
Synthese
https://doi.org/10.1007/s11229-018-1780-1

A note on Horwich’s notion of grounding

Thomas Schindler1

Received: 13 June 2017 / Accepted: 3 April 2018
© The Author(s) 2018

Abstract Horwich (Deflationism and paradox, Oxford University Press, Oxford, pp
75–84, 2005) proposes a solution to the liar paradox that relies on a particular notion of
grounding—one that, unlike Kripke’s (J Philos 72:690–716, 1975) notion of ground-
ing, does not invoke any “Tarski-style compositional principles”. In this short note, we
will formalize Horwich’s construction and argue that his solution to the liar paradox
does not justify certain generalizations about truth that he endorses. We argue that
this situation is not resolved even if one appeals to the ω-rule. In the final section, we
briefly discuss how Horwich might respond to the situation.

Keywords Truth · Liar paradox · Deflationism · Minimalism · ω-Rule · Kripke’s
theory of truth

1 Introduction

According to the minimalist position (Horwich 1998b), the basic axioms of truth are
instances of the so-called Equivalence Schema

The proposition that p is true if and only if p

An immediate problem for this account is that some instances of the Equivalence
Schema may lead to contradictions due to the liar and other semantic paradoxes. This
raises the question of what axioms the theory of truth actually comprises—what are
the admissible instances of the Equivalence Schema?
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In this short note we shall be concerned with Horwich’s response to this problem.
The plan is as follows. In the next section we will look at a suggestion made by
Horwich in his paper (2005) on how to characterize the admissible instances of the
Equivalence Schema, which involves the idea of grounding. While this leads to a
definite theory of truth, we will show that no interesting generalizations about truth
(such as ‘A conjunction is true if and only if both conjuncts are true’), which Horwich
deems to be true, are entailed by the theory. This is a problem for Horwich because “an
adequate theory of any phenomenon (e.g., truth) must explain all the facts concerning
that phenomenon (e.g., general facts about truth).” (Horwich 2005, p. 83) In the third
section, we will therefore look at a second formalization that involves the ω-rule.
While the appeal to this rule is somewhat problematic and has been criticized, it is
nevertheless a move that Horwich has made at several places. However, we will show
that even by appealing to the ω-rule, the problem of deriving general facts about truth
is still not resolved. In the final section, we briefly discuss howHorwichmight respond
to this situation.

2 The semantic paradoxes and grounding

Horwich (1998b, pp. 40–42) considers four possible solutions to the liar paradox:

1. to reject classical logic;
2. to adopt a typed theory of truth;
3. to deny that paradoxical sentences express propositions;
4. to reject certain instances of the Equivalence Scheme.

He claims that (1) and (2) are too radical and that (3) is wrong. The argument goes
roughly as follows. For any condition C(x), i.e., predicate with one free variable, it
is possible to believe that the proposition satisfying that condition is false. Since any
object of belief is a proposition, this implies that paradoxical propositions exist. For
instance, let C(x) be the condition ‘x is being said by the least intelligent person in
the room’. Then it is easy to imagine circumstances in which someone might say, and
firmly believe, ‘What is being said by the least intelligent person in the room is false’.
Hence, since any object of belief is a proposition, ‘What is being said by the least
intelligent person in the room is false’ must express a proposition. However, it may
just so happen that the least intelligent person in the room is identical with the person
believing that proposition. Hence that proposition would be paradoxical in classical
logic.

Horwich therefore opts for the fourth route, to deny that all instances of the Equiv-
alence Schema are correct. In an often cited remark, he proposes three constraints on
the restriction on the Equivalence Schema:

(a) that the minimal theory not engender ‘liar-type’ contradictions; (b) that the
set of excluded instances be as small as possible; and—perhaps just as important
as (b)—(c) that there be a constructive specification of the excluded instances
that is as simple as possible. (Horwich 1998b, p. 42)

Many authors have interpreted that passage as saying that the minimalist theory will
consist of the largest possible collection of instances of the Equivalence Schema that
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does not generate paradoxes—e.g., Gupta (2000). However, McGee (1992) has shown
that if the above constraints are interpreted as such a maximality criterion, i.e., that
the set of acceptable instances of the Equivalence Schema ought to be a maximal
consistent set of T-biconditionals, then that criterion will not give us a unique theory
at all. There are uncountably many maximal consistent sets of T-biconditionals which
are pairwise inconsistent and,moreover, none of them is recursively enumerable (semi-
computable). Thus, themaximality constraint doesn’t give us a unique theory and none
which has a constructive specification.

