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Abstract 238 

Germline copy number variants (CNVs) are pervasive in the human genome but potential 

disease associations with rare CNVs have not been comprehensively assessed in large 

datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer 

cases and 76,122 controls of European ancestry with genome-wide array data. 

Gene burden tests detected the strongest association for deletions in BRCA1 (P= 3.7E-18). 

Nine other genes were associated with a p-value < 0.01 including known susceptibility genes 

CHEK2 (P= 0.0008), ATM (P= 0.002) and BRCA2  (P= 0.008). Outside the known genes we 



6 
 

detected associations with p-values < 0.001 for either overall or subtype-specific breast 

cancer at nine deletion regions and four duplication regions. Three of the deletion regions 

were in established common susceptibility loci. 

To the best of our knowledge, this is the first genome-wide analysis of rare CNVs in a large 

breast cancer case-control dataset. We detected associations with exonic deletions in 

established breast cancer susceptibility genes. We also detected suggestive associations 

with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes 

will be required to reach robust levels of statistical significance. 

Introduction 239 

Copy number variants (CNVs) are pervasive in the human genome but are more challenging 240 

to detect with current technologies than single nucleotide variants (SNVs). Recent 241 

comprehensive sequencing projects 1,2 have characterised CNVs in large sample sets. The 242 

gnomAD project identified a median of 3,505 deletions and 723 duplications covering more 243 

than 50 base pairs per genome. Most deletions and duplications tend to be rare with longer 244 

variants tending to be rarer, suggesting negative selection against these variants.  At the 245 

population level the 1000 Genomes project has mapped a large proportion of inherited CNVs 246 

3 and observed that 65% had a frequency below 2%.  247 

While somatic copy number alterations play a major role in the pathogenesis of breast 248 

tumors4,5, some germline CNVs are known to be associated with inherited risk of breast 249 

cancer. Rare loss of function variants in susceptibility genes such as BRCA1 and CHEK2 250 

are associated with a large increase in risk6. While the majority of these variants are single 251 

nucleotide mutations and short indels, they also include longer deletions and duplications. It 252 

has been reported that up to a third of loss of function BRCA1 variants in some populations 253 

may be CNVs 7.  254 
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Large-scale genome-wide association studies (GWAS) have established breast cancer 255 

associations with common variants at more than 150 loci, mostly in non-coding regions8-11. 256 

At two of the loci, deletions imputed from the 1000 Genomes reference panel have been 257 

identified as likely causal variants. A deletion of the APOBEC3B gene-coding region 258 

increases breast cancer risk12 and analysis of the tumours of the germline deletion carriers 259 

showed an increase in APOBEC-mediated somatic mutations.13 A deletion in a regulatory 260 

region was identified as a likely causal variant at the 2q35 locus14,15.  261 

Detecting CNVs from the intensity measurements of genotyping array probes is prone to 262 

producing unreliable calls due to the high level of noise. We recently developed a new CNV 263 

calling method, CamCNV16, which focuses on rare CNVs and identifies outlier samples that 264 

may have a CNV, based on the intensity distribution across all samples at each probe. We 265 

showed that this approach is able to detect CNVs using as few as three probes16. Here, we 266 

apply this approach to a very large array genotype dataset to search for breast cancer 267 

associated CNVs. The analyses are outlined in Figure 1. 268 

Results 269 

Summary of CNVs Detected 270 

After quality control we detected a mean of 2.9 deletions (standard deviation 1.6) and 2.5 271 

duplications (SD 2.0) per sample. Supplementary Data 5 shows the mean length, probe 272 

coverage and segment z-scores of called CNVs. Duplications tended to be longer than 273 

deletions: for example, deletions called on OncoArray covered a mean of 45 Kilobases (Kb) 274 

(SD 106 Kb) over 9.8 probes (SD 17.2), while duplications covered a mean of 109 Kb (SD 275 

202 Kb) over 18.9 probes (SD 36.5). CNV calls observed in multiple samples were 276 

concentrated in a small proportion of probes (Supplementary Data 6), with <11% of probes 277 

having frequency >0.01% and <2% of probes having frequency >0.5%.  278 
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We identified called CNVs which overlapped for at least 90% of their length with rare 279 

deletions and duplications (frequency <1%) identified by the 1000 Genomes Project 280 

(Supplementary Data 5, Supplementary Figure 1.). Forty-nine percent of OncoArray 281 

deletions and 47% of iCOGs deletions matched a 1000 Genomes Project variant while 29% 282 

of OncoArray duplications and 20% of iCOGs duplications matched. In total we identified 283 

