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Abstract

Recently Lubetzky and Peres showed that simple random walks on a sequence of
d-regular Ramanujan graphs Gn = (Vn, En) of increasing sizes exhibit cutoff in total
variation around the diameter lower bound d

d−2
logd−1 |Vn|. We provide a different

argument under the assumption that for some r(n)� 1 the maximal number of simple
cycles in a ball of radius r(n) in Gn is uniformly bounded in n.
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1 Introduction

Generically, we denote the stationary distribution of an ergodic Markov chain (Xt)t≥0
by π, its state space by Ω and its transition matrix by P . We denote by Ptx (resp. Px)
the distribution of Xt (resp. (Xt)t≥0), given that the initial state is x. The total variation
distance of two distributions on Ω is ‖µ− ν‖TV = 1

2

∑
y |µ(y)− ν(y)|. The total variation

ε-mixing time is tmix(ε) := inf{t : maxx ‖Ptx − π‖TV ≤ ε}. Next, consider a sequence of

chains, ((Ωn, Pn, πn))n∈N, each with its mixing time t(n)mix(·). We say that the sequence
exhibits a cutoff if the following sharp transition in its convergence to stationarity occurs:

∀ε ∈ (0, 1/2], lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1. (1.1)

A family of d-regular graphs Gn with d ≥ 3 is called an expander family, if the second
largest eigenvalues of the corresponding adjacency matrices are uniformly bounded
away from d. Lubotzky, Phillips, and Sarnak [6] defined a connected finite d-regular
graph G with d ≥ 3 to be Ramanujan if the eigenvalues of the transition matrix of
simple random walk (SRW) on G all lie in {±1} ∪ [−ρd, ρd], where ρd := 2

√
d−1
d is the

spectral radius of SRW on the infinite d-regular tree Td. Lubotzky, Phillips, and Sarnak
[6], Margulis [8] and Morgenstern [9] constructed d-regular Ramanujan graphs for all
d of the form d = pm + 1, where p is a prime number. Recently, Marcus, Spielman and
Srivastava [7] proved the existence of bipartite d-regular Ramanujan graphs for all d ≥ 3.
In light of the Alon-Boppana bound [10], Ramanujan graphs are “optimal expanders” as
they have asymptotically the largest spectral-gap.

Let Gn = (Vn, En) be a sequence of finite connected dn-regular graphs. Let Pn be the
transition matrix of SRW on Gn. Denote the eigenvalues of Pn by 1 = λ1(n) > λ2(n) ≥
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· · · ≥ λ|Vn|(n) ≥ −1. We say that the sequence is asymptotically Ramanujan if |Vn| → ∞
and

max{|λi(n)| : |λi(n)| 6= 1} ≤ ρ1−o(1)dn
.

We say that the sequence is asymptotically one-sided Ramanujan if |Vn| → ∞, λ2(n) ≤
ρ
1−o(1)
dn

and lim infn→∞min{λi(n) : λi(n) 6= −1} > −1. Friedman [3] showed that a
sequence of d-regular random graphs of increasing sizes is w.h.p. asymptotically Ra-
manujan.

Remark 1.1. Our definition of asymptotically Ramanujan graphs is not the standard
one. The more standard definition is that max{|λi(n)| : |λi(n)| 6= 1} ≤ ρdn + o(1).

It is elementary to show that for every n-vertex d-regular graph, the 1 − ε total
variation mixing time for the SRW is at least td,ε,n := d

d−2 logd−1 n − C
√
n| log ε|/d, for

some constant C > 0.1 The following precise formulation of this fact is due to Lubeztky
and Peres [4].

Lemma 1.2 (Trivial diameter lower bound - c.f. [4] (2.2)–(2.3) pg. 9). Let G = (V,E) be an

n-vertex d-regular graph with d ≥ 3. Let cd :=
2
√
d(d−1)

(d−2)3/2 and Φ−1 be the inverse function
of the CDF of the standard Normal distribution. Then SRW on G satisfies

∀ε ∈ (0, 1), tmix(1− ε− o(1)) ≥ d

d− 2
logd−1 n+ cdΦ

−1(ε)
√

logd−1 n.

