
iCon: A Diagrammatic Theorem Prover for Ontologies

Zohreh Shams and Mateja Jamnik
Department of Computer Science and Technology

University of Cambridge, UK
{zohreh.shams, mateja.jamnik}@cl.cam.ac.uk

Gem Stapleton and Yuri Sato
Centre for Secure, Intelligent and Usable Systems

University of Brighton, UK
{y.sato, g.e.stapleton}@brighton.ac.uk

Abstract

Concept diagrams form a visual language that is aimed at
non-experts for the specification of ontologies and reason-
ing about them. Empirical evidence suggests that they are
more accessible to ontology users than symbolic notations
typically used for ontologies (e.g., DL, OWL). Here, we re-
port on iCon, a theorem prover for concept diagrams that al-
lows reasoning about ontologies diagrammatically. The input
to iCon is a theorem that needs proving to establish how an
entailment, in an ontology that needs debugging, is caused
by a minimal set of axioms. Such a minimal set of axioms
is called an entailment justification. Carrying out inference in
iCon provides a diagrammatic proof (i.e., explanation) that
shows how the axioms in an entailment justification give rise
to the entailment under investigation. iCon proofs are for-
mally verified and guaranteed to be correct.

Introduction
Ontologies are used by diverse stakeholders and domain ex-
perts. However, domain experts are often not familiar with
symbolic notations in which ontologies are expressed. To
address this issue, by appealing to the long-held assumption
that using diagrams makes modelling and knowledge repre-
sentation accessible (e.g., Euclid’s Elements, (Sowa 1984)),
there have been attempts (Lembo et al. 2016; Brockmans et
al. 2004; Falco et al. 2014; Liepins, Grasmanis, and Bojars
2014) to express ontologies using graphical notations.1

Concept diagrams (CDs) (Stapleton, Compton, and
Howse 2017) are a recent visual language that was
developed to specify ontologies, and covers all of
OWL 2 except assertions involving ObjectHasSelf,
DatatypeRestriction or constraining facets (Staple-
ton, Compton, and Howse 2017). Empirical studies (Hou,
Chapman, and Blake 2016; Alharbi et al. 2017; Sato et
al. 2018) demonstrate the accessibility of CDs compared
to competing diagrammatic and symbolic notations, includ-
ing OWL and description logics (DL) (Baader, Horrocks,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Note that we distinguish between visualisation facilities of-
fered by popular ontology editing tools such as Protégé (Protege
2018), that merely visualise ontology axioms already specified in
symbolic notations, and those we review here that allow specifying
and editing ontologies using diagrammatic notations directly.

Figure 1: CD Examples

and Sattler: 2009) and SOVA (Itzik and Reinhartz-Berger
2014). Unlike CDs, some graphical notations for ontolo-
gies are based on conceptual modelling languages such
as Entity-Relationship (ER) schemas. However, with the
exception of (Lembo et al. 2016), they require a com-
bination of diagrammatic and textual formulae. Different
from (Lembo et al. 2016), the design of CDs is motivated
by the need to be accessible to people without training in
formal languages/logic (Hou, Chapman, and Blake 2016;
Howse et al. 2011).

Our contribution is the design of a theorem prover, iCon,
with which proofs can be constructed in the graphical and
accessible language of CDs. The input to iCon is a the-
orem that needs proving to establish how an entailment
follows from specified axioms. iCon’s inference engine is
equipped with diagrammatic versions of symbolic inference
rules for OWL (OWL2 2018). According to the World Wide
Web Consortium (W3C) (W3C 2018), these rules (listed
in (W3CInf 2018)) provide a useful starting point for the
practical implementation of ontology reasoners. iCon pro-
duces diagrammatic proofs that explain how the axioms give
rise to the entailment.

The Concept Diagram Language
Concept diagrams consist of rectangles, closed curves, and
shading (as seen in Euler and Venn diagrams) as well as ad-
ditional objects such as dots, solid arrows and dashed ar-
rows; for a formalisation, see (Stapleton et al. 2013), here
we introduce the notation by example.