The upshot of McGee’s result is that one needs another (or additional) criterion
for singling out the acceptable instances of the Equivalence Schema. Horwich (2005)
considers the popular idea that an instance of the Equivalence Schema is acceptable
as long as the proposition is grounded in the non-truth-theoretic facts. However, he
rejects Kripke’s celebrated approach (Kripke 1975) because it “invokes Tarski-style
compositional principles” (p. 82, footnote 11). Horwichs suggests, however, that the
concept of grounding may be adapted in such a way that it squares with minimalism.
The idea is to use a Kripke-like construction but one that merely involves the notion
of logical consequence. More precisely, he proposes to regard a sentence as grounded
if and only if that sentence or its negation

is entailed either by the non-truth-theoretic facts, or by those facts together
with whichever truth-theoretic facts are ‘immediately’ entailed by them (via
the already legitimized instances of the equivalence schema), or ... and so on.
(Horwich 2005, p. 81)

We may try to formalize Horwich’s notion of groundedness as follows. As our toy
language, we will use the language of Peano arithmetic augmented with a primitive
unary predicate Tr . We identify a sentence with its Gödel number (relative to some
fixed coding). Our language contains a name for each sentence ϕ, namely the numeral
of its code, denoted by �ϕ�. We will identify the non-truth-theoretic facts with the set
of sentences that are true in the standard model of arithmetic, N. We denote this set
of sentences by Th(N), the theory of N. For any set of sentences, X , let X−: = {¬ϕ |
ϕ ∈ X} and let T � X denote the T-schema restricted to members of X ∪ X−. Now,
define by transfinite induction

H0 := Th(N)

Hα+1 := {ϕ | Hα ∪ T � Hα |� ϕ}
Hγ :=

⋃

α<γ

Hα

where |� is the relation of logical consequence in classical first-order logic.
Since logical consequence is monotonic,1 this sequence of sets reaches a fixed

point,2 which we denote by H . Now we may let the set of grounded sentences, G, be
defined as follows:

1 That is, � |� ϕ implies � |� ϕ for all sets of premisses � ⊇ �.
2 That is, there is an ordinal α such that Hα = Hβ for all β ≥ α.
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G := H ∪ H−

As in the case of Kripke’s notion of grounding, there will be no effective method for
enumerating all the grounded sentences, because the non-truth-theoretic facts are not
recursively enumerable. Of course, one might replace Th(N) by the set of theorems of
Peano arithmetic, thus obtaining a recursively enumerable set of grounded sentences.
Perhaps this is preferable for another reason as well. The definition of Th(N) involves
the notion of truth in a model, and it is not clear whether this notion is available to the
minimalists.

Either way, it is not hard to see that the fixed point, H , of the above hierarchy is
reached after the first limit ordinal, that is:

Proposition 1 Hω = Hω+1

It suffices to show Hω+1 ⊆ Hω. The other inclusion follows from the monotonicity
of logical consequence. So let ϕ ∈ Hω+1. Then by definition Hω ∪ T � Hω |� ϕ. By
compactness of first-order logic, there must be some finite� ⊆ Hω ∪T � Hω such that
� |� ϕ. Since � is finite, we can find some n ∈ ω such that � ⊆ Hn ∪ T � Hn . Since
logical consequence is monotonic, Hn ∪ T � Hn |� ϕ and therefore ϕ ∈ Hn+1 ⊆ Hω.

This creates an immediate problem. First, it is not possible to show that infinite
iterations of applications of the truth predicate to a non-truth-theoretic sentence are
grounded. That is, while e.g., Tr�1 = 1�, Tr�Tr�1 = 1��, and so on will turn out to
be grounded and true, the statement Trω�1 = 1� won’t.3 Perhaps this is not much of
a problem after all. One might think that such infinite iterations of applications of the
truth predicate to a sentence are not important, as they don’t add any content to the
plain claim that 1 = 1.

However, amore serious problem is that no non-trivial truth-theoretic generalization
will turn out to be grounded. For example, while both Tr�ϕ�, Tr�¬ϕ� will be in G for
every arithmetical sentence ϕ, the (formalization of the) sentence ‘For all sentences
of arithmetic, x , either x is true or the negation of x is true’ won’t be in G, because in
general universal statements are not implied by the set of their instances.