Recently, Lubetzky and Peres [4] showed that simple random walks on a sequence
of non-bipartite dn-regular Ramanujan graphs Gn = (Vn, En) of increasing sizes exhibit
cutoff around the diameter lower bound dn

dn−2 logdn−1 |Vn|. In this work we present an
alternative argument and prove the same result under the following assumption:

Assumption 1. There exists a diverging sequence rn such that the maximal number of
simple cycles in a ball of radius rn in Gn is uniformly bounded in n.

Theorem 1.3. Let Gn = (Vn, En) be a sequence of non-bipartite, finite, connected,
dn-regular asymptotically one-sided Ramanujan graphs.

(i) If dn = d for all n and Assumption 1 holds then the corresponding sequence of
simple random walks exhibits cutoff around time d

d−2 logd−1 |Vn|.
(ii) If dn diverges and log dn = o(logdn |Vn|) then the corresponding sequence of simple

random walks exhibits cutoff around time logdn |Vn|.

Remark 1.4. If there is no cutoff, then cutoff must fail on some subsequence (nk) such
that either limk→∞ dnk = ∞ or dnk = d for all k for some fixed d ≥ 3. Thus there is no
loss of generality in assuming that either limn→∞ dn =∞ or dn = d for all n.

Assumption 1 is rather mild as it is quite difficult to construct a family of asymptoti-
cally one-sided Ramanujan graphs violating this assumption. In particular, it is satisfied
w.h.p. by a sequence of random d-regular graphs of increasing sizes [5]. It follows from
[1, Theorem 1] that if Gn is a sequence of d-regular transitive asymptotically Ramanujan
graphs of increasing sizes then limn→∞ girth(Gn) = ∞, where for a graph G, girth(G)

denotes its girth2 (and so Assumption 1 holds).
The argument of Lubetzky and Peres [4] does not require Assumption 1 (nor the as-

sumption log dn = o(logdn |Vn|)). They studied the Jordan decomposition of the transition
matrix of the non-backtracking walk3 and used it to derive cutoff for the non-backtracking

1This can be derived from the fact that C can be chosen so that the probability that the probability that the
distance of the walk at time td,ε,n from its starting point is at least blogd−1(

1
4
εn)c with probability at most ε

2

(together with the fact that a ball of radius blogd−1(
1
4
εn)c contains at most 1

2
εn vertices).

2The girth of a graph G is the length of the shortest cycle in G.
3This is a random walk on the directed edges of the graph, with transition matrix PNB((x, y)(z, w)) =

1z=y,w 6=x
deg(y)−1

.
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walk, which for a regular graph implies cutoff also for the SRW. In this note we study the
SRW by looking at it only when it crosses distance k from its previous position, for some
large k.

1.1 Organization of this note

In § 2, as a warm up, we present an extremely simple and short proof for the
occurrence of cutoff for SRW on a sequence of asymptotically Ramanujan graphs of
diverging degree. In § 3 we present some machinery for bounding mixing times using
hitting times. We then apply this machinery to prove Part (ii) of Theorem 1.3. In § 4 we
give an overview of the proof of Part (i) of Theorem 1.3. In § 5 we prove two auxiliary
results. Finally, in § 6 we conclude the proof of Theorem 1.3.

2 A warm up

It turns out that for a sequence of asymptotically Ramanujan graphs of diverging
degree the trivial diameter lower bound (of Lemma 1.2) is matched by the trivial spectral-
gap upper bound on the L2 mixing time obtained via the Poincaré inequality. As a warm
up and motivation for what comes we now prove the following theorem.

Theorem 2.1. Let Gn = (Vn, En) be a sequence of non-bipartite, finite, connected,
dn-regular asymptotically Ramanujan graphs with dn → ∞. Then the corresponding
sequence of simple random walks exhibits cutoff around time logdn |Vn|.

Note that in Part (ii) of Theorem 1.3 the graphs are assumed to be only asymptotically
one-sided Ramanujan. Before proving Theorem 2.1 we need a few basic definitions and
facts. Let

λ := max{|a| : a 6= 1, a is an eigenvalue of P} and trel :=
1

1− λ
.

