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Abstract: Silent speech recognition is the ability to recognise intended speech without audio informa-
tion. Useful applications can be found in situations where sound waves are not produced or cannot
be heard. Examples include speakers with physical voice impairments or environments in which
audio transference is not reliable or secure. Developing a device which can detect non-auditory
signals and map them to intended phonation could be used to develop a device to assist in such
situations. In this work, we propose a graphene-based strain gauge sensor which can be worn on
the throat and detect small muscle movements and vibrations. Machine learning algorithms then
decode the non-audio signals and create a prediction on intended speech. The proposed strain gauge
sensor is highly wearable, utilising graphene’s unique and beneficial properties including strength,
flexibility and high conductivity. A highly flexible and wearable sensor able to pick up small throat
movements is fabricated by screen printing graphene onto lycra fabric. A framework for interpreting
this information is proposed which explores the use of several machine learning techniques to predict
intended words from the signals. A dataset of 15 unique words and four movements, each with
20 repetitions, was developed and used for the training of the machine learning algorithms. The
results demonstrate the ability for such sensors to be able to predict spoken words. We produced
a word accuracy rate of 55% on the word dataset and 85% on the movements dataset. This work
demonstrates a proof-of-concept for the viability of combining a highly wearable graphene strain
gauge and machine leaning methods to automate silent speech recognition.

Keywords: artificial neural networks; graphene; machine learning; silent speech recognition; strain gauge

1. Introduction

According to the WHO, around 5% of the population worldwide have hearing and
speech impairments [1]. Silent communication is a technique that can help people with
these conditions speak properly due to the conversion of silent attempts to speak into
speech. This approach is significantly important for patients who cannot rely on traditional
voice signals. For instance, it can help individuals who have undergone laryngectomies
and may require speech training after surgery to speak clearly and confidently. More than
175,000 cases of laryngeal cancer had been reported only in 2018 [2]. Aside from helping
individuals with speech impairments, this technology could also be used in areas where
reliable and secure sound delivery is required, such as in locations of high noise.

Over the recent years, various approaches have been made in the field of silent
speech recognition. There has been increasing success in the field with visual speech
recognition [3-5] and EMG [6,7]. However, due to wearability difficulties, these solutions
are not considered feasible for real-time communications. However, the growing popularity
of flexible electronics has made them a promising alternative for silent communications.
Flexible electronics is a promising solution for silent communications due to their reliability,
stability, comfort and convenience.

Graphene strain sensors are used for various health monitoring applications. They
can be used for monitoring physiological processes such as blood pressure, pulse rate,
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muscle movement, and gesture recognition [8,9]. A strain gauge is a type of sensor that
measures the resistance of a device when it is subjected to strain, and it can be used to
measure small movements. There are several factors required for attaching a strain gauge
to the human body. Sensing vocal activity requires highly sensitive sensors that have a high
gauge factor (GF)—a measure of how much the resistance changes with an applied force.
Higher levels make strains more detectable, and also produce clearer signals. Graphene
has been known to have a high gauge factor and this is a promising choice for sensors.
Aside from having a high GF, other factors such as durability and flexibility are also key
to long-standing performance. Xu et al. presented a strain sensor that is flexible and
long-term-wearing. They used reduced graphene oxide (rGO)/deionised water sensing
liquids and Ecoflex to produce the sensor [10]. Highly stretchable and long lasting strain
sensor was able to be produced, due to the geometric structures and the connection types
of the sensing materials. Similarly, Liu et al. use Ecoflex as an encapsulant surrounding a
graphene/glycerol/potassium chloride ionic conductor as the sensing element [11]. They
show that attaching a sensor to the throat can improve the quality of vocalisation, although
this method has limited use. Wei et al. proposed a graphene-based wearable device that
converts the vibrational cord and motion of the larynx into an electrical signal, which can
be interpreted as a sound [12]. Wan et al. focused on developing a strain sensor that could
pick up subtle vibrations of the vocal cords and radial artery pulses, with high conformity
to the skin, and maximised contact area [13]. Finally, a wearable strain sensor made of
graphene has been demonstrated by dying a polymer fabric with rGO, which can be used to
detect the movements of humans when is applied in clothing [14]. It has high stability and
comfort, and demonstrates an ability to detect a range of subtle human motions including
vocal vibration.

