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Abstract

The Brownian map is a random sphere-homeomorphic metric measure space
obtained by “gluing together” the continuum trees described by the x and y
coordinates of the Brownian snake. We present an alternative “breadth-first”
construction of the Brownian map, which produces a surface from a certain
decorated branching process. It is closely related to the peeling process, the hull
process, and the Brownian cactus.

Using these ideas, we prove that the Brownian map is the only random
sphere-homeomorphic metric measure space with certain properties: namely, scale
invariance and the conditional independence of the inside and outside of certain
“slices” bounded by geodesics and metric ball boundaries. We also formulate
a characterization in terms of the so-called Lévy net produced by a metric
exploration from one measure-typical point to another. This characterization
is part of a program for proving the equivalence of the Brownian map and the
Liouville quantum gravity sphere with parameter γ =

√
8/3.
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1 Introduction

1.1 Overview

In recent years, numerous works have studied a random measure-endowed metric space
called the Brownian map, which can be understood as the n→∞ scaling limit of the
uniformly random quadrangulation (or triangulation) of the sphere with n quadrilaterals
(or triangles). We will not attempt a detailed historical account here. Miermont’s recent
St. Flour lecture notes are a good place to start for a general overview and a list of
additional references [Mie14].1

This paper will assemble a number of ideas from the literature and use them to derive
some additional fundamental facts about the Brownian map: specifically, we explain

1To give an extremely incomplete sampling of other papers relevant to this work, let us mention the
early planar map enumerations of Tutte and Mullin [Tut62, Mul67, Tut68], a few early works on tree
bijections by Schaeffer and others [CV81, JS98, Sch99, BMS00, CS02], early works on path-decorated
surfaces by Duplantier and others [DK88, DS89, Dup98], the pioneering works by Watabiki and by Angel
and Schramm on triangulations and the so-called peeling process [Wat95, Ang03, AS03], Krikun’s work
on reversed branching processes [Kri05], the early Brownian map definitions of Marckert and Mokkadem
[MM06] and Le Gall and Paulin [LGP08] (see also the work [Mie08] of Miermont), various relevant
works by Duquesne and Le Gall on Lévy trees and related topics [DLG02, DLG05, DLG06, DLG09],
the Brownian cactus of Curien, Le Gall, and Miermont [CLGM13], the stable looptrees of Curien and
Kortchemski [CK14], and several recent breakthroughs by Le Gall and Miermont [LG10, LG13, Mie13,
LG14].
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how the Brownian map can be constructed from a certain branching “breadth-first”
exploration. This in turn will allow us to characterize the Brownian map as the only
random metric measure space with certain properties.

Roughly speaking, in addition to some sort of scale invariance, the main property we
require is the conditional independence of the inside and the outside of certain sets
(namely, filled metric balls and “slices” of filled metric balls bounded between pairs
of geodesics from the center to the boundary) given an associated boundary length
parameter. Section 1.5 explains that certain discrete models satisfy discrete analogs
of this conditional independence; so it is natural to expect their limits to satisfy a
continuum version. Our characterization result is in some sense analogous to the
characterization of the Schramm-Loewner evolutions (SLEs) as the only random paths
satisfying conformal invariance and the so-called domain Markov property [Sch00], or
the characterization of conformal loop ensembles (CLEs) as the only random collections
of loops with a certain Markov property [SW12].

The reader is probably familiar with the fact that in many random planar map models,
when the total number of faces is of order n4, the length of a macroscopic geodesic path
has order n, while the length of the outer boundary of a macroscopic metric ball has
order n2. Similarly, if one rescales an instance of the Brownian map so that distance
is multiplied by a factor of C, the area measure is multiplied by C4, and the length
of the outer boundary of a metric ball (when suitably defined) is multiplied by C2

(see Section 4). One might wonder whether there are other continuum random surface
models with other scaling exponents in place of the 4 and the 2 mentioned above,
perhaps arising from other different types of discrete models. However, in this paper
the exponents 4 and 2 are shown to be determined by the axioms we impose; thus a
consequence of this paper is that any continuum random surface model with different
exponents must fail to satisfy at least one of these axioms.

One reason for our interest in this characterization is that it plays a role in a larger
program for proving the equivalence of the Brownian map and the Liouville quantum
gravity (LQG) sphere with parameter γ =

√
8/3. Both

√
8/3-LQG and the Brown-

ian map describe random measure-endowed surfaces, but the former comes naturally
equipped with a conformal structure, while the latter comes naturally equipped with
the structure of a geodesic metric space. The program provides a bridge between these
objects, effectively endowing each one with the other’s structure, and showing that once
this is done, the laws of the objects agree with each other.

The rest of this program is carried out in [MS15a, MS15b, MS16a, MS16b], all of which
build on [She16a, MS16c, MS16d, MS16e, MS13, MS16f, DMS14] — see also Curien’s
related work on this question [Cur15]. After using a quantum Loewner evolution (QLE)
exploration to impose a metric structure on the LQG sphere, the papers [MS15a, MS16a]
together prove that the law of this metric has the properties that characterize the law
of the Brownian map, and hence is equivalent to the law of the Brownian map.
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1.2 Relation with other work

There are several independent works which were posted to the arXiv shortly after the
present work that complement and partially overlap the work done here in interesting
ways. Bertoin, Curien, and Kortchemski [BCK15] have independently constructed a
breadth-first exploration of the Brownian map, which may also lead to an independent
proof that the Brownian map is uniquely determined by the information encoding this
exploration. They draw from the theory of fragmentation processes to describe the
evolution of the whole countable collection of unexplored component boundaries. They
also explore the relationship to discrete breadth-first searches in some detail. Abraham
and Le Gall [AL15] have studied an infinite measure on Brownian snake excursions in
the positive half-line (with the individual Brownian snake paths stopped when they
return to 0). These excursions correspond to disks cut out by a metric exploration
of the Brownian map, and play a role in this work as well. Finally, Bettinelli and
Miermont [BM17] have constructed and studied properties of Brownian disks with an
interior marked point and a given boundary length L (corresponding to the measure
we call µ1,L

DISK; see Section 4.2) including a decomposition of these disks into geodesic
slices, which is related to the decomposition employed here for metric balls of a given
boundary length (chosen from the measure we call µLMET). They show that as a point
moves around the boundary of the Brownian disk, its distance to the marked point
evolves as a type of Brownian bridge. In particular, this implies that the object they
call the Brownian disk has finite diameter a.s.

We also highlight two more recent works. First, Le Gall in [Le 16] provides an alternative
approach to constructing the object we call the Lévy net in this paper and explores
a number of related ideas. The Lévy net as defined in this paper is (in some sense)
the set of points in the Brownian map observed by a metric exploration (“continuum
peeling”) process from a point x to a point y. Roughly speaking, the approach in
Le Gall’s paper is to start with the continuum random tree used in the construction
of the Brownian map (which encodes a space-filling path on the Brownian map) and
then take the quotient w.r.t. an equivalence relation that makes two points the same
if they belong to the closure of the same excursion into the complement of the Lévy
net (such an excursion always leaves and re-enters the Lévy net at the same point).
This equivalence relation is easy to describe directly using the Brownian snake, which
makes the Lévy net construction very direct. We also make note of a recent work by
Bertoin, Budd, Curien, and Kortchemski [BBCK16] that studies (among other things)
the fragmentation processes that appear in variants of the Brownian map that arise as
scaling limits of surfaces with “very large” faces.

1.3 Theorem statement

In this subsection, we give a quick statement of our main theorem. However, we stress
that several of the objects involved in this statement (leftmost geodesics, the Brownian
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map, the various σ-algebras, etc.) will not be formally defined until later in the paper.
Let MSPH be the space of geodesic metric spheres that come equipped with a good
measure (i.e., a finite measure that has no atoms and assigns positive mass to each
open set). In other words, MSPH is the space of (measure-preserving isometry classes
of) triples (S, d, ν), where d : S × S → [0,∞) is a distance function on a set S such that
(S, d) is topologically a sphere, and ν is a good measure on the Borel σ-algebra of S.

Denote by µA=1
SPH the standard unit area (sphere homeomorphic) Brownian map, which is

a random variable that lives on the space MSPH. We will also discuss a closely related
doubly marked Brownian map measure µ2

SPH on the space M2
SPH of elements of MSPH

that come equipped with two distinguished marked points x and y. This µ2
SPH is an

infinite measure on the space of finite volume surfaces. The quickest way to describe it
is to say that sampling from µ2

SPH amounts to

1. letting A be a positive real number whose law is the infinite measure A−3/2dA,

2. letting (S, d, ν) be an independent measure-endowed surface from the law µA=1
SPH,

3. then letting x and y be two marked points on S chosen independently from ν,

4. then “rescaling” the doubly marked surface (S, d, ν, x, y) so that its area is A
(scaling area by A and distances by A1/4).

The measure µ2
SPH turns out to describe the natural “grand canonical ensemble” on

doubly marked surfaces. We formulate our main theorems in terms of µ2
SPH (although

they can indirectly be interpreted as theorems about µA=1
SPH as well).

Given an element (S, d, ν, x, y) ∈ M2
SPH, and some r ≥ 0, let B(x, r) denote the open

metric ball with radius r and center x. Let B•(x, r) denote the filled metric ball of
radius r centered at x, as viewed from y. That is, B•(x, r) is the complement of
the y-containing component of the complement of B(x, r). One can also understand
S \B•(x, r) as the set of points z such that there exists a path from z to y along which
the function d(x, ·) stays strictly larger than r. Note that if 0 < r < d(x, y) then B•(x, r)
is a closed set whose complement contains y and is topologically a disk. In fact, one
can show (see Proposition 2.1) that the boundary ∂B•(x, r) is topologically a circle,
so that B•(x, r) is topologically a closed disk. We will sometimes interpret B•(x, r) as
being itself a metric measure space with one marked point (the point x) and a measure
obtained by restricting ν to B•(x, r). For this purpose, the metric we use on B•(x, r)
is the interior-internal metric on B•(x, r) that it inherits from (S, d) as follows: the
distance between two points is the infimum of the d lengths of paths between them that
(aside from possibly their endpoints) stay in the interior of B•(x, r). In most situations,
one would expect this distance to be the same as the ordinary interior metric, in which
the infimum is taken over all paths contained in B•(x, r), with no requirement that
these paths stay in the interior. However, one can construct examples where this is
not the case, i.e., where paths that hit the boundary on some (possibly fractal) set of
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times are shorter than the shortest paths that do not. In general, the interior-internal
metric is less informative than the internal metric; given either metric, one can compute
the d lengths of paths that remain in the interior; however the interior-internal metric
does not determine the d lengths of curves that hit the boundary an uncountable
number of times. Whenever we make reference to metric balls (as in the statement of
Theorem 1.1 below) we understand them as marked metric measure spaces, endowed
with the interior-internal metric induced by d, and the restriction of ν. (When we
discuss “slices” bounded between two geodesics, it is more natural to use the ordinary
internal metric. A minimal path between two points x and y can be constructed so
that if it hits one of the two geodesic boundary arcs in two locations, then it traces the
entire arc between those locations.)

We will later recall that in the doubly marked Brownian map, if we fix r > 0, then on the
event that d(x, y) > r, the circle ∂B•(x, r) a.s. comes endowed with a certain “boundary
length measure” (which scales like the square root of the area measure). This is not too
surprising given that the Brownian map is a scaling limit of random triangulations, and
the discrete analog of a filled metric ball clearly comes with a notion of boundary length.
We review this idea, along with more of the discrete intuition behind Theorem 1.1, in
Section 1.5.

We will also see in Section 2 that there is a certain σ-algebra on the space of doubly
marked metric measure spaces (which induces a σ-algebra F2 onM2

SPH) that is in some
sense the “weakest reasonable” σ-algebra to use. We formulate Theorem 1.1 in terms of
that σ-algebra. (In some sense, a weaker σ-algebra corresponds to a stronger theorem in
this context, since if one has a measure defined on a stronger σ-algebra, one can always
restrict it to a weaker σ-algebra. Theorem 1.1 is a general characterization theorem
for these restrictions.) We will also explain in Section 2 why F2 is strong enough for
practical purposes — strong enough so that certain natural events and functions are
measurable.

Specifically, we will explain in Section 2 why the hypotheses in the theorem statement
are meaningful (e.g., why objects like B•(x, r), viewed as a metric measure space
as described above, are measurable random variables), and we will explain the term
“leftmost” (which makes sense once one of the two orientations of the sphere has been
fixed). However, let us clarify one point upfront: whenever we discuss geodesics in this
paper, we will refer to paths between two endpoints that have minimal length among
all paths between those endpoints (i.e., they do not just have this property in some
local sense).

Theorem 1.1. The (infinite) doubly marked Brownian map measure µ2
SPH is the only

measure on (M2
SPH,F2) with the following properties. (Here a sample from the measure

is denoted by (S, d, ν, x, y).)

1. The law is invariant under the Markov operation that corresponds to forgetting
x (or y) and then resampling it from the measure ν (multiplied by a constant to
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make it a probability measure). In other words, given (S, d, ν), the points x and y
are conditionally i.i.d. samples from the probability measure ν/ν(S).

2. Fix r > 0 and let Er be the event that d(x, y) > r. Then µ2
SPH(Er) ∈ (0,∞),

so that µ2
SPH(Er)−1 times the restriction of µ2

SPH to Er is a probability measure.
Suppose that we have chosen an orientation of S by tossing an independent fair
coin. Under this probability measure, the following are true for s = r and also for
s = d(x, y)− r.

(a) There is an F2-measurable random variable that we denote by Ls (which we
interpret as a “boundary length” of ∂B•(x, s)) such that given Ls and the
orientation of S, the random oriented metric measure spaces B•(x, s) and
S \B•(x, s) are conditionally independent of each other. In the case s = r,
the conditional law of S \B•(x, s) depends only on the quantity Ls, and does
so in a scale invariant way; i.e., there exists some fixed a and b such that
the law given Ls = C is the same as the law given Ls = 1 except that areas
and distances are respectively scaled by Ca and Cb. The same holds for the
conditional law of B•(x, s) in the case s = d(x, y)− r.

(b) In the case that s = d(x, y) − r, there is a measurable function that takes
(S, d, ν, x, y) as input and outputs (S, d, π, x, y) where π is a.s. a good measure
(which we interpret as a boundary length measure) on ∂B•(x, s) (which is
necessarily homeomorphic to a circle) that has the following properties:

(i) The total mass of π is a.s. equal to Ls.

(ii) Suppose we first sample (S, d, ν, x, y), then produce π, then sample
z1 from π, and then position z2, z3, . . . , zn so that z1, z2, z3, . . . , zn are
evenly spaced around ∂B•(x, s) according to π following the orientation
of ∂B•(x, s). Then the n “slices” produced by cutting B•(x, s) along
the leftmost geodesics from zi to x are (given Ls) conditionally i.i.d.
(as suggested by Figure 1.1 and Figure 1.2) and the law of each slice
depends only on Ls/n, and does so in a scale invariant way (with the
same exponents a and b as above).

As we will explain in more detail in Section 2, every doubly marked geodesic metric
sphere comes with two possible “orientations” and one way to specify one of these
orientations is to specify an ordered list of three additional distinct marked points on
boundary of a filled metric ball (which effectively determine a “clockwise” direction).
Two quintuply marked spheres defined this way can be said to be “equivalent” if
they are equivalent as doubly marked spheres and the extra triples of points encode
the same orientation — and one can then limit attention to events that consist of
unions of equivalence classes. We will also show that both B•(x, s) and S \B•(x, s) are
topological disks. One can specify an orientation of either by specifying three additional
distinct marked points on the boundary and this is what we mean in the statement of
Theorem 1.1 when we say that these spaces come with an orientation.
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We remark that one can formulate a version of Theorem 1.1 in which one assumes that
the space comes with an orientation (not necessarily chosen by a fair coin toss). As we
explain in Section 2, formulating statements about random oriented spheres requires us
to extend the σ-algebra slightly to account for the extra bit of information that encodes
the orientation. The reader may recall that the Brownian map can be interpreted as
a random oriented metric sphere (since the Brownian snake construction produces a
directed Peano curve that traces the boundary of a geodesic tree in what we can define
to be the “clockwise” direction.) Although in the Brownian map the geodesics to the
root are a.s. unique (from a.a. points) we are interested in random metric spheres for
which this is not assumed to be the case a priori — and in these settings we will use
the fact that one can always define leftmost geodesics in a unique way.

We also remark that the statement that we have a way to assign a boundary length
measure to ∂B•(x, s) can be reformulated as the statement that we have a way to
randomly assign a marked boundary point z to ∂B•(x, s). The boundary length
measure is then Ls times the conditional law of z given (S, d, ν, x, y).

Among other things, the conditions of Theorem 1.1 will ultimately imply that Lr can be
viewed as a process indexed by r ∈ [0, d(x, y)], and that both Lr and its time-reversal
can be understood as excursions derived from Markov processes. We will see a posteriori
that the time-reversal of Lr is given by a certain time change of a 3/2-stable Lévy
excursion with only positive jumps. One can also see a posteriori (when one samples
from a measure which satisfies the axioms in the theorem — i.e., from the Brownian map
measure µ2

SPH) that the definition of the “slices” above is not changed if one replaces
“leftmost” with “rightmost” because, in fact, from almost all points on ∂B•(x, s) the
geodesic to x is unique. We remark that the last condition in Theorem 1.1 can be
understood as a sort of “infinite divisibility” assumption for the law of a certain filled
metric ball, given its boundary length.

Before we prove Theorem 1.1, we will actually first formulate and prove another closely
related result: Theorem 4.11. To explain roughly what Theorem 4.11 says, note that
for any element ofM2

SPH, one can consider the union of the boundaries ∂B•(x, r) taken
over all r ∈ [0, d(x, y)]. This union is called the metric net from x to y and it comes
equipped with certain structure (e.g., there is a distinguished leftmost geodesic from any
point on the net back to x). Roughly speaking, Theorem 4.11 states that µ2

SPH is the
only measure on (M2

SPH,F2) with certain basic symmetries and the property that the
infinite measure it induces on the space of metric nets corresponds to a special object
called the α-(stable) Lévy net that we will define in Section 3.

1.4 Outline

In Section 2 we discuss some measure theoretic and geometric preliminaries. We begin
by defining a metric measure space (a.k.a. mm-space) to be a triple (S, d, ν) where (S, d)
is a complete separable metric space, ν is a measure defined on its Borel σ-algebra, and

9



ν(S) ∈ (0,∞).2 Let M denote the space of all metric measure spaces. Let Mk denote
the set of metric measure spaces that come with an ordered set of k marked points.

As mentioned above, before we can formally make a statement like “The doubly marked
Brownian map is the only measure on M2 with certain properties” we have to specify
what we mean by a “measure on M2,” i.e., what σ-algebra a measure is required to be
defined on. The weaker the σ-algebra, the stronger the theorem, so we would ideally like
to consider the weakest “reasonable” σ-algebra onM and its marked variants. We argue
in Section 2 that the weakest reasonable σ-algebra on M is the σ-algebra F generated
by the so-called Gromov-weak topology. We recall that this topology can be generated
by various natural metrics that make M a complete separable metric space, including
the so-called Gromov-Prohorov metric and the Gromov-�1 metric [GPW09, Löh13].

We then argue that this σ-algebra is at least strong enough so that the statement
of our characterization theorem makes sense: for example, since our characterization
involves surfaces cut into pieces by ball boundaries and geodesics, we need to explain
why certain simple functions of these pieces can be understood as measurable functions
of the original surface. All of this requires a bit of a detour into metric geometry and
measure theory, a detour that occupies the whole of Section 2. The reader who is not
interested in the details may skip or skim most of this section.

In Section 3, we recall the tree gluing results from [DMS14]. In [DMS14] we proposed
using the term peanosphere3 to describe a space, topologically homeomorphic to the
sphere, that comes endowed with a good measure and a distinguished space-filling
loop (parameterized so that a unit of area measure is filled in a unit of time) that
represents an interface between a continuum “tree” and “dual tree” pair. Several of the
constructions in [DMS14] describe natural measures on the space of peanospheres, and
we note that the Brownian map also fits into this framework.

Some of the constructions in [DMS14] also involve the α-stable looptrees introduced by
Curien and Kortchemski in [CK14], which are in turn closely related to the Lévy stable
random trees explored by Duquesne and Le Gall [DLG02, DLG05, DLG06, DLG09].
For α ∈ (1, 2) we show how to glue an α-stable looptree “to itself” in order to produce an
object that we call the α-stable Lévy net, or simply the α-Lévy net for short. The Lévy
net is a random variable which takes values in the space which consists of a planar real

2Elsewhere in the literature, e.g., in [GPW09], the definition of a metric measure space also requires
that the measure be a probability measure, i.e., that ν(S) = 1. It is convenient for us to relax this
assumption so that the definition includes area-measure-endowed surfaces whose total area is different
from one. Practically speaking, the distinction does not matter much because one can always recover a
probability measure by dividing the area measure by the total area. It simply means that we have one
extra real parameter — total mass — to consider. Any topology or σ-algebra on the space of metric
probability-measure spaces can be extended to the larger space we consider by taking its product with
the standard Euclidean topology (and Borel-σ-algebra) on R.

3The term emerged in a discussion with Kenyon. On the question of whether to capitalize (à la
Laplacian, Lagrangian, Hamiltonian, Jacobian, Bucky Ball) or not (à la boson, fermion, newton, hertz,
pascal, ohm, einsteinium, algorithm, buckminsterfullerene) the authors express no strong opinion.
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tree together with an equivalence relation which encodes how the tree is glued to itself.
It can be understood as something like a Peano carpet. It is a space homeomorphic to a
closed subset of the sphere (obtained by removing countably many disjoint open disks
from the sphere) that comes with a natural measure and a path that fills the entire
space; this path represents an interface between a geodesic tree (whose branches also
have well-defined length parameterizations) and its dual (where in this case the dual
object is the α-stable looptree itself).

We then show how to explore the Lévy net in a breadth-first way, providing an equivalent
construction of the Lévy net that makes sense for all α ∈ (1, 2). Our results about the
Lévy net apply for general α and can be derived independently of their relationship
to the Brownian map. Indeed, the Brownian map is not explicitly mentioned at all in
Section 3.

In Section 4 we make the connection to the Brownian map. To explain roughly what
is done there, let us first recall recent works by Curien and Le Gall [CLG17, CLG16]
about the so-called Brownian plane, which is an infinite volume Brownian map that
comes with a distinguished origin. They consider the hull process Lr, where Lr denotes
an appropriately defined “length” of the outer boundary of the metric ball of radius r
centered at the origin, and show that Lr can be understood in a certain sense as the
time-reversal of a continuous state branching process (which is in turn a time change of
a 3/2-stable Lévy process). See also the earlier work by Krikun on reversed branching
processes associated to an infinite planar map [Kri05].

Section 4 will make use of finite-volume versions of the relationship between the Brownian
map and 3/2-stable Lévy processes. In these settings, one has two marked points x
and y on a finite-diameter surface, and the process Lr indicates an appropriately defined
“length” of ∂B•(x, r). The restriction of the Brownian map to the union of these boundary
components is itself a random metric space (using the shortest path distance within the
set itself). In Section 2.4 we will show that one can view this space as corresponding to
a real tree (which describes the leftmost geodesics from points on the filled metric ball
boundaries ∂B•(x, r) to x) together with an equivalence relation which describes which
points in the leftmost geodesic tree are identified with each other. We will show that
this structure agrees in law with the 3/2-Lévy net.

Given a single instance of the Brownian map, and a single fixed point x, one may
let the point y vary over some countable dense set of points chosen i.i.d. from the
associated area measure; then for each y one obtains a different instance of the Lévy
net. We will observe that, given this collection of coupled Lévy net instances, it is
possible to reconstruct the entire Brownian map. Indeed, this perspective leads us to
the “breadth-first” construction of the Brownian map. (As we recall in Section 4, the
conventional construction of the Brownian map from the Brownian snake involves a
“depth-first” exploration of the geodesic tree associated to the Brownian map.)

The characterization will then essentially follow from the fact that α-stable Lévy
processes (and the corresponding continuous state branching processes) are themselves
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characterized by certain symmetries (such as the Markov property and scale invariance;
see Proposition 3.11) and these correspond to geometric properties of the random metric
space. An additional calculation will be required to prove that α = 3/2 is the only value
consistent with the axioms that we impose, and to show that this determines the other
scaling exponents of the Brownian map.

1.5 Discrete intuition

This paper does not address discrete models directly. All of our theorems here are
formulated and stated in the continuum. However, it will be useful for intuition and
motivation if we recall and sketch a few basic facts about discrete models. We will not
include any detailed proofs in this subsection.

1.5.1 Infinite measures on singly and doubly marked surfaces

The literature on planar map enumeration begins with Mullin and Tutte in the 1960’s
[Tut62, Mul67, Tut68]. The study of geodesics and the metric structure of random
planar maps has roots in an influential bijection discovered by Schaeffer [Sch97], and
earlier by Cori and Vauquelin [CV81].

The Cori-Vauquelin-Schaeffer construction is a way to encode a planar map by a pair
of trees: the map M is a quadrangulation, and a “tree and dual tree” pair on M are
produced from M in a deterministic way. One of the trees is a breadth-first search tree
of M consisting of geodesics; the other is a type of dual tree.4 In this setting, as one
traces the boundary between the geodesic tree and the dual tree, one may keep track of
the distance from the root in the dual tree, and the distance in the geodesic tree itself;
Chassaing and Schaeffer showed that the scaling limit of this random two-parameter
process is the continuum random path in R2 traced by the head of a Brownian snake
[CS02], whose definition we recall in Section 4. The Brownian map5 is a random metric
space produced directly from this continuum random path; see Section 4.

Let us remark that tracing the boundary of a tree counterclockwise can be intuitively
understood as performing a “depth-first search” of the tree, where one chooses which
branches to explore in a left-to-right order. In a sense, the Brownian snake is associated
to a depth-first search of the tree of geodesics associated to the Brownian map. We

4It is slightly different from the usual dual tree definition. As in the usual case, paths in the dual
tree never “cross” paths in the tree; however, the dual tree is defined on the same vertices as the tree
itself; it has some edges that cross quadrilaterals diagonally and others that overlap the tree edges.

5The Brownian map was introduced in works by Marckert and Mokkadem and by Le Gall and
Paulin [MM06, LGP08]. For a few years, the term “Brownian map” was used to refer to any one of
the subsequential Gromov-Hausdorff scaling limits of certain random planar maps. Works by Le Gall
and by Miermont established the uniqueness of this limit, and proved its equivalence to the metric
space constructed directly from the Brownian snake [LG13, Mie13, LG14].
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mention this in order to contrast it with the breadth-first search of the same geodesic
tree that we will introduce later.

The scaling limit results mentioned above have been established for a number of
types of random planar maps, but for concreteness, let us now focus our attention
on triangulations. According to [AS03, Theorem 2.1] (applied with m = 0, see also
[Ang03]), the number of triangulations (with no loops allowed, but multiple edges
allowed) of a sphere with n triangles and a distinguished oriented edge is given by

2n+1(3n)!

n!(2n+ 2)!
≈ C(27/2)nn−5/2 (1.1)

where C > 0 is a constant. Let µ1
TRI be the probability measure on triangulations

such that the probability of each specific n-triangle triangulation (with a distinguished
oriented edge — whose location one may treat as a “marked point”) is proportional
to (27/2)−n. Then (1.1) implies that the µ1

TRI probability of obtaining a triangulation
with n triangles decays asymptotically like a constant times n−5/2. One can define a
new (non-probability) measure on random metric measure spaces µ1

TRI,k, where the area
of each triangle is 1/k (instead of constant) but the measure is multiplied by a constant
to ensure that the µ1

TRI,k measure of the set of triangulations with area in the interval

(1, 2) is given by
∫ 2

1
x−5/2dx, and distances are scaled by k−1/4. As k →∞ the vague

limit (as defined w.r.t. the Gromov-Hausdorff topology on metric spaces) is an infinite
measure on the set of measure-endowed metric spaces. Note that we can represent any
instance of one of these scaled triangulations as (M,A) where A is the total area of
the triangulation and M is the measure-endowed metric space obtained by rescaling
the area of each triangle by a constant so that the total becomes 1 (and rescaling all
distances by the fourth root of that constant).

As k →∞ the measures µ1
TRI,k converge vaguely to the measure dM ⊗ A−5/2dA, where

dM is the standard unit volume Brownian map measure (see [LG13] for the case of
triangulations and 2p-angulations for p ≥ 2 and [Mie13] for the case of quadrangulations);
a sample from dM comes equipped with a single marked point. The measure dM ⊗
A−5/2dA can be understood as type of grand canonical or Boltzmann measure on the
space of (singly marked) Brownian map instances.

Now suppose we consider the set of doubly marked triangulations such that in addition to
the root vertex (the first point on the distinguished oriented edge), there is an additional
distinguished or “marked” vertex somewhere on the triangulation off the root edge.
Since, given an n-triangle triangulation, there are (by Euler’s formula) n/2 other vertices
one could “mark,” we find that the number of these doubly marked triangulations is
(up to constant factor) given by n times the expression in (1.1), i.e.

n2n+1(3n)!

2n!(2n+ 2)!
≈ C(27/2)nn−3/2. (1.2)

Let µ2
TRI denote this probability measure on doubly marked surfaces (and let µ2

TRI,k be
the obvious the doubly marked analog of µ1

TRI,k). Then the scaling limit of µ2
TRI,k is an
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x y

Figure 1.1: Shown is a triangulation of the sphere (the outer three edges form one
triangle) with two marked points: the blue dots labeled x and y. For a vertex z and
r ∈ N, the metric ball B(z, r) of radius r consists of the union of all faces which contain
a vertex whose distance to z is at most r − 1. The red cycles are outer boundaries of
metric balls centered at x as viewed from y (of radii 1, 2, 3) and at y as viewed from x
(of radii 1, 2, 3, 4, 5). From each point on the outer boundary of B•(x, 3) (resp. B•(y, 5))
a geodesic toward x (resp. y) is drawn in white. The geodesic drawn is the “leftmost
possible” one; i.e., to get from a point on the circle of radius k to the circle of radius
k − 1, one always takes the leftmost edge (as viewed from the center point). “Cutting”
along white edges divides each of B•(x, 3) and B•(y, 5) into a collection of triangulated
surfaces (one for each boundary edge) with left and right boundaries given by geodesic
paths of the same length. Within B•(x, 3) (resp. B•(y, 5)), there happens to be a single
longest slice of length 3 (resp. 5) reaching all the way from the boundary to x (resp.
y). Parts of the left and right boundaries of these longest slices are identified with each
other when the slice is embedded in the sphere. This is related to the fact that all of
the geodesics shown in white have “merged” by their final step. Between B•(x, 3) and
B•(y, 5), there are 8 + 5 = 13 slices in total, one for each boundary edge. The white
triangles outside of B•(x, 3) ∪B•(y, 5) form a triangulated disk of boundary length 13.

infinite measure of the form dM ⊗A−3/2dA, where M now represents a unit area doubly
marked surface with distinguished points x and y. Note that if one ignores the point y,
then the law dM in this context is exactly the same as in the one marked point context.

Generalizing the above analysis to k marked points, we will write µkSPH to denote the
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natural limiting infinite measure on k-marked spheres, which can be understood (up to
a constant factor) as the k-marked point version of the Brownian map. To sample from
µkSPH, one may

1. Choose A from the infinite measure A−7/2+kdA.

2. Choose M as an instance of the standard unit area Brownian map.

3. Sample k points independently from the measure with which M is endowed.

4. Rescale the resulting k-marked sphere so that it has area A.

Of the measures µkSPH, we mainly deal with µ2
SPH in this paper. As mentioned earlier,

we also sometimes use the notation µA=1
SPH to describe the standard unit-area Brownian

map measure, i.e., the measure described as dM above.

1.5.2 Properties of the doubly marked Brownian map

In this section, we consider what properties of the measure µ2
SPH on doubly marked

measure-endowed metric spaces (as described above) can be readily deduced from
considerations of the discrete models and the fact that µ2

SPH is a scaling limit of such
models. These will include the properties contained in the statement of Theorem 1.1.
Although we will not provide fully detailed arguments here, we note that together with
Theorem 1.1, this subsection can be understood as a justification of the fact that µ2

SPH is
the only measure one can reasonably expect to see as a scaling limit of discrete measures
such as µ2

TRI (or more precisely as the vague limit of the rescaled measures µ2
TRI,k).

In principle it might be possible to use the arguments of this subsection along with
Theorem 1.1 (or the variant Theorem 4.11) to give an alternate proof of the fact that the
measures µ2

TRI have µ2
SPH as their scaling limit. To do this, one would have to show that

any subsequential limit of the measures µ2
TRI satisfies the hypotheses of Theorem 1.1

(or Theorem 4.11).

We also remind the reader that one well known oddity of this subject is that to date
there is no direct proof that the Brownian map (as constructed directly from the
Brownian snake) satisfies root invariance. Rather, the existing proofs by Le Gall and
Miermont derive root invariance as a consequence of discrete model convergence results
[LG10, LG13, Mie13, LG14]. Thus the fact that µ2

SPH itself satisfies the hypotheses of
Theorem 1.1 (or Theorem 4.11) is a result whose existing proofs rely on planar map
models. Very roughly speaking, it is easy to see root invariance in the planar map
models, and as one proves that the discrete models converge to the Brownian map (as
in [LG13, Mie13, LG14]) one obtains that the Brownian map must be root invariant as
well. In this paper, we cite this known fact (the root invariance of the Brownian map)
and do not give an independent proof of that. Rather, the main results of this paper
are in the other direction: we show that no measure other than µ2

SPH can satisfy the
either the hypotheses of Theorem 1.1 or the hypotheses of Theorem 4.11.
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Remark 1.2. Although this is not needed for the current paper, we remark that in
combination with later works by the authors, Theorem 4.11 can be used to give to give
a purely continuum (non-planar-map-based) proof of Brownian map root invariance
based on the Liouville quantum gravity sphere (an object whose root invariance is easy
to see directly [DMS14]). In other words, the LQG sphere can be made to play the
role that the random planar map plays in the earlier (and simpler) arguments by Le
Gall and Miermont: it is an obviously-root-invariant object whose connection to the
Brownian map can be used to prove the root invariance of the Brownian map itself.

More precisely, root invariance follows from Theorem 4.11 of this paper and the main
result of [MS16a] because:

1. Theorem 4.11 states that no measure other than µ2
SPH satisfies certain hypotheses.

2. [MS16a] constructs a root-invariant measure (from the LQG sphere) and proves
that it satisfies those hypotheses.

3. Ergo that measure is µ2
SPH and µ2

SPH is root-invariant.

Let us stress again that all of the properties discussed in this subsection can be proved
rigorously for the doubly marked Brownian map measure µ2

SPH. But for now we are
simply using discrete intuition to argue (somewhat heuristically) that these are properties
that any scaling limit of the measures µ2

TRI should have.

Although µ2
SPH is an infinite measure, we have that µ2

SPH[A > c] is finite whenever c > 0.
Based on what we know about the discrete models, what other properties would we
expect µ2

SPH to have? One such property is obvious; namely, the law µ2
SPH should be

invariant under the operation of resampling one (or both) of the two marked points
from the (unit) measure on M . This is a property that µ2

TRI clearly has. If we fix x
(with its directed edge) and resample y uniformly, or vice-versa, the overall measure
is preserved. Another way to say this is the following: to sample from dM , one may
first sample M as an unmarked unit-measure-endowed metric space (this space has no
non-trivial automorphisms, a.s.) and then choose x and y uniformly from the measure
on M .

Before describing the next properties we expect µ2
SPH to have, let us define B•(x, r) to

be the set of vertices z with the property that every path from z to y includes a point
whose distance from x is less than or equal to r. This is the obvious discrete analog of
the definition of B•(x, r) given earlier. Informally, B•(x, r) includes the radius r metric
ball centered at x together with all of the components “cut off” from y by the metric
ball. It is not hard to see that vertices on the boundary of such a ball, together with
the edges between them, form a cycle; examples of such boundaries are shown as the
red cycles in Figure 1.1.

Observe that if we condition on B•(x, r), and on the event that d(x, y) > r (so that
y 6∈ B•(x, r)), then the µ2

TRI,k conditional law of the remainder of the surface depends
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Filled metric ball of
boundary length L

Poisson point process on
slice space times [0, L]

Single slice

Doubly marked sphere

with geodesics

with geodesic

Figure 1.2: Upper left: A filled metric ball of the Brownian map (with boundary
length L) can be decomposed into “slices” by drawing geodesics from the center to
the boundary. Upper right: the slices are embedded in the plane so that along the
boundary of each slice, the geodesic distance from the black outer boundary (in the
left figure) corresponds to the Euclidean distance below the black line (in the right
figure). We may glue the slices back together by identifying points on same horizontal
segment (leftmost and rightmost points on a given horizontal level are also identified)
to recover the filled metric ball. Bottom: Lower figures explain the equivalence of the
slice measure and µ2

SPH.

only on the boundary length of B•(x, r), which we denote by Lr(x, y), or simply Lr
when the choice of x and y is understood. This conditional law can be understood as the
standard Boltzmann measure on singly marked triangulations of the disk with boundary
length Lr, where the probability of each triangulation of the disk with n triangles is
proportional to (27/2)−n. From this we conclude in particular that Lr evolves as a
Markovian process, terminating when y is reached at step d(x, y). This leads us to a
couple more properties one would expect the Brownian map to have, based on discrete
considerations.

1. Fix a constant r > 0 and consider the restriction of µ2
SPH to the event d(x, y) > r.

(We expect the total µ2
SPH measure of this event to be finite.) Then once B•(x, r) is

given, the conditional law of the singly marked surface comprising the complement
of B•(x, r) is a law that depends only a single real number, a “boundary length”
parameter associated to B•(x, r), that we call Lr.

2. This law depends on Lr in a scale invariant way—that is, the random singly
marked surface of boundary length L and the random singly marked surface of

17



boundary length CL differ only in that distances and areas in the latter are each
multiplied by some power of C. (We do not specify for now what power that is.)

3. The above properties also imply that the process Lr (or at least its restriction to
a countable dense set) evolves as a Markov process, terminating at time d(x, y),
and that the µ2

SPH law of Lr is that of the (infinite) excursion measure associated
to this Markov process.

The scale invariance assumptions described above do not specify the law of Lr. They
suggest that logLr should be a time change of a Lévy process, but this still leaves an
infinite dimensional family of possibilities. In order to draw further conclusions about
this law, let us consider the time-reversal of Lr, which should also be an excursion of
a Markov process. (This is easy to see on a discrete level; suppose we do not decide
in advance the value of T = d(x, y), but we observe LT−1, LT−2, . . . as a process that
terminates after T steps. Then the conditional law of LT−k−1 given LT−k, LT−k+1, . . . , LT
is easily seen to depend only the value of LT−k.) Given this reverse process up to a
stopping time, what is the conditional law of the filled ball centered at y with the
corresponding radius?

On the discrete level, this conditional law is clearly the uniform measure (weighted
by (27/2)−n, where n is the number of triangles, as usual) on triangulations of the
boundary-length-L disk in which there is a single fixed root and all points on the
boundary are equidistant from that root. A sample from this law can be obtained by
choosing L independent “slices” and gluing them together, see Figure 1.1. As illustrated
in Figure 1.2, we expect to see a similar property in the continuum. Namely, that given
a boundary length parameter L, and a set of points along the boundary, the evolution
of the lengths within each of the corresponding slices should be an independent process.

This suggests that the time-reversal of an Lr excursion should be an excursion of a
so-called continuous state branching process, as we will discuss in Section 3.5. This
property and scale invariance will determine the law of the Lr process up to a single
parameter that we will call α.

In addition to the spherical-surface measures µkSPH and µA=1
SPH discussed earlier, we will in

the coming sections consider a few additional measures on disk-homeomorphic measure-
endowed metric spaces with a given fixed “boundary length” value L. (For now we give
only informal definitions; see Section 4.2 for details.)

1. A probability measure µLDISK on boundary length L surfaces that in some sense
represents a “uniform” measure on all such surfaces — just as µkSPH in some sense
represents a uniform measure on spheres with k marked points. It will be enough
to define this for L = 1, as the other values can be obtained by rescaling. This
L = 1 measure is expected to be an m → ∞ scaling limit of the probability
measure on discrete disk-homeomorphic triangulations with boundary length m,
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where the probability of an n-triangle triangulation is proportional to (27/2)−n.
(Note that for a given large m value, one may divide area, boundary length, and
distance by factors of m2, m, and m1/2 respectively to obtain an approximation
of µLDISK with L = 1.) (We remark that another construction of the measure we
all µLDISK appears in the work by Abrams and Le Gall [AL15].)

2. A measure µ1,L
DISK on marked disks obtained by weighting µLDISK by area and then

choosing an interior marked point uniformly from that area. In the context of
Theorem 1.1, this is the measure that should correspond to the conditional law of
S \B•(x, r) given that the boundary length of B•(x, r) is L.

