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ABSTRACT
Thermoacoustic instabilities, which arise due to the interac-

tion between flames and acoustics, are sensitive to small changes
to the system parameters. In this paper, we apply adjoint-based
shape optimization to a 2D finite element Helmholtz solver to
find accurately and inexpensively the shape changes that most
stabilise a 2D thermoacoustic system in the linear regime. We
examine two cases: a Rijke tube and a turbulent swirl combus-
tor. Both systems exhibit an unstable longitudinal mode and we
suppress the instability by slightly modifying the geometry. In
the case of the turbulent swirl combustor, the sensitivities are
higher in the plenum and in the burner than in the combustion
chamber, mainly due to the effect of the mean temperature. In
the cooler regions, the local wavelength is shorter, which means
that geometry changes of a given distance have more influence
than they do where the local wavelength is longer. This is the first
time adjoint-based shape optimization is applied to 2DHelmholtz
solvers in thermoacoustics, after being previously applied to low-
order thermoacoustic networks. But Helmholtz solvers have an
intrinsic advantage: they can handle complex geometries. The
easy scalability of this method to complex 3D geometries make
this tool a strong candidate for the iterative design of thermoa-
coustically stable combustors.
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NOMENCLATURE
Roman letters
c Speed of sound [m s−1]
n Interaction index [J m−1]
n (Outward) unit normal []
p Pressure [N m−2]
q Heat release per unit volume [W m−3]
r Reference direction []
R Reflection coefficient [/]
t Time [s]
u Velocity vector [m s−1]
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v Distribution of heat release in 2D [m−2]
w Distribution of reference region in 2D [m−2]
x [m]
Z Specific impedance [/]
Greek letters
γ Heat capacity ratio [/]
ρ Density [kg m−3]
τ Time delay [s]
ω Eigenvalue []
Superscripts and subscripts
(¯) Mean quantity
( )′ Perturbation quantity
(ˆ) Fourier transform
( )† Adjoint

1. INTRODUCTION
Thermoacoustic oscillations are a major hazard to the safe

performance of gas turbines and rocket engines. During the
combustion process, chemical energy is converted into thermal
energy. The unsteady heat release rate excites sound waves that
in turn interact with the flame. If the heat release rate and the
pressure perturbations are sufficiently in phase [1], then the acous-
tic energy increases, unless its growth is counterbalanced by the
losses due to damping or acoustic radiation from the boundary [2].
These oscillations can cause mechanical fatigue, environmental
noise, increased emissions and, in the worst cases, extinction of
the flame or structural failure. Thermoacoustic systems are sen-
sitive to small changes to the operating parameters or the shape
of the system [3]. Even if no thermoacoustic oscillations appear
when testing single components, instabilities can arise during the
late stages of the design process, making it more difficult to de-
sign a stable system [4]. Ideally, gas turbines and rocket engines
will be linearly stable over their operating regime. This require-
ment is fulfilled through extensive testing, by not operating at
certain regimes, or by adding passive dampers such as Helmoltz
resonators.

In network models (lumped-parameter models) [5, 6], the
system is modelled as a network of ducts with an acoustically
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compact flame model. A mean flow can be included. This
is the simplest approach to modelling thermoacoustic systems.
In Helmholtz solvers [7], complex three-dimensional geometries
can be modelled but the mean flow is set to zero. The unsteady
heat release is modelled as a distributed acoustic source that is a
linear function of the acoustic variables. This approach is more
versatile but the size of the problem is bigger than in a network
model. Lastly, large eddy simulations (LES) [8] simulate the
unsteady reacting flow in the combustor with higher accuracy but
considerably higher cost. This cost precludes the exclusive use
of LES in the design process. For a versatile design process,
all these approaches, together with experiments, need to be used
jointly.

