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Abstract

In preclinical research, histological analysis of tissue samples is often limited to quali-

tative or semiquantitative scoring assessments. The reliability of this analysis can be

impaired by the subjectivity of these approaches, even when read by experienced

pathologists. Furthermore, the laborious nature of manual image assessments often

leads to the analysis being restricted to a relatively small number of images that may

not accurately represent the whole sample. Thus, there is a clear need for automated

image analysis tools that can provide robust and rapid quantification of histologic

samples from paraffin-embedded or cryopreserved tissues. To address this need, we

have developed a color image analysis algorithm (DigiPath) to quantify distinct color

features in histologic sections. We demonstrate the utility of this tool across multiple

types of tissue samples and pathologic features, and compare results from our pro-

gram to other quantitative approaches such as color thresholding and hand tracing.

We believe this tool will enable more thorough and reliable characterization of histo-

logical samples to facilitate better rigor and reproducibility in tissue-based analyses.
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1 | INTRODUCTION

Histological analysis of tissue biopsies—either formalin-fixed,

paraffin-embedded (FFPE), or cryopreserved—remains a corner-

stone of preclinical research.1–5 Nevertheless, there are well

acknowledged issues with the reliability of the standard semiquanti-

tative assessments typically performed on these samples.2,6,7 These

issues can potentially be circumvented in clinical settings by
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carefully controlled workflows that ensure consistency in sample

preparation and reduce interobserver variability.8 However, repli-

cating these conditions in preclinical research often presents a vari-

ety of challenges depending on the nature of the analysis to be

performed and whether the researchers have access to an expert

pathologist.4

Even if researchers have access to a trained pathologist, the vol-

ume of tissue typically involved in preclinical research can make man-

ual analysis of each individual image impractical. Studies in animal

models with large numbers of replicates can yield an overwhelming

abundance of tissue. Similarly, studies utilizing non-transplanted

human organs—an area of emphasis in our laboratory—require evalua-

tion of large amounts of tissue per organ in order to properly charac-

terize these highly heterogenous samples. In two recent examples, we

evaluated 1000's of images collected from dozens of biopsies.9,10 In

these instances, manual forms of color image analysis—where the

researcher must evaluate each individual image one by one—are sim-

ply not feasible.

Digital color thresholding is a commonly used method to auto-

mate the analysis of features of interest in color images of histologic

samples.4,11–13 In these methods, a threshold value is identified for

each of the three RGB (red, green, and blue) color channels to isolate

a specific subset of color shades. However, color features in standard

histologic stains (e.g., hematoxylin and eosin [H&E]) are typically

blended shades of the three RGB colors. As a result, what is visually

distinct to the eye can be difficult or even impossible to isolate using

a simple color thresholding approach. To overcome this limitation,

more sophisticated approaches have been developed that can identify

single features of interest within specific stains.14–16 While useful for

certain focused applications, these approaches are limited by their

lack of adaptability to any color feature of interest regardless of histo-

chemical stain. Thus, there remains a need for software that has the

efficiency and reproducibility of the existing automated methods but

is also easily adaptable to many different types of histological fea-

tures/stains within a single workflow.

The aim of this work was to address the need for more rapid,

reliable, and adaptable methods of digital analysis in histological

specimens. To that end, we developed and validated an automated

image analysis approach (DigiPath) that uses a color-based classifi-

cation algorithm to identify and rapidly quantify areas of interest in

color images. We demonstrate that this approach is accurate, reli-

able, and significantly faster than a standard method of hand trac-

ing areas of interest. We also show that it can be used for

assessment of a wide array of different histological features in

human and animal biopsy specimens. Based on the evidence pres-

ented here, we believe DigiPath can enable comprehensive, repro-

ducible, and rapid analysis of histology specimens in preclinical

research.