3. A measure µLMET on disk-homeomorphic measure-endowed metric spaces with a
given boundary length L and an interior “center point” such that all vertices
on the boundary are equidistant from that point. In other words, µLMET is a
probability measure on the sort of surfaces that arises as a filled metric ball.
Again, it should correspond to a scaling limit of a uniform measure (except that
as usual the probability of an n-triangle triangulation is proportional to (27/2)−n)
on the set of all marked triangulations of a disk with a given boundary length and
the property that all points on the boundary are equidistant from that marked
point. This is the measure that satisfies the “slice independence” described at the
end of the statement of Theorem 1.1.

Suppose we fix r > 0 and restrict the measure µ2
SPH to the event that d(x, y) > r, so

that µ2
SPH becomes a finite measure. Then one expects that given the filled metric ball

of radius r centered at x, the conditional law of the component containing y is a sample
from µ1,L

DISK, where L is a boundary length measure. Similarly, suppose one conditions
on the outside of the filled metric ball of radius d(x, y) − r centered at x. Then the
conditional law of the filled metric ball itself should be µLMET. This is the measure that
one expects (based on the intuition derived from Figures 1.1 and 1.2 above) to have the
“slice independence” property.

2 Preliminaries

2.1 Metric measure spaces

A triple (S, d, ν) is called a metric measure space (or mm-space) if (S, d) is a
complete separable metric space and ν is a measure on the Borel σ-algebra generated
by the topology generated by d, with ν(S) ∈ (0,∞). We remark that one can represent
the same space by the quadruple (S, d, ν̃,m), where m = ν(S) and ν̃ = m−1ν is a
probability measure. This remark is important mainly because some of the literature on
metric measure spaces requires ν to be a probability measure. Relaxing this requirement
amounts to adding an additional parameter m ∈ (0,∞).
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Two metric measure spaces are considered equivalent if there is a measure-preserving
isometry from a full measure subset of one to a full measure subset of the other. LetM
be the space of equivalence classes of this form. Note that when we are given an element
of M, we have no information about the behavior of S away from the support of ν.

Next, recall that a measure on the Borel σ-algebra of a topological space is called good
if it has no atoms and it assigns positive measure to every open set. Let MSPH be the
space of geodesic metric measure spaces that can be represented by a triple (S, d, ν)
where (S, d) is a geodesic metric space homeomorphic to the sphere and ν is a good
measure on S.

Note that if (S1, d1, ν1) and (S2, d2, ν2) are two such representatives, then the a.e.
defined measure-preserving isometry φ : S1 → S2 is necessarily defined on a dense set,
and hence can be extended to the completion of its support in a unique way so as
to yield a continuous function defined on all of S1 (similarly for φ−1). Thus φ can
be uniquely extended to an everywhere defined measure-preserving isometry. In other
words, the metric space corresponding to an element of MSPH is uniquely defined, up
to measure-preserving isometry.

As we are ultimately interested in probability measures on M, we will need to describe
a σ-algebra on M. We will also show that MSPH belongs to that σ-algebra, so that in
particular it makes sense to talk about measures on M that are supported on MSPH.
We would like to have a σ-algebra that can be generated by a complete separable metric,
since this would allow us to define regular conditional probabilities for random variables.
We will introduce such a σ-algebra in Section 2.4. We first discuss some basic facts
about metric spheres in Section 2.2.

2.2 Observations about metric spheres

LetMk
SPH be the space of elements ofMSPH that come endowed with an ordered set of

k marked points z1, z2, . . . , zk. When j ≤ k there is an obvious projection map from
Mk

SPH to Mj
SPH that corresponds to “forgetting” the last k − j coordinates. We will be

particularly interested in the setM2
SPH in this paper, and we often represent an element

of M2
SPH by (S, d, ν, x, y) where x and y are the two marked points. The following is a

simple deterministic statement about geodesic metric spheres (i.e., it does not involve
the measure ν).

Proposition 2.1. Suppose that (S, d) is a geodesic metric space which is homeomorphic
to S2 and that x ∈ S. Then the following hold:

1. Each of the components of S \B(x, r) has a boundary that is a simple closed curve
in S, homeomorphic to the circle S1.

2. Suppose that Λ is a connected component of ∂B(x, r). Then the component
of S \ Λ that contains x is homeomorphic to a disk. Moreover, there exists a
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homeomorphism from the unit disk to this component that extends continuously to
its boundary. (The restriction of the map to the boundary gives a map from S1

onto Λ, which can be interpreted as a closed curve in S. This curve may hit or
retrace itself but — since it is the boundary of a disk — it does not cross itself.)

Proof. We begin with the first item. Let U be one component of S \B(x, r) and consider
the boundary set Γ = ∂U . We aim to show that Γ is homeomorphic to S1. Note that
every point in Γ is of distance r from x.

Since U is connected and has connected complement, it must be homeomorphic to D.
We claim that the set S \ Γ contains only two components: the component U and

another component that is also homeomorphic to D. To see this, let us define Ũ to be
the component of S \ Γ containing x. By construction, ∂Ũ ⊆ Γ, so every point on ∂Ũ
has distance r from x. A geodesic from any other point in Γ to x would have to pass
through ∂Ũ , and hence such a point would have to have distance greater than r from x.
Since all points in Γ have distance r from x, we conclude that ∂Ũ = Γ. Note that Ũ
has connected complement, and hence is also homeomorphic to D.

The fact that Γ is the common boundary of two disjoint disks is not by itself enough
to imply that Γ is homeomorphic to S1. There are still some strange counterexamples
(e.g., topologist’s sine curves, exotic prime ends, etc). To begin to rule out such things,
our next step is to show that Γ is locally connected.

Suppose for contradiction that Γ is not locally connected. By definition, this means
that there exists a z ∈ Γ such that Γ is not locally connected at z, which in turn
means that there exists an s > 0 such that for every sub-neighborhood V ⊆ B(z, s)
containing z the set V ∩Γ is disconnected. Note that since Γ is connected the closure of
every component of Γ∩B(z, s) has non-empty intersection with ∂B(z, s), see Figure 2.1.
Since these components are closed within B(z, s), all but one of them must have positive
distance from z. Moreover, for each ε ∈ (0, s), the number of such components which
intersect B(z, ε) must be infinite since otherwise one could take V to be the open set
given by B(z, s) minus the union of the components of Γ∩B(z, s) that do not hit z, and
V ∩ Γ would be connected by construction, contradicting our non-local-connectedness
assumption.

Now (still assuming that Γ is not locally connected), the above discussion implies
that there must be an annulus A (i.e., a difference between the disk-homeomorphic
complements of two concentric filled metric balls) centered at z such that A∩Γ contains
infinitely many connected components crossing it. Let δ be equal to the width of A
(i.e., the distance between the inside and outside boundaries of A). It is not hard to

see from this that both A ∩ U and A ∩ Ũ contain infinitely many distinct components
crossing A, each of diameter at least δ.

Let AI be the inner boundary of A and let AM be the image of a simple loop φ in A
which has positive distance from ∂A and surrounds AI . Fix ε > 0. We claim that the
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z

∂B(z, s)

Figure 2.1: Schematic drawing of B(z, s) (which does not actually have to be “round”
in a Euclidean sense, or even simply connected) together with z and some possible
components of Γ ∩ B(z, s) colored in red. In light of the non-local-connectedness
assumption (assumed for purpose of deriving a contradiction) we have (for some z and
s) infinitely many red components intersecting B(z, ε) for each ε < s. Note that Γ is the

common boundary of U and Ũ , each of which is homeomorphic to a disk. Any point on
a red component is incident to both U and Ũ .

above implies that we can find w ∈ AI ∩ B(x, r) and points z1, z2 ∈ AM ∩ ∂Ũ with
d(z1, z2) < ε such that a given geodesic γ which connects w and x necessarily crosses
a given geodesic η which connects z1 and z2, see Figure 2.2. Indeed, let (sj, tj) be the
(pairwise disjoint) collection of intervals of time so that each φ((sj, tj)) is a component

of AM ∩ Ũ which disconnects part of the inner boundary (i.e., in AI) of a component

of A ∩ Ũ from its outer boundary (i.e., in the outer boundary of A). We note that for

each of the infinitely many components Ṽ of A ∩ Ũ , there exists at least one j so that
φ((sj, tj)) ⊆ Ṽ . In particular, we can find such a j so that d(φ(sj), φ(tj)) < ε by the
continuity of φ. Let z1 = φ(sj), z2 = φ(tj), and let w be a point on AI so that φ((sj, tj))

disconnects w from the outer boundary of A in some component of A ∩ Ũ .

Since w ∈ B(x, r), we have that γ is contained in B(x, r). Let v be a point on γ ∩ η.
Then d(x,w) = d(x, v) + d(v, w). We claim that d(v, w) < ε. Indeed, if d(v, w) ≥ ε then
as d(zj, v) < ε for j = 1, 2 we would have that

d(x, zj) ≤ d(x, v) + d(v, zj) < d(x, v) + ε ≤ d(x, v) + d(v, w) = d(x,w) < r.

This contradicts that z1, z2 /∈ B(x, r), which establishes the claim. Since d(v, w) < ε,
we therefore have that

d(zj, w) ≤ d(zj, v) + d(v, w) < 2ε.

Since ε > 0 was arbitrary and AI , AM are closed, we therefore have that AM ∩ AI 6= ∅.
This is a contradiction since we took AM to be disjoint from AI . Therefore Γ is locally
connected.
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Figure 2.2: Schematic drawing of AI and AM (which again do not actually have to be
“round” in a Euclidean sense) together with z and choices for z1, z2, and w. We assume
that topological considerations imply that a geodesic from w to x (which cannot cross
Γ except at x) has to cross a geodesic connecting z1 and z2. Roughly speaking, one gets
a contradiction by noting that this crossing point has to be close to Γ (since z1 and
z2 can be made arbitrarily close to each other) but also far from Γ (since the geodesic
starting at w had to travel most of the distance from AI to AM before reaching the
crossing point).

Note that the image of Γ under a homeomorphism S → S2 must be locally connected as
well. Moreover, there is a conformal map ϕ from D to the image of Ũ , and a standard
result from complex analysis (see e.g. [Law05, Proposition 3.6]) states that since the
image of Γ is locally connected, the map ϕ must extend continuously to its boundary.
This tells us that Γ is given by the image of a continuous curve ψ : S1 → S. It remains
only to show ψ(z1) 6= ψ(z2) for all z1, z2 ∈ S1. This will complete the proof because
then ψ is a simple curve which parameterizes ∂U .

Assume for contradiction that there exists z1, z2 ∈ S1 distinct so that ψ(z1) = ψ(z2).
We write [z1, z2] for the counterclockwise segment of S1 which connects z1 and z2. Then
we have that ψ restricted to each of [z1, z2] and S1 \ (z1, z2) is a loop and the two loops
touch only at ψ(z1) = ψ(z2) by the connectedness of U . Therefore the loops are nested
and only one of them separates U from x. We assume without loss of generality that
ψ|S1\(z1,z2) separates U from x. Fix w ∈ (z1, z2), let η be a path from x to w, and let
t1 (resp. t2) be the first time that η hits ∂U (resp. w). Then we have that t1 6= t2.
Applying this to the particular case of a geodesic from x to w, we see that the distance
of x to w is strictly larger than the distance of ∂U to w. This a contradiction, which
completes the proof of the first item in the theorem statement. To prove the second
item, we apply exactly the same argument above with Λ in place of Γ in order to show
that Λ is locally connected, which implies, as above, that the map from the unit disk to
the x-containing component of S \ Λ extends continuously to the boundary.

As mentioned earlier, given a doubly marked geodesic metric space (S, d, x, y) which is
homeomorphic to S2, we let B•(x, r) denote the filled metric ball of radius r centered at x,
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as viewed from y. That is, B•(x, r) is the complement of the y-containing component
of S \B(x, r).

Fix some r with 0 < r < d(x, y), and a point z ∈ ∂B•(x, r). Clearly, any geodesic
from z to x is a path contained in B•(x, r). In general there may be more than one such
geodesic, but the following proposition gives us a way to single out a unique geodesic.

Proposition 2.2. Suppose that (S, d, x, y) is a doubly marked geodesic metric space
which is homeomorphic to S2, that 0 < r < d(x, y), and that B•(x, r) is the radius r
filled ball centered at x and z ∈ ∂B•(x, r). Assume that an orientation of ∂B•(x, r) is
fixed (so that one can distinguish the “clockwise” and “counterclockwise” directions).
Then there exists a unique geodesic from z to x that is leftmost viewed from x (i.e.,
furthest counterclockwise) when lifted and understood as an element of the universal
cover of B•(x, r) \ {x}.

Proof. Proposition 2.1 implies that B•(x, r) is homeomorphic to D. Therefore B•(x, r)\
{x} is homeomorphic to D\{0}. It thus follows that the universal cover of B•(x, r)\{x}
is homeomorphic to H. Let π : H→ B•(x, r) \ {x} be the associated projection map.
Let z be as in the statement of the proposition and let z′ ∈ R be a preimage of z with
respect to π (i.e., π(z′) = z). Note that for each r′ ∈ (0, r), the lifting of ∂B•(x, r′)
to the universal cover H is homeomorphic to R (by Proposition 2.1 and since R is
the lifting of the circle to its universal cover). Let z′r be the leftmost (i.e., furthest
counterclockwise) point in H reachable by the lifting of any geodesic connecting z to
x taken to start from z′. We claim that s 7→ π(z′r−s) for s ∈ [0, r] forms the desired
leftmost geodesic. By definition, it is to the left of any geodesic connecting z to x as
in the statement of the proposition. It therefore suffices to show that it is in fact a
geodesic from z to x.

Suppose that η1, η2 are geodesics from z to x. Then there exists a geodesic η from z to x
which is to the left of η1, η2. Indeed, let η′1, η

′
2 be the liftings of η1, η2 to H starting from

z′. Let I = ∪j(sj, tj) be the set of times so that η′1 6= η′2 where the (sj, tj) are pairwise
disjoint. In each such interval, we have that η′1, η

′
2 do not intersect and therefore one of

the paths is to the left of other in H. We take η′ in (sj, tj) to be the leftmost of these
two paths. Outside of I, we take η′ be equal to the common value of η1 and η2. Then
we take η = π(η′). Then η is a geodesic from z to x which is to the left of η1 and η2.

For each s ∈ (0, r), there exists a sequence of geodesics (ηn) from z to x such that if η′n
is the lifting of ηn to H starting from z′ then η′n(s) converges to z′r−s as n → ∞. By
the Arzelá-Ascoli theorem, by passing to a subsequence, we may assume without loss
of generality that (ηn) converges in the limit to a geodesic η connecting z to x whose
lifting η′ starting from z′ passes through z′r−s at time s. By combining this with the
statement proved in the previous paragraph, we see that there exists a geodesic η so
that its lifting η′ to H starting from z′ passes through all of the z′r−s, as desired.
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We next establish some “rigidity” results for metric spaces. Namely, we will first show
that there is no non-trivial isometry of a geodesic closed-disk-homeomorphic metric
space which fixes the boundary. We will then show that the identity map is the only
orientation-preserving isometry of a triply marked geodesic sphere that fixes all of the
marked points. (Note that there can be many automorphisms of the unit sphere that fix
two marked points if those points are on opposite poles.) We will note that it suffices
to fix two points if one also fixes a distinguished geodesic between them.

Proposition 2.3. Suppose that (S, d) is a geodesic metric space such that there exists
a homeomorphism ϕ : D → S. Suppose that φ : S → S is an isometry which fixes
∂S := ϕ(∂D). Then φ(z) = z for all z ∈ S.

Proof. Fix x1, x2, x3 ∈ ∂S distinct. Then x1, x2, x3 determine an orientation of ∂S.
Thus for x ∈ ∂S and z ∈ S, we have a well-defined leftmost geodesic γ connecting z
to x with respect to this orientation. Since φ fixes ∂S, it preserves the orientation
of ∂S. In particular, if it is true that φ(z) = z then it follows that φ must fix γ (for
otherwise we would have more than one leftmost geodesic from z to x). We conclude that
{z : φ(z) = z} is connected and connected to the boundary, and hence its complement
must have only simply connected components. Moreover, if U is such a component
then we have that φ(U) = U . Brouwer’s fixed point theorem implies that none of these
components can be non-empty, since there would necessarily be a fixed point inside.
This implies that φ(z) = z for all z ∈ S.

Proposition 2.4. Suppose that (S, d, x1, x2, x3) is a triply marked geodesic metric space
with x1, x2, x3 distinct which is topologically equivalent to S2. We assume that S is
oriented so that we can distinguish the clockwise and counterclockwise directions of simple
loops. Suppose that φ : S → S is an orientation-preserving isometry with φ(xj) = xj for
j = 1, 2, 3. Then φ(z) = z for all z ∈ S. Similarly, if (S, d, x1, x2) is a doubly marked
space with x1, x2 distinct and γ is a geodesic from x1 to x2, then the identity is the only
orientation-preserving isometry that fixes x1, x2, and γ.

Proof. The latter statement is immediate from Proposition 2.3 applied to the disk
obtained by cutting the sphere along γ. To prove the former statement, we assume
without loss of generality that R = d(x1, x2) ≤ d(x1, x3).

We first consider the case that x2 is on a geodesic from x1 to x3. Consider the filled
metric ball B•(x1, R) (relative to x3) so that x2 ∈ ∂B•(x1, R). Since we have assumed
that S is oriented, we have that ∂B•(x1, R) is oriented, hence Proposition 2.2 implies
that there exists a unique leftmost geodesic γ from x1 to x2. Since φ fixes x1, x3 and φ
is an isometry, it follows that φ fixes ∂B•(x1, R). Moreover, φ(γ) is a geodesic from
φ(x1) = x1 to φ(x2) = x2. As φ is orientation preserving, we must in fact have that
φ(γ) = γ. Therefore the latter part of the proposition statement implies that, in this
case, φ fixes all of S.
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We next consider the case that x2 is not on a geodesic from x1 to x3. Let A be the
union of all of the geodesics from x1 to x3 and note that A is closed. Moreover, the
boundary of the component U of S \A containing x2 consists of two geodesics: one (γL)
which passes to the left of x2 and one (γR) which passes to the right of x2. Since φ fixes
x1, x2, and x3 it follows that φ fixes U . As φ is orientation preserving, it also fixes both
γL and γR. Therefore the latter part of the proposition statement implies that, in this
case, φ fixes all of S.

We remark that the above argument implies that the identity is the only map that
fixes x and the restriction of γ to any neighborhood about x. In other words, the
identity is the only map that fixes x and the equivalence class of geodesics γ that end
at x, where two geodesics considered equivalent if they agree in a neighborhood of x.
This is analogous to the statement that a planar map on the sphere has no non-trivial
automorphisms (as a map) once one fixes a single oriented edge. We next observe that
Proposition 2.3 can be further strengthened.

Proposition 2.5. In the context of Proposition 2.3, if the isometry φ : S → S is
orientation preserving and fixes one point x ∈ ∂S it must be the identity.

Proof. By Proposition 2.3, it suffices to check that φ fixes the circle ∂S pointwise (since φ
is a homeomorphism, it clearly fixes ∂S as a set). Note that the set {y ∈ ∂S : φ(y) = y}
is closed and non-empty. Suppose for contradiction that {y ∈ ∂S : φ(y) = y} is not
equal to all of ∂S. Then there exists I ⊆ ∂S connected which is relatively open in ∂S
such that φ fixes the endpoints z1, z2 of I but does not fix any point in I itself. Fix
ε > 0 small so that there exists z ∈ I with d(z, z1) = ε. Then there is a well-defined
first point w ∈ I starting from z1 with d(z1, w) = ε/2. Since φ fixes I as a set, it must
be that φ(w) = w. This is a contradiction, which gives the result.

We now return to our study of leftmost geodesics.

Proposition 2.6. Suppose that we are in the setting of Proposition 2.2. Suppose that
a ∈ ∂B•(x, r) and that (aj) is a sequence of points in ∂B•(x, r) which approach a from
the left. For each j, we let γj be the leftmost geodesic from aj to x and γ the leftmost
geodesic from a to x. Then we have that γj → γ uniformly as j →∞. Moreover, for
all but countably many values of a (which we will call jump values) the same is true
when the aj approach a from the right. If a is one of these jump values, then the limit
of the geodesics from aj, as the aj approach a from the right, is a non-leftmost geodesic
from a to x.

Proof. Suppose that the (aj) in ∂B•(x, r) approach a ∈ ∂B•(x, r) from the left and (γj),
γ are as in the statement. Suppose that (γjk) is a subsequence of (γj). It suffices to show
that (γjk) has a subsequence which converges uniformly to γ. The Arzelá-Ascoli theorem
implies that (γjk) has a subsequence which converges uniformly to some limiting path γ̃
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connecting a to x. This path is easily seen to be a geodesic connecting a to x which is
non-strictly to the left of γ. Since γ is leftmost, we conclude that γ = γ̃. This proves
the first part of the proposition.

Suppose now that the (aj) approach a from the right and let γj, γ be as in the previous
paragraph. The Arzelá-Ascoli theorem implies that every subsequence of (γj) has a
further subsequence which converges uniformly to a geodesic connecting a to x. That
the limit does not depend on the subsequence follows by monotonicity.

To prove the second part of the proposition, note that each jump value a is associated
with the non-empty open set Ja ⊆ B•(x, r) which is between the leftmost geodesic from a
to x and the uniform limit of leftmost geodesics along any sequence (aj) approaching a
from the right. Moreover, for distinct jump values a, a′ we must have that Ja ∩ Ja′ = ∅.
Therefore the set of jump values is countable.

As in the proof of Proposition 2.6, if a is a jump value, we let Ja denote the open set
bounded between the (distinct) left and right limits described in Proposition 2.6, both
of which are geodesics from a to x. Recall that if a, a′ are distinct jump values then Ja,
Ja′ are disjoint. Moreover, observe that the union of the Ja (over all jump values a) is
the complement of the closure of the union of all leftmost geodesics. As the point a
moves around the circle, the leftmost geodesic from a to x may vary continuously (as
it does when (S, d) is a Euclidean sphere) but it may also have countably many times
when it “jumps” over an open set Ja (as is a.s. the case when (S, d, ν) is an instance of
the Brownian map, see Section 4).

We next need to say a few words about “cutting” geodesic metric spheres along curves
and/or “welding” closed geodesic metric disks together. Before we do this, let us consider
the general question of what it means to take a quotient of a metric space w.r.t. an
equivalence relation (see [BBI01, Chapter 3] for more discussion on this point). Given
any metric space (S, d) and any equivalence relation ∼= on S, one may define a distance
function d between equivalence classes of ∼= as follows: if a and b are representatives of
distinct equivalence classes, take d(a, b) to be the infimum, over even-length sequences
a = x0, x1, x2, . . . , x2k = b with the property that xm ∼= xm+1 for odd m, of the sum

k−1∑
m=0

d(x2m, x2m+1).

This d is a priori only a pseudometric on the set of equivalence classes of ∼= (i.e., it may
be zero for some distinct a and b). However, it defines a metric on the set of equivalence
classes of ∼=∗ where a ∼=∗ b whenever d(a, b) = 0. It is not hard to see that d is the
largest pseudometric such that d(a, b) ≤ d(a, b) for all a, b and d(a, b) = 0 when a ∼= b.
The procedure described above is what we generally have in mind when we speaking of
taking a quotient of a metric space w.r.t. an equivalence relation.

Now let us ask what happens if a geodesic metric sphere is cut along a simple loop Γ, to
produce two disks. Note that on each disk, there is an interior-internal metric, where
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the distance between points a and b is defined to be the length of the shortest path
that stays entirely within the given disk. This distance is clearly finite when a and b
are in the interior of the disk. (This can be deduced by taking a closed path from a
to b bounded away from the disk boundary, covering it with open metric balls bounded
away from the disk boundary, and taking a finite subcover.) However, when either a
or b is on the boundary of the disk, it is not hard to see that (if the simple curve is
windy enough) it could be infinite.

Let us now ask a converse question. What happens when we take the two metric disks
and try to “glue them together” to recover the sphere? We can clearly recover the sphere
as a topological space, but what about the metric? Before we address that point, note
there is always one way to glue the disks back together to create a new metric space:
namely, we may consider the disjoint union of the pair of disks to be a common metric
space (with the distance between points on distinct disks formally set to be infinity)
and then take a metric quotient (in the sense discussed above) w.r.t. the equivalence
relation that identifies the boundary arcs. This can be understood as the largest metric
compatible with the boundary identification. In this metric, the distance between a
and b is the infimum of the lengths (in the original metric) of paths from a to b that
only cross Γ finitely many times. However, one can actually construct a geodesic metric
sphere with a closed curve Γ and points a and b such that the shortest path from a to b
that crosses Γ finitely many times is longer than the shortest path overall.6 In other
word, there are situations where cutting a metric sphere into two disks and gluing the
disks back together (using the quotient procedure described above) does not reproduce
the original sphere.

On the other hand, it is easy to see that this type of pathology does not arise if Γ
is a curve comprised of a finite number of geodesic arcs, since one can easily find a
geodesic γ between any points a and b that crosses no geodesic arc of Γ more than once.
(If it crosses an arc multiple times, one may replace the portion of γ between the first
and last hitting times by a portion of the arc itself.) The same applies if one has a
disk cut into two pieces using a finite sequence of geodesic arcs. This is an important
point, since in this paper we will frequently need to glue together disk-homeomorphic
“slices” whose boundaries are geodesic curves. The following proposition formalizes one
example of such a statement.

Proposition 2.7. Suppose that (S, d, x, y) is a doubly marked geodesic metric space
which is homeomorphic to S2. Suppose that γ1, γ2 are distinct geodesics which connect

6For example, consider the ordinary Euclidean metric sphere and let Γ be the equator curve. The
equator comes with a Lebesgue length measure; let A be a closed positive-Lebesgue-measure subset of
the equator whose complement is dense within the equator. Let d be the largest metric on C for which
the d length of any rectifiable path is the Euclidean length of the portion of that path that does not lie
in A. (Informally, d is the ordinary Euclidean metric modified so that there is no cost for travel within
A.) Then d is topologically equivalent to the original metric; but any path between points a and b that
intersects Γ only finitely many times will have the same length in both metrics, despite the fact that
the distance between a and b may be different in the two metrics.
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x to y and that S \ (γ1 ∪ γ2) has two components U1, U2. For j = 1, 2, let xj (resp. yj)
be the first (resp. last) point on ∂Uj visited by γ1 (or equivalently by γ2). We then let
(Uj, dj, xj, yj) be the doubly marked metric space where dj is given by the interior-internal

metric induced by d on Uj. Let S̃ be given by the disjoint union of U1 and U2 and let d̃

be the distance on S̃ which is defined by d̃(a, b) = dj(a, b) if a, b ∈ U j for some j = 1, 2,

otherwise d̃(a, b) =∞. We then define an equivalence relation ∼= on S̃ by declaring that
a ∼= b if either a = b or if a ∈ ∂U1 corresponds to the same point b ∈ ∂U2 in S. Let d
be the largest metric compatible with S̃/ ∼=. Then d = d. That is, the metric gluing of
the (Uj, dj, xj, yj) along their boundaries gives (S, d, x, y).

For future reference, let us remark that another instance where this pathology will not
arise is when (S, d, x) is an instance of a Brownian map with a marked point x and Γ is
the boundary of a filled metric ball centered at x. In that case, the definition of d given
in Section 4.1 will imply that the length of the shortest path between points a and b is
the infimum over the lengths of paths comprised of finitely many arcs, each of which is
a segment of a geodesic from some point to x. By definition, such a path clearly only
crosses Γ finitely many times. Note that the two situations discussed above (cutting
along geodesics and along boundaries of filled metric balls) are precisely those that are
needed to make sense of the statements in Theorem 1.1.

In this article we will not rule out the possibility that the interior-internal metric
associated with S \ B•(x, r) defines an infinite diameter metric space. (Update: This
has been subsequently ruled out in the works [BM17, LG19]. Indeed, [BM17] gives a
Brownian snake construction of the Brownian disk from which it is immediate that the
Brownian disk has finite diameter and [LG19] shows that this definition is equivalent to
the filled metric ball complement considered here.) Let us note, however, that one can
recover the entire collection of geodesics back to x (hence d) from the interior-internal
metrics associated with S \B•(x, r) and B•(x, r). In particular, if z ∈ S \B•(x, r) then
by the very definition of B•(x, r) we have that the distance between z and ∂B•(x, r)
is finite and given by d(x, z)− r. Moreover, the shortest paths from z to ∂B•(x, r) in
S \B•(x, r) comprise of the initial (d(x, z)− r)-length segments of the geodesics from z
to x. It is clearly the case that the remaining r-length segments of the geodesics from z
to x are contained in B•(x, r).

Update: Pathologies of the aforementioned type were ruled out in other settings for
natural gluing operations one can perform for Brownian and

√
8/3-LQG surfaces in

[GM16b], which together with [GM16a, GM16c] has led to a proof that the self-avoiding
walk on random quadrangulations converges to SLE8/3 on

√
8/3-LQG.

2.3 A consequence of slice independence/scale invariance

At the end of Section 1.5, the measure µLMET is informally described, along with a notion
of “slice independence” one might expect such a measure to satisfy. Although we have
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not given a formal description of µLMET yet, we can observe now some properties we
would expect this measure to have. For concreteness, let us assume that L = 1 and that
a point on the boundary is fixed, so that the boundary of a sample from µLMET can be
identified with the interval [0, 1]. We “cut” along the leftmost geodesic from 0 to x and
view a sample from µLMET as a “triangular slice” with one side identified with [0, 1] and
the other two sides forming geodesics of the same length (one from 0 to x and one from
1 to x).

We define d̃(a, b) to be the distance from the boundary at which the leftmost geodesic
from a to x and the leftmost geodesic from b to x merge. Now, no matter what space
and σ-algebra µLMET is defined on, we would expect that if we restrict to rational values

of a and b, then the d̃(a, b) should be a countable collection of real-valued random
variables. Before we even think about σ-algebras onM orMSPH, we can answer a more
basic question. What would “slice independence” and “scale invariance” assumptions
tell us about the joint law of these random variables d̃(a, b)? The following proposition
formalizes what we mean by scale invariance and slice independence, and shows that in
fact these properties characterize the joint law of the random variables d̃(a, b) up to a
single real parameter. As we will see in the proof of Theorem 1.1, this will allow us to
deduce that the metric net associated with a space which satisfies the hypotheses of
Theorem 1.1 is related to the so-called Lévy net introduced in Section 3 below.

Proposition 2.8. Consider a random function d̃ defined on all pairs (a, b) ∈ (Q∩[0, 1])2

such that

1. d̃(a, b) = d̃(b, a) for all a, b ∈ Q ∩ [0, 1]

2. If a, b, c, d ∈ Q∩ [0, 1] with a < b and c < d then d̃(a, b) and d̃(c, d) are independent
provided that (a, b) and (c, d) are disjoint.

3. d̃(a, a) = 0 a.s. for all a ∈ Q ∩ [0, 1]

4. If a < b < c are in Q ∩ [0, 1] then d̃(a, c) = max
(
d̃(a, b), d̃(b, c)

)
.

5. The law of d̃(a, b) depends only on |b− a|. In fact, there is some β so that for any

a and b the law of d̃(a, b) is equivalent to the law of |a− b|βd̃(0, 1).

Then the law of d̃(a, b) has a particular form. Precisely, one can construct a sample
from this law as follows. First choose a collection of pairs (s, x) as a Poisson point
process on [0, 1]×R+ with intensity ds⊗ xαdx where α = −1/β − 1 and ds (resp. dx)

denotes Lebesgue measure on [0, 1] (resp. R+). Then define d̃(a, b) to be the largest
value of x such that (s, x) is a point in this point process for some s ∈ (a, b).

Proof. The lemma statement describes two ways of choosing a random d̃ and asserts
that the two laws agree. It is immediate from Lemma 2.9 (stated and proved just below)
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that the laws agree when one restricts attention to {0, 1/k, 2/k, . . . , 1}2, for any k ∈ N.
Since this holds for all k, the result follows.

Lemma 2.9. Suppose for some β > 0, a real-valued random variable A has the following
property. When A1, A2, . . . , Ak are i.i.d. copies of A, the law of k−β max1≤i≤k Ai is the
same as the law of A. Then A agrees in law (up to some multiplicative constant) with
the size of the maximum element of a Poisson point process chosen from the infinite
measure xαdx, where α = −1/β − 1 and dx denotes Lebesgue measure on R+.

Proof. Let F be the cumulative distribution function of A, so that F (s) = P[A ≤ s].
Then

F (s) = P[A ≤ s] = P[k−βA ≤ s]k = F (kβs)k.

Thus F (kβs) = F (s)1/k. Set r = kβ so that 1/k = r−1/β. Then when r has this form

we have F (rs) = F (s)1/k = F (s)r
−1/β

. Applying this twice allows us to draw the same
conclusion when r = kβ1 /k

β
2 for rational k = k1/k2, i.e., for all values r which are a βth

power of a rational. Since this is a dense set, we can conclude that in general, if we set
et = F (1), we have

F (r) = etr
−1/β

. (2.1)

It is then straightforward to see that this implies that (up to a multiplicative constant)
A has the same law as the Poisson point process maximum described in the lemma
statement. (See, e.g., [Sat99, Exercise 22.4].)

2.4 A σ-algebra on the space of metric measure spaces

We present here a few general facts about measurability and metric spaces, following
up on the discussion in Section 1.4. Most of the basic information we need about the
Gromov-Prohorov metric and the Gromov-weak topology can be found in [GPW09].
Other related material can be founded in the metric geometry text by Burago, Burago,
and Ivanov [BBI01], as well as Villani’s book [Vil09, Chapters 27-28].

As in Section 1.4, letM denote the space of metric measure spaces, defined modulo a.e.
defined measure preserving isometry. Suppose that (S, d, ν) ∈M. If we choose points
x1, x2, . . . , xk i.i.d. from ν, then we obtain a k × k matrix of distances dij = d(xi, xj)
indexed by i, j ∈ {1, 2, . . . , k}. Denote this matrix by Mk = Mk(S, d, ν).

If ψ is any fixed bounded continuous function on Rk2 , then the map

(S, d, ν)→ Eν [ψ(Mk)]

is a real-valued function onM. The Gromov-weak topology is defined to be the weakest
topology w.r.t. which the functions of this type are continuous. In other words, a
sequence of elements of M converge in this topology if and only if the laws of the
corresponding Mk (understood as measures on Rk2) converge weakly for each k. We
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denote by F the Borel σ-algebra generated by this topology. Since we would like to be
able to sample marked points from ν and understand their distances from each other, we
feel comfortable saying that F is the weakest “reasonable” σ-algebra we could consider.
We will sometimes abuse notation and use (MSPH,F) to denote a measure space, where
in this context F is understood to refer to the intersection of F with the set of subsets of
MSPH. (We will apply a similar notational abuse to the “marked” analogs Mk, Mk

SPH,
and Fk introduced below.)

It turns out that the Gromov-weak topology can be generated by various natural metrics
that makeM a complete separable metric space: the so-called Gromov-Prohorov metric
and the Gromov-�1 metric [GPW09, Löh13]. Thus, (M,F) is a standard Borel space
(i.e., a measure space whose σ-algebra is the Borel σ-algebra of a topology generated by
a metric that makes the space complete and metrizable). We do not need to discuss
the details of these metrics here. We bring them up in order to show that (M,F) is a
standard Borel space. One useful consequence of the fact that (M,F) is a standard
Borel space is that if G is any sub-σ-algebra of F , then the regular conditional probability
of a random variable, conditioned on G, is well-defined [Dur10, Chapter 5.1.3].

We can also consider marked spaces; one may letMk denote the set of tuples of the form
(S, d, ν, x1, x2, . . . , xk) where (S, d, ν) ∈ M and x1, x2, . . . , xk are elements (“marked
points”) of S. Given such a space, one may sample additional points xk+1, xk+2, . . . , xm
i.i.d. from ν and consider the random matrix Mm of distances between the xi. One may
again define a Gromov-weak topology on the marked space to be the weakest topology
w.r.t. which expectations of bounded continuous functions of Mm are continuous. We
let Fk denote the Borel σ-algebra of the marked space. Clearly for any m > k one
has a measurable map Mm → Mk that corresponds to “forgetting” the last m − k
points. One can similarly define M∞ to be the space of (S, d, ν, x1, x2, . . .) with an xj
defined for all positive integer j. The argument that these spaces are standard Borel is
essentially the same as in the case without marked points. One immediate consequence
of the definition of the Gromov-weak topology is the following:

Proposition 2.10. Fix (S, d, ν) ∈ M with ν(S) = 1. Let x1, x2, . . . be i.i.d. samples
from ν. Let (Sm, dm, νm) be defined by taking Sm = {x1, x2, . . . , xm}, letting dm be the
restriction of d to this set, and letting νm assign mass 1/m to each element of Sm.
Then (Sm, dm, νm) converges to (S, d, ν) a.s. in the Gromov-weak topology. A similar
statement holds for marked spaces. If k < m and (S, d, ν, x1, x2, . . . , xk) ∈Mk then one
may choose xk+1, xk+2, . . . , xm i.i.d. and consider the discrete metric on {x1, . . . , xm}
with uniform measure, and x1, . . . , xk marked. Then these approximations converge a.s.
to (S, d, ν, x1, . . . , xk) in the Gromov-weak topology on Mk.

Let N be the space of all infinite-by-infinite matrices (entries indexed by N×N) with

the usual product σ-algebra and let N̂ be the subset of N consisting of those matrices
with the property that for each k, the initial k × k matrix of N describes a distance
function on k elements, and the limit of the corresponding k-element metric spaces
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(endowed with the uniform probability measure on the k elements) exists inM. We refer
to this limit as the limit space of the infinite-by-infinite matrix. It is a straightforward
exercise to check that N̂ is a measurable subset of N .

Proposition 2.11. There is a one-to-one correspondence between

1. Real-valued F-measurable functions φ on M, and

2. Real-valued measurable functions φ̃ on N̂ with the property that their value depends
only on the limit space.

The relationship between the functions is the obvious one:

1. If we know φ̃, then we define φ by setting φ
(
(S, d, ν)

)
to be the a.s. value of φ̃(M∞)

when M∞ is chosen via (S, d, ν).

2. If we know φ, then φ̃(M∞) is φ of the limit space of M∞.

Moreover, for each k ∈ N the analogous correspondence holds with (Mk,Fk) in place
of (M,F).

Proof. We will prove the result for (M,F); the case of (Mk,Fk) for general k ∈ N is
analogous.

Suppose that φ̃ is a bounded, continuous function on N which depends only on a
finite number of coordinate entries. Then we know that (S, d, ν) 7→ Eν [φ̃(M∞)] is an
F-measurable function where M∞ is the infinite matrix of distances associated with
an i.i.d. sequence (xi) chosen from ν. From this it is not difficult to see that if φ̃ is an
indicator function of the form 1A where A ⊆ Rk2 is compact (i.e., 1A depends only on

the initial k × k matrix) then (S, d, ν) 7→ Eν [φ̃(M∞)] is F-measurable. We note that
the collection of such sets A is a π-system which generates the product σ-algebra on N .
We also note that the set of all functions φ̃ on N for which (S, d, ν) 7→ Eν [φ̃(M∞)] is F -
measurable is closed under taking finite linear combinations and non-negative monotone
limits. Therefore the monotone class theorem implies that (S, d, ν) 7→ Eν [φ̃(M∞)] is
F -measurable for any bounded, measurable function on N . In particular, this holds if
φ̃ is a bounded, measurable function on N̂ which depends only on the limit space. In
this case, we note that the a.s. value of φ̃(M∞) is the same as Eν [φ̃(M∞)]. This proves
one part of the correspondence.

On the other hand, suppose that φ is an F -measurable function of the form (S, d, ν) 7→
Eν [ψ(Mk)] where ψ is a bounded, continuous function on Rk2 and Mk is the matrix of

distances associated with x1, . . . , xk chosen i.i.d. from ν. Suppose that M∞ ∈ N̂ . For
each j, we let (Sj, dj, νj) be the element ofM which corresponds to the j× j submatrix

Mj of M∞. Then the map which associates M∞ with φ((Sj, dj, νj)) is continuous on N̂ .
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Therefore the map which associates M∞ with φ((S, d, ν)) where (S, d, ν) is the limit
space of M∞ is measurable as it is the limit of continuous maps. The other part of the
correspondence thus follows from the definition of F .

We are now going to use Proposition 2.11 to show that certain subsets of M are
measurable. We begin by showing that the set of compact metric spaces in M is
measurable. Throughout, we let Ĉ consist of those elements of N̂ whose limit space is
compact.

Proposition 2.12. The set of compact metric spaces in M is measurable. More
generally, for each k ∈ N we have that the set of compact metric spaces in Mk with k
marked points is measurable.

Proof. We are going to prove the first assertion of the proposition (i.e., the case k = 0).
The result for general values of k is analogous.

For each ε > 0 and n ∈ N, we let N̂n,ε be those elements (dij) in N̂ such that for every j

there exists 1 ≤ k ≤ n such that djk ≤ ε. That is, (dij) is in N̂n,ε provided the ε-balls
centered at points in the limit space which correspond to the first n rows (or columns)

in (dij) cover the entire space. As N̂n,ε is measurable, we have that both N̂ε = ∪nN̂n,ε
and ∩ε∈Q+N̂ε are measurable. By Proposition 2.11, it therefore suffices to show that

∩ε∈Q+N̂ε is equal to Ĉ. This, however, follows because a metric space is compact if and
only if it is complete and totally bounded.

