pr—bits |
combinatorial ;“
\—> logic network |
A Y “
Y Y I}
% realising y? ) |
network 5 ;‘
function D ‘
realising Pg—bits I
w
¥ oy function L i
= —9) |

N |
Ps_bit
Ps—bitS
latch
| | )
|
clock

Logic Implementation of Abstract Finite State Machine

~igure 4.3.1
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For a given logic function it is usually found that the lower the level ‘
is the more complex the logic network becomes. The logic complexity is also |

fouﬁd to depend on the code assignment and on the type of storage latch used. o

In the following sections logic complexity is considered in more detail.

4.4 Logic Network Complexity

Consider the binary Scalar valued function f defined by:

y = £ix) (4.4.1) i

where the vector

is constructed of the binary scalars Xy, x2, S XN’

The complexity of function f will depend on the type of logic used, 1

and also on the number of logic levels. For example, consider the function f

(12)
defined by the two level minterm expansion:

f(f) = X v (xl A.x2) (4.4.2)

where V denotes logical OR, and A denotes logical AND. This function can

(12) i
be rewritten, using a two level ring-sum expansion, as:

f(f) = XO ® (xlx ) ® (x x x2) (4.4.3) |

2 01

where ® denotes logic NOT-EQUIVALENCE (EXCLUSIVE-OR). Cost is defined as the

a I

12) ‘
number of gates plus the number of gate inputs, Phister -2, using this ‘y

14

I "
definition, the cost of implementing equations 4.4.2 and 4.4.3 is 6 units ‘w
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and 11 units respectively. Although it is a useful complexity indicator,
this cbst measure is insensitive to the relative complexity of different gates;
for'example, a transistor—ﬁransistor logic (TTL) EXCLUSIVE-OR gate contains
more transistors than a TTL OR gate. What is indicated is that there is a
difference in complexity between the.various logic forms.

In orde; to assess the relative complexity of different logic forms used
to implement the same logical function Kellerman(99) broposes the following

experiment. Let function f be defined on the N binary scalar variables

v eeoy Xoo There are 2N possible values of the N-tuple x

N l,x2, g XN; in

response to r of these f has the value '0', and in response to the

- N ; —— oN_r S
remaining 2"-r it has the value 'l'. For each of the Cy possibilities
function f is minimised; the average cost over all these possibilities is
called the average minimum cost. Performing this experiment for minimised
minterm and ring-sum expansions of f, it is found that the ring-sum expansion
by the previous definition of cost is the less costly in the average minimum

sense. Hellerman(loo)

justifies this observation by the use of an entropy
definition for the OR and EXCLUSIVE-OR gates.

The details are as follows:
Define a function f of two binary scalar variable xO and X where xO and xl
each have an equal probability of being 'O' or 'l', TIf function f is the

logical operation OR then f(xo,xl) has probability 0.25 of being 'O' and

0.75 of being 'L'. The entropy of function f is therefore:

H(f)

-0.25 log, 0.25 - 0.75 log, 0.75

0.8113 (4.4.4)

By a similar reasoning if function f is the logical operation EXCLUSIVE-OR

then the entropy of f is:

H(£) = -0.5 logy, 0.5 = 0.5 log, 0.5

= 1 (4.4.5)
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With the development of high density ring-sum form programmable logic |

arrays and in view of its reduced complexity this particular expansion has

become of practical interest. ‘

4.5 'The Code Assignment Problem

|
|
As mentioned in section 4.3 the complexity of the logic networks which ‘
Ifmplement functions D and L not only depends on the lTogic form used, but also J
|
on the code assignment. The code assignment problem has received considerable |
e attention in the literature since the late 1950's. To date no general
solution to the problem has been found. Various methods of solution have
(73-89)
been proposed , most of which depend for their success on certain
structural properties of the machines flow table. Without exception these

methods assume an AND-OR logic form for the next state and output functions.

Furthermore for any appreciable number of machine states, typically fifty or w

To illustrate the importance of selecting an economical code assignment
an example will be presented. Consider the machine described by the flow

more, their use becomes computationally impractical.
l
table in figure 4.5.1. r

'Next state

IO Il ‘I2 I3 |

|

% B3 % - § & \

Sl S3 52 Sl SO |

S2 S3 SZ Sl SO ?
S3 St So Sy 83 Figure 4.5.1

Two possible codings of this machine are shown in figure 4.5.2.. The
associated next state ring-sum polynomials are shown; the variables are those

given in figure 4.3.1. The associated cost is quoted; the cost difference is |

seen to be significant.
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lst coding - ] yl Yo 2o ‘:Sl.‘¥o
S I ) 0]
0 ° ° 0
Sl o 1 Il o} 1
82 1 0 I2 1 o
S3 1 1 I3 1 1
U =
Yo Lo, 8% y,%
v =
7, 1o X, ® Yo¥q
cost = 15
2nd coding yl yo Xl XO
1 1 I 0
%l 0 O
Sl 1 O Il o 1
52 0] 1 12 1 o}
83 0 e} I3 1 1
1 = )
Yo X0 ® % ® XY, @ x1y) @ xyyy,)
] = e
¥ 1.ea ¥ ®8y,9Y7; &y
cost = 25 _ Figure 4.5.2

A solution to the problem of finding a minimum cost code assignment must
existy in principle an exhaustive search of all possible code assignments
could be performed. If the machine has Ns states then there are NS! different

ways of assigning NS codes. If NS = 4, giving NS! = 24, then an exhaustive

search is a good method, however, if Ns = 8, giving Ns! = 40320, such a method
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becomes impractical. The number of code assignments which need to be
tested can be reduced. Consider the ordered set of binary digits

pN—l’ pN—Z’ <eer Py P P, to be an N bit code used to code each of the NS
states of a machine (NS = 2N). Now reverse a pair of bits: for example
pN—l' pN_2, ooy pl, p2, po. This has the effect of changing the code
assignment but not the next state polynomials. As there are N! ways of

ordering N bits the number of possible‘code assignments, C, reduces to:

N !
c = W (4.5.1)
NS = 8 gives C = 6720
Various éuthors(68972) consider ways by which to reduce C still further.

These methods depend on the type of delay store. For example, if each of
the state bits is available in true and complement form then code assignments
which differ only by a complement will have the same cost. Bianchini 63
presents a method for systematically generating all distinct code assignments.
The method does not require that all the previously generated assignments be
stored.

Even for a modest number of states the computational savings offered by
the above methods are inadequate. Typically 32 states would require that
some 1033 code assignments be tested. Examining the exXpression given in
(4.5.1) for the number of code assignments it is seen that C cannot be expréssed
as a finite degree polynomial in NS except for limited values of Ns' This
being the case, the code assignment problem belongs to the class of problems
which are termed non-polynomial solvable. A number of workers have proposed
methods for rapidly finding optimal or near optimal code assigments. Of these
metheds two of the more well known ones are those of Hartmanis and Stearns

(74) " . (86)
and Story, Harrison and Rainhard - SHR - .