Hence, while the above definitions lead to a definite theory of truth, it does not
seem to lead to a good theory of truth, because “a good theory of truth [...] is a
body of axioms that can explain all the facts about truth—and such facts include
generalizations.” (Horwich 2005, p. 84, fn 14)

3 Adding the ω-rule

PerhapsHorwich canhelp himself by appealing to theω-rule. Theω-rule is an infinitary
rule that allows us to derive a universal statement ∀x ϕ whenever we have a proof of
ϕ(n) for every n ∈ ω. Horwich actually considers that option (Horwich 2005, p. 84,
fn 14):

3 The expression Trω�1 = 1� is shorthand for ∀x T f (x, �ϕ�), where f is a function symbol for the function
f that maps the code of a sentence to the code of the sentence preceded by x + 1-many applications of the
truth predicate, Tr . For details, see Halbach (2011, p. 157).
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As for the minimalist, he needs to show how general facts about truth could be
explained in terms of what he alleges to be the basic facts about truth—i.e., facts
of the form, ‘〈p〉 is true ↔ p’. But he is licensed to cite further explanatory
factors (as long as they do not concern truth). And this license yields a solution.
For it is possible to suppose that there is a truth-preserving rule of inference that
will take us froma set of premises attributing to each proposition of a certain form
some property, G, to the conclusion that all propositions have property G. And
this rule—not logically valid, but none the less necessarily truth-preserving given
the nature of propositions—enables the general facts about truth to be explained
by their instances. [...] The idea comes from Tarski himself that generalizations
about truth may be deduced from their instances by means of some such rule
(“infinite induction”). (Horwich 2005, p. 84, fn 14)

What Horwich has in mind here seems indeed to be the ω-rule. Horwich’s appeal to
the ω-rule has been critisized by Raatikainen (2005). The main problem here is that
theω-rule, because of its infinitary character, cannot be applied by any finite agent, not
even an idealized one. Let us, however, set this problem aside and investigate whether
the appeal to the ω-rule can actually help Horwich. Let us define

H∗
0 := Th(N)

H∗
α+1 := {ϕ | H∗

α ∪ T � H∗
α ω ϕ}

H∗
γ :=

⋃

α<γ

H∗
α

where ω refers to deducibility in ω-logic. Again, this construction is monotonic and
therefore reaches a fixed point, which we will denote by H∗.

How strong is H∗? Does it entail any non-trivial truth-theoretic generalizations?
We will answer this question by embedding H∗ into a well-known supervaluational
fixed point theory by Kripke. We assume the reader is familiar with the basics of
(Kripke 1975). We say that X is an admissible expansion of Y if and only if X ⊇ Y
and X ∩ Y− = ∅. Define

V F0 := Th(N)

V Fα+1 := {ϕ | for all admissible X ⊇ V Fα : (N, X) |� ϕ)}
V Fγ :=

⋃

α<γ

V Fα

Here, (N, X) |� ϕ means that ϕ is true in the standard model of arithmetic when
the predicate Tr is interpreted by the set of sentences X .

Let V F denote the fixed point of the V Fα-hierarchy. Of course, V F is Kripke’s
minimal fixed point theory relative to van Fraassen’s supervaluational scheme.

The following result is straightforward:

Proposition 2 For all α, H∗
α ⊆ V Fα
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The proof is by induction on α. The case α = 0 and α limit are trivial. So assume as
induction hypothesis that H∗

α ⊆ V Fα in order to show H∗
α+1 ⊆ V Fα+1. Letϕ ∈ H∗

α+1.
By definition of H∗

α+1 this means that

H∗
α ∪ T � H∗

α ω ϕ (1)

We will show for all admissible X ⊇ V Fα that

(N, X) |� H∗
α ∪ T � H∗

α (2)

Then (1) and (2) will imply that (N, X) |� ϕ for all admissible X ⊇ V Fα , because
the ω-rule is valid in all models of the form (N, X). This in turn will imply that
ϕ ∈ V Fα+1, as desired.

We first show that (N, X) |� H∗
α . By induction hypothesis H∗

α ⊆ V Fα . Since
V Fα ⊆ V Fα+1 this implies, by definition of V Fα+1, that (N, X) |� H∗

α for all
admissible X ⊇ V Fα .

Now we show that (N, X) |� T � H∗
α . Recall that T � H∗

α denotes the T-schema
restricted to all members of H∗

α and their negations.
If ϕ ∈ H∗

α then (N, X) |� ϕ by previous argument. Clearly (N, X) |� Tr�ϕ�
because ϕ ∈ H∗

α ⊆ V Fα ⊆ X for every admissible X . Hence (N, X) |� Tr�ϕ� ↔ ϕ.
Now assume ϕ ∈ (H∗

α )−. Hence ϕ has the form ¬ψ for some ψ ∈ H∗
α .