To prove the measurability of certain sets in M, we will find it useful first to show that
they are measurable with respect to the Gromov-Hausdorff topology and then use that
there is a natural map from Ĉ into the Gromov-Hausdorff space which is measurable. In
order to remind the reader of the Gromov-Hausdorff distance, we first need to remind
the reader of the definition of the Hausdorff distance. Suppose that K1, K2 are closed
subsets of a metric space (S, d). For each ε > 0, we let Kε

j be the ε-neighborhood of Kj .
Recall that the Hausdorff distance between K1, K2 is given by

dH(K1, K2) = inf{ε > 0 : K1 ⊆ Kε
2, K2 ⊆ Kε

1}. (2.2)

Suppose that (S1, d1), (S2, d2) are compact metric spaces. The Gromov-Hausdorff
distance between (S1, d1) and (S2, d2) is given by

dGH((S1, d1), (S2, d2)) = inf {dH(ϕ1(S1), ϕ2(S2))} (2.3)

where the infimum is over all metric spaces (S, d) and isometries ϕj : Sj → S. We
let X be the set of all compact metric spaces equipped with the Gromov-Hausdorff
distance dGH. More generally, for each k ∈ N, we let X k be the set of all compact metric
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spaces (S, d) marked with k points x1, . . . , xk ∈ S. We equip X k with the distance
function

dGH((S1, d1, x1,1, . . . , x1,k), (S2, d2, x2,1, . . . , x2,k))

= inf

{
dH(ϕ1(S1), ϕ2(S2)) +

k∑
j=1

d(ϕ1(x1,j), ϕ2(x2,j))

}
.

(2.4)

where the infimum is as in (2.3). We refer the reader to [Vil09, Chapter 27] as well as
[BBI01, Chapter 7] for more on the Hausdorff and Gromov-Hausdorff distances.

We remark that in (2.3), one may always take the ambient metric space to be `∞.
Indeed, this follows because every compact metric space can be isometrically embedded
into `∞. We will use this fact several times in what follows.

We also note that there is a natural projection π : Ĉ → X . Moreover, if we equip N̂ with
the `∞ topology (in place of the product topology), then the projection π : Ĉ → X is
2-Lipschitz. Indeed, this can be seen by using the representation of dGH in terms of the
distortion of a so-called correspondence between metric spaces; see [Vil09, Chapter 27].
See, for example, the proof of [Mie14, Proposition 3.3.3] for a similar argument. Since

the product topology generates the same Borel σ-algebra as the `∞ topology on N̂ , it
follows that π is measurable. This observation will be useful for us for proving that
certain sets in N̂ are measurable. We record this fact in the following proposition.

Proposition 2.13. The projection π : Ĉ → X is measurable.

In the following proposition, we will combine Proposition 2.11 and Proposition 2.13 to
show that the set of compact, geodesic metric spaces in M is measurable.

Proposition 2.14. The set of compact, geodesic spaces is measurable in M.

Proof. That the set of geodesic spaces is closed hence measurable in X follows from
[Vil09, Theorem 27.9]; see also the discussion in [BBI01, Chapter 7.5]. Therefore the
result follows by combining Proposition 2.11 and Proposition 2.13.

We note that it is also possible to give a short proof of Proposition 2.14 which does not
rely on the measurability of the projection π : Ĉ → X . The following proposition will
imply that the set of good measure endowed geodesic spheres is measurable in M.

Proposition 2.15. For each k ∈ N0 we have that Mk
SPH is measurable in Mk.

We will prove Proposition 2.15 in the case that k = 0 (i.e., we do not have any extra
marked points). The proof for general values of k is analogous. As in the proof of
Proposition 2.14, it suffices to show that the set of geodesic metric spaces (S, d) which
are homeomorphic to S2 is measurable in X . In order to prove this, we first need to
prove the following lemma.
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Lemma 2.16. Suppose that (S, d) is a geodesic metric space homeomorphic to S2 and
suppose that γ is a non-space-filling loop on S. Let U be a connected component of
S \ γ and let A = S \ U . For every ε > 0, γ is homotopic to a point inside of the
ε-neighborhood of A.

Proof. Since γ is a continuous curve, it follows that U is topologically equivalent to D.
Let ϕ : D→ U be a homeomorphism. Then there exists δ > 0 so that Γ = ϕ(∂(1− δ)D)
is contained in the ε-neighborhood of A. Since Γ is a simple curve, it follows that there
exists a homeomorphism ψ from D to the component V of S \ Γ which contains γ. Let
γ̃ = ψ−1(γ). Then γ̃ is clearly homotopic to 0 in D hence γ is homotopic to ψ(0) in V ,
which implies the result.

Proof of Proposition 2.15. For simplicity, we will prove the result in the case that k = 0.
The case for general values of k is established in an analogous manner. We are going
to prove the result by showing that the set Y of geodesic metric spaces in X which
are homeomorphic to S2 is measurable in X . The result will then follow by invoking
Proposition 2.11 and Proposition 2.13.

Let Y be the closure of Y in X . Suppose that (S, d) is in X . Let γ be a path in (S, d)
and let f(γ, (S, d)) be the infimum of diam(A) over all A ⊆ S in which γ is homotopic
in A to a point in S and S \ A is connected. Let f(δ, (S, d)) be equal to the supremum

of f(γ, (S, d)) over all paths γ in (S, d) with diameter at most δ. Let Ỹ consist of those
(S, d) in Y such that for every ε > 0 there exists δ > 0 such that f(δ, (S, d)) < ε.

We are first going to show that Ỹ = Y . We clearly have that Y ⊆ Ỹ , so we just need to
show that Ỹ ⊆ Y. Suppose that (S, d) is in Ỹ. We assume without loss of generality
that diam(S) = 1. Then there exists a sequence (Sn, dn) in Y which converges to (S, d)
in X . We note that we may assume without loss of generality that both S and the Sn’s
are subsets of `∞ such that dH(Sn, S)→ 0 as n→∞ and that diam(Sn) = 1 for all n.

Fix ε > 0. It suffices to show that there exists δ > 0 such that f(δ, (Sn, dn)) < ε for all
n ∈ N. Indeed, this implies that the (Sn, dn) converge to (S, d) in X regularly which,
by [Beg44], implies that (S, d) is in Y .

Fix δ > 0 such that f(δ, (S, d)) < ε and assume that δ ≤ ε. We assume that n0 ∈ N is
sufficiently large so that

dH(Sn, S) ≤ δ

16
for all n ≥ n0. (2.5)

We note that for each 1 ≤ n ≤ n0 there exists δn > 0 such that f(δn, (Sn, dn)) < ε. We

set δ0 = min1≤n≤n0 δn. We are now going to show that there exists δ̂ > 0 such that

f(δ̂, (Sn, dn)) ≤ 43ε for all n ≥ n0. Upon showing this, we will have that with δ̃ = δ0 ∧ δ̂
we have f(δ̃, (Sn, dn)) ≤ 43ε for all n.
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Fix n ≥ n0 and suppose that γn : S1 → Sn is a path in Sn with diam(γn) ≤ δ/4. Then
we can construct a path γ in S as follows. We pick times 0 ≤ tn0 < · · · < tnj ≤ 2π such
that with xni = γn(tni ) we have

‖xni−1 − xni ‖`∞ ≤
δ

16
for all 1 ≤ i ≤ j. (2.6)

By (2.5), for each 1 ≤ i ≤ j there exists xi ∈ S ⊆ `∞ such that ‖xni − xi‖`∞ ≤ δ/16.
We then take γ to be the path S1 → S which is given by successively concatenating
geodesics from xi−1 to xi for each 1 ≤ i ≤ j + 1 where we take xj+1 = x0. Suppose
that a, b ∈ γ. Then there exists iq such that ‖q − xiq‖`∞ ≤ 3δ/16 for q ∈ {a, b} as
‖xi−1− xi‖`∞ ≤ 3δ/16 for each 1 ≤ i ≤ j + 1. Consequently, by (2.5) and (2.6) we have
that

‖a− b‖`∞ ≤ ‖a− xia‖`∞ + ‖xia − xib‖`∞ + ‖xib − b‖`∞
≤ 3

8
δ + ‖xia − xnia‖`∞ + ‖xnia − xnib‖`∞ + ‖xnib − xib‖`∞

≤ 1

2
δ + diam(γn) < δ.

This implies that diam(γ) < δ. Moreover, we have that the dH-distance between the
ranges of γn and γ is at most δ/2.

By assumption, we can contract γ to a point in S inside of a set A ⊆ S of diameter at
most ε such that B = S \ A is connected. Pick x ∈ B with dist(x,A) ≥ (1− ε)/2. Fix
xn ∈ Sn with ‖x−xn‖`∞ ≤ δ/16. Let Bn be the component of Sn \γn containing xn and
letAn be the closure of Sn\Bn. By Lemma 2.16, we have that f(γn, (Sn, dn)) ≤ diam(An).
It therefore suffices to bound diam(An).

Suppose that un ∈ An is a point with distance at least ε+20δ from γn. Let u ∈ S be such
that ‖un−u‖`∞ ≤ δ/16. We will show that u ∈ A. This will imply that diam(A) ≥ 10δ,
a contradiction since we have assumed that δ ≤ ε and we have diam(A) ≤ ε, hence

diam(An) ≤ 2ε+ 40δ + diam(γn) ≤ 2ε+ 41δ. (2.7)

Suppose that u /∈ A. Then there exists a path η from u to x which does not intersect γ.
Arguing as above, this implies that there exists a path ηn in Sn from un to xn so that
the dH distance of the ranges of η and ηn is at most δ/2. Since η does not intersect
{z ∈ A : dist(z, ∂A) ≥ δ}, it follows that ηn does not intersect {z ∈ An : dist(z, ∂An) ≥
2δ}. This is a contradiction, which proves (2.7).

Since γn was an arbitrary path in (Sn, dn) of diameter at most δ, we have thus shown

that f(δ, (Sn, dn)) ≤ 2ε+ 41δ ≤ 43ε for all n ≥ n0. This finishes the proof that Y = Ỹ .

To finish proving the result, we will show that Ỹ (hence Y) can be written as an
intersection of sets which are relatively open in the closure of geodesic spheres in X ,
hence is measurable. It follows from the argument given just above that, for each fixed
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δ > 0, the map (S, d) 7→ f(δ, (S, d)) is uniformly continuous on Y. This implies that
(S, d) 7→ f(δ, (S, d)) extends to a continuous map on Y. It therefore follows that, for
each ε > 0, we have that

Yε,δ = {(S, d) ∈ Y : f(δ, (S, d)) < ε}

is relatively open in Y . Therefore with Q+ = Q ∩ (0,∞) we have that⋂
ε∈Q+

⋃
δ∈Q+

Yε,δ

is a Borel set in X . The result follows since this set is equal to Ỹ .

In what follows, it will be useful to consider geodesic spheres which are marked by
two points and also come with an orientation. We note that if (S, d, ν, x, y) ∈ M2

SPH

and x 6= y, then we can determine an orientation of S by specifying three additional
distinct marked points x = (x1, x2, x3) with xi ∈ ∂B•(x, r) for i = 1, 2, 3 for some
r ∈ (0, d(x, y)) fixed. The extra marked points x specify an orientation because they
specify a continuous curve (modulo monotone parameterization) which parameterizes
∂B•(x, r) and visits x1, x2, x3 in order. We observe that this also specifies for every
s ∈ (0, d(x, y)) a continuous curve (modulo parameterization) which parameterizes
∂B•(x, s). Indeed, if ε > 0 is sufficiently small and s ∈ (r − ε, r), then we can specify
three distinct points on ∂B•(x, s) by first specifying three points on ∂B•(x, r) with
distance at least 2ε from each other using the orientation and then taking points on
∂B•(x, s) which each have distance r−s from the given points on ∂B•(x, r). Continuing
in this manner specifies a parameterization of ∂B•(x, s) for each s ∈ (0, r). We can also
specify a parameterization of s ∈ (r, r + ε) by first choosing three points on ∂B•(x, s)
with distance at least 2ε from each other and then taking points on ∂B•(x, r) which
each have distance s− r from the given points on ∂B•(x, s) and then ordering the points
on ∂B•(x, s) in the same way as the points on ∂B•(x, r). Continuing in this manner
specifies a parameterization of ∂B•(x, s) for each s ∈ (r, d(x, y)).

We say that two spaces (Si, di, xi, yi, xi), i = 1, 2, in M5
SPH with marked points as

above are equivalent if there exists a measure preserving isometry S1 → S2 which
takes x1 to x2, y1 to y2, and is orientation preserving. In what follows, we will be
considering various measurable maps which will not depend on the specific choice of
three points used to orient the sphere but rather just the equivalence class. We note
that the map M5

SPH ×M5
SPH → {0, 1} that outputs 1 if the two spaces have distinct

marked points are equivalent and otherwise 0 is measurable because if x1 = (x1
1, x

1
2, x

1
3),

x2 = (x2
1, x

2
2, x

2
3) are two triples of distinct points in S for (S, d, ν, x, y) ∈ M2

SPH with
x1
i ∈ ∂B•(x, r1) and x2

i ∈ ∂B•(x, r2) with r = r1 = r2 then x1 and x2 determine the
same orientation if and only if the following is true. Suppose that w1 = x, w2 = y,
w3 = x1, w4 = x2, w5 = x3 and w6, w7, . . . is an i.i.d. sequence chosen from ν and
suppose that dij = d(wi, wj). Then it is ν-a.s. the case that for every ε > 0 small
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enough there are points u1, . . . , un among the (wi) such that B(ui, ε) ∩ ∂B•(x, r) 6= ∅,
B(ui, ε)∩B(ui+1, ε) 6= ∅ where we take un+1 = u1 and if xkj ∈ B(uikj , ε) then ik1, i

k
2, i

k
3 are

in cyclic order (viewed as elements of Zn) for both k = 1, 2. In the case that r1 < r2,
then x1, x2 determine the same orientation if and only if there exist paths γ1, γ2, γ3 in
B•(x, r2)\B•(x, r1) which respectively connect x1

i to x2
i and do not cross. The existence

of such paths can be similarly determined in a measurable manner using the matrix (dij)
of pairwise distances. Finally, we note that it is not difficult to construct for each r > 0
a measurable map M5

SPH →M5
SPH which takes as input (S, d, ν, x, y, x) and outputs

(S, d, ν, x, y, x) if d(x, y) ≤ r or the marked points are not distinct or the x do not all lie
on the same filled metric ball boundary and otherwise it outputs (S, d, ν, x, y, x′) where
the points of x′ are distinct, lie in ∂B•(x, r), and induce an equivalent orientation.

We letM2,O
SPH denote the subset ofM5

SPH with distinct marked points modulo the above
equivalence relation. We let F2,O

SPH be the associated Borel σ-algebra. We will refer to an
element of M2,O

SPH using the notation (S, d, ν, x, y) and suppress the orientation unless
we need to choose a representative of the equivalence class.

We will also need to consider orientations on planar metric measure spaces whose
interior is a geodesic disk. For our purposes, we do not need that the set of such spaces
is measurable in the set of metric measure spaces. So in this case we will introduce
an equivalence relation on M4 which has the property that if the two spaces are of
the above type then they are equivalent if and only if they are equivalent as marked
metric measure spaces and have the same orientation. More specifically, we say that
two elements (Si, di, xi, xi), i = 1, 2, inM4 with distinct marked points are equivalent if
there exists a measure preserving isometry which takes S1 to S2, x1 to x2, and for each
δ > 0 there exists a simple path in S1 \B(x1, δ) which visits all of the marked points
xi for i = 1, 2 and between hitting any pair of these points hits ∂B(x1, δ). Arguing as
above, it is easy to see that that the map which takes as input two spaces in M4 and
outputs 1 (resp. 0) if they are equivalent in this sense is Borel measurable since the
existence of such a path can be described in terms of the infinite matrix of pairwise
distances. If (Si, di) are topological disks and the marked points xi are in the boundary
and distinct and xi is not in the boundary, then this equivalence relation is equivalent to
xi inducing the same orientation. We letM1,O be given byM4 modulo this equivalence
relation.

Proposition 2.17. Fix a constant r > 0 and let M2,O
SPH,r be the set of elements

(S, d, ν, x, y) ∈ M2,O
SPH such that R = d(x, y) − r > 0 (and note that this is a mea-

surable subset of M2
SPH). Then the space which corresponds to B•(x,R) (with its

interior-internal metric) is in M1. The function M2,O
SPH,r →M1,O given by associat-

ing (S, d, ν, x, y) to this space with the orientation induced from (S, d, ν, x, y) is Borel
measurable.

Suppose that we have a measurable way of choosing z1, z2, . . . , zk ∈ ∂B•(x,R) that only
requires us to look at S \B•(x,R). Then the map to the set of k slices (i.e., the metric
measure spaces which correspond to the regions between the leftmost geodesics from each
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zj to x) is measurable as a map M2,O
SPH,r → (M3)k. (The three marked points in the jth

slice are given by zj, zj+1, and the point where the leftmost geodesics from zj and zj+1

to x first meet.)

If there is a unique geodesic from x to y, one example of a function which associates
S \B•(x,R) with points z1, . . . , zk is as follows. Assume that we have a measurable way
of measuring “boundary length” on ∂B•(x,R). Then we take z1, . . . , zk ∈ ∂B•(x,R) to
be equally spaced points according to boundary length with z1 given by the point on
∂B•(x,R) which is first visited by the geodesic from x to y.

Proof of Proposition 2.17. That the space which corresponds to B•(x,R) is an element
of M1 is obvious.

We are now going to argue that the map which associates (S, d, ν, x, y) ∈ M2,O
SPH,r

with the metric measure space associated with B•(x,R) and associated orientation is
measurable. To see this, we note that a point w is in S \B•(x,R) if and only if there
exists ε > 0 and y1, . . . , y` ∈ S such that the following hold:

1. d(yj, x) ≥ R + ε for each 1 ≤ j ≤ `,

2. y ∈ B(y1, ε) and w ∈ B(y`, ε), and

3. B(yj, ε) has non-empty intersection with both B(yj−1, ε) and B(yj+1, ε) for each
2 ≤ j ≤ `− 1.

Suppose that w1 = x, w2 = y, w3 = x1, w4 = x2, w5 = x3 and w6, w7, . . . is an i.i.d.
sequence chosen from ν and suppose that dij = d(wi, wj). The above tells us how to
determine those indices j such that xj ∈ S \B•(x,R). In particular, it is clear from the
above that the event that xi ∈ B•(x,R) is a measurable function of (dij) viewed as an

element of N̂ . Suppose that we are on the event that wi, wj ∈ B•(x,R) for i, j distinct.
Then the event that the interior-internal distance between wi and wj is at most δ is
equivalent to the event that there exists ε > 0 and indices j1 = i, j2, . . . , jk−1, jk = j
such that dj`j`+1

< ε for each 1 ≤ ` ≤ k − 1, (k − 1)ε < δ, and B(xj` , ε) ⊆ B•(x,R)
for each 1 ≤ ` ≤ k (which we can determine using the recipe above). Thus it is easy

to see that the element of N̂ which corresponds to the matrix of distances between
the (wi) which are in B•(x,R) with the interior-internal metric is measurable. Thus
the measurability of the metric measure space corresponding to B•(x,R) viewed as an
element of M1 follows by applying Proposition 2.11. The same likewise holds for the
orientation of B•(x,R).

Suppose that (S, d, ν, x, y) ∈M2,O
SPH,r and let (S, d, ν, x, y, x) be a representative of the

equivalence class of (S, d, ν, x, y) in M5
SPH. To see the final claim of the proposition, we

note that a point w is in the slice between the leftmost geodesics from zi and zi+1 to
x if and only if there exists δ > 0 such that for every ε > 0 small enough there exist
points y1, . . . , y` with y` = w which satisfy the following properties:
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1. yj ∈ B•(x,R) for each 1 ≤ j ≤ `,

2. d(yj, zi) ≥ δ and d(yj, zi+1) ≥ δ for each 1 ≤ j ≤ `,

3. B(y1, ε) has non-empty intersection with the clockwise part of ∂B•(x,R) between
zi and zi+1,

4. B(yj, ε) has non-empty intersection with B(yj−1, ε) and B(yj+1, ε) for each 2 ≤
j ≤ `− 1,

5. No geodesic from zi+1 to x passes through the B(yj, ε), and

6. No geodesic from a point on ∂B•(x,R) which starts from a point on the counter-
clockwise segment of ∂B•(x,R) from zi to zi+1 to x passes through the B(yj, ε).

It is obvious that properties 1, 2, and 4 can be determined from the matrix (dij) in a
measurable way. We will now explain in further detail why the other properties can be
measurably determined. Let us first explain how to check property 3. We note that
B(y1, ε) intersects the clockwise part of ∂B•(x,R) if and only if the following is true for
every ε > 0 small enough. There exist points u1, . . . , un such that B(ui, ε)∩∂B•(x,R) 6=
∅, B(ui, ε) ∩B(ui+1, ε) 6= ∅ where we take un+1 = u1, if xj ∈ B(uij , ε) then i1, i2, i3 are
in cyclic order (viewed as elements of Zn) and the following is true. If k1, k2 are such
that zi ∈ B(uk1 , ε) and zi+1 ∈ B(uk2 , ε) then B(y1, ε) intersects B(uj, ε) if and only if
k1 ≤ uj ≤ k2 (viewed as elements of Zn). Property 5 holds if and only if

min
1≤j≤k

inf {d(x, y) + d(y, zi+1) : y ∈ B(yj, ε)} > d(x, zi+1).

Property 6 can be checked by combining the ideas used to check properties 3 and 5.
Combining, the result thus follows in view of Proposition 2.11 and the argument
described in the previous paragraph.

2.5 Measurability of the unembedded metric net

We will now develop some basic properties of metric nets and leftmost geodesic trees.
There are many places to get an overview of real trees, plane trees, and contour functions;
for example, [Ald91a, Ald91b, Ald93] uses these concepts to describe continuum random
trees and Section 3 of [LGM+12] reviews these concepts for the purpose of using them
to construct the Brownian map. (They will also be further discussed in Section 3.) Let
T1 be the circle given by starting with [0, 1] and identifying 0 and 1. We briefly recall
that a real planar tree is a quotient of the type described in Figure 2.3, where Xt is
any continuous non-negative function which is not constant in any interval indexed by
t ∈ T1 with inft∈T1 Xt = 0. Every real planar tree is compact, by definition.

Given any real tree embedded in the plane, one can construct a continuous “contour
function” t→ Xt for t ∈ T1 by tracing the boundary of the tree continuously clockwise
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and keeping track of the distance from the root as a function of time. This Xt can then
be used to reconstruct the tree, as Figure 2.3 illustrates. The contour function t→ Xt

is only determined up to monotone reparameterization: if f is any increasing continuous
function T1 → T1 then Xf(t) describes the same tree as Xt, via the procedure described
in the caption to Figure 2.3. We call any such f a monotone reparameterization of the
circle.

Let T be the set of continuous functions X : T1 → R+ with inft∈T1 Xt = 0 which are
not constant in any interval modulo the equivalence relation X ∼ Y if and only if X is
a monotone reparameterization of Y . For X, Y ∈ T , we set

d(X, Y ) = inf
f
‖X − Y ◦ f‖∞

where the infimum is over all monotone reparameterizations. Then d defines a metric
on T . It is not hard to see that under this metric the space of compact real planar trees
is complete and separable. We equip T with the associated Borel σ-algebra.

Xt

t

Figure 2.3: Begin with the graph Xt of a continuous excursion; then declare two
points on that graph to be equivalent if they can be a connected by a horizontal chord
that never goes above the graph of Xt (these chords are shown as green lines). The
equivalence classes form a real planar tree with a natural metric: the distance between
points indexed by s and by t (with s < t) is Xs +Xt − 2 infs<r<tXr. It is not hard to
see that the number of local maximum heights a (i.e., values a such that for some s,
Xs = a is a local maximum) is at most countably infinite (since any local maximum is
the largest value obtained in some sufficiently small interval with rational endpoints).
However, the horizontal red line illustrates that Xt can have multiple local maxima
(perhaps uncountably many) of the same height a.

It is not always the case that the leftmost geodesics of an oriented metric net form a
real tree. For example, if (S, d, x, y) is the Euclidean sphere (with x and y at opposite
poles) then the metric net has no holes, and one can draw uncountably many disjoint
leftmost geodesic arcs directed toward x. In this example, the “tree of leftmost geodesics”
has uncountably many disjoint branches, each corresponding to a geodesic from y to x
(with the endpoint y itself not being included in these branches, since there is no single
distinguished leftmost geodesic starting at y) and is clearly not a compact or precompact
metric space when it is endowed with the natural tree metric.

We say a doubly marked and oriented geodesic sphere (S, d, x, y) is strongly coalescent
if the leftmost geodesic tree of its metric net (endowed with the tree metric) is Cauchy-
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precompact, so that the completion of its leftmost geodesic tree (w.r.t. the natural tree
metric) is a real planar tree.

Proposition 2.18. A doubly marked and oriented geodesic sphere (S, d, x, y) is strongly
coalescent if and only if for any 0 < r < s < d(x, y) the number of disjoint leftmost-
geodesic segments (toward x) one can draw from ∂B•(x, s) to ∂B•(x, r) is bounded
above.

Proof. If there are infinitely many disjoint leftmost geodesic segments, for some r and s,
then the metric net is clearly not Cauchy-precompact. Conversely, if there are only
finitely many for each r and s, then this is true in particular if for some ε > 0 we have
r = nε and s = (n+ 1)ε, and letting n vary between 1 and d(x, y)/ε, we can show that
it is possible to cover the tree with finitely many balls of diameter ε. In other words,
the metric net is totally bounded, which is equivalent to Cauchy-precompactness.

Suppose (S, d, x, y) is a strongly coalescent doubly marked and oriented geodesic sphere

with metric net N . Let T be the leftmost geodesic tree and T̃ the completion of T . The
map from T to N \ {y} is one-to-one by construction, and can be extended continuously

to a map from T̃ to N . Two points on T are called equivalent if they map to the same
point on N . Let Xt be the corresponding contour function. We now present a few more
definitions and quick observations about contour functions of metric nets:

1. Xt necessarily assumes every value r ∈
(
0, d(x, y)

)
an uncountable number of times.

This is because Proposition 2.1 shows that ∂B•(x, r) is necessarily homeomorphic
to a circle, and the map sending a point on the graph of Xt to the corresponding
point on the circle is onto.

2. In the proof of Proposition 2.1, it was shown that Γ = ∂B•(x, r) is locally connected
and that therefore the homeomorphism from the unit disk to the interior of B•(x, r)
extends continuously to its boundary, so that the unit circle maps continuously
onto Γ. Let Λr ⊇ Γ be the component of ∂B(x, r) that contains ∂B•(x, r). In
other words, Λr is the portion of ∂B(x, r) that lies in the metric net. If the metric
exploration “pinches off holes” exactly at time r then Λr could be strictly larger
than Γ, as in Figure 2.4. By the second part of Proposition 2.1, the x-containing
component of B•(x, r) \ Λr is a topological disk, and a homeomorphism from the
unit disk to that disk extends continuously to give a continuous map from the
unit circle onto Λr (which need not be one-to-one, since Λr is not necessarily
a topological circle). Thus it is natural to think of Λr as being continuously
parameterized by a circle (even if not in a strictly one to one way).

3. Any simple closed loop that can be drawn within Λr is necessarily the boundary of
one of the components of S \ ∂B(x, r). This simply follows from the fact the loop
divides the sphere into two pieces, and every point z in the piece not containing x
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must satisfy d(x, z) > r. Conversely, Proposition 2.1 (applied with z in place of y)
implies that every such boundary is a simple closed loop. In particular this implies
that given the metric net N (as a metric space with marked points x and y) it
is possibly to construct the (necessarily countable) collection of loops that form
the boundaries of N when N is viewed as a subset of S. By gluing a topological
disk into each of those loops, one obtains a topological space that is topologically
equivalent to S, and which can be embedded in the sphere. In particular, this
implies that the metric net N determines its own embedding in the sphere (up to
a topological homeomorphism of the sphere).

x yy
Λr

Figure 2.4: Schematic drawing of the union of all of the leftmost geodesics from Λr

— the component of ∂B(x, r) containing ∂B•(x, r) — back to x. The completion of
the union of these geodesics (endowed with the tree metric) is a closed subtree of T ,
continuously mapped to the metric net, with all of the set of leaves mapping onto Λr.

4. For r ∈
(
0, d(x, y)

)
, consider the closed set Ar = {t : Xt = r}. This is a subset

of the circle T1, which corresponds to a closed subset of T̃ and hence maps onto
a closed subset of the metric net (the set Λr described above). Let ≡ be the
(topological closure of) the smallest equivalence relation such that that two points
are equivalent if they are at opposite endpoints of an open interval of T1 \ Ar. It
is not hard to see that if two points are equivalent in ≡ then they must correspond
to the same point in Λr, and that the topological quotient of Ar w.r.t. ≡ must be
a topological circle, which is mapped onto Λr (as in Figure 2.4) in a continuous
way. If this map is one-to-one, we say that that ∂B(x, r) is a simply traced loop.
If it is one-to-one except for two points that are mapped to the same place, then
we say that ∂B(x, r) is a simply traced figure eight. (The Λr shown in Figure 2.4
is neither of these; at least three pairs of points are “pinched together” in this
image. There are other possibilities; for example, it is possible for a whole interval
could get “pinched” to a single point.)

5. If ∂B(x, r) is a simply traced figure eight, then y lies in one of the two loops of
the figure eight; all the points along the other loop correspond to local maxima of
Xt, as the red line in Figure 2.3. On the other hand, there must be a dense set of
points along the loop containing y that correspond to points that are not local
maxima (since if there were a whole interval of points that were local maxima,
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then the points on either ends of that interval would have to be equivalent). Thus

one can recover from the tree T̃ where the two special points must be. This
will be discussed later in the specific context of the Lévy net (where the contour

function for T̃ is a so called Lévy height function derived from a Lévy excursion
in a particular way). See Figure 3.4.

6. In order to speak about a “leftmost tree” we have to have an orientation assigned
to the metric net (so it is not quite enough to just have the metric space structure
of the metric net).

Proposition 2.19. Let F : M2,O
SPH → T be the following map. If the metric net of

X ∈M2,O
SPH is not strongly coalescent, it outputs the 0 function. Otherwise, it outputs

the contour function for the completion of the leftmost geodesic tree. Then F is Borel
measurable.

This will follow from the propositions below.

The Gromov-Hausdorff distance on compact metric spaces marked by k points discussed
in (2.4) can be extend to a metric on compact metric spaces (S,A1, A2, . . . , Ak) marked
by k distinguished closed subsets by setting

dGH

(
(S,A1, A2, . . . , Ak), (S̃, Ã1, Ã2, . . . , Ãk)

)
= inf

(
dH(S, S̃) +

k∑
i=1

dH(Ai, Ãi)
)
.

It is a simple exercise to check the following:

Proposition 2.20. If a sequence of k-subset-marked compact metric spaces converges
w.r.t. the metric dGH (on the S components) then it has a subsequence that converges
w.r.t. dGH (on all components).

Now given any metric net and small constant ε > 0, we can consider the ball boundaries
∂B(x, kε) for positive integer k, as shown in Figure 2.5. A point on such a boundary
∂B(x, kε) is called a “coalescence point” if it lies on a leftmost geodesic drawn from some
point on ∂B

(
x, (k + 1)ε

)
back to x. Clearly, if the surface is strongly coalescent, the

number of coalescence points on each ∂B(x, kε) is finite (and each such point necessarily
lies on ∂B•(x, kε)). Now imagine we fix k and number the coalescent points around
∂B•(x, kε) clockwise as a0, a1, . . . am−1. (It does not matter which one we designate as
a0.) For each ai we define a point bi to be the rightmost point on ∂B

(
x, (k + 1)ε

)
with

the property that the leftmost geodesic started at that point hits ai. (“Rightmost” can
be interpreted as “clockwisemost” within the universal cover of the annulus.) Let gi
be the leftmost geodesic connecting bi to ai and let Qi be the quadrilateral bounded
between gi and gi+1 (addition taken modulo m) as shown on the RHS of Figure 2.5.
Call such a Qi a quad.
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a1

b1

a2

b2

x

g1 g2

Figure 2.5: Left: Shown in orange are the metric ball boundaries ∂B(x, kε) for integer
k. Right: The distance from a1 to b1 is exactly ε. The distance from a2 to any point
on the black arc between b1 and b2 to is exactly ε. The distance between any other
pair of points — with one on the a1 to a2 arc and one on the b1 to b2 arc — is strictly
larger than ε. The metric sphere itself is a geodesic metric space, and it follows that
the metric net is “almost” a geodesic space in the sense that if a and b are any points
on the metric net then one can create a geodesic between them if one adds a countable
collection of arcs, each of which connects two points on the same hole and has length
given by the d distance between those points.

The caption of Figure 2.5 explains some conditions that quads must satisfy. But the
set of possible Qi satisfying these conditions is not a GH closed set: the GH limit of a
sequence of Qi can degenerate in at least two ways: first, the paths gi may collide in
the limit, so that they no longer correspond to disjoint and distinct leftmost geodesics.
Second, the distance between a pair of points on the upper and lower arcs may approach
ε in the limit—so that perhaps the limiting quad has additional leftmost geodesics.

If Q is the quad shown on the RHS of Figure 2.5, then the portion of the clockwise arc
of ∂B•(x, kε) that lies between b1 and b2 (not counting b1) is called the entrance arc
of Q while the point a2 is called the exit point from Q. Note that if z is any point on
the entrance arc of Q, then the leftmost geodesic from z to x necessarily passes through
the exit point of Q. We say that a quad Q′ is a child of Q if the exit point of Q′ lies
on the entrance arc of Q. We say Q′ is a boundary child of Q if the exit point of Q′

lies on the right boundary of the entrance arc of Q.

The collection of all quads Q, together with the child-parent relationship, forms a tree
rooted at B(x, ε) (which one may interpret as a “root quad”), in which some of the
child-parent edges are designated “boundary.” Let T be the labeled tree defined this
way.

Proposition 2.21. The map M2,O
SPH → T which outputs the contour function of the

tree T defined above is Borel measurable.
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Proof. Given a labeled tree T and positive r, s, δ (with r < δ/100 and s < δ/100) we
let A(T, r, s, δ) be the set of geodesic quintuply marked (hence oriented) metric spheres
(S, d, x, y, x) where the marked points are distinct and x = (x1, x2, x3) consists of three
points in ∂B•(x, r), r = d(x, y)/2, whose metric net can be sliced along (not necessarily
leftmost) geodesics into “approximate quads” in the manner of Figure 2.5 in such a way
that the following conditions hold (where, as illustrated, the upper and lower boundaries
of an approximate quad need not be simple curves, but they are connected sets):

1. The distance between the two geodesics forming the left and right sides of any
given quad (the curves g1 and g2 in Figure 2.5) is at least δ. Moreover, the distance
between any quad Q and any non-neighboring quad (i.e., any quad that would not
be distance zero from Q for a system of true quads corresponding to the labeled
tree T ) is at least δ.

2. For each quad (labeled as in Figure 2.5) the distance between any point on the
upper arc and any point on the lower arc is at least ε+ s unless unless the lower
point is in B(a2, s) or we have both that the lower point is in B(a1, s) and the
upper point is in B(b1, s).

3. The left boundary of each quad coincides exactly with the right boundary of the
quad to its left.

4. If z1 is any point in an approximate quad Q, and z2 is any other point outside
of Q, then one can find a z3 such that z3 lies on the left, right, upper or lower
boundary of Q and d(z1, z3) = d(z1, z3) + d(z3, z2). (This is also automatic from
the construction and the fact that the overall metric sphere is a length space.)

We stress that the “approximate quads” whose existence defines membership inA(T, r, s, δ)
are not “true quads” in the sense of satisfying all of the conditions of the quad shown
in Figure 2.5. Rather, they satisfy an approximation of those conditions.

The proof of the proposition proceeds in two parts:

1. First, we observe that A(T, r, s, δ) is a Gromov-Hausdorff closed set. (More
precisely, every element in A(T, r, s, δ) that is obtainable as the metric net of a
doubly marked oriented and geodesic sphere is again in A(T, r, s, δ). So A(T, r, s, δ)
is closed within the space of quintuply marked geodesic metric spheres as above
(i.e., oriented).)

2. Then we show that
A(T ) =

⋃
δ

⋂
r

⋃
s

A(T, r, s, δ)

(where δ, r, and s are all restricted to powers of two) contains the set M(T ) of
metric nets corresponding to the labeled tree T — which implies that the latter
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can be produced from countable unions/intersections of closed sets and is hence
measurable. This implies that T is a measurable function of the oriented metric
net.

The first part is a straightforward application of Proposition 2.20. Given any sequence
of elements in A(T, r, s, δ), we can form a marked sequence by decorating each sequence
element with a set of quads satisfying the given conditions; for each quad there are five
compact sets (the left, right, upper and lower boundaries and the whole quad itself)
and by Proposition 2.20 one can find a subsequence along which the whole collection of
sets converges; next one just observes that the properties that characterize A(T, r, s, δ)
are all evidently preserved by limits of this form.

For the second part, note that since the sets A(T, r, s, δ) are decreasing in s, and we
are taking a union over s, it is enough to consider very small s (say s smaller than any
fixed threshold). Similarly, since one is taking an intersection over r, it is enough to
limit attention to r below any fixed threshold. Similarly, the sets

⋂
r

⋃
sA(T, r, s, δ) are

decreasing in δ. So, we find that the definition of A(T ) does not change if we require
that δ < ε/1024 and that furthermore s < δ/1024 and r < δ/1024.

Next, note that the conditions on the quads in A(T, r, s, δ) guarantee that no leftmost
geodesic (starting at least s distance away from b1) terminates more than s units from
a2. This implies that either a2 or a point slightly (at most r units) to its left is a merge
point. So the number of true quads is at least the number of vertices in T . At this point,
there could in principle be other true quads since there could be other merge points
within r units of a2. However, any such true quad would have to have some positive
width (some corresponding δ′) which would have to be less than r—so the number of
true quads with width greater than r has to be at most the corresponding number in T .
Because we can take r arbitrarily small, this implies that the number of true quads is
exactly the number of vertices in T , taking the r → 0 limit, it is not hard to see that
the tree structure must agree with T .

Proof of Proposition 2.19. For each ε > 0, we let Tε be the tree produced from Propo-
sition 2.21 and let Xε be its contour function. We also let T be the tree of leftmost
geodesics. If (S, d, ν, x, y) has a metric net which is strongly coalescent, by Propo-
sition 2.18 we know that T is precompact when equipped with the tree metric. In
particular, T is totally bounded. This implies that for every δ > 0 there exists ε0 > 0
so that for every ε ∈ (0, ε0) every point T has distance at most δ > 0 from a point
in Tε, when equipped with the tree metric. From this, it is not difficult to see that
for all ε, ε′ ∈ (0, ε0) the uniform distance between Xε and Xε′ modulo monotone repa-
rameterization is at most δ > 0. Therefore Xε converges as ε→ 0 modulo monotone
reparameterization to the contour function X for T . This proves the desired measurabil-
ity of X as a function of (S, d, ν, x, y) since we have exhibited it as a limit of measurable
maps.
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Combining the previous two propositions implies that the set of doubly-marked and
oriented geodesic spheres whose metric net from x to y is strongly coalescent is mea-
surable. Indeed, we know that the contour function Xε of Tε is measurable for each
ε > 0. As explained in the proof of Proposition 2.18, whether (S, d, ν, x, y) ∈ M2,O

SPH

has metric net from x to y which is strongly coalescent is determined by whether there
exists rational 0 < r1 < r2 such that the number of crossings made by the graph of Xε

across the lines with heights r1, r2 is unbounded as ε→ 0.

We are now going to upgrade the statement of Proposition 2.19 to obtain that the map
which takes as input an element ofM2,O

SPH and outputs the pair consisting of the contour
function of the leftmost geodesic tree and the equivalence relation which encodes how
the tree is glued to itself is Borel measurable. In order to formalize this statement, we
need to introduce an appropriate space and σ-algebra.

We let A be the set of pairs consisting of a continuous function X : T1 → R+ which
is not constant in any interval and with inft∈T1 Xt = 0 and a compact set K ⊆ T2,
T2 = T1 × T1, where we consider pairs (X,A), (Y,K) in A to be equivalent if there
exists an increasing homeomorphism f : T1 → T1 so that X = Y ◦ f and A = f−1(K)
where we abuse notation and write f−1(K) = {(f−1(x), f−1(y)) : (x, y) ∈ K}. We
define a metric d on A by setting

d((X,A), (Y,K)) = inf
f

(
‖X − Y ◦ f‖∞ + dH(A, f−1(K))

)
where the infimum is over all f as above.

Proposition 2.22. Consider the map F : M2,O
SPH → A which is defined as follows.