These studies mainly show the sensor’s ability to identify the difference between
a set of phonations and the repeatability between them. However, they do not attempt
to classify and/or quantify the signals. In this paper we propose an approach which
allows the classification of recorded resistance signals into predicted words. Machine
learning approaches have been widely demonstrated for a range of supervised classification
problems involving temporal data including video recognition, language translation, stock
prediction, phoneme identification, quality of speech analysis [15]. The most similar areas
to our strain gauge readings are those involving the classification of audio, vibrations and
EEG signals. Many machine learning approaches perform classification based on the input
of pertinent features extracted form the raw data. Mel-frequency cepstrum coefficient and
time-domain features such as root mean square, variance and skewness have commonly
been used for such applications [16-18]. The k-nearest neighbour classifier has been
demonstrated in speech classification and speech emotion recognition [19,20]. Random
forests have also been demonstrated for audio based problems including lip reading, speech
emotion classification and audio signal classification [21-23]. Artificial neural networks
(NNs) have revolutionised machine learning in the last few years, producing state-of-
the-art performance in a wide range of applications including image classification[24],
image segmentation [25], medical imaging [26] and temporal problems such as language
translation [27], raw audio generation [28], visual speech recognition [4]. NNs combine
feature representation learning and supervised discrimination into a uniform end-to-end
training framework removing the need for preliminary feature extraction. In particular,
convolutional-recurrent architectures have been shown to perform state-of-the-art results
in a range of temporal problems. By utilising these machine learning approaches we aim to
be able to make predictions on intended speech based on the readings of the throat-worn
strain gauge sensor.

In this paper we address the challenge of using a strain gauge to predict speech ,
developing on our previous work [29]. The novelties of our work include: (1) Instead of just
dealing with a small selection of words or throat movements, this study has a more robust
set of words and a more detailed dataset. We designed a dataset with a wider selection
of words which are specifically chosen and with multiple repetitions of each word. (2)
Thisstudy proposes a silent speech recognition pipeline able to automatically recognise and
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categorise words. Other studies do not provide any algorithmic method for the automated
classification of words with results demonstrated in a visual manner. We developed and
implemented a selection of machine learning algorithms—NNs, random forests and k-
nearest neighbour— to classify input signals. (3) In order to quantify the performance of
sensors, we introduce testing of our word classifiers to provide a measurable output to show
the accuracy of the combined sensor and classification system. This paper develops on
our previous work by exploring multiple machine learning approaches including random
forests and k-nearest neighbour classifiers utilising handcrafted feature extraction methods.
This is in addition to the combined feature learning and classification pipeline of neural
networks. Additionally, we have developed an expanded dataset which has led to higher
accuracies for both the words and movements datasets.

2. Materials and Methods

The purpose of this work is to create an automated method for the recognition of silent
speech. To achieve this it is necessary to be able to detect a signal related to speech and be
able to classify what is being said. To achieve this we break our proposed approach into
three steps as shown in Figure 1: (1) Device Fabrication—A device is required to be able to
detect signals related to speech. We develop a graphene strain gauge sensor to be worn on
the throat for this purpose. (2) Data Generation—In order to be able to learn the connection
between the obtained signals and the speech they represent it is necessary to collect a
suitably sized dataset. (3) Machine Learning Classification—Multiple machine learning
techniques are used to analyse the relationship between acquired signal and intended
speech, with the aim of developing an algorithm which can make an accurate mapping
between the two and make correct predictions of speech from previously unseen signals.

