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We revisit the light or heat-induced changes in topography of initially flat sheets of solid that elongate or
contract along patterned, in-plane director fields. For radial or azimuthal directors, negative Gaussian curvature
is generated – so-called “anti-cones”. We show that azimuthal material displacements are required for the
distorted state to be stretch-free and bend-minimising. The resultant shapes are smooth and aster-like and
can become re-entrant in the azimuthal coordinate for largedeformations. We show that care is needed when
considering elastomers rather than glasses, though the former offer huge deformations.

PACS numbers: 46.32.+x, 46.70.De, 02.40.Yy, 61.30.Jf

Differential growth in planar sheets [1, 2] induces topo-
graphical change in order to avoid or minimize stretch en-
ergy. Analogous, solid-nematic sheets are particularly rich
since light or heat-induced length changes [3–7] are easily
and reversibly driven. Further, their director fieldsn(r) that
give the principal direction of elongation or contraction can be
written in order to obtain any incompatibility of in-plane de-
formation that is then resolved by topographical change and
out-of-plane buckling, resulting in a desired Gaussian curva-
ture.

We revisit the simplest systems generating negative Gaus-
sian curvature, namely anti-cones [8, 9] (observed by Broeret
al [10]) that are the synthetic analogs of the ruffles, or asters,
of Ben Amaret al [1, 2]. In particular we examine pathologies
arising in some modelling because of restrictions unnecessar-
ily placed on shell deformations, and we present here bend-
minimising solutions that are the optimal choice in the mani-
fold of zero-stretch topographical changes from localisedneg-
ative Gaussian curvature.

Effectively, heated or illuminated sheets of nematic solid
suffer changes of metric and hence changes in Gaussian curva-
ture and thus of shape [11, 12]. This metric change approach
also has recently been exploited in such problems in an am-
bitious work also concerned with general shape determination
[13]. Our analysis is equivalent, dealing with the differen-
tial geometry of space curves generating these surfaces. We
re-examine small amplitude, stretch-avoiding solutions,since
they point to differences with recent work [14], before we
present large amplitude, stretch-free, bend-minimising results.
We will also discuss the role of nematic elastomers (rather
than glasses) that have mobile directors and can respond more
subtly to Gaussian curvature change.

Consider concentric circles ofn in a flat sheet of nematic
glass initially occupying the equatorial plan of the spherein
Fig. 1(a). Let the elongation alongn(r) be by a factor of
λ > 1 (on cooling or return to the dark). There is a corre-
sponding contraction byλ−ν in the two perpendicular direc-
tions, one in-plane and the other through the thickness. Vol-
ume changes locally by a factor of Det

(

λ
)

= λ1−2ν whereλ,
λ−ν, λ−ν are the elements of the deformation gradient tensor
λ in its principal frame (based uponn). The opto-thermal

Poisson ratioν takes values typically in the range( 1
3,2) in

nematic glasses [6], andν = 1
2 in nematic elastomers where

volume is conserved. Note that area would be conserved for
ν = 1, as assumed by Pismen [14], but this value is ofno
particular physical significance. If elastic stretches areto be
avoided on cooling/darkness, then one simply requires that, in
deformation to a different topography, the deformation gradi-
ents take principal valuesλ andλ−ν corresponding to the nat-
ural opto-thermal value under those conditions. We thereby
automatically avoid any stretch energy cost.

In cylindrical coordinates, a reference state point isR =
(R,Φ,Z = 0) in the initially flat disc, the equatorial plane of
the sphere in Fig. 1(a). On cooling, its image in the target state
isr= (ρ,φ,z= h(φ)), whereh is the elevation from the initial
plane (note the use of lower and upper case variables). The
target state curve is on a sphere of radiusr, see the trajectory
in Fig. 1(a), and the in-material radius is now

r2 = ρ2+ z2 → r = ρ
√

1+(h/ρ)2. (1)

We take a form for distortion that costs no stretch energy and
will also minimise bend energy for small amplitudes:

h = ρAsin(nφ), (2)

with integern for closure. The amplitudeA, after scaling by
the cylindrical radiusρ, is A = tanα; see Fig. 1(b). The angle
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FIG. 1: (a) An initially flat disc of radiusR deformed into an anti-
cone with an in-material radiusr. Director lines are circular, see for
instance ann(r) indicated at radiusR. (b) ann = 2 “anti-cone”.
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α is made between an anti-cone generator at a displacement
antinode and the equatorial plane initially taken by the flat
disc; see Fig. 1(a). The amplitude needed to take up the extra
length of the perimeter with respect to the radius is a global
requirement [8], not local, that we also return to.