Suppose that (S, d, ν, x, y) ∈M2,O
SPH. If (S, d) is not an oriented geodesic sphere whose

metric net from x to y is strongly coalescent, then it outputs (0, ∅). If (S, d) is a geodesic
sphere whose metric net from x to y is strongly coalescent, then it outputs the pair
consisting of the contour function X : T1 → R+ of the leftmost geodesic tree and the set
K ⊆ T2 which consists exactly of those pairs (s, t) ∈ T2 which correspond to the same
points in S, both modulo monotone parameterization. Then F is Borel measurable.

Proof. The same argument used to prove Proposition 2.19 implies that the following
is true. Consider the map G from M2,O

SPH to the space which consists of an element
(S, d, ν, x, y) of M2,O

SPH and a continuous map f : T1 → S, defined modulo monotone
parameterization, which is defined as follows. If (S, d, ν, x, y) is not a geodesic sphere
with strongly coalescent metric net from x to y, then G outputs the pair consisting of
(S, d, ν, x, y) and the function f(t) = x for all t ∈ T1. If (S, d, ν, x, y) is a geodesic sphere
with strongly coalescent metric net from x to y, then G outputs the pair consisting of
(S, d, ν, x, y) and the function f : T1 → S which is defined by setting f(t) for t ∈ T1 to be
equal to the point in S on the leftmost geodesic tree which corresponds to t ∈ T1 using the
contour function X. Then this is a measurable function when we equip the target space
with the obvious extension of the Gromov-weak topology. We can construct F from G
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as follows. If (S, d, ν, x, y) is a doubly marked and oriented geodesic sphere whose metric
net from x to y is strongly coalescent and ((S, d, ν, x, y), f) = G((S, d, ν, x, y)), then we
set F ((S, d, ν, x, y)) to consist of the contour function produced by Proposition 2.19
and the compact set K of T2 consisting of those 0 ≤ s, t ≤ 1 so that d(f(s), f(t)) = 0.
This function is measurable since the function which takes as input a pair consisting of
an element (S, d, ν, x, y) of M2,O

SPH and a continuous function f : T1 → S and outputs
the pair (S, d, ν, x, y) and the set K as described just above is a measurable map from
M2,O

SPH to the space of doubly marked oriented and geodesic spheres which are also
marked by a compact set in T2.

3 Tree gluing and the Lévy net

Section 3.1 and Section 3.2 briefly recall two tree-mating constructions developed
in [DMS14], one involving a pair of continuum random trees, and the other involving a
pair of α-stable looptrees [CK14]. These very brief sections are not strictly necessary for
the current project, but we include them to highlight some relationships between this
work and [DMS14] (relationships that play a crucial role in the authors’ works relating
the Brownian map and pure Liouville quantum gravity). The real work of this section
begins in Section 3.3, which describes how to construct the α-Lévy net by gluing an
α-stable looptree to itself (or equivalently, by gluing an α-stable looptree to a certain
related real tree derived from the α-stable looptree — the geodesic tree of the Lévy
net). The reader may find it interesting to compare the construction in Section 3.3,
where a single α-stable looptree is glued to itself, to the one in Section 3.2, where two
α-stable looptrees are glued to each other. In Section 3.4 we present a different but (it
turns out) equivalent way to understand and visualize the Lévy net construction given
in Section 3.3. We give a review of continuous state branching processes in Section 3.5,
then give a breadth-first construction of the Lévy net in Section 3.6, and finally prove the
topological equivalence of the Lévy net constructions in Section 3.7. We end this section
by showing in Section 3.8 that the embedding of the Lévy net into S2 is determined up
to homeomorphism by the geodesic tree and its associated equivalence relation in the
Lévy net.

3.1 Gluing together a pair of continuum random trees

There are various ways to “glue together” two continuum trees to produce a topological
sphere decorated by a space-filling path (describing the “interface” between the two
trees). One approach, which is explained in [DMS14, Section 1.1], is the following:
let Xt and Yt be independent Brownian excursions, both indexed by t ∈ [0, T ]. Thus
X0 = XT = 0 and Xt > 0 for t ∈ (0, T ) (and similarly for Yt). Once Xt and Yt are
chosen, choose C large enough so that the graphs of Xt and C−Yt do not intersect. (The
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precise value of C does not matter.) Write R = [0, T ]× [0, C], viewed as a Euclidean
metric space.

Let ∼= denote the smallest equivalence relation on R that makes two points equivalent if
they lie on the same vertical line segment with endpoints on the graphs of Xt and C−Yt,
or they lie on the same horizontal line segment that never goes above the graph of Xt

(or never goes below the graph of C − Yt). Maximal segments of this type are shown
in Figure 3.1. As explained in [DMS14, Section 1.1], if one begins with the Euclidean
rectangle and then takes the topological quotient w.r.t. this equivalence relation, one
obtains a topological sphere, and the path obtained by going through the vertical lines
in left-to-right order is a continuous space-filling path on the sphere, which intuitively
describes the “interface” between the trees encoded by Xt and Yt after quotienting by ∼=.
In fact, this remains true more generally when Xt and Yt are not independent, and the
pair (Xt, Yt) is instead an excursion of a correlated two-dimensional Brownian motion
into the positive quadrant (starting and ending at the origin), as explained in detail in
[DMS14, MS15b].

t

Xt

C−Yt

Xn

−Yn

Figure 3.1: Left: Gluing continuum random trees to each other. Here Xt and Yt are
Brownian excursions and C is a constant chosen so that the two graphs shown do not
intersect. Points on the same vertical (or horizontal) line segment are declared to be
equivalent. The space of equivalence classes (endowed with the quotient topology) can
be shown to be homeomorphic to the sphere [DMS14, Section 1.1]. Right: Gluing
discrete trees to each other. There is a standard discrete analog of the construction
shown in the left that produces a planar triangulation (with distinguished tree and
dual tree) from a finite walk (Xn, Yn) in Z2

+ that starts and ends at (0, 0). The bottom
figure is obtained by collapsing the horizontal red and blue lines to produce two trees,
connected to each other by black edges. See [Mul67, Ber07, She16b] for details.
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3.2 Gluing together a pair of stable looptrees

Also discussed in [DMS14, Section 1.3] is a method of obtaining a sphere by gluing
together two independent stable looptrees (with the disk in the interior of each loop
included), as illustrated in Figure 3.2. Each stable looptree is encoded by the time-
reversal of an α-stable Lévy excursion with only upward jumps with α ∈ (1, 2). In
the setting discussed there, each of the grey disks surrounded by a loop is given a
conformal structure (that of a “quantum disk”), and this is shown to determine a
conformal structure of the sphere obtained by gluing the trees together; given this
structure, the interface between the trees in Figure 3.2 is shown to be an SLEκ′ process
for κ′ = 16/γ2 ∈ (4, 8) where α = κ′/4 ∈ (1, 2). In a closely related construction, the
interface between the trees in the left side of Figure 3.1 is shown to be a space-filling
form of SLEκ′ in which the path “goes inside and fills up” each loop after it is created.
As explained in [DMS14], one obtains a range different values of κ′ by taking the trees
to be correlated with each other and varying the correlation coefficient.

t

Xt

C−Yt

Figure 3.2: Gluing stable looptrees to each other. Left: Xt and Yt are independent and
are each given by the time-reversal of an α-stable Lévy excursion, α ∈ (1, 2), with only
upward jumps (so that Xt, Yt have downward jumps). Graphs of Xt and C − Yt are
sketched; red segments indicate jumps. Middle: Add a black curve to the left of each
jump, connecting its two endpoints; the precise form of the curve does not matter (as
we care only about topology for now) but we insist that it intersect each horizontal line
at most once and stay strictly below the graph of Xt (or above the graph of C − Yt)
except at its endpoints. (The reader may easily verify that it is a.s. possible to draw
such a path for every jump discontinuity.) We also draw the vertical segments that
connect one graph to another, as in the left side of Figure 3.1, declaring two points
equivalent if they lie on the same such segment (or on the same jump segment). Shaded
regions (one for each jump) are topological disks. Right: By collapsing green segments
and red jump segments, one obtains two trees of disks with outer boundaries identified.
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3.3 Gluing a stable looptree to itself to obtain the Lévy net

Throughout, we fix α ∈ (1, 2). Figure 3.3 illustrates a procedure for generating a sphere
from a single stable looptree, which in turn is generated from the time-reversal of an
α-stable Lévy excursion with only upward jumps. (See Definition 3.1 below for a more
formal description.) Precisely, Proposition 3.4 below will show that the topological
quotient of the rectangle, w.r.t. the equivalence relation illustrated, actually is a.s.
homeomorphic to the sphere. The process Yt illustrated there is sometimes known as the
height process of the process Xt, which is the càdlàg modification of the time-reversal
of an α-stable Lévy excursion with upward jumps (so Xt has downward jumps). The
fact that this Yt is well-defined and a.s. has a continuous modification (along with
Hölder continuity and the exact Hölder exponent) is established for example in [DLG05,
Theorems 1.4.3 and 1.4.4] (see also [LGLJ98]).

In this construction the upper tree in the figure is not independent of the lower tree
(with holes); in fact, it is strictly determined by the Lévy excursion below, as explained
in the figure caption. Note that every jump in the Lévy excursion (corresponding to a
bubble) comes with a “height” which is encoded in the upper tree. If one removes from
the constructed sphere the grey interiors of the disks shown, one obtains a closed subset
of the sphere; this set, together with its topological structure, can also be obtained
directly without reference to the sphere (simply take the quotient topology on the set of
equivalence classes in the complement of the grey regions in Figure 3.3). It is important
to note that the set of record infima achieved by X|[t,T ] looks locally like the range of
a stable subordinator with index α− 1 [Ber96, Chapter VIII, Lemma 1], and that in
particular it a.s. has a well-defined Minkowski measure [FT83], which also corresponds
to the time parameter of the stable subordinator.7

We now give the formal definition of the Lévy net, which is defined in terms of an
α-stable Lévy excursion with only upward jumps. Recall [Ber96, Chapter VIII.4] that
the standard infinite measure on α-stable Lévy excursions with only upward jumps is
constructed as follows. One first picks a lifetime T from the infinite measure cαT

−1/α−1dT
where cα > 0 is a constant and dT denotes Lebesgue measure on R+. One then samples
a normalized (unit length) excursion and then finally scales space and time respectively
by the factors T 1/α and T .

Definition 3.1. Fix α ∈ (1, 2) and suppose that Xt is the càdlàg modification of the
time-reversal of an α-stable Lévy excursion (as defined just above) and let Yt be its

7For an α-stable process with no negative jumps (β = 1 in language of [Ber96]) the statement in
[Ber96, Chapter VIII, Lemma 1] is that the set of record maxima (the range of the so-called “ladder
height” process) has the law of the range of a stable subordinator of index αρ where

ρ =
1

2
+ (πα)−1 arctan(tan(πα/2)) =

1

2
+ (πα)−1(πα/2− π) = 1− 1/α.

(Recall that for x ∈ (π/2, π) we have arctan(tan(x)) = x− π.) Thus in this case the index of the stable
subordinator is αρ = α − 1. This value varies between 0 and 1 as α varies between 1 and 2. The
dimension of the range is given by the index α− 1 (a special case of [Ber96, Chapter III, Theorem 15].
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t

Xt

C + Yt

t

Xt

Figure 3.3: Gluing a stable looptree to itself. Illustration of Definition 3.1, the definition
of the α-stable Lévy net. Left: Xt is the càdlàg modification of the time-reversal of
an α-stable Lévy excursion with only positive jumps. Middle: Extra arcs are added
to the lower graph as in Figure 3.2. Yt is the Minkowski measure of the set of record
infimum values obtained by X|[t,T ]. (This quantity corresponds to a “distance” to the
dual root, in the sense of [DLG02].) Red and green lines indicate equivalences. Note
that whenever the lower endpoints of two vertical red segments are connected to one
another by a green segment, it must be the case that the upper endpoints have the
same height (which may be hard to recognize from this hand-drawn figure). Right:
Once the green lines are collapsed, one has a tree and a tree of loops (which we will
refer to as either the dual tree or looptree). The tree above is the geodesic tree. The
orange dot is the root of that tree. The blue dot is a “dual root” (a second marked
point). The horizontal green lines above the graph of Yt “wrap around” from one side
of the rectangle to the other; these lines correspond to the points on the geodesic tree
arc from the orange dot to the blue dot.

associated height process. Fix C > 0 large enough so that the graphs of Xt and C + Yt
are disjoint and let R be the smallest Euclidean rectangle which contains both the
graphs of Xt and C + Yt. We then define an equivalence relation on R as follows.
We declare points of R which lie above the graph of C + Yt to be equivalent if they
lie on a horizontal chord which does not cross the graph of C + Yt. For each t, we
declare the points of R on the vertical line segment from (t,Xt) to (t, C + Yt) to be
equivalent. Finally, we declare points of R which lie below the graph of Xt (extended
as in Figure 3.2 and Figure 3.3) to be equivalent if they lie on a horizontal chord which
does not cross the graph of Xt. The quotient space w.r.t. this equivalence relation is the
doubly marked compact topological space that we call the (α-stable) Lévy net. Let
π be the corresponding quotient map from R to this space. As Figure 3.3 illustrates
the topological space can be understood as a gluing of a pair of trees: the geodesic tree
T1 (corresponding to C − Yt) and a dual tree T2 (corresponding to Xt). The roots of
these two trees are respectively the root and dual root of the Lévy net.

(The reason for these names for T1, T2 is that we will later find that the 3/2-stable Lévy
net describes the metric net in the Brownian map where T1 is the tree of geodesics.)
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We view the Lévy net as a random variable taking values in the space A defined at the
end of Section 2.4 (i.e., a continuous function on T1 → R+ which defines a real tree
together with a compact subset of T2 which defines a topologically closed equivalence
relation on T1, both viewed modulo monotone reparameterization). The tree is the
one encoded by −(Yt/T − supt∈[0,T ] Yt). The equivalence relation on T1 is induced by
the equivalence relation on R defined above (we will prove in Proposition 3.4 that this
equivalence relation is topologically closed).

Although a priori we do not put a full metric space structure on the Lévy net, we define
the distance to the root of a point in the Lévy net to be the distance inherited from
the geodesic tree, i.e., the value of the function sups Ys − Yt. The image of a shortest
path to the root in T1 is called a geodesic to the root. Also, it is not hard to see that
every point in the Lévy net corresponds to either one or two points in T1, and hence
has either one or two distinguished “geodesics” from itself to the root (see the proof of
Proposition 3.4). When there are two, we refer to them as a leftmost geodesic and a
rightmost geodesic, depending on whether they correspond to the leftmost or rightmost
path in T1.

The left and right geodesics arise in Definition 3.1 when two geodesics in the geodesic
tree are identified together at some point. Every point in the dual tree which is a child
of such a point then has at least two geodesics in the Lévy net which go back to the
root. Since the Lévy net is defined by an equivalence relation on a Euclidean rectangle,
there is a well-defined leftmost and rightmost geodesic from each point back to the root
(there in fact can be many geodesics from a given point back to the root). These are
the left and right geodesics referred to in Definition 3.1 just above.

We now establish a few basic properties of the Lévy net.

Proposition 3.2. Suppose that Yt is the height process associated with the time-reversal
of an α-stable Lévy excursion with only upward jumps. It is a.s. the case that Yt does
not have a decrease time. That is, it is a.s. the case that there does not exist a time
t0 and h > 0 such that Ys ≥ Yt0 for all s ∈ (t0 − h, t0) and Ys ≤ Yt0 for s ∈ (t0, t0 + h).
Similarly, Yt a.s. does not have an increase time.

See Figure 3.8 for an illustration of the proof of Proposition 3.2. We will postpone the
detailed proof to Section 3.6, at which point we will have collected some additional
properties of the height process Yt. We emphasize that Proposition 3.2 will only be
used in the proof of Proposition 3.4 stated and proved just below, so the argument is
not circular.

Proposition 3.3. Suppose that Yt is the height process associated with the time-reversal
of an α-stable Lévy excursion with only upward jumps. It is a.s. the case that Yt has
countably many local maxima, and each of these local maxima occurs at a distinct height
(and hence in particular each local maximum is isolated).
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Proof. This is established in the first assertion in the proof of [DLG05, Theorem 4.4]
See also [DLG02, Lemma 2.5.3] for a related result.

Proposition 3.4. If one glues a topological disk into each of the loops of the looptree
instance associated with an instance of the Lévy net, then the topological space that one
obtains is a.s. homeomorphic to S2.

Proposition 3.4 implies that the quotient of the rectangle shown in Figure 3.3, w.r.t.
the equivalence relation induced by the horizontal and vertical lines as illustrated is
topologically equivalent to S2.

We will prove Proposition 3.4 using Moore’s theorem [Moo25], which for the convenience
of the reader we restate here. Recall that an equivalence relation ∼= on S2 is said to
be topologically closed if and only if whenever (xn) and (yn) are two sequences in S2

with xn ∼= yn for all n, xn → x and yn → y as n→∞, then x ∼= y. Equivalently, ∼= is
topologically closed if the graph {(x, y) : x ∼= y} is closed as a subset of S2 × S2. The
topological closure of a relation ∼= is the relation whose graph is the closure of the graph
of ∼=. (Note that it is not true in general that the topological closure of an equivalence
relation is an equivalence relation.) The following statement of Moore’s theorem is
taken from [Mil04].

Proposition 3.5. Let ∼= be any topologically closed equivalence relation on S2. Assume
that each equivalence class is connected and not equal to all of S2. Then the quotient
space S2/ ∼= is itself homeomorphic to S2 if and only if no equivalence class separates S2

into two or more connected components.

Proof of Proposition 3.4. We first claim that Proposition 3.2 implies that no vertical
line segment corresponding to an equivalence class in Definition 3.1 (or Figure 3.3) has
an endpoint on two distinct (non-zero-length) horizontal segments which correspond
to an equivalence class in Definition 3.1. (The reader might find it helpful to look at
Figure 3.8, which illustrates the proof of Proposition 3.2, to visualize the argument.)
Indeed, suppose that we have a vertical chord between the graphs of X and C+Y which
connects to an endpoint of a horizontal chord, connecting (a, Ya + C) to (b, Yb + C) say,
which lies above the graph of C+Y . Then there cannot exist t ∈ (a, b) so that the graph
of X in (a, t] is strictly above Xa. This follows because if there was such a t ∈ (a, b)
then the Minkowski measure of times at which X|[t,T ] spends at its running infimum
(i.e., the time parameter of the corresponding subordinator) would be larger than that
of X|[a,T ]. That is, Yt > Ya. Thus if the vertical chord is from (a,Xa) to (a, Ya + C), a
horizontal chord below the graph of X which contains (a,Xa) must contain (a,Xa) as
its right endpoint. This cannot happen because then a would be a decrease time of Y ,
which is ruled out in Proposition 3.2. Alternatively, if the vertical chord is from (b,Xb)
to (b, Yb +C), then a horizontal chord below the graph of X which contains (b,Xb) must
contain (b,Xb) as its left endpoint. Then b would be an increase time of Y , which is
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again ruled out in Proposition 3.2. We conclude that no equivalence class contains a
non-empty horizontal chord of both the upper and lower graphs.

The equivalence classes can thus be classified as:

Type I: Those containing neither upper nor lower horizontal chords. These are isolated
points in the interior of one of the topological disks glued into a loop of the
looptree (e.g., on the interiors of the grey regions in Figure 3.3) or single vertical
lines connecting one graph to the other.

Type II: Those containing an upper (but not lower) chord. By Proposition 3.3, such a
chord can hit the graph of C + Yt either two or three times, but not more. Thus
these equivalence classes consist of a horizontal line segment attached to either
two or three vertical chords.

Type III: Those containing a lower (but not upper) chord. Since stable Lévy processes
with only downward jumps have a countable collection of unique local minima,
such a chord must hit the black curves in either two or three places. In the (a.s.
countable) set of places where the latter occurs, it is not hard to see that the
rightmost point is a.s. in the interior of one of the boundaries of the grey regions.
(One can see from this that the path tracing the boundary of the looptree hits
no point more than twice.) Thus the number of vertical line segments is either
one (if one of the two endpoints lies on the boundary of a grey region) or two (if
neither endpoint lies on the boundary of a grey region).

From this description, it is obvious that all equivalence classes are connected, fail to
disconnect the space, and do not contain the entire space. It only remains to check
that the equivalence relation is topologically closed. To do this we use essentially the
same argument as the one given in [DMS14, Section 1.1]. Suppose that xi and yi are
sequences with xi → x and yi → y, and xi ∼= yi for all i. Then we can find a subsequence
of i values along which the equivalence classes of xi and yi all have the same type (of
the types enumerated above). By compactness, we can then find a further subsequence
and such that the collection of segment endpoints converges to a limit. It is not hard to
see that the resulting limit is necessarily a collection of vertical chords and horizontal
chords (each of which is an equivalence class) that are adjacent at endpoints; since x
and y are both in this limit we must have x ∼= y.

We next briefly remark that the Lévy net can be endowed with a metric space structure
in various ways. Recall from Definition 3.1 that each point in the Lévy net has either
one or two geodesics back to the root in the tree encoded by C − Y and that in the
case there are two geodesics there is always a distinguished left geodesic. The approach
that we use in Definition 3.1 is to use the distance inherited from the leftmost geodesics:
given any two points x and y, one may draw their leftmost geodesic until they merge
at a point z and define the distance to be the sum of geodesic arc lengths from x to
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z and from y to z. Another is to consider the geodesic tree (as described by Yt) with
its intrinsic metric structure and then take the quotient (as in Section 2.2) w.r.t. the
equivalence relation induced by the gluing with the looptree. Note that when two points
in the upper tree are equivalent, their distance from the root is always the same; thus,
the distance between any point and the root is the same in the quotient metric space as
it is in the tree itself. This implies that the metric space quotient defined this way is not
completely degenerate — i.e., it is not the case that all points become identified with
each other when one takes the metric space quotient in this way. It would be natural
to try to prove a stronger form of non-degeneracy for this metric structure: namely,
one would like to show that a.s. no two distinct points in the Lévy net have distance
zero from each other in this quotient metric. This is not something that we will prove
for general α in this paper; however, in the case that α = 3/2, it will be derived in
Section 4 as a consequence of the proof of our main theorem.

We will see in Section 3.8 that given the structure described in Definition 3.1, one
can recover additional structure: namely an embedding in the sphere (unique up to
homeomorphism of the sphere), a cyclic ordering of the points around each metric ball
boundary (which is homeomorphic to either a circle or a figure 8) with a distinguished
point where the geodesic from x to y intersects the metric ball boundary, and a boundary
length measure on each such boundary.

3.4 A second approach to the Lévy net quotient

We are now going to give another construction of a topological space with the height
process Yt as the starting point which we will show just below is equivalent to the Lévy
net. It is an arguably simpler way to understand Definition 3.1 (or Figure 3.3), which
only involves the upper graph C + Yt (or equivalently just Yt). The implications of this
are discussed further in the caption to Figure 3.4.

Definition 3.6 (Second definition of the Lévy net quotient). Let R be the smallest
rectangle which contains the graph of the height process Yt. We let ∼= be the smallest
equivalence relation on R in which points which lie on a horizontal chord which is strictly
above or below the graph of Yt (except possibly at their endpoints) are equivalent and
also points which are the left and right endpoints of the (uncountable) set of local
minima of a given height corresponding to a jump time for Xt.

See the left side of Figure 3.4 for an illustration of ∼= as in Definition 3.6.

Proposition 3.7. In the setting of Definition 3.1, it is a.s. the case that two distinct
points on the graph of Yt are equivalent in ∼= if and only if one of the following holds.

1. There is a horizontal chord above or below the graph of Yt that connects those two
points and intersects the graph of Yt only at its endpoints.
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Figure 3.4: Left: Illustration of Definition 3.6, the second approach to the Lévy net
quotient. Shown is the graph of Yt together with all horizontal lines, both above and
below the graph, drawn as chords. The points on a horizontal chord that lies strictly
above or below the graph (except for its two endpoints) are considered to be equivalent.
The equivalence class corresponding to a given chord is either the chord itself or a pair
of such chords above the graph with a common endpoint (a local maximum). The two
horizontal purple segments correspond to sets of local minima of the same height each
indicated with a purple dot, which in turn correspond to jumps of the Lévy process.
Only two such segments are drawn, but in fact there are infinitely many; the endpoints
of such segments occupy a dense set of points on the graph of Yt. Each such segment
contains an uncountable collection of equivalence classes, including uncountably many
single points (purple dots), countably many closed chords that lie strictly under the
graph except at endpoints, and the pair of endpoints of the whole black segment (which
is its own equivalence class). Each purple segment becomes a circle in the topological
quotient. Right: Same graph with a horizontal stripe of “extra space” inserted at each
purple segment. The height of the stripe can be chosen so that the sum of the heights of
all of the (countably many) stripes is finite. At each of the (uncountably many) places
where Yt intersects the purple segment, a corresponding red vertical “bridge” is added
crossing the green stripe; points on the same bridge are considered equivalent. Points
on the closure of the same green rectangle (bounded between successive bridges) are
also considered equivalent. The bottom, left, and right edges of each grey rectangle
together constitute a single equivalence class, so that the topological quotient of each
grey rectangle’s boundary is a circle (as in the left figure).

2. There is a horizontal chord above the graph that intersects the graph of Yt at
exactly one location, in addition to its two endpoints.

3. The two points are the left and right endpoints of the (uncountable) set of local
minima of a given height corresponding to a jump time for Xt.

Moreover, it is a.s. the case that two distinct points on the graph of Yt are equivalent
under Definition 3.1 if and only if they are equivalent under Definition 3.6.

Proof. We begin by noting that a horizontal chord above the graph of Yt can intersect
the graph of Yt in at most three places by Proposition 3.3. We also note that a
horizontal chord below the graph of Yt can only intersect the graph of Yt in two places
or uncountably many places. Indeed, suppose that the horizontal chord [(a, Ya), (b, Yb)]
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intersects the graph of Yt in at least 3 places and let (c, Yc) be one of these points
with a < c < b. By the definition of Yt, it follows that Xc is a local minimum for
Xt which Xt subsequently jumps below and therefore b must be a jump time for Xt.
Therefore [(a, Ya), (b, Yb)] necessarily intersects the graph of Yt uncountably many times,
corresponding to the record minimum times of the time-reversal of X|[a,b].
We will now justify why the equivalence relations defined by Definition 3.1 and Defini-
tion 3.6 are the same. Suppose that (a, Ya), (b, Yb) are points on the graph of Yt with
a < b. Recalling the proof of Proposition 3.4, they are equivalent using Definition 3.1 if
and only if one of the following two possibilities hold (corresponding to Type II and
Type III in the proof of Proposition 3.4):

• (a, Ya), (b, Yb) are connected by a horizontal chord which lies above the graph
of Yt.

• (a,Xa), (b,Xb) are connected by a horizontal chord which lies below the graph of
Xt. By the definition of Yt, this implies that Ya = Yb. If b is not a jump time for
Xt, then this implies that Yr > Ya = Yb for all r ∈ (a, b). If b is a jump time for
Xt, then (a, Ya) and (b, Yb) are respectively the left and right endpoints of the set
of local minima of Yt corresponding to the jump of Xt at time b.

In each of these cases, (a, Ya) and (b, Yb) are equivalent under Definition 3.6.

Conversely, suppose that (a, Ya), (b, Yb) are equivalent under Definition 3.6. Since Yt
does not have increase or decrease times (Proposition 3.2), it follows that the horizontal
chord connecting (a, Ya), (b, Yb) cannot cross the graph of Yt (for otherwise there would
be infinitely many intersections). If the horizontal chord connecting (a, Ya), (b, Yb) lies
non-strictly above the graph of Yt, then it is obvious that (a, Ya), (b, Yb) are equivalent
under Definition 3.1. If the horizontal chord connecting (a, Ya), (b, Yb) lies below the
graph of Yt and intersects the graph of Yt only at its endpoints then we have that
Xa = Xb and the horizontal chord connecting (a,Xa), (b,Xb) lies below the graph of
Xt. Indeed, Xt cannot have a downward jump at time b because then the horizontal
chord connecting (a, Ya), (b, Yb) would intersect the graph of Yt in infinitely many places.
Lastly, if (a, Ya), (b, Yb) correspond to the left and right endpoints of an uncountable set
of local minima corresponding to a jump time for Xt, then Xa = Xb and Xr > Xa = Xb

for r ∈ (a, b) so that (a, Ya), (b, Yb) are equivalent under Definition 3.1.

The right hand side of Figure 3.4 illustrates an alternate way to represent the topological
sphere shown in Figure 3.3. On the left hand side of Figure 3.4 (i.e., Definition 3.6),
two distinct points are considered to be equivalent if and only if either:

Case 1: The line segment connecting them is horizontal and intersects the graph of Yt in
at most finitely many points. (Recall that it is a.s. the case that there can be at
most three such intersection points, counting the endpoints themselves; and if
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one of these points is in the interior of the segment, it must be a local maximum
of Yt.)

Case 2: They are the pair inf{s : Ys = m} and sup{s : Ys = m} where m is the value of a
local minimum for Yt (which in turn corresponds to a jump in the Lévy process).

It is interesting because at first glance it looks like any two points of the same horizontal
line in the left side of Figure 3.4 should be equivalent. But of course, this is not the
case if the segment between them intersects the graph of Yt infinitely often.8

The quotient of the right side of Figure 3.4 is generated from the quotient of the left
side of Figure 3.4 by gluing topological disks into each of the holes, which is the same
procedure which generates the quotient in the middle image of Figure 3.3 from the
first definition of the Lévy net. Therefore the spaces defined in Definition 3.1 and
Definition 3.6 are equivalent.

We remark that one could also check directly that the relation on the right hand side of
Figure 3.4 satisfies the conditions of Moore’s theorem (Proposition 3.5), since each of
the equivalence classes is a single point, a single line segment (horizontal or vertical), a
solid rectangle, or the union of the left, right, and lower sides of a grey rectangle.

3.5 Characterizing continuous state branching processes

To study the Lévy net in more detail, we will need to recall some basic facts about
continuous state branching processes, which were introduced by Jǐrina and Lamperti
several decades ago [Jǐr58, Lam67a, Lam67b] (see also the more recent overview in
[LG99] as well as [Kyp06, Chapter 10]). A Markov process (Yt, t ≥ 0) with values
in R+, whose sample paths are càdlàg (right continuous with left limits) is said to be a
continuous state branching process (CSBP for short) if the transition kernels Pt(x, dy)
of Y satisfy the additivity property:

Pt(x+ x′, ·) = Pt(x, ·) ∗ Pt(x′, ·). (3.1)

Remark 3.8. Note that (3.1) implies that the law of a CSBP at a fixed time is infinitely
divisible. In particular, this implies that for each fixed t there exists a subordinator
(i.e., a non-decreasing process with stationary, independent increments) At with At0 = 0

such that Att
d
= Yt. (We emphasize though that Y does not evolve as a subordinator

in t.) We will make use of this fact several times.

8If one begins with the tree obtained by gluing along horizontal chords above the graph (the tree
we call the geodesic tree) then each of the two types of equivalence classes described above produces an
equivalence relation on this tree in which each equivalence class has exactly one or two elements. The
smaller equivalence class obtained by focusing on either one of these two cases is a dense subset in the
full equivalence relation; so the full relation can be understood as the topological closure of either of
these two smaller relations.
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The Lamperti representation theorem states that there is a simple time-change procedure
that gives a one-to-one correspondence between CSBPs and Lévy processes without
negative jumps starting from a positive value and stopped upon first hitting 0, where
each is a time-change of the other. The statement of the theorem we present below is
lifted from a recent expository treatment of this result [CLUB09].

Consider the space D of càdlàg functions f : [0,∞]→ [0,∞] such that limt→∞ f(t) exists
in [0,∞] and f(t) = 0 (resp. f(t) =∞) implies f(t+ s) = 0 (resp. f(t+ s) =∞) for all
s ≥ 0. For any f ∈ D, let θt :=

∫ t
0
f(s)ds ∈ [0,∞], and let κ denote the right-continuous

inverse of θ, so κt := inf{u ≥ 0 : θu > t} ∈ [0,∞], using the convention inf ∅ = ∞.
The Lamperti transformation is given by L(f) = f ◦ κ. The following is the Lamperti
representation theorem, which applies to [0,∞]-valued processes indexed by [0,∞].

Theorem 3.9. The Lamperti transformation is a bijection between CSBPs and Lévy
processes with no negative jumps stopped when reaching zero. In other words, for any
CSBP Y , L(Y ) is a Lévy process with no negative jumps stopped whenever reaching
zero; and for any Lévy process X with no negative jumps stopped when reaching zero,
L−1(X) is a CSBP.

Informally, the CSBP is just like the Lévy process it corresponds to except that its
speed (the rate at which jumps appear) is given by its current value (instead of being
independent of its current value). The following is now immediate from Theorem 3.9
and the definitions above:

Proposition 3.10. Suppose that Xt is a Lévy process with non-negative jumps that is
strictly α-stable in the sense that for each C > 0, the rescaled process XCαt agrees in
law with CXt (up to a change of starting point). Let Y = L−1(X). Then Y is a CSBP
with the property that YCα−1t agrees in law with CYt (up to a change of starting point).
The converse is also true. Namely, if Y is a CSBP with the property that YCα−1t agrees
in law with CYt (up to a change of starting point) then Y is the CSBP obtained as a
time-change of the α-stable Lévy process with non-negative jumps.

Proposition 3.10 will be useful on occasions when we want to prove that a given process Y
is the CSBP obtained as a time change of the α-stable Lévy process with non-negative
jumps. (We refer to this CSBP as the α-stable CSBP for short.9) It shows that it
suffices in those settings to prove that Y is a CSBP and that it has the scaling symmetry
mentioned in the proposition statement. To avoid dealing with uncountably many
points, we will actually often use the following slight strengthening of Proposition 3.10:

Proposition 3.11. Suppose that Y is a Markovian process indexed by the dyadic
rationals that satisfies the CSBP property (3.1) and that YCα−1t agrees in law with CYt
(up to a change of starting point) when Cα−1 is a power of 2. Assume that Y is not
trivially equal to 0 for all positive time, or equal to ∞ for all positive time. Then Y is
the restriction (to the dyadic rationals) of an α-stable CSBP.

9This process is also referred to as a ψ-CSBP with “branching mechanism” ψ(u) = Cuα, C > 0 a
constant, in other work in the literature, for example [DLG02].
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Proof. By the CSBP property (3.1), the law of Y1, assuming Y0 = a > 0, is infinitely
divisible and equivalent to the law of the value Aa where A is a subordinator and A0 = 0
(recall Remark 3.8). Fix k ∈ N and pick C > 0 such that C1−α = 2−k. Similarly,

by scaling, we have that YC1−α
d
= C−1ACa. By the law of large numbers, this law is

concentrated on aE[A1] when k is large; we observe that E[A1] = 1 since otherwise (by
taking the k →∞ limit) one could show that Y is equal to 0 (if E[A1] < 1) or ∞ (if
E[A1] > 1) for all positive time.

From this we deduce that Y is a martingale, and the standard upcrossing lemma allows
us to conclude that a.s. Y has only finitely many upcrossings across the interval (x, x+ε)
for any x and ε, and that Y a.s. is bounded above. This in turn guarantees, for all
t ≥ 0, the existence of left and right limits of Yt+s as s → 0. It implies that Y is a.s.
the restriction to the dyadic rationals of a càdlàg process; and there is a unique way
to extend Y to a càdlàg process defined for all t ≥ 0. Since left limits exist a.s. at any
fixed time, it is straightforward to verify that the hypotheses of Proposition 3.10 apply
to Y .

CSBPs are often introduced in terms of their Laplace transform [LG99], [Kyp06, Chap-
ter 10] and Proposition 3.10 is also immediate from this perspective. We will give a
brief review of this here, since this perspective will also be useful in this article. In the
case of an α-stable CSBP Yt, this Laplace transform is explicitly given by

E[exp(−λYt) |Ys] = exp(−Ysut−s(λ)) for all t > s ≥ 0 (3.2)

where, for a constant c > 0,

ut(λ) =
(
λ1−α + ct

)1/(1−α)
. (3.3)

More generally, CSBPs are characterized by the property that they are Markov processes
on R+ such that their Laplace transform has the form given in (3.2) where ut(λ), t ≥ 0,
is the non-negative solution to the differential equation

∂ut
∂t

(λ) = −ψ(ut(λ)) for u0(λ) = λ. (3.4)

The function ψ is the so-called branching mechanism for the CSBP and corresponds to
the Laplace exponent of the Lévy process associated with the CSBP via the Lamperti
transform (Theorem 3.9). In this language, an α-stable CSBP is a called a “CSBP with
branching mechanism ψ(u) = Cuα” (where C > 0 is a constant depending on c > 0
from (3.3)).

One of the uses of (3.2) is that it provides an easy derivation of the law of the extinction
time of a CSBP, which we record in the following lemma.

Lemma 3.12. Suppose that Y is an α-stable CSBP and let ζ = inf{t ≥ 0 : Yt = 0} be
the extinction time of Y . Then we have for a constant cα > 0 that

P[ζ > t] = 1− exp
(
− cαt1/(1−α)Y0

)
. (3.5)
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Proof. Note that {ζ > t} = {Yt > 0}. Consequently,

P[ζ > t] = P[Yt > 0] = 1− lim
λ→∞

E[e−λYt ] = 1− exp(−cαt1/(1−α)Y0),

which proves (3.5).

As we will see in Section 3.6 just below, it turns out that the boundary length of the
segment in a ball boundary between two geodesics in the Lévy net evolves as a CSBP
as one decreases the size of the ball. The merging time for the geodesics corresponds to
when this CSBP reaches 0. Thus Proposition 2.8 together with Lemma 3.12 allows us to
relate the structure of geodesics in a space which satisfies the hypotheses of Theorem 1.1
with the Lévy net.

3.6 A breadth-first approach to the Lévy net quotient

Now, we would like to consider an alternative approach to the Lévy net in which we
observe loops in the order of their distance from the root of the tree of loops (instead
of in the order in which they are completed when tracing the boundary of the stable
looptree). Consider a line at some height C + s as depicted in Figure 3.5. As explained
in the figure caption, we would like to define Zs to be in some sense the “fractal measure”
of the set of points at which this line intersects the graph of C + Yt (which should be
understood as some sort of local time) and then understand how Zs evolves as s changes.
A detailed account of the construction and properties of Zs, along with Proposition 3.14
(stated and proved below), appears in [DLG05]. We give a brief sketch here.

First of all, in what sense is Zs defined? Note that if we fix s, then we may define the
set Es = {t : Yt > s}. Observe that within each open interval of Es the process Xt

evolves as an α-stable Lévy process, which obtains the same value at its endpoints and
is strictly larger than that value in the interim. In other words, the restriction of Xt to
that interval is (a translation and time-reversal of) an α-stable Lévy excursion. If we
condition on the number Nε of excursions of this type that reach height at least ε above
their endpoint height, then it is not hard to see that the conditional law of the set of
excursions is that of an i.i.d. collection of samples from the Lévy excursion measure
used to generate Xt (restricted to the positive and finite measure set of excursions which
achieve height at least ε). The ordered collection of Lévy excursions agree in law with
the ordered collection one would obtain by considering the “reflected α-stable Lévy
process” (with positive jumps) obtained by replacing an α-stable Lévy process Rt by

R̃t = Rt − inf{Rs : 0 ≤ s ≤ t}. (See [Ber96] for a more thorough treatment of local

times and reflected processes.) The process R̃t then has a local time describing the

amount of time it spends at zero; this time is given precisely by R̃t − Rt. For each
Q > 0, the set of excursions up to the first time that R̃t − Rt first reaches Q can be
understood as a Poisson point process corresponding to the product of the Lebesgue
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measure [0, Q] and the (infinite) Lévy excursion measure. In particular, one can deduce
from this that as ε tends to zero the quantity εαNε a.s. tends to a constant times the
local time; this can then be taken as the definition of Zs.

Definition 3.13. We refer to the process Zs constructed just above from the height
process Yt associated with Xt as the boundary length process associated with a Lévy net
instance generated by Xt.

Note that the discussion above in principle only allows us to define Zs for almost all s,
or for a fixed countable dense set of s values. We have not ruled out the possibility
that there exist exceptional s values for which the limit that defines Zs is undefined.
To be concrete, we may use the above definition of Zs for all dyadic rational times and
extend to other times by requiring the process to be càdlàg (noting that this definition
is a.s. equal to the original definition of Zs for almost all s values, and for any fixed s
value; alternatively see [DLG05] for more discussion of the local time definition). This
allows us to use Proposition 3.11 to derive the following, which is referred to in [DLG05,
Theorem 1.4.1] as the Ray-Knight theorem (see also the Lévy tree level set discussion
in [DLG02, DLG05]):

Proposition 3.14. The process Z from Definition 3.13 has the law of an α-stable
CSBP.

Proof. The CSBP property (3.1) follows from the derivation above because if the process
records L+L′ units of local time at height s, then the amount of local time it records at
height t > s in the first L units of local time at height s is independent of the amount
of local time it records at height t in the last L′ units of local time. Moreover, the
scaling property required by Proposition 3.11 follows from the scaling properties of X
and Y .

Related to Proposition 3.14 is the following correspondence between the jumps of the Z
and X processes shown in Figure 3.5.