The former method relies on the isolation of so called sub-computations
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within the machines next state function. To explain this further the
following definition is required. Let S be a set which is divided up into

subsets BO’ Bl' ceey Bo. If the following properties exist:

N

N
S = U B, . (4.5.13.)

. i

i=0

6 i#3
= 4.5,

BinBj B, 1= (4.5.1b)

where U denotes set union, N denotes set intersection and @ is the empty

set, then set S is said to have been partitioned into blocks BO, B sssyp B..s

1’ N
Returning to the method of Hartmanis and Stearns. They propose an algorithm
for finding a partition, on a machines state set S, which has the following
property; the block containing the next state only depends on the input and

on the block containing the current state. In general the exact next state
will depend on both the previous state and the input. Effectively this methodr
selects a code assignment such that some of the next state.polynomials only
depend on the input bits and on a subset of the state bits. The rest of the
next state polynomials will depend on all the total state bits. Arbitrarily
selecting a code assignment would usually cause each of the next state poly-
nomials to depend on all the input and state bits. It follows that when a
machine is partitionable some reduction in the complexity of the next state
polynomials is to be expected. There are two drawbacks to this method. The
machine must possess a partitionable state structure. Also, for a large number
of states the partitioning algorithm would require excessive computing
resources. For a digital filter realised as a finite state machine there is
one sub-computation which can be isolated by inspection; the details follow.
Consider the constant coefficient filter, with input x_ and output Y which is

described by the difference equation:

¥y Kyn—l X (4.5.2)
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"

The values which the variables xn and yh may assume are constrained to their
respective finite sets. Both these sets have the property that for each
positive member - quantization level - there is a negative member which is

equal in magnitude., If X, and yn_l‘are both positive then:

vy = lxy ]+ x| . (4.5.3a)
where | l denotes 'magnitude of', whereas, if both are negative then
v, = -lxy |- x| (4.5.3b)

If, however, yn 1 is positive and X is negative or yn 1 is negative and

X is positive then:
| - x| (4.5.3¢c)

and :

|y, o1+ x| (4.5.3d)

e
I

respectively. Equation 4.5.3b can be evaluated by evalugting equation 4.5.3a ‘
and changing the sign of the result. Similarly, equation 4.5.3d can be
evaluated using equation 4.5.3c. This result suggests that there may be some
advantage in choosing codings for X, ana yn which use one bit to specify the
sign. Suppose that a read only memory (r.o.m.) is used to evaluate equation
4.5.2, 1If X and v, both require N-bit codes then the’r.o.m. would contain

N x 22N cells. If, however, a r.o.m. is used to evaluate equations 4.5.3a
and c then, since ,Kyn—ll and Ixnl are codable in N-1 bits, 2N22N—2 cells
are required. The number of cells in the r.o.m. has been halved. This type
of code is referred to as a sign-magnitude code. Unfortunately here this

name is inappropriate as the 'magnitude’ part of the code need not bear a

simple relationship with the signal sample value. Some additional logic is

required to decide the sign of the result and to decide whether to apply
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equation 4.5.3a or 4.5.3c. The logic specification will be given in terms

-

of thé following variables:

definition as for Sx

; |
S - sign bit of x J
X n
() = 0 =>» x positive
X n
S = 1 => x_negative
% n
S - sign bit of . |
Y 4 yn
|

Sc - sign complement bit
f
§, = O => leave result unchanged W
. \“
Sc = 1 => change sign of result
£ - equation selector J
£f = 0 => apply equation 4.5.3a !
|
£ = 1 => apply equation 4.5.3c ' J
|
\“
Y
s - sign of result given by r.o.m. |

x ‘U

definition as for SX

S - sign of final result

R Figure 4.5.4 I

The truth table relating f,Sc and SR to Sx’ Sy and SP is shown in figure |
4.5.3. ‘

The following logical expressions for £, Sc and SR follow from Table f

4,5,.3:
f = S &S |
y I
s = s |
& v \
S = S @8 (4.5.4) |
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H ' H H O O O O
H H O O H H O O
H O H O + O +H O
O O F H H + O O
H H O O H K O O
O  H O O + = 0O

Figure 4.5.3 Il

Additional logic amounting to two EXCLUSIVE-OR gates is all that is required |
1\

to calculate the sign. w
A description of the SHR code assignment algorithm will now be given. W

It is observed that, although the number of distinct code assignments is: i

2Nl 1i

; C = T (4.5.5a) |

l |

1 _ 1

E where N = log2NS, there are only: w
i

: x, |

B o= st o (4.5.5b) |

: @2 |

different columns which go to make up the C row assignments. For example,

if the machine has 4 states then the C = 12 distinct code assignments are: |

foo] [oo] [oo] [11] [1 17 (1 1] q
o1l o1l |11 00 o1 01 [
10 11 o1 o1 00 10
11| |[1o] |[To] [1o] [1Lo] |O oj ' : L

017 [ol] [o1l] [o17 [o 17 fo 17 ;‘
00 00 10 10 11 11 ‘
10 11 00 11 00 10 i
11 10 11 00 10 00

Figure 4.5.5
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Among these 12 assignments are the following distinct columns:

H OO
HOrO
= O O K
OHMFO
OO H
OO0 r+HH

Figure 4.5.6

The SHR algorithm associates with each distinct column a so called minimum
number (MN). This number is a measure of the cost of using the associated
column as a part of a complete code assignments. It is called a miminum
number as it is a lower cost bound; in other words, if the column is
accompanied by the appropriate N-1 other columns it will contribure MN units
to the total cost of the machine. The algorithm, having computed the MN for
each of the H columns, proceeds by combining the N lowest cost columns subject
to the following condition; the combined use of N columns must lead to a
proper code assignments, that'is, an assignment in which egch state has a
unique code. For example, the first and last columns in figure 4.5.6 cannot
be used together. The SHR algorithm finds the MN for each column without
having to consider any of the other columns. It is designed for use with
minterm (AND-OR) next state logic and J-K flip flop delay elements. It is
likely that this method could be re-developed for use with ring-sum logic.

A third method for finding an economical code assignment will now be
described. Cons;der the machine shown in figure 4.3.1 with its next state
function, D, implemented using ring-sum polynomials. These polynomials are
found by applying the Reed-Muller Transformation to the coded next state table
(see Chapter 5 for a description of the R.M. Transform). The cost of the
machine will be measured by counting the number of terms in all the polynomials.

A term iIs a product of binary scalars, for example x_x The method is

0 2%5"

based on partitioning the space of all possible code assignments into blocks

(sub-spaces) : Each block has the property that all its members are related to
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each other by a linear transformation. To illustrate this consider the

2-input 8-state machine in figure 4.5.7.

