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Haematopoiesis or blood development has long served as a model system for adult stem cell biology. Moreover, when combined,
the various cancers of the blood represent one of the commonest human malignancies. Large numbers of researchers have
therefore dedicated their scienti�c careers to studying haematopoiesis for more than a century. roughout this period, many new
technologies have �rst been applied towards the study of blood cells, and the research �elds of normal andmalignant haematopoiesis
have also been some of the earliest adopters of genome-scale technologies. is has resulted in signi�cant new insights with
implications ranging from basic biological mechanisms to patient diagnosis and prognosis and also produced lessons likely to
be relevant for many other areas of biomedical research. is paper discusses the current state of play for a range of genome-
scale applications within haemopoiesis research, including gene expression pro�ling, ChIP-sequencing, genomewide association
analysis, and cancer genome sequencing. A concluding outlook section explores likely future areas of progress as well as potential
technological and educational bottlenecks.

1. Introduction

Haematopoiesis represents the process whereby multipoten-
tial blood stem and progenitor cells differentiate into more
than 10 distinct mature blood cell types. Research over the
last 30 years has led to the development of puri�cation
protocols that permit the isolation of many of these pro-
genitor and all mature cell types at close to 100% purity.
Moreover, biological assays have been developed to validate
the functional properties for most of these different cell types
including the many progenitors at various stages of maturity.
Consequently, differentiation of the blood system is better
de�ned than any other mammalian organ system and has
hence become a model system for the wider �eld of stem cell
biology.

Since many of the mature blood cell types are short lived,
they need to be constantly replenished throughout adult life,
with the consequence that the blood system has one of the
fastest turnovers of all human organ systems. Production of
the various types of mature blood cells is tightly controlled,
with transcription factor and signalling proteins playing

particularly prominent roles [1–5]. Long-term formation of
mature blood cells from blood stem cells also forms the basis
of successful bone marrow transplantation, which therefore
represents one of the most widely used stem cell treatments
currently in use. Transplantation of blood stem cells has also
been used as a powerful assay when applied to experimental
animals, in particular rodents. Here it allows for the detection
of the presence of blood stem cells in complex mixtures
of cells, with the most advanced protocols allowing for the
transplantation of a single blood stem cell to give rise to
long-term donor-derived haematopoiesis in the transplant
recipient [6].

e various types of human leukaemias all share the
property of perturbed blood cell production, oen with an
accumulation of the so-called blast cells that resemble imma-
ture blood progenitor cells [7]. With transcription factor and
signalling genes being key to normal blood development, it
is perhaps no surprise that acquired mutations in these cate-
gories of genes are now recognised as one of the commonest
causes of leukaemia development [8–11]. Below I will outline
how a range of genome-scale approaches has been employed
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to provide signi�cant advances to our understanding of
both normal and malignant haematopoiesis. is will be
followed by a brief outlook on likely future developments and
relevance beyond the �eld of haematopoiesis research.

�� Gene ��pression �ro��in� for �et�or�
�nference an� �isease ��assi�cation

e relative ease of accessing blood cells compared with
most other human tissues likely is a major reason as to
why several advanced approaches for the extraction of new
biological knowledge from large-scale gene expression pro-
�ling datasets have been pioneered in studies using blood
cells. Below I focus in particular on gene expression pro�ling
studies aimed at regulatory network reconstruction and
disease classi�cation.

With the ever-increasing momentum of genome-scale
science driven by, for example, human genome project [12,
13], gene expression pro�ling has rapidly been recognised
as a powerful means to de�ne the phenotype of a given cell
population. With differentiation not only entailing but most
likely being driven by changes in gene expression pro�les,
generating gene expression pro�les for a range of different
but related cell types has the potential to identify those
aspects of a given expression pro�le that are characteristic
for a given cell type. Moreover, large-scale analysis across
multiple different cell types and lineages can be used to
de�ne coexpressed gene clusters, which through the use of
reverse-engineering approaches can be utilised further for the
reconstruction of likely regulatory hierarchies and networks.
An early example of this approach was the development of
the ARACNE (algorithm for the reconstruction of accurate
cellular networks algorithm [14]). In this study, the authors
reported the reconstruction of regulatory networks from
expression pro�les of human B cells, which suggested the
existence of hierarchical, scale-free networks, where a few
highly interconnected hub genes account for most of the
interactions. e authors also identi�ed the MYC protein as
a major hub controlling a network of known and previously
unknown MYC target genes, some of which represented
major hubs themselves. is and related approaches have
subsequently been used for the analysis of normal and
pathologic networks in a range of mammalian cells [15–24].