CNVs closely matching 3,273 of the deletion variants published by the 1000 Genomes 284 

Project (~9% of total) and 1,255 of their duplication variants (~24% of the total).   285 

CNVs Associated with Overall Risk 286 

Association results were derived for 1,301 regions containing  deletions and  992 regions 287 

containing duplications. QQ plots are shown in Figure 2a for deletions and 2b for 288 

duplications. There was no evidence for inflation in the test statistics for duplications 289 

(lambda=0.98; lambda1000=1.00) and minimal evidence for deletions (lambda = 1.11; 290 

lambda1000=1.00).  291 

Seven deletion and two duplication regions were associated with breast cancer risk at 292 

p<0.001 (Table 1); of these, deletions within the BRCA1 region achieved p< 10-6. The results 293 

for all regions are shown in Supplementary Data 7 and 8 and include statistics on the 294 

number of probes covered by the calls. The results for individual probes covered by the 295 

regions analysed are in Supplementary Data 9 to 12. 296 

The BRCA1 locus contains multiple deletions across the gene. The CHEK2 region (OR 1.94, 297 

p=0.0003) covers the whole gene but nearly all the calls correspond to a deletion of exons 298 

nine and ten, which was previously observed in 1% of breast cancer cases and 0.4% of 299 

controls in Poland 22. We observed the deletion in 0.9% of Polish cases and 0.5% of 300 

controls.  301 

The most significant association (OR=0.69 P=0.00001) for duplications covers a large region 302 

on 17p13.3 with multiple long variants overlapping shorter duplications. The OncoArray 303 

results by probe show the strongest associations at a series of probes (17: 814529-850542) 304 
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in the first intron of NXN, with the lowest P-value at 17: 819141 (OR=0.45, P=0.002). The 305 

most significant probe position on iCOGs was also in this region (17:836631, OR=0.58, 306 

P=0.09) (Figure 3). 307 

 308 

Associations with Risk of Breast Cancer Subtypes 309 

 310 

We repeated the analyses restricting cases to those with ER-positive, ER-negative and triple 311 

negative disease. Deletions and duplications with p-values below 0.001 are shown in Tables 312 

2 and 3 and the results for all regions are in Supplementary Data 13 and 14. An association 313 

was observed for BRCA1 for all subtypes, with the exception of duplications for ER-positive 314 

disease.  The odds ratio for BRCA1 deletions was higher for ER-negative disease 315 

(OR=27.03; 95% CI, 15.66 to 46.67) than ER-positive (OR =2.81; CI, 1.56 to 5.08; P=8.46E-316 

28 for the difference), while for CHEK2 the odds ratio was higher for ER-positive disease 317 

(OR=2.32;CI,1.56 to 3.44) than ER-negative (OR=1.36; CI,0.66 to 2.82; P=0.11 for the 318 

difference), consistent with the known subtype-specific associations for deleterious variants 319 

in these genes 23.  320 

In total we observed five deletion and two duplication regions with p-values < 0.001 that did 321 

not reach p<0.001 in the overall risk analysis. The strongest novel association for ER-322 

positive was for an intronic deletion in ITGBL1 (OR = 3.3, P=0.00007, P for difference by 323 

ER-status=0.18).  For ER-negative disease the strongest novel association was with an 324 

intergenic deletion between ABCC4 (MRP4) and CLDN10 (OR=2.16, P=0.0002, P for 325 

difference by ER-status=0.02).  Neither of these associations was significant for the other 326 

subtype. For triple negative disease, the strongest evidence of association was found for an 327 

intergenic duplication between TMC3 and MEX3B (OR=2.39 P= 0.00009) and for two 328 

separate deletions upstream of the DDX18 gene: 2:118258797-118389164 (OR= 6.56, P= 329 

0.00001) and 2:117973154- 118107795 (OR=4.54, P= 0.0008). The association at these two 330 
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deletions was driven by the same samples, with 75% of the carriers of the first deletion  331 

observed to have the second deletion and normal copy number at the 62kb gap between the 332 

deletions.  333 

 334 

Associations at Established Common Susceptibility Loci 335 

Three of the most significant associations were observed within regions harbouring known 336 

breast cancer susceptibility loci for breast cancer. The most significant (OR=1.42;CI,1.21 to 337 

1.67; P=0.00015) was upstream of FGFR2 and consistent with a 28 kb deletion in the 1000 338 