An element ds of length in the target space image of the
reference space elementRdΦ is

ds = dφ

√

(

∂ρ
∂φ

)2

+ρ2+

(

∂h
∂φ

)2

. (3)

We now require the sheet deforms locally according toλ:

r = λ−νR and ds = λ(R dΦ)→ ∂s
R ∂Φ

= λ. (4)

From eqn. (1) we have

ρ(φ) = λ−νR/
(

1+A2sin2 nφ
)

1
2 (5)

h(φ) = λ−νRAsin(nφ)/
(

1+A2sin2 nφ
)

1
2 . (6)

Returning relations (5) and (6) to eqn (3) yields

ds = dφ λ−νR

[

1+A2+(n2−1)A2cos2 nφ
]1/2

(

1+A2sin2 nφ
) . (7)

Dividing Eqn. (7) byRdΦ, using eqn. (4), and rearranging
gives

∂φ
∂Φ

= λ1+ν
(

1+A2sin2 nφ
)

[1+A2+(n2−1)A2cos2 nφ]1/2
. (8)

The image’s azimuthal angleφ differs from theΦ of the orig-
inal target state point. Respect for the natural distortions of
the sheet has been built in. There are no stretch/compression
costs, but some bend energy that we return to.

Pismen [14] restricts all distortions in his model of anti-
cones to be meridional and radial as in the more straightfor-
ward case of simple cones, whereas these distortions to anti-
cones described above suffer azimuthal displacements too.
The differential method employed above is in effect equiva-
lent to the metric method of Pismen, his eqns. (12)–(14), but
with differing assumptions (aboutΦ and φ) with the result
that our anti-cones, eq. (2), do not have creases. It is inter-
esting to integrate relation (8) to giveφ(Φ), see Fig. 2, to see
for instance the azimuthal variation in this model for ann = 2
anti-cone which repeats atΦ = φ = π. It has its first node at
Φ = φ = π/2, and its first antinode atΦ = φ = π/4. At both
these points it is clear, for symmetry reasons, thatΦ = φ. The
deviation ofφ from Φ is the essential difference between our
results and those of Pismen, and is the mechanism by which
creases are here avoided.

The casen = 1 is simply a uniform body rotation by an
α about a diameter since all radii atφ andφ+ π are simple
continuations of each other and the disc remains flat. Clearly
λ = 1 for body rotations. Forn ≥ 2 the rotation byα such that
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FIG. 2: Variation of the image azimuthal angleφ with its reference
Φ for distortion to an anti-cone forn = 2, using the infinitesimal
form (2), but for clarity with reasonably large distortionλ1+ν = 1.36,
implying an amplitudeA = 1 of the aster-like structure. The trivial
casen = 1 of the body rotation of a disc hasλ = 1, no distortion, but
the same rotation (π/4, about a diameter) is taken as that suffered by
the antinodal generators in then = 2 illustration.

A = tanα is identifiable only at the antinodal lines. Though
trivial, then = 1 case is instructive: simple geometry applied
to then= 1 transformation gives the mapping of the azimuthal
angle:

tanφ = cosα tanΦ. (9)

Alternatively, explicit integration of eqn. (8) is trivialand
yields (9) forλ= 1 and useing

√
1+A2= secα. This analysis

of simple rotation is a motivation for adoptingh = ρAsin(nφ)
for the axial distortions into an anti-cone, and underscores a
need to have aφ(Φ) for non trivial cases when it already arises
for n = 1.

The method of [8, 9] for anti-cones was to take a global
version of Eqn. (7) by integrating overs to give the whole
new perimeterC, the surplus of which relative to the radius
determines the amplitude as a function of length changes,
A(λ). Sincen is along the perimeter,C = λ2πR. The inte-
gral of the right hand side of Eqn. (7) overφ = (0,2π) yields
λ−ν2πI(A,n) where the integralI is eqn (6) of [8]:

I(n,A) =
∫ 1

0
du

√

n2A2cos2 2πnu

(1+A2sin22πnu)2
+

1

1+A2sin2 2πnu
.

(10)
One sees from the current analysis that a stretch-free stateis
guaranteed globally since it is built-in locally. However one
cannot fully specify this problem locally. From the above,
the amplitudeA and the distortionλ are connected through
I(A,n) = λ1+ν. As λ changes, so too must the amplitudeA of
the ruffles in order that all surplus length around a perimeter
is accommodated. The negative Gaussian curvature localized
at the apex of the anti-cone is 2π(1− I). Eventual re-entrance
and the transition to highern anti-cones are discussed in [8, 9]
and below.
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Finite deformations: Denote byγ(s) a position on a curve on
the deformed surface with unit distancer = 1 from the ori-
gin; see Fig. 1(a). It will have evolved from the circle with
R = rλν = λν in the initial flat disc since these radii are per-
pendicular ton and contract by a factor ofλ−ν. The initial
perimeter is therefore 2πλν which then changes by a factor of
λ (since it is alongn) to 2πλ1+ν. Stretch is avoided and it
remains to minimize bend energy.

