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Summary 

A new method for implementing digital filters is discussed. The met11od 

maximises the output signal to noise ratio of a filter by assigning at each 

of the filter variables an optimal quantization law . A filter optimised for 

a gaussian process is considered in detail . An error model is developed and 

applied to first and second order canonic form filter sections . Comparisons 

are drawn between the gaussian optimised filter and the equivalent fixed point 

arithmetic filter. The performance of gaussian optimised filters under sinu-

soidal input signal conditions is considered ; it is found that the gaussian 

optimised filter exhibits a lower approximation error than the equivalent 

fixed point arithmetic filter . It is shown that when high order filters are 

implemented as a cascade of second order sections - with if necessary one first 

order section - the section ordering has a very small effect on the overall 

signal to noise r atio performance . A similar result fo r the pairing of poles 

and zeroes is found . Bounds on the maximum limit cycle amplitude for first 

and second order all-pole sections are presented. It is shown that for a 

first order all-pole the maximum limit cycle amplitude is lower than would be 

expected in the equivalent fixed point arithmetic filter, whereas , for the 

second order all- pole the bound is twice as large. Examples of a low-pass , 

band-pass and wideband differentiating filter,designed using free quantization 

law techniques,are presented. 

This new design method leads to a filter whose arithmetic operations can 

not be performed using fixed point arithmetic hardware. Instead , the filter 

must be represented as a finite state machine and then implemented using 

sequential logic circuit synthesis techniques. The logic complexity is found 

to depend - amongst other considerations - on the so called state (code) assign-

ment . Some preliminary results on this problem are presented for the case of 

a next state function computed using the AND/EXCLUSIVE- OR (ring- sum) logic 

expansion. A review of the state assignment techniques in the literature is 



included. A part of the state assignment problem - for the case of AND/EX'·/ OR 

logic - requires the numerous and consequently rapid computation of the 

Reed-Muller Transformation . A hardware processor - designed as an add-on 

to a minicomputer - is described0
: speed comparisons are drawn with the 

equivalent software algorithm. 
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1 . Introduction 

1 . 1 General Introduction 

(1-3) . 
Digital Signal Processing is the term used to describe the 

processing of sampled versions of signals by computer program or by 

specially designed digital hardware . The signals may be intrinsically 

sampled - discrete in time· - or they may be observations of a process 

t hat c ontinually varies with time. Digital systems may be used to 

replace analogue systems giving improved parameter stability , eliminating 

production spreads and offering higher reliability. More importantly, 

digital systems make it possible to solve problems which were previously 

considered intractable ; an example is the rapid estimation of power 

spectra using the Fast Fourier Transform , The catalogue of digital 

signal processing applications continues to widen as the speed and 

complexity of the assoicated microcircuits increases . An account of 

( 4) 
some of these applications areas is to be found in This dissertation 

is concerned with the i mplementation of one of the buildi ng blocks of 

signal processors, the infinite duration impulse response digital filter. 

Analogue linear time invariant (LTI) systems are described in the 

1 . 

time and frequency domains by linear constant coefficient (LCC) differential 

equations and Laplace Transforms (transfer functions) respectively; 

similarly, digital LTI systems are described in the time and frequency 

(9) 
domains by LCC difference equations and z-transforms r espective ly . 

A general N- pole , M- zero LTI digital filte r is described b y the LCC 

diffe rence e q uation: 

M 

l 
i=O 

a .x . 
i n -1. 

N 

= y n + l 
i=l 

b .Y . 
i n-1. 

and by the z-domain transfer function: 

•/ 

..... •!J ... 

( 1.1.1) 
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i=O i 
(1.1.2) 

N-1 
1 + I 

i=l 

-i 
b.z 

l. 

where the a. and b . are constants , z is a complex variable, and 
l. l. . 

x . , y . are the input and output respectively at time t=(n-i)T. When n-i n-i 

each of the coefficients b . is zero the filter is said to have a finite 
l. 

duration impulse response, and is called an FIR filter. The FIR filter 

is so named because its output,in response to a digital impulse at its 

i nput , cannot be non-zero for more than M samples. By contrast , if at 

least one of the· b . in equation 1.1.1 is non-zero the filter, again in 
l. 

response to a digital impulse, may be capable of producing a non-zero output 

indefinitely . In this case the filter is said to have an infinite 

duration impulse response, and is described as an IIR filter . 

When a filters ' input signal x is e xpressable in closed form its n 

response yn can be found using the z-transform method ; however , when xn 

is a stochastic process ( 7 ) y must be computed by iterating the n 

difference equation . In the second case either a program has to be written 

for a general purpose digital computer or a special piece of digital 

hardware has to be designed. Whether a software or a hardware implemen-

tation of a filter is chosen, its parameters, that is its variable x n 

and y and its constants a. and b. , must be stored using finite word n - l. l. 

length binary numbers. The process of choosing a finite word length 

binary number to represent a signal sample value is called quantization; 

the error in representation is called quantization error . Parameter 

quantization has four effects on the per formance of an I I R filter , 

these are discussed in sections 1 . 2 through 1 . 5 . 

1.2 Signa l Quantization 

Quantizing signal samples has the effect of introducing noise into 

the output of a ·filter ,and hence imposing a lowe r bound on the signal 



amplitude c29 ) . A quantized signal sample is usually modelled as an 

unquantized signal sample c o rrupted by the addi tion of a noise sample . 

The spectra l prop~r ties of qu&nti zat ion noi se hav e been studi ed by · 

Bennett (2 7 ) . To simplify noise analysis it is usually assumed that 

quantizat ion noise sources have white power spectra ( 30) ; necessary 

and sufficient conditi ons for this to be true have been derived by 

Stripad and Snyder ( 32) . 

I n a fixed point a r ithmetic implementation of a digital filter 

there are two sources of quantization noise , the input signal quantizer 

(analogue to digital converter) and the multipliers . Digital multipliers 

produce quantization noise for the following reason : suppose each 

register in a signal processor contains k bits , then the product of 

any pair of registers contains 2k bits ; since this product is to be 

r estor ed to a k bit r egister i ts least significant k bits must be dis -

carded . 1 . . f "l . 1 t . (35- 40) F oating point i ter imp emen ations produce quantization 

noise fo l lowing an addition also . The noise performance of a filte r 

i mp lementation i s analy sed using the ideal (unlimi ted arithmetic precisi on) 

fil ter a s a model ; following each arithmeti c oper ation which the imple­

mentati on performs i mpr e cisely a noise sou rce is a dded iri. I t i s usual 

to make the reasonable assumption that all such n o ise sourc es are un-

correlated with each other and with t he input signa l. 

3 

Although in a practic a l f ilte r i mp lemen t a t ion q uantization noise cannot 

be elimina t e d c omplet ely, its effects c a n b e r educ e d t o a n acceptable 

level by the choice of a large enough word length. Another method of 

reducing quantization noise is to perform the summation in equation 1.1.1 

to 2k bits precision and then to quantize the result to k bits . The 

desired output signal to noise ratio will ultimately determine the 

required word length. 



1 . 3 Coefficient Quantization 

?it 
Coefficient quantization causes perturbations in a filters' pole-zero 

pattern; in turn this causes an error in the filters ' complex magnitude 

response relative to the design specification. The maximum permissible 

error will determine the coefficient word length to be used. The 

coefficient quantization effect has received attention in the literature 

(13-26) 

The selection of a large enough coefficient word length might proceed 

as follows: let M(w) and MQ(w)~be the complex magnitude response of a 

filter with unquantized and quantized coefficients respectively, and 

define the response error as: 

M = I I e (1.3.1) 

where I I I I denotes the L -norm. Increase the coefficient word length p p 

until M is.smaller than the design tolerance . (Useful norms are p=2 e 

and p=oo c'orresponding respectively to the mean square and maximum value.) 

The disadvantages of this method are: 

(1) . it requires a lot of computation, and 

(2) it does not account for the response error being more sensitive 

to errors in some coefficients than in others . 

A statistic:;al method for selecting coefficient word lengths has been 

proposed by Avenhaus (2 l) and modified by Crochiere (24 ) With this method 

the magnitude response error is expressed as a weighted sum of the 

coefficient errors the weights b eing the coefficient sensitivities : 

8M = e 
OC, 

l. 

whe re c. is one of the c oefficients a . or b . . l. l. l. 

As well as increasing word length two further methods have been 

(1.3 .2) 

proposed for reducing coefficient quantization effects . The fi rst method 



is call e d d i scr ete optimi sation ; wi th this method an optimum set i s 

selected from among the discrete space of coefficient values . The 

ben efit of this method derives from the fact that roundi ng coefficient 

values do es not necessarily yield the best magnitude approx imation . 

(26) The second method , cycled coefficient after McLeod or dithered 
(25) 

coefficient after Bolton · , realises a desired coefficient value 

using a time varying quantized coefficient . With this method the time 

average of the magnitude response error is zero provided the time 

averages of the coefficient errors are all zero . 

1 . 4 Overflow Oscillations 

5 

When the result of an arithmetic operation is outside the range of 

representable values ov erflow occurs . As an example consider the operation 

c=a+b where a > r , b > 'f - r and hence c > f . Variables a and b are 

within the range of k bit two ' s complement arithmetic but c is not . The 

effect of arithmetic overflow on an IIR filter i s to cause its output t o 

produce lar ge amplitude o ve r f l ow o s ci l lations . Th i s p h enomenon has 

received c ons iderable a t tention in the literature (4 1 ,49, 53, 56 , 58) . 

Arithmetic overflow can be detected and dealt with using some additional 

h a rdware ; usually out of range resul ts are forced to the largest magn~~ude 

r epresentable value with the same sign . The e f fect of t h i s i s to replace 

overflow oscillati ons by s i gnal cli pping which i s a les s dis t urbing· form of 

signal dis t ortion . Overflow e f f ects c a n be avoided by r estrictin g t h e 

filters ' input signal amplitude to a low enough value ; as the number of bits 

of arithmetic precis i on is increased so too is the maximum allowable signal 

ampl i tude . I t follows that t he max imum achievable signal to no i se rati o 

is det e r mine d by t he wo r d l ength used. 

To ensure stability high order filters (order> 2) are implemented as 

a casca de or parallel connection of first or second order sub-filters as 

in figure 1.4.1 rather than in the direct form as in figure 1 . 4.2 . The 



X (z) -- H1 (z) H2 <z> -...., - - . - ----- Y(z) 

S1 S2 

Cascade Implementation of Filter Tran sf er Function H (z) 

Hf (z) 

X (z) y (z) 

Y <z> IX <z> = H <z> = Hf (z) + H2 <z> + ••• + HN (z) 

Parallel Implementation of Filter Tran sf er Function H (z) 

Figure 1.4.1 
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Direct Form Implementation of an N-Pole, M-Zero Recursive Digital Filter 

Figure 1.4.2 
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signal amplitude at the input to the first sub-filter is chosen to be 

cons i s t ent with no overflow effects in any of the sub-filters ; 

particularl y when some of the sub- fitters have a high gain, thi s leads 

to certain filter variables occupying few of the quantization levels 

available to them ; in turn this ' leads to the filter operating with a 

(29) low signal to noise ratio . To circumvent this problem Jackson 

proposes that scaling multi.pliers be introduced at the input to each of 

the sub-filters . The value of each scaling multiplier is chosen using 

a normed measure of its associated sub-filters' frequency response . 

Typically the L
2 

or the L
00 

norms would be used . 

1 . 5 The Deadband Effect - Limit Cycle Oscillations 

When studying t he effects of quanti z ation noise it is assumed that a 

noise source is not correlated with the signal to which it adds ; this 

i s made possibl e by assuming that the signal , from sample to sample , makes 

an e x cursion of many quantization l e v e l s . I f a f ilters' inp u t signal 

is simple - fo r exampl e a const ant val ue - then this assumption is un­

reasonable and the analysis breaks down . In the steady state a filter 

would be expected to produce a c onstant output in response to a constant 

input, h owe v e r, due to t he deadban d effect limit cy cles , superimposed 

on the e xpecte d signal, are possible . 

In a fixe d p o i n t i mplemen t ation limit cycles r esult when one or more 

of a filters' poles is temporarily place d on t he z-plane unit circle; 

in turn this is caused by rounding arithmetic giving a coefficient an 

effective value of 1. For example, 0.95 x 4 rounded 4 . 

The magnitude of limit cycles increases as a filters' poles approach 

8 

the z-plane unit circle. The acceptable level of limit cycles may be 

thought of as placing an upper bound on the achievable 'Q' of a filter. 

Increasing word length reduces limit cycle amplitude relative to peak 

signal amplitude. As already mentioned equation 1.1.1 is never implemented 



~ 

9 I 

i n the direct form for order greater than 2. This is because as the 

o r der o f a fi lter section increases so too does the max imum limit cycle 

amplitude. 

A method for analysing limit cy cles was proposed by Jackson (l 2 ) . 

Fu r ther analysis of limit cycles is to be found in (4 3- 52 , 51-57) . 

Methods for suppressing limit cycles are proposed in (49~54 ) . Bounds 

9n the max imum amplitude of limit cycles have been derived by Sandberg 

and Kaiser (44 ) , Long and Trick (46 ) , Chang (50) and Rahman , Maria and 

Fahmy (5 l) 

1 . 6 Data Sampling Rate 

The parameter quantization effects discussed in sections 1 . 2 through 

1. 5 all have a de t r i mental influence on the performance of a filter . 

Although other cures have been proposed it is universally true that an 

increase i n word length leads to an impr ov ed performance . For a giv en 

imp l emen t ation increasing the word l ength reduce s the maximum data sampling 

r a t e . I t f o llows t hat i f a filter i s to b e used at h i gh data rates it 

i s desirable to use just the r ight word length consis t ent with meeting 

the specification. 

For a first o r der a ll- pole filte r there are t hree basically different 

implementation structures , these are shown in figures 1.6.la-c. When a 

constant coefficient filter is required the stru cture in figure 1.6.la 

is redundant; this structure should,where possible, be avoided as its 

multipliers will usually have to be sequential devices ; instead the 

structure in figure 1.6.lb, where multiplication is performed using a 

read only memory , should be used . The fastest implementation of the 

three is shown in figure 1.6.lc; here the code for y is a two . level n ... 

logical function of the codes for x and y 
1

. This method will be n ~ 

used as a basic model throughout this dissertation . With this 

method the shortest possible word length should be used so as to minimise 
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Yn-1 
T 

Variable Coefficient First Order All-Pole Filter Section 

Figure 1.6.la 
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Constant Coefficient First Order All-Pole Filter Section 

Figure 1.6.lb 
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function 

L 

Yn-1 
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Finite State Machine Representation of a First Order Filter Section 

Figure 1.6.lc 
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1. 7 A New Method for Irnplementing Digital Filters 

A fixed point arithmetic digital filter can be thought of as an 

ideal fil ter with a uniform law quantizer introduced at the input to 

each of the delay stores and at t he input of the filter . The purpose 

of each of the quantizers is to reduce a continuous infinite valued 

variable to a discrete finite valued variable which is capable of being 

stored in a finite word length register . As this is the only 

fundamental purpose for each quantizer the associated quantization law 

need not necessarily be uniform ; indeed , not all quantizers need 

11 

employ the same quantization law . The new implementation method proposed 

obtains performance improvements, over the fixed point implementation , 

by judicious choice of the various quantization laws . In turn this 

leads to a reduced word length requirement for a given signal to noise 

ratio . 

Each quantization law is chosen to best match the signal which it 

will quantize . The measure of best match can be defined in a v ariety of 

(66) 
ways among these are minimum mean square error (m.m . s.e.) , 

maximum entropy and constant fractional error. Much work is to be found 

in the literature on the subject of quantizer optimisation (59- 67 ), the 

earliest results being presented by Max (59 ). As signal to noise is 

defined as the ratio of powers the m.m .s. e . optimised quantizer will be 

used in this work. The maximum entropy quantizer is designed to have 

equiprobable quantization levels; the c onstant fractional error quantizer 

is designed to produce an e rror which in magnitude is no greater than 

a certain percentage of the absolute signal value . 

In this work filters will be optimised for operation on gaussian 

input processes. This is because the shape of a gaussian process 

probability density function is invariant under a linear transformation 

and hence each filter variable employs the same quantizer but at a 

different variance level. Also, for high order filters the variables 
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towards the latter sub-filters will exhibit gaussian statistics regardless 

of the input statistics (central limit theorem). Without loss of 

generality the input process will always be assumed to be white. A 

coloured input process can be modelled using a white process and a spectrum 

colouring filter. 

Filters which use optimal quantization laws can only be implemented 

using the hardware structure shown in figure 1.6.lc. This is the basic 

model of a finite state machine. An efficient implementation of a finite 

state machine depends on the following: 

( 1) the choice of a logic form for function L (eg. minterm, 

ring-sum or other), 

(2) the choice of a low cost state (code) assignment, and 

(3) the minimisation of the next state function (eg. Quine McCluskey 

reduction for minterm). 

These issues have received attention in the literature; Relative complexity 
. . . d d . ( 6 8- 7 2 > of different logic forms is consi ere in , State code assignment 

. . d d . (73-89) is consi ere in . . Logic minimisation for logic forms other 

than minterm is a relatively new subject; in particular , in some work to 

be published Rayner considers the minimisation of ring-sum forms. The 

implementation of a recursive digital filter as a finite state machine was 
(9 7) first considered _by Rayner ; he proposed the method as a means of 

increasing the data sampling rate of a fixed point arithmetic filter. 

1.8 Layout of Dissertation 

In chapter 2 the design of optimal memoryless quantizers is reviewed; 

the optimal quantizer for a gaussian process is obtained. The optimum 

step size for a uniform quantizer applied to a gaussian process is 

evaluated for different numbers of quantization levels; these values are 

needed in order to make a fair comparison between free and uniform 

quantization law filters. The remainder of the chapter is concerned with 



the design and error analysis of a first order pole, zero and pole-- zero 

(section) ; experimental results are presented in support of the 

theoreti cal model. An analysis of the effects of section ordering is 

presented. The chapter concludes with some results on the limit cycle 

behaviour and magnitude approximation error response of free 

quantization law filters. 

Chapter 3 is conce+ned with the design and error analysis of a free 

13 

quantization law second order pole-zero section ;,, Different structures 

for a second order section are considered, the canonic form, figure · 1.8.1, 

is shown to give the highest signal to noise ratio . Although the section 

ordering problem defies exact analysis, experimental results on its effects 

are presented. The pole-zero pairing problem is also treated. Finally, 

an analysis of the limit cycle behaviour of second order poles is given. 

As already mentioned, the efficient implementation of free quantization 

law filters is by no means trivial. In chapter 4 the various stages in 

the sequential circuit (finite state machine) implementation of a digital 

filter are considered. The chapter begins with a review of finite state 

machines and their applicationto digital filter modelling. The following 

section deals with the choice of logic form . Two of the state (code) 

assignment algorithms in the l i terature are reviewed and a new algor ithm 

is presented . The chapter concludes wi th some work on logic minimisation . 

In chapter 5 a hardware Reed-Muller Transform (98) Proce·ssor is 

presented . The processor is intended to speed up the new state (code) 

assignment algori thm presented i n chapter 4. 

Three examples of higher order free quantiza tion l aw f i lters a r e 

presented in chapte r 6. For e ach a c omparison i s d r awn wi th the equiv alent 

fixed p o int arithmeti c fil ter. The e xamples a re: 

(1) a Wideband Differentiator 

(2) a Low Pass All-Pole filter designed to be optimally linear p hase 

in the passband, and 



T 

T 

Canonic Form of Second Order Filter Section 

Figure 1.8.1 



(3) a 6th order Band Pass elliptic filter. 

Chapter 7 concludes the dissertation and contains some suggestions 

for further work. 

To enable all experimental results to be repeated, experimental 

techniques are outlined in Appendix A. 

15 



2. First Order Free Quantiiation Law Digital Filters 

2.1 Introduction 

In this chapter a new approach to the design of digital filters is 

considered. In this approach each of the variables of an ideal-unlimited 

arithmetic precision-digital filter is assigned its own optimal quantization 

law. The object of the method is to achieve the maximum possible signal to 

noise ratio,for a given wordlength~at the output of the filter. Use of the 

method relies on having ·a-prioriknowledge of the statistics of the signal to 

be filtered. The entire class of filters designed by this method will be 

called free quantization law filters. Specific examples, for instance a filter 

optimi:sed for a gaussian input process, will be given the name of the input 

process - in this case gaussian optimised filter. The essential difference 

between a fixed point arithmetic filter and a free quantization law filter is 

that the latter is not only designed around a frequency or time domain speci­

fication .but also around the signal to be processed . It is reasonable to 

suppose that this might give an improved output signal to noise ratio, and 

indeed this will be shown to be the case. 