Magri and Juniper [9] applied adjoint-based sensitivity anal-
ysis in thermoacoustics for the first time. They explored both
the feedback and the base state sensitivities of the eigenvalues of
a time-delayed thermoacoustic system. The feedback sensitivity
reveals the influence of all linear feedback mechanisms. Exper-
iments were performed [10, 11] in order to test the theoretical
results. This validated some results but also revealed defects in
the low-order model used in [9]. The sensitivity analysis of a
low-order thermoacoustic network using a wave-based approach
was performed in [12], first considering a zeroMach number flow
and then removing this hypothesis and adding amoving flame and
a choked outlet. Adjoint methods were also used for speeding
up uncertainty quantification in thermoacoustic systems: first-
and second-order eigenvalue perturbations in nonlinear eigen-
value problems were used in a network model for an annular
combustor [13] and in a turbulent swirl combustor [14]. The first
application of adjoint equations to Helmholtz solvers appears in
[15], followed by [14] for a turbulent swirl combustor and [16] for
an annular combustor. Aguilar and Juniper [17] applied adjoint
gradient-based optimization to a thermoacoustic network of an
annular combustor to stabilize the unstablemodes by tweaking the
geometric parameters of the model: length and cross-sectional
area of the elements. Mensah et al. [18] have recently applied
a parameter-free approach to the shape sensitivity analysis of a
Rijke tube using a 3DHelmholtz solver. A comprehensive review
of the use of adjoints in thermoacoustic can be found in [19].

This article is structured as follows. In Section 2, following
[20], we derive the relevant Helmholtz equation. In Section 3,
we write the nonlinear eigenvalue problem that arises from the
finite element discretization and introduce the adjoint eigenprob-
lem. In Section 4, we derive the eigenvalue shape derivatives
in Hadamard form. Finally, we apply gradient-based shape op-
timization to two cases of unstable thermoacoustic systems in
two dimensions: an electrically heated Rijke tube in Section 5,
and a turbulent swirl combustor in Section 6. By applying small
geometry modifications, we stabilize both systems.

2. THERMOACOUSTIC HELMHOLTZ EQUATION
For a compressible inviscid flow, we consider small pertur-

bations evolving on top of a steady zeroMach number mean flow.
The flow variables are decomposed as (·) = ¯(·)+ε(·)′, with ε � 1.
The bar ¯ denotes the steady mean quantity and the prime ′ the
unsteady perturbation quantity. For the mean quantities, we ob-
tain ∇p̄ = 0, where p̄ is the mean pressure. For the perturbation

quantities:

ρ̄
∂u′

∂t
+ ∇p′ = 0 (1)

∇ ·

(
1
ρ̄
∇p′

)
−

1
γ p̄

∂2p′

∂t2 = −
γ − 1
γ p̄

∂q′

∂t
(2)

Equation (1) is the momentum equation and Eq. (2) is a wave
equation. ρ̄ is the mean density, γ is the heat capacity ratio, u′
and p′ are the velocity and pressure perturbation, respectively,
and q′ is the unsteady heat release per unit volume. The mean
density, ρ̄, contains the steady effect of the flame.

The unsteady heat release q′ is modelled using a local for-
mulation of the n − τ model [21], in which the heat release is
proportional to the weighted integral of the velocity perturbation
u′ over a reference region in a reference direction r at time t,
after some time delay τ.

q′(x, t) = nv(x)
∫
w(ξ)u′(ξ, t − τ) · r dΩ (3)

n = NQ̄/ū(xr ) is the dimensional interaction index, with units
J m−1, where N is the non-dimensional interaction index (the
magnitude of the flame transfer function), Q̄ is the global mean
heat release and ū(xr ) is the mean velocity at the reference point
xr . In this paper we assume that N and τ do not depend on the
angular frequency. The two distributions v and w integrate to 1
and define the profile of the heat release rate and the reference
region, respectively.

We seek separable solutions of the form:

p′(x, t) = Re{p̂(x)e−iωt } (4)

After substituting q′ from Eq. (3) into Eq. (2) and ∂u′/∂t
from Eq. (1), we obtain a Helmholtz equation for the pressure
perturbation with distributed heat release, acting as an acoustic
source.

∇ ·

(
1
ρ̄
∇p̂

)
+
ω2

γ p̄
p̂ =

γ − 1
γ p̄

nv(x)eiωτ
∫
w(ξ)

1
ρ̄
∇p̂ · r dΩ (5)

We impose acoustic impedance (Robin-type) boundary condi-
tions:

∂ p̂
∂n
−

iω
c̄Z

p̂ = 0 (6)

where c̄ is the mean speed of sound and Z is the specific
impedance [22], defined as:

Z =
p̂

ρ̄c̄û · n
(7)

n denotes the outward unit normal. The specific impedance is in
general a complex function of the frequency (and of the position).
However, it can be assumed that at low frequencies Z is constant.
For planar acoustic waves the specific impedance is a function of
the reflection coefficient R.