VoY ¥Q

¥ ¥1 Ty o ° -
o 0 0 00l  0l0
o 0 1 olo o1l
o1 0 oll 100
o 1 1 100 1ol
1 0 0 1ol 110
1 0o 1 110 111
1 1 0 111 000
1 1 1 000 001

The corresponding next state polynomials are:

N
Oo.
I

le ¥s ® x

o)
v =
¥y Yo ® ¥) @ x4 & xv,
B
75 Yo¥; ® ¥y & x5¥) & Xy, vy

Now, applying the following linear transformation:

1] [1 o o o 1
zO B 0 1 1 0 Y5
zq 0 (0] 1 ) Yy
22_- -—O (] 1 l__l __YZ

the next state table becomes:

Figure 4.5.7a

(4.5.6a)
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| 5712

: X O 1

| z z z ©

| 2 1 0

' o) 0 0 o0l 111 |
0 ) 1 111 1lo | ‘
1 1 1 110 100 |
1 1 0 100 1ol |

‘\

1 0 o] 101 o0l1 oo
1 o) 1 011 olo N 1‘
o) 1 1 010 000 |
o 1 o 000 001 Il

Figure 4.5.7b

and the next state polynomials become: i

' = |
zo =1 21 o xozO ® XOZ1 J
zf = zO @ xO ® xoz0 (] xoz1

= 4.5.6b
Zi = z0 ® zoz1 ® 22 ® x0 (5] XOZO (] x021 ® xozoz1 ( )

The objective is to randomly select a code assignment and then find

a linear transformation which maps this to a low cost code assignment. If, }

within the current block, the lowest cost code assignment is too costly then

a non-linear transformation is applied to change to a different block. If

the machine has NS states which are coded by N = log2 NS bits then there
are
N-1
N N i i
27 I (2 -2
i=0

different linear transformations. This is readily shown. Consider the

general linear transformation of N binary variables onto N binary variables

described by the matrix equation:
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1] M1 o) ) o ... o | [1

%5 9 %,0 %,1 8,2 *c° %o,n-1 Yo

%1 1 %1, %1 21,2 © 0 81,N-1 ¥y

Z) = 2 %0 3,1 3,0 = = 85 0 Y5
“N-1 | | °N-1 %N-1,0 ZN-1,1 PN-1,2 N-1,8-1] | Tw-1

z = Ty (4.5.7)

Matrix T must be non-singular and so

N
Row 2 may be chosen in 2 -1 ways, as it may not be zero;
N
Row 3 may be chosen in 2 -2 ways, as it may not be zero or equal to
Row 2
. N .
Row 4 may be chosen in 2 -4 ways, as it may not be zero, equal to

Rows 2 or 3 or equal to Row 2 ® Row 3.

Repeating this up to Row N the following product is obtained:

Now each of the cj may-be O or 1 and hence the total number of linear

transformations is:
) (4.5.8)

When a transformation can be described by a matrix equation that transformation

will be called linear. All other mappings which are one-to-one and onto will

be called non-linear transformations.
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An algorithm has been developed for removing unnecessary complementation.
Complementation is a special case of the general linear transformation. The '
details are as follows:
(1) Arrange the next state polynomials in a table. Each row of the table *
corresponds to a different polynomial and each column to a different ‘

term. The entry at row i, column j is the coefficient of term Jj, in

polynomial i. For example, the polynomials:

" = ;
Yo o 1le xo ® Yq
v =
Yq 1 e X, 8 Xy, @ X XYY, (4.5.9)
\
would be displayed in tabular form as follows:
|
1
J *o *1 *o*1 Yo Y6%0 Yo*1 Yo¥0™1 8
|
Yo 1 1 o) 0 1 0 o) 0 |
y,' 1 0 1 0 0 0 0 0

y'lcont'd | o ! o 0 o , o 0 o 0

! ! . |
yf cont'd o 1 ‘ 0 O ‘ () ! 0 0 1
Figure 4.5.8

(2) Replace each of the state code bits (yo, Yyr cees y6 ’ yf r -+.) by its
Ltd + + e + y ! + y. ! ST
conditional complement (co yo, cl yl, ; co yo ’ cl yl 7 )

The coefficients f%jare as described in matrix equation 4.5.7.

(3) Re-arrange the polynomials into canonic form.

Combining steps (2) and (3) the polynomial :

y! = lex ©x
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becomes

13 —_ +
Yq (1 cO) ® Xq ® c ¥y ® XYy

(4) Form the list of coefficient products Pk(i,j). The value Pkli,j) is
|
the product of the coefficients in figure 4.5.8 at column k, row i and

column k, row j.
(5) Find the values of c; which make as many of the Pk(i,j) as possible zero.

In effect, the algorithm aims to find a transformation made up of just
complements, which causes the next state polynomials to have as few common
terms as possible.- An example of the algorithm will now be given.

Consider the machine described by the next state polynomials |

] = 3. 3r il
yb 16 XO ® xl ® xoxl ® xoyl () xlyo ® xoxlyo ® xoxlyl ® xoxlyoyl ) |
[ |
1 = |
yl 16 x o ® yo “
Applying step (1)
1 ' ;
%o e R ] | Yo ¥6%0 ¥o*1 Yo%0*1
y6 1 1 o | o 1 o) o) o)
| i 1
yf T 1 1 g 1 o] o} 1 1
1| Y1%0 | T1¥*1 | Y1%0*1 Yo¥1i | Yo¥i¥o | Yo¥iEr | Yo¥ Xg%
|
i
Yq | O o} o} 0 0 0 f 0 o)
yf e 1 o} 1 o} o) o) 1

Figure 4.5.9a
Applying steps (2) and (3)

1+c 1 0 0 1lo0lo o
1 1+cl 1+cO (l+cO)X 0 0 1 l+cl
(l+Cl)
0 0 0
l+cO
Figure 4.5.9b




94

The corresponding values of Pk(i,j) are

k Pk(O,l) k Pk(o,l)

Q
[e0]

[
(@)

O O O O O O + +
Q
X}

10
11
12
13
14
15

N 00w O
© O O 0O o o o o

Figure 4.5.10

By inspection PO(O,l) = Pl(O,l) = O when c_ = c, = 1,

o 1 Substituting these

values for <, and ¢y in Figure 4.5.9b the reduced complexity polynomials are

= % % v,

1 e xlyo ® xoyl ® xoxlyoyl

For larger numbers of polynomials solution by inspection for the values
of the coefficients ci is not possible: Instead, the Reed Muller transformation
has to be used. Transforming the polynomials for PO(O,l) and Pl(O,l) in

the example above:

polynomial
term Pofo,l) Pl(o,l) value of PO(O,l), Pl(O,l) at ¢, cO
1 1 1 RMT 1 1 ) 0
R 1 o == o 1 o 1
cl (0] b 1 (0] 1 (0]
cocl 0 0 0O 0 1 1

Figure 4.5.11

it is seen that when Cq =¢; = 1; PO(O,l) = P1(O,1) = 0, as expected.
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The disadvantage of this algorithm, as with the first two, is that of
scale. Consider how much storage is required for table 4.5.9b in the case
of k polynomials. Each polynomial has 22k terms; each term has a coefficient
which requires 2k bits of storage. In total k 23k bits of storage are needed
for k polynomials. 1In addition, storage for the values of Pk(i,j) is required.
For each column there are kc2 products; each product requires 2k bits of
k

storage; there are 22k columns and hence kC2 23 bits of storage are required.

The total storage requirement is

3k

(k + kcz) 2% o k@ + 1)23F 1

This algorithm was used successfully for up to k = 5 polynomials.