The choice of an optimal quantizer for a particular variable will in 

general depend on the following considerations : 

(1) the amplitude probability density function (pdf) of the signal 

at that variable , 

(2) the number of amplitude levels to be used to quantize that 

variable, 

(3) the optimality criterion, 

and (4) the quantization law at each of the other variables. 

In section 2.4 the signal pdf will be considered . The number of quantization 

levels is arbitrary, although for economy it is desirable to use as few as 

possible. For the purposes of this research 255 levels will be used . The 

optimality criterion used will be minimum mean square (mms) error as this is 
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equivalent to minimising the time averaged distortion -power. Optimisation of 
.. ~-!J 
f_~:, 

a guantizer on the basis of considerations (1) - (3) is relatively straight-

forward . It is usually referred to as the optimisation of a memoryless 

quantizer . The last consideration (4) complicates the optiNisation so much 

so that it will be ignored. This is justified by arguing that provided 

sufficient levels are used at each variable the system can be modelled by a 

linear systems driven at various points by independent noise sources. 

This chapter is concerned with 'Ghe design of first order recursive filters. 

Where appropriate comparisons will be drawn between free and uniform - fixed 

point arithmetic - quantization law filters!;.. . The chapter continues with a 

review of optimal memoryless ·quantizers. 

2. 2 Optimal Quantizers 

A bandlimited stationary stochastic process is sampled every T seconds. 

The sample values x(nT) which are distributed in the interval l-00,+ool with a 

probability density p(x) are then quantized by an N-level quantizer . This 

quantizer is to be designed to produce minimum signal distortion . 

The function p(x) is assumed to be even . It follows that the corresponding 

signal is zero mean . Obviously this does not limit the generality of the 

analysis to follow , for if a signal has a probability density p (x - µ) then 

subtractingµ from each sample will change its density to p(x). That p(x) i s 

even is a reasonable assumption for many naturally occurring signals. 

Following some definitions the conditions under which a quantizer is 

optimal and hence produces least signal distortion will be derived. This 

derivation is based on the work of M·a)59 ). 

Let x be the value of an unquantized signal sample and define a set of 

decision levels, d., and a set of quantization levels, q., constrained by 1 1 

the inequality: 

(2.2.1) 



such that if x lies in the interval Id. ,d. 
1

1 for 1, i, N then it is 
l i+ 
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quantized to (replaced by) q .. The resulting instantaneous erior , e, is given 
l 

by : 

(2 . 2 . 2) 

Further define an error measuring function f(.) having the following 

properties: 

f(O) = 0 (2.2.3) 

f (a) = f (-a) 

f(a) < f(b) <=> O <a < b 

The distortion introduced by the quantizer, denoted by D, is defined 

as: 

D = E[f(e)] (2.2 . 4) 

where Eis the expectation operator . 

Now, as mentioned in the introduction to this chapter, the error measure 

is minimum mean square (m . m. s . ) and so function f( . ) becomes : 

f( x ) = x 2 

Equation 2.2.4 can now be rewritten as : 

di+l 
N 

f I: (x 2 
p (x ) D = qi) dx 

i.: 1 
d . 

l 

(2 . 2.5) 

(2 . 2 . 6) 

Equating to zero each of the partial deriv atives of D with respect to 

each of the q . and d . the following necessary conditions for optimality are 
l l 

obtai ned : 
di+l 

f X p (X) dx 

d. 
l 

qi = 
di+l 

f or 1, i, N (2.2.7a) 

f p(x) dx 

d. 
l 



and 

for 1 ' i 'N-1 (2.2 . 7b) 

Fleischer( 60) has shown that if the inequality: 

[ln(p(x ))] < ,0 (2 . 2 . 8) 

holds and relation 2 .2. 1 is satisfied then the set of equations 2.2.7 have 

a unique solution . 

Analytical solution of equations 2.2.7 is only possible if p(x) = constant 

(in which case the result is a uniform quantizer). Numerical solution is 

straightforward ; the details will now be presented for the case of a zero mean 

gaussian white process described by the probability density function : 

p(xl 1 = 
av'2TI 

e 

-l-z(x)2 
0 

(2 .2.9) 

where 0 is the standard deviation. The reason for this choice of p(x) will 

be explained later in this chapter. 

Since p(x) is an even function the quantization and decision levels obey 

the following relations: 

N - odd 

0 

for 1 i:; K i:; N 

-d for 1 i:; K, N+l 
K 

(2 .2.lOa) 

(2. 2. lob) 

(2.2.lOc) 

These equations enable the amount of computing required in the solution 

of 2.2.7 to be halved . 

Following Wood (&
4

), define two sets of dependent variables~ - and 6. by: 
l l. 

L\ = di+l - d. (2.2.11) l 

di+l + d . 
6. l 

for 2 ' i ' N-1 = 
l 2 
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substitute them ford , and d. 
1 

in equations 2.2.7a and expand the integrals 1 1+ 

as Tay lor Series. Provided the expansion of p(x) about oi exists equations 

2 . 2 . 7a become : 

= 0 1 6. 2 
i + 12 i 

p' <oil - ---
p(oi) 

for 2, :L 'N-1 (2 . 2 . 12) 

Now from equation 2.2.9: 

o. 
1 

and so: 

d. 1 + d. 1 
1+ 1 (1 (d d.)2) 

2 - 12 i+l - 1 

which when rearranged leads to the following recurrence formula: 

0 (2.2.13) 

The Taylor Series expansion may not be used to solve equation 2.2.7a 

when i = N since the upper integral limit is infinite . Instead , the following 

relation is used : 

p (dN) 
qN = 

1 - P(dN) (2 . 2 . 14) 

where 

d N 

P(dN) = f_ p(x) dx 

- 00 

is obtained using a rational approx imation . Appendix B. 

From equations 2. 2 . 7b and 2 . 2 . lOa it can be seen that the quantization 

and decision levels immediately to the r ight of the orig i n a r e r elated by: 

q 
N+ 3 

2 

= (2.2. 15) 

The strategy for obta ining a n optimal quantize r f o r a gau ssian process 

which is based on the bisection method of iterative equation solving , 

and employs equations 2.2.7a, 13 , 14,15 is shown in figure 2.2.1. The graph 



start 

s elect g
1 

to be larger than the optimum _value of x(N+3)/ 2 and select g to be smaller than the optimum value 
of x( )/ . 

6 
find the corresponding values of e

1 
and e N+3 2 . s 

set x(N+3)/ 2 to (g1 + g
8
)/2 

set y(N+3)/ 2 to l x(N-t-3 )/2 

repeatedly apply equation .2. ... 2. 13 followed by equation 
2. 2. 7b to evaluate all the x. up to xN and all the y . up to y 

1 1 N 

using the value for xN obtained above evaluate yN from 
equation 2. 2. 14 

n o 

set g1 to x(N+3)/Z 

set e1 t o yN - yN 

no 

set gs to x(N+3 )/Z 

set es to yN-yN 

yes 

stop 

Algorithm to find the decision and ,quantization levels 
of the m.m.s.e. optimal quantizer f c.,r a gausaian process • 
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Figure 2.2.1 



in figure 2.2.2 shows qi versus i. The optimum 255-level quantizer for a 

gaussian process gives a signal to noise ratio of 44 dB. 
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An important property of the m. m. s . optimised quantizer is that it 

produces an instantaneous distortion which is orthogonal to its output. This 

can be seen by combining equations 2 . 2 . 7a and equation 2 . 2 . 6 to give : 

+oo 
xi+l 

f 
N 

I D = x2 p (x) dx - ~ y, 2 p(x ) dx . 
i= 1 

1 

-00 x. 
1 

which is recognised as: 

a2 = a2 a2 (2.2.16) 
e y y' 

where a2 is the distortion power induced by the quantizer , 
e 

a2 is the power of the input signal , 
y 

and a2 
y' 

is the power of the output signal. 

In addition, the quantizer input, y, and output, y•,are related to the 

instantaneous quantization distortion, e , by: 

y 

and so: 

a2 
y 

y' + e 

a2 + 2a + a2 
y' y'e e 

From equation 2.2.16 and 2.2.17 it follows that: 

a = o 
ye 

(2 .2. 17) 

This is important because it is always assumed to be true when analysing 

the signal to noise performance of a digital filter implementation (l) 

2.3 Optimum Step Size · for a Uniform Law Quantizer used · to Qu.antize a 

Gaussian Process 

In order to make a vali d comparison between a free quantization law 

filter and a uniform quantization law filter - fixed point arithmetic filter -
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An important property of the m.m.s . optimised quantizer is that it 

produces an instantaneous distortion which is orthogonal to its output . This 

can be seen by combining equations 2 . 2 . 7a and equation 2.2 . 6 to give : 

+oo 
xi+l 

f 
N 

I D = x2 p (x) dx - ~ y, 2 p(x) dx. 
i= 1 1. 

-00 x. 
l. 

which is recognised as: 

0'2 = 0'2 0'2 (2.2.16) e y y' 

where 0'2 is the distortion power induced by the quantizer, e 

02 is the power of the input signal, y 

and 02 
y' 

is the power of the output signal . 

In addition, the quantizer input, y
7 

and output, y• , are related to the 

instantaneous quantization distortion, e , by : 

y 

and so : 

02 
y 

y ' + e 

0 2 + 20 + 0 2 
y ' y 'e e 

From equation 2 . 2 . 16 and 2 . 2 . 17 it follows that : 

0 = o ye 

(2.2 . 17) 

Thi s i s impor tant because it i s alwa y s assumed to be t r ue when analy sing 

the signal to noise performance of a digital filter implementation (l) 

2. 3 Optimum Step Size for a Uniform La w Quantizer used · to Qu.anti ze a 

Gaussian Process 

In orde r to make a valid comparison between a free quantization law 

filter artd a uniform quantization law filter - fixed point arithmetic filter -



LO 

(T) 

::n 
(I) N 
:::, ..... 
C 
> .... ..... 
(I) 

> 
(I) ..... s 
C: 
0 ;; ..... 
C I 
N 
:;; 
C: N C 
:::, I 

C:S 

(T) 
I 

"<t" 
I 

LO 
I 

0 64 128 192 

Quantization level index number 

Quantization level v. index number for a 
255-level gaussian process optimal quantizer 

23 

256 

Figure 2 .2.2 



24 

it is of course necessary to use the same wordlength for corresponding filter 

variables. It is also necessary to drive the uniform quantization law filter 

with a signal the power level of which is chosen to giv e maximum output s i gnal 

to noise ratio. In order to find the appropriate power level the following 

problems must be solved : 

(1) To find the optimum step size for a uniform law quantizer used 

to quantize a gaussian process of known variance , 

and (_2). To find the signal to noise ratio derating on deviating from the 

optimum step size found in (1). 

In this section a formula for the optimum step size as a function of 

the probability and cumulative density functions of the quantizer input 

signal is derived. The formula is evaluated for various numbers of quantization 

levels for the case of a gaussian process . 

The formula is derived as follows. Define x, cjl(x) and <P(x) as the value , 

probability density function and cumulative density function respectively 

of a gaussian process. Define , 26., the quantization step size as: 

26. = for 1, i (: N-1 

where the quantization levels , q. , are as defined in section 2.2. 
1. 

(2 . 3 . 1) 

Substituting the constraint equation 2.3.1 into equations 2 .2.7 i t 

follows that the optimum value of 26. is the solution of: 

26. = 

(N - 1) 2 

4 

N-1 
2 
r cjl ( ( 2n - 1) 6.) 

n=l 
N-1 

2 
r (2n - 1) q, ( (2n -1)6.) 

n=l 

where, N, the number of quantization levels is odd. 

(2. 3. 2) 

The solution to equation 2.3.2 is most readily obtained using the 

recurrence: 



where f(6k) is the value of the right hand side of 2.3 . 2 at 6 = 6k . For 

some useful values of N the optimum step size is given in figure 2.3.1. 

No . of quantization Optimum step size 
levels, N 26 

63 0.105485 

127 0.057254 

255 0.030856 

511 0.016504 

1023 0.008752 

F;i:.gure 2 . 3.1 
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Attention now turns to how the signal to noise ratio performance of a 

uniform law quantizer varies with step size. Using the definition of 

distortion , D, given in equation 2.2.6 the signal to noise ratio performance 

of a uniform law quantizer was computed for the same set of values of N as 

in figure 2.3.1 • . The graph in figure 2.3.2 shows noise to signal ratio as 

a function of step size . 

2.4 Signal and Systeni_, Characteristics 

Except where otherwise stated all filters will be driven by a zero mean , 

gaussian and white· stochastic process . All signals will be assumed to be 

ergodic and hence the words variance and power will be used interchangeably 

according to the context . 

Filters will be modelled using an ideal linear system driven at various 

points by white noise processes. Filter structures will be presented using 

a variant on the signal flow graph. For example a box labelled Twill be used 
-1 in place of z • The following properties of linear systems will be required . 

(11 If a stable time invariant linear system is driven by a gaussian 

process then each of the nodes of that system exhibits a gauss-markov process( 8), 
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(2) If a stable time invariant li11E,ar system described by a pulse 

transfer function H(z) is driven by a white process of variance 0 2 then the 
X 

variance a t the output 0 2 is given by: y 

2 0x2 f H(.z ) H(z-1_) z-1 dz 
(Jy = 21Tj J 

C 

where c is the z-plane unit circle. 

(2.4.1) 

Equation 2. 4 .1 is a special case of the complex convolution integral (1, 
3 ) 

If a linear system is driven by a zero mean process then its output 

also is a zero mean process. This follows from the linearity equation. 

L (.ax + by) = aL(x) + bL(y) 

where a and bare constants. 

2.5 First Order All-Pole - Des ign 

The signal flow graph for a first order all-pole is shown in 

figure 2.5 . 1. 

K 

~n-1 

T 

(2 . 4 . 2) 

Figure 2.5.1 

This system is stable provided K lies in the closed interval l-1, +11, 

and is said to be marginally stable if K = +l or K = -1. . Assuming stability 

and given that x , the input sample at time nT, is distributed with gaussian n 

statistics the output sample y is distributed with gauss-markov statistics. n 

The pulse transfer function corresponding to figure 2.5.1, denoted by 

H(z), is given by: 

1. 

I' 
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H(z) 
z = z-K (2.5.1) 

is 

Substituting 2.5.1 into 2.4.land performing the contour integration it 

seen that the power of process y ,denoted by a 2 ,is related to a 2 the ,n y X 
1 

power of process x, by: 
n 

CJ 2 
y 

a 2 
X 

1 

It follows that for a stable first order all-pole 

CJ 2 > 0 2 
y X 

(2.5.2) 

(2.5.3) 

Let CJ 
2 = 1 then the optimum quantizer for x is the one shown in X n 

figure 2.2.2. The optimum quantizer for y is also the one shown in figure 2 .2. 2 n 

but with all the quantization levels multiplied by /G. The parameter G will 

be called the integrated power gain. It is given by: 

G = 1 
(2 . 5 . 4) 1- K2 

This design procedure makes one of the assumptions mentioned in the 

introduction. It assumes that the optimal quantizers for x and y do not 
n n 

depend on each other . 

2. 6 First Order All-Pole - Error Model 

An error model for the gaussian optimised free quantization law first 

order all-pole will now be presented . 

A block diagram showing all the arithmetic operations of the filter is 

shown in figure 2.6.1. 

The boxes Q and Q are the input and output quantizers respectively. X y 

Primed variables are quantized versions of unprimed variables. 



2 9 

Xn 
' Qx - Yn • 

Ky~-1+x~ - Qy -- -
r--

I 

Yn-1 
T 

Figure 2 . .6 .1 

In section 2. 2 it was shown that if quantizers Q and Q a r e optimised 
X y 

using an m. m. s . error criter ion then the following statistical model is 

exact . 

Pn p~ 

Figure 2.6.2 

where p is the unquantized input sample 
1 n 

p ' i s t he quant ized output samp le, 
n 

u is the instantaneous error and is orthogonal t o Pn'' n 

a nd Qp i s t he opt imum qua ntizer for proce ss p . 
n 

Replacing quantizers Qx and Qy in figure 2.6.1 by the model in 2.6.2 

the following signal flow graph is obtained: 



K 

T 
Figure 2.6.3 

where u is the noise which results from quantizing x and e is the noise n n n 

due to quantizing .y. 
n 

Denoting by 0 
2 the power of noise process u and by 0 

2 the power of ·u n e 

noise process e it is seen that: n 

a: 2 _ 
y = 

a2 
X 

(J' 2 
e 

a2 
u 

It follows from equation 2 . 5 .2 and 2. 6 . 1 that : 

(J' 2 
e = (j_ 2 

U 1- K2 

1 

(2 . 6 . 1) 

(2.6.2) 

Assume that p r ocesses ·u and e are uncorre l ated wi th e a c h other and . n n 

further assume that both have white power spectra ; then the output noise 

power, denoted by 0 2 . is giv e n by: yn 

which 

(J' 2 
yn 

using 

(J' 2 = yn 

= 

equation 

(j. 2 
u 

1 - K2 

(J' 2 
u 2 

(1 

2.6.2 becomes: 

[1 + 
1 

J 1 - K2 

K2 

- 0') 2 

(2.6 . 3) 

(2.6.4b) 
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Now the output signal power, denoted by cry!' is given by: 

O' 2 
ys- = O' 2 , 1 

(2 . 6 . Sl_ 
X 1 ,.. K2 

From equations 2.6.4b and 2 . 6 . 5 ;lt follows that the output signal to 

noise ratio, SNR, in dB is; 
0 

SNR 
0 

10 log
10 

10 log
10 

a 2 
· x 
a2 

u 

[
a
0

x
2

2
] 

u 

(2. 6. 6a) 

[12 - KK221 - 10 log10 j dB (2 . 6 . 6b) 

The left term is simply the signal to noise ratio performance of the 

optimal memoryless quantizer for process x • It may be thought of as the n 
input signal to noise ratio SNRI. The signal to noise equation becomes : 

[2 - K2] · dB SNRO = SNRI - 10 loglO [1 _ K2 (2 . 6 . 6c) 

The graph in figure 2.6.4 shows theoretical and measured signal to noise 

ratio performance of a first order all - pole as -a function of pole 

positionK. The error model is seen to be accurate . 

It is not obvious how the SNR performance of an optimal gaussian quantizer 

changes with variations in the input signal power. This is because the 

distortion power depends on the signal level. By experiment though 2.6.6c 

was found to fall by 6 dB each time a 2 was halved. 
X 

2.7 Uniform Quantization Law First Order All-Pole Driven by a Gaussian 
Process - Error Model 

In this section the results presented in section 2.3 are used to estimate 

the step size to be used in a unif'orm quantization law digital filter, as a 

function of the variance of the input gaussian process, such that the output 

signal to noise ratio performance is maximised. 
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The error model, to be used is shown in figure 2 . 7.l 

u' n T 
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Rc;i,bi ner and Gold (_ 
1 

) . • 

Figure 2 . 7 .1 

where x and y are input and output samples , n n 

· and 

made : 

u is a noise process introduced by the input quantizer , · n 

u I is a noise process introduced by quantization after the xK multiplier . n 

The following usual assumptions about noise sources u and u ' will be 
n n 

Cl l Both have white power spectra , 

(21 They are uncorrelated with each other , 

and C3I_ Both are uncorrelated with the input signal. 

From the graph in figure 2.3.2. it can be seen that the signal to noise 

ratio performance of a uniform quantizer rapidly reduces for only small amounts 

of overdrive above the optimum level. However, the reduction in SNR due to 

underdr ive is much less , being approximately 6 dB each time the signal power 

is halved. It is therefore reasonabl e to assume that a filt e r system , 

implemented using a uniform quantization law , will g_ive best performance when 

each of its variable is operating at the highest possibl e power level such 

that none of them are overdriven. Clearly, it is necessary to find the 

variable with the highest power level and to arrange that it operates at the 

optimum point . The input level is then given by the reciprocal of the integrated 

power gain from the input to that variable . 