Z =
1 + R
1 − R

(8)

The reflection coefficient is the ratio of the amplitude of the re-
flected wave to the amplitude of the incident wave. If Z → 0
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(open boundary), we obtain a Dirichlet (sound-soft) boundary
condition for the pressure p̂ = 0. If Z → ∞ (closed bound-
ary), we obtain a Neumann (sound-hard) boundary condition
for the pressure ∇p̂ · n = 0. Consistently with Ref. [20], we
non-dimensionalize Eqs. (5) and (6). The details are given in
Appendix A.

3. DISCRETIZATION, ADJOINT EIGENPROBLEM AND
FIXED-POINT ITERATION
The problem is discretized using the Bubnov-Galerkin finite

element method, which means that the trial and the test functions
belong to the same function space. We use P2 elements. The
finite element approximation results in a nonlinear eigenvalue
problem for the complex angular frequency ω.

N(ω)p = Ap + ωBp + ω2Cp − D(ω)p = 0 (9)

The mass matrix A and the symmetric matrix C are real sym-
metric matrices (the Dirichlet boundary conditions are enforced
symmetrically). The matrix B arises from the Robin boundary
conditions. Unless Z is purely imaginary, B is complex symmet-
ric, but non-Hermitian. The unsteady heat release operator D(ω)
is complex and neither symmetric nor Hermitian. It depends
nonlinearly on the eigenvalue ω, but it is linear with respect to
the eigenvector p.

Given two complex vectors u and v, we define the inner prod-
uct 〈v,u〉 = vHu, where the superscript H denotes the conjugate
transpose of a vector or a matrix. The discrete adjoint operator
N† is defined such that〈

p†,N(ω)p
〉
=

〈
N†(ω∗)p†,p

〉
(10)

which is equivalent to writing

(p†)HN(ω)p = ((N(ω))Hp†)Hp (11)

Therefore, the adjoint eigenproblem is

N†(ω∗)p† = Ap† + ω∗BHp† + ω∗2Cp† − (D(ω))Hp† = 0 (12)

The spectrum of the discrete adjoint operator N† is the complex
conjugate of the spectrum of N. The adjoint eigenvector p† is
the left eigenvector of N. In the Bubnov-Galerkin finite element
method, there is no difference between the discrete adjoint and
the discretization of the continuous adjoint.

The nonlinear eigenvalue problems (9) and (12) are solved
using a fixed-point iteration with relaxation [23, 24]. See Algo-
rithm 1. We first set D to zero and solve the quadratic eigenvalue
problem to find the acoustic eigenmodes. We select an eigen-
value and then start the iteration. At the k-th iteration we evaluate
D(ω[k]) and solve the eigenvalue problem for f (ω[k]). The new
eigenvalue is

ω[k+1] = g(ω[k];α) ≡ α f (ω[k]) + (1 − α)ω[k] (13)

where α is the relaxation factor. We iterate until the absolute
value of the difference between the eigenvalue at two consecutive
iterations is smaller than a certain tolerance. Banach’s fixed-point
theorem requires that |g′(ω)| < 1 for the iteration to converge to

Algorithm 1: Fixed-point iteration
function SolveNEP(A, B, C, D, tol, maxiter):

k ← 0
D← 0
Solve N(ω)p = 0 to find ω[k]
∆ω← 2 × tol
α← 1
while |∆ω | < tol and k < maxiter do

D← D(ω[k])
Solve N(ω)p = 0 to find f (ω[k])
if k > 0 then

f ′(ω[k]) ←
f (ω[k]) − f (ω[k−1])

ω[k] − ω[k−1]

α←
1

1 − f ′(ω[k])
end
ω[k+1] ← α f (ω[k]) + (1 − α)ω[k]

∆ω← ω[k+1] − ω[k]

k ← k + 1
end
return ω, p

end

the fixed-point ω. Furthermore, the rate of convergence is super-
linear if g′(ω) = 0, i.e. if α = 1/(1 − f ′(ω)). The derivative
of f at ω is approximated with its value at ω[k] obtained using a
simple backward difference.

The quadratic eigenvalue problem is solved using SLEPc
[25]. The default solver for polynomial eigenvalue problems
builds an Arnoldi factorization without explicitly creating the
matrices. A shift-and-invert spectral transformation is used in
order to enhance convergence of eigenvalues in the neighborhood
of a given value. The code is written using the open source
computing platform FEniCS [26, 27]. The mesh is generated by
way of a Delaunay triangulation using Gmsh [28].