In the Darboux frame of the curveγ(s) with respect to the
deformed surface one has

T (s) = γ′(s) ; |γ′|= 1 tangent

u(s) ≡ u(γ(s)) unit surface normal

t(s) = u(s)∧T (s) tangent normal (11)

with ′ denoting d/ds. The rate of change of the tangent gives
the two components of bend:

T
′(s) = κnu(s)+κgt(s) (12)

whereκn = u(s) ·T ′ andκg = t(s) ·T ′ are respectively the
normal and geodesic curvatures. We need to minimize the
integral ofκ2

n over the deformed surface.
The surface is described by the scale-invariant curves

r(s) = rγ(s). By constructionγ(s) · γ(s) = 1 whenceγ′(s) ·
γ(s)≡ γ′ · r̂= 0. For clarity later, we have writtenγ = r̂, a unit
vector in the surface to the curve. It is also perpendicular to γ′
and thus iŝr= t. From the Darboux triad we haveu= r̂∧γ′,
whence from eq. (12) we have

κn = (r̂∧ γ′) · γ′′. (13)

The total bend energy is proportional to

∫
dr.rds

(

(r̂∧ γ′) ·
γ′′

r

)2

=
∫

dr
r

ds
(

(r̂∧ γ′) · γ′′
)2

. (14)

where
∫

ds is overs ∈ (0,2πλ1+ν). The 1/r with theγ′′ arises

because forr 6= 1, the derivativeT ′ is really 1
r

dT
ds =

γ′′

r . The
high bend energy density at the apex of the anti-cone is dis-
cussed in quantitative detail in [9], being smoothed out by
some stretch and in any event probably not arising because
of director escape into the third dimension during fabrication.

The essence of the normal bend energy of the anti-cone,

that is the
(

(r̂∧ γ′) · γ′′
)2

factor in eq. (14) associated with

the generator curves, can be re-written in terms of the Dar-
boux frame with respect to the surface of the sphere of radius
r = 1 on which the curveγ(s) can be also thought to live:
T (s) = γ′(s) as before, and̂r = us(s) where the subscript
s denotes “on the sphere”. The third member of the triad is
the curve’s tangent normal on the spherets(s) = us∧T =
r̂∧ γ′ = u. Thus the roles between the two frames have been
interchanged:u,t→ ts,us. The normal curvature, eq. (13),
on the anti-cone can be re-written asts ·T ′ = κs

g, that is, it
is the geodesic curvature of the generator curve, but on the

FIG. 3: (Left) The curveγ(s) on the surface of a (unit) sphere.
(Right) The ruffle surface generated by families of the the curves.
A measure of the extra length accommodated by the ruffle is ra-
tio of the (new) perimeterL to the great circle length 2π, here
L/2π = λ1+ν = 2.20, andn = 3.

sphere (heres also denotes “on the sphere”). The normal bend
energy of the anti-cone that we require to minimize is the same
as minimizing

∫
dAκs2

g , which is the problem of minimizing
the geodesic curvature of an elastica on a sphere, see Langer
and Singer [15–18], which we now employ:

The curve on a sphere with minimal geodesic curvature en-
ergy has curvature as a function of arc lengths of:

κs
g = κ0cn(

κ0s
2p

, p) (15)

where cn is a Jacobi elliptic function, andκ0 is the maximal
curvature along the curve. The curve must be periodic in the
arc length, that isκ0

2p L = n4K(p) with K(p) being the com-
plete elliptic integral of the first kind, since 4K(p) is the pe-
riod of cn, andL = 2πλ1+ν is the (new) perimeter in terms of
the (new) radiusr = 1. As before,n is the number of cycles in
one revolution. The parameterp ensures that the curve closes
up on the sphere’s surface –p = 0.51 in the illustration. Thus
the maximum curvature is fixed by

κ0

p
πλ1+ν = n4K(p). (16)

SinceT ′2 = γ′′2 = κs2
g + κs2

n = κs2
g + 1

r2 = κs2
g +1, to plot in

real space one needs to solveγ′′2 = 1+ κs2
g , with κs

g given
by Eq. (15) for the trajectoryγ(s). Results are of the form
of Fig. 3(left) for the trajectoryγ(s) on a sphere, and of
Fig. 3(right) for the surface generated by it. Note in particular
that the inflection points of inκs

g are on a closed geodesic (here
the equatorial great circle), there is re-entrance, there is no
constraint ofφ = Φ, and, as expected by convexity, there are
no sharply bent ridges where the bend energy would is large.
For extreme elongations (largeλ as found in elastomers) there
is so much extra arc length that has to be stored in the convo-
luted, bent trajectory that the curves eventually intersect them-
selves, forming orbit-like solutions [15–18] that are clearly
not accessible to our deforming, impenetrable surfaces, which
would then deviate from the solutions of Langer and Singer.