4.6 Next State Polynomials Minimisation

A logic function may be expressed in a number of different ways. Even
within a particular logic form alternatives exist. The complexity of the
associated hardware variés so much from one expression to anothér that it is
important to have means of finding a minimum complexity exXpression. When
several logic functions are to be evaluated simultaneously additional savings
are possible by identifying sub-evaluations which occur in more than one
function. Perhaps the best known example of a minimisatibn method is the
multiple output method of Quine and McCluskey . The QM technique has become
the standard method of minimising minterm expansions by digital computer.

No standard technique has yet been developed for minimising ring-sum expanded
logic functions. As the following example shows there is much to be saved by

finding such a technique.

y = 168 X4 ® X ® xoxl

(1 o xo)(l ® xl)

where = denotes complement
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If Xq and xl are available in complement form then just one AND gate is
requiréd. The first expression requires one AND gate and one four input
EXOR gatef

No new method is to be presented here. The section is included because
logic minimisation is as important iﬁ the design of finite state machines as
the choice of a good code assignment and the choice of the best memory elements.
In the literature methods for minimising ring=sum polynomials are proposed

More recently, Rayner has developed such an algorithm.

4.7 Concluding Remarks

In this chapter attention has been drawn to the problem of realising
free quantization law digital filters. It has been shown that conventional
digital arithmetic hardware is unsuitable for implementing these filters: As
an alternative a sequential circuit implementation of a finite state machine
has been proposed. The steps in the design of a sequential circuit which have
been discussed are:
(1) Using the filters difference equation and its quantization laws to
evaluate the ﬁéxt state table of the equivalent finite state machine.
(2) .Select a logic form for implementing the machines next state
* ‘function.
(3) Code the machine states using a suitable length binary word, so
that the next state polynomials are cost minimal.
(4) Apply a logic reduction technique to further reduce the complexity

of the next state polynomials.

It has been implicitly assumed that the machines next state table is irredundant.

Between steps (1) and (2) a state reduction should be performed. The reason
for this is as follows: Consider a machine with a state set which has 2N—l

members each coded using N bits; with this scheme there is one redundant state.

The transitions from this state may be selected in a way which reduces the

(101)
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next state polynomial complexity. This is analogous to 'don't-care' conditions
in a c;mbinational.logic circuit: If, in fact, tﬁe macﬁine has further
redundant'states then further reductions in complexity are possible. Such
redundant states are the so called equivalent states (1?). Some techniques

for identifying equivalent states are to be found in the literature. Their
use in this application is a matter for fﬁrther work.

Finally, a special case of the free quantization law filter which leads

to a simple hardware implementation has been found; it is discussed in Appendix

C.
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5. A Reed-Muller Transform Processor

5.1 1Introduction

In chépter 4 a technigue for minimising the next state function of
Va finite state machine, when it is implemented using AND/EXCLUSIVE-OR
logic, was presented. A method for transforming from the operational
domain of a logic network to the associated ring-sum multinomials (Polynominals)
domain was assumed to exist. In this chapter the required transformation,
(98)

the so called Reed-Muller (RM) Transformation ; will be described;

a special purpose processor for the rapid computation of the RM transform

will also be described.

5.2 The Reed-Muller Transform

Consider the logic network L shown in figure 5.2.1. Each of the

binary valued éutput variables (literals) YooYy is related by a

corresponding multinomial fl""fN to each of the input literals L TERREE
X1 =i .Fi =9 81
X2 = fa =y,
logic network
L
Xy = N = uy

Figure 5.2.1

It will be assumed that for each of the possible values of the
input binary N-vector (x1 x2....xN) the value of the output binary N-vector

(y1 yz.ecayN) is known. The problem is to find the logic network L which

will realise this input to output relationship. 1In principle functions
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5. A Reed-Muller Transform Processor

5.1 Introduction
In chapter 4 a technique for minimising the next state function of
a finite state machine, when it is implemented using AND/EXCLUSIVE-OR
logic, was presented. A method for transforming from the operational
domain of a logic network to the associated ring-sum multinomials (polynominals)
domain was assumed to exist. 1In this chapter the required transformation,
. . (98) ’ ;
.the so called Reed-Muller (RM) Transformation , will be described;

a special purpose processor for the rapid computation of the RM transform

will also be described.

5.2 The Reed-Muller Transform

Consider the logic network L shown in figure 5.2.1. Each of the

bina valued output variables (literals) vy,....y. is related by a
vy 1 N

corresponding multinomial fl""fN to each of the input literals Kyoen Koo 1
i
Xy &= fi =y i L
X2 = fo =y il

logic network

L

XN &> ’ N = U

Figure 5.2.1

It will be assumed that for each of the possible values of the ”w
\

input binary N-vector (x1 x2....xN) the value of the output binary N-vector

(y1 yza,ﬁ.yN) is known. The problem is to find the logic network L which |

will realise this input to output relationship. 1In principle functions
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fl""fN could be realised using a random connection of AND, OR and |
EXCLUSIVE-OR gates, however, to allow automation a standard form such

!
' as minterm (AND/OR) or ring-sum (AND/EXCLUSIVE-OR) is normally used. ‘
|
Here the ring-sum expansion will be used.
’ ‘ |
To simplify the following discussion L will be assumed to be a two
input (Xl'x2) and one output (y) network. The general ring-sum expansion il
of y in terms of %y and X, is given by: |
y=2a,® A%, @ ay %, ® 8y % %, (5.2.1) 1

where & denotes modulo-2 addition,

p-g (abbreviated to pg) denotes binary multiplication,

and the aij are constant binary valued coefficients V}

Denoting by y(p,qg) the value of y when x1 = p and X, = d the following i
table is obtained: M
ﬁf

|

X, X v I

= |

0 0 v (0,0) agy |

0 1 v (0,1) = a;; @ a, i
0 ; = :‘
. Fits00) 211 @ %21 " il

|

1 1 v(1,1) = ary ® a, & a21 ® a5, ‘

} figure 5.2.2
' By operating on the y column of the table in figure 5.2.2 the
coefficients aij are obtained in terms of the operational domain values

v(p,q) as follows:

an = v (0,0)
il
a, = y(0,0) @ y(0,1) }
3, = ¥(0,00 ®y(1,0) L
a = y(0,0) & y(0,1) & y(1,0) & y(1,1) (5.2.2) ‘!i
|

22
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M
which in binary matrix notation becomes :
a,; ] [ 1 0 o0 o [ v(0,0) J
ass = 1 1 0 0 y(0,1) (5.2.3) |
a4 1 0 1 0 ‘ y(1,0) I
a,, A T T L v(1,1) |
1
TRy TRy X ‘ I
Matrix 32 is called the two variable Reed-Muller transformation matrix. ﬂ‘
For the case of three input variables (xl’XZ'XB) the desired J
transformation matrix is: |
\
1 0 0 0 0 0 0 o7 0l e
1 1 0 0 0 0 o0 o | l
1 0 1 0 0 0 0 o0 ;;1‘1“ ‘1
53 = 1 1 1 1 0O 0 0 o0 (5.2.4) {
1 0 0 0 1 0 o0 o ‘1 |
1 1 0O o 1 1 0 0 }N“
i
1 0 1 0 1 o0 1 o [l ‘
L. 1 1 1 1 1 1 1 1 | j
i
It can be seen that matrix R, partitions as follows: h
- . !
R ; @ |
=2 ] - |
B : R, i
where @ denotes the null matrix.
This in turn is recognised as the Kronecker matrix product: ,
Ry =R, 2R, | (5.2.6) ‘ ‘
i
It can be shown that in general: i{
|
|
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N
BN = @ 51 (5.2.7) |

The binary values ¢ and 1 together with the operations AND(.) and ‘
EXCLUSIVE-~OR (®) form a finite field called Galois Field.2 and abbreviated l
to GF(2). The RM transformation discussed above is a special case of
the more general transformation defined for multiple valued logic over '
GF(p) (p-prime) and discussed by Green(ga). Multiple valued logic is ° , ‘

|

currently an active research area, however, it will receive no further

consideration here as it is currently not conveniently realised.