4. SHAPE CALCULUS
We are interested in how small modifications to the geometry

of a combustor will affect the complex angular frequency, i.e. the
eigenvalue, ω, of the thermoacoustic modes. For this, we need
to introduce the concept of shape derivative. Following [29], we
define a one-parameter family of linear mappings

Tt (x) = x + tV (x) (14)

where t is a parameter and V is a continuous vector field repre-
senting the direction of the perturbation. Equation (14) is called
the perturbation of identity. Tt transforms the initial domain Ω
into the deformed domain Ωt .

Ωt = Tt (Ω) (15)

We define J to be a shape functional, in our case an eigenvalue,
ω, of our problem. We define the shape derivative ofJ evaluated
at Ω in the direction V as

dJ (Ω)[V ] = lim
t→0+

J (Ωt ) − J (Ω)
t

(16)
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The functional J is shape differentiable at Ω if the shape
derivative (16) exists for all the directions V and the mapping
V 7→ dJ (Ω)[V ] is linear and continuous. In general, the shape
derivative depends on the whole domain. However, if J is shape
differentiable, under mild smoothness assumptions, its shape
derivative only depends on the normal component of the vec-
tor field V at the boundary of the domain (Hadamard theorem)
[30, 31] and can be written in the form

dJ (Ω)[V ] = dJ (Γ)[(V · n)n] =
∫
Γ

(V · n)g dΓ (17)

where g is the shape gradient. This result is know as Hadamard
formula and the shape derivative is said to bewritten inHadamard
form.

B-splines
We use third-order uniform rational B-splines to parametrize

the boundary. Parameter free shape optimization is possible but
requires the shape changes to be smoothed in order to avoid (i)
oscillations in the shape and (ii) the appearance of several local
minima. We choose parametric shape optimization because it has
proven easier in previous studies [32, 33]. Third-order B-splines
are smooth curves of class C2. A B-Spline curve B(t), where
t is the parameter of the curve, is defined by a set of control
points P0, . . . ,Pn. By definition, the displacement field at the
boundary is the derivative of the parametric curve with respect to
the position of the control points.

Vi(t) =
∂B j(t)

∂P j
i

(18)

The shape derivative in the direction of V becomes the shape
derivative with respect to Pi .

Material and local shape derivative
Let ϕt solve some governing equations on the perturbed

domain Ωt = Tt (Ω) and let xt ≡ Tt (x) be a boundary point on
the perturbed domain. The material shape derivative is

dϕ[V ](x) ≡
d
dt

����
t=0

ϕt (xt ) (19)

The local shape derivative is

ϕ′[V ](x) ≡
d
dt

����
t=0

ϕt (x) (20)

The relation between the first, which is a total derivative, and the
second, which is a partial derivative is given by the chain rule

dϕ[V ](x) = ϕ′[V ](x) + V · ∇ϕ (21)

Tangential gradient and divergence
For a function f ∈ C2(Ω,R) i.e. with continuous second-

order derivatives, the tangential gradient is

∇Γ f ≡ ∇ f −
∂ f
∂n

n (22)

where n is the outward unit normal. The tangential gradient is
the orthogonal projection of the gradient onto the tangent space.
For a differentiable vector field v, the tangential divergence is

divΓv ≡ divv − (Dvn) · n (23)

where Dv is the Jacobian of v and Dvn is the matrix product
between Dv and n.

Shape derivatives
Now that we have introduced the notion of shape derivative

of a shape functional and the definitions of material and local
shape derivative, we are ready to derive the shape derivative in
Hadamard formof an eigenvalue of the thermoacousticHelmholtz
equation, Eq. (5). The shape functional is

J = ω (24)

and it is subject to the constraint given by

N (ω)p̂ = 0 in Ω (25a)
∂ p̂
∂n
= 0 on ∂ΩN (25b)

∂ p̂
∂n
−

iω
c̄Z

p̂ = 0 on ∂ΩZ (25c)

∂ p̂
∂n
= 0 on Γ0 (25d)