The L2 distance of Ptx from π is defined as

‖Ptx − π‖22,π =
∑
y

π(y)(P t(x, y)/π(y))2 − 1.

By Jensen’s and the Poincaré inequalities, for all t and x we have that

4‖Ptx − π‖2TV ≤ ‖Ptx − π‖22,π ≤ λ2t‖P0
x − π‖22,π ≤ λ2t/π(x).

Hence for SRW on an n-vertex regular graph we have for all t and x that

4‖Ptx − π‖2TV ≤ nλ2t =⇒ tmix(ε) ≤ 1

2
log 1

λ
(nε−2). (2.1)

Proof of Theorem 2.1: By assumption λ = ρ
1−o(1)
dn

= d
− 1

2 (1−o(1))
n . Thus 1

2 log 1
λ
|Vn| =

(1 + o(1)) logdn |Vn|. The proof is concluded by combining (2.1) with Lemma 1.2.

3 Replacing the Poincaré inequality by its hitting time analog

In the proof of Theorem 1.3 we exploit the general connection between mixing times
and escape times from small sets, established in [2] (Corollary 3.1 eq. (3.2)): There exists
some absolute constant C > 0 such that for every reversible chain (with a finite state
space),

∀α, ε ∈ (0, 1), tmix(ε+ α) ≤ hit1−α(ε) + Ctrel log(1/α), (3.1)

where hit1−α(ε) := inf{t : maxx,A:π(A)≤α Px[TAc > t] ≤ ε} and TB := inf{t : Xt ∈ B} is the
hitting time of the set B. In the proof of Theorem 1.3 we replace the naive L2 bound
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used in the proof of Theorem 2.1 by its hitting time counterpart: Under reversibility, for
all A ( Ω, a ∈ A and t ≥ 0

πA(a)(Pa[TAc > t])2 ≤
∑
b∈A

πA(b)(Pb[TAc > t])2 = ‖P tA1A‖22,A ≤ [λ(A)]2t, (3.2)

where πA is π conditioned on A, PA is the restriction of the transition matrix P to A

(this is the transition matrix of the chain which is “killed” upon escaping A), ‖f‖22,A :=∑
b∈A πA(b)f2(b) for f ∈ RA and λ(A) is the largest eigenvalue of PA.
The following proposition relates λ(A) to λ2, the second largest eigenvalue of P .

Proposition 3.1 (e.g. [2] Lemma 3.8). For every reversible Markov chain and any set A,

λ(A) ≤ λ2 + π(A), (3.3)

Similarly to (2.1), by (3.1)–(3.3) we have for every reversible chain on a finite state
space with λ2 < 1/2 and every α ∈ (0, λ2] that

hit1−α(
√
α) ≤ 1

2
| log 1

2λ2

(min
v
π(v))|,

tmix(2
√
α) ≤ 1

2
| log 1

2λ2

(min
v
π(v))|+ Ctrel log(1/α).

(3.4)

We are now in a position to give a short proof for Part (ii) of Theorem 1.3.

Proof. Let Gn = (Vn, En) be a sequence of non-bipartite, finite, connected, dn-regular
asymptotically one-sided Ramanujan graphs. Assume that dn diverges and log dn =

o(logdn |Vn|). Let α = αn = d
−1/2
n = o(1). Let λ2 = λ2(n) be the second largest eigenvalue

of the transition matrix of SRW on Gn. By our assumptions 2λ2 = d
− 1

2+o(1)
n and so by

(3.4) we have that

tmix(2
√
α) ≤ 1

2
log 1

2λ2

|Vn|+ C ′ log(1/α) = (1 + o(1)) logdn |Vn|.

The proof is concluded using Lemma 1.2.

4 Degree inflation

The simple proof of Part (ii) of Theorem 1.3 motivates looking at the following graph.

Definition 4.1. Given a graph G = (V,E), we define G(k) = (V,E(k)) via

E(k) := {{u, v} : distG(u, v) = k, u, v ∈ V },

where distG(u, v) denotes the graph distance of u and v w.r.t. G. Denote the transition
matrix of SRW on G(k) by K.