5.3 A Reed-Muller Transform Processor

When designing a sequential circuit to realise a finite state machine
the first step is to select a code assignment. The next step is to find
the multinomials which relate the input and current state to the next P
state. If the multinomials are ring-sum exXpansions then what is required |
is to rearrange the machines next state table as a linear array and then to
compute the Reed-Muller transform. 2An example of such a rearrangement is

shown in figure 5.3.1.

next state current state input cuizint zizte 1
” S e i
Y —/ i
Yo ¥y Yy, ¥y . 7 =% 7 —
Y
00 01 10 11 2 % Yo ¥y Yy ¥y |
00 PO. P1 P2 P3 0 0 0 0 PO
0 0 0 1 P1
X, Xy 01 P4 P5 P6 P7 linearise 0 0 1 0 p2
. 0 0 1 1 P
input <~
P 10 Py Py P, P, 0 1 0o 0 PZ
0 1 0 1 P5
111Py P13 Py Pys 0 1 t 0 Pe
0 1 1 1 P7
1 0 0 0 P8
1 0 0 1 P9
1 0 1 0 P10
1 0 1 1 P11
1 1 0 0 P12 |
1 1 o 1 e j
1 1 1 0 i |
1 1 1 1 P15
figure 5.3.1




By choosing a suitable initial arrangement in a computers main

memory this rearrangement is implied.

A difficulty which arises when designing a high speed hardware RM
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transform processor is that for large numbers of variables the amount of |

high speed memory required is prohibitively expensive. This difficulty

can be overcome by trading processor speed for processor cost. The

processor to be described is designed to compute the RM transform across

one row or down one column of a machines next state table; the entire

transform is constructed by applying the pProcessor to each of the xrows

(columns) and then to each of the columns (rows). The decomposition of a

N M . . N _M .
two dimensional 2 -point by 2 -point RM transform into 2 y 2 =point and

M

Yy Y3 Yy ¥y

00 01 10 11

00 00 01 10 11
x, 01 01 10 11 11

10 10 11 11 11

11 11 11 11 11

00 01 10 00
01 11 10 11

10 01 01 01

11 00 00 00

00 01 10 00

01 10 00 11

10 00 131 01

N
2"} 2 -point one dimensional transforms will now be illustrated by example:

operational domain

figure 5.3.2

after 4 row transforms ﬂ

figure 5.3.3 i

after 4 column transforms
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Figure 5.3.2 is shown rearranged as a linear array in figure 5.3.5.
Its RM transform is also shown; the transform is seen to be a linearised
version of figure 5.3.4.

2 % Yy Yy Y Y 20N

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1

0 0 1 0 1 0 1 0

0 0 1 1 1 1 0 0

0 1 0 0 0 1 0 1

0 1 0 1 1 0 1 0

0 1 1 0 1 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 0 1 0

1 0 0 1 1 1 0 0

1 0 1 0 1 1 1 1

1 0 1 1 1 1 0 1

1 1 0 0 1 1 0 0

1 1 0 1 1 1 1 1

1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 0 | figure 5.3.5

The processor is designed to communicate directly with the main

memory of a general purpose minicomputer; its specifications are as

follows:

1.

2.

Up to 8 multinomials simultaneously computed

Software selectable multinomial sizes of 16, 32, 64, 128 and 256
coefficients

Capability to deal with operational domain data which is either

consecutively organised in the host computers main memory or

is seperated by 2, 4, 8, 16, 32, 64, 128 or 256 locations.
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A brief description of the processor is given in this dissertation;

(90)

complete details are contained in a technical report -
The processor divides into three distinct units; they are as follows:

1. The processor - host computer communications unit

and 3. The processor control unit.
All three units are indicated on the diagram in figure 5.3.6.

The sequence of events through which the host computer and the processor

\
\
\
i
|
2 The processor arithmetic unit \
|
I
pass in order to compute one transform are as follows:
1. The host computer provides the processor with:
(i) The address in main memory of the first data point k
(ii) The offset from the Nth to the N + 1th data point
and (iii) The number of data points
2. The host computer instructs the processor to commence transforming
3. The transform Processor reads the operational domain data ’ 1l
through the host computers direct memory access (DMA) channel |
into its own high speed store
4. The transform is computed
5 The transform processor returns the multinomials in place to the  @
computers main memory; this is again done via the DMA channel
and 6. The processor sets the transform completed flag.
After step 2 the host computer is free to perform other computations.
The transfers to and from the host computers main memory via the ’
DMA channel are sequenced by the processors control logic (unit 3 in

figure 5.3.6). Assoicated with each transfer are two addresses, one to

the hosts main memory and one to the processors local high speed memory;

these are generated by the DMA and processor address generators respectively ‘J

(units 1 and 2). The DMA address generator is non-standard in that it is []

capable of generating non-consecutive addresses.




Data Bus

)

Address Bus
A

l
Minicomputer
Interface

Control Bus“

5.3.6

Reed-Muller Transform Processor.

|
|
l
| D Mod -2 y
. Add b
| & M High Speed o 3
8-bits -
l Storage I
‘I _ organised as Lateh
T j ' A 256. words by
’ Muxl 8 bits. P
1 | ro—]

DMA roc. '

Addresy | | Address 2

'Gen. l Gen
| fq

e P S -———— — o
Processor Control .
s ez Logic Mux. = multiplexer
3 : A, address
D. data

Block ’Diogrdm

SO0T -
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Next attention is focussed on the actual transform computation. It
will be assumed that the operational domain data is in consecutive
locations in the processors high speed store; the sequence of events required
to produce in place the multinomial domain data will be considered.

To illustrate the actions of the processor an 8-point transform will
be considered. First the following convention is required; the left most
column of matrix 53 is column O.

The sequence of addresses which must be generated in order to multiply
in place by 53 is as follows:

Ol 1' 2l 3’ 4, 5, 6, 7

0 figure 5.3.7

This address sequence does not lead to a neat hardware realisation
of the processor address generator, however, by factorizing 33 appropriately

this difficulty can be overcome.