Equation (25) is the thermoacoustic Helmholtz equation, Eq. (5).
∂ΩN is a subset of the boundary where we impose Neumann
boundary conditions. ∂ΩZ is a subset of the boundary where
we impose Robin boundary conditions. Γ0 is the deformable
boundary that we wish to optimize. We take the shape derivatives
of the shape functional, Eq. (24), and the constraints given
by Eq. (25). In the domain, Ω, and on the non-deformable
boundaries, ∂ΩN and ∂ΩZ , this is equivalent to taking the local
shape derivative. Taking the material shape derivative of the
Neumann boundary condition on the deformable boundary, Γ0,
yields the local shape derivative of the boundary condition. The
material derivative of the boundary condition is identically zero,
but the local derivative is not. We obtain the local shape derivative
by using the chain rule and the orthogonality argument [29]. The
shape derivative of Eq. (24) is

dJ [V ] = ω′ (26)

The shape derivatives of Eq. (25) are

∂N (ω)
∂ω

ω′p̂ +N (ω)p̂′ = 0 in Ω (27a)

∂ p̂′

∂n
= 0 on ∂ΩN (27b)

∂ p̂′

∂n
−

iω′

c̄Z
p̂ −

iω
c̄Z

p̂′ = 0 on ∂ΩZ (27c)

∂ p̂′

∂n
+ (V · n)

∂2 p̂
∂n2 − ∇Γ p̂ · ∇Γ(V · n) = 0 on Γ0 (27d)

Given two complex-valued square integrable functions f and g,
we define the inner product 〈 f ,g〉 ≡

∫
Ω

f ∗g dΩ and the product
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{ f ,g} ≡
∫
∂Ω

f ∗g dΓ. We pre-multiply (27a) by p̂†
∗ , which is

the complex conjugate of the adjoint pressure eigenfunction, and
integrate over the domain. Then we add (26). This is equivalent
to writing the shape derivative of the Lagrangian, L = ω −〈

p̂†,N (ω)p̂
〉
, where p̂† is the Lagrange multiplier. After that, we

integrate by parts to find the adjoint operatorN † and the bilinear
concomitant.

〈
N †(ω∗)p̂†, p̂′

〉
+

{
p̂†,

1
ρ̄

∂ p̂′

∂n

}
−

{
1
ρ̄

∂ p̂†

∂n
, p̂′

}
+

〈
p̂†,

∂N (ω)
∂ω

p̂
〉
ω′

+ dJ [V ] = ω′ (28)

The two boundary terms arise from the integration by parts of the
Laplace operator. The adjoint equation is

∇·

(
1
ρ̄
∇p̂†

)
+
ω∗2

γ p̄
p̂† = −

γ − 1
γ p̄
∇

(
w(x)

1
ρ̄

)
· r

∫
nv(ξ)e−iω

∗τ p̂† dΩ

(29)
A full derivation of the adjoint equation for this particular problem
can be found in [20]. We assume that the distribution of the
reference region, w, is zero on the boundary (as recommended
in [20]). It is interesting to note that the heat release region and
the reference region swap. The source term is proportional to
the adjoint pressure at the flame location and acts at the reference
location. We can eliminate from (28) the terms containing the
sensitivity p̂′ by choosing p̂† such that it satisfies the adjoint
problem

N †(ω∗)p̂† = 0 on Ω (30a)
∂ p̂†

∂n
= 0 on ∂ΩN (30b)

∂ p̂†

∂n
+

iω∗

c̄Z∗
p̂† = 0 on ∂ΩZ (30c)

∂ p̂†

∂n
= 0 on Γ0 (30d)

In addition, if we group the terms containing the sensitivity ω′,
we obtain a normalization condition for the adjoint eigenfunction.〈

p̂†,
∂N (ω)
∂ω

p̂
〉
+

{
p̂†,

1
ρ̄

i
c̄Z

p̂
}
∂ΩZ

= 1 (31)

We substitute (27d) into (28) to obtain, after eliminating the sen-
sitivity terms, an expression for the eigenvalue shape derivative.

dJ [V ] =
∫
Γ0

(V ·n)

(
p̂†
∗ 1
ρ̄

∂2 p̂
∂n2

)
dΓ−

∫
Γ0

(
p̂†
∗ 1
ρ̄
∇Γ p̂

)
·∇Γ(V ·n) dΓ

(32)
The first integral is in Hadamard form; the second is not but can
be made so by applying the tangential Stokes formula [31]∫

Γ

gdivΓv + ∇Γg · v dΓ =
∫
Γ

κgv · n dΓ (33)

where g is a real-valued function, v is a vector-valued function and
κ is the curvature: g = V · n and v = p̂†