F IGURE 1 DigiPath is a more efficient method for quantification than hand tracing. (a) Representative image from an H&E section of a kidney
during normothermic machine perfusion (NMP). Obstructions are quantified using hand tracing or DigiPath by three individual users (User 1—
magenta, User 2—yellow, User 3—cyan). (b) Total area quantified using hand tracing or DigiPath methods from three users. (c) Total time elapsed
for hand tracing (circles, black line) or DigiPath (squares, gray line) methods across three users for five separate images. Mixed-model ANOVA
showed a significant difference between the DigiPath and hand tracing cumulative analysis times (**p = 0.0027)
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2 | RESULTS

2.1 | DigiPath yields more efficient results when
compared to hand tracing methods

Hand tracing is frequently used as a standard method to quantify

areas of interest in IHC stained tissue sections from preclinical

biopsy specimens. We therefore compared DigiPath to traditional

hand tracing as a gold standard. Three independent users were

asked to quantify areas of microvascular obstruction in human kid-

ney biopsies that underwent normothermic machine perfusion

(NMP) using both hand tracing in ImageJ and DigiPath. These micro-

vascular obstructions (not classic thrombi) are structures unique to

the serum free perfusate conditions of NMP and are easily identifi-

able on histology.9 With DigiPath, we observed that features were

systematically �1%–3% smaller as compared to hand tracing. This

result is consistent with a small and systematic over estimation of

size by users when hand tracing features (Figure 1a and Supplemen-

tal Figure 1). We also found that images with more positive area

(e.g., Image 4) were subjected to higher inter-user variability (�21%

error of the mean) with either method (Figure 1b). Nevertheless,

there was general agreement in quantified area between hand trac-

ing and DigiPath methods (Figure 1b). Although inter-user variability

was observed, we found that each user reported similar relative

trends in the amount of positive area (i.e., User 1 values > User

2 values > User 3 values).

While DigiPath produced similar results to hand tracing, we found

that DigiPath significantly reduced the time of analysis. To quantify

five images by hand, users took on average 98.5 ± 80.3 min. However,

when using DigiPath to quantify those same five images, users took

on average 7.6 ± 1.7 min in total. This number includes the time it

took users to set parameters in training images and process images of

interest. A repeated measure mixed-model two-way analysis of vari-

ance (ANOVA) showed that the method of analysis (i.e., DigiPath vs.

hand tracing) significantly affected cumulative analysis time

(Figure 1c). We also conducted a Bonferroni multiple comparisons test

to evaluate the difference in cumulative analysis times between

DigiPath and hand tracing at each image number up to five images.

Due to the high variability between users in the hand tracing analysis

time, at five images the difference in cumulative analysis time

between DigiPath and hand tracing was not statistically significant

(p = 0.062). However, we observed a trend of decreasing p values

between DigiPath and hand tracing as the number of images

increased (three images: p = 0.613, four images: p = 0.098, five

images: p = 0.062).

We next extrapolated how long it might take to analyze

500 images, a typical number of images in our prior studies. We esti-

mate that we would save at least �167 h of quantification time com-

pared to hand tracing (Supplemental Figure 2). Analyzing 500 images

by hand tracing is unrealistic and would be unlikely to be carried out

in a study. Nonetheless the extrapolation from the average hand trac-

ing time per image provides a conservative estimate of the amount of

time that can be saved by quantifying color image features with

DigiPath. It also demonstrates how DigiPath analysis can enable a far

more in-depth quantitative analysis than is practical with a manual

approach.

F IGURE 2 DigiPath achieves better correlation with hand-traced
standards than color thresholding. (a) Representative images of a
human kidney section stained with H&E. Masks of microvascular
obstructions were generated by hand tracing (a composite of three
independent user tracings), color thresholding and DigiPath (overlays
of three independent users: User 1—cyan, User 2—yellow, User 3—
magenta). Areas of undercounting (orange arrows) and overcounting
(green arrows) from color thresholding are shown. (b) F-score,
Matthews correlation coefficient (MCC), and Youden's J statistic were
calculated to measure the correlation of results from thresholding and
DigiPath methods with the hand-traced standard. Lines represent
median. **p < 0.01; ****p < 0.0001. Scale bars = 20 μm
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2.2 | DigiPath achieves greater correlation with
hand-traced standards than color thresholding

Standard thresholding methods—which pick a specific threshold value

of intensity for each of the three colors to distinguish between fea-

ture versus background—are reliable only under conditions where the

pathologic features are predominantly a single distinct color (red,

green, or blue). However, typical pathologic features (and tissue back-

grounds) are mixes of the individual red, green, and blue color chan-

nels meaning that they cannot be easily separated this way without

either setting the threshold too high (leading to high false negative

rates) or setting the threshold too low (leading to high false positive

rates). To compare the accuracy of DigiPath to a standard color

thresholding approach, three independent users quantified a set of six

images using both DigiPath and color thresholding in ImageJ.