Then (N, X) |� ψ by the above argument. Since ψ ∈ H∗
α , no admissible

X ⊇ V Fα can contain ¬ψ (recall that by induction hypothesis, V Fα ⊇ H∗
α ).

Hence (N, X) |� ¬Tr�¬ψ�. Therefore, (N, X) |� ¬Tr�¬ψ� ∧ ψ , which implies
(N, X) |� Tr�¬ψ� ↔ ¬ψ .

This concludes the proof.
It is not hard to see that some interesting general facts about truth are actually

entailed by (are included in) H∗—for example, the statement that all arithmetical
(i.e., not truth-theoretic) sentences are either true or false (have a true negation). So the
appeal to theω-rule solves some problems that the previous definition of groundedness
encountered. However, not all is well.

It is a well-known fact that the following statements (suitably formalized) are not
true in V F :4

1. For any sentence x , the double negation of x is true if and only if x is true;
2. A conjunction is true if and only if both conjuncts are true;
3. A disjunction is true if and only if one of its disjuncts is true;
4. If a conditional and its antecedent are true then so is the consequent;
5. No sentence is both true and false;
6. Every sentence is either true or false;
7. A sentence is true if and only if its negation is not true.

Hence, by Proposition 2, none of these sentences is entailed by H∗.5

4 See for example Field (2008, chap. 11).
5 Notice that in (1)–(7), the quantifiers range over all sentences, even those containing the truth predicate.
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4 Discussion

According toHorwich, some or perhaps all of the above truth-theoretic generalizations
are true. For example, in (Horwich 1998b, p. 77) he clearly endorses (5) and (6). (Their
conjunction is equivalent to (7)). However, none of these generalizations turn out to
be grounded according to his notion of groundedness—not even if we appeal to the
ω-rule. So what can be done?

Perhaps one can simply provide a stronger notion of groundednesswithout invoking
compositional principles for the truth predicate, i.e., using only tools that are acceptable
from a minimalist point of view. Since we are admitting the ω-rule, one might think
that this project has better chances of success now.6 For instance, Meadows (2015) has
shown how to characterize the sentences that are true in the minimal Strong Kleene
fixed point using an infinitary tableau system that only involves rules for the logical
connectives, the ω-rule, and simple introduction and elimination rules for the truth
predicate (namely, to infer ϕ from Tr�ϕ� and ¬ϕ from ¬ Tr�ϕ�). Hence, at least in
the Strong Kleene case, it seems possible to adopt Kripke’s theory without invoking
compositional principles for the truth predicate. Unfortunately, there are two problems
with this proposal. First, Kripke’s theory is a non-classical theory of truth, in violation
of Horwich’s desideratum that classical logic is not to be rejected. This problem can
be overcome, however, by appealing to the classical closure of the fixed point, i.e., by
declaring every sentence that is not true or false in the fixed point to be false. Either
way, a major problem remains: Kripke’s Strong Kleene theory (in either version) fails
to entail many generalizations that Horwich and classical logicians endorse—e.g., it
does not entail (5), (6), or (7).7 For that purpose, we would need a stronger valuation
scheme. For example, if we require that the admissible expansions in the definition of
the successor stage of the V F-construction are maximal consistent, then we do get (1),
(2), (4), (5), (6), and (7).8 However, this suggestion is problematic as well. First, it is
not clear that we can characterize the theory without invoking compositional clauses
for the truth predicate.9 The second problem is that the theory will be non-classical
again. Unfortunately, this time the move from the fixed point to its classical closure

6 Thanks to an anonymous referee for pressing that point.
7 See Field (2008, chap. 11.3) and Halbach (2011, chap. 15).
8 See Field (2008, chap. 11.3). Field calls the resulting theories strong supervaluational theories.
9 For instance, consider what Field calls medium supervaluational theories—the theories that are obtained
by requiring that the admissible expansions in the V F-construction are classically consistent (a condition
that is also imposed on the strong theories that we are discussing above). These were introduced by Cantini
(1990).Meadows (2015) has developed an infinitary tableau system characterizing theminimalCantini fixed
point. Cantini (1990) has developed an infinitary Tait calculus doing the same job, and both Welch (2009)
and Beringer and Schindler (2017) have developed infinite two person games with the same function. All of
these systems contain specific conditions or rules for the truth predicate corresponding to the consistency
requirement—rules that go beyond the simple introduction and elimination rule that we encountered during
our discussion of the Strong Kleene fixed point—and it is quite dubitable whether they are acceptable from
a minimalist point of view.