Definition 4.2. Consider SRW on G, (Xt)
∞
t=0. Let T0 := 0 and inductively set Ti+1 :=

inf{t ≥ Ti : distG(XTi+1
, XTi) = k}. Consider the chain Y := (Yj)

∞
j=0 defined via Yi := XTi

for all i, and denote its transition matrix by W .

Remark 4.3. It is possible that G(k) := (V,E(k)) is not connected. This could be
rectified, say by connecting every vertex to its entire k-neighborhood. However, below we
only use the fact that the SRW on G(k) is reversible w.r.t. πG(k)(x) := degG(k)(x)/(2|E(k)|).

Let G = (V,E) be a d-regular finite Ramanujan graph. Assume that Assumption 1
holds. Let r = rn be as in Assumption 1. Fix some k = kn such that 1� k �

√
r.

Remark 4.4. LetK,W and Ti be as in Definitions 4.1 and 4.2. By Assumption 1, for every
x, y ∈ V of distance k from one another 1 ≤ K(x, y)d(d−1)k−1 ≤ C1(d). In Lemma 5.2 we
show that for such x, y also 1 ≤W (x, y)d(d− 1)k−1 ≤ C2(d). In fact, Assumption 1 could
have been replaced by the assumption that max{W (x, y),K(x, y)} ≤ (d− 1)−k(1−o(1)) and
that T1 is concentrated around dk

d−2 (uniformly for all initial states).
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4.1 An overview of the proof of Part (i) of Theorem 1.3

Let G, k and r be as above. Intuitively, if either the SRW on G(k) or the chain Y

(from Definitions 4.1 and 4.2) exhibit an abrupt convergence to stationarity around time
t = tn, then also the SRW on G should exhibit an abrupt convergence to stationarity
around time t · d

d−2k. The term d
d−2k comes from the fact that (by Assumption 1) the

expected time it takes the walk on G to get within distance k from its current position is
d
d−2k(1 + o(1)).

While the chain Y is more directly related to the SRW on G, it is harder to analyze
it directly since it need not be reversible and a-priori it is not clear that its stationary
distribution is close to the uniform distribution. Instead we analyze the walk on G(k)

and use it to learn about Y and then in turn about the walk on G.

In light of Part (ii) of Theorem 1.3 (which has already been proven) a natural strategy
for proving Part (i) of Theorem 1.3 is to show that λ2(K) = ρ

1−o(1)
D = (d − 1)−

k
2 (1−o(1)),

where D is the maximal degree in G(k), K is the transition matrix of SRW on G(k) and
λ2(K) is its second largest eigenvalue. Unfortunately, we do not know how to show this
(see the first paragraph of § 5). Instead, we obtain such an estimate for λK(A), the largest
eigenvalue of KA, the restriction of K to A, for any “small” set A. By small we mean that
its stationary probability is at most α := (d−1)−3k

2

. Indeed, the key to the proof of Part (i)
of Theorem 1.3 is to show that λK(A) ≤ (d−1)−

k
2 (1−o(1)) for every small set A. Using (3.2)

we get for the walk on G(k) that Pa[TAc > (1 + o(1)) 1
k logd−1 |V |] = (d− 1)−

k
2 (1−o(1)). We

then show that the same holds for Y (this is obvious when 2k < girth(G); The general case
is derived using the fact that, as mentioned in Remark 4.4, cW (x, y) ≤ K(x, y) ≤ CW (x, y)

for all x, y). Finally, using an obvious coupling between Y and the SRW on G, after
multiplying by d

d−2k(1 + o(1)) the last bound is transformed into a bound on hit1−α(o(1))

for SRW on G (for some o(1) terms).

5 Auxiliary results

In order to control λK(A) (for small A), apart from Proposition 3.1 we need the
following comparison result. While there are similar comparison techniques for the
spectral-gap, we are not aware of a comparison technique which allows one to argue
that λ2 (the second largest eigenvalue of the transition matrix) of one chain is close to 0
(say, that λ2 = o(1)) if that of another chain is close to 0.