In Figure 1, there is one concept diagram containing two
boundary rectangles. Within each rectangle, spatial relation-
ships are used to convey information. For example, Per-
son and Animal represent disjoint sets, since the two cor-
responding curves are disjoint. We can also see that Helen
is a Female person, due to the location of the (red) dot la-

belled Helen. The dot, and more generally dots connected
by lines, is called a spider. For examples, due to the loca-
tion of spider Rex, we can see that Rex is either a Cat or
a Dog. The region outside of Male and Female is shaded.
This means that there is no person who is neither a Female
nor a Male. The dashed arrow ownsPet connects the dot
Helen to Rex. This means that Helen owns Rex as a her
pet, but she can own other pets too. Unlike, dashed arrows,
solid arrows mean that the source is related to only the tar-
get. The solid arrow labelled hasColour connects Animal to
the unnamed circle inside Colour, meaning that the colours
that an animal can have cannot be outside the set Colour.
Together with the arrow annotation ≥ 1, this means that all
animals have at least one colour. Note that, due to the use
of rectangles, the diagram does not assert that Colour is dis-
joint from the other sets visualised here. Lastly, we note that
iCon makes use of> and⊥ to represent ‘true’ and ‘false’ re-
spectively, as a simple shorthand for valid and contradictory
diagrams.

iCon: System Description
iCon is a diagrammatic theorem prover2 for CDs, with
which, for the first time, explanatory proofs for ontology en-
tailments can be constructed in a graphical and accessible
language. The input to iCon is a theorem that needs prov-
ing to establish how an ontology entailment (i.e., theorem)
follows from its justification axioms. The result of carrying
out inference in iCon is a diagrammatic proof that explains
this. In what follows, we explain the two main components
of iCon, namely its reasoning engine and its graphical user
interface.

Reasoning Engine
The iCon reasoning engine (i) contains a collection of infer-
ence rules; (ii) handles the application of inference rules to
diagrams; and (iii) manages proofs.

Proof A proof in iCon starts with the initial proof state,
denoted by ∆0, which is of the form (d1 ∧ · · · ∧ dm) ⇒ d,
where di and d are CDs. This means that we want to prove
that if d1, · · · , dm (the premises) hold then d (the conclu-
sion) holds. Let the set of premises in each proof state be
Prm(∆i), and the proof goal be d. Proofs in iCon are con-
structed by applying inference rules to the premises of the
initial proof state Prm(∆0) in a forward reasoning man-
ner. A theorem is proved when the application of inference
rules makes Prm(∆0) identical to the proof goal d. The
final proof state, say ∆k, is of the form d⇒ d, which is triv-
ially true, and is referred to as the basic proof state ∆basic.

Applying a single inference rule to a proof state ∆ is
denoted by ∆

∆′Rule, where the result is a proof state ∆′,
such that Prm(∆) syntactically and semantically entails
Prm(∆′) (i.e., Prm(∆) ` Prm(∆′) and Prm(∆) |=
Prm(∆′)). An exception is the inference rule Identity that
is applied to the basic proof state and concludes the proof:
∆basic

> Identity.

2Available at https://github.com/ZohrehShams/iCon.

Cat v ∀isPetOf · Female isPetOf (Rex,Alex)
Dis(Male, Female) Cat(Rex) Male(Alex)

Figure 2: The inconsistent set of axioms

Inference Rules Since iCon is a purpose built tool for
ontology reasoning, the basis for its diagrammatic in-
ference rules is the ontology community’s standard set
of inference rules. These rules are introduced by W3C
and listed in (W3CInf 2018). In order to construct a
proof for a justification-entailment pair, we are equip-
ping iCon’s inference engine with diagrammatic versions
of the symbolic inference rules for OWL (OWL2 2018).
In addition to diagrammatic inference rules, iCon has two
logical inference rules, namely: Conjunction Elimination
((d1∧d2)⇒d

d1⇒d , (d1∧d2)⇒d
d2⇒d) and Identity which was mentioned

in the previous section. If d and d′ are isomorphic3 CDs, we
can apply rule Identity and infer >: d⇒d′