Proposition 3.15. The (countably many) jumps in the process Z from Definition 3.13
are a.s. in one-to-one correspondence with the (countably many) jumps in the process X
used to generate the corresponding Lévy net instance. Namely, it is a.s. the case that
whenever a jump in Z occurs at a time s we have s = Yt for some t value at which the
process X has a jump, and vice-versa; in this case, the corresponding jumps have the
same magnitude.

Proof. When a jump occurs in Zs, the line with height of s intersects the graph of Yt
at all points at which Xt (run from right to left) reaches a record minimum following
the jump, up until Xt (run from right to left) again reaches the value on the lower side

of the jump. Using the description of local time above (in terms of R̃ and R), we see
that the amount of local time added due to the appearance of the jump is precisely the
height of the Xt jump.
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Figure 3.5: Illustration of the breadth-first construction of the Lévy net. The following

caption should be read together with the contents of Section 3.6 up to the statement of

Proposition 3.17. Upper left: An orange line is drawn at height C + s for some s. Upper

right: If a and b are the endpoints of an excursion of C + Yt above the orange line, then a

and b are identified (via a red line) to points on the lower graph that are identified (via a

green horizontal line). Lower left: As the height of the orange segment in the upper graph

increases (i.e., s increases), Zs measures the local time of the intersection between that segment

and the graph of C + Yt. When the rising orange line encounters a point (t, s) on the upper

graph such that X has a jump at time t, there is a corresponding upward jump in Zs of the

same magnitude. This is due to the fact (not obvious in this illustration) that all points on

the loop corresponding to the jump are identified with points on the upward graph of the

same height; the local time of this set of points is the magnitude of the jump. The amount of

this local time in the orange/black intersection which is to the right of the point (t, s) is a

quantity that lies strictly between 0 and Zs− (see [DLG02, Proposition 1.3.3]); this quantity

is encoded by the height of the red dot (one for each of the countably many jumps) shown in

the center graph. Another perspective is that the jumps in Zs correspond to loops observed in

the tree on the right as one explores them in order of their distance from the root of the tree

encoded by −Yt, where the distance is given by their looptree distance. The orange circle on

the right encloses the set of loops explored up until time s. Each red dot in the middle graph

indicates where along the boundary a new loop is attached to the already-explored looptree

structure, as defined relative to the branch in the geodesic tree connecting the root and dual

root. Conditioned on the process Z, for each jump time s the vertical location of the red dot

is independent and uniform on [0, Zs− ] (see Lemma 3.20).

For each r > 0, we let Zr
s be the local time of the intersection of the graph of Y with
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the line of height s and width r (i.e., the line connecting (0, s) with (r, s)). Note that
Zs = ZT

s where T is the length of the Lévy excursion and Zs is as in Definition 3.13.
As in the case of Z itself, Zr

s is in principle only a.s. defined for each (r, s) pair. In
Proposition 3.26 below, we will construct a jointly measurable modification of (r, s) 7→ Zr

s

which satisfies certain continuity properties. Throughout, we will assume that we are
using this modification so that Zr

s is defined for all (r, s) simultaneously. In particular,
it makes sense to talk about Zr

s even at random times.

Let D = supt Yt so that [0, D] is the interval on which Zs is defined. For each s ∈ [0, D],
we let Us be the set of points in the Lévy net which have distance at least D−s from the
root. Then ∂Us is the set of points in the Lévy net which have distance equal to D − s
from the root. Note that ∂Us corresponds to a horizontal line in Figure 3.6. In view of
Definition 3.13 and Figure 3.5, we note that if x, y ∈ ∂Us then it makes sense to talk
about the clockwise Sxy (resp. counterclockwise S̃xy) segments of ∂Us which connect x

and y. The boundary lengths of Sxy and S̃xy are determined by the local time of the
intersection of the lines with height s with the graph of Yt which correspond to the
preimages of Sxy and S̃xy under the quotient map. Fix r, t > 0 and assume that we are
working on the event that D > t and Zt ≥ r. Let γ be the branch of the geodesic tree
which connects the root and the dual root. We can then describe each point x ∈ ∂Us in
terms of the length of the counterclockwise segment of ∂Us which connects x and the
point xs on ∂Us which is visited by γ.

Definition 3.16. For each s which is a jump time for Z and t such that s = Yt, we refer
to the amount of local time in the intersection of the line with height s with the graph
of Y which lies to the right of the point (t, s) (i.e., ZT

s − Zt
s) as the attachment point

associated with the jump.

As explained in the caption of Figure 3.5, the attachment point associated with a given
jump records the boundary length distance in the counterclockwise direction of the loop
in the stable looptree encoded by X from the branch in the geodesic tree that connects
the root of the geodesic tree to the root of the looptree.

Next, we make a simple observation:

Proposition 3.17. Suppose that As is a subordinator with A0 = 0 and P[A1 > 0] = 1.

Suppose also that Ãs is an independent instance of the same process. Then for any fixed
values a and b we have

E

[
Aa

Aa + Ãb

]
=

a

a+ b
. (3.6)

Proof. Let c = a + b. Since A has stationary independent increments, it suffices
to show that E[Aa/Ac] = a/c. For each n ∈ N and i ∈ {1, . . . , n}, we note that
E[Ac/n |Ac] = E[Aic/n − A(i−1)c/n |Ac] by exchangeability of the increments given their
sum. If we now sum over i, we see that E[Ac/n |Ac] = n−1Ac. This implies that
E[Aa |Ac] = a

c
Ac for any a of the form ic/n for i ∈ {0, . . . , n}. The assertion for general
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values of a follows because we can find a sequence (ak) of the form ak = ikc/2
k for

ik ∈ {0, . . . , 2k} which increases to a and apply the monotone convergence theorem.

Proposition 3.17 now implies another simple but interesting observation, which we record
as Proposition 3.19 below (and which is related to the standard “confluence-of-geodesics”
story). See Figure 3.6 and Figure 3.7 for relevant illustrations. Before we state this
result, we now give our third definition of the Lévy net quotient.

Definition 3.18. (Third definition of the Lévy net.) Suppose we are given a realization
of the process Zs from Definition 3.13 as well as the attachment points as defined in
Definition 3.16. Let R be a rectangle with width 1 and height equal to the sum of the
length of the interval on which Z is defined plus the sum of the squares of the jumps
of Z. For each s, we let J(s) (resp. J−(s)) be the sum of the squares of the jumps of Z
which have occurred before (resp. strictly before) time s. We define an equivalence
relation ∼= on R by declaring points to be equivalent which lie on each line segment
connecting points of the form (s+ J−(s), u/Zs−) to (s+ J(s), u/Zs) for each s which is
a jump time of Zs and u ∈ [0, as] where as is the attachment point corresponding to
time s and from (s + J−(s), u/Zs−) to (s + J(s), (u + ∆s)/Zs) for each u ∈ [as, Zs−],
where ∆s = Zs − Zs− is the size of the jump at time s.

See Figure 3.6 for an illustration of ∼= as in Definition 3.18. (As the root in Figure 3.6
is shown on the top rather than the bottom, one has to vertically reflect the illustration
in Figure 3.6 to correspond exactly to ∼=.)

Fix t, r > 0. On D > t and Zt ≥ r, we let ηt,r be the geodesic starting from the point on
∂Ut such that the length of the counterclockwise segment of ∂Ut to xt is equal to r. For
each s ≥ t, we let At,rs (resp. Bt,r

s ) be the length of the counterclockwise (resp. clockwise)
segment of ∂Us which connects ηt,r ∩ ∂Us to xs. Note that At,rt = r, Bt,r

t = Zt − r, and
At,rs +Bt,r

s = Zs for all s ∈ [t,D].

Proposition 3.19. When the processes At,r, Bt,r, and Zt,r and the values t and D are
as defined just above, the following holds for the restrictions of these processes to the
interval s ∈ [t,D].

1. The processes At,rs and Bt,r
s are independent α-stable CSBPs.

2. The process At,rs /Zs = At,rs /(A
t,r
s +Bt,r

s ) is a martingale. (This corresponds to the
horizontal location in the trajectory illustrated in Figure 3.7 when parameterized
using distance).

3. The process At,rs /Zs a.s. hits 0 or 1 before time D.

Proof. The first point is immediate from the construction; recall the proof of Proposi-
tion 3.14. Given the first point, the second point is immediate from Proposition 3.17
(recall Remark 3.8). The fact that the martingale reaches 0 or 1 a.s. before reaching the
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Root

Dual root/target

Figure 3.6: Recovering topological structure from bubbles: Shown is a representation of
a Lévy net using a width-1 rectangle R. The top (resp. bottom) line represents the root
(resp. dual root/target). The left and right sides of R are identified with each other and
represent the branch γ in the geodesic tree connecting the root and dual root. If r is
not one of the countably many values at which a jump in boundary length occurs, then
each point z on the Lévy tree of distance r from the root is mapped to the point in the
rectangle whose horizontal location is the length of the counterclockwise radius-r-ball
boundary segment from γ to z divided by the total length of the radius-r-ball boundary;
the vertical distance from the top of the rectangle is the sum of r and the sum of squares
of the boundary-length jumps that occur as the radius varies from 0 and r. Each of
the green stripes represents the set of points whose distance from the root is a value
r at which a jump does occur. Every red line (going from the top to the bottom of
a stripe) is an equivalence class that encodes one of these points. The height of each
green stripe is equal to the square of the jump in the boundary length corresponding to
the grey triangle (the sum of these squares is a.s. finite since the sum of the squares of
the jumps of an α-stable Lévy process is a.s. finite; see, e.g., [Ber96, Chapter I]). The
top (resp. bottom) of each green stripe represents the outer boundary of the metric ball
infinitesimally before (resp. after) the boundary length of the metric ball jumps. Each
red line is a single closed equivalence class (except that when two red lines share an
end vertex, their union forms a single closed equivalence class). The uppermost (resp.
lowermost) horizontal orange (resp. blue) line is also a single closed equivalence class.
Also, each pair of left and right boundary points of the rectangle (with the same vertical
coordinate) is a closed equivalence class. Any point that does not belong to one of these
classes is its own class.

upper end of the rectangle is reached simply follows from the fact that two independent
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Root

Dual root/target

Figure 3.7: Plotting a geodesic trajectory: The black sequence of arrows represents a
branch η in the geodesic tree in the Lévy net. We have drawn η beginning on one of the
horizontal lines of the figure which, as explained in Figure 3.6, represents the boundary
of the metric ball starting from the root. As shown in Proposition 3.19, η eventually
merges with the left boundary of the rectangle (both left and right rectangle boundaries
correspond to the root-to-target branch in the geodesic tree) just before getting back
to the root vertex (represented by the uppermost orange line). Geodesics started at
distinct points can “merge” with each other.

CSBPs, both started at positive values, a.s. do not reach zero at exactly the same
time.

Lemma 3.20. Given the process Z, the locations of the attachment points as defined
in Definition 3.16 are conditionally independent. If s is a jump time for Z, then the
corresponding attachment point is uniform in [0, Zs−].

In the context of Figure 3.5, Lemma 3.20 states that conditionally on the process Zs,
the red dots in the bottom left of Figure 3.5 are conditionally independent and uniform
on each of the vertical orange lines.

Proof of Lemma 3.20. This follows because the CSBP property (3.1) implies that for
each fixed s we can write Zs+t for t ≥ 0 as a sum n independent α-stable CSBPs each
starting from Zs/n and the probability that any one of them has a jump in ε > 0 units
of time is equal.

Theorem 3.21. The σ-algebra generated by the process Z as in Definition 3.13 and the
attachment points defined in Definition 3.16 is equal to the σ-algebra generated by X.
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(In other words, the information encoded by the graph in the bottom left of Figure 3.5 a.s.
determines the information encoded by the first graph.) That is, these definitions yield (as
illustrated in Figure 3.5) an a.e.-defined one-to-one measure-preserving correspondence
between

1. α-stable Lévy excursions and

2. α-stable Lévy excursions (which are naturally reparameterized and viewed as CSBP
excursions) that come equipped with a way of assigning to each jump a distinguished
point between zero and the lower endpoint of that jump (as in Definition 3.16 and
illustrated in the bottom left graph of Figure 3.5).

To further clarify the statement of Theorem 3.21, we recall that an α-stable Lévy
excursion is determined by the collection of pairs which give its jump times and jump
magnitudes. Therefore we can think of the infinite measure on α-stable Lévy excursions
as an infinite measure on countable subsets of R2

+ where an element (t, u) ∈ R2
+

corresponds to a jump at time t of size u. An α-stable Lévy excursion where each
jump is marked by a point between 0 and the size of the jump can be thought of as a
countable subset of R2

+ × [0, 1] where an element (t, u, v) ∈ R+ × [0, 1] corresponds to a
jump at time t of size u with marked point along the jump at height uv. The measure
which will arise in this context in Theorem 3.21 will be given by the infinite measure on
α-stable Lévy excursions where each jump is marked by a conditionally independent
uniform random variable which gives the position of the mark corresponding to the
jump.

Before we give the proof of Theorem 3.21, we first need the following lemmas.

Lemma 3.22. Suppose that W is an α-stable CSBP with W0 > 0 and let W ∗ =
sups≥0Ws. Then we have that

P[W ∗ ≥ u] ≤ W0

u
for each u ≥ W0. (3.7)

Proof. Let τ = inf{t ≥ 0 : Wt = 0 or Wt ≥ u}. Then we have that

P[W ∗ ≥ u] ≤ 1

u
E[Wτ ] ≤

1

u
lim inf
t→∞

E[Wt∧τ ] (by Fatou’s lemma)

=
W0

u
(by the optional stopping theorem).

Lemma 3.23. Let Wt be a process that starts at W0 = ε, then evolves as an α-stable
CSBP until it reaches 0, then jumps to ε and continues to evolve as an α-stable CSBP
until again reaching zero, and so forth. For each T > 0, the process W |[0,T ] converges to
zero in probability as ε→ 0 with respect to the uniform topology.
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Proof. Let τ0 = 0. Assuming that τ0, . . . , τk have been defined we let τk+1 = inf{t > τk :
Wt = 0}. Fix δ > ε and let N = min{k ≥ 0 : supt∈[τk,τk+1] Wt ≥ δ}. Lemma 3.22 implies
that N stochastically dominates a geometric random variable with parameter ε/δ. Fix
a ∈ (0, 1) so that α − 1 − a > 0 (recall that α ∈ (1, 2)). Therefore P[N ≤ δ/εa] → 0
as ε → 0 with δ > 0 fixed. Note also that there exists a constant p > 0 so that
P[τ1 ≥ εα−1] ≥ p uniformly in ε > 0. Let n = bδ/εac. Using that the sequence of
random variables (τj− τj−1) is i.i.d., standard concentration results for binomial random
variables imply that (with δ > 0 fixed),

P

[
τn ≤

p

2
× εα−1 × δ

εa

]
= P

[
n∑
j=1

(τj − τj−1) ≤ pδ

2
εα−1−a

]
→ 0 as ε→ 0.

Combining, we have that (with δ > 0 fixed),

P[τN ≤ T ] ≤ P[τn ≤ T ] + o(1) = o(1) as ε→ 0.

This implies the result.

Proof of Theorem 3.21. Fix t, r > 0. Assume that we are working on the event that
D > t and Zt ≥ r. We claim that the trajectory ηt,r considered in Proposition 3.19 is a.s.
uniquely determined by the boundary length process Zs together with the attachment
points (i.e., the information in the decorated graph Zs, as shown in the bottom left
graph of Figure 3.5). Upon showing this, we will have shown that the geodesic tree is a.s.
determined by Zs and the attachment points. Indeed, then we can recover the process
Yt and from Yt we can recover the ordered sequence of jumps made by Xt hence we can
recover Xt itself. That is, the entire α-stable Lévy net is a.s. determined. This implies
the theorem statement because we know that Xt determines Zs plus the attachment
points.

To prove the claim, we choose two such trajectories ηt,r and η̃t,r conditionally indepen-
dently, given Zs and the attachment points, and show that they are a.s. equal.

We begin by noting that the length of the segment which is to the left of ηt,r evolves as
an α-stable CSBP and the length which is to the right of ηt,r evolves as an independent
α-stable CSBP. The same is also true for η̃t,r. It follows from this that in the intervals
of time in which ηt,r is not hitting η̃t,r we have that the length At,rs (resp. Ct,r

s ) of the
segment which is to the left (resp. right) of both trajectories evolve as independent
α-stable CSBPs. Our aim now is to show that the length Bt,r

s which lies between ηt,r, η̃t,r

also evolves as an independent α-stable CSBP in these intervals of time.

Fix an interval of time I = [a, b] in which ηt,r does not collide with η̃t,r. Then we
know that both At,r|I and Ct,r|I can be a.s. deduced from the ordered set of jumps
they have experienced in I along with their initial values At,ra , C

t,r
a (since this is true
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for α-stable CSBPs and α-stable Lévy processes). That is, if we fix s ∈ I and let J εs
be the sum of the jumps made by At,r|[a,s] with size at least ε then At,rs is a.s. equal to
At,ra + limε→0

(
J εs −E[J εs ]

)
and the analogous fact is likewise true for Ct,r|I . Since this is

also true for (At,r +Bt,r + Ct,r)|I as it is an α-stable CSBP (Proposition 3.14), we see
that Bt,r|I is a.s. determined by the jumps made by Bt,r|I and Bt,r

a in the same way.

To finish showing that Bt,r|I evolves as an α-stable CSBP, we need to show that the law
of the jumps that it has made in I has the correct form. Lemma 3.20 implies that each
time a new bubble comes along, we may sample which of the three regions it is glued
to (with probability of each region proportional to each length). This implies that the
jump law for Bt,r|I is that of an α-stable CSBP which implies that Bt,r|I is in fact an
α-stable CSBP.

The argument is completed by applying Lemma 3.23 to deduce that since Bt,r
s starts

at zero and evolves as an α-stable CSBP away from time zero, it cannot achieve any
positive value in finite time. We have now shown that it is possible to recover X and Y
in the definition of the Lévy net from Z together with the attachment points. That is,
it is possible to recover the top left graph in Figure 3.5 from the bottom left graph a.s.
We have already explained how to construct Z and the attachment points from X and
Y , which completes the proof.

We now have the tools to give the proof of Proposition 3.2.

Proof of Proposition 3.2. See Figure 3.8 for an illustration of the argument. We will
give the proof that Yt a.s. does not have a decrease time; the proof that Yt a.s. does
not have an increase time is analogous. We suppose for contradiction that Y has a
decrease time t0. Then there exists h > 0 such that Ys ≥ Yt0 for all s ∈ (t0 − h, t0) and
Ys ≤ Yt0 for all s ∈ (t0, t0 + h). Let u0 (resp. v0) be the supremum (resp. infimum) of
times s before (resp. after) t0 such that Ys < Yt0 (resp. Ys > Yt0). As h > 0, we have
that u0 < t0 < v0. Let π be the quotient map as in Definition 3.1. By the definition
of the geodesic tree in Definition 3.1, we have that π((t0, C + Yt0)) = π((v0, C + Yv0)).
Moreover, as Yt ≥ Yu0 = Yv0 for all t ∈ [u0, t0] it follows that Xt ≥ Xu0 for all t ∈ [u0, t0].
Consequently, it follows that π((u0, Xu0)) = π((t0, Xt0)). Since π((t, C+Yt)) = π((t,Xt))
for all t, we conclude that π((u0, C + Yu0)) = π((t0, C + Yt0)). That is, there are two
distinct geodesics from the root of the geodesic tree to π((t0, Xt0)) = π((v0, Xv0)).
Therefore the projection under π of the line segment C + [t0, v0] is a positive measure
subset of the geodesic tree from which there are at least two geodesics in the geodesic
tree back to the root.

We will now use Lemma 3.23 to show that the subset of the geodesic tree from which
there are multiple geodesics back to the root a.s. has measure zero. It is shown in
Proposition 3.19 that the boundary length between two geodesics in the Lévy net evolves
as an α-stable CSBP as the distance from the dual root increases. Suppose that x is a
fixed point in the Lévy net and that η is the branch in the geodesic tree from x back to
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t0

Xt

Dual tree paths

C + Yt

Figure 3.8: Illustration of the proof of Proposition 3.2, which states that Yt cannot
have a decrease time, i.e., there cannot be a time t0 and h > 0 such that Ys ≥ Yt0 for all
s ∈ (t0−h, t0) and Ys ≤ Yt0 for all s ∈ (t0, t0 +h). Shown is the behavior of the geodesic
tree and dual tree if Y did have a decrease time t0. The middle blue line on the graph
of C + Yt corresponds to the decrease time and the blue dots to its left and right are
points which are all glued together by the Lévy net equivalence relation. Observe that
every point in the Lévy net which corresponds to a point in the graph of C + Yt which
lies below the blue line would have more than one geodesic back to the root. This is a
contradiction in view of Lemma 3.23, because then we would have a positive measure of
points in the geodesic tree from which there is more than one geodesic to the root. An
analogous argument implies that Yt cannot have an increase time.

the root. Fix ε > 0, let τ̃0 = τ0 = 0, and let η0 (resp. η̃0) be the branch in the geodesic
tree back to the root which starts from clockwise (resp. counterclockwise) boundary
length distance ε from x = η(τ0) back to the root. We let τ1 (resp. τ̃1) be the time at
which η first merges with η0 (resp. η̃0). Assuming that η0, . . . , ηj and η̃0, . . . , η̃j as well
as τ0, . . . , τj and τ̃0, . . . , τ̃j have been defined, we let τj+1 (resp. τ̃j+1) be the first time
that η merges with ηj (resp. η̃j) and let ηj+1 (resp. η̃j+1) be the branch of the geodesic
tree starting from ε units in the clockwise (resp. counterclockwise) direction along the
boundary relative to η(τj+1) (resp. η̃j+1(τ̃j+1)).

Suppose that there are at least two geodesics from x = η(0) back to the root of the
geodesic tree. Then it would be the case that there exists δ > 0 such that for sufficiently
small ε > 0 there is a j such that either τj+1 − τj ≥ δ or τ̃j+1 − τ̃j ≥ δ. By Lemma 3.23,
this a.s. does not happen, from which the result follows.

We will later also need the following lemma, which gives an explicit description of the
time-reversal of the Lévy process whose corresponding CSBP is used to generate a Lévy
net.
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Lemma 3.24. Suppose that α ∈ (1, 2) and Wt is an α-stable Lévy excursion with
positive jumps (indexed by t ∈ [0, T ] for some T ). That is, Wt is chosen from the
natural infinite measure on excursions of this type. Then the law of WT−t is also an
infinite measure, and corresponds to an excursion of a Markov process that has only
negative jumps. When the process value is c, the jump law for this Markov process is
given by a constant times a−α−1(1− a/c)α−2.

Lemma 3.24 is a relatively standard sort of calculation about time-reversals of Lévy
excursions. See, for example, [Cha96, Theorem 4]. For completeness, we will give a
proof just below.

Proof of Lemma 3.24. Fix ε > 0 and let Vt be an α-stable Lévy process with only
upward jumps with V0 = ε. Let τ = inf{t ≥ 0 : Vt = 0}. Then the law of Vt−τ is
given by that of an α-stable Lévy process with only downward jumps conditioned to be
non-negative stopped at the last time that it hits ε [Ber96, Chapter VII, Theorem 18].
When starting from a positive value, this process can be constructed explicitly from
the law of an α-stable Lévy process with only downward jumps by weighting it by a
certain Radon-Nikodym derivative. To be more precise, recall that the scale function
[Ber96, Chapter VII.2] ξ for an α-stable Lévy process with only downward jumps is
given by ξ(u) = αuα−1. Suppose that U has the law of an α-stable Lévy process with
only downward jumps with U0 > 0. Then the Radon-Nikodym derivative of U |[0,t]
conditioned to be positive with respect to the (unconditioned) law of U |[0,t] is given by

ξ(Ut)

ξ(U0)
1{t<ζ} =

Uα−1
t

Uα−1
0

1{t<ζ} (3.8)

where ζ = inf{t ≥ 0 : Ut ≤ 0}. The law of the conditioned process started from U0 = 0
is then given by the limit as of its law when it starts from U0 > 0 as U0 → 0.

From (3.8), it is easy to see that the jump law for the conditioned process is given by a
constant times

a−α−1(1− a/c)α−1 (3.9)

when the process value is equal to c. To complete the proof, we need to determine the
effect on the jump law of further conditioning the process conditioned to be positive to
hit (0, ε) in the limit as ε→ 0.

We have the following basic fact for the conditioned process. By [Ber96, Chapter VII,
Lemma 12], the probability that it starting from y > ε > 0 hits the interval (0, ε) is
given by

py,ε = 1− ξ(y − ε)
ξ(y)

= 1− (y − ε)α−1

yα−1
. (3.10)

Using (3.10), we see for y, z > 0 that

py,ε
pz,ε
→ z

y
as ε→ 0. (3.11)
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Consider the law of U conditioned to be positive conditioned further on hitting (0, ε). If
the process value is c at a given time, then (by a Bayes’ rule calculation) the probability
of making a downward jump of size a ∈ (0, c) is weighted by pc−a,ε/pc,ε in comparison
to (3.9). Therefore combining (3.11) with (3.9) implies that the jump law for the
time-reversed excursion is as desired since the law of the time-reversed excursion can
be constructed by taking the limit as ε→ 0 of the law of U conditioned to be positive
conditioned further on hitting (0, ε).

3.7 Topological equivalence of Lévy net constructions

We have so far given three different descriptions of the Lévy net quotient, namely in
Definition 3.1 (illustrated in Figure 3.3), Definition 3.6 (illustrated in Figure 3.4), and
Definition 3.18 (illustrated in Figure 3.6). Moreover, we explained in Section 3.4 that the
quotients in Definition 3.1 and Definition 3.6 yield an equivalent topology. The purpose
of this section is show that the topology of the quotient constructed in Definition 3.18
is equivalent to the topology constructed in Definition 3.1.

Proposition 3.25. The topology of the Lévy net quotient constructed as in Definition 3.1
is equivalent to the topology of the quotient constructed in Definition 3.18. In particular,
the quotient constructed in Definition 3.18 is a.s. homeomorphic to S2.

We remark that it is also possible to give a short, direct proof that the quotient described
in Definition 3.18 is a.s. homeomorphic to S2 using Moore’s theorem (Proposition 3.5),
though we will not do so in view of Proposition 3.25.

Recall that for each r > 0, Zr
s is the local time of the intersection of the graph of Y

with the line of height s and width r (i.e., the line connecting (0, s) with (r, s)) and
that Zs = ZT

s where T is the length of the Lévy excursion. In order to show that the
topology of the breadth first construction of the Lévy net quotient from Definition 3.18
(illustrated in Figure 3.6) is equivalent to that associated with the constructions from
Definition 3.1 (illustrated in Figure 3.3) and Definition 3.6 (illustrated in Figure 3.4),
we first need to construct a modification of Zr

s which has certain continuity properties.
We will then use this modification to construct the map which takes the construction
described in Figure 3.4 to the breadth first construction.

Proposition 3.26. The process (r, s) 7→ Zr
s has a jointly measurable modification which

a.s. satisfies the following two properties (for all r, s simultaneously).

1. The map r 7→ Zr
· is continuous with respect to the uniform topology.

2. The map s 7→ Z ·s is càdlàg with respect to the uniform topology.
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See [DLG02, Proposition 1.3.3] for a related result. We note that the modification
obtained in Proposition 3.26 has stronger continuity properties than given in [DLG02,
Proposition 1.3.3].

We need to collect several intermediate lemmas before we give the proof of Proposi-
tion 3.26. We begin with an elementary estimate for α-stable CSBPs.

Lemma 3.27. Suppose that W is an α-stable CSBP. There exists a constant c0 > 0
depending only on α such that

P[Wt ≤ δ] ≤ exp(−(δ − c0W0)t1/(1−α)) for all δ > 0.

Proof. Using the representation of the Laplace transform of an α-stable CSBP given
in (3.2), (3.3), we have for λ > 0 that

P[Wt ≤ δ] = P[e−λWt ≥ e−λδ] ≤ eλδE[e−λWt ] = eλδ−ut(λ)W0 .

where ut(λ) = (λ1−α + ct)1/(1−α) and c > 0 is a constant. Taking λ = t1/(1−α) yields the
result.

For each s, u ≥ 0, we let T us be the smallest value of r that Zr
s ≥ u. On the event

that T us <∞, we note that the same argument used to prove Proposition 3.14 implies

that Z
Tus
t evolves as an α-stable CSBP for t ≥ s with initial value u.

Lemma 3.28. There exists a constant c0 > 0 such that the following is true. Fix s > 0.
For each u ≥ 0 and w, v > 0 we have that

P[T u+v
s − T us ≤ t, T us <∞|Zs > w] ≤ exp(−c0vt

−1/α). (3.12)

Proof. Let n be the excursion measure associated with an α-stable Lévy process with
only upward jumps from its running infimum. As explained in [Ber96, Chapter VIII.4],
there exists a constant cα > 0 depending only on α such that n[ζ ≥ t] = cαt

−1/α where ζ
denotes the length of the excursion. This implies that in v units of local time, the number
N of excursions of X with height at least s and with length at least t is distributed as
a Poisson random variable with mean cαvt

−1/α. Note that on the event that we have at
least one such excursion, it is necessarily the case that T u+v

s − T us ≥ t. Consequently,
(3.12) follows from the explicit formula for the probability mass distribution for a Poisson
random variable evaluated at 0.

We turn to describe the setup for the proof of Proposition 3.26. We begin by emphasizing
that each Z

Tus
t for t ≥ s evolves as an α-stable CSBP.

Fix s0 > 0. Then we know that Zt for t ≥ s0 evolves as an α-stable CSBP starting
from Zs0 . Fix δ > 0 and assume that Zs0 ≥ δ/2. We inductively define stopping times
and a modification of Z as follows. First, we let n1 = d4δ−1Zs0e, δ1 = Zs0/n1, and let
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Z1,j
t = Z

T
jδ1
s0

t −ZT
(j−1)δ1
s0

t so that the Z1,j for 1 ≤ j ≤ n1 are independent α-stable CSBPs
defined on the time-interval [s0,∞) all with initial value δ/8 ≤ δ1 ≤ δ/4 (unless n1 = 1).
We then take a modification so that Z1,j

t for t ≥ s0 and 1 ≤ j ≤ n1 are càdlàg. We then
let

τ1 = inf

{
t ≥ s0 : max

1≤j≤n1

Z1,j
t ≥ δ/2

}
.

Note that if τ1 <∞ then Zτ1 ≥ δ/2. Assume that stopping times τ1, . . . , τk and (càdlàg)
CSBPs Zj,1, . . . , Zj,nj have been defined for 1 ≤ j ≤ k. We then let nk+1 = d4δ−1Zτke,
δk+1 = Zτk/nk+1, and Zk+1,j

t = Z
T
jδk+1
τk

t −ZT
(j−1)δk+1
τk

t . Then the Zk+1,j
t are independent α-

stable CSBPs defined on the time-interval [τk,∞) all with initial value δ/8 ≤ δk+1 ≤ δ/4
(unless nk+1 = 1). We modify Z again if necessary so that the processes Zk+1,j

t for
t ≥ τk and 1 ≤ j ≤ nk+1 are càdlàg. We then let

τk+1 = inf

{
t ≥ τk : max

1≤j≤nk+1

Zk+1,j
t ≥ δ/2

}
.

We note that

n∗ := sup
j
nj ≤ 1 +

4

δ
sup
t≥s0

Zt. (3.13)

Combining (3.13) and Lemma 3.22, we see for a constant c0 > 0 that on the event
{Zs0 ≥ δ} we have

P[n∗ ≥M |Zs0 ] ≤
c0Zs0
δM

. (3.14)

Lemma 3.29. For each δ > 0 and δ < a < b <∞ there exists a constant c0 > 0 such
that on the event {Zs0 ∈ [a, b]} we have that

P[τn ≤ 1 |Zs0 ] ≤ c0n
−1/2. (3.15)

Proof. Throughout, we shall assume that we are working on the event {Zs0 ∈ [a, b]}.
By (3.14), we know that there exists a constant c0 > 0 such that

P[τn ≤ 1 |Zs0 ] ≤ P[τn ≤ 1, n∗ ≤M |Zs0 ] +
c0Zs0
δM

. (3.16)

We take M = n1/2Zs0/δ so that the error term on the right hand side of (3.16) is at
most a constant times n−1/2.

Let Ft be the σ-algebra generated by Z
Tus
r for all s ≤ r ≤ t with u, s, r ∈ Q+. We claim

that, given Fτk , we have that τk+1 − τk is stochastically dominated from below by a
random variable ξk such that the probability that ξk is at least 1/nk+1 is at least some
constant p0 > 0 (which may depend on δ but not k). Upon showing this, (3.15) will
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follow by combining (3.16) with binomial concentration. We note that the claim is clear
in the case that nk+1 = 1, so we now assume that nk+1 ≥ 2 and we let

σk+1 = inf

{
t ≥ τk : min

1≤j≤nk+1

Zk+1,j
t ≤ δ/16

}
and τ̃k+1 = τk+1 ∧ σk+1.

Since τ̃k+1 ≤ τk+1, it suffices to prove the stochastic domination result for τ̃k+1 − τk in
place of τk+1 − τk.
By the Lamperti transform (Theorem 3.9), it suffices to show that the probability
that nk+1 independent α-stable Lévy processes, each starting from a common value in
[δ/8, δ/4] and run for time (16/δ)× n−1

k+1, all do not leave the interval [δ/16, δ/2] is at
least some p0 > 0. (The factor 16/δ comes from the speedup when transforming to
Lévy process time.) This, in turn, follows from [Ber96, Chapter VII, Corollary 2] and
[Ber96, Chapter VIII, Proposition 4].

Proof of Proposition 3.26. We will prove the result by showing that r 7→ Zr
· for r ∈ Q+

is a.s. uniformly continuous with respect to the uniform topology. Throughout, we
assume that s0, δ0, δ > 0 are fixed and we let Hs0,δ0 = {Zs0 ∈ [δ0/2, δ0]}. Also, cj > 0
will denote a constant (which can depend on s0, δ0, δ).

For each ` ∈ N and ∆ > 0 we let

F δ
`,∆ =

⋂
k

{
T kδ

2

s0+`∆ − T (k−1)δ2

s0+`∆ ≥ ∆αδ3α
}
.

Lemma 3.22 and Lemma 3.28 together imply that

P[(F δ
`,∆)c |Hs0,δ0 ] ≤ c0M

−1 +
M

δ2
exp(−c1∆−1δ−1). (3.17)

By optimizing over M , it follows from (3.17) that

P[(F δ
`,∆)c |Hs0,δ0 ] ≤ exp(−c2∆−1δ−1). (3.18)

Let ζ = inf{s > 0 : Zs = 0}. By performing a union bound over ` values, from (3.18)
and Lemma 3.12 we have with F δ

∆ = ∩`F δ
`,∆ that

P[(F δ
∆)c |Hs0,δ0 ] ≤

T

∆
exp(−c3∆−1δ−1) + c4T

1/(1−α). (3.19)

Optimizing (3.19) over T values implies that

P[(F δ
∆)c |Hs0,δ0 ] ≤ exp(−c5∆−1δ−1). (3.20)

Therefore the Borel-Cantelli lemma implies that with ∆ = e−j, for each δ > 0 there a.s.
exists jδF ∈ N (random) such that j ≥ jδF implies that F δ

∆ occurs.
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We also let Gδ
`,∆ be the event that for every s ∈ Q with s ∈ [s0 + (`− 1)∆, s0 + `∆] and

t1, t2 ∈ Q+ with t2 ≥ t1 such that Zt2
s − Zt1

s ≥ δ we have that Zt2
s0+`∆ − Zt1

s0+`∆ ≥ 2δ2.
We claim that it suffices to show that

P[(Gδ
`,∆)c |Hs0,δ0 ] ≤ exp(−c6δ∆

1/(1−α)). (3.21)

Letting Gδ
∆ = ∩`Gδ

`,∆, we have from (3.21) by performing a union bound over ` values
(and applying Lemma 3.12 as in the argument to prove (3.20)) that

P[(Gδ
∆)c |Hs0,δ0 ] ≤ exp(−c7δ∆

1/(1−α)).

Thus the Borel-Cantelli lemma implies that with ∆ = e−j, for each δ > 0 there a.s.
exists jδG ∈ N (random) such that j ≥ jδG implies that Gδ

∆ occurs. In particular, this
implies that for every s ≥ s0 with s ∈ Q and t1, t2 such that Zt2

s −Zt1
s ≥ δ we have that

Zt2
s0+`∆ − Zt1

s0+`∆ ≥ 2δ2 where
` = d(s− s0)/∆e (3.22)

for ∆ = e−j and j ≥ jδG.

Assume that j ≥ jδF ∨ jδG so that with ∆ = e−j we have that both F δ
∆ and Gδ

∆ occur.
Suppose that t1, t2, s are such that Zt2

s − Zt1
s ≥ δ. With ` as in (3.22), it must be true

that Zt2
s0+`∆ − Zt1

s0+`∆ ≥ 2δ2. This implies that there exists k such that

T kδ
2

s0+`∆ ≤ t2 and T
(k−1)δ2

s0+`∆ ≥ t1. (3.23)

Rearranging (3.23), we thus have that

t2 − t1 ≥ T kδ
2

s0+`∆ − T (k−1)δ2

s0+`∆ ≥ ∆αδ3α. (3.24)

This implies that r 7→ Zr
· |[s0,∞) for r ∈ Q+ has a certain modulus of continuity with

respect to the uniform topology. In particular, r 7→ Zr
· |[s0,∞) for r ∈ Q+ is uniformly

continuous with respect to the uniform topology hence extends continuously. The result
then follows (assuming (3.21)) since s0, δ0, δ > 0 were arbitrary.

To finish the proof, we need to establish (3.21). For each j, we let

Ej = {τj ≥ s0 + ∆} ∪
(
∩njk=1{Zj,k

s0+∆ ≥ 2δ2}
)
.

We first claim that Gδ
1,∆ ⊇ ∩nj=1Ej. To see this, fix a value of s ∈ [s0, s0 + ∆] and

suppose that Zt2
s − Zt1

s ≥ δ. Let j be such that τj ≤ s < τj+1 and let k be the
first index so that Zj,1

s + · · · + Zj,k
s ≥ Zt1

s . Since Zj,i
s ≤ δ/2 for all i, it follows that

Zj,1
s + · · · + Zj,k+1

s ≤ Zt2
s . Consequently, Zt2

s0+∆ − Zt1
s0+∆ ≥ Zj,k+1

s0+∆. The claim follows

because we have that Zj,k+1
s0+∆ ≥ 2δ2 on ∩jEj.

Thus to finish the proof, it suffices to show that

P[∪nj=1E
c
j |Hs0,δ0 ] ≤ exp(−c8δ∆

1/(1−α)) (3.25)
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(as the same analysis leads to the same upper bound for P[(Gδ
`,∆)c |Hs0,δ0 ] for other `

values). To this end, Lemma 3.27 implies that

P[Ec
j , Z

∗ ≤ δM/4 |Hs0,δ0 ] ≤M exp(−c9δ∆
1/(1−α)). (3.26)

Thus applying a union bound together with (3.26) in the second step below, we have
for each n ∈ N that

P[∪jEc
j , Z

∗ ≤ δM/4 |Hs0,δ0 ]

=P[∪jEc
j , Z

∗ ≤ δM/4, τn ≥ ∆ |Hs0,δ0 ] + P[τn ≤ ∆ |Hs0,δ0 ]

≤nM exp(−c10δ∆
1/(1−α)) + c11n

−1/2 (by Lemma 3.29) (3.27)

Applying Lemma 3.22, we therefore have that

P[∪jEc
j |Hs0,δ0 ] ≤ nM exp(−c10δ∆

1/(1−α)) + c11n
−1/2 + c12(δM)−1. (3.28)

Optimizing over n and M values implies (3.25).

Proof of Proposition 3.25. As we remarked earlier, it suffices to show the equivalence
of the quotient topology from Definition 3.6 (Figure 3.4) with the quotient topology
described in Definition 3.18 (Figure 3.6). We will show this by arguing that Zr

s induces

a continuous map Z̃r
s from Figure 3.4 to Figure 3.6 which takes equivalence classes

to equivalence classes in a bijective manner. This will prove the result because this
map then induces a bijection which is continuous from the space which arises after
quotienting as in Definition 3.6 (Figure 3.4) to the space which arises after quotienting
as in Definition 3.18 (Figure 3.6) and the fact that bijections which are continuous from
one compact space to another are homeomorphisms.

Let S be the vertical height of the rectangle as in the right hand side of Figure 3.4 and
fix s ∈ [0, S]. Let t be the vertical height which corresponds to s as in the left side
of Figure 3.4. In other words, t is obtained from s by mapping the right to the left
side of Figure 3.4 by removing the stripes which correspond to the jumps. If t is not a
jump time for Z, then we take Z̃r

s = Zr
t /Zt. Suppose that t is a jump time for Z. If s

is the y-coordinate of the top (resp. bottom) of the corresponding rectangle as in the

right side of Figure 3.4, we take Z̃r
s = limq↓t Z

r
q/Zq (resp. Z̃r

s = limq↑t Z
r
q/Zq). Suppose

that s is between the bottom and the top of the corresponding rectangle. If (s, r) is

outside of the interior of the rectangle, then we take Z̃r
s = Zr

t /Zt. Note that in this case
we have that the limit limq→t Z

r
q/Zq exists and is equal to Zr

t /Zt. Let s1 (resp. s2) be
the y-coordinate of the bottom (resp. top) of the rectangle. If (s, r) is in the rectangle,

then we take Z̃r
s to be given by linearly interpolating between the values of Z̃r

s1
and Z̃r

s2
.