For the case of the f 'il ter in figure 2. 7 . 1 the input and output power 

levels obey the inequality: 
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(J 
2 i> <J 

2 
(2. 7 . 1). y X 

Si nce CJ 
2 is y the larger it will be treated as a reference . Making 

CJ 2= 1 , the optimum step size for a . 255-level quantizer and the input vari ance y 

are given by: 

step size, 2~ = 0.030856 from figure 2.3.1, 

and, input variance, r:J' 
2 = l - K2 from equation 2. 5 :2. X 

It follows that the noise power at the output of the filter, denoted 

by 2 is cr , 
yn 

(J 
2 = yn 

given 

' ecru 
2 

Cl 

2 X 

by : 

.+ ou,2) 

K2) 

(2 !::. ) 2 

12 
l 

X 
l - K2 

and hence the output signal to noise ratio is given by : 

SNR 
0 

= 10 loglO [l/ ( 2 X 
(26) 2 

12 
X 

37 . 995 + 10 log
10 

(1 - K2) dB 

(2.7.2) 

(2 . 7 . 3) 

To assess the accuracy of this analysis the filter in figure 2 . 7 . l was 

s i mulated by computer. I t was dr i v en by a uni t varia nc e gaussian process 

fed through a scaling multiplier. The filter step size was set as above . 

The scaling multiplier was v a ried by smal l amount s from 0 .2 to 1 .2 and a t eac h 

poi nt the signal to noise ratio was measur ed . The experiment was repeated 

f or fiv e d ifferent values of the filter coefficient K. The graph s in ;f;i9ure. 

2. 7 .2 shows the results . The predicted optimum v alue f or t h e scaling mul t iplier 

is ll-K2 • It is found in each case that the SNR is no more than l dB lower 

than the opt;tmum. 

It is now possible to present a comparison between the ga,ussian optimised 

and the uniform quantization law filters. The graph in figure 2.7.3 shows the 
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signal to noise ratio performance for both implementations of a first order 

all-pole. The independent variable is the pole positipn, K. Only positive 

values of K are shown, however, the SNR was found to be an even function of 

K. The graph in figure 2.7.4 shows the variation in SNR for both filters 

as a function of input. signal standard deviation . 
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2 . 8 Section Ordering - Two Fin;t Order All..;.Pole s 

The system to be analysed is shown below in Figure 2.8.1. 

en e' n 

0 0 

Pn 
Xn ~n 

T T 
Figure 2.8.1 

Sources u , e and e' are white noise processes. All other parameters n n n 

are defined in the usual way. 

The pulse transfer functions from input top and from input toy n n 
are given by: 

H (z) = 
P(z) 

= .;Z 
p X(z) z - Kl 

(2 . 8.1) 

and 

(z) 
Y (z) z l. 

H = = y X (z) ( z - Kl ) ( z - K2 ) (2.8 .2 ) 

respectively. 

Using equations 2.8.1, 2.8.2 and the complex convolution theorem in 2.4 . 1 

it follows that , if x is a white process of variance a 2
, the variances at n X 

pn and yn,denoted by ap 2 
and cry 2

' respectively are given by; 

a 2 
p 

1 a 2 
X 1- K 2 

1 
(2. 8. 3) 
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and 
1 + K{K2 1 

(2 . 8 . 4 l 2 2 
(5 = 0 ' 

0. .- Kl 2 l_ Cl - K2 ? ) y X l. ' . KlK2 

Now if 0 2 is the noise power produced by the input quantizer then from u 

equations 2 . 8 . 3 and 2 . 8.4 it follows that noise sources e and e ' have powers 
n n 

cr 2 and 0 
2 given by: e e ' 

2 2 l 
cre = cru 1 - K 2 

1 
(2 . 8 . 5) 

1 + KlK2 l 2 2 
(J' I = (5 

e u 1 - KlK2 (1 - Kl 2) (1 - K 2) 
--- 2 

(2 . 8 . 6) 

The noise appearing at the fiiters output results from 

u and e filtered by both sections and from e ' filtered by the second n n n 

section only . It can be shown that the output signal to noise ratio , SNR0, 
is giv en in terms of the input signal to noise ratio , SNR

1
, by: 

Sffib (2. 8 .7a ) 

=> SN!b (2.8.7b) 

Since equation 2. 8 . 7b is symmetrical i n p a r ameter s K1 a nd K2 it f o l l ows 

that the overall s i gna l to no i se ratio SNR0 is i n sens i t ive to the section 

ordering. 

2.9 First. Order All-Zero - Design 

So far only the design of a first order all-pole has been considered. 

Before considering the design of a pole-zero section the design procedure for 

a single zero will be presented. 

Let x and y be the input and output respectively of a first order zero n n 

described by the constant coefficient difference equation: 



y 
n 

X + LX n n.,..l 

The correspond±ng'pulse tr~nsfer function : 

H (z} 1 + Lz-l 

-1 has a single zero at z =-L • 
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. (2 . 9 . 1 )_ 

(2 . 9 .2 ) 

By the complex convolution theorem the integrated power gain , G, from 

the input to output is given by: 

(2 .9.3 ) 

The optimum quantizer for x , assuming 0 
2 = 1 1 is the one shown in n X 

Figure 2 . 2.2 . The optimum quantizer for y is similar except that its levels n 
are scaled by a factor /1 + L2 . 

2.10 First order .All-'-Zero-'- Error Mode], 

The first order zero described by the difference equation : 

y = X + Lx l n n n- (2 .10. l) 

is shown together with noise sources appropriate to a gaussian optimised 

realisation in figure 2. 10.1. 

T 

L 

':-Jn 

Figure 2.10.1 
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The integrated power g·ain from xn to Yn wa.s· found. in the l.ast section 

to be: 

G = 1 + L2 

(2 . 10 . 2) 

From 2.10.2 it follows that the noise sources u and e have power 
n n 

levels related ·by : 

cr 2 
e (2 .10 . 3) 

The total power at the output of the zero denoted by a 2 is given by : 
yn 

a 2 
yn = 0 2

(l+L 2 i + u 
~ 

input filter 

The total signal power at the output ays 2 is given by: 

(2.10.4) 

( 2 .10. 5) 

From equations 2.10. (4,5) it follows that the output signal to noise 

ratio is given by: 

= 10 log
10 

a 2 
X 

2a 2 
u 

= ·sNR - 3 dB . I 

'rhis· result is in agreement with experiment . 

(2.10.6) 

By contrast the uniform quantization realisation of a first order zero 

prescaled to prevent output overflow, _see Figure 2 . 10 .2, is found to have an 

output signal to noise ratio given by : 

The 

a 2 
V 

parameter a 2 

V ' 

(2q) 2 

12 

in Figure 2.10.2, is given by: 

where 2q is the quantizer step size. 

(2.10. 7) 



cr 2 
V 

0: 2 
V 

2.11 · First Order Pole-Zero Design 

T 
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L 

~n 

Figure 2.10.2 

In this section the signal to noise ratio performance for two different 

real±sations of a first order pole- zero will be studied. It will be shown 

that of those two realisations, the so-called direct and canonic forms , the 

canonic form U!1conditionally y ields a higher signal to noise ratio . 

The direct form (zero first) realisation is considered first ; its -" signal 

flow graph is shown in figure 2.11 . 1 . 

L K 

T T 
--Figure 2.11.1 
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Each of the noise sources u , e and e 'J.' is orthogonal to the ;;Jgnal to n n n 

which it adds. Addi_tionally, a.11 three are assumed uncorrelated with each 
'• other and with the input x. In section 2.9 it was shown that the power n 

of noise source e is related to the power of u by: n n 

(J' 2 
e (2.11.1) 

The power of noise source e' is also related to the power of u by : n n 

GC5' 2 
u (2 .11.2) 

where G is the integrated power gain from x toy. Now the filters transfer n n 
function is: 

H Cz)_ z + L = z ;,< .K 

and ·so the ' filters integrated power gain: 

G = 

where C is 

G = 

1 
2rrj 

the 

1 
K 

t H(z) H(z-l) dz -
z 

unit circle, is: 

I (K + L) ( 1 + KL) 
[ (1 - K2) 

(2 .11. 3) 

(2.11.4) 

The noise power appearing at the filters output , which will be denoted 

by C5' 2
, is given by : yn 

(J' 2 
yn 

(J' 2 
2 2 e I 

GC5'· + GC5' + -­u e l-K2 (2 .11.5 ) 

and the signal power at the filters output, denoted by 0 2 is given by : ys , 

(J' 2 
ys 

GC5' 2 
X 

and hence the . signal to noise ratio is: 

SNR 
Q 

= 

(2.ll.6) 

0 2 J 
1~~2 

'c2.11. 7) 



rl which after substituti_on and rearrangepient gives : 
.-:.. 

(2 .11. 8) 

Making a similar analysis of the canonic form , Figure 2 . 11 . 2 , the signal 

to noise ratio at the output is found to be : 

K T L 

f' n 

(2 . 11.9) 

Figure 2.11.2 

Comparing equations 2.11.8 and 2.11.9 it can be seen -that for all values 

of Kand irrespective of the value of L the canonic form gives a higher output 

signal to noise ratio. This r esult has been checked by experiment for a wide 

range of pole-ze_ro configurations. 

2.12 Stability In First-Order Systems 

Only recursive systems are capable of becoming unstable and so only a 

first-order pole will be considered here. 

Cons;i:der the first order pole whose input x and output y are related n n 
by the difference equation: 

(2.12.1) 
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such a system is asymptotically sta,ble prov,ided that its only pole z = K 

lies inside the unit circle. It follows that the ideal system with all 

arithmetic performed to unlimited precision is stable if K lies in the closed 

inte:r:Val 

K = [-1 , +1] (2 .12.2 ) 

In a digital realisation of 2.12 . 1 Kandy 
1 

are represented by p - bit n-

values and hence their product requires 2p-bits. In order to restore this 

product toy the least significant p-bits must be discarded . There are n 

two ways to do this . The first, Truncation, makes equation 2 . 12 . 2 both 

necessary and sufficient for stability. The second, rounding, makes 2.12.2 

insufficient. It is, however, desirable to employ rounding as this leads to 

a less noisy realisation. The instability which results from rounding manifests 

itself as a, hopefully, low level oscillation when K is negative and a constant 

value when K is positive . This instability which is referred to as a limit 

cycle is said to result from the deadband effect . 

The limi_t cycle amplitude IN I q which can be supported by the filter in 

2.12.1 is given by the standard result : 

q (2.13.3) 

where q is the quantization step size. 

No general analytical result has been foun·d for the free quantiza,tion 

law first-order filter. There are, however , two ways in which progress can 

be made with the gaussian optimised filter. 

In section 2 . 2 the. decision and quantizatfon levels for a gaussian 

optimal quantizer were found. From these it is possible to ascertain for a 

given value of K the maximum limit cycle amplitude . This is done by noting 

that for limit cycling the following inequality holds : 

di . (. K qi (2 . 1 2. 4) 
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where q ,i is the quantization level representing the vrevious, f;U ter output 

and di is the nea,rest smaller decis·ion level. . When inequality 2.12.4 holds 

K is sai d to have an effectiv e absolute value of one. 

From 2.12.4 it follows that for a limit cycle of amplitude , q. , K is 
1 

bounded by: 

(2 . 12 . 5) 

The graph in Figure 2 . 12 . 1 shows limit-cycle power level in dB 1relative 

to the quantizer saturation level
1
as a function of coefficient K. The gaussian 

optimised filter is seen to be some 5 dB quieter for a given value of K. 

A second approach is to consider the gaussian optimal quantizer to be 

piecewise linear in the region where limit cycles will occur. Referring to 

Figure 2.2 . 2 this is seen to be true for approximately 100 levels centred 

around q
128

• The effective step size is found to be 0 . 01682 . The optimum 

step size for a 255 level uniform quantizer applied to a gaussian process is 

found to be 0 . 03086 .. The limit cycle power level is therefore 5 . 3 dB lower 

in the case of the gaussian optimised filter. 

2.14 First Order All- Pole Frequency Response 

It is well known that the effect of parameter quantization, in a digital 

filter is to cause tha.t filter to have a frequency-phase response different 

from the design specification . A f urther complicating factor is that a filters 

response to a sinusoid differs with the peak to peak amplitude of that sinusoid. 

' The ex act interaction between parameter quantization, signal amplitude and 

f i lter frequency r esponse defies e x act analy sis . 

While study ing gaussian optimised high order filters it has been observe d 

that , compared with simil ar uniform quantization law filters, their frequency 

response is closer to that of the ideal system. ·Despi t e t he difficulties of 

analysis sighted above it is essential to find a justification for this 

obse rvation. 

' I 

11 

11 

I 
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Figure 2.12.1 



ln this section a · statJst±.cal t;r:,eatm.ent of the problem :j:_s ,f?;t:esented 

;for the case of a fil;'st order all.,-J?ole • 

Consider the filter described by the difference equation : 
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[Ky ] 1 + X n-1 n (2 . 13 . 1) 

where x and y are members of a discrete finite set, the set of quantizat'ion · n n 

levels, and [ J' is the operation of re-quantization. 

As it is the frequency response which is being investigated only the 

natural response of the filter need be considered. Let the value of y 
1 be n-

qi the i th. quantization level. This maps after multiplication and re-quantization 
. ' to [Kqi] • In the equivalent ideal system the apparent value of K corresponding 

to quantization level qi and denoted by Ki is given by: 

(2 . 13.2) 

Now, if q . is bracketed by decision levels d. and d. 
1 and assuming l. 

l. i+ 
gaussian signal statistics the probability of occurence of ,quantization level 

qi' denoted by pi' is: 

di+l 

pi = I t(x) dx 
(2.13.3) 

di 

whe re ~(x) is the gaussian probability density function . 

It follows that in the long term the expected value of K. denoted by K' 
l. 

is given by : 

N 
K' = E p .K. 

i=l 
l. l. 

d 

N [[Kqi]' r:l Cx} &J C2 .13 .4) = 4 
i =l qi 

di 

This analysis has assumed that a system with a pole a z = K is still 

representable by a single pole at z = K'. If K'· is different from K,. then , 

of course , a change in the frequency response has occured. The name ' expected ' 

I, 
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rather than ' effective ' coefficient will be given to K' . This is- to avoid 

' (42) confusion with the analysis of l i mit cycles presented by J'acksort · • 

A graph of K'-K versus K is shown ip figure 2 . 13 . 1 . Both the uniform 

and the gaussian optimal quantizer are considered. It is clear that for all 

but a small set of values of K the gaussian filter compared with the uniform 

filter has an expected pole nearer to that of the ideal system. 



(Y) 
s 
s 

N 
s :::.:::: s 

. 
L 
0 
'- .... 
'- s 
w s 
...> 
C 
(I) 

·5 
~ 
(+. 

(I) 

0 s u s 
s 

.... 
s 
s 
I 12).5 

Uniform 

Gaussian 

12).6 0.7 12).8 

Actual Coefficient, K 

Coefficient error v. actual coefficient 
for o first order ell -pole 

51 

IZl.S 1.0 

Figure 2.13.1 



3. Second Order Free Quantization Law Digital Filters 

3 . 1 Introduction 

A digital filter implemented using rounding type fi xed point 

arithme tic is subject to the deadband effect. The number of limit cycle 

modes becomes too large to analyse in filters of order 3 or higher. 

In addition the maximum possible limit cycle amplitude becomes comparable 

to the signal amplitude as the filter order is increased. For these 

reasons the direct form implementation of filters of order 3 or above is 

never used; instead either a cascade or parallel composition of sub-

filters is used , each sub-filter being of order 1 or 2. In this chapter 

free quantization law design techniques are applied to a second order 

pole-zero section ~ Comparisons are drawn between free and uniform 

quantization law implementations of second order s tructure s . 

3.2 Second Order All-Pole - Design 

The filter to be cons idered is a second order all-pol e wi t h input 

x and output y related by the difference equation: n n 
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(3 . 2.1) 

The corresponding signal flow graph is shown i n figure 3 .2.1. This 

configuration is not the only one possible. In principle the operations 

x + K
1

y 
1 

+Ky could be combined into one mapping n n- 2 n-2 

f(xn ' Yn-l' Yn_ 2 ) + yn ; however, this will be seen in the next 

chapter to lead to an intractable implementation problem. It is for 

this reason that the variable v has been introduced. n 



T T 
~n-2 ~n-1 Figure 3.2.1 

The filter described by equation 3.2.1 will be asymptotically 

stable provided that p and p*, the conjugate roots of: 

lie inside the z-plane unit circle . For convenience p will be expressed 

in polar form as : 
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( 3. 2 . 3a) 

where r = I-K
2 

and 
-1 

8 = cos 

( 3. 2. 3b) 

(3 .2.3c) 

The design of the filter in figure 3 .2.1 proceeds as follows . Assume 

2 xn is a zero mean , guassian and white process of variance crx. Since x n 
is zero mean it follows that v and 

n 
2 processes v and y, denoted by a n n v 

y are zero mean. The variance of n 
2 . and a respectively, can be found y 

from the complex convolution theorem; their values are: 

2 2 2 
1 2 a = a 1 + r = G a y X 

2 2 4 y X 
1 - r 1 - 2r cos28 + r 

(3.2.4) 



and 

2 2 2 2 4r cos28 cr = cr - cr 2 4 V y X 
1-2r cos28+r 

2 
= G cr 

V X 

The optimum quantizers for x, v and y are all similar in shape n n n 
to the one shown in figure 2.2.2; the scale factors by which each of 

the quantization and decision levels are multiplied are given, for each 

variable, in figure 3.2.2. 

Signal variable Variance Scale factor 

2 
1 1 X cr = n X 

2 2 !G V cr = G cr n V V X V 

2 2 !G yn cr = G cr y y X y 

figure 

3.3 Second Order All-Pole - Error Model 
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(3.2 . 5) 

3.2 .2 

A second order all-pole filter, which is described by the difference 

equation 

(3 . 3 . 1) 

where x and y .are the input and output respectively, n n 

r is the pole radius 

and 8 is the pole angle, 

is shown, together with noise sources appropriate to a gaussian optimised 

implementation, in the signal flow graph in figure 3. 3. L 

Using the same notation as in the previous section, if noise process 
2 u has variance cr then noise processes e and e have variances n u n n 

2 2 cr = G cr e V U (3 . 3 . 2a ) 



Un 
and 

~n-2 

2 2 cr .. = G cr e y u 

The noise which appears at the 

2 [ a} 2 cr = G + cr + yn y e 

2 
[ 1 + = G cr G + G y u V y 

T 

output 

2 ] a ... 
e 

] 

e' n 

2rcos9-

T 
~n-1 

of the filter 
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Figure 3.3.1 

(3.3.2b) 

is given by: 

(3.3.3) 

2 The signal power at the output of the filter, denoted by crys , is 

given by: 

2 2 cr = G cr ys y X (3.3.4) 

and hence the signal to noise ratio at the output of the filter is: 
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2 

loglO [ 
G a 

] ] 
SNR

0 
= 10 y X dB (3 .3.5) 

G a 2 
[ 1 + G + G y u V y 

10 log
10 [ ::: 1 

J 
dB 

1 + G + G 
V y 

$NRI - 10 log l O (1 + G + G ) dB 
V y 

where SNR
1 

is recognised as the input signal to noise ratio . 

The vc1.lidity of this model has been experimentally confirmed . The 

graph in figure 3 . 3 . 3 . shows both experimental and theoretical SNR 

measurements for a wide range of values of rand e. The signal to noise 

ratio performance of the uniform quantization law filter , whose error 

model signal flow graph appears in figure 3.3.2, is shown in figure 3 . 3 . 4; 

also included on this graph is the theoretical SNR performance of the 

gaussian optimised filter illustrating its improved performance . 

~n-2 

0 2 
V 

T 
~n-1 

0 2 
V 

2rcos8 

T 

~n 

Figure 3.3.2 
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Figure 3.3.3 
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Figure 3.3.4 
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3.4 Secona Order All-Zero - Design 

The signal flow graph for the second order all-zero described by the 

difference equation: 

(3.4.1) 

is shown in figure 3.4.1. 

V 

-2scos~ 

T 

Figure 3.4.1 

The extra signal variable v is introduced to seperate the adders thereby n 

making a three to one mapping into a pair of two to one mappings. 

The purpose of the following analysis is to establish the signal 

variance at variables vn and yn given that xn is gaussian white of 

2 
variance cr and mean O. 

X 

In the time domain v and x are related by: n n 

V = X 
n n 

2scos<fix 
1 n-

2 and so the variance of v, denoted by cr , is given by: 
11 V 

2 
[ vn

2 J = E [ 
2 

42 2.2 J 0 = E X - 4scos<fix x 
1 + S COS (j)X n-l V n n n-

2 
[ 1 + 

2 2 

J = 0 4s cos <P 
X 

(3 .4.2 ) 

(3 .4.3a) 

( 3. 4. 3b) 



where E [ ] is the expectation operator . For e x amples of this kind, 

FIR filters, the use of the complex convolution theorem is unnecessary . 

By a similar derivation the value 'of cr 
2

, the variance of y , is y n 
obtained: 

The quantizers employed at nodes vn and yn will be similar in 

shape to the one at x but their levels will be larger in magnitude by n 

the multiplying factors in figure 3.4.2. 