123



Synthese

is of little help: it can be shown that the desired genenralizations (6) and (7) are no
longer true in the classical closure.10

A second response is simply to adopt (some of) the relevant generalizations as
truth-theoretic axioms. This is indeed the preferred option of e.g., Halbach andHorsten
(2005).Thismovedoes not seem to squarewithHorwich’sminimalist position, though.
Horwich insists that all facts about truth need to be explained on the basis of what
he considers to be the fundamental facts concerning the notion of truth—namely,
instances of the Equivalence Schema. Hence, if the generalizations in question do not
follow from them (in some broad sense of ‘following’, which may involve the ω-rule),
it would appear that they are simply not true according to Horwich’s account.

This last point hints at a deeper problem underlying Horwich’s account; it would
appear that some generalizations are simply out of his reach. Even if it were possi-
ble, say, to select a maximal consistent set of instances of the Equivalence Schema
among the uncountably many ones, some instances of the Equivalence Schema must
be excluded—e.g., the instance given by the liar. Now, since some instances of the
Equivalence Schema do not hold, it is not possible to account for some instances of,
say, the principle of bivalence, (6). If we had both

The proposition that p is true if and only if p

and

The proposition that not p is true if and only if not p

then the law of excluded middle would allow us to derive

The proposition that p is true or the proposition that not p is true

But if p is ‘paradoxical’ we simply will not have the relevant instances of the Equiv-
alence Schema at our disposal.11 Hence, Horwich’s adoption of the principle of
bivalence seems to be in conflict with his account that all facts about truth need to be
explained on the basis of instances of the Equivalence Schema.

Maybe Horwich could simply deny, despite our intuitions to the contrary, that
the principle of bivalence and other truth-theoretic generalizations are actually true.
Horwich offers both an account of the meaning of the word ‘true’ as well as the
property of truth, that is truth itself. While the axioms for the property of truth consist
in instances of the Equivalence scheme, the meaning of the word ‘true’ is given by
specifying a fundamental acceptance property in terms of which our overall use of the
word is best explained. The fundamental acceptance property governing our use of
‘true’ is our inclination to accept instances of the Equivalence Schema. This account
of the meaning of ‘true’ is part of a larger use-theoretic account of meaning that is
developed in more detail in (Horwich 1998a). Similarly, Horwich offers an account
as to why we accept certain truth-theoretic generalizations in addition to offering an
account as towhy such generalizations are (allegedly) true (Horwich 2005, pp. 83–84).

10 As Field (2008, p. 180) points out, no non-trivial fixed point can contain either the liar sentence or its
negation; hence (6) cannot be true in a classical model if the truth predicate is interpreted by the fixed point.
Hence (7) cannot be true there either, because (7) entails (6) in classical logic.
11 A similar observation was made by Beall and Armour-Garb (2005, p. 93).
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Now, while Horwich denies that all instances of the Equivalence Schema are correct
about the property of truth, he claims that

this is not an overwhelming difficulty for the supposition that what we mean
by ‘true’ is captured by the equivalence schema. For although certain instances
yield contradictions, it might be argued that anyone who means what we do by
‘true’ has a certain inclination to accept even those instances—an inclination
that is overriden by the discovery that they lead to contradictions. Indeed, one
might suppose that it is only because we have such an inclination that the ‘liar’
sentence present us with a paradox! (Horwich 1998b, p. 136)

Perhaps a similar move could be made regarding certain generalizations about truth.
The idea is that our inclination to accept certain generalizations, such as the principle
of bivalence, can be explained on the basis of our inclination to accept all instances
of the Equivalence Schema.12 But just as the Equivalence Schema actually holds only
for some but not all propositions, so does the principle of bivalence only hold for some
but not all propositions. It may only hold for the non-truth-theoretic propositions, or
only the grounded propositions, or what have you. And, as we have seen, some of
these restricted generalizations can be accounted for if one appeals to the ω-rule.

If this route is taken, one does not need to go so far as to invoke the ω-rule. Hal-
bach (2001) and, more recently, Horsten and Leigh (2017) have shown that reflection
principles already get one quite far. Reflection principles are schemata of the form

ProvS(�ϕ�) → ϕ

where ProvS is some (standard) provability predicate for some theory S. In the above
mentioned articles, it is shown that certain interesting generalizations about truth
can be obtained by adding iterated reflection principles to disquotational theories of
truth. While it is true that one can account for more generalizations using the ω-rule,
reflection principles have the obvious advantage that they allow one to stay within the
confines of first-order logic.
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