2.1. Device Fabrication

The purpose of the sensor is to be able to detect non-audio signals related to speech.
The key requirements of such a device are that it be non-invasive and produce a clear
measurable signal response. As such, we propose to develop a small, flexible, wearable
strain gauge sensor which can detect small movements and vibrations of the throat. There
are a number of important characteristics which are required to produce a suitable sensor
for our purpose. Strain gauges measure the amount of deformation of an object. Key
properties of such devices include sensitivity, fast response times, stretchability, stability
and durability. Graphene is a useful material for flexible devices due to its range of
advantageous properties including high thermal and electrical conductivity, large specific
surface area and high mechanical flexibility [30]. A large specific surface area is important
for use as an external health monitoring sensor as it allows a high level of sensitivity. A high
mechanical flexibility and relative thinness makes the device highly wearable by allowing
good conformity with the skin.

We propose to use graphene deposited on lycra fabric as described previously in [29].
This methodology offers high flexibility and wearability. The authors of [14] have demon-
strated the applicability of graphene as a colourant on textile fabric to produce a strain
sensor. This approach, unlike many others, does not require polymer encapsulation. Poly-
mer encapsulation has the disadvantages of poor fit to the human body, poor wearability,
low comfort and a complex fabrication process. Fabricating directly onto lycra textile
without any polymer encapsulation allows for a more wearable and close-fitting sensor.

In Figure 1 we illustrate the steps involved in the fabrication process. The method
consisted of screen printing a layer of graphene ink onto fabric. The graphene ink was
produced via liquid phase exfoliation using the method proposed by Marcano [31]. This
produces flakes in the range 50-150 nm with thicknesses of 1-3 nm. The fabric used was
lycra fabric as it has good flexibility, stretchability and wearability. Screen printing was
used to transfer the graphene ink to the lycra fabric with the steps of printing and drying
repeated until the graphene fully covered the desired section of fabric. The fabric was then
cut down to a size—our throat sensor measured 35 mm x 25 mm with copper electrodes
being attached using silver paste. The device was then allowed to dry, being placed in an



Sensors 2022, 22,299

40f13

oven helped this drying process. This is simple, cheap and fast process which produces a
flexible, close-fitting and wearable sensor exploiting the high useful properties of graphene.

(a) Device Fabrication

(c) Classification
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Figure 1. Flowchart of the proposed method. (a) Device Fabrication—Graphene ink is screen printed
onto lycra fabric ensuring a full coverage. The device is cut to size and electrodes area attached
using silver paste. (b) Data Generation—The strain gauge sensor is worn on the user’s throat of the
subject. The electrodes area attached to an ohmmeter to make resistance recordings across the device.
(c) Classification—The data are labelled and split into training and testing sets. For classification either,
(i) The raw signal data is passed to a convolutional-recurrent artificial neural network, as shown
in Figure 2, which learns the pertinent features during its training phase and makes predictions on
unseen test data, or (ii) Handcrafted features are extracted and random forests or k-nearest neighbour
classifiers are used for the training and testing of the data.

2.2. Data Generation

The development of a suitable dataset is required in order to train classification
algorithms to produce quantitative results for the accuracy of our silent communication
system. We developed two distinct datasets: one for words and one for noises/head
movements. Each had enough repetitions so as to be sufficient for classification. The
list of words was selected from the w-22 phonetically balanced word set [32]. Using a
phonetically balanced word set allows for the differentiation of commonly used sounds
within the English language. A set of 15 words were chosen: as, dad, felt, give, hum, it,
low, me, none, or, poor, there, true, up, us. A selection of basic noises/movements was also
tested. In addition to words, a dataset from recordings of coughing, swallowing, yawning
and nodding was also made. The movements for the members of this dataset are larger
and more distinct than for words which should make classification of the resultant signals
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easier. Multiple repetitions are necessary to find the features which discriminate between
different words but are consistent across the same word. Each noise was repeated 20 times
by the speaker.