Variable Scale factor 

Jh 2 2 
V + 4s cos <I>) n 

.[(1 
2 2 s 4 ) Yn + 4s cos <I>+ 
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(3 .4.4) 

figure 3 . 4 .2 

3.5 Second Order All-Zero - Error Model 

The signal flow graph to be used in the following analysis is the 

same as t..~e one in figure 3 . 4 .1 with three noise sources introduced; it is 

shown in figure 3 . 5 .1. 

-2scoscp 

T T 

Figure 3.5.1 



The power level of noise processes e and e' as a function of the '" n n !-~: 
~.:.-

input power and zero positions are given by: 

2 2 [ 1 
2 2 ] (J = (J + 4s cos cp e u 

2 2 [ 1 
2 2 4 ] (J ' 

= (J + 4s cos cp + s e u 

It follows, from equations 3 . 5.1 and 3.5.2 that the output noise 
2 

power cr is given by: yn 

(J 
yn 

2 
= (J 

u 
2 [ 1. 2 2 4 J + 4s cos cp + s 

i 

2 + (J 
u 

due to noise at 
variable x 

n 

+ (Ju
2 [ 1 2 2 4 J + 4s cos cp + s 

i 
due to noise at 
variable y 

n 

2 2 J 4s cos cp 

i 
due to noise at 
variable v 

n 

2 Now, the signal power at the output, denoted by crys , is given by: 

(J 
ys 

2 
= crx 2 [ 1 + 

2 2 
4s cos cp 

and hence the output signal to noise ratio is given by: 

SNR = SNR - 10 log
10 [ 2s4

.+3(1 +4s
2
cos

2
cp) 

0 I 2 2 4 
1 + 4s cos cp + s 

where SNRI is the input signal to noise ratio. 

From equation 3.5.5 it can be seen that SNR 0 - SNRI' the loss in 

signal to noise ratio, is bounded by the inequality: 

0 > SNR - SNR > - 4 . 77 dB .0 I 
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(3.5.1) 

(3.5.2) 

(3.5 . 3) 

(3.5 . 4) 

(3 . 5 .5) 

(3 . 3 . 6) 



An experiment was performed to check the validity of equation 3.5.5; 

the graph in figure 3.5.2 shows measured signal to noise ratio for two 

values of zero radius, s, and in each case for 121 values of~- The 

dotted lines are the theoretical SNR estimates , 

3.6 Second Order Pole-Zero (Section) 

As with the first order pole-zero (section), there are a number 

of different signal flow graph topologies which will lead to the desired 

second order transfer function. It has been observed by other workers 

that different topologies, which realise the same transfer function, do 
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not necessarily give the same signal to noise ratio performance or the same 
frequency-phase response accuracy. In section 2.11 an analytical result 

was obtained; this result showed that a canonic form implemention of a 

first order free quantization law p-z section gives a higher SNR 

performance than the zero first implementation. 

A similar analysis to that in section 2 . 11 is in principle possible 

for the case of a second order p-z section ; however, it is lengthy and 

does not lead to an obvious rule. To overcome this difficulty a random 

test was performed; the details of this test are as follows. A pair of 

conjugate poles and a pair of conjugate zeroes were randomly placed inside 

the z-plane unit circle. The section was then implemented using both the 

zero first and canonic form implementation, in both cases the signal to 

noise ratio was calculated. In all tests the canonic form gave an SNR 

performance equal to or better than the zero first form. 

H '(z) 
2 = z 
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Figure 3.5.2 
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3.7 Section Ordering and Pole-Zero Pairing 

In fixed point implementations of high order (order> 2) recursive 

digital filters it is usual to decompose the filter into either a 

cascade or a parallel connection of first and second order sections 

(sub-filters). With both decompositions a pairing of poles and zeroes 

has to be chosen, and with the cascade decomposition a section ordering 

has to be chosen. It is known that both ordering and pole-zero pairing 

can have an effect on the output signal to noise ratio performance of a 

filter; in principle at least the filter configuration which gives the 

maximum output signal to noise ratio can be found by exhaustive search 

of all possible c onfigur ations . For a filter constr ucted from N cascaded 

sections there are N . !_ section orderings and N ! pole-zero pairings and 
2 hence N ! configurations . For filters of order eight or less (N ( 4) 

an exhaustive search is practical since N ! 2 ~ 5 76 ; however , for N = 5 

the n umber of possi ble configurations being 14400 is bec oming too large 

t o admi t an e xhaustive search . 

The r e is no known analytical solution t o the p rob l ems of section 

ordering and p o le-zero p a iring , however , various heuristic and some 

(30 91 93) optimisation solutions have been proposed ' ' . 

In this section it will be shown that the output s ignal to noise 

ratio of a cascade form fre e quantization law filter is essentially 
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independent of sub-filter ordering and pole-zero pairing . These results 

were obtained experimentally ; the details are as follows : 

Section Ordering 

Two pairs of poles were chosen at ranqom; these will be denoted by 

A and B. The radii and angles were obtained using uniform random number 

generators in the range [0,1] and [0,1r] respectively. Only those 

trials with A and B further than a certain minimum distance apart were 

considered. This was done to avoid numerical instability in the 

computation of the 
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1 
A-B ( 3. 7. 1) 

factors appearing in the cont?ur integration . Two filters were then 

implemented ; the first was a cascade connection of two second order all-

poles with pole pair A followed by pole pair B, and the second was the 

converse. The respective signal to noise ratios SNRAB and SNRBA were then 

calculated using the theoretical noise model . 

SNRE = SNR - SNR AB BA 

were found to be 

mean value 

standard deviation 

maximum value 

= 0.000 dB 

0 .219 dB 

1.600 dB 

The statistics of 

(3.7.2) 

The histogram in figure 3.7.1 gives a coarse indication of the frequency 

of various bands of error values. The maximum error in choosing the 

wrong ordering is seen to be insignificant. 

For each trial performed above , the SNR for the equivalent fixed point 

arithmetic filter was calculated, in all cases the wrongly ordered 

gaussian optimised filter gave a higher signal to noise ratio than the 

fixed point arithmetic filter. 



-~ 
::n 
0 
C 
(D 
::) 
O" 
(D 
L 
~ 

(D 
> 
~ 
0 ...... 
CD 

a::: 

s 
s .... 

s 
CD 

s 
(D 

s 
'V 

s 
N 

s 

>-

... 

... 

0.0 

I I I 

0.5 1.0 1.5 

Reduction in SNR (dB) 

Histogram showing relative frequency of various 
reductions in SNR caused by the selection of a wrong 
section ordering. Tests perf armed on a cascade of 

two second order all-poles; each conjugate pole pair 
chosen at random. Total of 1(2) Q)Q)Q) trials perf armed. 

66 

Figure 3. 7 .1 

-

-

-

2.0 



Pole-Zero Pairing 

Two pole pairs A and Band two zero pairs C and D were selected at 

random. Four filters were implemented, each using a cascade o ·f two 

second order sections . The filters had the following pole-zero pairings: 

Filter 1st section 2nd section 
pole zero pole zero 

1 A C B D 

2 A D B C 

3 B C A D 

4 B D A C 
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figure 3.7.2 

For each of the four filters the SNR, denoted by SNR . (1 ~ i ~ 4), 
]. 

was calculated. The statistics of parameter~ 

SNR = I max SNR . - min SNR . I" E 
i 

]. 

i 
]. (3 . 7 . 3) 

were found to be as follows : 

mean value = 0 . 000 dB 

standard deviation = 0.321 dB 

max imum value = 2 . 100 dB 

The histogram was found to have the same shape as t he one in figure 3 .7. 1 . 

It can be seen that the arbitrary choice of a pole-zero pairing is un-

l i kely to yield an SNR which is significantly lower than the optimum . 

3 . 8 Stability Considerations 

The filter described by the constant coe ffici ent diffe r enc e equa tion: 

(3.8.1) 

h as t he z- domain tran sfer functi on : 
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H (z) = Y(Z) = 
X (Z) 

1 (3.8.2) 
-1 

1 - K
1

z - K z 
2 

-2 

2 The poles of H(z) are both real if K1 ~ 4K
2

, and are conjugate 
2 complex i f K

1 
< 4K

2 
in which case they are of the form : 

:b. e 
z = re J 

where r 

and e 

(3 . 8.3) 

When the filter described by equation 3.8.1 is implemented using finite 

precision arithmetic it is possible for y to exhibit sustained oscillations n 

in the absence of an input signal. These oscillations are referred to as 

limit cycles . (42) In the analysis presented by Jackson two kinds of limit 

cycle are shown to exist. The first results from a real effective pole at 

z = + 1 or z = - 1; the second results from conjugate complex effective 

poles at z = e ~je 

In the case of a real effective pole Jackson shows that for a fixed 

point arithmetic digital filter an upper bound on the limit cycle amplitude 

is given by: 

C. 5 
- K 

2 

(3 . 8.4) 

A similar analysis will now be applied to a free quantization law all-pole. 

Consider the signal flow graph in figure 3 . 8.1. 

It is assumed that the limit cycles are constrained to a region of 

the (y ,y 
1

,y 
2

) space where the quantization laws at pn and y are n. n- n- n 
piecewise linear. The parameters~'~ and 'Iy are the effective step sizes 

at x 1p and y respectively. The values of q, q are related by equations n n n x p 

3.2.4 and 3.2.5 as follows: 
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Yn 

T T 

Figure 3 .8 .1 

qp = 

qx f!: 
X 

(3.8.5 ) 

C!y = qxf!: (3 . 8 . 6) 

The difference equation which describes the autonomous behaviour of 

the filter in figure 3.8 . 1 is 

where [ Jp and 

yn r espectively. 

Given that: 

[ A Jp = A+ 

and 

[ A Jy = A + 

D p 

D y 

(3 . 8 . 7) 

denote quanti zation to an a l lowed v a l ue of p and 
n 

(3.8.8a) 

(3.8.8b) 

I 

I 

I 
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where DP ~ 0 . 5~ and Dy ( 0 . 5~ equati on 3.8 .7 becomes : 

(3.8.9) 

Now, i f equation 3 . 8.9 has a real effective pole at either z = + 1 

or z = -1 then the response y is either: n 

or 

y = y 
n 

= Y (-l)n 

where Y is a constant. 

(3.3.lOa) 

(3 . 8.lOb) 

Substituting equations 3.8.10 for y in equation 3.8.9 and using the n 

inequalities for D and D, the upper bound on the limit cycle amplitude p y 

is obtained; it is given by: 

0.5 
- K 

2 
(3.8.11) 

In order to compare this result with a fi xed point arithmetic filter 

it is necessary to divide the bound by a factor 1/~ giving : 

0.5 

From equations 3.8 . 5 , 3 . 8 . 6 a nd 3.2.5 it can be seen that : 

1 

and h e nce the gaussian optimised second order all-pole is capable of 

supporting limit cycle s wh ich are twice as large as in the fixed point 

arithmetic counterpart. 

( 3. 8 .12) 

The second case to be examined is when equation 3.8.9 has complex 

+ ·e conjugate effective poles at z = e _J • In this case equation 3.8.9 may 



be wri t t e n as: 

whe r e K~ and K; are et"fective coeffici ent values . Since the filter has 

complex conjugate effective poles on the z-plane unit circle it follows 

that K2 = 1; it further follows that: 

Assuming K1 - Kl to be small, equation 3.8.14 reduces to: 

0.5 
1 - K

2 
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(3 . 8 . 13) 

(3 . 8 . 14) 

(3.8 . 15) 

After normalisation the upper bound on the limit cycle amplitude is found 

to be : 

~ 0 . 5 
1 - K

2 [ 1 + ~ ] (3 . 8 . 16) 

Again , this is up to twice as large as in the fixed point arithmetic case . 
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4 . The Implementation of Free Quantization La,w Digital Filters 

4 . 1 Introduction 

Digi tal filters are usually implemented using binary adders , multipliers 

and storage registers selected from an appropriate logic family . With this 

implementation method the binary codes held in the storage registers bear 

some simple relationship to the value of the signal samples which they 

represent . The two ' s complement coding scheme is an example; here the code 

held in a register gives the sample value as an integer multiple of the 

quantization step size. It follows that the quantization law used in the 

filter is either uniform or piecewise uniform; the latter accounts for the 

cases of floating and block floating point. As free quantization law filters 

can, by definition , use non-uniform quantization laws they cannot be implemented , 

except in special cases , using binary arithmetic hardware. 

In this chapter an implementation method is proposed which places no 

restriction on the filters quantization laws . The method is based on the use 

of boolean polynomials as a means of computing the nex t state function of a 

finite state machine . Some results on the minimisation of the complexity of 

these polynomials are included . The chapter continues with a description of 

how digital fil ters ma y be r epresented as finite state machines. 

4.2 The Repr esentation of a Digital Filter a s a Fi ni te State Machine 

The ter minology to be used to describe a finite state machine is the 

s ame as t hat u sed by Hartmani s(73). 

A finite state machine , M, is a machine which compris es a finit e set of 

inputs T = < T1 , T2 , T3 , ••. , TNI > , a finite set of s t ates s = < s1 , s 2 , 

s 3 , ••• , SNs > and a finite set of outputs o = < o1 , o2 , o3 , 

The integers NI , NS and N0 indicate the number of members in sets I, Sand 0 
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respectiyely; they are referred to as the s.et cardina,lities. Two rules D 

and Lare defined on sets I., Sand Q. The rule D, called the next state rule , 

associates with the current state and . the current input a new state. In set 

notation it is written: 

D S X I + S (4 .2.1) 

where x denotes cartesian product (lO)_ Rule L, the next output rule, 

depending on whether the machine is a Mealy or a Moore model , is defined as: 

L S x I -+ 0 Mealy 

L s -+ 0 Moore (4.2.2) 

The product set S x I is called the 'total state' set. 

A Moore model finite state machine is shown in figure 4.2.1. 

x e r ._, -- ~ e s z e 0 
D:SxI -> s - - L:S -> 0 - 'U - -

~ 

Dela~ ~ -
Figure 4.2.1 

Only the Moore model will be required in this dissertation. 

The two commonly used methods for describing rules D and L, for the case 

of a Moore model , are the flow table ( (10) lO) and the state transition graph 

The flow table is a rectangular table comprising N
8 

rows and N1 + l columns. 

Each of the rows corresponds to a member of the state set S, and each of the 

columns corresponds to a member of the input set I . The table entry at the 

intersection of row Sj with column Ik (l, j, Ns and l, k, NI) specifies 
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and Lare defined on sets I, Sand O. The rule D, called the next state rule , 

associates with the current state and . the current input a new state. In set 

notation it is written: 
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where x denotes cartesian product (lO) _ Rule L, the next output rule, 
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L S x I + 0 Mealy 
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A Moore model finite state machine is shown in figure 4.2.1. 

x e r -
~ - E s z e 

D:SxI -> s - - L:S -> 0 -- - ---

Dela~ -
~ 

Figure 4.2.1 

Only the Moore model will be required in this dissertation. 

0 

The two commonly used methods for describing rules D and L, for the case 

of a Moore model , are the flow table ( (10) 
lO) and the state transition graph 

The flow table is a rectangular table comprising NS rows and N1 + 1 columns . 

Each of the rows corresponds to a member of the state set S, and each of the 

columns corresponds to a member of the input set I. The table entry at the 

intersection of row Sj with column Ik (l, j ( Ns and 1, k, NI) specifies 
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the next sta,te. The last column specifies the next output . 
; ~ . 
r;:. 

The state transition graph is a directed graph with N s nodes- and 

Nr arcs. Each node is marked with a member of the state set and with a member 

of the output set. Each of the arcs is marked with a member of the input 

set. As the name suggests each arc specifies a state transition. 

An example of a machine is shown using both method in figure 4.2.2. 

Il I2 z 

I~ sl sl S2 0 s1/01 S2/02 :l 

S2 sl S2 02 1 

I2 

Flow Table State Transition Graph 

Figure 4.2.2 

The machine in figure 4.2.1 is sometimes referred to as a first order 

finite state machine . A cascade of k such machines would be called a k th. 

order finite state machine . This is an unfortunate use of the term order 

since a filter of any order may be represented by a so called ' first order' 

finite state machine . 

A finite state machine may be used to represent a first order all-pole 

digital filter by assigning to each. input quantization level a member of 

the set I and to ·each output quantization level a member of the sets . In 

this case sets Sand Oare the same. An example follows: 

Consider the filter, with input x and output y, described by the n n · 

difference equation 

(4.2 . 3) 

where Q denotes truncation, and x and y are members of the set< -2, -1, O, n n 

1 , 2 !> . The body of the table in figure 4 . 2 . 3 shows y for all possible n 
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combinations of X and y 1· n n-

Yn X 
n 

-2 - 1 0 1 2 

- 2 -2 - 1 - 1 0 0 

- 1 ~1 -1 0 0 0 

y 1 0 -1 0 0 0 1 n -

1 0 0 0 1 1 

2 0 0 1 1 2 Figure 4 . 2 . 3 

Making an arbitrary assignment to each of the values of x and yn n 

members of the sets I and S respectively the flow table for the filters 

finite state machine equivalent is obtained. 

D: SxI 

IO I I I3 I L:S 1 2 4 

so s sl sl S2 S2 ob 0 

1\ sl sl S2 S2 S2 01 

s2 sl S2 S2 S2 S3 02 

S3 S2 S2 S2 S3 S3 03 

S4 S2 S2 S3 S3 S4 04 Figure 4.2.4 

By expressing a free quanti:zation law filter as a finite state machine , 

all trace of the underlying arithmetic structure - the difference equation -

disappears. This is useful because, as already mentioned , conventional filter 

implementation methods which relate strongly to the arithmetic structure are 

unsuitable. In addition much effort has been devoted, by a number of workers, 

to finding efficient methods for synthesising sequential circuits. The results 

of this work can be used since a sequential circuit is just an implementation 

of a finite state machine . 

11 
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A difficulty which. will repeatedly appear in this work i::; problem 

dimensionality . The first example is that of representing the second order 

filter, described by the difference equation : 

y 
n (4.2.41 

as a finite state machine. Let s
1 

be the set of quantization levels to · which 

the values of yn' yn-l and yn_
2 

belong . Denote by s
2 

the cartesian product 

of s
1 

with itself: 

(4.2.5) 

2 The cardinality of set s
2 

is NS where Ns is the cardinality of set s
1

• Now, 

if the filter in equation 4.2.4 is to be modelled by a first order finite state 

machine (figure 4.2.1) then the machine will have as its state set s
2

• The 

next state function , D, will be the mapping 

D (4.2 . 6) 

which is considerably more complex than in the case of the first order filter . 

In addition, the output function will be non-trivial being the mapping: 

D (4 .2. 7) 

In this section the association of a finite state machine with a recursive 

digital filter has been considered . In particular , the way in which quantization 

levels can be associated with.machine states and inputs has b een described . 

This association will in future be' called the 'value assignment'. 

4.3 The Implementation of a Finite State Machine as a Sequential Circuit 

In order to •implement a finite state machine as a sequential circuit 

using binary logic it is necessary to assign to each member of the machine state 

set a uniquely decodable binary code. A similar assignment must be made to 

the input and output sets. The code used may be fixed or variable in length; 
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here it will be assumed to be fixed length. Denoting by PI, P
8 

and P
0 

the 

number of bits required to uniquely code sets. I, S and O i .t can be seen that ; 

PI ~ llog2 NII 

PS ? llog2 N8 1 (4.3.1) 

Po ? llog2 N
0

j 

where I I denotes next largest integer. 

(79) Among the names used to describe this assignment are code assignment 
(73) · (76) state assignment and internal code assignment Here the term 'code 

assignment' will be preferred. The term 'state assignment' will be used to 

refer collectively to the value assignment and to the code assignment . 

Having selected a code assignment the next step is to implement the next 

state function , D, and the output function, L, using combinatorial logic 

networks . The logic implementation of the abstract finite state machine of 

figure 4 . 2.1 is shown in figure 4.3.1. 

The combinatorial logic networks which implement functions D and L may 

be constructed using read-only memories , logic arrays or random logic. Indeed , 

they may be sequential circuits which appear from the viewpoint of the main 

machines clock to be combinatorial. 

The speed at which a machine is able to clock will be determined mainly 

by the time taken for the outputs of networks D and L to settle. This in turn 

will depend on the number of gates in the longest gate chain from any input 

to any output. The length of the longest chain is usually referred to as the 

level . The example in figure 4.3.2 is a three level logic netiwork . 

