Negative Gaussian curvature from induced metric changes
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We revisit the light or heat-induced changes in topographipitially flat sheets of solid that elongate or
contract along patterned, in-plane director fields. Forataat azimuthal directors, negative Gaussian curvature
is generated — so-called “anti-cones”. We show that azielutiaterial displacements are required for the
distorted state to be stretch-free and bend-minimisinge fi@sultant shapes are smooth and aster-like and
can become re-entrant in the azimuthal coordinate for ldegermations. We show that care is needed when
considering elastomers rather than glasses, though thef@ffer huge deformations.

PACS numbers: 46.32.+x, 46.70.De, 02.40.Yy, 61.30.Jf

Differential growth in planar sheets [1, 2] induces topo-Poisson ratiov takes values typically in the ranq%,z) in
graphical change in order to avoid or minimize stretch ennematic glasses [6], and= % in nematic elastomers where
ergy. Analogous, solid-nematic sheets are particuladii ri volume is conserved. Note that area would be conserved for
since light or heat-induced length changes [3-7] are easily = 1, as assumed by Pismen [14], but this value is\of
and reversibly driven. Further, their director field$r) that  particular physical significance. If elastic stretchestarbe
give the principal direction of elongation or contracti@ande  avoided on cooling/darkness, then one simply requiresitnat
written in order to obtain any incompatibility of in-planed  deformation to a different topography, the deformatiordgra
formation that is then resolved by topographical change andnts take principal valuesandA~ corresponding to the nat-
out-of-plane buckling, resulting in a desired Gaussiav&ur ural opto-thermal value under those conditions. We thereby
ture. automatically avoid any stretch energy cost.

We revisit the simplest systems generating negative Gaus- In cylindrical coordinates, a reference state poinRis=
sian curvature, namely anti-cones [8, 9] (observed by Beper (R, ®,Z = 0) in the initially flat disc, the equatorial plane of
al [10]) that are the synthetic analogs of the ruffles, or asterghe sphere in Fig. 1(a). On cooling, its image in the targeest
of Ben Amaret al [1, 2]. In particular we examine pathologies isr = (p,®,z= h(@)), wherehis the elevation from the initial
arising in some modelling because of restrictions unnecess plane (note the use of lower and upper case variables). The
ily placed on shell deformations, and we present here bendarget state curve is on a sphere of radiusee the trajectory
minimising solutions that are the optimal choice in the mani in Fig. 1(a), and the in-material radius is now
fold of zero-stretch topographical changes from localisegh
ative Gaussian curvature. rP=p?+7Z —r=p\/1+(h/p)2 (1)

Effectively, heated or illuminated sheets of nematic solid
suffer changes of metric and hence changes in Gaussian curWd/e take a form for distortion that costs no stretch energy and
ture and thus of shape [11, 12]. This metric change approachill also minimise bend energy for small amplitudes:
also has recently been exploited in such problems in an am- )
bitious work also concerned with general shape deternainati h= pAsin(ng), 2)

[13]. Our analysis is equivalent, dealing with the differen . . . .

tial geometry of space curves generating these surfaces. v%?éth m_tege_rn for glosure. The am.pl|tudA., after scaling by
re-examine small amplitude, stretch-avoiding soluticis;e the cylindrical radiug, is A= tana; see Fig. 1(b). The angle
they point to differences with recent work [14], before we
present large amplitude, stretch-free, bend-minimisasgits.

We will also discuss the role of nematic elastomers (rather
than glasses) that have mobile directors and can resporel mor
subtly to Gaussian curvature change.