Coexpression across more extended differentiation hier-
archies has more recently been utilised for the de�nition of
haematopoietic gene sets as well as the inference of regulatory
networks [25]. Here the authors generated gene expression
pro�les for 38 distinct puri�ed human hematopoietic cell
populations. Subsequent use of probabilistic models and
analysis of cis-elements were employed to further de�ne
the regulatory circuitry, which lead to the de�nition of
densely interconnected cis-regulatory circuits and a number
of transcription factors where their differential expression
across the different hematopoietic lineages was inferred to be
involved in the generation of distinct cellular states. Together
with earlier human studies [26] as well as comprehensive
expression pro�ling in themouse [27–30], this study provides
a rich resource for hypothesis generation for future research
into the molecular controls of blood cell differentiation.

Gene expression pro�ling has also been employed widely
across a range of different haematological malignancies, in
order to identify new classi�cation schemes with potential
diagnostic, prognostic, and/or therapeutic value. One of the
early protagonists in the �eld has been the group of �ouis
Staudt, who in 2000 reported distinct types of diffuse large B-
cell lymphoma through the use of gene expression pro�ling
[31]. Diffuse large B-cell lymphoma represents themost com-
mon subtype of non-Hodgkin’s lymphoma and was known
to be clinically heterogeneous. Using extensive expression
pro�ling, the authors identi�ed two molecularly distinct
disease forms with gene expression patterns indicative of
different stages of B-cell maturation, and differential overall
survival. Similar studies have subsequently been performed
on a wide range of leukaemias [32–49] and more recently
also at very large scale in other malignancies [50]. Molecular
classi�cation of tumours on the basis of gene expression
therefore has the capacity to identify previously undetected
and clinically signi�cant subtypes of cancer.

�� Gene ��pression �ro��in� �o�pen�ia
as Resources for Hypothesis Generation

With the ever-increasing availability of expression pro�ling
datasets, efforts have been initiated to collate expression data
from diverse studies into uni�ed data collections with a view
to providing powerful data mining platforms. One example
is represented by BloodExpress, an expression pro�ling
resource for mouse haematopoiesis [28]. rough a user-
friendly web interface, BloodExpress allows for searching
of uniformly processed microarray datasets. BloodExpress
covers both mature and progenitor populations and indeed
includes expression data for the majority of all mouse blood
cell types. Identi�cation of dynamic gene expression changes
is therefore facilitated, as expression data can be retrieved for
a variety of differentiation pathways within the well-de�ned
haematopoietic differentiation tree. Both gene-centric and
cell-type centric interfaces are implemented, with the latter
also allowing for �ltering by speci�c gene functional cate-
gories, and thus further facilitating the use of BloodExpress
for building novel hypotheses [51–53].

While BloodExpress demonstrated the feasibility of inte-
grating gene expression pro�les from diverse laboratories,
cross-dataset normalisation did represent a formidable chal-
lenge, so that much of the expression information was
eventually discretised in a binary “on/off” fashion, thus
giving some con�dence to expression states but also los-
ing potentially vital information in quantitative expression
changes. Parallel efforts have therefore been initiated to
generate uni�ed expression pro�ling resources generated by
a single laboratory or facility. One particularly prominent
example here is the hematopoietic �ngerprints database from
theGoodell lab [27].e hematopoietic �ngerprints database
contains expression pro�les for hematopoietic stem cells as
well as their differentiated progeny, such as granulocytes,
erythrocytes, natural killer cells, monocytes, activated, and
naive T cells and also B cells.e database can be downloaded
or accessed through the web, or even through a smartphone
application. For their publication, the authors also used the
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database to generate novel hypotheses on the transcriptional
control of the NK cell lineage and the monocyte lineage,
where they were able through functional experiments to
implicate the transcription factors Zfp105 and Ets1, respec-
tively, in the differentiation of these two lineages. ese
results together with many subsequent citations [54–59] of
their paper proved the extraordinary utility of this resource.