The graphene strain gauge sensor was attached to the subject’s throat as shown in
Figure 1. The copper electrodes were attached to an ohmmeter to allow resistance readings
to be recorded. Each of the words and movements were measured for 20 repetitions in
turn with a suitable gap between each. The data was afterwards labelled and timings
recorded. The recordings were split into equal sized windows of 3000 ms each centred
on the phonation with no overlap between phonations. The equal sized windows are
necessary as neural networks require all inputs to be equally sized. All recordings were
made on one subject during one sitting to ensure that sensor position remained constant.

2.3. Classification

Our approach can be seen as a classified supervised problem. We want to understand
the mapping between measured resistance changes from the strain gauge and the intended
speech. To achieve this we want to utilise machine learning techniques which learn from a
training set how to discriminate between inputs allowing them to make accurate predictions
on unseen samples. We propose two ways of doing so (1) Using handcrafted feature
extraction methods to obtain the pertinent aspects of the signals, from which machine
learning algorithms, including random forests and k-nearest neighbour, can be trained
(2) Using neural networks to automatically learn the important features and perform
classification on test signals.

2.3.1. Feature Extraction

The choice of features is a non-trivial problem and is subjective depending on what
you expect to be important within your data. Each feature extraction technique is useful for
a certain purpose and none are ubiquitously good across all problems. As the signal we are
measuring, resistance changes caused by small movements in the throat, are unique there is
not a pre-existing standard for the pertinent features for describing the signal. In this paper,
we explore a number of feature extraction techniques which have been demonstrated in
approaches which use similar signals. In particular, we consider feature extraction methods
used for audio, vibrations and EEG signals [16,17]. We consider time-domain features
including the root mean square, variance, skewness, kurtosis, shape factor and entropy. We
also calculate the Mel-frequency cepstrum coefficient. This is an audio processing technique
which is used as a compact representation of a audio signal’s power spectrum and are
widely used in speech recognition [18].

The features are combined into a single array which are then used by the machine
learning algorithms for training or classification. This approach decreases the size of
the input to the machine learning algorithms, allowing them to distinguish between the
important features without overfitting to the training set.

2.3.2. Machine Learning Algorithms

From the set of extracted features we want to be able to make a map between these and
their associated noise, making this a supervised classification problem. Machine learning
models are useful for this kind of problem as they are able to learn the relationship between
the input features and the output category. They are fed the set of training data feature
vectors and corresponding categories. Using these they adjust internal methods to create
a specific model suited to correctly classify this data. The model is then given the testing
data feature vectors and the produced output is compared to the vector’s actual category.
Certain parameters for the models can be changed and the models retrained and retested to
incrementally improve the accuracy of the classifiers” predictions. We use random forests
(RFs) and k-nearest neighbour (k-NN). Random forests consist of an ensemble of decision
trees [33]. A decision tree is a classifier consisting of recursive binary questions with each
final node assigning a probability of the training sample belonging to each possible class.
The individual trees are then combined and weighted in order to produce a classification.
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Whilst the single decision trees are each weak classifiers when combined they produce
accurate results. k-NN is a non-parametric method which predicts the testing samples
based on the votes of k nearest training samples in the feature space [34]. Each of these
was trained and tested independently using the feature vector generated in the previous
step as input. Different parameters within the models were tested to produce and optimal
classification accuracy.

2.3.3. Neural Networks

NN are a set of machine learning models in which the most pertinent discrimina-
tory features are automatically learnt from training data. These are combined in the same
pipeline as the classifier and remove the need for handcrafted feature extraction approaches.
The shortcomings of using handcrafted techniques include the necessity of making pre-
dictions on the data about which features will be the most discriminatory to use; neural
networks are able to learn this information rather than making assumptions.