The results from both DigiPath and standard thresholding were

analyzed against a hand-traced standard. We found that the color

thresholding method resulted in a tradeoff between sensitivity (accu-

rate inclusion of all positive regions) and specificity (accurate exclu-

sion of all negative regions). This effect can be seen in the image

masks generated from the thresholding results; at the same color

threshold setting, some microvascular obstructions are undercounted

whereas other areas with no obstruction are incorrectly counted

(Figure 2a). Conversely, DigiPath improved sensitivity in identification

of positive areas without significantly impacting the exclusion of nega-

tive areas.

F IGURE 3 DigiPath enables
quantification of multiple
histological features across
different stains.
(a) Representative 20� image
fields of three livers with varying
degrees of steatosis. Scale
bars = 200 μm. Quantification by
DigiPath of steatotic area per

image field on the right.
(b) Representative images of tiled
liver biopsies stained with Sirius
red. Scale bars = 200 μm.
Quantification of Sirius red
staining displayed on the right.
(c) Representative images of
perfused kidneys stained with
either H&E (left) or martius
scarlet blue (MSB) (right). Scale
bars = 100 μm. Overlays show
area quantified in a single image.
Distribution of positive staining
quantified with DigiPath is shown
to the right. Each dot represents
one field of view. Lines represent
the median. Differences between
groups are not significant (n.s.)
according to a Mann–
Whitney test
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DigiPath showed greater overall correlation to hand-traced standards

than color thresholding by three metrics: Youden's J statistic (J-score),

F-score, and Matthew's correlation coefficient (MCC). Each of these

metrics are derived from a matrix of all possible classification outcomes

(false positives, false negatives, true positives, and true negatives) and are

commonly used to analyze the performance of binary classifications.17

Across three users, DigiPath consistently classified regions of microvascu-

lar obstruction in kidneys with significantly greater correlation to hand-

traced standards than was achieved using color thresholding (Figure 2b).

2.3 | DigiPath enables quantification of multiple
histological features across different stains

We next sought to assess the adaptability of DigiPath for quantification of

a variety of different histological features between liver and kidney. We

first assessed the ability of DigiPath to quantify the degree of steatosis in

a series of three transplant-declined human livers (Figure 3a). Livers 1 and

2 were declined for transplant due to the presence of steatosis, whereas

Liver 3 did not list steatosis as a reason for decline (Table 1). We used

DigiPath to quantify the area of fat droplets in biopsies from each liver.

DigiPath identified fat droplets in both Livers 1 and 2, and negligible drop-

let area in Liver 3 (Liver 1 median: 29.2%; Liver 2 median: 9.3%; Liver

3 median: 0.7%). Steatosis is reported as the cumulative area of fat drop-

lets per image area (Figure 3a). DigiPath also allows quantification of the

variability of steatotic areas within a single biopsy. We used DigiPath to

analyze over 400 20� images covering two sections of a biopsy from

Liver 1 and found that the percent steatotic area in individual image fields

ranged from less than 1% to over 60%, with a median of 29% steatosis

(Figure 3a). This demonstrates the capability of DigiPath to characterize

the spatial variation of histologic features within a whole biopsy.

Similarly, we found that we could quantify the distribution of

fibrosis in livers using the DigiPath tool on Sirius red stained biopsies.

With Sirius red, high collagen levels, associated with fibrosis, stain red

in fibrotic and cirrhotic samples. We assessed two livers with stage

2 fibrosis (Liver 4 median: 10.1%) or no diagnosis of fibrosis (Liver

5 median: 0.3%) (Figure 3b) for levels of Sirius red staining. Donor

demographics are displayed in Table 1.

We next assessed how reliably DigiPath could quantify the same

feature identified with two different stains. To test this, we quantified

microvascular obstructions in a perfused kidney using both H&E and

MSB stains prepared on sequential sections (Table 2, Figure 3c). Serial

sections of a kidney biopsy were stained with either H&E or MSB in

order to compare the results from both stains on nearly identical tis-

sue sections. Microvascular obstructions appeared to have similar

distributions between the two stains (Figure 3c). According to a Mann–

Whitney test, there were no statistical significances between H&E and

MSB stained sections. Slight differences in median values may be attrib-

uted to the variance of features observed in serial sections and the

location of individual fields captured when tiling whole sections.