Genomes Project data (chr10:123433204-123461492).  Three independent risk signals have 339 

been previously identified at this region24,25. The effect size for the CNV was larger than 340 

those previously reported for these common SNPs (largest OR=1.27;CI,1.22 to 1.25). The 341 

CNV is in linkage disequilibrium with two of the SNPs identified as likely causally associated 342 

variants: rs35054928 (D’ = 0.82) and rs2981578 (D’ = 0.88). Conditioning on those SNPs 343 

reduced somewhat the strength of the association for the deletion (OR =1.30;CI 1.10 to 344 

1.53;P=0.002, Supplementary Data 15).   345 

The third strongest signal (OR=4.9 P=0.00001) in the deletion analysis for overall breast 346 

cancer was at 8: 132199447-132252439, 144Kb downstream of ADCY8. The strongest 347 

GWAS signal in this region lies in an intron of ADCY8 (lead SNP rs73348588, OR =1.13, P= 348 

8.2e-7)9. A 3kb deletion in intron 4 of KLF12 was associated with ER-negative disease (OR 349 

= 2.4, P= 0.0007, P for difference by ER-status=0.01). This is 389kb distant from common 350 

SNPs, located between KLF12 and KLF5, associated with ER-negative disease (rs9573140, 351 

OR = 0.94, P=3.62e-9) 26. The KLF12 and ADCY8 deletions are not in strong linkage 352 

disequilibrium with the corresponding GWAS signals and conditioning on these SNPs did not 353 

alter the strengths of the association for the CNVs (Supplementary Data 15) . 354 
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Gene Burden tests 355 

We performed gene burden tests based on CNVs that overlapped exons. Analyses were 356 

restricted to genes in which at least 24 CNVs were identified, leaving 645 genes with 357 

deletions (Supplementary Data 16) and 1596 genes with duplications (Supplementary Data 358 

17). QQ plots are shown in Figures 2c for deletions and 2d for duplications. The lambda for 359 

inflation was 1.18 (; lambda1000=1.00) for deletions and 1.07 (; lambda1000=1.00) for 360 

duplications.  361 

For deletions, we found 10 genes with P < 0.01 (Table 4), the most significant being BRCA1 362 

(OR=7.66, P= 3.72E-18). Four of these 10 genes (ATM, BRCA1, BRCA2, CHEK2) are 363 

known breast cancer susceptibility genes.23 Deletions were also observed in two other 364 

known susceptibility genes: PALB2 (23 cases, 9 controls, OR=2.02, P=0.09) and RAD51C 365 

(21 cases, 9 controls, OR=2.04, P=0.08). The most significant novel association was for 366 

SUPT3H (OR=0.27, P=0.0004). 367 

For duplications we observed 15 genes with P < 0.01 (Table 5). The most significant 368 

association was for VPS53 (OR = 0.5, P= 0.0009). This gene and ABR (OR=0.61  P= 0.008) 369 

both lie within the region on 17p which had the strongest association in the regional analysis. 370 

These associations were driven by duplications in different samples, with only one 371 

duplication in one sample overlapping both genes.  Duplications were associated with an 372 

increased risk for only four of the 15 genes; the most statistically significant was RSU1 373 

(OR=3.4, P= 0.004). There was also some evidence of association with risk for duplications 374 

in BRCA1 (OR = 1.75, P =0.01). However, analysis restricted to duplications that included 375 

exon 12 of BRCA1 showed clearer evidence of association (34 carriers, OR = 4.7 P= 376 

0.0001), consistent with one of the more frequent known BRCA1 duplications that results in 377 

a frameshift27. 378 

The gene burden subtype results are shown in Supplementary Data 18 and 19. The 379 

strongest associations were observed for BRCA1 deletions for ER Negative (OR = 33, 380 
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P=5.5E-35) and Triple Negative (OR =49 P=7.1E-34) disease, CHEK2 deletions for ER 381 

positive disease (OR = 2.14 P=0.0001) and ATM deletions for ER positive disease 382 

(OR=4.85, P=0.0001). No additional genes significant at P<0.0001 were found.  383 

 384 

Direction of effect tests 385 

In the gene burden and individual probe analyses we observed a directional effect, whereby 386 

the strongest associations for deletions tended to increase risk and those for duplications 387 

tended to be protective.  To test whether these associations deviated from what would be 388 

expected by chance, we computed ranked summed z-score tests and evaluated the 389 

significance of the maximum test statistic by permutation. Results are summarised in Table 390 

6. The statistic for deletion regions was more significant than any of the permuted statistics 391 

(P=0.04) but was reduced to P=0.12 after removing the known genes BRCA1 and CHEK2. 392 