Comparable expression pro�ling compendia have more
recently also been generated for the human haematopoietic
system. e �rst such study generated a web-accessible
resource termed the HaemAtlas [26]. is resource contains
gene expression pro�les generated from a single centre
that cover human erythroblasts, megakaryocytes, B cells,
cytotoxic and helper T cells, natural killer cells, granu-
locytes, and monocytes. Bioinformatic analysis focussing
on speci�c functional categories reported cell type speci�c
characteristics related to transcription factor genes as well
as immunoglobulin superfamily members. As the above
resources, theHaemAtlas is freely accessible andhas therefore
played an important role in accelerating hypotheses genera-
tion, particularly within the context of genomewide associ-
ation studies [60–65]. A more extended human expression
pro�ling resource was published subsequently by the lab of
Ben Ebert [25]. A total of 38 different human progenitor and
mature blood populations are contained within this resource,
which also has aweb portal known asDMapor differentiation
map portal. e free accessibility of this resource again has
meant that it has been rapidly used by the community [66–
69]. Moreover, a compendium of gene expression pro�les for
malignant blood cells has also recently been reported [70],
which again through a user-intuitive website facilitate data
analysis and hypothesis generation. Extensive analysis and
visualization tools allow for the integrated analysis of more
than 5,800 leukaemia and normal haematopoiesis samples,
with easy data retrieval obviating the need for potentially
redundant investigations.

A particularly exciting recent development has been an
attempt to generate an expression pro�ling compendia that
will allow for an absolute expression quanti�cation [29]. Here
more than 10,000 different gene expression pro�les were
integrated to explore the previously unknown and variable
sensitivities of each probe set. e resulting Gene Expres-
sion Commons database utilises statistical attributes of each
microarray probe (e.g., dynamic range and also threshold)
to de�ne absolute expression levels for each gene. e web-
based platform represents an implementation with 39 highly
puri�ed mouse blood stem�progenitor�differentiated popu-
lations and covers almost all of the mouse haematopoietic
system.e soware is implemented as an open platform, so
that individual investigators cannot only explore expression
levels of genes or gene families, but also upload their own
datasets into the database for cross-comparisons. It is likely
that this approach will not only contribute to a very signi�-
cant progress in haematopoiesis research, but also be applied
to many other biomedical research �elds, since it appears to
overcome some of the previous limitations inherent to cross-
comparisons of microarray datasets.

4. Epigenomic Analysis

�hile a universally accepted de�nition of epigenetics as well
as epigenomics has this far eluded the �eld, the current
consensus view is that modi�cation to the DNA sequence
(e.g., methylation) as well as posttranslational modi�cation
to chromatin proteins (e.g., histonemodi�cations) represents
key aspects of the epigenetic control of gene regulation. Fol-
lowing the advent of high-throughput sequencing technolo-
gies, it was quickly realised that genomewide analysis of his-
tone modi�cation status is particularly amenable to this new
technology. To this end, the sheared chromatin fragments
are subjected to sequencing following immunoprecipitation
with suitable antibodies (chromatin immunoprecipitation or
ChIP), with the whole technique commonly referred to as
ChIP-Seq. Posttranslational modi�cations indicating both
active and repressed transcriptional status arewell recognized
and have been mapped at genome scale in a variety of both
mouse and human blood cell types [71–80].

It is hoped that genome-scale chromatin maps will
eventually provide information complementary to gene
expression pro�ling, with implication for human disease
prediction, diagnosis, prognosis, and treatment. Indeed, the
European Union invested close to 30 million euro in 2011
into its new BLUEPRINT initiative [81]. BLUEPRINT brings
together 41 leading European universities, research insti-
tutes, and industry entrepreneurs, with the primary goal
of mapping chromatin status in human blood cells from
healthy and diseased individuals and to provide at least 100
reference epigenomes to the scienti�c community. Resource-
generating activity will be complemented by research into
blood-based diseases, including common leukaemias and
autoimmune disease (Type 1 Diabetes). e recurring theme
therefore is that once again a new ground-breaking initiative
uses blood cells as their experimental model of choice.