They combine feature learning and classification into a single pipeline. They consist
of multiple connected, weighted layers in which different levels of features are extracted.
The non-linearity of functions between layers allows basic features be combined to pro-
duce complicated patterns. Different types of layers are suitable for extracting different
features. In convolutional layers, a bank of locally receptive filters convolve across the
input data. These are then able to identify local features by examining the relationship
between neighbouring data points of the input results in the formation of spatial features.
At the backward pass stage, these filters are automatically optimised via backpropagating
the prediction error of the forward pass. Fully connected layers are also included in the
network; in these, all nodes from one layer are connected to all nodes in the next with
weightings updated in the same way. This allows pertinent localised features to be more
easily identified. Recurrent networks are particularly suited to dealing with temporal
data and are commonly used for problems such as natural language translation, weather
prediction and understanding video clips. They contain a loop, such that each cell takes
in the output of the previous cell as well as a sequential input. This allows information
to be propagated through the steps of the network. Long short-term memory networks
(LSTMs) are a form of recurrent network which are able to regulate information efficiently
and appropriatley decide which information is unimportant and which is useful. A final
classification layer is needed to predict the probability of the input belonging to each of the
possible classes. The class with the highest probability becomes the predicted word. To feed
into this layer a fully connected layer with the same number of nodes as there are classes is
required. During training, the prediction are compared to the ground truth, from which
loss can be calculated and backpropagated through the network to update all weightings.

A major drawback of neural networks is that they require a large amount of data for
training. There are a number of solutions to this which we use: having a shallower network
with few layers, having fewer nodes at each layer, introducing dropout layers and rectified
linear units (ReLU) layers. ReLU produces an output between [0, oo) with all negative input
mapped to 0. They are used with the activation functions for regularisation and reduce
computation time. A dropout layer randomly ignores a set of neurons in a fully connected
layer during each training batch which helps to reduce overfitting [35]. This means that
these nodes are not considered during a single forward and backward pass. At each stage,
individual nodes are either dropped with a probability of p or kept with a probability of
1 — p, leaving a reduced network. This means that for each pass of the same input, different
nodes are dropped preventing the architecture getting so tuned to the training set.

We develop a neural network containing a convolutional layer and an LSTM layers, as
shown in Figure 2. This combination allows for different temporal features to be determined.
Dropout layers and a ReLU layer are included to reduce overfitting. A softmax layer is
used as the classifier to calculate the error across the network.
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Figure 2. Neural network used for signal to phonation classification. It consists of a convolutional
layer, a ReLU layer, an LSTM layer, two dropout layers, a fully connected layer and uses a softmax
classifier.

3. Results and Discussion
3.1. Device Characterisation

Characterisation of the physical properties of the device under strain is shown in
Figure 3. The Keithley 2400 Source Meter Unit with the associated KickStart software
was used for resistance readings. The Deben Microtest Tensile Stage was used for applied
strain measurements. The device showed a broad sensing range with a linear response
of up to 15% elongation which is sufficient for the intended purpose. For repeated strain—
release cycles, a repeatable pattern of resistance changes is noted. However, there is some
drop off in initial cycle phases although this slows as number of cycles increase. Some
works which use polymer encapsulation demonstrate higher durability over repeated strain
cycles [10,11]. However, other devices made by dyeing fabric in graphene also demonstrate
a similar decrease in resistance as applied cycles increase [14]. This suggest encapsulation
can be useful for protecting the device from damage.

Figure 4a—d shows scanning electron microscope (SEM) images of the graphene-coated
lycra device at different magnifications for either unused devices or one which has been
through multiple applied strain cycles. (a) and (b) indicate that the graphene sheets connect
many fibres in the same wire. (c) and (d) show in closer detail the changes caused to the
graphene after use of the device. In (c), a rough but continuous morphology is seen. In
(d), the graphene flakes appear less dense following stretching of the fibres. This suggests
there has been some exfoliation and that the morphology of the flakes do not return to
their initial state. This would explain why there is a change in resistance after multiple
strain cycles.
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Figure 3. Performance of graphene strain gauge. (a) Relative resistance changes with elongation of

the device (b,c) Relative resistance from multiple strain cycles at 1% strain.
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Figure 4. SEM images of graphene strain gauge for: (a,c) unused device, (b,d) used device.