The significance of the gene burden test for deletions also was reduced from P=0.04 to 393 

P=0.2 when the known genes were removed. The statistic for the duplication regions was 394 

lower than any of the 50  permutations  (P=0.04).  The gene burden analysis for duplications 395 

was not significant.   396 

Discussion 397 

We used the largest available breast cancer case-control dataset, comprising more than 398 

86,000 cases and 76,000 controls with array genotyping, to test for associations with rare 399 

CNVs. Using the intensities from genotyping arrays to detect CNVs is not ideal due to a high 400 

level of noise and uncertainty in the calling, particularly for duplications. However, in tests of 401 

known CNVs and replication of calls between duplicate samples, the CamCNV method 402 

shows reasonable levels of sensitivity and specificity16. The main focus of this analysis was 403 

low frequency CNVs (<1% frequency) since higher frequency CNVs can generally be 404 

studied through imputation to a reference panel. In the 0.05%-1% frequency range, we could 405 



13 
 

detect ~20% of the CNVs identified by the 1000 Genomes project. For some loci we only 406 

had evidence from one array because the probes do not exist to detect the variants on the 407 

other array.  Thus, while this array-based approach provides power to evaluate the CNVs 408 

that can be assayed, much denser arrays or direct sequencing would be required to provide 409 

a complete evaluation of the contribution of CNVs.  410 

In support of the reliability of the method, we detected evidence for both deletions and 411 

duplications in BRCA1, which was stronger for ER-negative disease, and for deletions in 412 

CHEK2 , which were stronger for ER-positive disease. The latter appeared to be driven by a 413 

single founder deletion in East European populations.  Weaker evidence of association was 414 

also observed for deletions in other susceptibility genes (BRCA2, ATM, PALB2, RAD51C); 415 

the ORs were consistent with those seen for deleterious SNVs and indels. 23 In total, around 416 

0.5% of cases in our analysis had a deletion in one of the known susceptibility genes with 417 

the proportion rising to ~1% for cases diagnosed under 50 years of age. The majority of 418 

coding deletions are expected to affect only part of the gene, with one study  observing that 419 

a quarter covered only a single exon.28 To detect all of these using array data would require 420 

at least three probes per exon. The OncoArray has this level of coverage for a few genes, 421 

including BRCA1 and BRCA2, but the coverage is lower for most genes and many coding 422 

CNVs will have been missed.  423 

A key issue is the appropriate level of statistical significance to apply to these analyses. For 424 

the gene burden tests, P<2.5x10-6, as used in exome-sequencing, seems an appropriate 425 

level. It is less clear what is appropriate for non-coding variants. A level of P<5x10-8 has 426 

become standard in GWAS and has been shown to lead to acceptable replication, but this 427 

seems over-conservative for CNVs, which are more likely to be deleterious. Consistent with 428 

this, for at least two of the ~200 common susceptibility loci, the likely causal variant is a 429 

CNV, a higher fraction than expected given the relative frequencies of CNVs and SNPs. 430 

Based on frequency analysis of whole-genome sequence data Abel et al. 1  estimated that 431 

rare CNVs are >800 times more likely to be deleterious than rare SNVs and >300 times 432 
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more likely than rare indels. On the other hand, the significance level for non-coding CNVs 433 

should logically be more stringent than for the gene burden tests. Taken together, a 434 

significance level of ~10-6 seems appropriate, while associations at P<0.001 may be worth 435 

following up in future studies. In our analyses only the association at BRCA1 (both in the 436 

overall and gene burden tests) passes the higher threshold.  We also calculated Bayesian 437 

False Discovery Probabilities (BFDPs)21 (Supplementary Data 20 and 21) for our 438 

associations using prior probabilities of 0.001 for regions and 0.002 for genes. Outside the 439 

known genes none of the BDFPs gave a probability below 10%, with the lowest BFDP of 440 

0.11 for the deletion in the FGFR2 locus. For a CNV observed with a frequency of 0.1% 441 

(n=91 samples in the OncoArray dataset) we had 40% power to detect an association with 442 

an odds ratio of 2 but only 1.5% power to detect an association with an odds ratio of 1.5. An 443 

OR of 2, comparable to that seen for deleterious variants in ATM and CHEK2, may be 444 

plausible for rare coding CNVs or non-coding CNVs that have a significant effect on gene 445 

expression. Larger sample sizes will clearly be required to evaluate rare CNVs with more 446 

modest associations. 447 

In addition to the BRCA1 and CHEK2 loci, we found associations in three known 448 

susceptibility regions identified through GWAS, harbouring FGFR2, ADCY8 and KLF12. In 449 

each case, the variants are rarer than the established associated variants, but confer higher 450 

risks. The ADCY8 and KLF12 deletions are not in linkage disequilibrium with the associated 451 