> .
Diagrammatic inference rules rewrite the diagrams repre-

senting the premises of a proof state in order to make them
identical to the goal of the proof state. In contrst to a sym-
bolic proof, which typically is inaccessibe to domain experts
who are not proficient in symbolic languages, this results in
a diagrammatic proof, whcih is empirically-evidenced to be
more accessible. To demonstrate this in more detail, in what
follows we present a symbolic and a diagrammatic proof of
a theorem that aims at debugging an undesired entailment of
an ontology (i.e., an inconsistency).

In Figure 2, there are five axioms that count as a justifi-
cation for an inconsistency in some ontology4. Below is the
theorem that needs proving to show why and how the incon-
sistency is caused:

Theorem 1 Cat v ∀isPetOf · Female ∧
Cat(Rex) ∧ isPetOf (Rex,Alex) ∧ Male(Alex) ∧
Dis(Male, Female)⇒ ⊥
The symbolic proof of this theorem using W3C inference
rules in presented in Figure 3. The first inference rule used
in the proof is:

X v ∀P · Y ∧X(u) ∧ P (u, v)

Y (v)
cls−avf

which expresses that if X is only related to Y under P , and u
is of type X , and u is related to v under P , we can conclude
that v is of type Y . The second inference rule is:

Dis(X,Y) ∧X(u) ∧ Y (u)

⊥
cax−dw

which says that if two sets are disjoint and there is an ele-
ment that belongs to both of them then we have a contradic-
tion and can infer false.

3Isomorphisim of CDs is defined in the same fashion as that of
Spider Diagrams (Stapleton et al. 2004).

4The off-the-shelf reasoners can give a justification for any in-
consistency, in the form of a minimal set of axioms that has caused
the inconsistency, however no causal conection that leads to the
inconsistency is provided.

Cat v ∀isPetOf · Female ∧ Cat(Rex) ∧ isPetOf (Rex,Alex) ∧Male(Alex) ∧Dis(Male, Female)
cls−avf

Female(Alex) ∧Male(Alex) ∧Dis(Male, Female)
cax−dw⊥

Figure 3: A symbolic proof for Theorem 1

Figure 4 shows a digrammatic version of the same proof
as in Figure 3, but unlike the symbolic proof, the diagram-
matic one reveals how the interaction between the axioms in
the justification brings about an undesired entailment.

The initial proof state, shows the diagrammatic represen-
tation of Theorem 1, where F, C, M and isP, stand for Fe-
male, Cat, Male and isPetOf. In the first inference step,
Alex is copied from the second (from left) diagram to the
first diagram and the secod diagram is deleted. Since there
is a solid arrow from Cat to a subset of Female, every ele-
ment of Cat is related to that subset via the same arrow. This
has been made explicit via the next inference step, where the
solid arrow is sourced at Rex. Due to smentic of solid arrow,
Rex can only be related to the target of this arrow under is-
PetOf relation. Therefore if Rex is related to Alex, Alex has
to be in the target of the solid arrow in the first diagram.
Thus, AddSpidertoSolidArrowImage copies Alex from
the second diagram to the first one, followed by deleting the
second diagram. DeleteSyntax rule then allows deleting
any extra piece of syntax from the first diagram to decrease
the clutter while preserving what is needed for the next infer-
ence step. CopyCurve is the next inference rule that copies
curve Male from the second diagram to the first one, with
respect to the location of spider Alex . The second diagram
is deleted too. Now, in proof state 5, there are two diagrams,
one expressing that Alex is a Male and a Female, and the
other one expressing Male and Female are disjoint. The
disjointness means that the intersection between Male and
Female is empty which is expressed by shadig in CD lan-
guage. By applying AddAllMissingZones this has been
made explicit in the seocond diagran. Proof state 6, clearly
highlights the contradiction by having the same zone (inter-
section of Male and Female) both as non-empty and empty.