3.2. Dataset and Observations

The two datasets consisted of 15 different words and, 4 different phonations respec-
tively, each with 20 repetitions. These were recorded at 1000 Hz.

In Figure 5 we demonstrate some of the recordings for a selection of phonations.
Shown are the words “me”, “none”, “up” and “us” and the movements yawn and nod.
As can be seen there is some visible similarities between the different recordings of the
same word. Similar resistance signal shapes can be seen for the repetitions of the same
phonation. This is more obvious for some than others. For example, the yawn seems
to have a consistent gradual increase in signal before a sharp decrease. “none” shows
a similar pattern of a very sharp increase in resistance followed by a decreased plateau.
Some examples show consistency between a number of repetitions but with some intraclass
variability. These inconsistencies are likely brought about by movements of the neck which
produce sharp spikes of noise and by an imperfectly fitting device. There is, however, some
element of similarity between the repetitions which makes it possible to group them into
the same class.

Similarly, we compare the inter-class signals. There is some evidence for distinct fea-
tures in each class. This is most obvious in the movements dataset where there seems to be
greater differentials between each movement. These movements are more extreme than the
subtle word differences and so the resultant resistance signals should be more differentiable.
To some extent, visual differences can also be seen between each of the different words.
However, these are not always clear. For example, there are similarities between “none”
and “up”. This is seen across the whole dataset with many of the words having similar
signal patterns. This makes the differentiation between groups difficult. High resolution
data are required for these to detect the subtle differences between similar signals.

In other works there has been a demonstration of either movements or words which
have shown high reproducibility and repeatability with repetitions appearing visually very
similar. However, in these instances, a maximum of three repetitions are shown [10,12-14].
This suggests that such designs may be more receptive to the small throat movements,
and the utilisation of such designs could lead to more accurate classifications. However,
these are more complex designs, many involving polymer encapsulation, and are less
wearable than our design. Further exploration of the fabrication approach of a wearable
and receptive device could improve prediction accuracies whilst remaining viable as a
long-term wearable device.
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Figure 5. Examples of resistance readings of (a) nod, (b) yawn, (c) "us’, (d) ‘up’, (e) 'none’, (f) 'me’.

3.3. Classification

The layer architecture of the used neural network is shown in Figure 2. All neural
networks consist of a number of parameters and hyper-parameters which have to be chosen
to ensure optimal performance of the architecture. It can be difficult to select all parameters
correctly with the optimal settings changing depending on architecture, data and goal.
The parameters for the used model were decided through testing. For the neural network,
the convolutional layer contained 120 nodes, the LSTM layer contained 80 nodes, the
dropout layers had a dropout rate of 0.6. Standard Gradient Descent was used to optimise
weightings and an initial learning rate of 10~ was used. The model was trained for 100
epochs as training loss reached a minimum during this time. The random forest contained
100 classification trees and was trained for 20 cycles. A k value of 5 was used for k-NN.

Leave-one-out cross-validation was used. This approach consists of splitting the data
into a training set and a testing set. The testing set includes a single member of each class
while the training set contains the other 19 samples from each class. This is repeated with
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each sample of a given class being included in the training set in turn leading to 20 models
being trained and tested. This whole process was repeated five times, giving 100 training
and testing runs in total. The reported results were the mean across these runs.