∗ 1
ρ̄∇Γ p̂. The eigenvalue

shape derivative in Hadamard form is

dJ [V ] =
∫
Γ0

(V · n)

(
p̂†
∗ 1
ρ̄

∂2 p̂
∂n2

)
dΓ

−

∫
Γ0

(V · n)

[
κ

(
p̂†
∗ 1
ρ̄
∇Γ p̂

)
· n − divΓ

(
p̂†
∗ 1
ρ̄
∇Γ p̂

)]
dΓ (34)

In order to evaluate (34), we need the direct eigenfunction, p̂, the
adjoint eigenfunction, p̂†, the boundary displacements,V , and the
curvature κ. The last two depend on the shape parametrization.

ρ̄

0.975

1.380

v

0

320

w

0

7200

FIGURE 1: Nondimensional mean density, ρ̄, distribution of heat re-
lease, v, and distribution of reference region, w, in the two-dimensional
model of the electrically heated Rijke tube.

Re(ω′[V ]); changes that increase the frequency

0.0 0.2 0.4 0.6 0.8 1.0

x

Im(ω′[V ]); changes that increase the growth rate

FIGURE 2: Real (top) and imaginary (bottom) components of the eigen-
value shape derivatives for each control point at the bottom boundary of
the Rijke tube. The real part gives the influence on the frequency and
the imaginary part gives the influence on the growth rate.

5. RIJKE TUBE
The first case we consider is a two-dimensional model of

an electrically heated Rijke tube [10, 20]. Acoustic impedance
boundary conditions are imposed both at the inlet and at the outlet
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boundary. Sound-hard boundary conditions are imposed at the
radial wall. x f denotes the position of the hot wire and a f is
the standard deviation of the heat release distribution, which is
homogeneous in the radial direction. df is the diameter of the
duct at the heat source. xr denotes the centre of the reference
region and ar is the standard deviation of the reference region
distribution. The standard deviation is the same in the longitu-
dinal and in the radial direction. ρu and ρd denote the mean
density in the cold and in the hot region, respectively. All the
parameters can be found in Table I of [20], apart from ar , which
here is 4.7 × 10−3 m. The mean density, which is homogeneous
in the radial direction, is

ρ̄(x,r) = ρd +
ρd − ρu

2

[
1 + tanh

(
x − x f

a f

)]
(35)

The distribution of the heat release across the hot wire is

v(x,r) =
1

a f df

√
2π

exp

(
−
(x − x f )

2

2a2
f

)
(36)

The distribution of the reference region is

w(x,r) =
1

a2
r2π

exp
(
−
(x − xr )2 + r2

2a2
r

)
(37)

w is a Gaussian function. It vanishes at infinity but it does not
have compact support. However, its standard deviation, ar , is
small and we restrict w so that it is zero at the boundary.

Figure 1 shows the mean density ρ̄, and the distributions of
heat release and reference region, v and w for the two-dimensional
model of the Rijke tube. In two dimensions, the interaction index
of the local n − τ model is n = π/4df NQ̄/ū(xr ).

Defining two sets of control points, we parametrize the bot-
tom and top boundaries using 3rd order uniform rational B-
splines. We fix the inlet and outlet boundaries. We compute
the system’s first direct and adjoint thermoacoustic eigenmode,
which is unstable. Then, using (34), we find the shape derivatives
for each control point. The real part gives the direction of greatest
positive change of the angular frequency of the eigenmode. The
imaginary part gives the direction of greatest positive change of
the growth rate of the eigenmode. Therefore, wemove the control
points in the opposite direction of the imaginary part of the shape
derivative. This reduces the growth rate and eventually makes
the mode stable. In Fig. 2 we show the shape derivatives for each
control point as vectors. As expected, they are all orthogonal
to the boundary. A tangential displacement would only result in
a reparametrization of the boundary, without changing its shape
or affecting the eigenvalue. The eigenmode becomes stable after
3 iterations. We continue to reduce the growth rate in order to
accentuate the deformation so that the differences between the
two shapes and between the eigenfunctions are more visible. Fig.
3 shows the initial and the deformed boundary (after 10 itera-
tions). Fig. 4 shows the modulus of the pressure eigenfunction
before and after the optimization. This shape change reduces the
longitudinal component of the pressure gradient in the reference
region. In the n−τ model, the heat release rate fluctuation is pro-
portional to the the velocity perturbation in the reference region.