The first four and the last three inference steps in the
proof explained above, represent a diagrammatic version of
cls−avf and cax−dw, respectively. We use one possible
mapping of cls−avf and cls− dw, and there might ex-
ist several other mappings, because any symbolic inference
rule may give rise to several diagrammatic ones. Since iCon
is designed to provide a graphical and accessible explana-
tion for ontology reasoning tasks, we base these choices on
evidence from our cognitive empirical studies about what
humans find more accessible, such as (Shams et al. 2018).
There are currently 18 inference rules in iCon. We are ex-
panding this set to capture all of the W3C OWL inference
rules (W3CInf 2018). In doing so, we are currently conduct-
ing more empirical studies to inform us about the most ac-
cessible diagrammatic representation for non-experts.

Graphical User Interface
iCon’s GUI enables inputting CDs and proof states in an ab-
stract textual representation format. It then visualises them,
based on the algorithm for Euler diagrams in (Stapleton et
al. 2012). The GUI also enables the construction of a dia-
grammatic proof by offering users different inference rules
to apply to any diagram or elements within it with a point
and click mechanism. The successful application of infer-
ence rules transforms the diagrams in the proof state, and
generates a new one that is then visualised.

Proof states are stored as indexed trees. When an infer-
ence rule is applied, the tree for the proof state in which
the diagram is situated is traversed in the search of the dia-
gram(s) that is the target of inference. If this diagram(s) and
the possible element(s) chosen from it satisfy all the require-
ments for a sound application of the rule, the rule is applied
and the affected diagram(s) is transformed appropriately.

Conclusion and Future Work
Building an error-free, high-quality ontology is not an easy
task. There are ontology reasoners which generate justifica-
tions for entailments that follow from an ontology, so that
the undesired ones can be eliminated through debugging.
But these justifications remain opaque to ontology engi-
neers. Here, we reported on an ontology reasoner, iCon, that
has two main advantages over existing approaches. First, it
is capable of generating an explanation in terms of a proof
that exposes how the interaction between the axioms in the
justification brings about an undesired entailment. Second,
its explanations are in a diagrammatic language for which
empirical studies suggest more accessibility than symbolic
notations. Indeed, iCon is the first tool that can provide a
diagrammatic explanation for debugging ontologies.

A future goal is to evaluate the accessibility of iCon
through usability studies with ontology engineers. Another
avenue for future work is taking iCon from an interactive
theorem prover toward an automated one to automatically
generate diagrammatic explanations for undesired ontology
entailments. We have already experimented (Shams et al.
2018) with the use of tactics (Harrison, Urban, and Wiedijk
2014). Tactics are programs that encapsulate sequences of
inference rules to achieve a higher level of abstraction and
automation. We are continuing this line of work for automa-
tion in iCon.

Other technical improvements are also in the pipeline.
One is devising a more effective visualisation layout algo-
rithm that preserves the shape and location of the invariant
parts of diagrams before and after applying inference rules.
Another one is developing a drag and drop visual tool for
constructing diagrammatic theorems (to replace the current
abstract textual representation input method).

Figure 4: A diagrammatic proof for Theorem 1. Which proof is more explanatory: the diagrammatic proof in this figure or the
symbolic one in Figure 3?

Acknowledgements
This research was funded by a Leverhulme Trust Research
Project Grant (RPG-2016-082) for the project entitled Ac-
cessible Reasoning with Diagrams.