Proposition 5.1. Let P (1) and P (2) be two transition matrices on the same finite state
space Ω, both reversible w.r.t. π(1) and π(2), respectively. Assume that P (1)(x, y) ≤
C1P

(2)(x, y) and 1/C2 ≤ π(1)(x)/π(2)(x) ≤ C2 for all x, y. Let A ( Ω and let λP (i)(A) be

the largest eigenvalue of P (i)
A , the restriction of P (i) to A (i = 1, 2). Then

λP (1)(A) ≤ C1C
2
2λP (2)(A).

Proof: Denote 〈f, g〉
π
(i)
A

:=
∑
x∈A π

(i)
A (x)g(x)f(x). By the Perron-Frobenius Theorem

λP (1)(A) = max
f∈RA+,f 6=0

〈P (1)
A f, f〉

π
(1)
A

〈f, f〉
π
(1)
A

≤ C1C
2
2 max
f∈RA+,f 6=0

〈P (2)
A f, f〉

π
(2)
A

〈f, f〉
π
(2)
A

= C1C
2
2λP (2)(A).

Before proving Theorem 1.3 we need one more lemma.

Lemma 5.2. Let G = (V,E) be a d-regular graph (d ≥ 3). Let v ∈ V . For i, k ∈ N let
Di := {u ∈ V : distG(u, v) = i}, Bi := ∪ij=0Dj (the ball of radius i around v) and

t(Bk) := |{{x, y} ∈ E : y ∈ Bk−1, x ∈ Bk}| − |Bk|.

ECP 22 (2017), paper 45.
Page 5/10

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP72
http://www.imstat.org/ecp/


Cutoff for Ramanujan graphs via degree inflation

For any s ≥ 0 there exist some constant C(s, d) > 0 and ks such that if k ≥ ks, t(Bk) ≤ s
and Dk 6= ∅ then

1

d(d− 1)k−1
≤ min
u∈Dk

Pv[TDk = Tu] ≤ max
u∈Dk

Pv[TDk = Tu] ≤ C(s, d)

d(d− 1)k−1
. (5.1)

Proof. Let u ∈ Dk. We first prove that Pv[TDk = Tu] ≥ 1
d(d−1)k−1 . This follows from a

standard argument involving the covering tree of G. A non-backtracking path of length
` is a sequence of vertices (v0, v1, . . . , v`) such that {vi, vi−1} ∈ E and vi+2 6= vi for all i.
Let P` be the collection of all non-backing paths of length ` starting from v. Let Td be
the (infinite) d-regular tree. We may label the `th level of Td by the set P` (in a bijective
manner) such that the children of (v, v1, . . . , v`) are {(v, v1, . . . , v`, v′) : (v, v1, . . . , v`, v

′) ∈
P`+1}. For γ = (v, v1, . . . , v`) let φ(γ) := v`. Note that if (Sn)∞n=0 is a SRW on Td (labeled
as above) started from (v) (which is the root) then (φ(Sn))∞n=0 is a SRW on G started
from v. Denote the law of (Sn)∞n=0 by Pv.

Fix some γ := (v, v1, . . . , vk) ∈ Pk such that vk = u. Finally, observe that

Pv[TDk = Tu] ≥ Pv[TPk = Tγ ] =
1

|Pk|
=

1

d(d− 1)k−1
.

We now prove that Pv[TDk = Tu] ≤ C(s,d)
d(d−1)k−1 . We prove this by induction on s. The

base case t(Bk) = 0 is trivial (it holds with C(1, d) = 1). Now consider the case that
t(Bk) = s > 0. Let z ∈ Dk be such that Pv[TDk = Tz] = maxu∈Dk Pv[TDk = Tu]. For
an edge e := {x, y} ∈ E let Ge := (V,E \ {e}) be the graph obtained by deleting e

from G. Let He := (Ve, Ee) be the graph obtained from Ge by connecting x (resp. y)
to the root of a d-ary tree4 Tx (resp. Ty). Denote the law of SRW on He by P(e). Let