2.4 | DigiPath quantifies steatosis in experimental
mouse livers

To confirm that DigiPath could quantify features of interest from histo-

logical specimens processed outside of our lab, we next sought to deter-

mine if DigiPath could accurately quantify previously published results.18

In a model of murine hepatosteatosis, DigiPath was able to quantify the

area of steatosis across a series of images from different animals

(Figure 4a,b). DigiPath quantification also confirmed the previously publi-

shed result that treatment with oral Digoxin reduces hepatosteatosis in

mice (Figure 4b).18 These results demonstrate DigiPath's utility to quickly

and accurately quantify areas of interest across treatment groups in pre-

clinical research models. Additionally, DigiPath's ability to quantify speci-

mens in different species and with variable sample preparations further

demonstrates the value of this tool in the preclinical research setting.

2.5 | DigiPath reveals patterns of cell death in
kidney biopsies during cold storage

To evaluate DigiPath in a novel application, we assessed the degree of

cell death in non-transplanted human kidneys during the course of

cold storage (Table 2). Based on findings in a recently completed

study, we hypothesized that cell death may be occurring during the

TABLE 1 Human liver demographics

Age

Donor

type Cause of death Reason for decline

Liver 1 50 DBD CVA Macrovesicular steatosis �50% with evidence of NASH

Liver 2 57 DCD Arrest from presumed electrolyte abnormalities with

pancreatitis

Older DCD with alcohol history, steatosis on imaging

and abnormal LFTs (peak bili 1.9)

Liver 3 36 DCD Anoxic arrest (respiratory arrest 2/2

secretions ! cardiac arrest)

Slow to progress (extubated 8:55, arrest 9:39, flush

10:13)

Liver 4 49 DBD CVA witnessed at work, progressed to brain death over

days with aggressive care

40%–45% macrovesicular steatosis, moderate

inflammation, and stage 2 fibrosis

Liver 5 29 DCD Known brain aneurysm undergoing elective completion

stent assisted coiling with intra-op aneurysm rupture

early March. Complex course with acinetobacter in

CSF, vasospasm, and arrhythmias

Transaminases sharply rising in 2–5 k range on 3/14,

peaked and coming down
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course of cold storage in some marginal human organs.9 We applied

TUNEL staining to biopsies collected from a pair of kidneys after

6, 12, 18, 24, 30, 36, 48, 60 and 72 h of cold storage (Figure 5).

DigiPath was able to detect both TUNEL-positive (brown) and

TUNEL-negative (blue) cells (nuclei) in each image (Figure 5a). This

enabled us to quantify the amount of TUNEL staining normalized to

the total cell density in each image (Figure 5b).

We observed a significant increase in TUNEL staining area

normalized to the TUNEL negative cell area from 6 to 72 h of cold

storage in both kidneys (Figure 5b). The left kidney had a greater pro-

portion of TUNEL positive cells than the right kidney at 72 h (left

median: 0.16 brown: blue area ratio; right median: 0.11 brown: blue

area ratio; p < 0.0001) We found that quantification of dead cells in

ImageJ using immunofluorescent TUNEL staining yielded similar

trends. At 6 h of cold storage we observed <1% TUNEL positive cells.

At 72 h of cold storage, we quantified a median of 62.4% and 13.7%

TUNEL positive cells in the left and right kidneys respectively

(Figure 5c,d). We then used DigiPath to quantify TUNEL staining in

biopsies taken at intermediate time points and found that both organs

had a small early spike in cell death at 12–18 h, followed by a larger

increase in cell death beginning at 30–36 h and continuing up to 72 h

(Supplemental Figure 4).

TABLE 2 Human kidney
demographics

Age Donor type Cause of death Reason for decline

Kidney 1 39 DBD Overdose Suspected malignancy

Kidney 2 70 DBD History of hypertension and diabetes Stroke

Kidney 3 70 DBD History of hypertension and diabetes Stroke

F IGURE 4 DigiPath quantifies experimental model of mouse hepatosteatosis. (a) Representative images of tissue from mouse livers on a
standard diet (control; left), high fat diet (middle), or high fat diet with a low dose of oral Digoxin (right). Area quantified with DigiPath is shown in
green. (b) Quantification of steatotic area in murine models of hepatosteatosis with variable doses of Digoxin. Control group was fed standard
chow. Each dot represents an individual image. Red dots correspond to images in (a). Error bars represent the standard error of the mean.
Differences between groups are significant according to a Student's t-test

6 of 11 RESCHKE ET AL.