Therefore, this shape change reduces the growth rate by reducing
the amplitude of the acoustic velocity in the reference region.

The results for the initial domain match those in the one-
dimensional model of Ref. [20] and against the finite volume
Helmholtz solver AVSP [7].

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.05
0.00
0.05

r

FIGURE 3: Initial ( ) and deformed ( ) boundary of the Rijke tube
after 10 iterations. The circles represent the control points of the de-
formed boundary. The control points at the inlet and at the outlet are
fixed.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

|p̂
|

FIGURE 4: Absolute value of the direct pressure eigenfunction p̂ relative
to the first eigenmode of the electrically heated Rijke tube. ( ) initial
domain, ( ) deformed domain after 10 iterations. The associated non-
dimensional eigenvalues are ωΩ = 3.539521 + i0.001984 and ωΩt

=

3.688497 − i0.009876, respectively.

6. TURBULENT SWIRL COMBUSTOR
The turbulent swirl combustor investigated here is that of

EM2C laboratory and has been extensively studied in the context
of combustion instabilities [14, 34–37]. It consists of a cylindrical
plenum, a convergent duct, a swirler, and a cylindrical combustion
chamber. A mixture of methane and air at an equivalence ratio
of 0.8 is injected upstream of the plenum. The total power of the
flame at the operating point considered in this study is 3.03 kW.
The parameters of the model, taken from [37], are reported in
Table 1. This system exhibits an unstable longitudinal mode.

The eigenvalue we found with our 2D planar code is 181 +
i3.33 s−1. We calculated the same case in 2D with AVSP and
found a complex angular frequency of 182 + i3.28 s−1.

Acoustic impedance boundary conditions are imposed at the
outlet boundary. Sound-hard boundary conditions are imposed at
thewalls. Figure 5 shows themean density ρ̄, and the distributions
of heat release and reference region, v and w. Their analytical
expression are given by Eqs. (35), (36) and (37), respectively.
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TABLE 1: Turbulent swirl combustor

r 287 [J/kg/K]
γ 1.4
pamb 1.01325×105 [Pa]
Tamb 300 [K]
Tu 300 [K]
Td 1600 [K]
Rd −0.6
Qtot 3.03×103 [W]
Ubulk 4.16 [m/s]
|FTF | 1.5
τ 4.73×10−3 [s]

ρ̄

0.24

1.32

v

0

420

w

0

4800

FIGURE 5: Nondimensional mean density, ρ̄, distribution of heat re-
lease, v, and distribution of reference region, w, in the two-dimensional
model of the turbulent swirl combustor.

We parametrize the entire geometry except for the outlet,
which is an open boundary, including more control points where
there are sharp corners. We compute the direct and the adjoint
eigenmode and apply Eq. (34) to find the shape derivatives. Fig-
ure 6 shows the eigenvalue shape derivatives for each control
point. The eigenvalue is more sensitive in the plenum and much
more sensitive in the burner than in the combustion chamber.
This is because the gas is cooler upstream of the temperature jump
across the flame so the local wavelength is shorter and therefore
geometry modifications have more influence. The shape deriva-
tives show that reducing the size of the plenum and increasing
the cross sectional area of the burner in the reference region re-
duces the growth rate. In any case, manufacturers are reluctant to
change the geometry of the burner and the combustion chamber
because they are determined by other considerations, but they are
willing to modify the geometry of the plenum.

We fix the geometry of both the burner and the combustion
chamber and allow the geometry of the plenum to vary. The
unstable mode is stabilized after 5 iterations. In Fig. 7 we show
the initial and the final shape of the plenum. In the final shape,
the control points are moved inwards. We show in Fig. 8 the
direct and adjoint eigenfunctions for the initial and deformed do-
main. We see again that the pressure gradient, and so the velocity

Re(ω′[V ]), changes that increase the frequency

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x

Im(ω′[V ]), changes that increase the growth rate

FIGURE 6: Real (top) and imaginary (bottom) components of the eigen-
value shape derivatives for each control point at the deformable boundary
of the turbulent swirl combustor. The real part gives the influence on the
frequency and the imaginary part gives the influence on the growth rate.

perturbation, has reduced in the reference location resulting in
smaller heat release rate fluctuations. This shows how to sta-
bilize a thermoacoustic mode while keeping the flame transfer
function constant.