Table 1 shows a comparison of the accuracies for each of the three classification
methods on the noises and movements datasets. It can be seen that the NN outperforms
the RF and k-for both datasets. This is unexpected on a small dataset, as NNs normally
require large amounts of data to be able to accurately pertain the most important features.
One of the challenges of these data was knowing which the most important elements were
when performing handcrafted feature extraction. We concentrated on time and frequency
domain features which had been shown to work for other 1-dimensional data classification
applications. The lower classification accuracies produced from these handcrafted features
suggest they were not the optimal choice. A greater exploration of which features are most
important for our signal type would be required to further understand the discriminatory
factors between interclass signals from these resistance readings which could lead to
higher accuracies.

Tables 2 and 3 show the confusion matrices for the movement and word datasets,
respectively, for the NN—the best performing of the classification approaches. Similar
trends were seen for all three classification methods for the words which were most and
least likely to be accurately predicted.

The noise dataset produced a mean prediction accuracy of 54.6% across the 15 classes.
There was a wide range in the accuracy of individual words. This suggests variation in the
uniqueness of throat movements required for different words. The words “me” and “up”
performed well, with prediction accuracies of 90.0% and 95.5%, respectively. Examples
of these signals are shown in Figure 5. Visually, we are able to see a consistency between
samples in the same group and uniqueness in signal shape from other classes. Conversely,
some words such as “give” performed poorly with a 2.9% prediction accuracy. This is
less than random chance and suggests that unique features from it are difficult to discover.
This range in classification implies that different words do cause different throat vibration
patterns which can be distinguished between, and there is merit in this approach to silent
speech recognition.

For the movements dataset, an overall prediction accuracy of 84.5% was achieved on
the testing data. These movements were larger and more distinct than the words, and so a
higher accuracy was expected. All four movements were predicted with an accuracy of over
70% with yawn performing particularly well with 94.8% correct prediction rate. The action
of yawning is longer than the other movements and so produces distinct temporal features
not observed in the others. A demonstration of an ability to discriminate between these
actions is shown, though a more diverse dataset would test the robustness of the models.

The neural networks are able to learn which features within the temporal resistance
data are most important and are most likely to identify the correct class. There is still an
element of overfitting from all the models, as training accuracies of over 95% were produced
for all models on each of the datasets. Overfitting is caused by the model fitting too closely
to the training data and losing its ability to generalise to unseen data. It overvalues the
importance of features which are unique to individual instances but would not occur in
unseen data. Overfitting was mitigated to an extent through the simplification of the model
designs, but the size of the training set is the main contributor to this problem. This is
particularly true when there are a number of potential classes. This problem can only
properly be overcome by developing a much larger dataset.

This is the first work to quantitatively assess the performance of strain sensors by
classification for speech recognition. These results demonstrate the plausibility of using
machine learning to automatically classify resistance readings from wearable strain gauges
into predicted speech. It provides a proof-of-concept with further improvements in device
sensitivity and larger datasets likely to lead to improved accuracies.
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Table 1. Dataset prediction accuracies (%).

RF k-NN NN
Words 50 46 55
Noises 82 81 85

Table 2. Confusion matrices of noises predictions for NN (%).

Cough Nod Swallow Yawn Avg.
cough 88.5 14.8 11.6 2.1
nod 5.5 72.8 1.7 0.3
84.5
swallow 55 10.7 81.8 2.8
yawn 0.5 1.6 5 94.8

Table 3. Confusion matrices of noises predictions for NN (%).