3 | DISCUSSION

Quantitative analysis of histological samples poses a significant chal-

lenge due to the nature of color images as an overlay of red, green, and

blue channels. While tissues stained with immunofluorescence can be

evaluated by measuring each target in its individual color channel,

nearly all features in a color image are made up of a mixture of three

colors. As a result, histological features that are easily identifiable by

eye are difficult to encode as a set of computational rules that an auto-

mated program can use to accurately detect features. Despite the diffi-

culty of generating quantitative results from histology slides, they

remain an important and highly used element of preclinical research.

To address this need, we have developed the DigiPath program

which is a color-based classification algorithm that facilitates rapid

and reliable quantification of histology features. DigiPath can be used

to quantify stained features in any RGB color image. It is particularly

advantageous in preclinical research settings with large sample num-

bers, as it enables high-throughput, quantitative assessment of unlim-

ited numbers of high-resolution images. To quantify features of

interest in the biopsies presented here, we captured 20� fields

of view covering the entire biopsy. This resulted in up to 400 images

per biopsy, depending on the biopsy size. In this study, we analyzed

25 whole biopsies for a total of over 1800 images. Assessing this

quantity of data by hand is simply not feasible regardless of access to

F IGURE 5 DigiPath reveals patterns of cell death in kidney biopsies during cold storage. (a) Representative images of left and right kidneys
stained with TUNEL assay after 6 or 72 h on cold storage. Overlays show area quantified after training DigiPath to recognize TUNEL-positive
(brown) or TUNEL-negative (blue) cells. Scale bars represent 50 μm. (b) Quantification TUNEL staining in left and right kidneys at the beginning
and end of cold storage using DigiPath. In (b), the ratio of TUNEL-positive (brown) cell area to TUNEL-negative (blue) cell area is plotted.
(c) Representative images from immunofluorescence TUNEL staining are presented (red—TUNEL; blue—DAPI). Scale bars represent 50 μm.
(d) Quantification of TUNEL staining in left and right kidneys at the beginning and end of cold storage using immunofluorescence. In (d), the

number of TUNEL positive cells are divided by the number of DAPI cells. Each dot represents one field of view within the biopsy. Lines represent
the median. ****p < 0.0001
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a trained pathologist. In addition, DigiPath also allows researchers

to access more nuanced information about the spatial heterogeneity

of pathologic features. This added information can enable a more

comprehensive characterization of pathologies (e.g., hepatic steatosis)

both within and between biopsies.

DigiPath is a classification algorithm that makes decisions

based directly on the categorization of pixel colors assigned during

the training as “positive” or “negative.” Since a typical image con-

tains millions of pixels, selecting positive and negative regions on

a few images generates classification data from hundreds of thou-

sands of pixels. This approach allows a large training set of pixel

color data points to be generated from a relatively small number

of training images and further enables rapid implementation of

DigiPath into a research workflow. DigiPath is therefore distinct

from more broadly encompassing machine learning approach

which require extensive training data sets of manually annotated

images in order to account for all possible staining variability.

However, for this approach to be effective, all images to be ana-

lyzed must share the same basic color palate. Thus, we recom-

mend that users run a new training set for each batch of samples

to be analyzed; this ensures consistency in the color of pathologic

features between the training images and images intended for

quantitative analysis.

There are some limitations of DigiPath in its current iteration. As

noted, applications of DigiPath are currently limited to features that

can be defined solely by color. The DigiPath user-interface provides

options for filtering features by size; however, histological analyses

that rely solely on morphology and do not employ distinguishing color

stains cannot be performed using DigiPath. Hands-on analysis time

using DigiPath is greatly reduced relative to hand tracing; however,

hands-on time may increase if samples collected in a study were sta-

ined on different days or in different facilities, likely requiring separate

training runs for each biopsy. While many potential sources of color

variation can be controlled within a study (e.g., image collection set-

tings, tissue thickness, staining procedures), there may be some exper-

imental variables that introduce differences in staining between

samples that cannot be avoided. For example, some features of inter-

est may have distinct histological appearances in different species,

meaning DigiPath results may not be directly comparable between

species. Nevertheless, DigiPath can accommodate many other

variable image properties including different tissue thicknesses and

different magnification levels, as long as the training image set is con-

sistent with the images to be analyzed. DigiPath can also analyze

images of any size, depending on the memory limits of the user's com-

puter. This is comparable to other commonly used image analysis soft-

ware such as ImageJ.