Note that the small amplitude form adopted, Eq. (2), repre-
sents the appropriate limiting case of this general solution. For
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small amplitudes, the curves generating the anti-cone never
deviate far from the equator of the sphere. Gauss curvature is
a second order effect in distance and so the curve can now
be thought of in this limit as lying instead across a cylin-
der. The problem is that of periodic elastica in the plane with
harmonic forms for displacement and curvature. To explic-
itly demonstrate that the form (2) is the minimizer, first note
that the LS minimal curvature (15) for small differences in
length between the perimeter and the great circle,p → 0, is
κs

g → κ0cos(qs), taking the limit of the elliptic function for
small modulus, and where maximal curvature also becomes
small with p such thatq = κ0/2p is finite. The general
form (13) of the normal curvature can be explicitly calculated
for trajectoriesγ(s) = (sinθsinφ,sinθcosφ,cosθ), in usual
spherical coordinates, in terms ofφ(s), θ(s) and their deriva-
tives. From the harmonic formh(φ), Eq. (2), we showed
the azimuthal variation dφ/ds is given by Eq. (7), and one
can easily find tanθ(φ) = 1/(Asin(nφ)) and thence dθ/dφ =
−nAcos(nφ)/

(

1+A2sin2(nφ)
)

and thus also derivatives of
θ(s). Injecting these relations into the curvature, keeping only
terms of orderA, one obtainsκs

g = A(n2 − 1)sin(nφ), sine
rather than cosine appearing because of a choice of phase.

Returning to Eq. (10) but integrating up to aφ and ans
rather than a complete revolution, one obtains

[

1+
A2

4
(n2−1)

]

φ+ · · ·= s.

Performing the complete integral, having expanded to lowest
order inA2, gives an explicit form for the amplitude:

A = 2

√

λ1+ν−1
n2−1

. (17)

Taking theseφ(s) andA(λ) in the curvature above then gives
the LS, minimal formκs

g = κ0cos(qs), showing that theh(φ)
in Eq. (2) is the bend minimizing harmonic form.

By identification, one obtains the curvature amplitude and
the wave-vector as functions of extensionλ:

κ0 = 2
√

(λ1+ν−1)(n2−1) q = n/λ1+ν. (18)

One must recall that we are dealing with a unit sphere in the
target space, which has set the scale fors andq.

Elastomers were not discussed in [8, 9] – they are more
subtle than glasses since they can sometimes alleviate stress
by director rotation. For instance in the azimuthal example
considered above and by Pismen, if anelastomer disc were
held flat on cooling so that extensile radial stress developed
because of the deficit of natural length in the radial direction,
then director rotation from the azimuthal towards the radial di-
rection would re-attribute length from the azimuthal to radial
direction, i.e. from a direction of (azimuthal) surplus to one
of (radial) deficit. Little or no energy cost for such a distortion
is required – so-called soft elasticity [19] – and the need for
anti-cones obviated. Thus general analyses of nematic elastica
mentioning nematic elastomers require caution.

An elastomer example thatwould produce anti-cones
would be a radial, 2-D, +1 defect being heated, that isλ< 1; in
Fig. 1(a) there would instead be radial lines ofn in the initial,
undistorted disc shown in the equatorial plane. Now a circular
path obtains surplus length (by a factor ofλ−ν) and a radius is
in deficit (by a factor ofλ). The radius cannot become longer
by rotation of the director towards it – it is already radial,and
the glass and elastomer responses are identical in character.
The difference is that elastomer contractions can be huge, for
instanceλ → 0.25 on heating (→ 4 on cooling) is possible,
and the topography changes could be accordingly larger than
in glasses.

We have explored and contrasted the differing assumptions
one can make about deformations involved in anti-cone for-
mation, principally the role of azimuthal displacements of
material points. Bend energy-minimising configurations have
been explicitly demonstrated. They embrace large deforma-
tions and re-entrance. We also point to possible experiments,
on elastomers rather than glasses, where effects are very large.
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