7. CONCLUSION
We have implemented a direct and adjoint thermoacoustic

Helmoltz solver using 2D finite elements. We express the shape
derivative of the eigenvalue in Hadamard form, i.e. for arbitraty
shape changes. Using B-splines we then parametrize the shapes
of two thermoacoustic systems found in the literature. We use
the Hadamard expression to calculate the derivative of the eigen-
values with respect to the B-spline parameters and interpret these
results physically. We then use gradient-based optimization to
stabilize both systems by making small geometry modifications
in the most influential regions.

This study shows how to implement shape optimization with
an adjoint thermoacoustic Helmholtz solver in 2D. It exploits the
fact that thermoacoustic systems are sensitive to small modifica-
tions [3] and shows that models of unsteady systems available in
the literature can be stabilized with small geometry changes.

Direct and adjoint thermoacousticHelmholtz solvers can eas-
ily be extended to 3D, albeit at increased computational cost. The
advantage of using FEniCS with SLEPc is that parallelization is
handled in the background and that numerical analysis researchers
continue to develop and implement increasingly powerful algo-
rithms.

The implementation in this paper assumes that the flame re-
sponse is unaffected by the geometry changes. This is reasonable
only for geometry changes in the plenum. If geometry changes
were to be considered in practice, then a more realistic model of
the flame response would need to be included. This would be
a flame transfer function with distributed time delays with dif-
ferent time delays for the different geometries. The optimization
method described in this paper might potentially be applied to the
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x

−0.1
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FIGURE 7: Initial ( ) and deformed ( ) boundary of the turbulent swirl combustor after gradient-based optimization has been used to stabilize the
device by changing the plenum while fixing the burner and the combustion chamber. The lengths are non-dimensionalized with respect to the acoustic
wavelength of the combustion chamber.
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FIGURE 8: (Left) Modulus of the direct pressure eigenfunction p̂ relative to the first eigenmode of the turbulent swirl combustor. ( ) initial domain,
Ω, ( ) deformed domain,Ωt . The associated direct nondimensional eigenvalues are ωΩ = 1.3157+ i0.0241 and ωΩt

= 1.3644− i0.0978, respectively.
(Right) Modulus of the adjoint pressure eigenfunction p̂† relative to the first eigenmode of the turbulent swirl combustor. ( ) initial domain, Ω, ( )
deformed domain, Ωt . The source acts locally in the reference region. The wiggles are due to the fact that the source is proportional to the component
of the gradient in the x-direction of the distribution of reference region, w, which is a Gaussian function.

linearized reactive flow solver presented in [38], where the flame
transfer function is not needed a priori.

The following issues will need to be addressed if this method
is applied to more realistic configurations such as annular com-
bustors. For semi-simple eigenvalues the problem is not totally
differentiable with respect to all the parameters. A famous ex-
ample is the buckling of columns [31]. Issues for degenerate
eigenvalues arise if the eigenvalue loses degeneracy due to a
parameter change. For defective eigenvalues, the so-called ex-
ceptional points, the sensitivity is infinite. However, exceptional
points are very rare.

In conclusion, this paper shows that shape optimization of
thermoacoustic Helmholtz solvers is possible and that it would
be a useful design tool in the gas turbine industry.
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APPENDIX A.
The reference length, L, is the acoustic wavelength of the

tube, in the case of the Rijke tube, or the acoustic wavelength
of the combustion chamber, in the case of the turbulent swirl
combustor. The reference time is L/ca, where ca =

√
γpa/ρa

is the speed of sound in the ambient fluid and ρa and pa are
the ambient density and pressure, respectively. We denote the
non-dimensional quantities by the tilde ˜ . The independent and
dependent variables are non-dimensionalized as follows

x = x̃L, t = t̃
L
ca
, ρ = ρ̃

ρa
γ
, u = ũca, p = p̃pa (38)

The non-dimensionalization is the same for the mean quantities
and for the perturbation quantities. The non-dimensional ambient
density equals γ. Since the mean pressure is constant, the non-
dimensional mean pressure equals 1 everywhere. The parameters
of the n − τ model are scaled as follows. The local interaction
index is scaled as n = ñpaL in two dimensions. The time delay
τ is scaled as τ = τ̃L/ca. The complex angular frequency ω is
scaled as ω = ω̃ca/L.
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