That is,

Z̃r
s =

s2 − s
s2 − s1

Z̃r
s1

+
s− s1

s2 − s1

Z̃r
s2
.
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By the continuity properties of Z given in Proposition 3.26 and the construction of Z̃,
we have that the map (s, r) 7→ Z̃r

s is continuous.

Observe that Z̃ is constant on the equivalence classes as defined in Definition 3.6
(Figure 3.4). This implies that Z̃ induces a continuous map from the topological
space one obtains after quotienting by the equivalence relation as in Definition 3.6
(Figure 3.4) into the one from Definition 3.18 (Figure 3.6, not yet quotiented). As Z̃
bijectively takes equivalence classes as in Definition 3.6 (Figure 3.4) to equivalence

classes as in Definition 3.18 (Figure 3.6), it follows that Z̃ in fact induces a bijection
which is continuous from the quotient space as in Definition 3.6 (Figure 3.4) to the
quotient space as in Definition 3.18 (Figure 3.6). The result follows because, as we
mentioned earlier, a bijection which is continuous from one compact space to another is
a homeomorphism.

3.8 Recovering embedding from geodesic tree quotient

We now turn to show that the embedding of the Lévy net into S2 is unique up to a
homeomorphism of S2. Recall that a set is called essentially 3-connected if deleting two
points always produces either a connected set, a set with two components one of which
is an open arc, or a set with three components which are all open arcs. In particular,
every 3-connected set is essentially 3-connected. Suppose that a compact topological
space K can be embedded into S2 and that φ1 : K → S2 is such an embedding. It is then
proved in [RT02] that K is essentially 3-connected if and only if for every embedding
φ : K → S2, there is a homeomorphism h : S2 → S2 such that φ = h ◦ φ1.10

Proposition 3.30. For each α ∈ (1, 2), the topological space associated with the Lévy
net is a.s. 3-connected. Hence by [RT02] it can a.s. be embedded in S2 in a unique way
(up to a homeomorphism).

Proof. Suppose that W is an instance of the Lévy net and assume for contradiction
that W is not 3-connected. Then there exists distinct points x, y ∈ W such that
W \ {x, y} is not connected. This implies that we can write W \ {x, y} = A ∪ B for
A,B ⊆ W disjoint and A,B 6= ∅. We assume that W has been embedded into S2.
Let Ã (resp. B̃) be given by A (resp. B) together with all of the components of S2 \W
whose boundary is entirely contained in A (resp. B). Then Ã, B̃ are disjoint and we can

write S2 as a disjoint union of Ã, B̃, {x}, {y}, and the components of S2 \W whose
boundary has non-empty intersection with both A and B. Suppose that C is such a
component. Then there exists a point w ∈ ∂C which is not in Ã or B̃. That is, either
x ∈ ∂C or y ∈ ∂C.

10It is clear from our construction that when K is a Lévy net there exists at least one embedding
of K into S2. More generally, it is shown in [RRT14] that a compact and locally connected set K is
homeomorphic to a subset of S2 if and only if it contains no homeomorph of K3,3 or K5.
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Note that S2 \ (Ã ∪ B̃ ∪ {x, y}) must have at least two distinct components C1, C2

(for otherwise Ã, B̃ would not be disjoint). If either x or y is in ∂C1 ∩ ∂C2 then we
have a contradiction because the distance of both ∂C1 and ∂C2 to the root of W must
be the same but by the breadth-first construction of the Lévy net (Definition 3.18)
and Theorem 3.21 we know that the metric exploration from the root to the dual root
in W does not separate more than one component from the dual root at any given
time (as these components correspond to jumps of the boundary length process). If
∂C1 ∩ ∂C2 does not contain either x or y, then there must be a third component C3 of
S2 \ (Ã ∪ B̃ ∪ {x, y}). This leads to a contradiction because then (by the pigeon hole
principle) either ∂C1 ∩ ∂C3 or ∂C2 ∩ ∂C3 contains either x or y.

We are now going to use that the topological space associated with the Lévy net a.s. has
a unique embedding into S2 up to homeomorphism to show that it together withe the
distance function to the root and an orientation a.s. determines the Lévy excursion X
used to generate it.

Proposition 3.31. For each α ∈ (1, 2), the α-stable Lévy excursion X used in the
construction of the Lévy net is a.s. determined by the topological space associated with
the Lévy net and distance function to the root together with an orientation.

Proof. By Proposition 3.30, we know that the embedding of the (topological space
associated with the) Lévy net into S2 is a.s. determined up to homeomorphism; we assume
throughout that we have fixed an orientation so that the embedding is determined
up to orientation preserving homeomorphism. Recall that the jumps of Zs are in
correspondence with those made by Xt. Thus, if we can show that the jumps of Z are
determined by the Lévy net, then we will get that the jumps of X are determined by
the Lévy net. More generally, if we can show that the processes Z

Tus
t are determined

by the Lévy net, then we will be able to determine the jumps of X and their ordering.
This will imply the result because X is a.s. determined by its jumps and the order in
which they are made. For simplicity, we will just show that Zs is a.s. determined by the
Lévy net. The proof that Z

Tus
t is a.s. determined follows from the same argument.

Let x (resp. y) denote the root (resp. dual root) of the Lévy net. Fix r > 0 and condition
on R = d(x, y) − r > 0. We let ∂B(x,R) be the boundary of the ball of radius R
centered at x in the geodesic tree in the Lévy net. Fix ε > 0. We then fix points
z1, . . . , zNε ∈ ∂B(x,R) as follows. We let z1 be the unique point on ∂B(x,R) which is
visited by the unique geodesic from x to y. For j ≥ 2 we inductively let zj be the first
clockwise point on ∂B(x,R) (recall that we have assumed that the Lévy net has an
orientation) such that the geodesic from zj to x merges with the geodesic from zj−1 to x
at distance at least ε. As the embedding of the Lévy net into S2 is a.s. determined up to
(orientation preserving) homeomorphism, it follows that z1, . . . , zNε is a.s. determined
by the Lévy net.
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Conditional on the boundary length Lr of ∂B(x,R), we claim that Nε is distributed as
a Poisson random variable Zε with mean m−1

ε Lr where mε = (cε)1/(α−1) and c > 0 is a
constant. The desired result will follow upon showing this because then

E[mεZε |Lr] = Lr and var[mεZε |Lr] = mεLr → 0 as ε→ 0.

To compute the conditional distribution of Nε given Lr, it suffices to show that the
boundary length of the spacings are given by i.i.d. exponential random variables with
mean mε given Lr. We will establish this by using that Lr evolves as an α-stable CSBP
as r varies. Fix δ > 0 and let (Zδ

j ) be a sequence of i.i.d. α-stable CSBPs, each starting
from δ. Then the CSBP property (3.1) implies that the process s 7→ Lr+s is equal in

distribution to Zδ
1 + · · ·+Zδ

n + Z̃δ where n = bLr/δc and Z̃δ is an independent α-stable
CSBP starting from Lr − δn < δ. We then define indices (jδk) inductively as follows.
We let jδ1 be the first index j such that the amount of time it takes the α-stable CSBP
Zδ

1 + · · ·+ Zδ
j (which starts from jδ) to reach 0 is at least ε. Assuming that jδ1 , . . . , j

δ
k

have been defined, we take jδk+1 to be the first index j such that the amount of time
that it takes the α-stable CSBP Zδ

jδk+1
+ · · ·+ Zδ

j (which starts from δ(j − (jδk + 1))) to

reach 0 is at least ε.

Note that the random variables

Zδ
k = Zδ

jδk−1+1 + · · ·+ Zδ
jδk

are i.i.d. We claim that the law of Zδ
1 converges in distribution as δ → 0 to that of an

exponential random variable with mean mε. To see this, we fix u > 0, let ũ = δbu/δc,
and let W be an α-stable CSBP starting from ũ. Then we have that

P[Zδ
1 ≥ u] = P[Wε = 0] = lim

λ→∞
E[exp(−λWε)]. (3.29)

As in the proof of Lemma 3.27, using the representation of the Laplace transform of
an α-stable CSBP given in (3.2), (3.3), the Laplace transform on the right hand side
of (3.29) is given, for a constant c > 0, by

exp(−(λ1−α + (cε)1/(1−α)ũ).

Therefore the limit on the right hand side of (3.29) is given by exp(−m−1
ε ũ). This, in

turn, converges to exp(−m−1
ε u) as δ → 0, which proves the result.

4 Tree gluing and the Brownian map

4.1 Gluing trees encoded by Brownian-snake-head trajectory

We now briefly review the standard construction of the Brownian map (see e.g. [Le 14,
Section 3.4]). Our first task is to identify the measure µ2

SPH discussed in Section 1.5 with
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a certain Brownian snake excursion measure. In fact, this is the way µ2
SPH is formally

constructed and defined.

Let S be the set of all finite paths in R beginning at 0. An element of S is a continuous
map w : [0, ζ] → R for some value ζ = ζ(w) ≥ 0 that depends on w. We refer to S
as the snake space and visualize an element of S as the (y-to-x coordinate) graph
{(w(y), y) : y ∈ [0, ζ]}. As illustrated in Figure 4.1, such a graph may be viewed as a
“snake” with a body beginning at (0, 0) and ending at the “head,” which is located at(
w(ζ), ζ

)
. From this perspective, ζ = ζ(w) is the height of the snake, which is also the

vertical head coordinate, and w(ζ) is the horizontal head coordinate.

A distance on S is given by

d(w,w′) = |ζ(w)− ζ(w′)|+ sup
t≥0
|w(t ∧ ζ(w))− w′(t ∧ ζ(w′))|. (4.1)

There is a natural way to create a time-length T excursion into S beginning and ending
at the zero snake. To do so, let Yt be a time-length T Brownian excursion into [0,∞)
(starting and ending at zero). Then Yt encodes a continuum random tree (CRT) T
[Ald91a, Ald91b, Ald93], together with a map φ : [0, T ]→ T that traces the boundary
of T in order. (As we will discuss below, one may also consider a Brownian excursion
measure for which the length T is not a priori determined, and in the most natural way
to do this, the Brownian excursion measure is an infinite measure.) Once one is given
Yt, one may construct a Brownian process Xt with X0 = 0 and

Cov(Xs, Xt) = inf {Yr : r ∈ [s, t]} . (4.2)

An application of the Kolmogorov-Centsov theorem implies that X has a Hölder
continuous modification; see, e.g. [Le 14, Section 3.4]. The RHS of (4.2) describes the
length of the intersection of the two tree branches that begin at φ(0) and end at φ(s)
or φ(t). In particular, if φ(s) = φ(t) then Xs = Xt. Therefore X induces a process Z
defined on T which satisfies Xt = Zφ(t).

Given the (Xt, Yt) process, it is easy to draw the body of the snake in Figure 4.1 for
any fixed time t ∈ [0, T ]. To do so, for each value b < Yt, one plots the point (Xs, b)
where s is the last time before t at which the Y process reached height b. Note also
that if one takes s′ to be the first time after t when the Y process reaches b, then we
must have Xs′ = Xs. Intuitively speaking, as Yt goes down, the snake head retraces the
snake body; as Yt goes up, new randomness determines the left-right fluctuations. As
discussed in the captions of Figure 4.1, this evolution can be understood as a diffusion
process on S.

We now consider a natural infinite measure on the space of excursions into S. It is
the measure described informally in the caption to Figure 4.1. To construct this, first
we define n to be the natural Brownian excursion measure (see [RY99, Chapter XII,
Section 4] for more detail on the construction of n). Each such excursion comes with a
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(Xt, Yt)

(0, 0)

(Xt, Yt)

(0, 0) (0, 0)(a, 0) (a, 0)(inf{X·}, 0)

Figure 4.1: Gluing an asymmetric pair of trees. The doubly marked Brownian map
construction is the same as the construction in the left side of Figure 3.1 except that
the pair (Xt, Yt) is produced from a Brownian snake excursion instead of a Brownian
excursion. In this setup Yt is chosen from the (infinite) Brownian excursion measure
and Xt is a Brownian motion indexed by the corresponding CRT. The process (Xt, Yt)
determines a trajectory in the snake space S. Left: At a given time t, the “snake” has
a body that looks like the graph of a Brownian motion (rotated 90 degrees). The blue
vertical line represents the leftmost point reached by the process (Xt, Yt). It was proved
by Duquesne (see [MM06, Lemma 4.15]) that there is a single time at which the blue
line is hit. After projection, this corresponds to the Brownian map root. At all other
times, distance from the blue line represents distance from the root in the Brownian
map metric. Middle: Suppose inf{X·} < a < 0 and consider the vertical line through
(a, 0). This divides the snake space S into the subspace S>a of snakes not hit by the
red line (except at the origin if a = 0) and the complementary subspace S≤a = S \ S>a
of snakes that are hit. Right: If a snake is hit by the red line, then it has a unique
“ancestor snake” whose body lies entirely to the right of the red line and whose head lies
on the red line. A snake lies on the boundary of S>a if and only if it has this form. The
distance from a snake in S≤a to S>a (in terms of the metric on S, not the Brownian map
metric) is the difference in head height between itself and this ancestor. This distance
evolves as a Brownian motion (until it first reaches 0) in the snake space.

terminal time T such that Y0 = YT = 0, Yt > 0 for t ∈ (0, T ), and Yt = 0 for all t ≥ T .
We recall that the excursion measure is an infinite measure that can be constructed
as follows. Define nε to be (2ε)−1 times the probability measure on one-dimensional
Brownian paths started at ε, stopped the first time they hit zero. Note that this measure
assigns mass 1/2 to the set of paths that reach 1 before hitting zero. The measure n is
obtained by taking the weak the limit of the nε measures as ε→ 0 (using the topology
of uniform convergence of paths, say). Note that for each a > 0 the n measure of the
set of paths that reach level a is exactly (2a)−1. Moreover, if one normalizes n to make
it a probability on this set of paths, then one finds that the law of the path after the
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first time it hits a is simply that of an ordinary Brownian motion stopped when it hits
zero. Now that we have defined n, we define Π to be a measure on excursions into S
such that the induced measure on Yt trajectories is n, and given the Yt trajectory, the
conditional law of Xt is that of the Brownian process indexed by the CRT encoded by
Yt (i.e., with covariance as in (4.2)).

As we will explain in more detail just below, given a sample from Π, the tree encoded by
Xt is the tree of geodesics drawn from all points to a fixed root, which is the value of φ
at the point t that minimizes Xt. The tree T described by Yt (the dual tree) has the
law of a CRT, and Yt describes the distance in T from the dual root (which corresponds
to time 0 or equivalently time T , which is the time when Yt is minimal).

Note that for any time t, we can define the snake to be the graph of the function from
y ∈ [0, Yt] to x that sends a point y to the value of the Brownian process at the point
on T that is y units along the branch in T from φ(0) to φ(t).

As in Figure 4.1, for each a < 0 we let S>a be the subspace of S which consists of those
snakes w such that w(t) > a for all t ∈ [0, ζ]. That is, w ∈ S>a if and only if its body
lies to the right of the vertical line through (a, 0). We also let S≤a = S \ S>a.
We next proceed to remind the reader how to associate an (X, Y ) pair with a metric
measure space structure. This will allow us to think of Π as a measure on M. Roughly
speaking, the procedure described in the left side of Figure 3.1 already tells us how to
obtain a sphere from the pair (X, Y ). The points on the sphere are the equivalence
classes from the left side of Figure 3.1. The tree described by X alone (the quotient
of the graph of X w.r.t. the equivalence given by the chords under the graph) can be
understood as a geodesic tree (which comes with a metric space structure), and we
may construct the overall metric space as a quotient of this metric space (as defined in
Section 2.2) w.r.t. the extra equivalence relations induced by Y .

An equivalent way to define the Brownian map is to first consider the CRT T described
by Y , and then define a metric and a quotient using X as the second step. This is the
approach usually used in the Brownian map literature (see e.g. [Le 14, Section 3.5])
and we give a quick review of that construction here. Consider the function d◦ on [0, T ]
defined by:

d◦(s, t) = Xs +Xt − 2 max

(
min
r∈[s,t]

Xr, min
r∈[t,s]

Xr

)
. (4.3)

Here, we assume without loss of generality that s < t and define [t, s] = [0, s] ∪ [t, T ].
For a, b ∈ T , we then set

d◦T (a, b) = min{d◦(s, t) : φ(s) = a, φ(t) = b} (4.4)

where φ : [0, T ]→ T is the natural projection map. Finally, for a, b ∈ T , we set

d(a, b) = inf

{
k∑
j=1

d◦T (aj−1, aj)

}
(4.5)
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where the infimum is over all k ∈ N and a0 = a, a1, . . . , ak = b in T . We get a metric
space structure by quotienting by the equivalence relation ∼= defined by a ∼= b if and
only if d(a, b) = 0 and we get a measure on the quotient space by taking the projection
of Lebesgue measure on [0, T ]. As mentioned in the introduction, it was shown by
Le Gall and Paulin [LGP08] (see also [Mie08]) that the resulting metric space is a.s.
homeomorphic to S2 and that two times a and b are identified if and only if vertical red
lines in the left side of Figure 3.1 (where Xt and Yt are Brownian snake coordinates)
belong to the same equivalence class as described in the left side of Figure 3.1. Thus
the topological quotient described in the left side of Figure 3.1 is in natural bijection
with the metric space quotient described above.

Given a sample from Π, the corresponding sphere comes with two special points
corresponding to a snake whose head is at the leftmost possible value (the root), and
the origin snake (the dual root). Indeed, if we let S denote the set of points on the
sphere, ν the measure, x the root, and y the dual root, then we obtain a doubly marked
metric measure space (S, d, ν, x, y) of the sort described in Section 2.4. The dual root y
should be thought of as the target point of a metric exploration starting from the root x.
In what follows, we will always use x to the denote the root (center point from which
a metric ball will grow) and y to denote the dual root or target point of the metric
exploration.

In fact, we claim that Π induces a measure on (M2,O
SPH,F2,O). This measure is precisely

the doubly marked grand canonical ensemble of Brownian maps: i.e., it corresponds
to the measure µ2

SPH discussed in Section 1.3. There is a bit of an exercise involved
in showing that the map from Brownian snake instances to (Mk,Fk) is measurable
w.r.t. the appropriate σ-algebra on the space of Brownian snakes, so that µ2

SPH is a
well-defined measure (M2,O

SPH,F2,O). In particular, one has to check that the distance-
function integrals described in Section 2.4 (the ones used to define the Gromov-weak
topology) are in fact measurable functions of the Brownian snake; one can do this by
first checking that this is true when the metric is replaced by the function d◦ discussed
above, and then extending this to the approximations of d in which the distance between
two points is the infimum of the length taken over paths made up of finitely many
segments of the geodesic tree described by the process X. This is a straightforward
exercise, and we will not include details here.

Given a snake excursion s chosen from Π, we define the snake excursion ŝ so that its
associated surface is the surface associated to s rescaled to have total area 1. In other
words, ŝ is the snake whose corresponding head process is

(X̂t, Ŷt) = (ζ−1/4Xζt, ζ
−1/2Yζt).

Here we have scaled t by a factor of ζ, we have scaled Yt by a factor of ζ−1/2, and we
have scaled Xt by a factor of ζ−1/4. An excursion s can be represented as the pair
(ŝ, ζ(s)) where ζ(s) represents the length of the excursion — or equivalently, the area of
the corresponding surface. Since a sample from the Brownian excursion measure n is
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an excursion whose length has law cζ−3/2dζ [RY99, Chapter XII, Section 4], where dζ
is Lebesgue measure on R+ and c = 1/

√
8π, we have the following:

Proposition 4.1. If we interpret Π as a measure on pairs (ŝ, ζ), then Π can be written

as Π̂⊗ ct−3/2dt, where dt represents Lebesgue measure on R+, c = 1/
√

8π, and Π̂ is a
probability measure on the space of excursions of unit length.

root

dual root

geodesic from root to dual root

boundary of
filled metric ball

intersection
point

Figure 4.2: The snake trajectory corresponds to a path that traces the boundary of a
(space-filling) tree of geodesics in the doubly marked Brownian map (S, d, ν, x, y). The
figure illustrates several branches of the geodesic tree (the tree itself is space-filling)
and along with the outer boundary (as viewed from the dual root) of a radius-r metric
ball centered at the root x (i.e., ∂B•(x, r)). From a generic point z ∈ S, there is a
unique path γ in the dual tree back to the dual root y. The distances d(γ(t), x) vary in
t; this variation encodes the shape of the body of the Brownian snake (X, Y ) associated
with (S, d, ν, x, y). The total quadratic variation of t 7→ d(γ(t), x) encodes the height of
the snake’s head (i.e., the value of Ys if z corresponds to (Xs, Ys)). During the snake
trajectory (as the snake itself changes) the first and last times that the horizontal
coordinate X of the snake’s head reaches a = inf{Xt}+ r correspond to the intersection
point (shown in orange) of the (a.s. unique) dual-root-to-root geodesic and ∂B•(x, r).
Intuitively, as one traces the boundary of the space-filling geodesic tree (beginning and
ending at the dual root y), the orange dot is the first and last point that the path visits
within the closed orange disk.

4.2 Brownian maps, disks, and Lévy nets

The purpose of this subsection is to prove that the unembedded metric net of the
doubly marked Brownian map has the law of a 3/2-stable Lévy net. We will refer to
the (countably many) components of the complement of the metric net as “bubbles”
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and will describe a one-to-one correspondence between these bubbles and the “holes”
in the corresponding Lévy net. We will also introduce here the measure µ1,L

DISK on
marked random disks, which give the law of the complement of a filled metric ball in
the Brownian map. (We will later introduce the measure µLDISK, which gives the law of
the complementary components of a metric exploration in the Brownian map, in a more
general framework.) The two jump processes in Figure 3.5 correspond to different orders
in which one might explore these holes. The first explores holes in a “depth-first” order

— i.e., the order in which they are encountered by a path that traces the boundary of
the geodesic tree; the second explores holes in a “breadth-first” order — i.e., in order of
their distance from a root vertex. We will see what these two orderings look like within
the context of the Brownian map, as constructed from a Brownian snake excursion.

In order to begin understanding the unembedded metric net of the Brownian map, we
need a way to make sense of the boundary length measure on a metric ball within the
Brownian map. Observe that for any real number a < 0, the snake diffusion process has
the property that if the snake lies in S≤a at time t, then its distance (in the snake space
metric as defined in (4.1)) from the boundary of S>a is given by Yt − Ys, where s is
supremum of the set of times before t at which the snake was in S>a; see Figure 4.1 for
an illustration. We in particular emphasize that the distance at time t to the boundary
of S>a does not depend on Xt. This distance clearly evolves as a Brownian motion until
the next time it reaches zero. Let us define ia(t) to be the total time before t that the
snake process spends inside S>a, and oa(t) = t− ia(t) the total amount of time before t
that the snake process spends in S≤a.
We claim that when we parameterize time according to oa time, i.e. by the right-
continuous inverse o−1

a (t) = inf{r ≥ 0 : oa(r) > t} of oa, this process is a non-negative,
reflected Brownian motion, and hence has a well-defined notion of local time `a for any
given value of a (see [RY99, Chapter VI] for more on the construction of Brownian local
time). To see this, it suffices to show that the process Yo−1

a (t) is non-negative, evolves as
a Brownian motion in the intervals of time in which it is positive, and is instantaneously
reflecting at 0. The first two properties are true by the construction as we have explained
above, which leaves us to show that Yo−1

a (t) is instantaneously reflecting at 0. To prove
this, it suffices to show that the Lebesgue measure of the set of times t that (Xt, Yt)
is in the boundary of S>a is a.s. equal to 0 which in turn follows from the stronger
statement that the Lebesgue measure of the set of times t that Xt = a is a.s. equal to 0.
Fix ε > 0 and let [τε, σε] be the interval of time corresponding to the longest excursion
that Y makes above ε (breaking ties by taking the one which happens first). Given
[τε, σε] and Xτε = Xσε , we have that (Xt, Yt) in [τε, σε] is a Brownian snake starting from
Xτε = Xσε . For a given value of Xτε = Xσε , there are at most countably many values of
b so that the set of times t ∈ [τε, σε] such that Xt = b has positive Lebesgue measure
and this set depends on Xτε = Xσε by translation as Xτε = Xσε gives the initial value of
the tree-indexed Brownian motion. Thus since Xτε = Xσε has a density with respect to
Lebesgue measure, it follows that the Lebesgue measure of the set of times t ∈ [τε, σε]
so that Xt = a is a.s. equal to 0. This completes the proof of the claim since ε > 0 was
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arbitrary.

We recall that the excursions that a reflected Brownian motion makes from 0 can be
described by a Poisson point process indexed by local time (see, e.g., [RY99, Chapter VI]).
We also note that in each such excursion made by Y , the initial (and terminal) value of
X is given by a.

We next claim that a sample from Π may be obtained in two steps:

1. First sample the behavior of the snake restricted to S>a, parameterized according
to ia time, i.e. by the right-continuous inverse i−1

a (t) = inf{r ≥ 0 : ia(r) > t} of ia.
That is, we sample the process (Xi−1

a (t), Yi−1
a (t)) from its marginal law.

We claim that the process (Xi−1
a (t), Yi−1

a (t)) determines the local time `a. To see

this, let Y 1
t be the difference between Yt and the height of the ancestor snake head

at time t (as in Figure 4.1), and define Y 2
t = Yt − Y 1

t so that Yt = Y 1
t + Y 2

t . As
explained just above, we know that Y 1

t evolves as a reflected Brownian motion
when we parameterize by oa time. Thus it follows that Y 1

t − `a(t) is a continuous
martingale (see, e.g., the Itô-Tanaka formula) when parameterized by oa time,
hence it is a continuous martingale itself. Consequently, Y 2

t + `a(t) is a continuous
martingale. Moreover, Y 2

t + `a(t) is a continuous martingale when parameterized
by ia time and thus Y 2

i−1
a (t)

is a continuous supermartingale. Hence, one can use

the Doob-Meyer decomposition to recover this local time from the process Y 2
i−1
a (t)

.

2. Then, conditioned on the total amount of local time `a(T ) sample the set of
excursions into S≤a using a Poisson point process on the product of Lebesgue
measure on [0, `a(T )] (an interval which is now known, even though T is not itself
yet determined) and Π. Note that each excursion is translated so that it is “rooted”
at some point along the vertical line through (a, 0), instead of at (0, 0).

In what follows, we will write `a(T ) for the total amount of local time and condition
on its value as just above. We emphasize that T is a random variable but when we
condition on `a(T ) we are not conditioning on the value of T unless we explicitly say
otherwise. We extend (`a(T ) : a < 0) to a process by taking it so that s 7→ `−s(T ) for
s > 0 is càdlàg.

For the Brownian map instance (S, d, ν, x, y) encoded by (X, Y ) and a < 0, we define
the boundary length of ∂B•(x, d(x, y) + a) to be the value of `a(T ).

We note that the process `a(t) described and constructed just above is a special case of
the so-called exit measure associated with the Brownian snake. See, e.g., [LG99] for
more on exit measures.

From this discussion, the following is easy to derive the following proposition.

Proposition 4.2. Suppose that (X, Y ) is sampled from Π and `a(T ) is as above. Then
(`a(T ) : a < 0) follows the excursion measure of a 3/2-stable CSBP.
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Proof. The proof is nearly the same as the proof of Proposition 3.14. One has only to
verify that the process satisfies the hypotheses Proposition 3.11. Again, the scaling
factor is obvious (one may rescale time by a factor of C2, the Yt process values by a
factor of C and the Xt process values by a factor of C1/2); and the value of the `a(T )
process then scales by C and its time to completion scales by C1/2, suggesting that the
scaling hypothesis of Proposition 3.14 is satisfied with α − 1 = 1/2, so that α = 3/2.
The CSBP property (3.1) is also immediate from the construction.

(Xt, Yt)

(0, 0)(a, 0)

(a, b)

(0, 0)(a, 0)

(a, b)

(0, 0)(a, 0)

(a, b)

Figure 4.3: Left: the snake shown in Figure 4.1 with a shifted to the smallest value for
which the red line intersects the snake, and the point of this first intersection marked as
(a, b). For almost all times t, the snake will have a unique minimum point of this kind;
a.s., only countably many pairs (a, b) arise as minima for any snake in the trajectory.
We let B(a,b) denote the collection of all snakes in the trajectory with leftmost point at
(a, b), and the head not at (a, b) itself; e.g., the left snake shown belongs to B(a,b). The
set B(a,b) represents a “bubble” of the corresponding doubly marked Brownian map i.e.,
an open component of the complement of the metric net between the root and the dual
root. Middle: A snake on the bubble boundary ∂B(a,b). Right: The “bubble root” of
B(a,b). (Note: not every snake whose head lies left of its body is a bubble root; there are
a.s. only countably many such points in the trajectory, one per bubble.)

Proposition 4.3. Suppose that (X, Y ) is sampled from Π and `a(T ) is as above. The
jumps in `a(T ) are in one-to-one correspondence with the bubbles of the metric net from
the root to the dual root of the Brownian map. If one keeps track of the location along
the boundary (using boundary length) at which each bubble root (see Figure 4.3) occurs
together with the total boundary length process, one obtains an object with the law of the
process Zs as in Definition 3.13 together with the attachment points of Definition 3.16
(as shown in Figure 3.5). In particular, conditioned on the process `a(T ), the attachment
points are independent random variables with law associated with a jump occurring for
a given value of a is that of a uniform random variable in [0, `a−(T )].

Proof. Recall the two step sampling procedure from the measure Π described above.
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Namely, given the process (Xi−1
a (t), Yi−1

a (t)) (i.e., the Brownian snake growth within the
set S>a), the conditional law of the process in S≤a is given by a Poisson point process
Λ = {(ui, (X i, Y i))} with intensity measure given by the product of Lebesgue measure
on [0, `a(T )] and Π. The ui coordinate gives the location of where the excursion is rooted
on the ball boundary, as measured relative to the place on the ball boundary visited by
the unique geodesic connecting the root and dual root. This in particular implies that
the following is true. For each a < 0, the law of the snake process is invariant under
the operation of replacing the Poisson point process of excursions Λ that it makes into
S≤a with the process {(ui +U, (X i, Y i))} where U is uniform in [0, `a(T )] independently
of everything else and we consider the ui + U modulo `a(T ). This operation has a
simple geometric interpretation. Namely, it corresponds to the operation of cutting
out the filled metric ball of radius a− inf{X} centered at the root of the geodesic tree,
then “rotating it” by U units of boundary length, and then gluing back together with
its complement according to boundary length. (Recall also the discussion just after
Proposition 2.7.)

We will now extend the above observations to the setting of stopping times. More
precisely, for each r > 0 we let Fr be the σ-algebra generated by the process t 7→
(Xi−1

−r(t)
, Yi−1

−r(t)
). Then Fr is non-decreasing in r. Let τ be a stopping time for Fr. For

each n, let τn be the smallest element of 2−nZ which is at least as large as τ . Then
τn decreases to τ as n→∞. By the two step construction of Π described above, the
conditional law of the snake process given Fτn within the set S≤−τn is again given by a
Poisson point process with intensity measure given by the product of Lebesgue measure
on `−τn(T ) and Π. Taking a limit as n → ∞ and using the backward martingale
convergence theorem and the continuity of the aforementioned conditional law (recall
that `a(T ) is left-continuous in a), we have that the conditional law of the snake process
given Fτ takes exactly the same form. In particular, it is invariant under the operation
of adding to the first coordinate in the Poisson point process an independent random
variable which is uniform in `−τ (T ) and then working modulo `−τ (T ).

The result thus follows by applying the previous paragraph to stopping times which
correspond to bubble root times.

We will now begin to describe the measure µ1,L
DISK on random marked disks, which is

one of the key actors in what follows. The key ideas to understanding µ1,L
DISK through

the perspective of the Brownian snake are illustrated in the caption of Figure 4.1. (We
will later describe the measure µLDISK on random unmarked disks in a more general
framework in the process of proving Theorem 4.11 below. We also remark that a
snake-based approach to µLDISK is carried out in [AL15].)

Fix r > 0 and suppose that (S, d, ν, x, y) is sampled from µ2
SPH conditioned on d(x, y) > r.

We define µ1,L
DISK to be the conditional law of S \B•(x, r), viewed as a metric measure

space equipped with the interior-internal metric and marked by y, given that its boundary
length is equal to L as defined just above Proposition 4.2.
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Write Ca := `a(T ) and recall from Proposition 4.2 that (Ca : a < 0) follows the excursion
measure of a 3/2-stable CSBP, indexed in the negative direction. Now suppose the
measure on excursions of this form is weighted by the excursion length — call it A = A(C·)

— and that given (Ca) the quantity r is chosen uniformly in [0, A] so that−A+r is uniform
on the interval [−A, 0]. Then we can now think of the triple

(
(Ca), A, r

)
as describing a

CSBP excursion decorated by a distinguished time during its length. Set L = C−A+r. In
this framework, we can then break the excursion into two pieces, corresponding to time
before and after −A+r — with durations r and A−r. We interpret each of these pieces
as being defined modulo a horizontal translation of its graph (or equivalently one can
imagine that one translates each piece so that it starts or ends at time 0). Interpreted
this way, we now claim that given L, the two pieces of the excursion (before or after the
distinguished time) are independent of each other, and in fact we have all three of the
following:

1. Weighted excursion Markov property: For the excursion measure weighted
by excursion length A and decorated as above, we have that given L = C−A+r the
two sides of the excursion are conditionally independent and are given by forward
and reverse CSBPs started at C−A+r and stopped upon hitting 0.

2. Decreasing time Markov property: For the unweighted excursion measure,
we have that for any fixed a, on the event the event A > a the two sides of the
excursion (before and after time a) are conditionally independent given L = C−a.

3. Increasing time Markov property: For the unweighted excursion measure, we
have that for any fixed r, on the event that A > r, the two sides of the excursion
(before and after −A+ r) are conditonally independent given L = C−A+r.

The decreasing time Markov property is immediate from the definition of the unweighted
excursion measure. To get the first property, note that for any constant C, if we restrict
the length-weighted-decorated measure on triples

(
(Ca), A, r

)
to the event A > C and

r ∈ [0, C], then on this event the marginal law of (Ca) (ignoring r) on the time-interval
−a ∈ [C,A] is the same (up to constant factor) as in the unweighted case. It in particular
has the property that given the restriction of Ca to −a ∈ [0, C] the conditional law of the
remainder of Ca is simply that of a CSBP started at Ca and stopped when it hits zero.
Since this holds for any C, the first property readily follows, and a similar argument
then shows that the first property above implies the third property.

In the proof of Proposition 4.4 below, we will derive an extension of this equivalence to
a setting involving the metric net. In this setting, the boundary length process (for the
filled metric ball centered at x, as viewed from y) is a CSBP excursion, and we will want
to say that for a given radius r the inside and the outside of the ball are conditionally
independent given the boundary length. The proof below will be a bit more complicated
than the observation above, because we want conditional independence of two random
metric spaces (a filled ball and its complement) and defining these metric spaces requires
information than just what is encoded in the boundary length process.
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Proposition 4.4. Fix r > 0. Conditionally on d(x, y) > r, we have that B•(x, r) and
S \B•(x, r) (each viewed as elements of M1,O) are conditionally independent given the
boundary length of ∂B•(x, r) and the conditional law of S \B•(x, r) does not depend on
r.

Proof. We begin by fixing a (deterministic) value of a < 0 and let r = d(x, y) + a.
Since d(x, y) is random, we emphasize that r is random at this point. Let dr be the
interior-internal metric on S \B•(x, r), which we recall is defined by setting the distance
between any two points to be the infimum of lengths of paths connecting the two points
which stay in the interior of S \B•(x, r).
Let (X, Y ) be the Brownian snake process which generates (S, d, ν, x, y) and let (Xa, Y a)
be the process obtained by truncating the excursions that (X, Y ) makes into S≤a, as
discussed above Proposition 4.2 (see also Figure 4.1). We claim that (Xa, Y a) determines
dr using the same procedure to construct d from (X, Y ); recall (4.5). We first note that
all of the geodesics in S \ B•(x, r) to ∂B•(x, r) are determined by (Xa, Y a) because
such a geodesic is part of a geodesic to x. Fix z, w ∈ S \ B•(x, r) and let η be a
dr-geodesic from z to w. Let ε > 0. By the construction of d, it follows that there exists
n ∈ N and segments η1, . . . , ηn of geodesics to the root x so that the concatenation
of η1, . . . , ηn connects z to w and has length at most ε plus the length of η. Applying
the procedure (4.5) to (Xa, Y a), we see that the successive endpoints of η1, . . . , ηn are
identified. Since ε > 0 was arbitrary, we see that dr(z, w) is determined by (Xa, Y a).
We similarly have that the interior-internal metric on B•(x, r) is determined by the
excursions that (X, Y ) makes into S≤a.
Summarizing, we thus have that the metric measure spaces (with their interior-internal
metric) S \B•(x, a+ d(x, y)) (marked by y) and B•(x, a+ d(x, y)) (marked by x) are
respectively determined by (Xa, Y a) and the excursions the snake process makes in
S≤a. The discussion just above Proposition 4.2 therefore implies that the two spaces
are conditionally independent given the boundary length L.

Recall from the discussion just before the statement of Proposition 4.2 that the con-
ditional law of the excursions that (X, Y ) makes into S≤a given the boundary length
L = `a(T ) is given by a Poisson point process with intensity measure given by the
product of Lebesgue measure on [0, `a(T )] and Π. Recall also that the value of d(x, y)
is equal to −1 times the minimum value attained by the x-coordinate of these excur-
sions. In particular, given d(x, y) the excursions into S≤a are conditionally independent
of (Xa, Y a) given the boundary length L. Note that given d(x, y), there will be one
excursion whose x-coordinate has minimum value −d(x, y) and the other excursions
have a Poisson law but with minimal x-coordinate larger than −d(x, y).

The analysis above applies equally well in the setting of the remark before the beginning
of the proof – where the “CSBP excursion measure” (or the corresponding doubly
marked Brownian map measure) is weighted by its length (which corresponds to d(x, y)
in the corresponding doubly marked Brownian map) and a is uniformly chosen from
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[−d(x, y), 0] (instead of being deterministic) and again r = d(x, y) + a. That is, even in
this setting, we still have conditional independence of (B•(x, r), x) and (S \B•(x, r), y)
given L. In particular, in this setting if we condition on r ∈ [r0, r0 + ε] (i.e., we restrict
the infinite measure space to the finite-measure subspace on which this is true) we learn
nothing about (S \B•(x, r), y) from knowing (B•(x, r), x) beyond the value of L, and
by the scaling symmetry of the overall construction, the value L affects the conditional
law of (S \ B•(x, r), y) only by a scaling (multiplying distances by L1/2, measure by
L2). But once we restrict the measure to the set on which r ∈ [r0, r0 + ε], the marginal
law (of the doubly marked Brownian surface) is no longer weighted by the length of the
interval [0, d(x, y)], but rather by the length of [0, d(x, y)] ∩ [r0, r0 + ε], which is simply
equal to ε when d(x, y) > r0 + ε and 0 if d(x, y) < r0. (The proportion of this measure
coming from the case d(x, y) ∈ [r0, r0 + ε] tends to zero as ε → 0.) Furthermore, the
amount the CSBP boundary length process changes during [r0, r0 + ε] tends to zero
in probability as ε → 0, and the conditional law of (S \ B•(x, r), y) is continuous as
function of L (w.r.t. any natural topology – e.g., we can use the weak topology induced
by the snake space metric). Thus we can take the ε→ 0 limit and conclude that the
conditional law of (S \B•(x, r), y) given (B•(x, r), x) depends only on L.

Remark 4.5. In the case that α = 3/2, we now have that up to time parameterization,
both the process ` defined for Brownian maps and the process Z defined for the Lévy net
can be understood as descriptions of the natural boundary length measure Lr discussed
in Section 1.

By combining Propositions 4.2 and 4.4 together with Theorem 3.21 we see that a.e.
instance of the Brownian map determines a 3/2-stable Lévy net instance. We will now
show that the unembedded metric net of the Brownian map is equal to this instance of
the 3/2-stable Lévy net as A-valued random variables.

Proposition 4.6. The unembedded metric net of a sample (S, d, ν, x, y) from µ2
SPH has

the law of a 3/2-stable Lévy net. In this correspondence, the 3/2-stable CSBP excursion
`a(T ) described above for a sample from µ2

SPH agrees with the 3/2-stable CSBP excursion
Zs of Definition 3.13 (recall also Figure 3.5), up to an affine transformation relating a
and s.