SNPs. The FGFR2 deletion is in linkage disequilibrium with two of the likely causal common 452 

SNPs although there was still evidence of association with the deletion, albeit weaker, after 453 

conditional analysis. In-silico and functional analysis clearly demonstrate that FGFR2 is the 454 

target of the previously established variants24,25; it will be interesting to establish if the same 455 

is true for the CNV.   456 

Excluding loci in known susceptibility regions, the strongest evidence of association was for 457 

a 12kb deletion ( 13:102121830-102133956) in the second intron of ITGBL1 (OR = 3.3, 458 

P=0.00007 in the ER-positive analysis). This deletes a promoter flanking region (Ensembl 459 
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ID: ENSR00001563823) and CTCF binding site (Ensembl ID:  ENSR00001062398) active in 460 

mammary epithelial cells. There is experimental evidence that ITGBL1 expression, mediated 461 

by the RUNX2 transcription factor, enables breast cancer cells to form bone metastases29.   462 

In the gene burden analysis, the strongest novel association was for deletions within 463 

SUPT3H, which were associated with a reduced risk. SUPT3H encodes human SPT3, a 464 

component of the STAGA complex which acts as a co-activator of the MYC oncoprotein30. 465 

SUPTH is located within the first intron of the RUNX2 transcription factor and the syntenic 466 

relationship between the two genes is highly evolutionarily conserved 31.  RUNX2 has a role 467 

in mammary gland development and high RUNX2 expression is found in ER-negative 468 

tumours.32 The PCDHGB2 association appears to be due to a single variant (5:140739812-469 

140740918) that deletes the first exon but as this gene is part of the protocadherin gamma 470 

gene cluster it is also possible that the deletion may be having an effect on one of the five 471 

genes that overlap PCDHGB2. It also deletes a promoter active in mammary epithelial cells 472 

(ENSR00001342785).  The next strongest signals were for  MEAK7 (OR=2.19 P= 0.001), a 473 

gene implicated in a mTOR signalling pathway33, and MAD1L1 ((OR=2.00 P=0.005),  a 474 

component of the mitotic spindle-assembly that has been suggested as a possible tumour 475 

suppressor34.   476 

After BRCA1, the most significant association for ER Negative disease in the gene burden 477 

analysis was for CYP2C18 which overlaps CYP2C19 ( ER-negative OR=2.6, P=0.002; triple-478 

negative OR=4.4, P=0.0002).  A previous analysis of CNVs and breast cancer in the Finnish 479 

population identified a founder mutation reaching an overall  frequency of ~ 3% and reported 480 

a possible association at this locus for triple negative (OR 2.8, p= 0.02) and ER-negative 481 

breast cancer (OR =2.2  p=0.048).35  482 

The results from duplications are harder to interpret as there are often longer duplications 483 

overlapping whole genes with shorter variants covering some part of their length. For the 484 

gene burden analysis there was little evidence of strong associations. In the regional 485 

analysis, the two strongest associations cover multiple genes. The strongest evidence of 486 



16 
 

association (OR=0.69 P=1.1E-05) was for a 1.5 Mb region at the start of chromosome 17 487 

(17:13905- 1559829). The probe-specific and gene burden results highlighted some stronger 488 

signals within this region, for example within NXN and VPS53, but the direction of effect was 489 

consistent across the region with 80% of the OncoArray probes having an odds ratio of 0.75 490 

or lower (Figure 3). This locus has established associations with prostate and colorectal 491 

cancer. Interestingly a possible association with ER-positive breast cancer survival was 492 

detected for a rare SNP in the first intron of NXN, rs118021774 (HR=1.83, P=3.8E-06)36. The 493 

detected duplications are not in LD with this SNP. For the 0.4Mb duplication region on 494 

chromosome 21 (OR= 2.23 P=0.0001) the probe-specific results from OncoArray highlighted 495 

that the signal is specific to a shorter intergenic region (21:33421860- 33459975) between 496 

HUNK and LINC00159.  497 

We observed some evidence of an aggregate directional effect, both for genes and non-498 

genic regions, such that the deletions in aggregate were associated with increased risk. 499 