Genome-scale information on DNA methylation can be
obtained using a variety of approaches, with direct sequenc-
ing of the entire genomic DNA following bisul�te treatment
perhaps representing the most comprehensive approach.
Indeed, dramatic improvements and falling costs of high
throughput sequencing have made bisul�te sequencing (BS-
Seq) a viable option for the global analysis of DNA methyla-
tion [82–86].e well-understood nature of the haematopoi-
etic differentiation tree has again made application of these
technologies to blood cells the model of choice for studying
the nature of dynamic changes in DNA methylation [83,
87, 88]. Lastly, recent studies demonstrated that ten-eleven
translocation (Tet) proteins can catalyze 5methyl-cytosine
(5mC) oxidation and generate 5mC derivatives, including
5-hydroxymethylcytosine (5hmC). Importantly, Tet family
proteins and 5hmC appear to play key roles in normal
development as well as in many diseases, with mutations
in human leukaemia patients representing a particularly
prominent example [89–103]. Concerted research efforts are
currently directed therefore at generating genomewide maps
of both the locations of 5hmC as well as the binding sites of
Tet proteins [96, 97, 104–110].
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5. Genome-Scale Transcription Factor Maps

When using antibodies that speci�cally recognise transcrip-
tion factor proteins, the ChIP-Seq technology is also readily
amenable to determining genomewide transcription factor
binding maps. Indeed, one of the earliest reports using this
technologymapped the locations of theNRSF transcriptional
regulator in a T-lymphoid cell line [111]. Transcription
factor ChIP-Seq studies have now been performed for more
than 30 different factors across all major branches of the
haematopoietic differentiation tree, as well as a range of
mouse and human leukaemia cells and cell lines [51, 68,
76, 78, 79, 112–123]. Important lessons that have been
learned from these studies include that (1) high con�dence
transcription factor binding events highlight functional gene
regulatory sequences [117], (2) multifactor studies can reveal
previously unrecognised combinatorial interactions between
pairs or groups of TFs [118], (3) combinatorial binding events
can be used to localise genes that are candidate regulators
of developmental processes such as blood cell differentiation
[78], and (4) studies from different laboratories can be readily
integrated and exploited to perform bioinformatic searches
across large numbers of different studies [113].

Transcription factor ChIP-Seq maps have also been
utilised to map the genomewide locations of leukaemogenic
factors. One recent example mapped the locations of
the RUNX1/ETO fusion protein, which is a leukaemia-
initiating transcription factor that interferes with RUNX1
function [124]. Global analysis of chromatin status, tran-
scription factor binding, and gene expression showed that
RUNX1/ETO controls important regulators of hematopoietic
differentiation and self-renewal. Moreover, the removal of
RUNX1/ETO re-established the RUNX1 binding pro�le seen
in normal blood cells and also caused the inhibition of
leukemic proliferation and self-renewal, thus highlighting the
potential therapeutic value of targeting abnormal transcrip-
tional processes in cancer. Other studies have mapped the
genomewide locations of the PML-RAR leukaemia oncogene
[77, 125], as well asmutant Notch1 [126], which is recognised
as one themost commonlymutated genes in T-cell leukaemia
[127]. Collectively, these studies have already demonstrated
that application of ChIP-Seq technology to the study of
transcription factor oncogenes has the potential to provide
new mechanistic insights with potential therapeutic value.

6. Genomewide Association Studies

Genomewide association studies (GWASs) examine many
common genetic variants in different individuals to see if any
variant is associated with a particular trait. GWAS surveys
typically focus on associations between single-nucleotide
polymorphisms (SNPs) and traits for major diseases, but
can also identify variants that are linked to phenotypic
variation seen in normal populations. Blood parameters such
as the numbers of a particular blood cell type per millilitre
of blood vary between different individuals, and much of
this variation is thought to be genetic. Since elevated or
reduced levels of certain blood cell types can predispose
to diseases, GWAS studies have been performed to identify