-D-D-D-
• 

1st. level 2nd. level 3rd. level 

Figure 4.3.2 
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Logic Implementation of Abstract Finite State Machine 

~igure 4 .3 .1 



79 

For a given logic function it .ts usually found tha t the l owe r the l evel 

is the more complex the logic network becomes . The logic complex ity is also 

fouhd to depend on the code assignment and on the type of storage latch used . 

In the f ollowing sections logic complex i t y i s c onsidered in more detai l . 

4 . 4 Logic Netwo r k Complex ity 

Consider the binary scalar valued function f defined by: 

y f (xl (4 . 4 . 1) 

where the vector 

X = 

is constructed o f the b i nary scalar s x
1

, x
2

, ..• , xN. 

The complexity o f f unction f will depend on the t ype of logic used , 

and also on the number of l ogic levels . For ex ample , consider the function f 
(12) defi ned by t h e two l e vel minterm expansion : 

f (x} = (4.4.2) 

wher e V denotes logical OR , and /\ denotes logical AND . This func t i o n c an 

b e r ewritten , u sing a t wo lev el r ing-sum 
(12) 

expans i on , as : 

f (x ) = (4 . 4 . 3) "'· 

wher e EB denot e s l ogic NOT- EQUIVALENCE (EXCLUSIVE-OR,} . Cost i s defined a,s- the 

mb f l h b f . . (1 2) . h " nu er o gates pus t e num er o gate inputs , Phister using t i s 

definiti on , the cost of implementing equations 4.4.2 and 4.4.3 is 6 units 
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and 11 units respectively. Although it is a useful complexit y i ndi c a tor, 

t his c ost measure is insensitiv·e to the relative complex ity of di:i;'ferent gates; 

for examp le, a t r ans i stor -tr ansistor logic (TTL) EXCLUSIVE- OR gate contai ns 

more transi s tors than a TTL OR gate . What is i ndicated i s that ther e is a 

difference in complex ity between the various logic forms . 

In order to assess the relativ e complex ity of different logic forms used 

to implement the same logical function Kellerman(gg) proposes the following 

e xperiment . Let function f be defined on the N binary scalar v ariables 

x
1

, ••• , x N. There are 2N possible values of the N-tuple x
1

,x
2

, ••• , xN ; in 

response to r of these f has the value 'O ', and in response to the 

r emai ning 2N- r it has the v alue ' l '. For each of the 2
N-r cr possibilities 

function f is minimised ; the average cost over all these possibilities is 

called the average minimum cost . Performing this experiment for minimised 

minterm and ring-sum expansions off , it is found that the ring-sum expansion 

by the previous definition of cost is the less costly in the av erage minimum 

sense . Hellerman ( l0°)justifies this observ ation by the use of an entropy 

d e finiti on f or t he OR and EXCLUSI VE-OR gates . 

The details a r e as follows : 

Define a f u nction f of t wo b inary scalar v a r i a ble x
0 

and x
1 

where x
0 

and x
1 

each h av e an equa l p r obabi lity of being 'O' or ' l '. If func t i on f is the 

logical operation OR then f(x
0

, x
1 ) has probability 0.25 of being 'O' and 

0.75 of being 'l'. The entropy of function f is therefore : 

H (f) = 

= 

-0.25 log2 o.25 - o . 75 log
2 

o.75 

o. 8113 (4.4.4) 

By a similar reasoning if function f is the logical operation EXCLUSIVE-OR 

then the entropy off is: 

H (f) = -0.5 log2 0.5 - 0.5 log2 o.5 

= 1 (4 .4.5) 

I 

I 
I 

I I 
I 



With the development of high den$.:j..ty r.;i.ng-sum form programmable logic 

arrays and in y:j:ew- of :j:ts reduced complexity thi.s particular expansion has 

become of practical interest . 

4.5 The Code Assignment Problem 
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As ~entioned in section 4.3 the complexity of the logic networks which 

implement functions D and L not only depends on the logic form used, but also 

on the code assignment . The code assignment problem has received considerable 

attention in the literature since the late 1950's . To date no general 

solution to the problem has been found . Various methods of solution have 
(73-89) 

been proposed , most of which depend for their success on certain 

structural properties of the machines flow table . Without exception these 

methods assume an AND-OR logic form for the next state and output functions. 

Furthermore for any appreciable number of machine states , typically fifty or 

more , their use becomes computationally impractical . 

To illustrate the importance of selecting an economical code assignment 

an example will be presented. Consider the machine described by the flow 

table in figure 4.5 . 1. 

Next state 

I Il I2 I3 0 

so S3 S2 sl so 

sl S3 S2 sl so 

S2 S3 S2 sl so 

S3 sl so S2 S3 Figure 4.5.l 

Two possible codings of this machine are shown in figure 4.5.2-- The 

associated next state ring-sum polynomials are shown; the variables are those 

given in figure 4.3.1. The associated cost is quoted; the cost difference is 

seen to be significant. 



1st coding 

2nd coding 

yl 

s 
0 

0 

sl 0 

S2 1 

S3 1 

y I = 
0 

y I = 
1 

cost = 

Y1 

so) 1 

sl 1 

S2 0 

S3 0 

y I = 
0 

y' = 
1 

Yo 

0 I 
0 

1 Il 

0 I2 

1 I3 

1 EB x
0 

EB x
1

y
0

y
1 

1 EB x l EB YoY1 

15 

Yo 

1 I 
0 

0 Il 

1 I2 

0 I3 

cost = 25 
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XL X 
0 

0 0 

0 1 

1 0 

1 1 

'xl XO 

0 0 

0 1 

1 0 

1 1 

Figure 4.5.2 

A solution to the problem of finding a minimum cost code assignment must 

exist·;· in principle an exhaustive search of all possible code assignments 

could be performed. If the machine has N states then there are N ! different 
~ s 

ways of assigning N codes. If N = 4, giving N ! = 24, then an exhaustive s s s 

SBarch is a good method, however; if N = 8, giving N ! = 40320, such a method s s 



becomes impractical . Th.e number of code as5ignments which need to be 

tested can be reduced. Consider the ordered set of binary digits, 
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PN-l ' PN_
2

, ••• , p 2 , p 1 , p
0 to be an N bit code used to code each of the Ns 

states of a machine (N = 2NJ . Now reverse a pair of bits: for example s 

PN-l' PN_
2 , • •• , p 1 , p 2 , p

0
• This has the effect of changing the code 

assignment but not the next state polynomials. As there are N! ways of 

ordering N bits the number of possible code assignments, c, reduces to: 

C 

N 
s 

= 

N ! 
s 

8 gives C = 6720 

(68.,- 72) 
Various authors 

(4.5.1) 

consider ways by which to reduce C still further . 

These methods depend on the type of delay store. For example, if each of 

the state bits is available in true and complement form then code assignments 

which differ only by a complement will have the same cost. . h' . (69) Bianc ini 

presents a method for systematically generating all distinct code assignments . 

The method does not require that all the previously generated assignments be 

stored. 

Even for a modest number of states the computational savings offered by 

the above methods are inadequate . Typically 32 states would require that 

some 1033 code assignments be teste d . Examining the ex p r ession giv en in 

(4 . 5 . 1) for the number of code assignments it is seen that C cannot be ex p r essed 

as a finite degree polynomial in Ns except for limited values of Ns . This 

being the case , the code assignment problem belongs to the class of problems 

which a r e termed non- poly nomial sol vable . A number o f worke r s h av e p ropos ed 

methods for rapidl y finding optimal or n e ar op tima l c od e. assigments . Of these 

methods two of the more wel l k nown ones a r e those o f Har tmanis and Stear ns 
(74) (86) and Story, Harrison a nd Rainhar d - SHR -

The former method relies on the isolation of so called sub- computations 
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within the machines next state );unction. To expla,in this further tne 

following definition is required. Let S be a set which is divided up into 

subsets B
0

, B
1

, ... , BN. If the following properties exist: 

N 
s = u Bi 

i=O 
(4.5.la) 

{ 
(D i ,J j 

B. n B. = 
l. J B. i = j 

l. 
(4. 5. lb) 

where U denotes set union, n denotes set intersection and (Dis the empty 

set , then set Sis said to have been partitioned into blocks B0 , B
1 , .•. , BN . 

Returning to the method of Hartmanis and Stearns. They propose an algorithm 

for finding a partition, on a machines state set s, which has the following 

property; the block containing the next state only depends on the input and 

on the block containing the current state . In general the exact next state 

will depend on both the previous state and the input. Effectively this method 

selects a code assignment such that some of the next state . polynomials only 

depend on the input bits and on a subset of the state bits . The rest of the 

next state polynomials will depend on all the total state bits. Arbitrarily 

selecting a code assignment would usually cause each of the next state poly­

nomials to depend on all the input and state bits. It follows that when a 

machine is partitionable some reduction in the complexity of the next state 

polynomials is to be expected. There are two drawbacks to this method . The 

machine must possess a partitionable state structure. Also, for a large number 

of states the partitioning algorithm would require excessive computing 

resources . For a digital filter realised as a finite state machine there is 

one sub-computation- which can be isolated by i nspection ; the details follow. 

Consider the constant coefficient filter , with input xn and output yn, which is 

described by the difference equation : 

(4 . 5 .2 ) 
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The values which the variables x and y may assum.e a1:;e constrained to their n n 

respective finite sets . Both thes-e sets· have the property that ~or each 

positive member - quantization level - there is a negative member which is 

equal in magnitude. If xn and yn-l _are both positive then : 

(4 .5.3a) 

where I I denotes 'magnitude of', whereas, if both are negative then 

= -!Ky I - Ix I n-1 n (4 . 5.3b) 

If, however, y 
1 

is positive and x is negative or y 
1 

is negative and n - n n-
x is positive then~ n 

(4 . 5 . 3c) 

and: 

-!Ky I + Ix I n-1 · n (4.5.3d) 

respectively. Equation 4.5.3b can be evaluated by evaluating equation 4 . 5 . 3a 

and changing the sign of the result. Similarly, equation 4.5.3d can be 

evaluated using equation 4.5.3c. This result suggests that there may be some 

advantage in choosing codings for x and y which use one bit to specify the n n 
sign. Suppose that a read only memory (r.o.m.) is used to evaluate equation 

4.5.2 . If x and y both require N- bit codes then the r . o . m. would contain n n 

N x 2
2

N cells. If, however, a r.o.m. is used to evaluate equations 4.5 . 3a 

and c then , since !Ky 
1

1 and Ix I are n- n 
2N-2 codable in N-1 bits , 2N2 cells 

are required. The number of cells in the r.o.m. has been halved. This type 

of code is referred to as a sign-magnitude code. Unfortunately here this 

name is inappropriate as the 'magnitude ' part of the code need not bear a 

simple relationship with the signal sample value . Some additional logic is 

required to decide the sign of the result and to decide whether to apply 



equation 4 . 5.3a or 4 . 5.3c . Th.e logic ~pecificatj:;on will be 9iven in terms 

of the followtng Vi:l,ri9,bles·: 

s sign bit of X 
X n 

s = 0 =l> X positiv·e 
X n 

s = 1 => X negative 
X n 

S si9n bit of y y n 

definition as for S 
X 

s sign complement bit 
C 

s = 0 => leave result unchanged 
C 

s = 1 => change sign of result 
C 

f equation selector 

f 

f 

0 

l 

=> 

=> 

apply equation 4.5.3a 

apply equation 4.5.3c 

S ~ sign of result given by r.o.m. 
r 

definition as for S 
X 

sign of final result 
Figure 4 . 5 . 4 

The truth table relating f,Sc and SR to Sx ' Sy and S~ is shown in figure 

4 . 5 . 3 . 

The following logical expressions for f , Sc and SR follow from Table 

4. 5 . 3 : 

f = s ED s 
X y 

s = s 
C y, 

SR = s ED s (4.5.4) 
r C 
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s s s f s 
' :9 
:.:'s 

X y r C R 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 1 1 1 

0 1 1 1 1 0 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 0 1 1 

1 1 1 0 1 0 

Figure 4.5 . 3 

Additional logic amounting to two EXCLUSIVE-OR gates is all that is required 

to calculate the sign . 

A description of the SHR code assignment algorithm will now be given. 

It is observed that, although the number of distinct code assignments is : 

C = (4.5.5a) 

where N = log
2

N
8

, there are only: 

H = (4.5.5b) 

different columns which go to make up the Crow assignments. For example , 

if the machine has 4 states then the C = 12 distinct code assignments are : 

[~ ~] [~ ~]· [~ ~1 [~ ~] [~ ~] ,~ ~] 1 0 1 1 0 1 0 1 0 0 1 0 
1 1 1 0 1 0 1 0 1 0 0 0 - . -

[ft] [ft] [It- [Ii] [~ i] [If] 
Figure 4 . 5 . 5 



Among these 12 assignments are the :following d.±stinct columns : 

0 0 1 0 1 1 
0 1 0 1 0 1 
1 0 0 1 1 0 
1 1 1 0 0 0 

Figure 4 . 5 . 6 

The SHR algorithm associates with each distinct column a so called minimum 

number (MN) . This number is a measure of the cost of using the associated 

column as a part of a complete code assignments. It is called a miminum 

number as it is a lower cost bound; in other words, if the column is 
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accompanied by the appropriate N-1 other columns it will contribure MN units 

to the total cost of the machine . The algorithm ; having computed the MN for 

each of the H columns, proceeds by combining the N lowest cost columns subject 

to the following conditionr the combined use of N columns must lead to a 

proper code assignments , that · is, an assignment in which each state has a 

unique code. For example, the first and last columns in figure 4.5 . 6 cannot 

be used together . The SHR algorithm finds the MN for each column without 

having to consider any of the other columns. It is designed for use with 

minterm (AND-OR) nex t state logic and J-K flip flop delay elements . It is 

likely that this method could be r e-dev eloped for use with ring- sum logic . 

A third method for finding an economical code assignment wilL now be 

described. Consider the machine shown in figure 4.3.1 with its next state 

function, D, implemented using ring-sum polynomials. These polynomials are 

found by applying the Reed-Muller Transformation to the coded next state table 

(see Chapter 5 for a description of the R . M. Transform) . The cost of the 

machine will be measured by counting the number of terms . in all the polynomials . 

A term is a product of binary scalars, for example x
0

x
2

x
5

. The method is 

based on partitioning the space of all possible code assignments into blocks 

(sub-spaces): Each block has the property that all its members are related to 
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each othep by a linear transfor+nat.i:.on. To illustrate this cons;i:de;i:: the 

2.,-3:.nput 8,-state machi:ne in f~gure 4,5 . 7 • 

... ' ' Y2Y1Y 

Y2 Y1 Yo XO 0 1 

0 0 0 001 010 

0 0 1 010 011 

0 1 0 Oll 100 

0 1 1 100 101 

1 0 0 101 llO 

1 0 1 llO 111 

1 1 0 lll OOO 

1 1 1 OOO 001 

The corresponding next state polynomials are: 

y' 
0 

y' 
1 

y' 
2 = 

Now , applying the following linear transformation: 

1 1 0 0 0 1 

zo 0 1 1 0 Yo 
= 

zl 0 0 1 0 Y1 

z2 0 0 1 1 Y2 

the next state table becomes : 

Figure 4.5 . 7a 

( 4. 5. 6a) 

I I 
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z ' z ' z' 
2 1 0 

X 0 1 
0 

z2 zl z 
0 

' • 

0 0 0 001 111 

0 0 1 111 110 

1 1 1 110 100 

1 1 0 100 101 

1 0 0 101 011 

1 0 1 Oll 010 

0 1 1 010 OOO 

0 1 0 OOO 001 

Figure 4.5.7b 

and the next state polynomials become: 

z I = 1 EB z
1 

EB x
0

z
0 EB XOZl 0 

z I = zo EB x
0 

EB xozo EB XOZl 1 

z I = z
0 

EB z
0

z
1 

EB z
2 

EB x
0 

EB x
0

z
0 

EB x
0

z
1 

EB x 0z 0z 1 (4 . 5 . 6b) 2 

The objective is to randomly select a code assignment and then find 

a linear transformation which maps this to a low cost code assignment . If, 

within the current block , the lowest cost code assignment is too costly then 

a non-linear transformation is applied to change to a different block . If 

the machine has N
8 

states which are coded by N = l1og
2 

N
8

1 bits then there 

are 
N-1 

II 
i=O 

different linear transformations . This is readily shown. Consider the 

general linear transformation of N binary variables onto . N binary variables 

described by the matrix equation: 

1·· 



1 

r 
1 

zo co 

zl cl 

z2 = c2 

0 

ao , o 

al .,O 

a2,0 

0 

a 
0,1 

al , l 

a2,l 

a 
N-1 , l 

0 

ao , 2 

al ,2 ' . . . 

a2 , 2 

0 

a 
O,N-1 

al ,N-1 

a2,N- l 

a 
N-1,N-l 

9i 

<, Q 
if; 

",:,· 

1 

Yo 

Y1 

Y2 

z = (4 . 5. 7) 

Matrix T must be non-singular and so 

Row 2 may be chosen in 2N- l ways, as it may not be zero; 

Row 3 may be chosen in 2N-2 ways, as it may not be zero or equal 

Row 2 

Row 4 may be chosen in 2N-4 ways, as it may not be zero, equal to 

Rows 2 or 3 or equal to Row 2 EB Row 3. 

Repeating this up to Row N the following product is obtained: 

N-1 
IT (2N - 2i) 

i=O 

Now each of the c . may be O or 1 and henc~ the total number of linear ' J 

transformations is: 

to 

= 
N-1 

II 
i=O 

(4.5.8) 

When a transformation can be described by a matrix equation that transformation 

will be called linear . All other mappings which are one-to-one and onto will 

be called non-linear transformations. 
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An algorithm has been developed for removing unnecessary complementation ·~ 

Complementation i s a special case of the general linear transformation. The 

details are as f ollows : 

(1) Arrange the next state poly nomials in a table. Each row of the table 

corresponds to a different polynomial and each column to a different 

term. The entry at row i , column j is the coefficient of term j , in 

y' 
0 

y' 
l 

polynomial i . For example , the polynomials: 

y' 
0 

y' 
1 

= 

= 

would be displayed in tabular form as follows : 

1 

I 
XO x l I XOXl Yo yoxo 

y' 
0 

1 1 0 0 1 0 

y' 1 I 0 1 0 

I 
0 0 1 

Y1 ylxo ylxl ylxoxl YoYl yoylxl 
I 
I 

! cont'd 0 0 0 0 ' 0 0 
I 
I cont'd 0 1 0 0 ' 0 0 
( 

(4 . 5 . 9) 

yOxl yOxOxl 

0 0 

0 0 

yoyl xl I YoY1xox1 I 

i 
I 
I 

0 I 0 
I 

I 

0 1 

Figure 4 . 5 . 8 

(2) Replace each of the state code bits (y
0

, y
1

, ... , y; , y1 , ... ) by its 

conditional complement (c
0 

+ y
0

, c
1 

+ y
1

, •• • , c
0 

+ y
0

' , c
1 

+ Y
1
' , · · • ) • 

The coefficient s c . are as described in matrix equation 4 . 5 . 7 . _J 

(3 ) Re- arrange the polynomials into canonic form . 

Combi ning steps (2 ) and (3) t he polynomi al : 

y' 
0 



becomes 

y ' 
0 
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= 

(4 ) Form t he list of coefficient products Pk (i , j) . The v alue Pk:(i , j) i s 

the product of the coefficients in figure 4.5.8 at column k, row i and 

column k , row j . 

(5) Find the values of ci which make as many of the Pk(i,j) as possible zero . 

In effect , the algorithm aims to find a transformation made up of just 

complements , which causes the next state polynomials to have as few common 

terms as possible. An example of the algorithm will now be given . 

Consider the machine described by the next state polynomials 

y' 
0 

y ' 
1 

= 

Applying step (1) 

1 X 
0 

y' 
0 

1 1 

Y1' 1 1 

Y1 y l x O 

y' 
0 

0 0 

Y-' 1 
0 1 

x l i 

I 
I 

0 

1 

I y l x l 

" . 
0 • 

I 
I 

0 1 

Applying steps (2 ) and (3) 

l+c 1 0 

1 l+c
1 

l+c
0 

0 0 0 

0 1 0 

XOXl 
I 

! Yo 
I 

y oxo y Ox l 
I 

yo xoxl 

I 

0 1 0 0 0 

1 I 0 0 1 1 

I 
y l x Ox l 

I 

YoYl y oy 1x o Yo Y1x 1 yOy l x Ox l 
; l I 
I I 

0 0 0 I 0 0 
! 