The rest of this section is aimed at proving Proposition 4.6. Throughout, we will
let (S, d, ν, x, y) be a sample from µ2

SPH, (X, Y ) be the corresponding instance of the
Brownian snake, and (XLN, Y LN) the instance of the 3/2-stable Lévy net which is
determined by (X, Y ). Here, (XLN, Y LN) are as in Definition 3.1 so that XLN is the
time-reversal of a 3/2-stable Lévy excursion with only upward jumps and Y LN is the
associated height process. We let KLN be the compact subset of [0, 1]2 which describes
the equivalence relation in the Lévy net instance (XLN, Y LN) so that (Y LN, KLN) takes
values in A. We also let (Y BM, KBM) be the A-valued random variable determined by
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(S, d, ν, x, y) as in Proposition 2.22. We will proceed by first showing (Lemma 4.8) that
the leftmost geodesic tree in the metric net of (S, d, ν, x, y) is the same as in the Lévy net
(i.e., that Y BM is equal to Y LN up to monotone reparameterization). We will then show
that the associated equivalence relation KBM in the Brownian map has at least as many
identifications as in the Lévy net (Lemma 4.9). That is, we will show that KBM ⊇ KLN.
We will then complete the proof by showing that KBM ⊆ KLN (Lemma 4.10).

For each a ≤ 0 and r > 0, we let τ ra be the first time t ≥ 0 that Y has accumulated r
units of local time on the boundary of S>a. For each b ≤ a, we let `ra,b(T ) be the amount
of local time that Y |[0,τra ] accumulates on the boundary of S>b. The same argument as
in the proof of Proposition 4.2 implies that `ra,b(T ) evolves as a 3/2-stable CSBP as
b decreases. Assume that τ ra < ∞. For each b ≤ a, we let τ ra,b be the last time that
(X, Y )|[0,τra ] visits ∂S>b. Let ρ : [0, T ]→ (S, d, ν, x, y) be the projection map from [0, T ]
associated with the Brownian snake construction of (S, d, ν, x, y). Then we observe that
b 7→ ρ(τ ra,b) for b ≤ a gives the leftmost geodesic from ρ(τ ra ) to x. Indeed, fix b ≤ a. Then
we have by definition that ρ(τ ra,b) ∈ ∂B•(x, d(x, y) + b). We also have by definition that
τ ra,b ≤ τ ra and that X|[τra,b,τra ] is at least Xτra,b

= b. This implies that the point in the real

tree encoded by X (the geodesic tree in (S, d, ν, x, y) rooted at x) corresponding to τ ra,b
is an ancestor of τ ra . Equivalently, ρ(τ ra,b) lies on the leftmost geodesic η from ρ(τ ra ) to x.
This proves the claim since b ≤ a was arbitrary. We have obtained from this discussion
that the boundary length on the counterclockwise arc of ∂B•(x, d(x, y) + b) from η
to the unique geodesic from y to x evolves as a 3/2-stable CSBP. We can similarly
consider the amount of local time that Y |[τra ,∞) spends on ∂S>b. This process describes
the boundary length between on the clockwise arc of ∂B•(x, d(x, y) + b) from η to the
unique geodesic from y to x. This process also evolves as an 3/2-stable CSBP which is
independent of `ra,b(T ). By generalizing these considerations, we obtain the following.

Lemma 4.7. Fix a ≤ 0 and 0 < r1 < · · · < rn. Suppose that τ rna < ∞. For
each 1 ≤ j ≤ n, we let ηj be the leftmost geodesic in (S, d, ν, x, y) from ρ(τ

rj
a ) to x

where we take η0 = ηn to be the unique geodesic from y to x starting from when it
first hits ∂B•(x, d(x, y) + a). For each b ≤ a, let Lja,b be the boundary length on the
counterclockwise segment of ∂B•(x, d(x, y) + b) from ηj to ηj+1. Given the initial values
Lja,a, the processes Lja,b evolve as b ≤ a decreases as independent 3/2-stable CSBPs.

Proof. The boundary length between ηj and ηj+1 on ∂B•(x, d(x, y) + b) is given by the
amount of local time spent by Y |

[τ
rj
a ,τ

rj+1
a ]

on ∂S>b. The same considerations as above

therefore imply that Lja,b evolves as b ≤ a decreases as a 3/2-stable CSBP independently

of Lia,b for i 6= j, given the initial values of all of the processes Lia,b.

We will now deduce from Lemma 4.7 and the inside/outside independence of filled
metric balls established in Proposition 4.4 that the leftmost geodesic tree in the metric
net of (S, d, ν, x, y) is the same as in the Lévy net.

Lemma 4.8. Up to monotone reparameterization, we have that Y BM is equal to Y LN.
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Proof. Fix a ≤ 0 and r > 0. On the event that the boundary length of ∂B•(x, d(x, y)+a)
is at least r, we let η be the leftmost geodesic starting from the point on ∂B•(x, d(x, y)+a)
whose counterclockwise boundary length from where the unique geodesic from y to x
passes through ∂B•(x, d(x, y) + a) is equal to r. The same argument used to prove
Theorem 3.21 implies that for each b ≤ a the clockwise and counterclockwise boundary
lengths on ∂B•(x, d(x, y) + b) from η to the unique geodesic from y to x are a.s. the
same as the corresponding boundary lengths for the corresponding geodesic in the Lévy
net. Since the time at which one of these boundary length processes first hits 0 gives
1/2 of the distance in the trees encoded by Y LN and Y BM between the starting point of
η and where the unique geodesic from y to x passes through ∂B•(x, d(x, y) + a), we see
that these distances are the same in the trees encoded by Y LN and Y BM. Off a set of
measure 0, this in fact holds simultaneously for any fixed countable collection of a and r
values. By allowing a to range in Q− = Q ∩R− and r to range in Q+, we see that the
whole geodesic tree in the metric net of the Brownian map agrees with the geodesic tree
in the Lévy net. That is, Y LN and Y BM agree up to monotone reparameterization.

By Lemma 4.8, we can assume (after applying a monotone reparameterization) that
Y LN = Y BM. We now aim to show that KBM = KLN. We will proceed by first showing
that KBM ⊇ KLN by arguing that KBM contains a dense subset of (s, t) pairs in KLN

and then we will show that KBM ⊆ KLN. Let T LN be such that [0, T LN] is the interval
on which XLN is defined.

Lemma 4.9. We have that KBM ⊇ KLN.

Proof. Suppose that (s, t) ∈ KLN with s < t. If t is a jump time of XLN, then
Proposition 4.3 implies that (s, t) ∈ KBM. If s and t are equivalent in the tree encoded
by Y LN = Y BM, then we also have that (s, t) ∈ KLN. Suppose that tT LN is not a
jump time of XLN and that s, t are not equivalent in the tree encoded by Y LN. By
the definition of KLN, we have that the horizontal chord connecting (sT LN, XLN

sTLN) and
(tT LN, XLN

tTLN) lies below the graph of XLN|[sTLN,tTLN]. Then there exists a sequence of
times tk such that XLN has a downward jump at time tkT

LN such that if sk < tk is such
that XLN

skTLN = XLN
tkTLN and the horizontal chord from (skT

LN, XLN
skTLN) to (tkT

LN, XLN
tkTLN)

lies below the graph of XLN|[skTLN,tkTLN] and sk ↓ s and tk ↑ t as k → ∞. Then
(sk, tk) ∈ KBM by what we explained at the beginning of the proof. Since KBM is closed,
it follows that (s, t) ∈ KBM.

Lemma 4.10. We have that KBM ⊆ KLN. In particular, KBM = KLN.

Proof. Suppose that (s, t) ∈ KBM and s < t. If tT LN is a jump time of XLN, then
as we explained in the proof of Lemma 4.9 we have that (s, t) ∈ KLN. We may
therefore assume that tT LN is not a jump time of XLN. Then there exists a < 0 so that
Y BM
s = Y BM

t = d(x, y)+a. We recall from the breadth-first construction (Definition 3.18)
that the boundary length measure in the Lévy net for the metric ball centered at the root
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of the geodesic tree is defined for all radii simultaneously. We consider two possibilities.
Either one of the boundary lengths along the clockwise or counterclockwise segments
of the metric ball boundary in the Lévy net from the point corresponding to s to the
point corresponding to t is equal to zero or both boundary lengths are positive. If
one of the boundary lengths is equal to zero, then it follows that (s, t) ∈ KLN by the
breadth-first construction of the Lévy net quotient (Definition 3.18). Suppose that both
boundary lengths are positive. Let ρ : [0, 1]→ S be the map which visits the points in
(the completion of) the leftmost geodesic tree in the Brownian map in contour order.
We will obtain a contradiction by showing that ρ(s) 6= ρ(t).

By the construction in Definition 3.18, we have that the boundary length measure
defined for the Lévy net is right-continuous. Fix ε > 0 small and rational and let
k = da/εe + 1. Since tT LN does not correspond to a jump in XLN, it follows that
we can find u, v in the Lévy net with distance d(x, y) + kε to x and with boundary
length distance from the unique geodesic from y to x given by a multiple of ε so that
the following is true. The geodesics from u, v to x pass through the counterclockwise
segment on the boundary of the ball centered at x with radius d(x, y)+a before merging.
By the proof of Lemma 4.8, this implies that the corresponding leftmost geodesics in
(S, d, ν, x, y) also do not merge before passing through the counterclockwise segment of
∂B•(x, d(x, y) + a) from ρ(s) to ρ(t). In particular, this interval has non-empty interior.
We can likewise find a pair of points so that the leftmost geodesics to x do not merge
before passing through the clockwise segment of ∂B•(x, d(x, y) + a) from ρ(s) to ρ(t).
In particular, this interval also has non-empty interior. This implies that ρ(s) 6= ρ(t) so
that (s, t) /∈ KBM as desired.

Proof of Proposition 3.16. As explained above, this follows by combining Lemmas 4.9–
4.10.

4.3 Axioms that characterize the Brownian map

Most of this subsection will be devoted to a proof of the following Lévy net based
characterization of the Brownian map. At the end of the section, we will explain how
to use this result to derive Theorem 1.1.

Theorem 4.11. Up to a positive multiplicative constant, the doubly marked Brownian
map measure µ2

SPH is the unique (infinite) measure on (M2,O
SPH,F2,O

SPH) which satisfies the
following properties, where an instance is denoted by (S, d, ν, x, y).

1. Given (S, d, ν), the conditional law of x and y is that of two i.i.d. samples from ν
(normalized to be a probability measure). In other words, the law of the doubly
marked surface is invariant under the Markov step in which one “forgets” x (or y)
and then resamples it from the given measure.
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2. The law on A (real trees with an equivalence relation) induced by the unembedded
metric net from x to y (whose law is an infinite measure) by the measurable map
defined in Proposition 2.22 has the law of an α-Lévy net for some α ∈ (1, 2). In
other words, the metric net is a.s. strongly coalescent (as defined in Section 2.5)
and the law of the contour function of the leftmost geodesic tree and set of
identified points agrees with that of the Lévy height process used in the α-Lévy net
construction.

3. Fix r > 0 and consider the circle that forms the boundary ∂B•(x, r) (an object
that is well-defined a.s. on the finite-measure event that the distance from x to y
is at least r). Then the inside and outside of B•(x, r) (each viewed as an element
of M1,O, with the orientation induced by S) are conditionally independent, given
the boundary length of ∂B•(x, r) (as defined from the Lévy net structure) and the
orientation of S. Moreover, the conditional law of the outside of B•(x, r) does not
depend on r.

Let us emphasize a few points before we give the proof of Theorem 4.11.

• Recalling Proposition 4.6, in the case of µ2
SPH one has α = 3/2. Moreover,

Proposition 4.6 implies that µ2
SPH satisfies the second hypothesis of Theorem 4.11.

Indeed, we saw in Proposition 4.6 that the law of the unembedded metric net of a
sample (S, d, ν, x, y) from µ2

SPH has the law of the 3/2-stable Lévy net, this implies
that the collection of left and right geodesics geodesics in the metric get and how
they are identified has the same law as in the 3/2-stable Lévy net. Proposition 4.4
implies that µ2

SPH satisfies the third assumption.

• The second assumption together with Proposition 3.31 implies that the boundary
length referenced in the third assumption is a.s. well-defined and has the law of a
CSBP excursion (just like the CSBP used to encode the Lévy net). In particular,
this implies that for any r > 0, the measure of the event d(x, y) > r is positive
and finite.

• In the coupling between the metric net and the Lévy net described above, we have
made no assumptions about whether every geodesic in the metric net, from some
point z to the root x, corresponds to one of the distinguished left or right geodesics
in the Lévy net. That is, we allow a priori for the possibility that the metric
net contains many additional geodesics besides these distinguished ones. Each of
these additional geodesics would necessarily pass through the filled ball boundaries
∂B•(x, r) in decreasing order of r, but in principle they could continuously zigzag
back and forth in different ways.

• The measurability results of Section 2.4 imply that the objects referred to in the
statement of Theorem 4.11 are random variables. In particular, Proposition 2.17
implies that the inside and the outside of B•(x, r) (viewed as elements of M1,O)
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are measurable functions of an element of M2,O
SPH and Proposition 2.22 implies

that unembedded metric net (i.e., the leftmost geodesic tree together with its
identified points viewed as an element of A) is a measurable function of an element
of M2,O

SPH.

• The proof of Theorem 4.11 will make use of a rerooting argument which was used
previously by Le Gall; see [LG13, Section 8.3].

Now we proceed to prove Theorem 4.11. This proof requires several lemmas, beginning
with the following.

Lemma 4.12. If µ̃2
SPH satisfies the hypotheses of Theorem 4.11, and (S, d, ν, x, y)

denotes a sample from µ̃2
SPH, then it is a.s. the case that the metric net from x to y has

ν measure zero. That is, the set of (S, d, ν, x, y) for which this is not the case has µ̃2
SPH

measure zero.

Proof. Suppose that the metric net does not have ν measure 0 with positive µ̃2
SPH

measure. Then if we fix x and resample y from ν to obtain ỹ, there is some positive
probability that ỹ is in the metric net from x to y. Let Lr be the process that encodes
the boundary length of the complementary component of B(x, r) which contains ỹ.
Then we have that Lr does not a.s. tend to 0 as ỹ is hit. This is a contradiction as,
in the Lévy net definition, we do have that Lr a.s. tends to 0 as the target point is
reached.

If µ̃2
SPH satisfies the hypotheses of Theorem 4.11, then we let µ̃1,L

DISK denote the conditional
law of S \B•(x, r), together with its interior-internal metric and measure, given that
the boundary length of ∂B•(x, r) is equal to L. Once we have shown that µ̃2

SPH agrees
with µ2

SPH, we will know that µ̃1,L
DISK agrees with µ1,L

DISK, which will imply in particular
that µ̃1,L

DISK depends on L in a scale invariant way. That is, we will know that sampling
from µ̃1,L

DISK is equivalent to sampling from µ̃1,1
DISK and then rescaling distances and

measures by the appropriate powers of L. However, this is not something we can deduce
directly from the hypotheses of Theorem 4.11 as stated. We can however deduce a
weaker statement directly: namely, that at least the probability measures µ̃1,L

DISK in some
sense depend on L in a continuous way. Note that given our definition in terms of a
regular conditional probability, the family of measures µ̃1,L

DISK is a priori defined only up
to redefinition on a Lebesgue measure zero set of L values, so the right statement will
be that there is a certain type of a continuous modification.

Lemma 4.13. Suppose that µ̃2
SPH satisfies the hypotheses of Theorem 4.11. Let µ̃1,L

DISK

denote the conditional law of S \ B•(x, r), together with its interior-internal metric
and measure, given that the boundary length of ∂B•(x, r) is L. For L1, L2 > 0, define
ρ(µ̃1,L1

DISK, µ̃
1,L2

DISK) to be the smallest ε > 0 such that one can couple a sample from µ̃1,L1

DISK

with a sample from µ̃1,L2

DISK in such way that with probability at least 1 − ε the two
metric/measure-endowed disks agree when restricted to the y-containing component of
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the complement of the set of all points of distance ε from the disk boundary (and both
such components are nonempty). Then the µ̃1,L

DISK (after redefinition on a zero Lebesgue
measure set of L values) have the property that as L1 tends to L2 the ρ distance between
the µ̃1,Li

DISK tends to zero. In other words, the map from L to µ̃1,L
DISK has a modification

that is continuous w.r.t. the metric described by ρ.

Proof. We begin by observing that a sample from µ̃1,L
DISK determines an instance of a

time-reversed CSBP starting from L and stopped when it hits 0. Indeed, this time-
reversed CSBP is simply the continuation of the boundary length process, starting from
a point at which it has value L, associated with the Lévy net instance which corresponds
to the metric net of S. (Recall Proposition 3.31, which gives that the boundary length
process can be measurably recovered from the unembedded metric net.) Note that if Y
is a time-reversed CSBP and t > 0 is fixed then the law of Yt is continuous in Y0 in the
total variation sense. By the Markov property of a time-reversed CSBP, this implies
that for t > 0 fixed the law of (Ys : s ≥ t) is continuous in Y0 in the total variation
sense. In particular, we can couple the corresponding time-reversed CSBPs that arise
from µ̃1,L1

DISK and µ̃1,L2

DISK so that they agree starting after time ε > 0 with probability
tending to 1 as L1 → L2. Let us define ρ′(L1, L2) to be the smallest ε > 0 so that
the two time-reversed CSBPs, started at L1 and L2, can be coupled to agree and are
both non-zero after an ε interval of time with probability 1− ε. It follows from what
we have explained above that ρ′(L1, L2) is continuous in L1 and L2 and zero when
L1 = L2. Now using the Markov property assumed by the hypotheses of Theorem 4.11,
we find ρ(µ̃1,L1

DISK, µ̃
1,L2

DISK) ≤ ρ′(L1, L2) for almost all L1 and L2 pairs. Indeed, running the
time-reversed CSBPs L1 and L2 from time ε corresponds to metrically exploring from
the disk boundaries for ε distance units. If the CSBPs have coalesced by time ε, then
by the hypotheses of Theorem 4.11, we know that the conditional law of the unexplored
region is the same for both disk instances hence we can couple them to be the same.
Thus, if a countable dense set Q of L values is obtained by i.i.d. sampling from Lebesgue
measure, then this bound a.s. holds for all L1 and L2 in Q. Then for almost all other L
values, we have that with probability one, ρ(µ̃1,L′

DISK, µ̃
1,L
DISK)→ 0 as L′ approaches L with

L′ restricted to the set Q. We obtain the desired modification by redefining µ̃1,L
DISK, on

the measure zero set of values for which this is not the case, to be the unique measure
for which this limiting statement holds. (It is clear that the limiting statement uniquely
determines the law of disk outside of an ε-neighborhood of the boundary, and since this
holds for any L, it determines the law of the overall disk.)

Lemma 4.14. Suppose that µ̃2
SPH satisfies the hypotheses of Theorem 4.11. Let µ̃1,L

DISK

denote the conditional law of S \ B•(x, r), together with its interior-internal metric
and measure, given that the boundary length of ∂B•(x, r) is L. Then suppose τ is any
stopping time for the process Lr such that a.s. Lr has a jump at time τ . (For example
τ could be the first time at which a jump in a certain size range appears.) Then the
conditional law of S \B•(x, τ), given B•(x, τ) and the process Lr up to time τ , is given
by µ̃1,L

DISK with L = Lτ .
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Proof. This is simply an extension of the theorem hypothesis from a deterministic
stopping time to a specific type of random stopping time. The extension to random
stopping times is obvious if one considers stopping times that a.s. take one of finitely
many values. In particular this is true for the stopping time τδ obtained by rounding τ
up to the nearest integer multiple of δ, where δ > 0. It is then straightforward to
obtain the result by taking the δ → 0 limit and invoking the continuity described in
Lemma 4.13. (Recall also the proof of Proposition 4.3.)

Lemma 4.15. Suppose that we have the same setup as in Lemma 4.14. Then the union
of ∂B•(x, r) and the boundary of the ball cut off at time τ is a.s. a topological figure
8 (of the sort shown in Figure 4.4). The boundary length measure along the figure 8
is a.s. well-defined. The total boundary length is Lτ−, while the boundary length of the
component surrounding y is Lτ .

Proof. The fact that the union of ∂B•(x, r) and the boundary of the ball cut off at time
τ is a.s. a topological figure 8 is immediate from the the third definition of the Lévy
net quotient (Definition 3.18, see also Figure 3.6) and Proposition 2.1. Lemma 4.14
implies that the conditional law of S \B•(x, τ) equipped with its interior-internal metric
and measure has law µ̃1,Lτ

DISK. In particular, the boundary length along ∂B•(x, τ) is a.s.
well-defined and the total boundary length is equal to Lτ . It is left to explain why the
boundary length of the other component is well-defined and why the sum of the two
boundary lengths is equal to Lτ− . We note that if we let ỹ be an independent sample
from ν given everything else, then there is a positive chance given everything else that
it is in the other component as ν is a good measure. It thus follows that the other
component has law which is absolutely continuous with respect to µ̃1,L

DISK (for some value
of L) as it can be obtained as the complement of the filled metric ball at a stopping
time on the event that it contains ỹ. In particular, it has an a.s. well-defined boundary
measure. Finally, that the sum of the boundary lengths is a.s. equal to Lτ− can be seen
from the proof of Proposition 3.31.

If µ̃2
SPH satisfies the hypotheses of Theorem 4.11, and τ is a stopping time as in

Lemma 4.14, then we can now define µ̃LDISK to be the conditional law of the disk cut out
at time τ given that the boundary length of that disk (i.e., the size of the jump in the Lr
process that occurs then r = τ) is L. The following lemma asserts that this conditional
law indeed depends only on L and not on other information about the behavior of the
surface outside of this disk.

We define µLDISK to be the corresponding law when we start from µ2
SPH. Recall that the

proof that µ2
SPH satisfies the hypotheses of Theorem 4.11 does not require one to have

analyzed any properties of or even to have defined µLDISK. Therefore at this point in the
paper, we may apply the following lemma in the case of µ2

SPH in order to give a definition
of µLDISK. Using this approach, one does not need an argument which is separate from
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that in the case of µ1,L
DISK to construct the boundary length measure for µLDISK and to

deduce that the disks in the metric net of µ2
SPH are conditionally independent given

their boundary lengths.

We will show in Lemma 4.18 just below that µ̃LDISK (resp. µLDISK) can be obtained from
µ̃1,L

DISK (resp. µ1,L
DISK) by unbiasing its law by area. In other words, we will prove that

µ̃LDISK (resp. µLDISK) is obtained from µ̃1,L
DISK (resp. µ1,L

DISK) by removing a marked point.
This fact is what motivates the notation.

Lemma 4.16. Assume that µ̃2
SPH satisfies the hypotheses of Theorem 4.11. Then the

conditional probability µ̃LDISK described above is well-defined and indeed depends only
on L.

Proof. Let L1, L2 be the boundary lengths of the two disks which together form the
figure 8 which arises at the stopping time τ . If one explores up until the stopping time τ ,
one can resample the target point y from the restriction of ν to the union of the two disks
pinched off at time τ . Indeed, this follows since the conditional law of y given (S, d, ν, x)
is ν. Since ν is a.s. a good measure, there will be some positive probability that y ends
up on each of the two sides. The theorem hypotheses imply that the conditional law of
each of the two disks bounded by the figure 8, on the event that y lies in that disk, is
given by µ̃1,L

DISK, independently of any other information about the surface outside of
that disk. This implies in particular that the two disks are independent of each other
once it has been determined which disk contains y. Now, one can resample the location
of y, resample the disk containing y from µ̃1,L

DISK (with L = L1 or L = L2 depending on
which disk contain y), resample the location of y, resample the disk containing y again,
etc.

The proof will thus be complete upon showing that this Markov chain has a unique
invariant distribution which depends only on L1 and L2. To see this, we can consider
the same chain but with the initial distribution consisting of two independent samples
from µ̃1,L

DISK, one with L = L1 and the other with L = L2. We claim that the chain
with this initial distribution converges to a limit as the number of resampling steps
goes to ∞. Indeed, the reason is that for any pair of initial configurations and ε > 0,
it is easy to see that there exists N ∈ N (depending only on the relative masses of
the pairs of disks) so that if one performs the resampling step n ≥ N times then the
total variation distance between the resulting laws will be at most ε. This fact also
implies that the limiting law as the number of resampling steps goes to ∞ is the unique
invariant distribution for the Markov chain. Moreover, this limiting law is a function
only of L1 and L2 because the initial distribution used to define it was a function only
of L1 and L2.

These assumptions therefore determine the form of µ̃LDISK. (The explicit relationship
between µ̃LDISK and µ̃1,L

DISK will be derived in the proof of Lemma 4.18 just below.)

Lemma 4.17. Given the Lr process describing the boundary length of ∂B•(x, r), the
conditional law of the disks in the complement of the metric net are given by conditionally
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independent samples from µ̃LiDISK where Li are the lengths of the hole boundaries (which
in turn correspond to the jumps of Lr).

Proof. We will deduce the result from Lemma 4.16 as follows. Fix a value of k ∈ N
and for each j ∈ N we let τj,k be the jth time that Lr has a downward jump of size
at least 2−k. Lemma 4.16 applied with the stopping time τ = τ1,k implies that, on
τ1,k < ∞, we have that given Lτ1,k and L1,k = Lτ−1,k

− Lτ1,k the conditional laws of

S \ B•(x, τ1,k) and the component separated from y at time τ1,k equipped with their
interior-internal metrics and the measure given by the restriction of ν are respectively

given by µ̃
1,Lτ1,k
DISK and µ̃

L1,k

DISK. In fact, it is not difficult to see that the same statement
holds when we condition on (Lr : r ≤ τ1,k), which we note determines L1,k and Lτ1,k .
By continuing the exploration and iterating the argument, we see that given the values
of Lj,k = Lτ−j,k

−Lτj,k for j ≥ 1 the components which are separated from y at the times

τj,k are conditionally independent samples from µ̃
Lj,k
DISK. The same statement in fact

holds when we condition on the entire realization of Lr, which in turn determines the
Lj,k. The result thus follows by taking a limit as k →∞.

Lemma 4.18. Assume that µ̃2
SPH satisfies the hypotheses of Theorem 4.11, and that µ̃LDISK

and µ̃1,L
DISK are defined as above. Let A be the total area measure of a sample from µ̃LDISK.

Then the µ̃LDISK expectation of A is given by a constant times L2α−1. Moreover, the
Radon-Nikodym derivative of µ̃1,L

DISK w.r.t. µ̃LDISK (where one ignores the marked point,
so that the two objects are defined on the same space) is hence given by a constant
times A/L2α−1.

Proof. Fix L0 > 0 and suppose that we start with an instance of µ̃1,L0

DISK. Let Lr be
the evolution of the boundary length of the exploration towards the marked point y.
Suppose that we evolve Lr up to τ = inf{r ≥ 0 : (Lr− − Lr)/Lr ≥ 1/4}. At time τ ,
the boundary length c = Lr is divided into two components, of lengths a and b with
a+ b = c. (That is, c = Lr− and {a, b} = {Lr, Lr− − Lr}.)
Set L ∈ {a, b} to be the boundary length of the component surrounding y. By
Lemma 4.14, the conditional law of the disk in this component is given by µ̃1,L

DISK.
Following Lemma 4.16, we let µ̃LDISK denote the probability measure that describes
the conditional law of the metric disk inside the loop that does not surround y, when
L ∈ {a, b} is taken to be the length of that loop. (Again, we have not yet proved this is
equivalent to the measure µLDISK defined from the Brownian map.)

If we condition on the lengths of these two pieces — i.e., on the pair {a, b} (but not the
values of Lr and Lr− − Lr) — then what is the conditional probability that y belongs
to the a loop versus the b loop? We will address that question in two different ways.
First of all, if p is that probability, then we can write the overall measure for the pair of
surfaces as the following weighted average of probability measures

pµ̃1,a
DISK ⊗ µ̃bDISK + (1− p)µ̃aDISK ⊗ µ̃1,b

DISK.
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Now, observe that if we condition on the pair of areas A1, A2, then the resampling
property for y (recall the proof of Lemma 4.16) implies that the conditional probability
that y is in the first area is A1/(A1 + A2). This implies the following Radon-Nikodym
derivative formula for two (non-probability) measures

d
[
pµ̃1,a

DISK ⊗ µ̃bDISK

]
d
[
(1− p)µ̃aDISK ⊗ µ̃1,b

DISK

] =
A1

A2

. (4.6)

From this, we may deduce (by holding one of the two disks fixed and letting the other
vary) that the Radon-Nikodym derivative of µ̃1,L

DISK w.r.t. µ̃LDISK (ignoring the marked
point location) is given by a constant times the area A of the disk; since both objects are
probability measures, this Radon-Nikodym derivative must be the ratio A/Eµ̃LDISK

[A].

Plugging this back into (4.6), we find that

p

1− p =
Eµ̃aDISK

[A]

Eµ̃bDISK
[A]

. (4.7)

In other words, the probability that y lies in the disk bounded by the loop of length
L ∈ {a, b} (instead of the other disk) is given by a constant times the µ̃LDISK-expected
area of a disk bounded by that loop.

Next, we note that there is a second way to determine p. Namely, we may directly
compute the relative likelihood of a jump by a versus a jump by b in the time-reversal of
an α-stable Lévy excursion, given that one has a jump of either a or b. By Lemma 3.24,
the ratio of these two probabilities is a2α−1/b2α−1. Plugging this into (4.7) gives

a2α−1

b2α−1
=

Eµ̃aDISK
[A]

Eµ̃bDISK
[A]

.

Since this is true for generic values of a and b, we conclude that Eµ̃LDISK
[A] is given by a

constant times L2α−1.

As discussed above, at a time when a point z is disconnected from the target point y,
the boundary has the form of a figure 8 with two loops of distinct lengths a and b, as
shown in Figure 4.4. At this time the process Lr jumps from some value c = a+ b down
to a (if the marked point y is in the component of boundary length a) or b (if y is in the
component of boundary length b). We define a big jump in the process Lr associated
to µ̃1,L

DISK to be a jump whose lower endpoint is less than half of its upper endpoint. A
big jump corresponds to a time when the marked point lies in the disk bounded by the
shorter of the two figure 8 loops.

In what follows, it will sometimes be useful to consider an alternative form of exploration
in which the endpoint y is not fixed in advance. We already know that if let y1, y2, . . .
be independent samples from ν, then the unembedded metric nets targeted at those
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Figure 4.4: The intersection of the metric net from the boundary to y with the
metric net from the boundary to z. Intuitively, these are the points one finds as one
continually “explores” points (in order of distance from the boundary) within the
unexplored component containing both y and z, stopping at the first time that y and z
are separated. At the time when y and z are separated, the boundaries of the component
containing y and the component containing z are disjoint topological circles, each of
which comes with a length; we denote the two lengths by a and b.

points should be in some sense coupled Lévy nets, which agree up until the first time at
which those points are separated. Indeed, there will be countably many times at which
one of those points is first disconnected from the other, as illustrated in Figure 4.4. This
union of all such explorations can be understood as sort of a branching exploration
process, where each time the boundary is “pinched” into two (forming a figure 8, as in
Figure 4.4) the exploration continues on each of the two sides.

In what follows, it will be useful to consider an alternative form of exploration in
which, at each such pinch point, the exploration always continues in the longer of these
two loops, rather than continuing in the loop that contains some other predetermined
point y. That is, we choose the exploration so that the corresponding boundary length
process Lr has no “big jumps” as we defined them above. It is clear that each yi will a.s.
fail to lie in the bigger loop of a figure 8 at some point. Indeed, the area of the bigger
loop a.s. tends to 0 as the exploration continues. This implies that for each ε > 0 and
N there exists R > 0 so that if r ≥ R then the probability that any of y1, . . . , yN are in
the region into which the exploration continues after time r is at most ε. Hence a.s. all
of the points yi will lie in disks that are cut off by this exploration process in finite time.

Let Ar denote the unexplored disk (in which the exploration continues) that remains
after r units of exploration of this process. Then Ar is a closed set, which is the closure
of the set of points yi with the property that the Lévy net explorations targeted at those
points have no big jumps before time r. The intersection of Ar, over all r, is thus a
closed set that we will call the center of the disk. We do not need to know this a priori
but we expect that the center contains only a single point. Note that the center can be
defined if the surface is sampled from either µ̃LDISK or µ̃1,L

DISK (and in the latter case its
definition does not depend on the marked point y). We refer to the modified version of
the Lévy net as the center net corresponding to the surface. We are now going to prove
an analog of Lemma 4.17 for the center net.

Lemma 4.19. Given the Mr process describing the center net corresponding to a sample
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from µ̃LDISK, the conditional law of the disks in the complement of the net are given
by conditionally independent samples from µ̃Mi

DISK where Mi are the lengths of the hole
boundaries.

Proof. We first suppose that (S, d, ν, y) is sampled from µ̃1,L
DISK. Consider the exploration

from ∂S towards y. Fix r > 0 and condition on the event that L|[0,r] = M |[0,r] where L
(resp. M) denotes the boundary length process associated with the exploration towards
y (resp. center exploration). We note that this event is L|[0,r]-measurable, so that if
we condition on it then Lemma 4.17 implies that the holes cut out by the exploration
up to time r are conditionally independent samples from µ̃Mi

DISK where Mi are the hole
boundary lengths. We also note that conditioning on this event is the same as weighting
the law of (S, d, ν, y) by a normalizing constant times Ar/A where Ar (resp. A) is the
area of the y-containing complementary component of the center exploration at time r
(resp. total area of S). In particular, the marginal law of (S, d, ν) given this event is the
same as the law of a sample from µ̃LDISK weighted by a normalizing constant times Ar
where here Ar denotes the area of the unexplored region in the center exploration up to
time r.

The above implies that the following is true. Suppose that (S, d, ν) is sampled from
µ̃LDISK, r > 0, and y is picked in S from ν. If we condition on the event that the
metric exploration towards y agrees with the center exploration up to time r, then the
holes cut out are conditionally independent samples from µ̃Mi

DISK where Mi are the hole
boundary lengths. Since r > 0 was arbitrary, this implies that the holes cut out by the
center exploration up until the first time that the center exploration disagrees with the
exploration targeted at y are conditionally independent samples from µ̃Mi

DISK where Mi

are the hole boundary lengths. We can iterate the same procedure at this time (and
then keep repeating) to get that the same statement is true when we perform the center
exploration until it terminates.

We now would like to discuss the relationship between the laws of the following processes:

1. The process Lr obtained by exploring the metric net from a sample from µ̃1,L
DISK,

starting with L0 equal to some fixed value L.

2. The process Mr obtained by exploring a sample from µ̃LDISK toward the center
(again starting with M0 = L).

3. The process M1
r obtained by exploring a sample from µ̃1,L

DISK toward the center
(again starting with M1

0 = L).

We already know that the Radon-Nikodym derivative of µ̃1,L
DISK w.r.t. µ̃LDISK is given by

a constant times the area of the disk. We will use this fact to deduce the following.
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Lemma 4.20. The Radon-Nikodym derivative of the process M1
r w.r.t. the process Mr is

given by a constant times the expected disk area given the process, which (by Lemma 4.18
and Lemma 4.19) is given by a constant times

∑
K K

2α−1 where K ranges over the jump
magnitudes corresponding to the countably many jumps in the process. Moreover, if Lr
and M1

r are coupled in the obvious way (i.e., generated from the same instance of µ̃1,L
DISK)

then they agree up until a stopping time: namely, the first time that Lr experiences a
big jump.

Proof. By Lemma 4.18, the Radon-Nikodym derivative of µ̃1,L
DISK with respect to µ̃LDISK

is given by a normalizing constant times the amount of area A assigned by ν to S. Since
there is a.s. no area in the metric net, we have that A =

∑
iAi where the Ai’s give

the areas of the holes cut out by the exploration. It follows that the Radon-Nikodym
derivative of the law of M1

r with respect to the law of Mr is given by a normalizing
constant times the conditional expectation of A given the realization of the entire
process Mr. By Lemma 4.19 and Lemma 4.18, this conditional expectation is equal to
a constant times

∑
K K

2α−1 where K ranges over the jump magnitudes corresponding
to the jumps in the process. This proves the first assertion of the lemma. The second
assertion of the lemma is immediate from the definitions.

As a side remark, let us note that the stopping time τ of the process M1
r , as defined

in Lemma 4.20, can be constructed in fairly simple way that roughly corresponds to,
each time a new figure 8 is created, tossing an appropriately weighted coin to decide
whether y is in the smaller or the larger loop, and then stopping when it first lies in the
smaller loop. To formulate this slightly more precisely, suppose that for each r ≥ 0 we
let χr be the product of

a2α−1

a2α−1 + b2α−1

over all jumps of M1|[0,r] where a is the size of the jump and b is equal to the value
of M1 immediately after the jump. Suppose that we choose p uniformly in [0, 1]. Then
we can write τ = inf{r ≥ 0 : χr < p}.
We next claim the following:

Lemma 4.21. If one explores the center net of an instance of µ̃LDISK up to some stopping
time τ , then the conditional law of the central unexplored disk (i.e., the one in which
exploration will continue) is given by an instance of µ̃L

′
DISK where L′ = Mτ is the boundary

length at that time. In particular, this implies that the process Mr is Markovian.

Proof. This follows by combining Lemma 4.14, Lemma 4.18, and Lemma 4.20.

By Lemma 3.24, the jump density for µ̃1,L
DISK (for a jump of size a that leaves a loop of

size b = c− a in which y is contained) is given by a constant times a−α−1bα−2.
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Lemma 4.22. The process Mr agrees in law with the process Lr except that the jump
law is different. Instead of having the form

1a∈[0,c]a
−α−1(b/c)α−2da, (4.8)

it has the form
1a∈[0,c/2]a

−α−1(b/c)−α−1da, (4.9)

where in both cases b is simply defined via b = c− a, c is defined to the height of the
process just before the jump, and da denotes Lebesgue measure.

To further clarify the statement of Lemma 4.22, we recall that a Lévy process is a.s.
determined by its jumps and jump times in a measurable manner. Therefore if we
observe the jumps and jump times of Lr, then we can determine the entire process. We
have that Mr is determined by its jumps using the same measurable function which
determines Lr from its jumps.

Proof of Lemma 4.22. Let Lr (resp. M1
r ) be the boundary length processes associated

with an exploration of a sample from µ̃1,L
DISK explored towards the marked point y (resp.

the center). Let τ be the first time at which the two explorations differ. Fix ε ∈ (0, 1/2)
and let τ ′ be the smallest r ≥ 0 such that the exploration towards y makes a downward
jump of size in [εLr, (1− ε)Lr]. Recall from Lemma 3.24 that the density for the jump
law for Lr is given by a constant times a−α−1(b/c)α−2 where a is the jump size, c is
the value of the process at the time of the jump, and b = c − a. Given τ ′ ≤ τ , the
density for the downward jump made by Lr at time τ ′ is given by a constant times
a−α−1(b/c)α−21a∈[cε,c(1−ε)]. Since a jump of size a in M1

r can correspond to two kinds of
jumps in Lr (one of size a and one of size b = c− a), it follows that the density for the
downward jump made by M1

r at the time τ ′ given τ ′ ≤ τ is given by a constant times(
a−α−1(b/c)α−2 + (a/c)α−2b−α−1

)
1a∈[cε,c/2]

=
(
(a/c)2α−1 + (b/c)2α−1

)
a−α−1(b/c)−α−11a∈[cε,c/2].

Since ε ∈ (0, 1/2) was arbitrary, we find that the jump law for M1
r |[0,τ ] is given by(

(a/c)2α−1 + (b/c)2α−1
)
a−α−1(b/c)−α−11a∈[0,c/2]. (4.10)

Let Mr denote the boundary length process associated with an exploration towards the
center from a sample from µ̃LDISK. Lemma 4.20 implies that the laws of M1

r and Mr are
absolutely continuous. On the event that τ ′ ≤ τ , the Radon-Nikodym derivative for the
law of the jump made by M1

r at the time τ ′ and the law of the jump made by Mr at
the corresponding time is given by a constant times

(a/c)2α−1 + (b/c)2α−1. (4.11)

Indeed, this expression gives the expected area in the figure 8 formed by the two
components at the jump time. This proves the result since the Radon-Nikodym
derivative between the laws (4.10) and (4.9) is given by (4.11).
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We remark that from the point of view of the discrete models, the jump law for Mr

described in Lemma 4.22 is precisely what one would expect if the overall partition
function for a boundary-length a disk were given by a constant times a−α−1. Indeed,
in this case a−α−1bα−1 would be the weighted sum of all ways to triangulate the loops
of a figure 8 with loop lengths a and b, which matches the law described in the
lemma statement. It is therefore not too surprising that the jump law for the µ̃LDISK

exploration toward the center has to have this form. Furthermore, we may conclude
that the Mr process can be a.s. recovered from the ordered collection of jumps (since
this is true for Lévy processes, hence true for CSBPs, hence true for time-reversals of
these processes, hence true for this modified time-reversal that corresponds to µ̃LDISK)
and the reconstruction procedure is the same as the one that corresponds to the Lr
process.

As suggested by Figure 4.5, now that we have constructed the law of the exploration of
a sample from µ̃LDISK toward the center, we can try to iterate this construction within
each of the unexplored regions and repeat, so that in the limit, we obtain the joint law
of the metric net toward all points, or at least toward all points in some countable dense
subset of the metric disk. The hope is that one can recover the entire law of µ̃LDISK using
a branching procedure like this. This idea underlies that the proof below.