Consider concentric circles af in a flat sheet of nematic
glass initially occupying the equatorial plan of the sphiere
Fig. 1(a). Let the elongation along(r) be by a factor of
A > 1 (on cooling or return to the dark). There is a corre-
sponding contraction b}~V in the two perpendicular direc-
tions, one in-plane and the other through the thickness. \ol
ume changes locally by a factor of [j(g{) = A1"2V where), FIG. 1: (a) An initially flat disc of radiufk deformed into an anti-
A=V, A~V are the elements of the deformation gradient tensofone with an in-r_nat_erial radius Director lines are cir(_:ular, see for
X in its principal frame (based upam). The opto-thermal instance am(r) indicated at radiu®. (b) ann = 2 “anti-cone”.
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o is made between an anti-cone generator at a displacement
antinode and the equatorial plane initially taken by the flat
disc; see Fig. 1(a). The amplitude needed to take up the extra
length of the perimeter with respect to the radius is a global

requirement [8], not local, that we also return to.

An element @ of length in the target space image of the

reference space elemdrdd is

oan (30) oo+ (5

We now require the sheet deforms locally accordingto
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From eqgn. (1) we have
1

p(9) = A YR/ (1+A?sirfng)? (5)

1
h(g) = A RAsin(ng)/ (1+ A%sir?ng)? (6)

Returning relations (5) and (6) to egn (3) yields

1+ A2+ (M2 — 1)A2co€ng| /2

ds:dcp)\*"R[ + A?+ (n? — 1)A2cos ng| @)

(1+ A2sir? ng)

Dividing Eqn. (7) byRd®, using eqn. (4), and rearranging

gives

(1+ AZsir?ng)
[1+ A2+ (n2— 1)A2co@ng] /%

9 _
op

1+v

(8)

The image’s azimuthal angtgdiffers from the® of the orig-
inal target state point. Respect for the natural distostioh
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FIG. 2: Variation of the image azimuthal angpewith its reference

& for distortion to an anti-cone fon = 2, using the infinitesimal
form (2), but for clarity with reasonably large distortidhtV = 1.36,
implying an amplitudeA = 1 of the aster-like structure. The trivial
casen = 1 of the body rotation of a disc has= 1, no distortion, but
the same rotatiorm(/ 4, about a diameter) is taken as that suffered by
the antinodal generators in the= 2 illustration.

A = tana is identifiable only at the antinodal lines. Though
trivial, then = 1 case is instructive: simple geometry applied
to then = 1 transformation gives the mapping of the azimuthal

angle:

tang = coso tand.

©)

Alternatively, explicit integration of eqgn. (8) is triviadnd
yields (9) forh = 1 and useing/1 + A? = sea. This analysis
of simple rotation is a motivation for adoptitg= pAsin(ne)

for the axial distortions into an anti-cone, and underssare
need to have @(®) for non trivial cases when it already arises

the sheet has been built in. There are no stretch/compressiérn=1

costs, but some bend energy that we return to.

The method of [8, 9] for anti-cones was to take a global

Pismen [14] restricts all distortions in his model of anti- version of Eqn. (7) by integrating overto give the whole
cones to be meridional and radial as in the more straightforaeéw perimetelC, the surplus of which relative to the radius
ward case of simple cones, whereas these distortions to anfietermines the amplitude as a function of length changes,
cones described above suffer azimuthal displacements to&(A). Sincen is along the perimete€ = A2rR. The inte-
The differential method employed above is in effect equiva-gral of the right hand side of Eqn. (7) ower= (0, 2r) yields
lent to the metric method of Pismen, his eqns. (12)—(14), bud '21d (A,n) where the integrdlis eqn (6) of [8]:

with differing assumptions (abow and ¢) with the result
that our anti-cones, eg. (2), do not have creases.
esting to integrate relation (8) to giw#®), see Fig. 2, to see
for instance the azimuthal variation in this model forres 2
anti-cone which repeats €t = @ = 1t It has its first node at
& = @=T11/2, and its first antinode & = @ = 11/4. At both
these points it is clear, for symmetry reasons, that ¢. The

It is—inter

n2A2 co< 2mu 1
(14 A?sir?2mu)2 14 AZsirf2mu

(10)
One sees from the current analysis that a stretch-freeistate
guaranteed globally since it is built-in locally. Howeveareo
cannot fully specify this problem locally. From the above,

deviation ofg from @ is the essential difference between ourthe amplitudeA and the distortiorh are connected through

results and those of Pismen, and is the mechanism by whichA,n)

creases are here avoided.