I 

1 0 0 0 1 

Figur e 4. 5 .9a 

0 1 0 0 0 

(1 +c
0

) x 0 0 1 l+c
1 

(l+c1 ) 

0 0 0 0 0 

l+c
0 

0 0 0 1 
Figure 4.5.9b 
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The corresponding values of Pk(i,j) are 

k Pk(0,1) k pk (O , l) 

0 1 + co 8 0 

1 1 + cl 9 0 

2 0 10 0 

3 0 11 0 

4 0 12 0 

5 0 13 0 

6 0 14 0 

7 0 15 0 

Figure 4.5.10 

By inspection P
0

(0,1) = P
1 

(0 , 1) = O when c
0 

= c
1 

= 1 . Substituting these 

values for c
0 

and c
1 

in Figure 4 . 5.9b the reduced complexity polynomials are 

y' 
0 

y' 
1 

For larger numbers of polynomials solution by inspection for the values 

of the coefficients c . is not possible·: Instead , the Reed Muller transformation l. 

has to be used . Transforming the polynomials for P
0

(0,l) and P
1 

(O , l) in 

the example above ; 

polynomial 

term P
0 _(0 , 1) pl (0,1) value of P

0
(o , 1) , pl (0 , 1) at cl co 

1 1 1 

co 1 0 

c l 0 1 

COCl 0 0 

it is seen that when = = co cl 

RMT 1 1 0 0 

0 1 0 1 

1 0 1 0 

0 0 1 1 

F i gur e 4. 5 .11 

1, P
0 (o,1) = P

1 
(0,1) = O, a s expec t ed. 
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The disadvantage of this algorithm , as with the fir st two , is that o f 

scale . Consider how much storage is required for table 4.5 . 9b in the case 

of k polynomials. 2k Each polynomial has 2 terms; each term has a coefficient 

which requires 2k bits of storage. In total k 2
3

k bits of storage are needed 

fork polynomials . In addition, storage for the values of Pk(i,j) is required . 

· k · 2k b' f For each column_ there are c
2 products; _each product requires 1.ts o 

storage, there are 2 2
k columns and hence kc

2 
2

3
k bits of storage are required. 

The total storage requirement is 

This algorithm was used successfully for up to k = 5 polynomials . 

4 . 6 Next State Polynomials Minimisation 

A logic function may be expressed in a number of different ways . Even 

within a particular logic form alternatives exist. The complexity of the 

associated hardware varies so much from one expression to another that it is 

important to have means of finding a minimum complexity expression . When 

several logic functions are to be evaluated simultaneously additional savings 

are possible by identifying sub-evaluations which occur in more than one 

function . Perhaps the best k nown ex ample of a minimisation method is the 

multi ple output method of Quine and McCluskey . The QM technique has become 

the standard method of minimi s i ng min term expansions by digital computer. 

No standard technique has yet been developed for minimising ring-sum expanded 

logic functions. As the following ex ample shows there is much to be saved by 

f inding such a technique . 

y = 1 e x
0 

e x
1 

e x
0

x
1 

= (1 e x
0

) (1 e x
1

) 

= x' X I 

0 1 

where ' denotes complement 
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If x and x are available in complement form then just one AND gate i s 0 1 · 
required. The first expression ;equires one AND gate and one four input 

EXOR gate. 

No new method is to be presented here . The section is included because 

logic minimisation is as important in the design of finite state machines as 

the choice of a good code assignment and the choice of the best memory elements . 

( 101) In the literature methods for minimising ring~sum polynomials are proposed 

More recently, Rayner has developed such an algorithm. 

4.7 Concluding Remarks 

In this chapter attention has been drawn to the problem of realising 

free quantization law digital filters. It has been shown that conventional 

digital arithmetic hardware is unsuitable for implementing these filters ~ As 

an alternative a ·sequential circuit implementation of a finite state machine 

has been proposed . The steps in the design of a sequential circuit which have 

been discussed are : 

(1) Using the filters difference equation and its quantization laws to 

evaluate the next state table of the equivalent finite state machine . 

(2) Select a logic form for implementing the machines next state 

function. 

(3) Code the machine states using a suitable length binary word, so 

that the next state polynomials are cost minimal. 

(4) Apply a logic reduction technique to further reduce the complexity 

of the next state polynomials. 

It has been implicitly assumed that the machines next state table is irredundant. 

Between steps (1) and (2) a state reduction should be performed. The reason 

for this is as follows : Consider a machine with a state set which has 2N-l 

members each coded using N bits; with this scheme there is one redundant state. 

The transitions from this stat e may b e select ed in a way which reduces the 
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next state polynomial complexity . This is analogous to ' don ' t-care ' conditions 

in a combinat ional 'logic circuit. If, in fact, the machine has further 

redundant states then further reductions in complexity are possible. Such 
(10) 

redundant states are the so called equivalent states Some techniques 

for identifying equivalent states are to be found in the literature . Their 

use in this application is a matter for further work. 

Finally , a special case of the free quantization law filter which leads 

to a simple hardware implementation has been found; it is discussed in Appendix 

c. 



5. A Reed··Muller Transform Processor 

5.1 Introduction 

In chapter 4 a technique for minimi sing the next state function of 

a finite state machine , when it is implemented using AND/EXCLUSIVE-OR 

logic , was presented. A method for transforming from the operational 

98 

domain of a logic network to the associated ring-sum multinomials (polynominal s) 

domain was assumed to exist. In this chapter the required transformation , 

the so called Reed-MUiler (RM) Transformation (
99

), will be described; 

a special purpose processor for the rapid computation of the RM transform 

will also be described. 

5.2 The Reed-Muller Transform 

Consider the logic network L shown in figure 5 .2. 1 . Each of the 

binary valued output variables (literals) y
1 
...• yN is related by a 

corresponding multinomial f
1 
.... fN to each of the input literals x

1 
.... xN . 

-- -
-- -

logic network 

L 

-- -

f1 --
f'2 --

fN --

-
-

-

!:h 
~2 

Figure 5.2.1 

It will be assumed that for each of the possible values of the 

input binary N-vector (x
1 

x
2 
.... xN) the value of the output binary N-vector 

(y
1 

y
2 
.... yN) is known . The problem is to find the logic network L which 

will realise this input to output relationship. In principle functions 

I 
I , 

I 

I 
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5 . 1 Introduction 

In chapter 4 a technique for minimising the next state function of 

a finite state machine, when it is implemented using AND/EXCLUSIVE-OR 

logic, was presented. A method for transforming from the operational 

98 

domain of a logic network to the associated ring-sum multinomials (polynominals) 

domain was assumed to exist. In this chapter the required transformation , 

t he so called Reed-Mlliler (RM) Transformation (
9

B), will be described ; 

a special purpose processor for the rapid computation of the RM transform 

will also be described. 

5 . 2 The Reed-Muller Transform 

Consider the logic network L shown in figure 5 . 2 . 1 . Each of the 

binary valued output variables (literals) y
1 
...• yN i s related by a 

corresponding multinomial f
1 .... fN to each of the input literals x

1 
.... xN. 

- -
f1 - -- - -- -
f2 - -- -

logic network 

L 

- - fN -- - - -

Figure 5.2.1 

It will be assumed that for each of the possible values of the 

input binary N-vector (x
1 

x
2 
.•.. xN) the value of the output binary N-vector 

(y
1 

y
2 
.... yN) is known. The problem is to find the logic network L which 

will realise this input to output relationship. In principle functions 



f
1 
•••• fN could be realised using a random connection of AND , OR and 

EXCLUSIVE- OR gates, however, to allow automation a standard form such 

as minterm (AND/OR) or ring-sum (AND/EXCLUSIVE-OR) is normally used. 

Here t he r ing-sum expansion will be used . 

To simplify the following discussion L will be assumed to be a two 

input (x
1

,x
2

) and one output (y) network. The general ring-sum expansion 

of yin terms of x
1 

and x
2 

is given by: 

99 

(5.2.1) 

where e denotes modulo-2 addition, 

p .. _q (abbreviated to pq) denotes binary multiplication, 

and the a . . are constant binary valued coefficients l.J 

Denoting by y(p,q) the value of y when x
1 

= p and x
2 

= q the following 

table is obtained : 

x2 xl y 

0 0 y (0 , 0) = all 

0 1 y(0,1) = all e a12 

1 0 y(l , 0) = all e a21 

1 1 y(l,1) = al l e a12 e a21 e a22 

figure 5 . 2 . 2 

By operating on they column of the table in figure 5 . 2 . 2 the 

coefficients a . . are obtained in terms of the operational domain values l.J 

y (p , q) as follows : 

all = y(O, O) 

a12 = y( O, O) e y(0,1) 

a21 = y(O,O) e y(l,O) 

a22 = y(O,O) e y(0,1) e y(l,O) e y(l,1) (5.2 . 2) 
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which in binary matrix notation becomes : 

a 11 1 0 0 0 y(O , O) 

a 12 = 1 1 0 0 y (0 ,1 ) (5.2.3) 

a21 1 0 1 0 y(1, 0 ) 

a2 2 1 1 1 1 y(1 , 1) 

or ~2 = B.2 ~2 

Matrix E2 i s called the two variable Reed- Mul l er transformation matr i x. 

Fo r the case of three input variables (x1 ,x2 ,x3) the desired 

transformation matrix is : 

1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

B.3 = 1 1 1 1 0 0 0 0 (5 .2.4) 

1 0 0 0 1 0 0 0 

1 1 0 0 1 1 0 0 

1 0 1 0 1 0 1 0 

1 1 1 1 1 1 1 1 

It can be seen t ha t matrix B_
3 partitions as follows : 

B.2 I ! 
I 

!3 = - - - ·- ·-I (5.2.5) 

B.2 B.2 

where! denotes the null matrix. 

This in turn is recognised as the Kronecker matrix product : 

B.3 = B.1 ~ B.2 (5 .2. 6) 

It can be shown that in general ~ 
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(5.2. 7) 

The binary values 0 and 1 together with the operations AND( . ) and 

EXCLUSIVE - OR (EB) form a finite field called Galois Field . 2 and abbr e via t e d 

to GF (2). The RM t r ansformation discussed above is a special case of 

the mor e gene r al t r ansformation defined for multiple valued logic over 

GF(p) 
. (98) (p- pri me) and discussed by Green . Multiple valued logic is 

cur rently an active research area , however , it will receive no further 

consideration here as it is currently not conveniently realised . 

5 . 3 A Reed-Muller Transform Processor. 

When designing a sequential circuit to realise a finite state machine 

the first step is to select a code assignment . The nex t step is to find 

the multinomials whic h relate the input and current state to the nex t 

state . If t h e multinomials are r ing- sum e xpansions then what is required 

is to rearrange themachines nex t state table as a linear array and then to 

compute the Reed-Muller t r ansform. An exampl e of s uch a rearrangement is 

shown in figur e 5 . 3 . 1 . 

c urrent s t a t e c urrent next next state input 

' state state I 
' ' J ... 

Y2Y1 Y2 Y1 , 
~ / 

00 01 10 11 x2 xl Y2 Y1 
y\ 

2 
y' 

1 

00 Po pl p2 p3 b 0 0 0 Po 
0 0 0 1 pl 

x2 xl 01 p4 PS p6 p7 line arise 0 0 1 0 p 2 
input +-+ 0 0 1 1 p3 10 PS p9 PlO P 11 0 1 0 0 p4 

0 1 0 1 PS 11 p12 p13 p14 p15 0 1 1 0 p6 
0 1 1 1 p7 
1 0 0 0 PB 
1 0 0 1 p9 
1 0 1 0 PlO 
1 0 1 1 pll 
1 1 0 0 p12 
1 1 0 1 p 13 
1 1 1 0 p14 
1 1 1 1 p15 

figure 5 . 3 . 1 

' 



By choosing a suitable initial arrangement in a computers main 

memory this rearrangement is implied. 

A difficulty which arises when designing a high speed hardware RM 

transform processor is that for large numbers of variables the amount of 

high speed memory requi,red is prohibitively expensive. This difficulty 

can be overcome by trading processor speed for processor cost. The 

processor to be described is designed to compute the RM transform across 

one row or down one column of a machines next state table; the entire 

transform is constructed by applying the processor to each of the rows 

(columns) and then to each of the columns (rows) . The decomposition of a 

2
N . 

2
M . 

2
N 

2
M . two dimensional -point by . -point RM transform into , -point and 

2M 2N ' d. ' 1 t f . 11 b . 11 d b 1 - point one 1.mensiona rans orms wi now e i ustrate y example: 

y' 
2 Y' 1 Y2 yl 

00 01 10 11 

00 00 01 10 11 

x2 xl 01 01 10 11 11 operational domain 

10 10 11 11 11 
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11 11 11 11 11 figure 5.3.2 

oci 

01 

10 

11 

00 

01 

10 

01 

11 

01 

00 

01 

10 

00 

10 

10 

01 

00 

10 

00 

11 

00 

11 

01 

00 

00 

11 

01 

after 4 row transforms 

figure 5.3.3 

after 4 column transforms 
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Figure 5.3.2 is shown rearranged as a linear array in figure 5 . 3 . 5 . 

Its RM transform is also shown; the transform is seen to be a linearised 

version of figure 5. 3. 4. .. 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

0 

0 

1 

0 

0 

1 

0 

1 

1 

0 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 figure 5 . 3 . 5 

The processor is designed to communicate directly with the main 

memory of a general purpose minicomputer; its specifications are as 

follows : 

1. Up to 8 multinomials simultaneously computed 

2. Software selectable mul t inomial sizes of 16, 32,. 64, 128 and 256 

coefficients 

3. Capability t o deal with operational domain data whi ch is either 

consecutively organised in the host computers main memory or 

is seperated by 2, 4 , 8 , 16 , 32 , 64, 128 or 256 locations. 
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A brief descripti on of the processor is given in this di ssertation ; 

1 d 'l . d . h · 1 (9 0) compete etai s are containe in a tee nica report . 

The processor divides into three distinct units ; they are as follows : 

1. The processor - host computer communications unit 

2 . The processor arithmetic unit 

and 3. The processor control unit. 

All three units are indicated on the diagram in figure 5.3.6. 

The sequence of events through which the host computer and the processor 

pass in order to compute one transform are as follows: 

1. The host computer provides the processor with: 

(i) The address in main memory of the first data point 

(ii) The offset from the Nth to the N + 1th data point 

and (iii) The number of data points 

2. The host computer instructs the processor to commence transforming 

3. The transform processor reads the operational domain data 

through the host computers direct memory access (DMA) channel 

into its own high speed store 

4. The transform is computed 

5 . The transform processor returns the multinomials in place to the 

computers main memory ; this is again done via the DMA channel 

and 6 . The processor sets the transform completed flag . 

After step 2 . the host computer is free to perform other computations . 

The transfers to and from the host computers main memory via the 

DMA channel are sequenced by the processors control logic (unit 3 in 

figure 5 . 3 . 6) . Assoicated with each transfer are two addresses , one to 

the hosts main memory and one to the proc esso rs loca l high. speed memory; 

these are generated by t h e DMA and p roc e s so r add r e ss gen e r a t o r s r espectively 

(units 1 and 2). The DMA address g en e r a t o r i s non- standa rd in that it is 

capable of generating non-conse c u tive addresses . 
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Next attention is focussed on the actual transform computation . It 

will be assumed that the operational domain data is in consecutive 
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locations in the processors high speed store; the sequence of events required 

to produ ce in place the multinomial domain data will be considered . 

To illustrate the actions of the ·processor an 8-point transform will 

be considered . First the following convention is required ; the left most 

column of matrix ~
3 

is column 0. 

The sequence of addresses which must be generated in order to multiply 

in place by ~
3 

is as follows: 

0, 1, 2, 3, 4, 5, 6 , 7 

0, 2, 4, 6 

0, 1 , 4, 5 

0, 4 

0, 1 , 2, 3 

0, 2 

0 , 1 

0 figure 5 . 3 . 7 

This address sequence does not lead to a neat hardware realisation 

of the processor address generator, however , by factorizing ~
3 

appropriately 

this di fficulty can be overcome . 

Con s i der the following factorization of ~
3

: 

stage 3 

1 1 
11 1 
1 1 1 

~3 = 1111 = 1 X 
1 1 1 1 
11 11 1 1 
1 1 1 1 1 1 
11111111 1 1 

stage 1 

1 
11 

1 
11 

1 

11 
1 
11 

s t age 2 

1 
1 

1 1 
1 1 

1 
1 

1 1 
1 1 

all blank entries 
have the value O ; 

X 

( 5 . 3 . 1 l 
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= ~3 X B3 X ~3 

This is called a Radix - 2 factorization . 

The addr ess sequences involved in non- trivial operations are as follows : 

0, 1, 2, 3, 4, 5, 6 , 7 stage 1 

0, 2, 1, 3 , 4, 6, 5, 7 stage 2 

0 , 4, 1 ' 5, 2 , 6, 3, 7 stage 3 figure 5 . 3.8 

Written out in binary these become : 

Stage 1 Stage 2 Stage 3 

OOO OOO OOO 

001 010 100 

010 001 001 

011 011 101 

100 100 010 

101 110 110 

110 101 011 

111 111 111 figure 5 . 3 . 9 

It cari be seen that stage 1 involves an ordinary binary count from 

0 to 7 . Stage 2 also involves an ordinary binary count but with the least 

significant two bits interchanged . Finally, stage 3 is an ordinary binary 

count with the following bits exchanged: 

bit O to bit 2 

bit 1 to bit 0 

bit 2 to bit 1 
figure 5.3.10 

As the processor is to be designed to compute transforms which are up 

to 256 - points it is necessary to establish the addressing mechanism for 

up to 8 address lines. The radix-2 factorization of~ contains N matrices 

and thus the transform is constructed from N stages. Denoting by c
0 

and c
7 



the least and most signficant bits respectively of an 8-bit binary counter, 

it can be shown that the address bit exchanges as a function of the 

transform stage are as shown in figure 5 . 3.11. 

A number of ways of realising this addressing mechanism were 

considered. Among them were the use of an array of tri-state couplers as 

shown in figure 5.3~12 and the use of steered clock signals in an 8 

flip-flop counter. 

Neither of these solutions was considered satisfactory; the solution 

which was adopted is as follows . Notice that d 0 ... d
3 

depend on c 0 ... c 4 

and on the stage bits s 0 ... s 2
; also notice that d

4 
..• d

7 
depend on c 0 , 

c
4 
... c

7 
and s 0 ... s 2

. It follows that d
0 

through d
7 

can be generated 

using two 256 word by 4 bit read only memories. From the viewpoint of 

printed circuit board area this is the least costly solution requiring 

just two integrated circuits; by comparison the tri-state coupler array 

in figure 5.3.12 requires 6 integrated circuits . 

A further advantage of the radix-2 factorization is that each factor 

matrix has either 1 or 2 one's in each row and column . Where just 1 

one appears on a row no operation need be performed; where 2 one 's appear 

the operations required are as follows: 

1. Read memory at address N1 into latch 1 

2. Read memory at address N2 into latch 2 

3. Modulo- 2 add contents of latch 1 to contents of latch 2 

4. Write result to memory at address N2 . 

It follows that each transform stage involves an equal number of 

non-trivial operations; this is in complete contrast to the direct 

multiplication by~· The effect is to simplify the processor control 

logic. 
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stage 1 stage 2 stage 3 stage 4 
C7 d7 
Cs ds 
C5 d5 
C4 d4 
C3 d3 

~ C2 d2 

~ C1 d1 X C0 d0 

stage 5 stage 6 stage 7 stage 8 

Address Bit Exchanges 

Figure 5.3.11 

-
C7 - -

- ·-
Cs - -

-C5 -
22 gates C4 

C3 

; -
- --

--
C2 -

--
C1 -

- -C0 -
, 1, '1, '. 'I ,1, ,i, . ' 1, ' ' 

' • •• ,a '. • • I~ 

Tri-State Coupler Addressing Mechanism 

Figure 5.3.12 



N The radix-2 factorization of~ requires N2 memory reads and 

N-1 
N2 memory writes ; its associated arithmetic unit is just one 

EXCLUSIVE-OR gate and two latches. The 'radix-4 factorization of R 
-N 

N (N-even) also requires N2 memory reads , however, it only requires 

N-1 
2N 2 memory writes; its assoicated ·arithmetic unit requires five 
4 
EXCLUSIVE- OR gates and four latches . Although radix-2 requires more memory 

operations and as a result is slower it was chosen because of its reduced 

hardware complexity and because it is not restricted to the case of N even. 

5 .4 A Software Reed-Muller Transform Algorithm 

In figure 5.4 . 1 an algorithm to compute in place the Reed-Muller 

transform of a vector Vis shown. The second argument to the procedure 

(BITS) specifies the number of bits on which the function is defined ; 

. BITS it follows that vector V contains 2 elements . The algorithm like 

the hardware processor is based on the radix-2 factorization of the RM 

transform. 