As Dad Felt Give Hum It Low Me None Or Poor There True Up Us Avg
as 66.6 2.4 0 57 29 2.4 0 0 4.8 1.6 3.4 0 3.4 0.7 0
dad 219 868 252 133 116 24 0 0.7 6.4 125 0 0 0 0 24
felt 120 0.6 174 114 15 6.1 53 1.4 3.2 1.6 3.4 3.3 1.7 0 3.6
give 0 0 1.8 2.9 0 0 0 0 0 1.6 0 2.2 0 0 0
hum 58 0.6 162 7.6 492 0 3.9 3.6 3.2 0 8.5 33 0 0 6.1
it 12 0.6 3.6 1.9 15 63.7 26 0.7 8 3.1 5.1 0 5.1 1.4 1.2
low 12 3 1.8 133 0 24 579 0 4.8 11 3.4 3.3 3.4 0 1.2
me 12 0.6 9 1.9 102 24 0 90 4.8 1.6 6.8 2.2 3.4 0.2 4.8 516
none 1.2 0.6 3.6 114 29 24 7.9 0 376 16 8.5 3.3 6.8 0 3.6
or 0 0.6 1.8 7.6 29 3.6 105 0 6.4 405 85 4.4 5.1 0.2 24
poor O 0 1.8 0 0 24 0 0 0 0 289 11 3.4 0 0
there 0 0 7.2 9.5 4.4 1.2 3.9 0.7 4.8 9.4 169 695 11.8 0.7 24
true 0 0.6 1.8 1.9 15 0 1.3 0 4.8 31 51 22 289 07 1.2
up 0 3 5.4 5.7 2.9 3.6 5.3 0 6.4 3.1 0 2.2 169 955 73
us 0 0.6 3.6 5.7 8.7 7.3 1.3 2.8 4.8 9.4 1.7 3.3 102 05 63.7

4. Conclusions

The aim of this work was to produce a wearable graphene-based strain sensor proto-
type which could detect small muscle movements and vocal vibrations and convert them
into words. This involved fabricating a suitable device, developing a dataset of spoken
words and movements, and designing, training and testing machine learning algorithms to
classify measured signals into words. A proof-of-concept approach has been demonstrated
with a prediction accuracy of 55% being achieved on a dataset of 15 different words and an
85% accuracy on a dataset of four different words.

The chosen method for the strain gauge was to print graphene ink onto lycra fabric.
A previous study demonstrated that dyed polyester fabric with rGO could produce a
suitably sensitive sensor [14]. This approach offers a number of benefits with the produced
sensor being highly wearable and flexible allowing high contact with the human body.
The fabrication process was also much simpler and quicker than other techniques which
involved polymer encapsulation [12,13]. Our process involved depositing graphene ink
onto the fabric, unlike [14] who dyed the fabric. It was, however, not exact and relied on
human judgement to decide when a suitable thickness of material had been applied. This
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makes it difficult to fabricate multiple, consistent sensors. It was found that if the graphene
is not consistently applied the sensor produces unpredictable changes in resistance when
strain is applied. The drawbacks of our sensor include a relatively high resistance and
an unpredictable nature of the fabric. Lycra is easy to deform which affects durability
and the irregular nature of the weaved structure affects repeatability. A more sensitive,
reliable and durable sensor may produce signals which are better for developing accurate
classification algorithms.

We developed a word set of 15 words and a movement set of four movements. Each of
these contained 20 repetitions. The words were selected so as to be phonetically balanced.
The repetitions allowed classifiers to be trained and tested which had not been done in other
works. However, this dataset could still have been much larger as accurate machine learning
approaches require substantial amounts of training data. A dataset with a diverse set of test
data allows more robust and useful models to be trained. Additionally, a greatly expanded
range of words would be required before it moved to a conceivable useable product.

Two approaches to classification were used. Firstly, we used handcrafted features fed
into RFs and k-NN classifers, and secondly, we tested learning features automatically using
NNs. We were able to produce a set of models which were able to produce signal to word
classifications at a much higher accuracy than random chance. This demonstrates there to
be underlying features in the acquired signals which can be used to discriminate between
different words. The highest accuracies of 55% and 85%, for the word and movement
datasets, respectively, are demonstrative of this, but are below what would be required for
a useable system. Restrictions on the accuracy of the algorithms is due to the limitations
of the quality of the recorded signal and the size of the training set, as discussed above.
With larger datasets more complex and deeper NN models could be produced, following a
similar design. This would be better able to extract pertinent features from the data and
would lead to better prediction accuracies on test data as overfitting is reduced.
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