Recent publications have described automated color image analy-

sis methods developed for specific applications, including blood vessel

segmentation and determination of differentiation potential of mesen-

chymal stem cells.14,16 Other automated color image analysis pro-

grams have been developed to detect specific stains, such as

diaminobenzidine.15 Like DigiPath, these examples detect features

based on color. However, DigiPath's versatility allows a researcher to

use a single tool for a broad range of color-based quantification appli-

cations. There are a number of programs with image analysis tools

available for download. ImageJ (imagej.nih.gov/ij) is widely used in

biomedical research to view, edit, and analyze both fluorescent and

color images.11,13–16,19–22 In this study we used ImageJ's Color

Threshold feature and found that this method consistently resulted in

lower correlation with hand-traced standards compared to DigiPath.

QuPath is a recently developed open source image analysis software

and a powerful tool for whole slide image analysis.23 Other free

downloadable image analysis programs include CellProfiler

(cellprofiler.org), BioImageXD (bioimagexd.net), and Advanced Cell

Classifier (cellclassifier.org).24–26 However, the descriptions of these

programs focus on applications for confocal or fluorescent images,

while color image analysis is not emphasized, if described at all. To our

knowledge, there are no comparable open-access programs available

for color image analysis. Thus, we believe DigiPath's adaptability, ease

of use, and transparent classification algorithm make it a useful tool

for preclinical researchers seeking rapid quantitative analysis of histo-

logic samples.

4 | MATERIALS AND METHODS

4.1 | Organ retrieval and storage

All non-transplanted organs were provided under an existing research

protocol with New England Donor Services (NEDS) after obtaining

research consent from the donor families. In the United States, since

the donor is deceased, this research is not considered human subject

research as defined in the HHS Policy for Protection of Human

Research Subjects 45 CFR 46.102. HIPAA is still invoked with these

specimens and all organs used have been de-identified. After in situ

flushing of the abdominal organs with either cold University of Wis-

consin or custodial histidine-tryptophan-ketoglutarate (HTK) preser-

vation solution, organs were procured, packed in ice, and placed in

static cold storage prior to experimentation per standard clinical

practice.

4.2 | Kidney normothermic machine perfusion

Kidneys were prepared and perfused for 1 h on the ex vivo normo-

thermic machine perfusion circuit as previously described.27 Biopsies

were collected at the end of the perfusion period.

4.3 | Biopsy and staining procedures

Wedge biopsies were collected and fixed in 10% formalin for a mini-

mum of 24 h. Formalin fixed biopsies were paraffin embedded, sec-

tioned to 4 μm, and stained with either H&E, Sirius red, martius

scarlet blue (MSB), or terminal deoxynucleotidyl transferase dUTP

nick end labeling (TUNEL) stain in the Yale Histology laboratory.
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Immunofluorescent TUNEL staining was performed on 6 μm

cryosections using the In Situ Cell Death Detection Kit, TMR red

(Sigma).

4.4 | Mouse model of steatohepatitis

C57BL/6J mice were from the National Cancer Institute as previously

described.18 All experiments were performed in specific pathogen-

free facilities and were performed in accordance with the regulations

adopted by the National Institutes of Health (NIH) and approved by

the Animal Care and Use Committee of the Yale University. Eight-

week old male C57BL/6J mice were placed on a high-fat diet (HFD;

45% fat, D12451 Research Diets) or chow as a model for

steatohepatitis and chronic liver injury. After 10 weeks of a HFD ani-

mals were given a vehicle or digoxin at multiple dosages (low

0.125 mg/kg, medium 0.5 mg/kg, high 2.5 mg/kg) twice a week by

gavage feeding and continued with HFD feeding for a total of

15 weeks. At the end of the protocols, whole livers were collected for

histological analysis and stained with H&E. Images were collected at

10� magnification in the Ouyang Laboratory.

4.5 | Brightfield imaging

Three sections per biopsy were tiled at 20� magnification using an EVOS

FL Auto 2 microscope (ThermoFischer Scientific). All new images were

captured as 24-bit RGB color images with 3.2 million pixels (12 MB) at a

resolution of 58,522 pixels per inch. Following image collection, images

were manually parsed into “edge” versus “continuous” images to distin-

guish images that were wholly contained within the section (continuous)

versus images that were partially tissue and partially blank space (edge).

Edge images were excluded to avoid artifacts in analysis. Continuous

images were then loaded into the program for quantification.