There was also some suggestion that duplications, in aggregate, were associated with a 500 

reduced risk.  These results suggest that additional associations are present that could be 501 

established with a larger dataset. A new GWAS, Confluence 502 

(https://dceg.cancer.gov/research/cancer-types/breast-cancer/confluence-project), aims to 503 

double the available sample size for breast cancer. This GWAS includes probes specifically 504 

designed to assay some of the most significant CNVs observed in this study (those 505 

significant at P<0.001), and the sample size should be sufficient to confirm or refute these 506 

associations. 507 

 508 
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Methods 509 

Subjects 510 

Data were derived from blood samples from study participants in 66 studies participating in 511 

the Breast Cancer Association Consortium (BCAC) and genotyped as part of the 512 

OncoArray9,17 and iCOGS8 collaborations (Supplementary Data 1). Studies included 513 

population-based and hospital-based case-control studies, and case-control studies nested 514 

within prospective cohorts; we only included data from studies that provided both cases and 515 

controls. Phenotype data were based on version 12 of the BCAC database. Cases were 516 

diagnosed with either invasive breast cancer or carcinoma-in-situ. Oestrogen receptor (ER) 517 

status was determined from medical records or tissue microarray evaluation, where 518 

available. Analyses were restricted to participants of European ancestry, as defined by 519 

ancestry informative principal components8,9. Where samples were genotyped on both 520 

arrays, we excluded the iCOGS sample as the OncoArray has better genome-wide 521 

coverage. After sample quality control (see below), data on 36,980 cases and 34,706 522 

controls with iCOGS genotyping, and 49,808 cases and 41,416 controls with OncoArray 523 

genotyping, were available for analysis (Supplementary Data 2).  524 

Arrays 525 

The Illumina iCOGs genotyping array8 includes 211,155 probes for SNVs and short 526 

insertions/deletions. Most variants were selected because of previous association in case-527 

control studies for breast prostate and ovarian cancers, or for dense mapping of regions 528 

harbouring an association. The OncoArray includes 533,631 probes, of which approximately 529 

half were selected from the Illumina HumanCore backbone, a set of SNPs designed to tag 530 

most common variants. The remainder were selected on the basis of evidence of previous 531 

association with breast, prostate, ovarian, lung or colorectal cancer risk. Approximately 532 

32,000 variants on the OncoArray were selected to provide dense coverage of associated 533 
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loci and known genes. The remainder were mostly selected from lists of common variants 534 

ranked by p-value, with a small number from lists of candidate variants.  535 

CNV Calling 536 

CNVs were called using the CamCNV pipeline as previously described16. In brief, the log R 537 

(LRR) intensity measurements and B allele frequency (BAF) for each sample at each probe 538 

were exported from Illumina’s Genome Studio software. A principal component adjustment 539 

(PCA) was applied to the LRR, grouped by study, to remove noise and batch effects. After 540 

removing noisy probes and those in regions with known common CNVs, the LRRs for each 541 

probe were converted to z-scores using the mean and standard deviation from all BCAC 542 

samples. Circular binary segmentation was applied to the z-scores ordered by probe position 543 

for each sample using the DNACopy package.18 This produces a list of segments for each 544 

sample by chromosome where the z-score of consecutive probes changes by more than two 545 

standard deviations.  Segments with a mean probe z-score between -3.7 and -14 were 546 

called as deletions and segments with a mean z-score between +2 and +10 as duplications. 547 

We restricted the calls to segments covering a minimum of three and a maximum of 200 548 

probes.  549 

As per the CamCNV pipeline, we then excluded deletions with inconsistent B Allele 550 

Frequency and CNVs with a shift in LRR at the sample level that was outside the expected 551 

range. The additional CNV exclusions are summarised in Supplementary Data 3. To exclude 552 

regions with a high level of noise we also excluded CNVs falling within 1Mb of telomeres and 553 

centromeres and a number of immune loci such as the T-cell receptor genes where somatic 554 

mutations in blood are often observed 19.  555 

Sample Quality Control 556 

Standard sample quality control exclusions were performed, as previously described for the 557 

SNP genotype analyses8,9. These include exclusions for excess heterozygosity, ancestry 558 

outliers, mismatches with other genotyping, and close relatives. A stricter sample call rate of 559 
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>99% was used for the CNV analysis, compared to >95% used in the genotype analyses. 560 