D
(e)
i := {u ∈ Ve : distHe(u, v) = i} and B(e)

k := ∪ki=0D
(e)
i . We now show that there is some

constant K(s, d) and an edge e = {x, y} ∈ E belonging to some cycle in Bk such that
x ∈ Bk, y ∈ Bk−1 and

Pv[TDk = Tz] ≤ K(s, d)P(e)
v [T

D
(e)
k

= Tz]. (5.2)

Once this is established, invoking the induction hypothesis concludes the induction step.
Consider an arbitrary cycle in Bk with at most one vertex in Dk. Let x be the vertex

of the cycle which maximizes Px[TDk = Tz]. Let e = {x, y}, e′ = {x, y′} be the two edges
of the cycle which are incident to x. Without loss of generality, let e be the one through
which x is less likely to be reached. More precisely, assume that

Pv[XTx−1 = y, Tx ≤ TDk ] ≤ Pv[XTx−1 = y′, Tx ≤ TDk ]. (5.3)

Also, by the choice of x we have that

Px[TDk = Tz] ≥ Py[TDk = Tz]. (5.4)

Note that if x ∈ Dk and x 6= z then Pv[TDk = Tz] = P
(e)
v [T

D
(e)
k

= Tz]. If x = z then by

(5.3) Pv[TDk = Tz] ≤ 2P
(e)
v [T

D
(e)
k

= Tz]. Now consider the case that x /∈ Dk. Denote

Tx,y := min{Tx, Ty} and T+
x := inf{t > 0 : Xt = x}. Observe that

Pv[TDk = Tz < Tx,y] = P(e)
v [T

D
(e)
k

= Tz < Tx,y]. (5.5)

Thus in order to conclude the proof of (5.2) it remains only to show that

Pv[TDk = Tz > Tx,y] ≤ C̃(s, d)P(e)
v [T

D
(e)
k

= Tz > Tx,y].

4The root of a d-ary tree is of degree d− 1.
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By (5.3) we have that

Pv[Tx < min{TDk , Ty}] ≥ Pv[Ty < Tx < TDk ] ≥ 1

d
Pv[Ty < TDk ].

Thus Pv[Tx < TDk ] ≥ 2
dPv[Ty < TDk ]. By (5.4) we get that

Pv[Tx < TDk = Tz] = Pv[Tx < TDk ]Px[TDk = Tz] ≥
2

d
Pv[Ty < TDk ]Py[TDk = Tz]

= 2
dPv[Ty < TDk = Tz]. Hence, there exists some constant M(s, d) such that

Pv[TDk = Tz > Tx,y] ≤ Pv[TDk = Tz > Tx] + Pv[TDk = Tz > Ty]

≤ (1 +
d

2
)Pv[TDk = Tz > Tx] ≤ (d+ 2)Pv[TDk = Tz, Tx < min{TDk , Ty}]

≤M(s, d)Pv[Tx < min{TDk , Ty}]Px[TDk = Tz,min{T+
x , Ty} > TDk ]

≤M(s, d)P(e)
v [Tx < min{T

D
(e)
k

, Ty}]P(e)
x [T

D
(e)
k

= Tz < T+
x ]

≤M(s, d)P(e)
v [T

D
(e)
k

= Tz > Tx,y],

(5.6)

where in the second inequality we have used the fact that Px[min{T+
x , Ty} > TDk ] ≥ c(s, d)

for some constant c(s, d) > 05 and that by the choice of x (namely, by (5.4)) we have that
Py[TDk = Tz | Tx > TDk ] ≤ Px[TDk = Tz] = Px[TDk = Tz | T+

x > TDk ] and so

Px[TDk = Tz | min{T+
x , Ty} > TDk ] ≥ Px[TDk = Tz | T+

x > TDk ] = Px[TDk = Tz].

We leave the missing details as an exercise. Finally, combining (5.5) and (5.6) yields (5.2).