Consider the following factorization of R._:

_3'
stage 3 stage 2
Fl ’1 . r ’ ~ . X
11 1 1 , |
11 1 11 W
53 = 1111 = 1 ® 11 X |
i 1 1 1 1 I
11 11 1 1 1
1111 1 1 11
11111111 | ! J i o 1] |
stage 1 ‘
|
¥ |
11 ‘
11 all blank entries
have the value O
11
h (5.3.1)
L J
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~ L3 B3 R,
This is called a Radix - 2 factorization.
The address sequences involved in non-trivial operations are as follows:
0, 1,2, 3, 4, 5, 6, 7 - stage 1
0,2,1,3,4,6,5 7 - stage 2
0, 4, 1,5,2,6, 3, 7 - stage 3 figure 5.3.8

Written out in binary these become:

Stage 1 Stage 2 Stage 3
000 000 000
001 010 100
010 001 001
011 011 101
100 100 010
101 110 110
110 101 011
111 111 111

figure 5.3.9

It can be seen that stage 1 involves an ordinary binary count from
0 to 7. Stage 2 also involves an ordinary binary count but with the least
significant two bits interchanged. Finally, stage 3 is an ordinary binary
count with the following bits exchanged:

bit 0 to bit 2

bit 1 to bit 0

bit 2 to bit 1 figure 5.3.10

As the processor is to be designed to compute transforms which are up
to 256 - points it is necessary to establish the addressing mechanism for

up to 8 address lines. The radix-2 factorization of BN contains N matrices

and thus the transform is constructed from N stages. Denoting by s and c.
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the least and most signficant bits respectively of an 8-bit binary counter,
it can be shown that the address bit exchanges as a function of the
transform stage are as shown in figure 5.3.11.

A number of ways of realising this addressing mechanism were
considered. Among them were the use of én.array of tri-state couplers as
shown in figure 5.3.12 and the use of steered clock signals in an 8
flip-flop counter.

Neither of these solutions was considered satisfactory; the solution

which was adopted is as follows. Notice that dg-.. d, depend on Cp---C

3 4

and on the stage bits Sp---S also notice that d ...d7 depend on Cor

54 4

c ¢, and sg...S can be generated

PRRRLE! It follows that dO through d

2° 7
using two 256 word by 4 bit read only memories. From the viewpoint of
printed circuit board area this is the least costly solution requiring °
just two integrated circuits; by comparison the tri-state coupler array
in figure 5.3.12 requires 6 integrated circuits.

A further advantage of the radix-2 factorization is that each factor
matrix has either 1 or 2 one's in each row and column. Where just 1
one appears on a row no operation need be performed; where 2 one's appear
the operations required are as follows:

1. Read memory at address N1 into latch 1

2. Read memory at address N2 into latch 2

3 Modulo-2 add contents of latch 1 to contents of latch 2

4, Write result to memory at address N2.

It follows that each transform stage involves an equal number of
non-trivial operations; this is in complete contrast to the direct

multiplication by BN' The effect is to simplify the processor control

logic.
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J
|

stage 1 stage 2 stage 3 stags 4

111111
X111
i
Al

stage 95 stage 6 stage 7 stage 8

el
/7L
/77,

Address Bit Exchanges
Figur‘e 5.3.11 ‘

22 gates

/

0
N
® & ¢ ¢ o 1r ® 1P

® ® ® ® ® @ ® ® “ J

dg d d» d3 d, dg dg d

Tri-State Coupler Addressing Mechanism

Figure 5.3.12
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The radix-2 factorization of BN requires N2 memory reads and 3
N-1 : : ; : : e |
N2 memory writes; its associated arithmetic unit is just one :
EXCLUSIVE-OR gate and two latches. The ‘radix-4 factorization of . )
N
(N-even) also requires N2 memory reads, however, it only requires ‘
N-1 . X . ; ; . .
- 3N 2 memory writes; its assoicated arithmetic unit requires five
4 :
EXCLUSIVE-OR gates and four latches. Although radix-2 requires more memory

operations and as a result is slower it was chosen because of its reduced i

hardware complexity and because it is not restricted to the case of N even.

5.4 A Software Reed-Muller Transform Algorithm

In figure 5.4.1 an algorithm to compute in place the Reed-Muller ‘
transform of a vector V is shown. The second argument to the procedure
(BITS) specifies the number of bits on which the function is defined; ‘
, _ BITS , _ I
it follows that vector V contains 2 elements. The algorithm like M
the hardware processor is based on the radix-2 factorization of the RM
transform. “

The hardware processor was constructed using Schottky transistor-

transistor logic; the software algorithm was coded in the BCPL systems

programming language and a check was made on the quality of the generated

code. . The hardware processor was found to be 160 times faster than a Nova 820.
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procedure RMT(V, BITS)

declare V vector
declare GROUPS,.STEP, GPNO, GPSIZE, OFFSET, BITS integer
declare ADDR, ADDR1, ADDR2, K integer

for STEP=0 to BITS-1 do
begin
GROUPS := 2**(BITS—-1-STEP)
for GPNO=0 to GROUPS-1 do
begin
OFFSET := 2*%*STEP
GPSIZE := OFFSET*2
for K=0 to OFFSET-1 do
begin
ADDR := GPNO*GPSIZE i
ADDR1 := ADDR+K L
ADDRZ2 := ADDRI+OFFSET I
V(ADDR2) := V(ADDR2) EXOR V(ADDRI1) M

end

end
end
end

Algorithm to compute Reed—Muller Transform of vector V.
Transform is computed over 2**BITS points. I

Figure 5.4.1 I
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6. Selected Examples of Free Quantization Law Filter Designs

6.1 Introduction

In this chapter three examples of the use of free quantization law
techniques in the design of digital filters are presented. The first
example is a digital differentiator synthesised from a second order
recursive section. The second example is a sixth order low-pass filter;
this filter is designed to be optimally linear phase in the passband.

The final example is & sixth order band-pass filter of the elliptic type.
In each case the gNR performance is compared with a similar fixed point
arithmetic filter. The approximation error under sinusoidal input signal

conditions is also considered.

112
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6.2 Example 1

Wide-Band Digital Differentiator

This first example, a wide band digital differentiator, is realised
using a single canonic form second order section. The approximation
method used to obtain the pole and zero positions is described by

(94)

Steiglitz . The pole and zero positions are given in figure 6.2.1.

Poles Zeroes

-0.14240300 + j 0.0 1.00000000 + j 0.0
-0.71698670 + j 0.0 -0.67082621 + j 0.0

figure 6.2.1

The coefficient values which realise this pole-zero pattern, using

the canonic form in figure 6.2.3, are given in figure 6.2.2

Pole Coefficients Zero Coefficients
K1 = 0.859389200 L1 = -0.329173790
K2 = 0.102101057 L2 = -0.67082621

figure 6.2.2
Using the special case of the complex convolution integral, equation

2.4.1, the integrated power gain from the filter input to each of the
filters' variables can be found. Figure 6.2.4 shows the power level
(variance) at each of the filters' variables assuming a unit power
(variance), input signal; these values are required in order to assign to
each filter variable an optimal quantization law. The integrated power
gain from input to output is also required when calculating the SNR
performance of the equivalent fixed point arithmetic (uniform quantization
law) filter.