We also excluded any participants for whom a DNA sample was not collected from blood 561 

and any that had been whole genome amplified. 562 

In addition, we used two metrics to exclude noisy samples liable to produce an excess of 563 

unreliable CNV calls. First, we calculated a derivative log ratio spread (DLRS) figure for each 564 

sample as the standard deviation of the differences between LRR for probes ordered by 565 

genomic position, divided by the square root of two. This measures the variance in the LRR 566 

from each probe to the next averaged over the whole genome and thus is insensitive to large 567 

fluctuations such as might be expected between different chromosomes in the same sample. 568 

An ideal sample would have a small DLRS as the only variance would come from a small 569 

number of genuine CNVs. We calculated the DLRS using the dLRs function in R package 570 

ADM3 (https://CRAN.R-project.org/package=ADM3) before and after the PCA. At both 571 

stages we excluded samples with a DLRS more than 3.5 standard deviations above the 572 

mean DLRS for that study. 573 

Second, we counted the number of short segments (between three and 200 probes) output 574 

by DNACopy for each sample. We observed that the distribution of segment counts was 575 

skewed to the right with an excess of samples with a large number of segments. We 576 

calculated a cut-off for the maximum number of segments using the following formula where 577 

x is the segment count for each sample (based on the rationale that the distribution of the 578 

true number of segments should be approximately Poisson): 579 

y=2*sqrt(x) 580 

cut-off = median(y)+3.5 581 

The sample exclusions resulting from these QC steps are summarised in Supplementary 582 

Data 4. 583 

https://cran.r-project.org/package=ADM3
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Association Tests 584 

All analyses were carried out separately for deletions and duplications, since different types 585 

of CNV at the same locus do not necessarily have the same effect on risk. As we were only 586 

assessing rare CNVs, we treated all carriers as heterozygotes and did not attempt to identify 587 

rare homozygotes. 588 

To account for overlapping CNVs and imprecision in the breakpoints, we assigned individual 589 

CNVs to regions. To identify the regions, we moved sequentially along each chromosome, 590 

identifying the start as an Oncoarray probe position where deletions were observed in at 591 

least five samples, and then the end position as the probe position before the first probe 592 

where deletions were observed in fewer than five samples. Regions within five probes of 593 

each other were then merged together. The process was repeated for duplications. Regions 594 

were also merged such that the major susceptibility genes (BRCA1, BRCA2, CHEK2) were 595 

included within a single region. We then assigned individual CNVs to regions where at least 596 

90% of the CNV’s length fell within the region. For iCOGS, which generally has less dense 597 

probe coverage, we first assigned CNVs to the OncoArray regions where they showed > 598 

90% overlap. We then assigned any remaining CNVs to regions defined using the iCOGS 599 

probes, using the same procedure.  Using this approach, 3,306 deletion regions were 600 

identified from OncoArray data, 812 of which were also observed using iCOGS data, and 601 

541 regions identified using iCOGS alone. For duplications there were 2,203 OncoArray 602 

regions, with 854 also observed using iCOGS data, and 483 iCOGS specific regions. 603 

Associations were evaluated for each region using logistic regression, with breast cancer 604 

status as the outcome, and the presence of a CNV in the region (0 or 1) as a covariate to 605 

derive a log odds ratio per deletion/duplication. Statistical significance was evaluated using a 606 

likelihood ratio test (based on the above model and one excluding CNV as a covariate). The 607 

logistic regression analyses were conducted using in-house software 608 

(https://ccge.medschl.cam.ac.uk/software/mlogit/). Study and ten ancestry informative 609 

principal components, defined separately for each array, were also included as covariates. 610 

https://ccge.medschl.cam.ac.uk/software/mlogit/
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The analyses were conducted separately for the iCOGS and OncoArray and then combined 611 

in a standard fixed effect meta-analysis using the METAL software (after first deriving the 612 

standard error of the  log-odds ratio from the likelihood test statistic)20. To avoid regions with 613 

too few observations, we excluded regions with fewer than 24 deletions or duplications 614 

(~0.015% of samples). Associations significant at P<0.001 were considered noteworthy. 615 

To detect more precisely the location of association signals, we also generated results for 616 

each probe. We created a vector of pseudo-genotypes for each probe with samples, such 617 

that a deletion covering that probe was coded as 1 and all other samples were coded as 0. 618 

We generated a similar set of genotypes for duplications. The results were analysed using 619 

logistic regression, as above. 620 

To test for association between CNVs affecting the coding sequence of genes, in aggregate, 621 

and breast cancer risk, we identified samples with a deletion or duplication overlapping the 622 

exons of each gene. Exon positions were downloaded from the UCSC Genome Browser 623 

hg19 knownGene table. We used logistic regression to generate a log odds ratio (OR) for 624 

carriers of coding variants covering each gene, adjusted for study, as above. We generated 625 

results for each array and then for carriers combined across both arrays. For the combined 626 

analyses we treated studies with samples on both arrays as separate studies.  627 