= AV, As\ changes, so too must the amplitudlef
the ruffles in order that all surplus length around a perimete

The casen = 1 is simply a uniform body rotation by an is accommodated. The negative Gaussian curvature lodalize

o about a diameter since all radii @tand @+ 1t are simple

at the apex of the anti-cone ist@l — | ). Eventual re-entrance

continuations of each other and the disc remains flat. Glearland the transition to higheranti-cones are discussed in [8, 9]

A = 1 for body rotations. Fom > 2 the rotation byx such that

and below.



Finite deformations: Denote byy(s) a position on a curve on
the deformed surface with unit distance= 1 from the ori-
gin; see Fig. 1(a). It will have evolved from the circle with
R=rAY = AV in the initial flat disc since these radii are per-
pendicular ton. and contract by a factor df~V. The initial
perimeter is thereforer®" which then changes by a factor of
A (since it is alongn) to 21"V, Stretch is avoided and it
remains to minimize bend energy.

In the Darboux frame of the curwgs) with respect to the
deformed surface one has -

T(s) = Y(s); [Y|=1 tangent FIG. 3. (Left) The curvey(s) on the surface of a (unit) sphere.

- - . (Right) The ruffle surface generated by families of the thevest
u(s) = u(y(s)) unit surface normal A measure of the extra length accommodated by the ruffle is ra-
t(s) = u(s)AT(s) tangent normal (11) tio of the (new) perimetet to the great circle lengthT2 here

L/2m= AV =2.20, anch = 3.

with ’ denoting ¢ ds. The rate of change of the tangent gives

the two components of bend: sphere (heréalso denotes “on the sphere”). The normal bend

T'(S) = Kot (S) 4 Kt (S 12 energyiof.the anti—conethgtwg require to minimizej i§ the_esam
(s nt(8) + Kkgt(s) (12) as m|n|m|Z|ngfdAK§2, which is the problem of minimizing
wherek, = u(s) - T' andkq = t(s) - T' are respectively the the geodesic curvature of an elastica on a sphere, see Langer

normal and geodesic curvatures. We need to minimize th@nd Singer [15-18], which we now employ:
integral ofk2 over the deformed surface. The curve on a sphere with minimal geodesic curvature en-

The surface is described by the scale-invariant curve§'dy has curvature as a function of arc lengtf:
r(s) = ry(s). By constructiony(s) - y(s) = 1 whencey(s) - KoS
y(s) =Y -# = 0. For clarity later, we have written=#, a unit 2p’ P) (15)
vector in the surface to the curve. It is also perpendicolgr t . e . . .
where cn is a Jacobi elliptic function, arg is the maximal

and thus ig* = t. From the Darboux triad we have=# /Y, | h h b iodic in th
whence from eq. (12) we have curvature along the curve. The curve must be periodic in the
arc length, that |§%L = ndK(p) with K(p) being the com-

Kg = Kocn(

Kn=(PAY)-Y' (13)  plete elliptic integral of the first kind, since 4§) is the pe-
T riod of cn, and_ = 2mM\*V is the (new) perimeter in terms of
The total bend energy is proportional to the (new) radius = 1. As beforenis the number of cycles in

one revolution. The parametprensures that the curve closes

2
. Y dr . A\ 2 up on the sphere’s surfacep= 0.51 in the illustration. Thus
/dr.rds((rA\_/)-T :/Tds((r/\\_/)'\_/) - (14 the maximum curvature is fixed by
Ko »14v _
where [ dsis oversc (0,2m\*V). The 1/r with the\_/’ arises E"}‘ = n4K(p). (16)
because for # 1, the derivativel” is really%%—?; = YT The SinceT’2 — Y'/Z _ K32+ KS2 = Kaz+ Flz _ Kaz+ 1, to plot in

high bend energy density at the apex of the anti-cone is dis- 2 _ S i LS
cussed in quantitative detail in [9], being smoothed out byreal space one needs to soyé = 1+Kg", with kg given

some stretch and in any event probably not arising becauééy E_q' (15) for the trajec_tor)_[(s). Results are of the form
of director escape into the third dimension during fabigrat ~ ©f Fig- 3(left) for the trajectoryy(s) on a sphere, and of