some of the underlying variants. In particular, blood platelets
play a pivotal role in cardiovascular disease through their
involvement in atherothrombosis following coronary artery
plaque rupture. Not only does the platelet response to such
an event vary between individuals, but also this variation
is largely genetically controlled. A recent integrated systems
biology approach performed high density genotyping of
110 genes in a cohort of more than 500 individuals with
known levels of platelet response, which was followed by
gene expression pro�ling and proteomics studies on platelets
from individuals with the so-called “extreme end” response
phenotypes [128]. With the advent of high density (i.e.,
500,000 SNPs) genotyping arrays, a large number of case and
control samples can now be tested at an affordable cost. By
making use of the recently completed Wellcome Trust Case
Control Consortium (WTCCC) study, common sequence
variants that are associated with abnormal blood parame-
ters and/or confer risk to myocardial infarction have been
identi�ed. Total white blood cell count and its constituent
subtypes were recently used to study several 10,000 subjects
[129, 130], to determine genetic factors in�uencing variability
within the blood parameters. Ten variants associated with
total white blood cell count were identi�ed with additional
variants associated with variation in speci�c blood cell types.
Possible functional relationships between the relevant can-
didate genes were predicted by integrating gene expression
and pathways-based analyses, which revealed functional
connectivity among implicated loci.

GWAS studies are commonly followed up by meta-
analysis of several independent studies. Analysis of 66,867
individuals of European ancestry followed by extensive bio-
logical and functional assessment identi�ed 68 loci reliably
associated with platelet count and volume [130]. Expression
pro�ling demonstrated a tendency for lineage speci�c expres-
sion within the haematopoietic differentiation tree for the
genes identi�ed by GWAS. Using a functional followup in
�ebra�sh and drosophila, 11 of these genes were validated
as novel regulators of blood cell formation, thus providing
an example of successful translation of GWAS studies to
generating new functional insights.

7. Cancer Genome Sequencing

Identi�cation of the whole complement of genes that are
mutated in human cancers and therefore drive malignant
transformation has been a central aim of cancer research ever
since the advent of recombinant DNA technology. Follow-
ing the development of ultra-high-throughput sequencing
technologies and the subsequent reductions in the costs of
sequencing whole genomes, projects have been initiated in
Europe, America, and Asia to decode entire genomes from
multiple individuals for a wide range of human cancers.
Identi�cation of somatically acquired mutations is thought
to provide the most direct route towards delineating genes
critical to the development of human cancers, yet it is not
entirely clear at this stage what will be the most reliable
techniques to distinguish these so-called “driver” mutations
from the so-called “passenger” mutations; that are also found
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in the tumour but occurred by chance without providing a
selective advantage to tumour growth and/or survival.

Within haematopoiesis research, cancer genome sequenc-
ing has now been applied to several different haematological
malignancies [69, 131–145]. For example, multiple myeloma
which is an incurable malignancy of plasma cells, was
investigated by the sequencing of 38 tumour genomes and
their comparison to matched normal DNAs, which revealed
several new and unexpected putative oncogenic mechanisms
[146]. ese included mutations of genes involved in protein
translation, histonemethylation, and blood coagulation, thus
demonstrating that cancer genome sequencing of large col-
lections of samples can yield new and previously unsuspected
insights into cancer.

A more recent study investigating cancer genomes in
patients with acute myeloid leukaemia (AML) speci�cally
addressed the question of passenger and driver mutations
[147]. Of note, normal karyotypes are common and genomic
instability is unusual in AML. By comparing AML sam-
ples with a known initiating event (PML-RARA) with
normal karyotype AML samples and nonleukaemic blood
stem/progenitor cells, this study suggests thatmostmutations
in AML genomes are random events that occurred prior
to the initiating leukaemogenic mutation, and that in many
cases, only one or two additional, cooperating mutations
are needed to generate the malignant founding clone. Cells
from the founding clone can acquire additional cooperating
mutations, yielding subclones that can contribute to disease
progression and/or relapse, thus making clonal analysis of
cancers an important goal of current research efforts. Indeed,
it was again an analysis using blood cells as a model which
provided an important recent breakthrough. e particular
study in question reported amethod for sequencing complete
exomes from single cells [148]. e authors went on to use
this method to perform whole-exome single-cell sequencing
for 58 single cells from a patient with myeloproliferative
neoplasm. is analysis suggested that in this particular
patient, the neoplasm followed the pathway of monoclonal
evolution. Importantly, this technological breakthrough now
sets the scene for similar analyses in other human leukaemias
as well as solid cancers.