Proof of Theorem 4.11. We will break the proof up into three steps.

Step 1: Axioms imply α = 3/2. By Lemma 4.12 there is a.s. no area in the metric
net itself. This implies that if we explore the center net of a sample from µ̃LDISK up
until a given time, then the center net also a.s. contains zero area. Let Mr be the
boundary length process associated with the center exploration of a sample from µ̃LDISK.
By Lemma 4.18, Lemma 4.19, and Lemma 4.21 if we perform an exploration towards
the center of a sample produced from µ̃LDISK up until a given time s then the conditional
expectation of the total area is given by (a constant times)

As := M2α−1
s +

∑
|ai|2α−1 (4.12)

where the ai are an enumeration of the jumps in the process Mr up to time s. Thus, (4.12)
must evolve as a martingale in s. Proposition 4.27 (stated and proved in Section 4.6
below) implies that (4.12) evolves as a martingale if and only if α = 3/2. Thus, the fact
that α = 3/2 is a consequence of the properties listed in the theorem statement. For
the remainder of the proof, we may therefore assume that α = 3/2.

Step 2: Conditional law of area given boundary length agrees. Recall that the collection
U0 of complementary components which arise from performing the center exploration
each correspond to one of the downward jumps ai of M . Moreover, ai gives the boundary
length of the corresponding element of U0. We can iterate the process by performing
a center exploration into each of the elements of U0. Let G1 be the σ-algebra which is
generated by:
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• The initial center exploration M and

• The same information corresponding to center explorations into each of the
elements of U0.

The iterative step used to define G1 yields a collection of components U1, in each of
which we can again perform a center exploration. For k ∈ N, we inductively let Uk (resp.
Gk) be the collection of complementary components which arise from (resp. σ-algebra
generated by Gk−1 and by) performing center explorations in all of the components
in Uk−1.

Let A be the overall area measure of a surface sampled from µ̃LDISK and let Ak = E[A | Gk].
We will now show that A is G = σ(Gk : k ∈ N) measurable, i.e., A is determined by the
information encoded by all of the countably many exploration iterations. Upon proving
this, we will have by the martingale convergence theorem that Ak → E[A | G] = A
a.s. Recall from the discussion just after the statement of Theorem 4.11 that all of
the hypotheses of Theorem 4.11 apply to µ2

SPH with α = 3/2. Indeed, Proposition 4.4
implies that the law of the unembedded metric net in this case is the 3/2-Lévy net and
one has the conditional independence of the inside and outside of filled metric balls.
We therefore have that all of the lemmas above apply if we use µLDISK and µ1,L

DISK in
place of µ̃LDISK in and µ̃1,L

DISK, respectively. Therefore we know that the joint law of the
processes encoding the iterations Ak, and the law of the conditional expectation of the
area in the unexplored regions, is the same in each case. Hence, the proof of the step
will be complete upon showing that A is G-measurable.

Fix ε > 0 and we let Gk,ε be the event that the total amount of area in each of the
individual complementary components after performing k iterations of the exploration
is at most ε. Under µ̃LDISK, we know that ν is a good measure hence does not have atoms.
Therefore it follows that the µ̃LDISK mass of Gc

k,ε tends to 0 as k → ∞ (with ε fixed).
For each j, let Xj denote the area of the jth component (according to some ordering)
after performing k iterations of the exploration. Then we have that the total variation
distance between the law of

∑
j Xj1Xj≤ε and the law of

∑
j Xj under µ̃LDISK tends to 0

as k →∞ (with ε fixed). As the conditional variance of the former given Gk obviously
tends to 0 as k →∞ and then ε→ 0, it thus follows that the latter concentrates around
a G-measurable value as k →∞. This proves the claim in the case of µ̃LDISK. The same
argument also applies verbatim with µLDISK in place of µ̃LDISK, hence completes the proof
of this step.

Step 3: Coupled Lévy net instances. Suppose that (S, d, ν, x, y), (S̃, d̃, ν̃, x̃, ỹ) are samples
from µ2

SPH, µ̃2
SPH, respectively. Let (zi), (z̃i) be i.i.d. samples from ν, ν̃, respectively. The

exploration process towards each of the zi encodes an instance of the Lévy net, which
(recall Definition 3.18) can be encoded by the boundary length process together with
the attachment point locations. By the assumptions of the theorem (and that α = 3/2),
we can couple µ2

SPH and µ̃2
SPH so that the Lévy net instances (i.e., the corresponding

boundary length process with attachment points) associated with the metric explorations
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towards z1 and z̃1 are a.s. the same. Each of these Lévy nets is determined by the
encoding information (boundary length process plus attachment points) which in turn
a.s. fixes the homeomorphism between the two, which by assumption maps geodesics of
µ2

SPH to geodesics of µ̃2
SPH.

By the previous step, we can also couple (S, d, ν, x, y) and (S̃, d̃, ν̃, x̃, ỹ) so that the
masses of all of the holes cut out by these two explorations are the same. Thus, we can
then sample z2 and z̃2 coupled in such a way that they a.s. lie in the same hole of the
Lévy net complement (i.e., the hole corresponding to the same jump in the boundary
length process). At the first time t at which z1 and z2 are separated, there is a.s. a

figure 8 in S (hence also in S̃) describing the boundary of the two unexplored regions
containing z1 and z2. We can then couple the Lévy net toward z2 (as started from
the time t) so that is a.s. agrees with the corresponding Lévy net toward z̃2. Now one
readily sees that the union of the Lévy nets in S toward z1 and z2 (which is the union
of a figure 8 and one set contained in each of the three components of its complement)

is homeomorphic to its counterpart in S̃, and again we may assume that the masses of
the holes cut out by the branched exploration are the same.

Note that (since this information is encoded in the Lévy net) if the two geodesics from
z1 and z2 merge at some distance t from the root (with the geodesic from z1 merging

from the left, say) then the corresponding paths in S̃ a.s. exhibit the same behavior.

By iterating this, and taking a limit in the obvious way, we obtain a coupling under
which the Lévy nets associated with the (zi) (i.e., the corresponding countable collection
of boundary length processes with attachment point locations) a.s. agree precisely with
those corresponding to the (z̃i). Moreover, for each i and j, the distance from the root
at which the two geodesics merge (and which of the two paths merges from the left)
agrees a.s. In other words, the planar tree in S formed by taking the union of the
geodesics from the zi is a.s. isomorphic to the corresponding tree in S̃. In fact, we know
more than that, since we also know that each Lévy net in S toward one of the zi is a.s.
in homeomorphic correspondence with its counterpart in S̃.

Now, we would like to argue that in this coupling, the distance between any two of the
z̃i in S̃ is a.s. at most the Brownian map distance between the corresponding zi ∈ S.
By definition of the distance d on the Brownian map side, the distance between any
two points in S is the infimum over the lengths of continuous paths between those
points made by concatenating arcs, each of which is a segment of a geodesic to the root
x (recall (4.3)–(4.5)). Another way to describe this intuitively is to recall Figure 3.1,
where the Xt and Yt process are the coordinates of a Brownian snake excursion. Let
G be the geodesic tree which is the quotient of the graph of Xt that makes two points
equivalent if a horizontal green segment connects them. Endow G with the obvious
metric structure.

Given a random pair of points z1 and z2 from ν, we can find corresponding points g1

and g2 in G. Now recall that d(z1, z2) is defined as the minimum length of a path in

113



G from g1 to g2 that is allowed to take finitely many “shortcuts,” where a shortcut is
a step from one point in G to another point in G that corresponds to an equivalent
point in the Brownian map. In Figure 3.1, a shortcut can be taken by tracing a vertical
red line up to the graph of C − Yt, following a horizontal green line back to another
point on the graph of C − Yt, and then following a vertical red line back down. Each
horizontal segment above the graph of C − Yt represents a shortcut.

Now, let L ⊂ S be the union of the points in the Lévy nets targeted at the (zi). Let
GL be the corresponding subset of G. Note that by construction, if z ∈ GL then any
geodesic from x to z is also in L, so GL is a.s. a dense subtree of G.

We claim that in the Brownian map, the distance definition (restricted to points in
(zi)) would be equivalent if we required that each of the arcs belong to L. To see why,
first note that L contains every point z with the property that {w : d(x,w) > d(z, x)}
has a component with z on its boundary (since then z would be part of the Lévy net
corresponding to any zi in that component — recall that ν is a.s. a good measure, so it
is a.s. the case that any open subset of S contains at least one of the zi). This would
include any point z on the Brownian map dual tree (whose contour function is Yt)
which lies in the interior of a branch of the dual tree and (within that branch) is a local
minimum of the Brownian process used to define the Brownian map (since this implies
that the branch includes a non-trivial path of points in {w : d(x,w) > d(z, x)} that
terminates at z). So in particular L includes a dense set of points along any branch of
the dual tree, along with the geodesics connecting these points to the root. In Figure 3.1
this implies that a dense subset of the horizontal segments above C − Yt correspond to
points in L — assuming we encode each segment by its pair of endpoints and use the
Euclidean topology on (R2)2.

Now to describe a “path from g1 to g2 with finitely many shortcuts” we can simply give
the sequence (a1, b1), . . . , (ak, bk) of directed horizontal line segments (above the graph
of C − Yt) that describe the shortcuts, where aj and bj are the first and last points
of the jth shortcut. (We may assume that the arcs between the shortcut endings are
minimum length arcs in G, so the total length of the path is the sum of the lengths of
these arcs). From here it is not hard to see that we can replace each horizontal line
segment with an arbitrarily-nearby alternative that corresponds to a point in L, and we
can do so in a way that causes the length of the concatenated path to change by an
arbitrarily small amount. So, as claimed above, the definition of d (restricted to points
in L) does not change if we add the requirement that the geodesic arcs be subsets of L.

But for every such path in S comprised of geodesic arcs that are subsets of L, there is a
corresponding path in S̃ of the same length. This implies that the distance between
two of the points z̃i in S̃ is a.s. at most the corresponding distance in S, and hence a.s.
d̃(z̃1, z̃2) ≤ d(z1, z2).

Recall that the µA=1
SPH expectation of the diameter is finite. This combined with the scale

invariance of the Brownian map implies that we a.s. have

E[d(z1, z2) | ν(S)] <∞.
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Moreover, from the above coupling, we a.s. have ν(S) = ν̃(S̃) and

E[d̃(x̃, ỹ) | ν̃(S̃)] = E[d(x, y) | ν(S)], (4.13)

which also holds if x, y, x̃, ỹ are replaced by z1, z2, z̃1, z̃2. Recalling that z1, z2 and
z̃1, z̃2 are independent and uniform samples from ν and ν̃, respectively, it thus follows
from (4.13) and the aforementioned one-sided bound on distances that we in fact must
have an a.s. equality. Since this holds a.s. for any i and j, we have that (S, d, x, y) and

(S̃, d̃, x̃, ỹ) are a.s. isomorphic when restricted to a countable dense set, and hence are
also isomorphic on the closure of that set (which is the entire Brownian map in the case

of S, and hence must be an entire sphere homeomorphic surface in the case of S̃ as
well). The measures ν and ν̃ also agree a.s. (as they are determined by the sequence of
samples (zi)).

Single slice with net

from one point to other

Ordered set of unmarked disks cut off by net exploration;

Single unmarked disk with given

Net exploration toward center

L

boundary length L plus center

boundary lengths are jumps of stable Lévy excursion

Ordered set of unmarked disks cut off by

of certain stable Lévy process variant
net exploration; boundary lengths are jumps

Figure 4.5: A slice (or doubly marked sphere) comes endowed with a Lévy net (as
explained in Figure 3.6) and once the Lévy net is given, the disks are conditionally
independent unmarked Brownian disks with given boundary lengths. As shown below,
even an unmarked disk of given boundary length L has a special interior point called
the center. Once one conditions on the exploration net toward that point, the holes
are again conditionally independent unmarked Brownian disks with given boundary
lengths.

We are now ready to prove Theorem 1.1. The main ideas of the proof already appeared
in the proof of Theorem 4.11.

Proof of Theorem 1.1. The beginning of the proof of this result appears in Section 2.3
with the statement of Proposition 2.8. In particular, the combination of Proposition 2.8
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and Lemma 3.12 implies that for each fixed value of r the law of the merging times of
the leftmost geodesics of (S, d, x, y) from ∂B•(x, s) for s = d(x, y)−r to x have the same
law as the geodesic tree in a Lévy net (when the starting points for the geodesics have
the same spacing in both). Thus in view of the proof of Proposition 3.31, we have that
Lr is a.s. determined by the metric space structure of (S, d, x, y). This combined with
the second assumption in the statement of Theorem 1.1 implies that Lr is a non-negative
Markov process which satisfies the conditions of Proposition 3.11. That is, Lr evolves
as a CSBP excursion as r increases, stopped when it hits zero.

This discussion almost implies that the hypotheses of Theorem 4.11 are satisfied for
some α ∈ (1, 2). Arguing as in the proof of Proposition 4.6, it implies that the portion
of the unembedded metric net in B•(x, s) looks like a portion of a Lévy net. However,
it does not rule out the possibility that the boundary length process Lr might not tend
to zero as r approaches d(x, y). As explained in the proof of Lemma 4.12, this can be
ruled out by showing that the metric net from x to y a.s. has ν measure zero.

If the metric net failed to have measure zero, then the expression (4.16) from Proposi-
tion 4.27 would have to fail to be a martingale, which would imply by Proposition 4.27
that we must have α 6= 3/2.

Suppose that the metric net does not have measure zero. We now suppose that (S, d, ν)
is a sample from the law µ̃LDISK. Let Mr be the boundary length process associated with
the center exploration and let Jr be the jumps made by M up to time r. Then the
process

Ar = M2α−1
r +

∑
x∈Jr

|x|2α−1

as in (4.16) from Proposition 4.27 corresponding to the center exploration of an instance
of µ̃LDISK would not be a martingale (implying α 6= 3/2). However, the process Ar would
have to be a supermartingale and Ar +Br is a martingale where Br is the conditional
expectation given M |[0,r] of the amount of area in the metric net disconnected by the
center exploration from the center up to time r. By the Doob-Meyer decomposition, Br

is the unique non-decreasing process so that Ar +Br is a martingale. The form of Br

can be determined explicitly from the expression for the drift term associated to (4.16),
which is derived in the proof of Proposition 4.27 which is given below. In particular, it
is shown in (4.39) that in the case L = 1 we have that

E[Ar − A0] = rIα + o(r)

where Iα is a constant which depends only α. By the scaling property of area in terms of
boundary length, this implies that for a general value of L > 0 given in the assumption
of the theorem that

E[Ar − A0] = rIαL
a + o(r).

Lemma 4.28 implies that

Ar − Iα
∫ r

0

Ma
udu
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is a martingale which (by the uniqueness of the Doob-Meyer decomposition) in turn
implies that

Br = −Iα
∫ r

0

Ma
udu.

Altogether, this implies that

E[ν(S)] = E

[∑
x∈J

|x|2α−1

]
− IαE

[∫ ∞
0

Ma
udu

]
where J is the set of jumps made by M (and we take M to be 0 after the center is
reached). Since E[ν(S)] is given by a constant times L2α−1, we must have that a = α
(since the multiplying the boundary length by C changes the time duration by Cα−1).
On the other hand, the independence of slices assumption implies we must have that
a = 1. Since α ∈ (1, 2), this cannot be the case and therefore the ν-area of the metric
net is zero.

4.4 Tail bounds for distance to disk boundary

It will be important in [MS16a] to establish tail bounds for the amount of time that
it takes a QLE(8/3, 0) exploration starting from the boundary of a quantum disk to
absorb all of the points inside of the quantum disk. This result will serve as input in
the argument in [MS16a] to show that the metric space defined by QLE(8/3, 0) satisfies
the axioms of Theorem 4.11 (and therefore we cannot immediately apply Theorem 4.11
in the setting we have in mind in [MS16a] to transfer the corresponding Brownian map
estimates to

√
8/3-LQG). However, in the results of [MS15a] we already see some of

the Brownian map structure derived here appear on the
√

8/3-LQG sphere. Namely,
the evolution of the boundary length of the filled metric ball takes the same form, the
two marked points are uniform from the quantum measure, and we have the conditional
independence of the surface in the bubbles cut out by the metric exploration given their
quantum boundary lengths. The following proposition will therefore imply that the
results of [MS15a] combined with the present work are enough to get that the joint law
of the amount of time that it takes for a QLE(8/3, 0) starting from the boundary of a
quantum disk to absorb all of the points in the disk and the quantum area of the disk
is the same in the case of both the Brownian map and

√
8/3-LQG.

Proposition 4.23. Suppose that we have a probability measure on singly-marked disk-
homeomorphic metric measure spaces (S, d, ν, x) where ν is an a.s. finite, good measure
on S such that the following hold.

1. The conditional law of x given (S, d, ν) is given by ν (normalized to be a probability
measure).
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2. For each r which is smaller than the distance d(x, ∂S) of x to ∂S, there is a
random variable Lr, which we interpret as a boundary length of the x-containing
component of the complement of the set of points with distance at most r from ∂S.
As r varies, this boundary length evolves as the time-reversal of a 3/2-stable CSBP
stopped upon hitting 0. The time at which the boundary length hits 0 is equal to
d(x, ∂S).

3. The law of the metric measure space inside of such a component given its boundary
length is conditionally independent of the outside.

4. There exists a constant c0 > 0 such that the expected ν mass in such a component
given that its boundary length is ` is c0`

2.

Let d∗ = supz∈S dist(z, ∂S). Then the joint law of d∗ and ν(S) is the same as the
corresponding joint law of these quantities under µ1,L

DISK where L is equal to the boundary
length of ∂S under (S, d, ν, x). In particular, for each 0 < a,L0 < ∞ there exists a
constant c ≥ 1 such that for all L ∈ (0, L0) and r > 0 we have

P [ν(S) ≤ a | d∗ ≥ r] ≤ c exp(−c−1r4/3) (4.14)

Moreover, the tail bound (4.14) also holds if we use the law with Radon-Nikodym
derivative given by (ν(S))−1 with respect to the law of (d∗, ν(S)).

We note that the law in the final assertion of Proposition 4.23 corresponds to µLDISK.
We will need to collect two lemmas before we give the proof of Proposition 4.23.

Lemma 4.24. For each 0 < a < b < ∞ there exists a constant c > 0 such that the
following is true. For an instance (S, d, ν, x, y) sampled from µ2

SPH, we let d∗ be the
diameter of S. Conditionally on ν(S) ∈ [a, b], the probability that d∗ is larger than r is
at most c exp(−3

2
(1 + o(1))b−1/3r4/3) where the o(1) term tends to 0 as r →∞.

Proof. It follows from [Ser97, Proposition 14] that the probability that the unit area
Brownian map has diameter larger than r is at most a constant times exp(−3

2
(1 +

o(1))r4/3) where the o(1) term tends to 0 as r →∞. The assertion of the lemma easily
follows from the scaling property of the Brownian map (scaling areas by the factor a
scales distances by the factor a1/4).

Lemma 4.25. Fix 0 < a,L0 < ∞. There exists a constant c ≥ 1 depending only on
a, L0 such that for all L ∈ (0, L0) the following is true. Suppose that we have an instance
(S, d, ν) sampled from µLDISK conditioned on ν(S) ≤ a. Let d∗ be the supremum over all
z ∈ S of the distance of z to ∂S. The probability that d∗ is larger than r is at most
c exp(−c−1r4/3). The same holds with µ1,L

DISK in place of µLDISK.

Proof. Suppose that we have a sample (S, d, ν, x, y) from µ2
SPH conditioned on the

positive and finite probability event that:
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1. There exists an r and a component U of S \ B(x, r) with y /∈ U such that the
boundary length of U is equal to L.

2. ν(U) ≤ a and 1 ≤ ν(S \ U) ≤ 2.

Then we know that the law of U (viewed as a metric measure space) is given by µLDISK

conditioned on having area at most a. The amount of time that it takes the metric
exploration starting from ∂U to absorb every point in U is bounded from above by the
diameter of (S, d). Thus the first assertion of the lemma follows from Lemma 4.24.

The second assertion follows from the first because the Radon-Nikodym derivative
between µ1,L

DISK and µLDISK is at most a on the event that ν(S) ≤ a.

Proof of Proposition 4.23. The first assertion follows from a simplified version of the
argument used to prove Theorem 4.11.

We now turn to prove the second assertion by combining the first assertion with
Lemma 4.25. We may assume without loss of generality that r ≥ 1. We consider two
possibilities depending on whether L ≤ r−1/2 or L ∈ (r−1/2, L0].

Suppose that L ∈ (r−1/2, L0]. Then we can write

P[ν(S) ≤ a | d∗ ≥ r] =
P[ν(S) ≤ a, d∗ ≥ r]

P[d∗ ≥ r]
.

Lemma 4.25 implies that the numerator is at c exp(−c−1r4/3) for a constant c ≥ 1. As
L ≥ r−1/2, it is easy to see that the denominator is at least a negative power of r as
r →∞. This proves the desired result in this case.

Now suppose that L ∈ (0, r−1/2]. Let (S, d, ν, x, y) be sampled from µ2
SPH. Let AL (resp.

DL) be the area (resp. maximal distance to the boundary) of S \ B•(x, τL) where τL
is the smallest r ≥ 0 so that the boundary length of ∂B•(x, r) is equal to L. Then we
need to prove an upper bound for µ2

SPH(AL ≤ a |DL ≥ r). This, in turn is equal to

µ2
SPH(AL ≤ a,DL ≥ r)

µ2
SPH(DL ≥ r)

.

Since L ≤ r−1/2, the denominator is at least µ2
SPH(Dr−1/2 ≥ r) which is in turn at least a

negative power of r as r →∞. Let D be the diameter of (S, d) so that D ≥ DL. Then
the numerator is at most a constant times µ2

SPH(A ≤ 2a,D ≥ r) where A = ν(S) as the
conditional probability that ν(B•(x, τL)) ≤ a given τL < ∞ is positive. We can then
write

µ2
SPH(A ≤ 2a,D ≥ r) =

∫ 2a

0

µ2
SPH(D ≥ r |A = p)µ2

SPH(A = p)dp (4.15)

where µ2
SPH(· |A = p) denotes the conditional law of µ2

SPH given A = p and µ2
SPH(A =

p) denotes the density of A at p. Recall that the density of A at p is equal to a
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constant times p−3/2. When p = 1, we also recall [Ser97, Proposition 14] implies that
µ2

SPH(D ≥ r |A = 1) is at most a constant times exp(−3
2
(1 + o(1))r4/3) where the o(1)

term tends to 0 as r → 0. Recall that if we scale the unit area Brownian map so that
its area becomes p then distances are scaled by the factor p1/4. It therefore follows
that µ2

SPH(D ≥ r |A = p) = µ2
SPH(D ≥ rp−1/4 |A = 1) is at most a constant times

exp(−3
2
(1 + o(1))p−1/3r4/3). Altogether, (4.15) is at most a constant times∫ 2a

0

exp(−3
2
(1 + o(1))p−1/3r4/3)p−3/2dp

which in turn is at most c exp(−c−1r4/3) for a constant c ≥ 1.

4.5 Adding a third marked point along the geodesic

Poisson point process on
slice space times [0, L1+L2]

Doubly marked sphere with

touching metric balls centered

Doubly marked sphere plus
third point along geodesic

at marked
L1

L2

points

L=L1+L2 boundary
length ball without
interior marked point

L

PLUS

L1 L2

Figure 4.6: To sample from the measure µ2+1
SPH on triply marked spheres, one first

samples from the measure µ2
SPH weighted by the distance D = d(x, y); given a sample

from that measure, one then chooses r uniformly in [0, D] and marks the point r units
along the (a.s. unique) geodesic. The second figure is a continuum version of Figure 1.1.
Given L1 and L2, one may decompose the metric balls as in Figure 1.2 (the first L1

units of time describing the first ball, the second L2 units the second ball). The right
figure is an independent unmarked Brownian disk, which represents the surface that
lies outside of the two metric balls in the second figure. Given the disk, first blue dot
is uniform on the boundary; the second is L1 units clockwise from first. The measure
that µ2+1

SPH induces on the pair (L1, L2) is (up to multiplicative constant) the measure
(L1 + L2)−5/2dL1dL2. This follows from the overall scaling exponent of L and the fact
that given L = L1 + L2 the conditional law of L1 is uniform on [0, L].

In this section, we present Figure 4.6 and use it to informally explain a construction
that will be useful in the subsequent works [MS15a, MS16a] by the authors to establish
the connection between the

√
8/3-Liouville quantum gravity sphere and the Brownian

map. This subsection is an “optional” component of the current paper and does not
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contain any detailed proofs; however, the reader who intends to read [MS15a, MS16a]
will find it helpful to have this picture in mind, and it is easier to introduce this picture
here.

Roughly speaking, we want to describe the continuum version of the Boltzmann measure
on figures such as the one in Figure 1.1, where one has a doubly marked sphere together
with two filled metric balls (centered at the two marked points) that touch each other
on the boundary but do not otherwise overlap. Clearly, the Radon-Nikodym derivative
of such a measure w.r.t. µ2

TRI should be D + 1 where D is the distance between the
two points, since the radius of the first ball can be anything in the interval [0, D]. In
the discrete version of this story, it is possible for the two metric balls in Figure 1.1
to intersect in more than one point (this can happen if the geodesic between the two
marked points is not unique) but in the continuum analog discussed below one would
not expect this to be the case (since the geodesic between the marked points is a.s.
unique).

To describe the continuum version of the story, we need to define a measure µ2+1
SPH

on continuum configurations like the one shown in Figure 4.6. To sample from µ2+1
SPH,

one first chooses a doubly marked sphere from the measure whose Radon-Nikodym
derivative w.r.t. µ2

SPH is given by D. Then, having done so, one chooses a radius D1

for the first metric ball uniformly in [0, D], and then sets the second ball radius to be
D2 := D −D1. Now µ2+1

SPH is a measure on Brownian map surfaces decorated by two
marked points and touching two filled metric balls centered at those points. Let L1 and
L2 denote the boundary lengths of the two balls and write L = L1 + L2.

1. Based on Figure 1.1 and Figure 4.6, we would expect that one can first choose
the set of slices indexed by time L, and then randomly choose L1 uniformly from
[0, L]. Thus, we expect that given L and A, the value L1 is uniform on [0, L].

2. It is possible to verify the following scaling properties (which hold up to a constant
multiplicative factor):

µ2
SPH[A > a] ≈ a−1/2 and µ2+1

SPH[A > a] ≈ a−1/4.

µ2
SPH[L > a] ≈ a−1 and µ2+1

SPH[L > a] ≈ a−1/2.

µ2
SPH[D > a] ≈ a−2 and µ2+1

SPH[D > a] ≈ a−1.

The two properties above suggest that µ2+1
SPH induces a measure on (L1, L2) given (up

to constant multiplicative factor) by (L1 + L2)−5/2dL1dL2. The measure on L itself is
then L−3/2dL.

If we condition on the metric ball in Figure 4.6 of boundary length L1, we expect that
conditional law of the complement to be that of a marked disk of boundary length L1,
i.e., to be a sample from µ1,L

DISK with L1 playing the role of the boundary length. This
suggests the following symmetry (which we informally state but will not actually prove
here).
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Proposition 4.26. Given L1, the following are equivalent:

1. Sample a marked disk of boundary length L1 from the probability measure µ1,L
DISK

(with L1 as the boundary length). One can put a “boundary-touching circle” on
this disk by drawing the outer boundary of the metric ball whose center is the
marked point and whose radius is the metric distance from the marked point to
the disk boundary.

2. Sample L2 from the measure (L1 + L2)
−5/2dL2 (normalized to be a probability

measure) and then create a large disk by identifying a length L2 arc of the boundary
of a sample from µLDISK, with the entire boundary of a disk sampled from µL2

MET.
The interface between these two samples is the “boundary-touching circle” on the
larger disk.

Interestingly, we do not know how to prove Proposition 4.26 directly from the Brownian
snake constructions of these Brownian map measures, or from the breadth-first variant
discussed here. Indeed, from direct considerations, we do not even know how to prove the
symmetry of µ2

SPH with respect to swapping the roles of the two marked points x and y.
However, both this latter fact and Proposition 4.26 can be derived as consequences of the
fact that µ2

SPH is a scaling limit of discrete models that have similar symmetries (though
again we do not give details here). We will see in [MS15a, MS16a] that these facts can
also be derived in the Liouville quantum gravity setting, where certain symmetries are
more readily apparent.

We will also present in [MS15a, MS16a] an alternate way to construct Figure 4.6 in the
Liouville quantum gravity setting. In this alternate construction, one begins with a
measure µ2

LQGSPH on doubly marked LQG spheres. Given such a sphere, one may then
decorate it by a whole plane SLE6 path from one marked point to the other. Such a
path will have certain “cut points” which divide the trace of the path into two connected
components. It is possible to define a quantum measure on the set of cut points. One
can then define a measure µ2+1

LQGSPH on path-decorated doubly marked quantum spheres
with a distinguished cut point along the path. This is obtained by starting with the law
of an SLE6-decorated sample from µ2

LQGSPH, then weighting this law by the quantum
cut point measure, and then choosing a cut point uniformly from this cut point measure.
We will see in [MS15a, MS16a] that a certain QLE “reshuffling” procedure allows us
to convert a sample from µ2+1

LQGSPH into an object that (once an appropriate metric is

defined on it) looks like a sample from µ2+1
SPH.

4.6 The martingale property holds if and only if α = 3/2

Proposition 4.27. Fix α ∈ (1, 2) and suppose that Mr is the process associated with
an exploration towards the center of a sample produced from µ̃LDISK where µ̃LDISK is as in
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Section 4.3. For each r ≥ 0, we let

Ar = M2α−1
r +

∑
a∈Jr

|a|2α−1 (4.16)

where Jr is the set of jumps made by M |[0,r]. Then Ar is a martingale if and only if
α = 3/2.

We will need two intermediate lemmas before we give the proof of Proposition 4.27.

Lemma 4.28. Suppose that Xt is a non-negative, real-valued, continuous-time càdlàg
process with supt≥0Xt <∞ and X0 > 0 a.s. Let τ = inf{t ≥ 0 : Xt = 0} and let (Ft)
be the filtration generated by (Xt∧τ ). Assume that there exists p > 1 with

sup
s≤t≤T

E[|Xt∧τ |p | Fs] <∞ for all 0 ≤ s < T <∞. (4.17)

Suppose that q : R+ → R+ is a non-decreasing function such that q(∆)/∆ → 0 as
∆→ 0. Assume that Yt is a càdlàg process adapted to Ft with E|Yt| <∞ for all t and
that a is a constant such that

|E[Yt − Ys | Fs]− a(t− s)Xs∧τ | ≤ q(t− s)|Xs∧τ | for all t ≥ s.

Then Yt is a martingale if and only if a = 0.

Proof. Fix ∆ > 0, s < t, and let t0 = s < t1 < · · · < tn = t be a partition of [s, t] with
∆/2 < tj − tj−1 ≤ ∆ for all 1 ≤ j ≤ n. Then we have that

E[Yt | Fs] = Ys +
n∑
j=1

E[Ytj − Ytj−1
| Fs]

= Ys +
n∑
j=1

E[E[Ytj − Ytj−1
| Ftj−1

] | Fs].

We are going to show that the right hand side above tends to Ys + a
∫ t
s

E[Xu∧τ | Fs]du
in L1 as ∆→ 0. This, in turn, implies that there exists a positive sequence (∆k) with
∆k → 0 as k → ∞ sufficiently quickly so that the convergence is almost sure. This
implies the result because if s < τ then a

∫ t
s

E[Xu∧τ | Fs]du = 0 if and only if a = 0.

We begin by noting that

n∑
j=1

E
∣∣E[(Ytj − Ytj−1

) | Ftj−1
]− a(tj − tj−1)Xtj−1∧τ

∣∣
≤

n∑
j=1

q(tj − tj−1)E|Xtj−1∧τ |
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≤2q(∆)

∆
sup
s≤u≤t

E|Xu| → 0 as ∆→ 0.

The càdlàg property together with the dominated convergence theorem implies that

n∑
j=1

a(tj − tj−1)Xtj−1∧τ → a

∫ t

s

Xu∧τdu as ∆→ 0.

Combining this with the integrability assumption (4.17) implies that

n∑
j=1

a(tj − tj−1)E[Xtj−1∧τ | Fs]→ a

∫ t

s

E[Xu∧τ | Fs]du as ∆→ 0,

which proves the claim.

Lemma 4.29. Fix α ∈ (1, 2) and suppose that Mr is the process associated with an
exploration towards the center of a sample produced from µ̃LDISK where µ̃LDISK is as in
Section 4.3. There exists constants c0, c1 > 0 such that

P[Mr ≥ u] ≤ c0e
−c1r−1/αu for all u, r > 0. (4.18)

In particular,
E|Mr|p <∞ for all r, p > 0. (4.19)

Proof. We first note that (4.18) in the case of an α-stable process with only downward
jumps follows from [Ber96, Chapter VII, Corollary 2]. The result in the case of Mr

follows by comparing the jump law for Mr as computed in Lemma 4.22 with the jump
law for an α-stable process (which we recall has density x−α−1 with respect to Lebesgue
measure on R+).

Proof of Proposition 4.27. We assume without loss of generality that L = 1. Let Jr be
the set of jumps made by M |[0,r] and, for each ε, δ > 0, let J ε

r (resp. J ε,δ
r ) consist of

those jumps in Jr with size at least ε (resp. size in [ε, δ]). Let J εr (resp. J ε,δr ) be the sum
of the elements in J ε

r (resp. J ε,δ
r ) and let

Cε =

∫ ∞
ε

x · x−α−1dx =

∫ ∞
ε

x−αdx =
1

α− 1
ε1−α and Cε,δ =

∫ δ

ε

x−αdx.

Then we have that

Mr = lim
ε→0

M ε
r where M ε

r = (1 + J εr + rCε)+.

We also let Aεr be given by

Aεr = (M ε
r)

2α−1 +
∑
a∈J εr

|a|2α−1.
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We note that

Ar − Aεr = M2α−1
r − (M ε

r)
2α−1 −

∑
a∈Jr\J εr

|a|2α−1 (4.20)

and that the expectation of (4.20) tends to 0 as ε→ 0.

Using that Aε0 = M0 = 1, we have that

Aεr − Aε0 = (M ε
r)

2α−1 +
∑
a∈J εr

|a|2α−1 − 1 = (1 + J εr + rCε)2α−1
+ +

∑
a∈J εr

|a|2α−1 − 1.

With M denoting the jump law of Mr as determined in Lemma 4.22, we let

Iδα =

∫ 1/2

δ

(
x2α−1 + (1− x)2α−1 − 1

)
dM(x) + (2α− 1)Cδ and (4.21)

Iα = lim
δ→0

Iδα. (4.22)

We will show later in the proof that the limit in (4.22) converges, compute its value,
and show that Iα = 0 precisely for α = 3/2.

Assuming for now that this is the case, we are going to prove the result by showing that

E[Ar − A0] = lim
ε→0

E[Aεr − Aε0] = rIα + o(r) as r → 0 (4.23)

where Iα is as in (4.22). This suffices because then we can invoke Lemma 4.28.

Let E0,δ
r (resp. E1,δ

r ) be the event that M |[0,r] does not make a (resp. makes exactly 1)
jump of size at least δ and let E2,δ

r be the event that M |[0,r] makes at least two jumps
of size at least δ.

Assume ε ∈ (0, δ). We will now establish (4.23) by estimating E[(Aεr − Aε0)1Ej,δr ] for
j = 0, 1, 2.

We start with the case j = 0. Let

X = J ε,δr + rCε = J ε,δr + r
(
Cε,δ + Cδ

)
. (4.24)

On E0,δ
r , we have that

Aεr − Aε0 =(1 +X)2α−1
+ +

∑
a∈J εr

|a|2α−1 − 1. (4.25)

By performing a Taylor expansion of u 7→ (1 + u)2α−1
+ around u = 0, we see that (4.25)

is equal to

(2α− 1)X +O(X2) +O(|X|3) +
∑
a∈J εr

|a|2α−1 (4.26)
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where the implicit constants in the O(X2) and O(|X|3) terms are non-random. (The
presence of the O(|X|3) term is so that we have a uniform bound which holds for all X
values, not just small X values; we are using that α ∈ (1, 2) so that 2α− 1 < 3.)

The form of the jump law implies that

E
∑
a∈J εr

|a|2α−1 = O(rδα−1) (4.27)

P[(E0,δ
r )c] = O(rδ−α), P[E1,δ

r ] = O(rδ−α), P[E2,δ
r ] = Oδ(r

2) (4.28)

E[|J ε,δr + rCε,δ|] = O(rδ1−α/2), (4.29)

E[(J ε,δr + rCε,δ)2] = Oδ(r
2), and (4.30)

E[|J ε,δr + rCε,δ|3] = Oδ(r
3). (4.31)

In (4.28), (4.30), and (4.31) the subscript δ in Oδ means that the implicit constant
depends on δ. Thus by the Cauchy-Schwarz inequality and (4.28), (4.29), (4.30) we
have that

E[|J ε,δr + rCε,δ|1E0,δ
r

] = O(rδ1−α/2)− E[|J ε,δr + rCε,δ|1(E0,δ
r )c ]

= O(rδ1−α/2) +Oδ(r
3/2). (4.32)

Moreover, using (4.30) we have that

E[X2] ≤ 4
(
E[(J εr + rCε,δ)2] + (rCδ)2

)
= Oδ(r

2). (4.33)

and from (4.31) we have

E[|X|3] ≤ 8
(
E[|J εr + rCε,δ|3] + (rCδ)3

)
= Oδ(r

3). (4.34)

Therefore taking expectations of (4.26) and using (4.27), (4.32), (4.33), and (4.34), we
see that

E[(Aεr − Aε0)1E0,δ
r

] = r(2α− 1)Cδ +O(rδ1−α/2) +O(rδα−1) +Oδ(r
3/2). (4.35)

We turn to the case j = 1. On E1,δ
r , with J the size of the single jump larger than δ, we

have that

Aεr − Aε0 = (1 + J +X)2α−1
+ + |J |2α−1 +

∑
a∈J εr \J δr

|a|2α−1 − 1. (4.36)

By performing a Taylor expansion of u 7→ (1+J+u)2α−1
+ about u = 0, we see that (4.36)

is equal to

(1 + J)2α−1
+ + |J |2α−1 +

∑
a∈J εr \J δr

|a|2α−1 +O(X) +O(|X|3)− 1
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where X is as in (4.24) and the implicit constant in the O(X) and O(|X|3) terms are non-
random. By (4.28) and the Cauchy-Schwarz inequality we have E[X1E1,δ

r
] = Oδ(r

3/2).
Combining, we have that

E[(Aεr − Aε0)1E1,δ
r

] = r(Iδα − (2α− 1)Cδ) +O(rδα−1) +O(rδ1−α/2) +Oδ(r
3/2). (4.37)

We finish with the case j = 2. Using Lemma 4.29, it is easy to see that Aεr has finite
moments of all order uniformly in ε. Thus using (4.28) and Hölder’s inequality, we have
for any p > 1 that

E[(Aεr − Aε0)1E2,δ
r

] = Oδ,p(r
2/p) (4.38)

where the implicit constant in Oδ,p(r
2/p) depends on both δ and p.

Combining (4.35), (4.37), and (4.38) (with p ∈ (1, 2) so that 2/p > 1), and taking a
limit as ε→ 0 we see that

E[Ar − A0] = rIα + o(r) as r → 0. (4.39)

Indeed, this follows because each of the error terms which have a factor of r also have a
positive power of δ as a factor, except for the term with Iα. Thus we can make these
terms arbitrarily small compared to r by taking δ small. The remaining error terms
have a factor with a power of r which is strictly larger than 1, so we can make these
terms arbitrarily small compared to r by taking r small.

Therefore to finish the proof we need to show that Iα = 0 precisely for α = 3/2. The
indefinite integral∫ (

x2α−1 + (1− x)2α−1 − 1
)
dM(x)− (2α− 1)

∫
x−αdx (4.40)

can be directly computed (most easily using a computer algebra package such as
Mathematica) to give

x−α
(

2F1(1− α, α + 1; 2− α;x)x

α− 1
+

2F1(−α, α; 1− α;x)

α
+

(α− x)x2α−1(1− x)−α

(α− 1)α
− (α + x− 1)(1− x)α−1

(α− 1)α
+
x− 2αx

α− 1

)
where 2F1 is the hypergeometric function. In particular, the limit in (4.21) is equal to

−4α

α
− 2B 1

2
(−α, 1− α) +

2α−1(1− 2α)

α− 1
+ (2α− 1)

∫ ∞
1/2

x−αdx, (4.41)

where Bx(a, b) =
∫ x

0
ua−1(1− u)b−1du is the incomplete beta function.

127



By evaluating the integral in (4.41), we see that (4.41) is equal to

−4α

α
− 2B 1

2
(−α, 1− α).

Direct computation shows that this achieves the value 0 when α = 3/2 and (since this
is an increasing function of α) is non-zero for other values of α ∈ (1, 2). Thus, (4.21) is
equal to zero if and only if α = 3/2, and as noted above, the result follows from this.
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