The essence of the normal bend energy of the anti-con&19- 3(right) for the surface generated by it. Note in paiféic
that the inflection points of irg are on a closed geodesic (here

2
that is the((ﬁm_/) \_/,) factor in eq. (14) associated with {he equatorial great circle), there is re-entrance, theneoi

the generator curves, can be re-written in terms of the Dareonstraint ofp = ®, and, as expected by convexity, there are
boux frame with respect to the surface of the sphere of radiugo sharply bent ridges where the bend energy would is large.
r = 1 on which the curve/(s) can be also thought to live: For extreme elongations (largeas found in elastomers) there
T(s) = Y(s) as before, and® = us(s) where the subscript is so much extra arc length that has to be stored in the convo-
s denotes “on the sphere”. The third member of the triad iduted, bent trajectory that the curves eventually intergeam-

the curve’s tangent normal on the sphegts) = usAT = selves, forming orbit-like solutions [15—18] that are clga

# AY = u. Thus the roles between the two frames have beenot accessible to our deforming, impenetrable surfaceighwvh
interchangedu,t — ts,us. The normal curvature, eq. (13), would then deviate from the solutions of Langer and Singer.
on the anti-cone can be re-written s T" = Kg, that is, it Note that the small amplitude form adopted, Eq. (2), repre-
is the geodesic curvature of the generator curve, but on theents the appropriate limiting case of this general satuti@r
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small amplitudes, the curves generating the anti-conerneve An elastomer example thatould produce anti-cones
deviate far from the equator of the sphere. Gauss curvature would be aradial, 2-D, +1 defect being heated, thatdsl; in
a second order effect in distance and so the curve can nofig. 1(a) there would instead be radial linegoin the initial,
be thought of in this limit as lying instead across a cylin- undistorted disc shown in the equatorial plane. Now a cacul
der. The problem is that of periodic elastica in the planéwit path obtains surplus length (by a factoinof’) and a radius is
harmonic forms for displacement and curvature. To explicin deficit (by a factor ofA). The radius cannot become longer
itly demonstrate that the form (2) is the minimizer, first@ot by rotation of the director towards it — it is already radaid
that the LS minimal curvature (15) for small differences inthe glass and elastomer responses are identical in characte
length between the perimeter and the great cirple; 0, is  The difference is that elastomer contractions can be hoge, f
Kg — KoC0ggs), taking the limit of the elliptic function for instanceA — 0.25 on heating-{; 4 on cooling) is possible,
small modulus, and where maximal curvature also becomeand the topography changes could be accordingly larger than
small with p such thatq = ko/2p is finite. The general in glasses.
form (13) of the normal curvature can be explicitly calcatht We have explored and contrasted the differing assumptions
for trajectoriesy(s) = (sinBsing,sinBcosy, cosd), in usual  one can make about deformations involved in anti-cone for-
spherical coordinates, in terms @fs), 6(s) and their deriva- mation, principally the role of azimuthal displacements of
tives. From the harmonic forrh(¢), Eq. (2), we showed material points. Bend energy-minimising configurationgeha
the azimuthal variation @/ ds is given by Eq. (7), and one been explicitly demonstrated. They embrace large deforma-
can easily find ta(g) = 1/ (Asin(ng)) and thence@/dp=  tions and re-entrance. We also point to possible expergnent
—nAcogng) / (1+ A?sir?(ng)) and thus also derivatives of on elastomers rather than glasses, where effects are vgey la
6(s). Injecting these relations into the curvature, keeping onl
terms of orderA, one obtaink§ = A(n” — 1) sin(ng), sine
rather than cosine appearing because of a choice of phase.
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