The hardware processor was constructed using Schottky transistor­

transistor logic ; the software algorithm was coded in the BCPL systems 

programming language and a check was made on the quality of the generated 
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code . The hardware processor was found to be 160 times faster than a Nova 820 . 



procedure RHT (V, BITS) 

declare V vector 
declare GROUPS, .. STEP, GPNO, GPSIZE, OFFSET, BITS integer 
declare ADDR, AD0R1, AD0R2, K integer 

For STEP=fJ to BITS-1 do 

end 

begin 
GROUPS := 2**(BITS-1-STEP> 
ror GPNO=(l) to GROUPS-1 do 

end 

begin 
OFFSET:= 2**STEP 
GPSIZE : = OFFSET*2 
ror K=(l) to OFFSET-1 do 

end 

begin 
ADDR := GPNO*GPSIZE 
AD0R1 : = ADDR+K 
ADDR2 := ADDRl+OFFSET 
V (ADDR2) : = V (ADDR2) EXOR V (ADDRl) 

end 

Algorithm to compute Reed-Muller Transform of vector V. 
Transform is computed over 2**BITS points. 

Figure 5.4.1 
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6 . Selected Examples of Free Quantization Law Filter Designs 

6.1 Introduction 

In this chapter three examples of the use of free quantization law 

techniques in the design of digital filters are presented. The first 

example is a digital differentiator synthesised from a second order 

recursive section . The second example is a sixth order low-pass filter; 

this filter is designed to be optimally linear phase in the passband. 

The final example is a sixth order band-pass filter of the elliptic type. 

In each case the SNR performance is compared with a similar fixed point 

arithmetic filter. The approximation error under sinusoidal input signal 

conditions is also considered. 
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6.2 Example 1 

Wide - Band Digital Differentiator 

This first example, a wide band digital differentiator, is realised 

using a single canonic form second order section . The approximation 

method used to obtain the pole and zero positions is described by 

(94) Stei glitz The pole and zero positions are given in figure 6 .2. 1 . 

Poles 

- 0.14240300 + j 0.0 

- 0 . 71698670 + j 0.0 

Zeroes 

1.00000000 + j 0 . 0 

-0.67082621 + j 0.0 
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figure 6.2 .1 

The coefficient values which realise this pole-zero pattern, using 

the canonic form in figure 6 . 2 . 3 , are given in figure 6 . 2 .2 

Pole Coefficients 

Kl= 0 . 859389200 

K
2 

= 0 . 102101057 

Zero Coefficients 

L
1 

= -0.329173790 

L
2 

= -0.67082621 

figure 6 .2.2 

Using the special case of the complex convolution integral , equation 

2 . 4.1, the integrated power gain from the filter input to each of the 

filters' variables can be found . Figure 6.2.4 shows the power level 

(variance) at each of the filters' variables assuming a unit power 

(variance). input signal; these values are required in order to assign to 

each filter variable an optimal quantization law. The integrated power 

gain from input to output is also required when calculating the SNR 

performance of the equivalent fixed point arithmetic (uniform quantization 

law) filter. 

First a theoretical estimate of the SNR performance of the 

equivalent fixed point arithmetic filter will be obtained; a gaussian input 

process will be assumed. Referring to figure 6.2.3, following each 
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Pn 

T 

T 

-K2 L2 
Figure 6.2.3 

Variable Variance 

2 
1.000000 X (J = n X 

2 
2.578280 Pn (J = p 

2 
2.488641 Yn (J = y 

2 
1.578228 qn (J = q 

2 
0.551703 r (J = n r 

figure 6 . 2 . 4 

of the four coefficient multiplications a noise source is introduced. 

Additionally,a noise source appears at the input due to the input 

quantizer . Each of the five noise sources has a variance of : 

2 _g_ (6 .2.1 ) 
12 

where q, the optimum step size for a uniform quantizer applied to a gaussian 

process , was found in section 2 .3. Following the reasoning in section 2.7 

q should be chosen to match the filter variable with the largest variance 

(i . e . p ) . It follows from the signal flow graph (figure 6 . 2 . 3) and n 

from equation 6.2 . 1 that the noise power at the filters' output is given by: 

2 2 2 
(J =3_g_ (J 

yn 12 ..L... 
2 

(J 
X 

Now for a 255- level unit variance quantizer q = 0.030856 and so for a 

variance value of 2.578230 (cr 
2

) q = 0 . 049545 . Substituting for all p 

(6.2.2) 



the variables in equation 6 . 2.2 the output noise power is found to be: 

2 
1. 936 10- 3 

(J - X yn 

Now the output signal power is given by: 

2 2 
2 . 488641 (J = (J = ys y 

and hence the output signal to noise ratio is given by: 

2 
(J 

~ 
2 

(J 

dB = 31.0 dB 
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(6 . 2 .3) 

(6 . 2 . 4) 

(6.2.5) 

The corresponding r¥~ult for the gaussian optimised filter will now 

be obtained. Again there are five noise sources; they add to the 

variables x, p, q , r and y . The variance of each is proportional n n n n n 

to the varianc~ of the signal to which it adds. 2 Denoting by cr the u 
variance of the noise source which adds to x and using the aforementioned n 

proportionality it follows that the output noise power is given by the 

equation : 

2 2 
[ 2 2 2 2 2] [::: 

2 2 cr}] (J = (J (J +CJ (J + (J (J + (J + (J yn ...:t__ u _£_ u __g__ u u r 
2 2 2 2 (J (J (J (J X X X X 

(6 . 2 . 6) 

the signal power at the output is given by: 

2 2 2 
(J = (J (J 
ys ...:t__ X (6 . 2 . 7) 

(J 
2 

X 

and the output signal to noise ratio is: 

10 log
10 

2 
1 SNR

0 
= cr dB X 

2 2 2 2 1 + (J + (J + (J 
(J p q r u 

2 2 
(J (J 

X y 

SNRI - 10 log l O [ 1 + 
t 2 

+ ::1 
= (J + (J dB = 35.93 dB p q 

2 
(J 

X 

(6 .2.8) 



Both results were validated b y e xperiment . An improvement in 

signal to noise ratio of approximately SdB has been obtained by using 

a gaussian optimised filter . If the fixed point arithmetic filter 

were to employ one extra bit throughout its arithmetic operations it 

would give an equal signal to noise ratio. The implication is that the 

gaussian optimised filter has gained one bit of arithmetic precision. 

Now attention turns to how the gaussian optimised wide band 

differentiator behaves under sinusoidal input . 

The differentiator , which is optimised for a unit variance gaussian 

input process , was driven by a unit amplitude sinusoid. The output 

signal to noise ratio as a function of frequency was measured ; the results 

are shown in figure 6.2 . 5 by the solid curve. The dotted curve shows how 

the SNR performance of the equivalent fixed point arithmetic filter 

varies with frequency when it is driven such that the signal at p 
n 

occupies the full dynamic range. 

Ideally the differentiator would have a magnitude response, A(W), 

and a phase response ;. 4> (w), given by: 

and 

A(w) = w 
'TT 

q> (W) = 'TT-W 

2 

(6.2 . 9) 

(6.2.10) 

however , the pole-zero pattern in figure 6 .2. 1 can only approximate this . 

When a p-z pattern is implemented in digital hardware, be it using 

gaussian optimised or fixed point arithmetic techniques, still furthe r 

approximation error must be expected . The graphs in figures 6.2.6 and 

6 . 2 . 7 show respectively the fractional error in the magnitude and phase 

response as a function of frequency. The dotted curve is obtained by 

assuming an unlimited arithmetic precision . 
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6 . 3 Exa mple 2 

Six th Order All-Pole Low~Pass Filter 

This e x ample is a six th order all-pole l ow-pass fil ter wh ich has 

the frequency r esponse shown in figure 6 . 3.7a . Th e p hase r espon se , 

which i s s hown i n f i gur e 6 . 3 . 8a , is designed to be optimally linear 

i n t he minimum mean sqaure sense fromd . c . tow= 0 . 6772 r adi ans/s . 

The impl ementation chosen is a cascade of three second order all-poles . 

A list of the pole positions is given in figure 6 . 3 . 1 . This pole 

(95) pattern was obtained by Thajchay apong 

Section Pole Position 
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1 

2 

3 

0 . 68796454 ~ j 0 . 16338426 

0 . 64608842 + j 0 . 62217429 

0 . 57429475 + j 0 . 36691520 figure 6 . 3 . 1 

For each all- pole the coefficients are as defined in section 3 . 2 ; they 

have the followi ng v a l ues : 

Sect ion i 

1 

2 

3 

1 . 37592 

1 . 29 2 17 

1 . 14858 

- 0 . 49999 

- 0 . 80 453 

- 0 . 45444 figur e 6.3.2 

The sections ha~e been placed in order o f de creasing integrate d 

power gain ; section 1 receive~ t h e input signal . In figure 6 . 3 . 3 the 

filter is shown with e a ch of its variables marked ; the v a riance s at each 

of its variables are given in the table in figure 6.3 . 4 . 
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Variable Variance 

2 
1.0000 X a = n X 

2 
8 .4081 a a = n a 

2 
61. 3192 b ab = n 

2 
yn a = 598.4839 y 

2 
3.1019 pn a = p 

2 
25.5246 qn a = q 

2 
r a = 158.8111 figure 6 . 3 . 4 n r 

In addition , the integrated power gain values in figure 6 . 3.5 will 

be required. 

Parameter Value 

598.453900 

43.030470 

3 . 313118 figure 6 . 3.5 

The parameter G .. is the integrated power gain from the input of section 1.J 

i to the output of section j . 

For the case of the gaussian optimised filter the quantization laws 

at the different filter variables are chosen according to the variance 

values in figure 6.3.4; 

shown in figure 2.2.2. 

each quantizer has a shape similar to the one 

. b 2 Denoting y a the noise produced by the input u 

quantizer and using a method of noise analysis similar to the one proposed 

in chapter 2 the output noise power is found to be : 

a 
yn 

2 
1st section and input 

2nd section 
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3rd section 

(6 .3.la) 

Substituting values the output noise power is found t o be : 

2 2 a = 13732.5955 a yn u (6 . 3 . lb) 

The signal power at the filters ' output is: 

a 
2 = 598 .4539 a 

2 
ys X (6 . 3 .2 ) 

and hence the output signal to noise ratio is given by: 

SNRO = SNRI 13.6072 dB = 30 .4 dB (6 . 3 . 3) 

The same filter , when implemented using fixed point arithmetic, 

requires three scaling multipliers; one at the input to each section . 

The multiplier values are chosen to give unit variance at the output of 

each section ; a unit variance input process is assumed. The values are 

as follows : 

Section Scale Factor 

1 s1 = 0 . 34487 

2 s2 = 0 .37030 

3 s3 = 0 . 32008 figure 6.3 . 6 

Each section in a fixed point arithemtic implementation is subjected to 

three sources of noise; these are due to the two coefficient multipliers 

and the input scaling multiplier . In addition , the first section sees 

a noise source due to the input quantizer. The noise whtch appears at the 

output of the last section is given by: 
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2 2 2 2 2 3 2 cr = G13 S2 S3 3q + G23 S3 _g_ yn 
12 12 

3q2 2 + G33 + L (6.3.4) 
12 12 

2 
[ 3 

2 2 2 
+ 3 c33 + 1 ] 

= L G13 S2 S3 + 3 G23 S3 
12 

Now, the output signal power is given by: 

2 2 
cr = cr ys X 

From equations 6.3.4 and 6.3.5 it follows that the output signal to 

noise ratio is: 

SNR = 23.5 dB 
0 

The SNR figures given in 6.3.3 and 6.3.6 were verified by experiment. 

(6.3.5) 

(6.3.6) 

The improvement in signal to noise ratio of 7dB using free 

quantization law techniques shows that a 127 level gaussian optimal filter 

would perform as well as a 255-level fixed point arithmetic filter. 

With 127 levels this filter could be made to operate at very high data 

sampling rates using a r.o.m. based or similar implementation. 

This filter was also tested under sinusoidal input signal conditions. 

The graphs in figure 6.3 . 7b and 6.3.Sb show as a function of frequency 

the fractional magnitude and phase errors respectively for both the fixed 

point arithmetic and the gaussian optimised filter. At all frequencies 

the gaussian optimised filter is seen to be the more accurate. Finally, 

the graph in figure 6.3 . 9 shows the variation of SNR with frequency. 

It can be seen that the gaussian optimised filter behaves well in the 

pass band. 
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6 . 4 Example 3 

Sixth Order Elliptic Band•Pass Filter 

This last example , a sixth order band pass filter , was designed using 
(96) the programs described in 

Lower stopband edge, 

Lower passband edge, 

Upper passband edge, 

Upper stopband edge, 

Stopband attenuation 

Passband ripple 

fal 

fcl 

f 
CU 

f 
au 

Sampling frequency, f 
s 

0 dB 
-1 dB 

-20.75 dB 

I\ 

Its specification is as follows: 

= 0.974 radians/s 

= 1. 100 radians/s 

2.042 radians/s 

= 2.168 radians/s 

? 20. 750 dB 

:;;; 1. OOO dB 

= 21r radians/s 

not to scale 

-

Figure 6.4.1 

This specification is met with a sixth order elliptic filter . The 

implementation, which is shown in figure 6 . 4 .2, is a cascade of three 

second order section. The pole-zero positions and the corresponding 

coefficients are given in the tables in figure 6.4.3. 
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Section 

1 

2 

3 

Section 

1 

2 

3 

Section 

1 

2 

3 

i 

Section i 

Pole Positions 

0 . 000000 ~ j 0.714691 

+0 .42 7169 ~ j 0 . 831655 

- 0 .427169 + j 0.831655 

Zero Positions 

+1.000000 + j 0 . 000000 

+0.600000 + j 0 . 800000 

- 0 .600000 + j 0 .800000 

Pole Coefficients 

Kil Ki2 

0 .000000 +0. 510785 

+0.854337 +0 .874124 

.:.. o .854337 +0 •. 874124 

Zero Coefficients 
Lil Li2 
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1 

2 

3 

0.000000 

1.200000 

-1.200000 

-1.000000 

1.000000 

1.000000 figure 6.4 .3 

Also shown in figure 6.4.2 are all the filters' variables; assuming 

a unit variance process at x, the variance to be expected at each n 

of these variables is given in figure 6.4.4. 



Section 

1 

2 

3 

Section 

1 

2 

3 

Section 

1 

2 

3 

Section 

1 

2 

i 

i 

Pole Positions 

0 . 000000 + j 0 .714691 

+0.427169 + j 0 .831655 

-0.427169 + j 0.831655 

Zero Positions 

+1.000000 + j 0.000000 

+0.600000 + j 0 . 800000 

- 0 .600000 + j 0 . 800000 

Pole Coefficients 

Kil Ki2 

0 . 000000 +0 . 510785 

+0 . 854337 +0 . 874124 

.;..o. 854337 +0 •. 874124 

Zero Coefficients 
Lil Li2 

0.000000 -1.000000 

1. 200000 1 . 000000 

129 

3 -1.200000 1.000000 figure 6.4.3 

Also shown in figure 6.4.2 are all the filters' variables ; assuming · 

a unit variance process at x, the variance to be expected at each n 

of these variables is given in figure 6 . 4 . 4. 
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Variable Variance 

X 1.000000 n 

a 0 . _352998 n 

pn 1.35299 

d 1.·35299 n 

yn 4.08817 

b 24.6172 n 

qn 26.4679 

e 40.6032 n 

z 8 . 85478 n 

C 41.1611 n 

r 42.5274 n 

f 67.8222 n 

t = G13 18. 0662 figure 6.4.4 n 

In addition the following integrated power gain values are required 

in the calculation of signal to noise ratio. 

= 

2.40868 

1.51218 figure 6.4 . 5 

The variance values given in figure 6.4.4 are required in order to select 

optimal quantization laws for each of the filter variables in a gaussian 

optimised implementation . 

For a gaussian optimised implementation the output n5b)ise power , 
2 

cr is given by : tn ' 

+ 

- input 
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+ G23 [ 2 crb + crq2 J + G2~ k + cr z 2 J 
+ G33 [cr/ + cr/] + [ cr/ + "t2 J 

472 . 2704 
2 = a (6 .4.1) u 

and the output signal power, 
2 

crts ' by: 

2 
18 . 0662 

2 
crts a 

X (6 . 4. 2) 

and hence the output signal t o noise ratio is given by : 

14 . 1732 dB = 29 . 83 dB (6.4 . 3) 

The equivalent fixed point arithmetic filter requires the inter­

section scaling multipliers given in figure 6 . 4 . 6 ; these values were 

chosen to ensure that in each of the three sections the variance at the 

lar gest variable was one . 

Section Scale Factor 

1 

2 

3 

0 . 49458 

0 .31 731 

o. 773 74 figur e 6 . 4 .6 

The output signal to noise ratio was ca l culated to be : 

SNR 
0 

28.64 dB 

Under sinusoidal input the signal to noise ratio was f ound t o va ry 

with frequency as shown by the graph in figure 6.4.7. The variation 

(6.4.4) 

of magnitude and phase error with frequency is shown respectively in 

figures 6 . 4.8 and 6.4.9. For comparison the same results are presented, as 

dotted curves, for the fixed point arithmetic filter. 
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7 . Conclusions and Suggestions for Further Work 

7.1. Conclusions 

This dissertation has been concerned with the design of high data 

sampling rate low distortion recursive digital filters. Different hard-

ware configurations have been considered and it has been concluded that , 

for a given device technology, the fastest configuration is the finite 

state machine (f . s.m. ) . Further advantages of the f.s.m. configuration 

are that it is easily implemented using either read only memories (r.o.m. 's) 

or programmable logic arrays (p.l.a. 's), and that its data sampling rate 

does not depend on the size of its state set. The second advantage 

should be contrasted with the case of the fixed point arithmetic filter 

where an increase in wordlength - the analogue of state set size - results 

in a reduction in sampling rate . With an f.s . m. implementation of a filter 

it is important to minimise circuit size, and hence cost, by using as few 

states as possible consistent with meeting the signal to noise ratio and 

magnitude approximation error specifications . In turn this means that each 

state should be used to its best possible advantage . 

A new filter design technique has been proposed; with this technique 

each variable in a filter is assigned its own individual quanti zati on law . 

Each of these laws is chosen, using a minimum mean square error (m . m. s . e . ) 

criterion , to be _the opti mal quanti zer fo r the respective signal. Further-

more , each is chosen independently of all the others ; this is justified by 

arguing that from the viewpoint of a given variable the remai nder of the 

system i s l i near , but perturbed by noise . 

An e rror mode l fo r t his new filte r, the so called free quantization 

law f ilter, has be en developed and experimentally verified. I t has b een 

shown to be a more accurate model than the one for the fixed point arithmetic 

filter; it is reasoned that this is due to the distortion at the output of 
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an m.m.s.e.optimal quantizer being orthogonal to the signal . The model has 

been tes~ed on first and second order all-poles, all-zeroes and sections. 

In particular , the model was found to maintain its accuracy with high-Q poles . 

Simulations , on a general purpose computer , were performed on filters 

which were optimised for a gaussian input process. There are two reasons 

for this choice of process . Firstly , a linearly transformed gaussian process 

is.itself a gauss-markov process, that is to say its sample statistics are 

gaussian. This means that only the decision and quantization levels for a 

unit variance gaussian optimal quantizer need be stored; the levels for a 

quantizer of arbitrary variance can be obtained by scaling. Secondly, in the 

latter stages of a filter, regardless of the statistics of the stochastic input 

process, the variables will exhibit gaussian sample statistics. 

The free quantization law filter has been shown to give a better SNR 

performance than the equivalent fixed point ari~hmetic filter with the same 

number of states. Care was taken when making this comparison to ensure that 

the fixed point arithmetic filter was driven at a variance level consistent 

with producing the maximum possible output signal to noise ratio . 

Sinusoidal input signal tests have been performed on gaussian optimised 

filters. These tests have indicated an improved approximation error 

performance compared with equivalent fixed point arithmetic filters. A 

justification for this, based on an 'expected coefficient' argument, has 

been presented for the case of a first order all-pole . 

Limit cycles in free quantization law filters have been considered. 

For the first order all-pole the limit cycle amplitude was found to be below 

that of the equivalent fixed point filter . For the second order all- pole 

the limit cycles we re found to be as much as twice the amplitude. This is, 

however, not a serious problem since with the f.s.m. implementation method 

limit cycles can be eliminated altogether by altering the next state table. 