First a theoretical estimate of the SNR performance of the

equivalent fixed point arithmetic filter will be obtained; a gaussian input

process will be assumed. Referring to figure 6.2.3, following each
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n

s T Fn

_K2 Lz ;
o o Figure B6.2.3
Variable Variance
2
X o] = 1.000000
n X
P o - = 2.,578280
n p
y o 2 = 2.488641
n Yy
q o} 2 = 1.578228
n g
2
r o} = 0.551703
n r

figure 6.2.4

of the four coefficient multiplications a noise source is introduced.
Additionally, a noise source appears at the input due to the input

quantizer. Each of the five noise sources has a variance of:

EE. (6.2.1)
12

where g, the optimum step size for a uniform quantizer applied to a gaussian
process, was found in section 2. 3. Following the reasoning in section 2.7

q should be chosen to match the filter variable with the largest variance
(i.e. pn). It follows from the signal flow graph (figure 6.2.3) and

ffom equation 6.2.1 that the noise power at the filters' output is given by:

2 2 2
B 3¢ o + 2g (6.2.2)
Y 12 L 12

Now for a 255-level unit variance quantizer g = 0.030856 and so for a

2
variance value of 2.578230 (op ) g = 0.049545, Substituting for all
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the variables in equation 6.2.2 the output noise power is found to be:
2 =3
o = 1.936 x 10 (6.2.3)
yn
Now the output signal power is given by:
o 2 =0 . = 2.488641 (6.2.4)
ys y
and hence the output signal to noise ratio is given by:
SNR_ =10 1 o > aB=31.0a (6.2.5)
o °910 vs - : e
2

The corresponding r8ult for the gaussian optimised filter will now
be obtained. Again there are five noise sources; they add to the
variables xn, Pn' qn, rn and yn. The variance of each is proportional
to the variance of the signal to which it adds. Denoting by 0u2 the
variance of the noise source which adds to X and using the aforementioned
proportionality it follows that the output noise power is given by the

equation:

o] =0 o} . (6.2.7)

and the output signal to noise ratio is:

2
SNRO = 10 :Log10 o, 1 dB
—_— 2 2 2
2 1 +0 + 0 + 0
Ou je) q r
2 2
(o] o
X Y
= SNR_ - 10 lo 1 +0 2 + 2 + 2 dB = 35.93 dB (6.2.8)
T g10 o oq or = . 2.
2 2
o o
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Both results were validated by experiment. An improvement in
signal to noise ratio of approximately 5dB has been obtained by using
a gaussian optimised filter. If the fixed point arithmetic filter
were to employ one extra bit throughout its arithmetic operations it
would give an equal signal to noise ratio. The implication is that the
gaussian optimised filter has gained one bit of arithmetic precision.

Now attention turns to how the gaussian optimised wide band
differentiator behaves under sinusoidal input.

The differentiator, which is optimised for a unit variance gaussian
input process, was driven by a unit amplitude sinusoid. The output
signal to noise ratio as a function of frequency was measured; the results
are shown in figure 6.2.5 by the solid curve. The dotted curve shows how
the SNR performance of the equivalent fixed point arithmetic filter
varies with frequency when it is driven such that the signal at pn
occupies the full dynamic range.

Ideally the differentiator would have a magnitude response, A (w),

and a phase response ; ¢ (w), given by:

Alw) =

& (6.2.9)
m

and
®(w) = 7w (6.2.10)

however, the poie—zero pattern in figure 6.2.1 can only approximate.this.
When a p-z pattern is implemented in digital hardware, be it using
gaussian optimised or fixed point arithmetic techniques, still further
approximation error must be expected. The graphs in figures 6.2.6 and
6.2.7 show respectively the fractional error in the magnitude and phase

response as a function of frequency. The dotted curve is obtained by

assuming an unlimited arithmetic precision.




SNR (dB)

117

o
10 T T T T
s |
g
S L
®
S L
~
s Gaussian -
----------------- Uniform (theoretical)
(=) ] 1 1 1
0.0 0.1 8.2 2.3 0.4 0.5

Frequency (fraction of sampling)

Signal to Noise Ratio as a function of frequency

for a second order wide band differentiating filter

implemented using both uniform and gaussian optimal
quantization laws.

Figure 6.2.5




(dB)

Magnitude Error / Magnitude

118
a 1 1 1 1
e | N
Gaussian
.................... Unlim‘ted Pr‘ecislon
= .
=S
S
N =
1
1=}
m ol
1
=) : H
<+ ¥ &
1 s
8 1 1 1 ]
1
0.0 0.1 2.2 8.3 0.4 0.5

Frequencg (fraction of sampling)

Magnitude approximation error as a function of
frequency for a gaussian optimised second order
wide band differentiating filter.

Figure 6.2.6




L)

Phase Error / Phase (

200

150

100

50

119

Gaussian
.................... Unlimited Pr\ecision

| 1 i ]

0.1 0.2 2.3 0.4 0.5

Frequencg {(fraction of sampling)

Phase approximation error as a function of
frequency for a gaussian optimised second order
wide band differentiating filter.

Figure 6.2.7




120

6.3 Example 2

Sixth Order All-Pole Low-Pass Filter

This example is a sixth order all-pole low-pass filter which has
the freguency response shown in figure 6.3.7a. The phase response,
which is shown in figure 6.3.8a, is designed to be optimally linear
in the minimum mean sqaure sense fromd.c. to w = 0.6772 radians/s.

The implementation chosen is a cascade of three second order all-poles.
A list of the pole positions is given in figure 6.3.1. This pole

9
pattern was obtained by Thajchayapong (93

Section Pole Position

1 0.68796454 + j 0.16338426

2 0.64608842 + j 0.62217429

3 0.57429475 + j 0.36691520 figure 6.3.1

For each all-pole the coefficients are as defined in section 3.2; they

have the following values:

Section i Kil Ki2

1 1.37592 -0.49999

2 1.29217 -0.80453

3 1.14858 -0.45444 figure 6.3.2

The sections have been placed in order of decreasing integrated
power gain; section 1 receives the input signal. In figure 6.3.3 the
filter is shown with each of its variables marked; the variances at each

of its variables are given in the table in figure 6.3.4.
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Variable Variance
X o e = 1.0000
n b.<
2
a c = 8.4081
n a
2
b (o = 61.3192
n b
2
y o = 598.4839
n v .
? 3.1019
P, cp = .
2
q o = 25,5246
n q
2
r (o) = 158.8111 figure 6.3.4
n ¥
In addition, the integrated power gain values in figure 6.3.5 will
be required.
Parameter Value
G13 598.453900
G23 43.030470
G33 3.313118 figure 6.3.5

The paramgter Gij is the integrated power gain from the input of section
i to the output of section j.