6 Proof of Theorem 1.3

Part (ii) was proven in § 3. Let Gn = (Vn, En) be a sequence of non-bipartite, finite,
connected, d-regular asymptotically one-sided Ramanujan graphs satisfying Assump-
tion 1. Let rn →∞ be as in Assumption 1. Pick some k = kn →∞ such that k2n = o(rn).
From this point on we often suppress the dependence on n from our notation. Denote the
transition matrix of SRW on G (resp. G(k)) by P (resp. K) and its stationary distribution
by π (resp. πG(k)). Let A be an arbitrary set such that π(A) ≤ α = αn := d−3k

2

. Denote

Q := P k+2k2 .

Before proceeding with the proof, we explain the choice of k + 2k2 in the definition of
Q. In order to obtain an upper bound on λK(A) we shall apply Proposition 5.1 with P t

(for some t) and K in the roles of P (2) and P (1) (respectively) from Proposition 5.1. The
obtained estimate is useful only when t ≥ ck2. Heuristically, this is related to the fact
that a SRW on a d-regular tree is much more likely to be at time t at some given vertex
of distance O(

√
t) from its starting point, than at some other given vertex at distance

�
√
t from its starting point (and we want k = O(

√
t)).

Recall that ρd := 2
√
d−1
d . Let λ2 and λ′2 be the second largest eigenvalues of P and

Q, respectively. Since λ2 = ρ
1−o(1)
d , by decreasing k if necessary, we may assume that

λ2 ≤ ρ
1− 1

3k2 log d

d . By Proposition 3.1 (using the notation from there) and our choice of α,

λQ(A) ≤ λ′2 + α = λk+2k2

2 + α ≤ C1ρ
k+2k2

d . (6.1)

5This could be proved by induction on s.
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Let (St)
∞
t=0 be SRW on Td, the infinite d-regular tree rooted at o. Denote its transition

kernel by PTd . Denote the ith level of Td by Li. Let S̃t be the level St belongs to. Let
v ∈ Lk. Let T+

0 := inf{t > 0 : S̃t = 0}. Then by Lemma 6.1 (second inequality)

|Lk|P k+2k2

Td
(o, v) = P0[S̃k+2k2 = k] ≥ P0[S̃k+2k2 = k, T+

0 > k + 2k2]

≥ c0k−22k+2k2(d− 1)k
2+k−1d−(k+2k2)+1 ≥ c1k−2(d− 1)

k
2 ρ2k

2+k
d

(6.2)

Let x, y be a pair of adjacent vertices in G(k). It is standard that P t(x, y) ≥ P tTd(o, v) for
all t (where v is as above), and so by (6.2)

Q(x, y) = P k+2k2(x, y) ≥ P k+2k2

Td
(o, v) ≥ (d− 1)

k
2 (1−o(1))ρ2k

2+k
d =: Ck. (6.3)

By Proposition 5.1 (and borrowing the notation from there) in conjunction with (6.1),
(6.3) and Assumption 1 (which implies that there exists some constant C0 = C0(d) > 0

such that L :=
maxx degG(k)(x)

miny degG(k)(y)
≤ C0 and that if x, y are of distance k in G then K(x, y) ≤

C0(d− 1)−k), we have that

λK(A) ≤ λQ(A)C3
0 (d− 1)−k/Ck = (d− 1)−

k
2 (1−o(1)).

Denote the probability w.r.t. SRW on G(k) by P. By (3.2) we have for all t (uniformly)
that

max
(a,A):a∈A,π(A)≤α

Pa[TAc > t] ≤
√
C0α|V |(d− 1)−

tk
2 (1−o(1)) =

√
α|V |(d− 1)−

tk
2 (1−o(1)),

(6.4)
where we have used the fact that maxx∈V πG(k)(x)/π(x) ≤ C0, where C0 is as above.