Three examples of actual filter designs have been presented , they were 
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selected from a wide range of tested e x amples . A certain SNR improvement 

was always obtained using free quantization law techniques. The size of 

the improvement was found to depend on whether the filter had any high-Q 

poles . This i s an intuitively satisfying result because the lower the Q 

of the poles, the more similar each of the quantization laws becomes. As 

the laws become more similar so the filter tends to a fixed point arithmetic 

filter. A marked feature of the gaussian optimised filter is its low 

magnitude and phase approximation error compared with the fixed point arith-

metic equivalent. In each example this was in evidence . In particular, very 

little error was observed where there were large changes in the magnitude 

response and discontinuities in the phase response; this is in complete 

contrast to the fi f ed point arithmetic case . 

The f.s.m. implementation of a digital filter is particularly suited to 

:very large scale integration (v . l.s . i . ). This is because of the high 

degree of regularity in the logical expansion of a next state function. 

The complexity of the next state logic has been shown to depend on the 

following factors :-

1). The form of the next state logic function (minterm , ring-sum etc .), 

2). The code assignment , 

and 3) . The type of delay store. 

In this work the ring-sum form was used ; this is because it offers some 

economies compared with the minterm form and because a generati on of p . l . a . 's 

is becoming available which synthesises this form . The various code assign-

ment algorithms to be found in the literature were reviewed and a new 

algorithm , which is specific to the ring-sum form , has been proposed. In 

the work so far a true output only delay store has been assumed. 

The new code assignment algorithm requires the numerous computation of 

the Reed-Muller transform. A general purpose computer is not ideally suited 

to evaluating this transform and so it was decided to construct a special 



purpose processor . A description of this processor has been given . The 

efficiency of the processor has been compared with an equivalent software 

algorithm. 

7.2 Suggestions for Further Work 

In this work a method for improving the SNR performance of a filter 
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has been described. It is by no means clear that the method leads to the 

best possible SNR. A method is required for directly mapping from a filter 

specification to a finite state machine ; this is the only way to gaurantee 

maximum possible SNR. 

The last example in chapter 6, a sixth order elliptic band-pass filter, 

illustrated how a gaussian optimised filter is not only robust to sinusoidal 

input signals, but how it can in fact yield a better signal to noise ratio 

performance than its fixed point arithmetic equivalent. It is reasoned that 

this robustness derives from the m.m.s.e. optimal quantizer for a gaussian 

process being similar in shape to the constant fractional error quantizer 

for a sinusoid. This raises the question of whether the m. m. s . e . optimis -

ation strategy is the correct choice . 

Although multiple valued logic is currently of no practical engineering 

importanc e it should be considered ~~ means for fabricating it are currently 

being researched. An advantage of multi ple valued logic from the vie wpoint 

of the code assi gnment problem is that it possesses a metric ; thi s metr ic 

can be used to define a distance between different state codes . An algorithm 

fo r per forming code ass i gnment optimisation assuming a multiple valued logi c 

next s t ate f uncti on remai ns a matt e r fo r fur ther resea rch. 

A problem still to be resolved is that of representing a second order 

recursive digital filter as a finite state machine . It is unde sirable to 

represent it directly, as in chapter 4, because of t h e size of the state set . 



Appendix A Experimental Techniques 

A.1 Signal to Noise Ratio Measurement 

Where experimental signal to noise ratio figures have been quoted 

in this dissertation , be they for stochastic or deterministic input 

signals, they have been obtained as described below . 

Let FI be an actual implementation of a digital filter and let FR 

be the same filter implemented without limited arithmetic precision . 

The suffices I and R indicate implementation and reference respectively . 

In practice filter FR would be iterated using the full floating point 

precision of a general purpose computer. Both filters begin an experi­

mental run with the same initial conditions, and both are driven from 

the same signal source. The difference in the outputs from F and F 
I R 

will be called the roar error sequence; this is not the true error 

sequence since it may be in part correlated with the output of the 

reference filter . The experiment is shown in the system diagram in 

figure A. 1.1. 

Figure A.1.1 
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S .equence y n is the response of FR to sequence xr{ 

sequence Y' is the response of FI to sequence xrf n 

and sequence r is the roar error signal Y n - yti" . n 

Since in part r is correlated with y . , a new error sequence e n n n 
(the true error sequence) may be defined as: 

e = Y' - Ay n n n (A . 1. 1) 

where the constant A depends on the correlation of r and y . In effect · n n 

A accounts for the frequency independent difference in the gains of 

From equation A.1 . 1 it follows that: 

+ E re 21 LnJ 
where E is the expectation operator, since by definition E ~nen] = O. 

Multiplying through equation A. 1.1 by y and taking expected values: n 

from which it immediately follows that : 

A 

Finally, the value of E 
[en~ I 

is obtained as : 

E [ e n 
2
] ry~2J E [y n 2] & n y~J 

2 = E E 

E ry 2] L n 

which when rearranged and rewritten as variances become s: 

2 2 2 
(J ' (J (J .. y y yy 

2 
(Jy 

(A . 1. 2) 

(A. 1 • 3) 

(A . 1. 4) 

(A.1.5) 

(A. 1. 6) 



2 Since the signal power is given by cr it follows that the signal to y 

noise ratio at the output of filter FI is given by: 
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SNR = 10 loglO 
[cry2 ]2 

(A. 1. 7) 
2 2 2 cr -.. cr - cr, 

y y yy 

When the signal to noise ratio is high the subtraction in the 

denominator of equation A.1. 7 becomes numerically unstable; this is 
2 2 2 because cr, cr and cr, have almost exactly the same value and each is Y Y YY 

much larger than their difference. For SNR figures up to 40 dB and a 
2 -4 signal power of cr = 1 the denominator of A.1 . 7 is greater than 10 ; y 

this is two orders of magnitude larger than the precision limit of 32-bit 

floating point arithmetic. For SNR's above 40 dB double precision 

arithmetic is recommended. 

This method of SNR measurement, as defined by equation A.1.6, is 

suitable for computing a running estimate each time a new sample of y 
n 

and y, arrives . This is particularly attractive since a filter simulation n 

need only be run for sufficient samples to obtain the required degree of 

convergence. Furthermore, it is possible to prevent the saturation 

characteristics of FI from giving a low estimate of SNR; this can be 

done by rejecting samples which give an error which is larger in absolute 

value than a half of the largest quantization interval. Saturation was 

not tested for as it w~s found to happen so infrequently (typically 1 in 

every 1000 experiments). 



A.2 Complex Amplitude Measurement 

In chapter 6 various filter design examples are presented . The 

behaviour of these filters under sinusoidal ' inp~t is coqsidered . Where 

experimental gain and phase measurements are shown they were obtained as 

follows. 
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Let xn and yn denote two discrete time sinusoidal signals corresponding 

respectively to the input and output of a linear system; it immediately 

follows that both sinusoids have the same frequency but may dif"fer in phase 

and magnitude . In addition y is known to be corrupted by noise. It is n 

required to estimate the complex amplitude of the linear system for a 

specific frequency . 

Without loss of generality cosinusoid x will be assumed to have zero n 
starting phase, that is: 

= A [ ejnw + 
-jnw 

J (A . 2. 1) 
X e n X 

2 

where n is the sample index number , 

w is the angular frequency, 

and A is the magnitude . 
X 

The output of the linear system, y , is phase shifted from the input . n 

by~ radians , is of magnitude A and is corrupted by a noise process u : y n 

= A 
y [ 

j (nw + ~) -j (nw e + e 
+ ~) 

2 

The parameter to be estimated is : 

C = A 
..:i.. 
A 

X 

-~ e J 

J + u n 

First , analytic signals x' and y ' are obtained from the N samples n n 

of x and y (N > 1) using the following relations: n n 

X I 

n = e 
jw 

(A . 2. 2) 

(A.2.3) 

(A . 2 . 4a ) 
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Y' n (A. 2. 4b) 

where 1 < n ~ N 

Substituting for x in equation A.2.4a using equation A. 2.1 and for n 

yn in equation A.2.4b using equation A.2.2 the following expressions for 

x' and Y' are obtained : n n 

'A sin 
jnw 

X' = J X w e n 

y' = ' A sin ej~ jnw 
+ U' J y w e n n 

where u ' is the analytic noise signal. n 

The complex amplitude C is obtained from the following expression : 

N * I X' y, 
n n C = n=2 

N * I X'- x' n n n=2 

This estimate of C is unbiassed provided that noise process u is n 
zero mean ; it is reasonable to expect that this is true for a digital 

(A .2. Sa) 

(A.2 .Sb) 

(A .2.6) 

filter . The variance of the estimate of C depends on fourth order moments 

of u · for this reason no simple analytical e xpression can be found for n' 

it . Instead some experiments are included to give insight into the required 

sequence length N. 

The first experiment is with a single sinusoid corrupted by gaussian 

white noise ; various SNR levels are considered . The graph in figure 

A.2.1 shows that for an SNR of 20 dB (a typical value at the output of a 

filter) as few as 100 samples gives standard deviations in magnitude and 

phase estimate errors of 1 . 5% of mean and 0.75° respectively. If the 

estimate error is assumed to have gaussian statistics then with probability 

0 . 99 the estimate will be in error by no more than 3.87% of mean (magnitude) 
0 and 1.94 (phase). 
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The second experiement is with a sinusoid applied at the input of a 

1st order all-pole digital filter. The results are shown in the graph 

in figure A.2 . 2. This experiment illustrates that the estimator is 

still reliable in the presence of coloured noise. 

The two experiements described are not intended to suggest that this 

method of complex amplitude estimation is robust to a broad class of 

noise conditions, more to suggest that it might be a reasonable method. 

Confidence in the use of this method rests on experience. 
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A.3 Noise Process Generation 

Where guassian white noise has been applied at the input of a 

filter this has been generated by summing groups of twelve consecutive 

uniform white random numbers; these , in turn, were generated using a 

linear shift register sequence. If the uniform random nllffiRers lie in 

the interval I-~,~ , then the gaussian noise has unit variance. It 

follows that the maximmn noise sample value is six standard deviations. 

Clearly, the tails of the gaussian noise process are poorly approximated , 

however, since the 255-level gaussian optimal quantizer saturates at 

three standard deviations this is not a problem. 
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A.4 General Purpose Computer Simulation of a Free Quantization Law Digital Filter 

To illustrate the simulation of a free quantization law filter a 
. 

specific example will be considered. The example is a first order all-

pole optimised for a unit variance gaussian input process. From the 

filter difference equation: 

(A. 4. 1) 

where x and y are the input and output at time t = nT, and from the n n 

complex convolution theorem it follows that the output variance is given 

by: 

(A. 4. 2) 

Furthermore, from linear system theory y will be a gauss-markov process. n 

As x is a gaussian process, its associated optimal quantizer is the n 

one shown in figure 2.2.2; the optimal quantizer for y has a similar n 
shape but all its decision and quantization levels are larger in magnitude 

by a multiplying factor: 

1 

As the shapes of both quantizers are the same only the decision and 

quantization levels for a unit variance quantizer need be stored; the 

levels for a quantizer of arbitrary variance are easy to find. 

(A .4. 3) 

Following some data structure definitions , the quantization algorithm 

will be described. 

Let AD and AQ be the names of two N element real valued arrays. Locations 

2 through to Nin array AD contain the N-1 values of the non~infinite 

decision levels; the first location of AD is unused. The N locations of 

array AQ contain the N values of the quantization levels . The indices of 

arrays AD and AQ are as defined in section 2 . 2; location i in AD and AQ 

contain the values of d. and q. respectively . 
l. l. 



The first step in the quantization algorithm is to check if the 

value to be quantized lies in either of the intervals !a1 , ~ I = !- 00 
, ~ 

·or !~, dN+l l ·= !~, + 00 ! ; denoting by S the value of the unquantized 

sample , this step becomes: 

IF s >.. AD(N) THEN 

BEGIN 

S : = AQ(N) 

RETURN 

END 

IF s < AD (2) THEN 

BEGIN 

S: = AQ ( 1) 

RETURN 
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END figure A.4.1 

Assuming that S lies in the interval !a
2 , dN! it is necessary to find 

(2 ~ i ~ N-1) and to set S to the value 

qi. In principle a search of all the intervals from !a2 , a 3 ! to laN-l' dN! 

could be performed; in practice this is too inefficient. Instead an 

algorithm based on the dichotomous search is used. With this method the 

interval la
2 , ~I is divided in two and a test for the interval containing 

Sis performed. This sub-interval is divided again and the half containing 

Sis noted. This process repeats until a single decision interval 

!a., d. 
1

1 has been found. The algorithm is coded as follows: l. l. + 

PL, PU and PT are pointer variables 

PL = 2 left extreme of interval 

PU = N right extreme of interval 

L PT = (PL + PU)/2 centre of interval 



IF S ~ AD(PT) THEN PL 

IF S < AD(PT) THEN PU 
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= PT 

= PT 

UNLESS 

s : = 

PU= (PL + 1) GOTO L 

AQ (PL) figure A.4 . 2 

For N quantization levels this algorithm takes log
2 

N steps to 

complete; by comparison, the exhaustive search would require N/2 steps. 

A sample run of this algorithm is shown in figure A.4.3. 

Arrays AD and AQ 

i 1 2 3 4 5 6 .7 

AD(i) n/u -2.5 -1.5 -0.5 0.5 1.5 2.5 

AQ (i) -3 -2 -1 0 +1 +2 +3 

PL PU PT AD(PT) s S~(PT)? PU=PL+1? 

2 7 4 -0.5 0 . 6 Yes No 

4 7 5 0 . 5 0 . 6 Yes No 

5 7 6 1.5 0 .6 No No 

5 6 5 0.5 0.6 Yes Yes 

1.0 

n/u not used figure A.4 .3 

This algorithm is used frequently in a filter simulation 

and so it is coded as a sub-program . Calling this sub-program QUANT, the 

main program statement : 

s = QUANT (S) (A . 4. 4) 

would be read as 'the unquantized values is passed to and quantized by 

sub-program QUANT , the result is stored in S' . If S, instead of being a 

sample of a unit variance process , is a sample of a process of variance v2 

then the appropriate call to QUANT is : 



s = V * QUANT (S/V) 

Finally denoting by X, Y and Yl the values of x, y and y 
1 

in n n n-
equation A.4.1, the algorithm for simulating a first order gaussian 

optimised all-pole is: 

2 1/2 V: = 1.0/ (1 . 0 - K) 

M X = GAUSS ( ) 

X = QUANT (X) 

y = K * Yl + X 

y = V * QUANT (Y/V) 

Yl = y 

perform analysis on filter output 

GOTO M 
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(A.4.5) 

Sub-program GUASS ( ) produces samples of a zero mean , unit variance gaussian 

process . 



Appendix B Cumulative Density Function of a Gaussian Process -

Numerical Approximation 

The formula used to obtain the value of the following integral: 
A 

f 
-~x 

2 
~ (A) = 1 e dx --

12,r 
-co 

is that described by Abramowitz and Steagan (ll), PP 932 ) 

follows: 

it is as 

O (A) ~ 1 - z (A) [b1T + b2T
2 

+ b3T
3 

+ b.T· + bsTs] + E (A) 

-~A2 
e _ where Z (A) = 1 --

12"; 

and T = 1 

1+pA 

The coefficients b. (1 ( i ~ 5) and p have the following values: l. 

b1 = o. 31938 1530 

b2 = -0.35656 3782 

b3 = 1. 78147 7937 

b4 = -1. 82125 5978 

b5 = 1. 33027 4429 
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(B . 1) 

(B.2) 

p = 0 .23164 1900 figure B.1 

The approximation error is bounded by: 

I E (A) I 7.5 X 10-
8 
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Appendix C Implementation of Free Quantization Law Digital Filters -

A Specia1 ·case 

Whilst the use of free quantization law techniques in the design 

of digital filters gives an improved signal to noise ratio performance , 

the associated hardware realisation is more complex than in the fixed 

point arithmetic case. In chapter 4 a general approach tp the realization 

of free quantization law filters was presented. In this appendix a 

special case of this new filter is considered; with this special case 

a very simple hardware structure is possible . 

The filter to be discussed employs a uniform quantization law at 

each of its variables ; what distinguishes it from the fixed point 

arithmetic filter is that the step size at each variable need not be the 

same . If the different step sizes are constrained to be related to each 

other by multiplying factors which are powers of 2 then a simple hardware 

realisation results . To illustrate this consider the problem of adding 

two sampled signals which are quantized using step sizes of q and 2Pq 

(p-integer) respectively . If a and b are both rep r esented using M-bits n n 

then to add the two together requires an M + p bit binary full adder . 

As shown in figure C. 1 , variable a is connected at the A-port to bits n . 
0 through M-1 and variable b is connected at the B-port to bits p n 

through M 4- p -1 . 

A first order all-pole implemented in this way will now be analysed. 

The signal flow graph which represents the filter is shown in figure C.2. 
1 2 3 The variables e , e and e represent noise processes . Variable n n n 

1 
models the distortion produced by the input quantizer, variable 

e 
n 

2 
distortion produced by rounding the product Kyn-1 and 

e models the 
n 

3 variable e models the noise produced by dropping some of the least n 

significant bits at the output of the full adder . 
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OM+p-1 bM+p-1 
p-bits OM+p-2 bM+p-2 

M-bits 

M+p bit 
b5 05 full adder 

M-bits 04 b4 
03 b3 
02 b2 

p-bits 01 b1 
00 b0 

A-port 8-port 
outputs omitted Figure C.1 

K 
T 

Figure C.2 
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2 2 Taking (J = 1 , where (J is the variance of the output process y , y y 

n 
as reference 

2 
(J ;3 

the 

2 
L 
12 

noise source 
3 

e has a power of: n 

where q is the optimum step size for a uniform quantizer applied to a 
gaussian process . The input variance has a value : 

2 
(J = 1 

X 

and hence the 

2 
(J 1 

, 
2 

- K 

noise process 

2 
g_ 
12 

1 
e has a power of: n 

2 
2 Because a is unconditionally larger than cr , Ky 

1 adds into adder A 
y 

X n-
at p-bits higher significance than xn. As Kyn-l is of M + p bits 

2 precision the power of e 
n 

2 
( 1 - K

2
) 

2 
(J 2 = g_ 

12 

is: 

The total noise appearing 

2 [a/ 2 (J = + (J 2 + yn 

and hence the signal to noise 

at the output 

a 3
2 J 1 

2 
1 - K 

ratio at the 

SNR = 10 log l O 12 
2 

q [ 
2 J 1 - K 

3 - 2K
2 

dB 

of the filter: 

2 
[ 3 - :~1 = g_ 

12 
1 -

output is given by : 

(C. 1) 

(C . 2) 

(C . 3) 

(C . 4) 

(C . 5) 

(C. 6) 

By a similar analysis it can be shown that for the equivalent filter 
with equal step sizes throughout the output signal to noise ratio is given 

_by : 

SNR = 10 log
10 

12 
2 

q 

dB 
(C . 7) 

Comparing equations C.6 and C.7 it is seen that the 'free quantization 
law' filter yieldsthe higher signal to noise ratio. The improvement in 
SNR is given by: 



L\SNR = iG log 10 [~ 2 2K2 J dB (C. a, 

As K approaches unity L\SNR tends to 3dB . 

By analysing the signal flow graph in figure C.3 it can be shown that 

for a second order all- pole this technique gives an SNR improvement of : 

L\SNR = 10 log10 l- 3G ]dB 
G + 3 
- ~--

The parameter G is the integrated power gain of the filter . 

values of G, L\SNR tends to 4.8dB. 

T 

e4 
n 

T 

(C . 9) 

For large 

~n 

Figur e C.3 
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GLOSSARY OF TERMS 

the number of ways in which it is possible to choose i items from N 

ith decision level (of a quantizer) 

distortion produced by a quantizer 

instantaneous error produced by a quantizer 

statistical expectation operator 

integrated power gain from the input of a filter to variable y 

integrated power gain from the input of the ith section to the ouput of the jth section of an N section cascade filter . 
l~i ,( j~N 

coefficient in recursive part of a filter 

coefficient in non-recursive part of a filter 

(i) 

(ii) 
total number of quantization levels 
length of a sequence of signal samples 

step size of a uniform law quantizer 

ith quantization level 

optimum (minimum mean square error) quantizer for process x 

signal to noise (power) ratio at the input of a filter 

signal to noise (power) ratio at the output of a filter 

one signal sample (T second) delay 

nth sample of process y 

power of process y 

noise power at variable yn 

signal power at variable y n 

half optimum step size for a uniform quantizer applied to a gaussian process 

EXCLUSIVE-OR logical operation 

Kronecker matrix product operation 
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