4.6 | Hand tracing analysis

Users generating the hand tracing results were given explicit instruc-

tions on how to use the Freehand selections tool in ImageJ. While

hand tracing each image, users recorded their screens for accurate

measurements of the time it took to do each image analysis. After

hand tracing each image, users measured the areas and created binary

masks of their outlines.

4.7 | Color threshold analysis

Images were analyzed in ImageJ. The “Threshold Color” window was

opened, and a set of red, green, and blue thresholds was chosen in

red/green/blue (RGB) space using the default thresholding method.

The selection was converted to a binary mask, which was saved for

evaluating accuracy relative to hand tracing.

4.8 | DigiPath program

The DigiPath custom program was developed in MATLAB (Version

R2019b; The Mathworks, Inc. 2019) with the Image Processing Tool-

box (The Mathworks, Inc. 2020) installed. The complete code, entitled

“DigiPath.mlapp,” is available as a packaged app on Mathworks.com,

and in the Supplemental Materials.

4.9 | Image analysis using custom MATLAB
program

After eliminating edge images from each experimental set of 24-bit

color images, two to four training images that were representative

of any variations in staining were selected by the user. The images

analyzed in this study had 800,000 pixels (3 MB per image; Figures 1

and 2), 1.4 million pixels (5.3 MB per image; Figure 4), or 3.2 million

pixels (12 MB per image; Figures 3 and 5). The program was initi-

ated, and positive and negative regions were selected as prompted

by drawing polygons of any shape and size on the displayed training

images. The complete image set was run through the algorithm

using the color map and positive color list generated in the training

steps. Binary mask overlays of regions the program had identified as

positively stained were reviewed visually. Images for which the

program-determined regions did not line up with visually identifi-

able features were run through the program a second time using an

updated color map and positive color list. Results are represented

by plotting the percent of the image area with positive staining.

Each point represents one image field within a biopsy. The signifi-

cance of differences between biopsies was calculated using one-

way ANOVA.

4.10 | Evaluation of DigiPath performance

Area of microvascular obstructions was quantified in six 20� images

of kidneys stained with H&E using three quantitative methods: hand

tracing, color thresholding, and DigiPath analysis. A set of three

independent users analyzed the same six images using each method.

A consensus hand-traced standard was generated for each image by

including areas that were selected by all three users. This was used

as a standard for comparison to areas found by color thresholding or

DigiPath. A confusion matrix was generated where the hand-traced

classification of the images served as the “true” positive and nega-

tive values, and the classification by color thresholding or DigiPath

were positioned as the “predicted” positive and negative values.

Metrics including sensitivity, specificity, and accuracy were calcu-

lated from each matrix. Three correlation coefficients, F-score, Mat-

thew's correlation coefficient (MCC), and Youden's J statistic, were

calculated to assess the performance of the color thresholding and

DigiPath methods in the hands of each independent user. The signif-

icance of differences between methods was calculated using two-

way ANOVA.
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4.11 | Correlation metrics

Three correlation metrics were derived from a confusion matrix of all

possible classification outcomes (FP—false positives, FN—false nega-

tives, TP—true positives, and TN—true negatives). Youden's J statistic

represents “informedness”—the probability that the program will

make an informed decision.28 This takes into account both sensitivity

and specificity.

J¼ TP
TPþFN

þ TN
TNþFP

�1¼ sensitivityþ specificity�1:

The F-score is a measure of accuracy and is derived from sensitiv-

ity and precision values.29

F¼ 2TP
2TPþFPþFN

¼2�precision� sensitivity
precisionþ sensitivity

:

MCC is a measure of both markedness and informedness and

accounts for the proportion of occurrences of each possible classifica-

tion outcome.17,30,31

MCC¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp :

4.12 | ImageJ quantification

Immunofluorescent TUNEL images were processed using the Water-

shed and Analyze Particles functions in ImageJ. The total number of

DAPI positive (blue) and TUNEL positive (red) cells were quantified.

5 | CONCLUSIONS

DigiPath is a highly adaptable tool that enables high-throughput,

quantitative analysis of any color-defined histologic feature. DigiPath

is available for download as a free app in the MATLAB File Exchange

(www.mathworks.com/matlabcentral/fileexchange). The app is acces-

sible to researchers regardless of their level of experience with coding

and can be operated by users who are not formally trained in pathol-

ogy. The ability to automatically detect features in histology images

based on three-channel RGB color data enables a more quantitative

approach to histological analysis, an experimental technique that is

already essential in preclinical research.
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