References
Alharbi, E.; Howse, J.; Stapleton, G.; Hamie, A.; and
Touloumis, A. 2017. Visual logics help people: An eval-
uation of diagrammatic, textual and symbolic notations. In
IEEE Symposium on Visual Languages and Human-Centric
Computing, 255–259. IEEE.
Baader, F.; Horrocks, I.; and Sattler:, U. 2009. Description
logics. In Handbook on Ontologies. Springer. 21–43.
Brockmans, S.; Volz, R.; Eberhart, A.; and Löffler, P. 2004.
Visual modeling of OWL DL ontologies using UML. In The
Semantic Web, volume 3298 of Lecture Notes in Computer
Science, 198–213. Springer.
Falco, R.; Gangemi, A.; Peroni, S.; Shotton, D. M.; and Vi-
tali, F. 2014. Modelling OWL ontologies with graffoo. In
ESWC 2014 Satellite Events, volume 8798 of LNCS, 320–
325. Springer.
Harrison, J.; Urban, J.; and Wiedijk, F. 2014. History of
interactive theorem proving. In Computational Logic, vol-
ume 9. Elsevier. 135–214.
Hou, T.; Chapman, P.; and Blake, A. 2016. Antipattern com-
prehension: An empirical evaluation. In Formal Ontology in
Information Systems, volume 283 of Frontiers in Artificial
Intelligence, 211–224. IOS Press.
Howse, J.; Stapleton, G.; Taylor, K.; and Chapman, P. 2011.
Visualizing ontologies: A case study. In International Se-
mantic Web Conference, 257–272. Springer.
Itzik, N., and Reinhartz-Berger, I. 2014. SOVA - A tool for
semantic and ontological variability analysis. In Joint Pro-
ceedings of the CAiSE 2014 Forum and CAiSE 2014 Doc-
toral Consortium, volume 1164, 177–184. CEUR-WS.org.
Lembo, D.; Pantaleone, D.; Santarelli, V.; and Savo, D. F.
2016. Easy OWL drawing with the graphol visual ontology
language. In Principles of Knowledge Representation and
Reasoning, 573–576. AAAI Press.
Liepins, R.; Grasmanis, M.; and Bojars, U. 2014. Owlgred
ontology visualizer. In ISWC Developers Workshop 2014,
volume 1268, 37–42. CEUR-WS.org.
2018. The OWL2 web ontology language. https://
www.w3.org/TR/owl2-direct-semantics/, re-
trieved May 2018.
2018. Protégé: A free, open-source ontology editor. http:
//protege.stanford.edu, retrieved May 2018.
Sato, Y.; Stapleton, G.; Jamnik, M.; and Shams, Z. 2018.
Deductive reasoning about expressive statements using ex-
ternal graphical representations. In Cognitive Science Soci-
ety. Cognitive Science Society. Forthcoming.
Shams, Z.; Jamnik, M.; Stapleton, G.; and Sato, Y. 2018.
Accessible reasoning with diagrams: from cognition to au-
tomation. In Diagrams, LNCS. Springer. Forthcoming.

Sowa, J. F. 1984. Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley Longman
Publishing Co., Inc.
Stapleton, G.; Howse, J.; Taylor, J.; and Thompson, S. J.
2004. The expressiveness of spider diagrams. Logic and
Computation 14(6):857–880.
Stapleton, G.; Flower, J.; Rodgers, P.; and Howse, J. 2012.
Automatically drawing Euler diagrams with circles. Journal
of Visual Languages and Computing 23(3):163–193.
Stapleton, G.; Howse, J.; Chapman, P.; Delaney, A.; Bur-
ton, J.; and Oliver, I. 2013. Formalizing concept diagrams.
In Visual Languages and Computing, 182–187. Knowledge
Systems Institute.
Stapleton, G.; Compton, M.; and Howse, J. 2017. Visual-
izing OWL 2 using diagrams. In IEEE Symposium on Vi-
sual Languages and Human-Centric Computing, 245–253.
IEEE.
2018. World Wide Web Consortium. https://www.w3.
org, retrieved May 2018.
2018. Reasoning in OWL 2 RL and RDF graphs
using rules. https://www.w3.org/TR/owl2-
profiles/#Reasoning_in_OWL_2_RL_and_
RDF_Graphs_using_Rules, retrieved May 2018.