Consider SRW on G, (Xt)
∞
t=0. Let T0 := 0 and inductively, Ti+1 := inf{t ≥ Ti :

distG(XTi+1 , XTi) = k}. As in Definition 4.2, consider the chain Y = (Yi)
∞
i=0, where

Yi := XTi for all i. Let W be its transition matrix. By Assumption 1 and Lemma 5.2 there
exists some constant C = C(d) such that for all x, y ∈ V of distance k from one another
(in G),

1/C ≤W (x, y)/K(x, y) ≤ C. (6.5)

Denote the probability w.r.t. Y by P. Then by (6.4) and (6.5)

max
(a,A):a∈A,π(A)≤α

Pa[TAc > t] ≤ Ct max
(a,A):a∈A,π(A)≤α

Pa[TAc > t] ≤
√
α|V |(d− 1)−

tk
2 (1−o(1)),

(6.6)
uniformly for all t. Denote the distribution of SRW on G by P. Observe that for all s, t ≥ 0

max
(a,A):a∈A,π(A)≤α

Pa[TAc > t+ s] ≤ max
(a,A):a∈A,π(A)≤α

Pa[TAc > τ(t)] + max
a∈V

Pa[Tτ(t) > t+ s],

where

τ(t) := d (d− 2)t

dk
e.

To conclude the proof (using (3.1) in conjunction with Lemma 1.2), we now show that
(for some o(1) terms) substituting above t = d(1 + o(1)) d

d−2 logd−1 |V |e and s = t/
√
k +

t2/3 (the value 2/3 in the exponent can be replaced by any number in (1/2, 1)) yields
max(a,A):a∈A,π(A)≤α Pa[TAc > t+ s] = o(1). By (6.6) it suffices to show that for this choice
of s and t we have that maxa∈V Pa[Tτ(t) > t+ s] = o(1).

Fix s and t as above. We say that time j is good if Xj has d− 1 neighbors of greater
distance from XTi(j) , where i(j) is the index for which j ∈ [Ti(j), Ti(j)+1). Let

Ui := |{t ∈ [Ti, Ti+1) : t is not good}| and U :=

τ(t)∑
i=0

Ui.
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By Assumption 1 we have that maxv Pv[U0 > `] ≤ C ′e−c` for all `, for some constant
c, C ′ > 0 (this is left as an exercise). By the Markov property, it follows that

max
v

Pv[U >
t√
k

] = o(1).

Consider a coupling of the SRW on G (Xj)
∞
j=0 with the SRW on Td started from its root

o (Sj)
∞
j=0 in which if j is the `th good time, then distG(Xj+1, XTi(j)) < distG(Xj , XTi(j))

iff distTd(S`+1, o) < distTd(S`, o) (unless S` = o, but there is no harm in neglecting this
possibility, as the number of returns to o has a Geometric distribution). Using this
coupling we get that for all a ∈ V we have that

Pa[Tτ(t) > t+ s] ≤ Pa[U >
t√
k

] + max
0≤j≤d t√

k
e
Po[St+s−j ∈ ∪τ(t)+ji=0 Li] = o(1).

To see that max0≤j≤d t√
k
e Po[St+s−j ∈ ∪τ(t)+ji=0 Li] = o(1) use the fact that the distance

of St+s−j from o is concentrated around d−2
d (t + s − j) within a window whose length

is of order
√
t (c.f. [4] (2.2)–(2.3) pg. 9) and that by our choice of s we have that

d−2
d (t+ s− j)− (τ(t) + j)�

√
t, for all 0 ≤ j ≤ d t√

k
e.

Lemma 6.1. Let M be the number of paths of length k+ 2k2 in Z, starting from 0, which
end at k and do not return to 0. Then M ≥ c02k+2k2/k2.

Proof. Let (Zi)
∞
i=0 be a SRW on Z. Let T+

0 := inf{t > 0 : Zt = 0}. Then

P0[Zk+2k2 = k, T+
0 > k+2k2] ≥ P0[T+

0 > k+2k2 ≥ Tk] min
0≤i≤k2

Pk[T0 > 2i, Z2i = k] ≥ c0k−2,

where we have used the fact that P0[T+
0 > k + 2k2 ≥ Tk] ≥ c1P0[T+

0 > Tk] = c1/(2k)

and that Pk[T0 > 2i, Z2i = k] ≥ Pk[T{0,2k} > 2i]Pk[Z2i = k | T{0,2k} > 2i] ≥ c2 · 1
2k for all

i ≤ k2.
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