8. Outlook

e application of new genome-scale technologies has
resulted in an unprecedented increase in the amounts of data
available for hypothesis generation in biomedical research.
However, the extent to which this explosion in data has
contributed to an actual increase in mechanistic under-
standing has so far been less impressive. To some extent
this is to be expected, since the new datasets have been
available at most for a few years, and mechanistic studies
oen have longer timescales. However, there are also cultural,
training/educational, and technical issues that need to be
overcome to accelerate the exploitation of new datasets.

In terms of research culture, it has become apparent
that many investigators have found a comfortable niche for
themselves, where essentially they end up with repeating
the same data collection exercise every couple of years,

each time with the next version of whatever genome-scale
technology they have become an expert in (an example here
would be remapping SNPs when the next version SNP array
becomes available, or performing ChIP-on-chip analysis one
year and follow this with ChIP-Seq of more or less the
same samples the next years). is however avoids asking
the much harder question whether it is possible to decipher
the meaning of any underlying biology from a genome-scale
observation and how this might be exploited to deliver actual
biomedical advances. Journals and funding agencies should
pay more attention to this issue and provide better rewards
to those investigators willing to tackle the harder mechanistic
questions. Just because an experiment has cost millions of
dollars and used the latest technology, this on its own, does
not mean that it will have a lasting value.

e educational issue is that the exploitation of genome-
scale datasets requires biologists with a robust understanding
of bioinformatics and statistics and ideally also a signi�cant
knowledge of computer programming languages. Universi-
ties are increasingly offering relevant courses, yet the demand
for bioinformatically trained biologists is still an outstripping
supply. Moreover, the longer-term career path for such scien-
tists is not clear either, at least in academic settings, because
of the tensions between the need to performing primary,
intellectual novel research in order to achieve academic
promotions, which does not blend well with carrying out a
bioinformatic support function.

Finally, there are also scienti�c conceptual issues that
impede interpretation and thus exploitation of genome-scale
datasets. For example, it is clear that cell fate decisions are
made by individual cells, and that indeed there is substantial
heterogeneity within a given biological cell population [149–
152]. Genome-scale technologies however oen require the
need to generate material from many thousands to millions
of cells and thus can only report population averages. Some
recent progress has been achieved at the level of single-
cell RNA sequencing and exome sequencing [148, 153–155].
However, data will need to be generated for 100s if not 1,000s
of single cells to make sure that the full heterogeneity of
a given population has been sampled. Another important
issue is that the genome is not a linear sequence, but instead
organised in a complex 3-dimensional fashion [156–158].
Chromatin maps as well as transcription factor maps and
gene expression data therefore need to be integrated with
information on the 3-dimensional structure of the genome.
Importantly, there appears to be a rapid progress in our
ability to comprehensively map chromosome conformation
at genomic scales [159–163]. However, it is likely that many
long-range chromosome interactions are not particularly
rigid and may indeed be rather transient. Measurements
generated from cell populations therefore likely re�ect the
ensemble of common interactions and will therefore need
to be deconvoluted so as to obtain not just one possible
“solution” but instead a number of possible 3-D interaction
maps. And as with many of the other techniques covered
in this paper, the data generation phase is of a descriptive
rather than functional nature, so that the mere description of
chromosome loops will not provide direct proof of functional
relevance.
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Given the rapid pace of recent technological innova-
tions particularly in terms of generating descriptive data
(the various genome-scale maps), the major roadblocks will
be to enhance the throughput of downstream functional
studies. Importantly, many of the technologies developed
to generate the largely descriptive genome-scale maps can
also be adapted to multiplex and thus accelerate the anal-
ysis of downstream functional assays. For example, high-
throughput next generation sequencing can be adapted to
many biological assays that require counting. Reporter gene
assays can be replaced by measuring transcript abundance
rather than luciferase or lacZ enzyme activity, and through
the inclusion of sequence tags, many different promoters
can be assayed simultaneously [164]. Another exciting area
of recent progress concerns the application of transcription
activator-like effector nucleases (TALENs) to perform highly
e�cient modi�cations of the genomes, and thus generates
all sorts of mutant alleles both in cell lines and also in vivo
[165, 166]. e likelihood therefore is that the next decade
will not only bring an ever increased rate of generating
descriptive whole-genome datasets, but also show substantial
acceleration in the generation of new biological insights.
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