For the case of the gaussian optimised filter the quantization laws
at the different filter variables are chosen according to the variance
values in figure 6.3.4; each quantizer has a shape similar to the one
shown in figure 2.2.2. Denoting by Ou2 the noise produced by the input
quantizer and using a method of noise analysis similar to the one proposed

in chapter 2 the output noise power is found to be:

2 2 T 2 . :
o = G g - 1 +0 + 0 lst section and input
yn 12 "u o) _a
2 2
o o
L b b4
+ G 2 I é G 2 2nd ti
23 94 Gq b nd section
¢_2 0'2
| X X




122 '
‘\
+ G o] 2 o] 2 + 0 2 3rd :
33. % . v rd section u
2 2 ‘
o o W
X X |
(6.3.1a)
Substituting values the output noise power is found to be: : v ‘
2 _ 13732.5955 ¢ 2 ’ |
Gyn = . a (6.3.1b) !
The signal power at the filters' output is: ) ) ‘
a 2. 598.4539 ¢ 4 (6.3.2) ‘
ys - ° x o o
and hence the output signal to noise ratio is given by:

SNRO = SNRI - 13.6072 dB = 30.4 dB (6.3.3) “
The same filter, when implemented using fixed point arithmetic, |
requires three scaling multipliers; one at the input to each section.

The multiplier values are chosen to give unit variance at the output of

each section; a unit variance input process is assumed. The values are
as follows: w
Section Scale Factor ﬂ
1 S1 = 0.34487 ‘
2 82 = 0.37030 \
3 S5 = 0.32008 figure 6.3.6 m

Each section in a fixed point arithemtic implementation is subjected to

three sources of noise; these are due to the two coefficient multipliers

and the input scaling multiplier. In addition, the first section sees W

a noise source due to the input quantizer. The noise which appears at the

output of the last section is given by:
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2 2 2 2 2 2
= 3 + S
%n G13 Sy 53 - Y53 B3 %‘5—
2
| + o6, 3+ & (6.3.4)
12 12
2 2 2 2
= : + 1
a_ 3 G13 52 S3 + 3 G23 S3 + 3 G33
12
Now, the output signal power is given by:
2
o} 2 = g (6.3.5)
ys X ,
From equations 6.3.4 and 6.3.5 it follows that the output signal to
noise ratio is:
SNR‘O = 23.5 dB . (6.3.6)

The SNR figures given in 6.3.3 and 6.3.6 were verified by experiment.

The improvement in signal to noise ratio of 7dB using free
quantization law techniques shows that a 127 level gaussian optimal filter
would perform as well as a 255-level fixed point arithmetic filter.

With 127 levels this filter could be made to Operate at very high data
sampling rates using a r.o.m. based or similar implementation.

This filtér was also tested under sinusoidal input signal conditions.
The graphs in figure 6.3.7b and 6.3.8b show as a function of frequency
the fractional magnitude and phase errors respectively for both the fixed
point arithmetic and-the gaussian optimised filter. At all frequencies
the gaussian optimised filter is seen to be the more accurate. Finally,
the graph in figure 6.3.9 shows the variation of SNR with frequency.

It can be seen that the gaussian optimised filter behaves well in the

pass band.
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Expected Phase v. Frequency
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6.4 Example 3

Sixth Order Elliptic Band-Pass Filter

This last example, a sixth order band pass filter, was designed using

(9
the programs described in ( 6). Its specification is as follows:
Lower stopband edge, fal = 0.974 radians/s
Lower passband edge, fcl = 1.100 radians/s
Upper passband edge,  J 2.042 radians/s
Upper stopband edge, fau = 2.168 radians/s
Stopband attenuation > 20.750 dB
Passband ripple < 1.000 as
Sampling frequency, fS = 27 radians/s
0 dB
-1 dB
not to scale
-20.75 dB
fa fau P s
Fcl Fcu

Figure 6.4.1

This specification is met with a sixth order elliptic filter. The

implementation, which is shown in figure 6.4.2, is a cascade of three
second order section. The pole-zero positions and the correéponding

coefficients are given in the tables in figure 6.4.3.




Section

Pole Positions

1

2

3

Section

0.000000 + j 0.714691
+0.427169 + j 0.831655

-0.427169 + j 0.831655

Zero Positions

1

+1.000000 + j 0.000000
+0.600000 + j 0.800000

-0.600000 + j 0.800000

Pole Coefficients

Section i Kil Ki2
1 0.000000 +0.510785
2 +0.854337 +0.874124
3 -0.854337 +0.874124

Zero Coefficients

Section i Lil Li2
1 0.000000 -1.000000
2 1.200000 1.000000 °
3 -1.200000 1.000000

129

figure 6.4.3

Also shown in figure 6.4.2 are all the filters' variables; assuming

a unit variance process at X0 the variance to be expected at each

of these variables is given in figure 6.4.4.




Section

Pole Positions

Section

0.000000 + j 0.714691
+0.427169 + j 0.831655

-0.427169 + j 0.831655

Zero Positions

+1.000000 + j 0.000000
+0.600000 + j 0.800000

~0.600000 + 3 0.800000

Pole Coefficients

Section i Kit )
1 0.000000  +0.510785
g +0.854337  +0.874124
3 ~0.854337  +0.874124

Zero Coefficients
L

Section i Lil i2
1 0.000000 -1.000000
2 1.200000 1.000000 °
3 -1.200000 1.000000

129

figure 6.4.3

Also shown in figure 6.4.2 are all the filters' variables; assuming

a unit variance process at X s the variance to be expected at each

of these variables is given in figure 6.4.4.
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Variance

Variable

X 1.000000

n

a - 0.352998 ., '
n
P, 1.35299

d 1.35299

n :
¥ 4.08817

b 24.6172

n

a, 26.4679

e 40.6032

z 8.85478

n

c 41.1611

n

r 42,5274

n

f 67.8222

n

tn = G13 18.0662 figure 6.4.4

In addition the following integrated power gain values are required

in the calculation of signal to noise ratio.

G 2.40868

23

G 1.51218

33

figure 6.4.5

The variance values given in figure 6.4.4 are required in order to select

optimal quantization laws for each of the filter variables in a gaussian

optimised implementation.

For a gaussian optimised implementation the output noise power,

2 .
th » 1s given by:

- input
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+ G o] 2 + 0 2 2 2 |
+
23 b q +G2§ Ge Gz_‘
+ G O'2+C)'2 + 02+0'2—
33 c b £ t
2
= 472,2704 Gu (6.4.1)
. 2
and the output signal power, Gts ;7 by:
2
o] 4 = 18.0662 o (6.4.2)
ts x
and hence the output signal to noise ratio is given by:
SNRO = SNRI = 14.1732 @B = 29,83 dB (6.4.3)
The equivalent fixed point arithmetic filter requires the inter-
section scaling multipliers given in figure 6.4.6; these values were
chosen to ensure that in each of the three sections the variance at the
largest variable was one.
Section Scale Factor
1 0.49458
2 0.31731
3 0.77374 figure 6.4.6
The output signal to noise ratio was calculated to be:
SNRO = 28.64 dB (6.4.4)

Under sinusoidal input the signal to noise ratio was found to vary
with frequency as shown by the graph in figure 6.4.7. The variatien
of magnitude and phase error with frequency is shown respectively in
figures 6.4.8 and 6.4.9. For comparison the same results are presented, as

dotted curves, for the fixed point arithmetic filter.
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