To calculate Bayesian False Discovery Probabilities (BFDPs) we assumed a log-normally 628 

distributed prior effect size as described by Wakefield21. The prior log(OR) was determined 629 

by assuming a 95% probability that the OR was less than some bound K, where K=3 for the 630 

regional and gene-based analysis, except for BRCA1 and BRCA2 where K=20 was 631 

assumed. The prior probability of association was assumed to be 0.001 for the regional 632 

analysis, 0.99 for BRCA1, BRCA2, ATM and CHEK2 and 0.002 for other genes. For the 633 

gene-based analysis only positive associations were considered as the prior evidence for all 634 

genes was in favour of PTVs being positively associated with risk. 635 
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To determine whether there was a tendency for CNVs to be associated with an excess, or 636 

deficit, of risk across genes or regions, we computed signed z-scores as the square root of 637 

the chi-squared statistic for each gene, multiplied by 1 depending on whether the effect 638 

estimate was positive or negative. These were ranked and normalised summed z-scores, 639 

based on the r most significant associations, were derived. The overall test statistic was the 640 

maximum summed z-score over all possible values of r:  641 

Equation 1: 642 

  
   
   

 

√ 
∑  

 

   

 

Where n  is the total number of genes/regions being tested. The significance of U was then 643 

determined by permutation, randomly permuting case-control labels within study 50 times. 644 

 645 

Ethical Approval  646 

All participating studies were approved by their appropriate ethics review board and all 647 
subjects provided written informed consent. 648 
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Tables 649 

Table 1. CNVs associated with overall risk 650 

Type Locus Chr. 

Start 

(Build37) End 

Total 

Carriers 

Odds 

Ratio 

Lower 

CI 

Upper 

CI 

Direction 

(OncoArray, 

iCOGs) P-value 

Deletion BRCA1 17 41188342 41363651 195 6.27 4.02 9.79 ++ 6.32E-16 

Deletion Intergenic_FGFR2_ATE1 10 123435817 123461066 630 1.42 1.21 1.67 ++ 1.42E-05 

Deletion Intergenic_ADCY8_EFR3A 8 132199447 132250643 42 4.88 2.24 10.61 ++ 6.36E-05 

Deletion KLHL1 13 70652321 71029916 1761 0.85 0.77 0.92 -- 2.31E-04 

Deletion CHEK2 22 29083731 29123846 141 1.94 1.35 2.79 ++ 3.26E-04 

Deletion SUPT3H 6 44908728 45244478 32 0.23 0.1 0.52 -? 4.25E-04 

Deletion Intergenic_GALNT1_C18orf21 18 33350917 33359197 123 1.92 1.32 2.78 ?+ 6.24E-04 

Duplication 17p13.3_VPS53;NXN 17 13905 1559829 577 0.69 0.59 0.82 -- 1.08E-05 

Duplication 21q22.11_HUNK_LINC00159 21 33410933 33863246 102 2.23 1.47 3.38 ++ 1.48E-04 

 651 

  652 
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Table 2. Subtype associations for deletions 653 

Subtype Locus Chr. Start 

(Build37) 

End Total 

Carriers 

Odds 

Ratio 

Lower 

CI 

Upper 

CI 

Direction 

(OncoArray, 

iCOGs) 

P-value 

ER Positive Intergenic_FGFR2_ATE1 10 123435817 123461066 478 1.52 1.27 1.81 ++ 5.04E-06 

ER Positive CHEK2 22 29091788 29102967 79 2.36 1.56 3.44 ++ 3.03E-05 

ER Positive ITGBL1 intronic 13 102122905 102133221 58 3.29 1.83 5.92 +? 7.29E-05 

ER Positive Intergenic_ADCY8_EFR3A 8 132199447 132250643 31 4.95 2.20 11.30 ++ 1.07E-04 

ER Positive BRCA1 17 41188342 41363651 57 2.81 1.55 5.08 ++ 6.41E-04 

ER Negative BRCA1 17 41188342 41363651 112 27.03 15.66 46.67 ++ 2.62E-32 

ER Negative Intergenic:ABCC4_CLDN10 13 95991263 96004144 134 2.16 1.43 3.26 +? 2.46E-04 

ER Negative KLF12 intronic 13 74356683 74357984 93 2.39 1.49 3.82 +? 2.89E-04 

ER Negative Intergenic_DPP10_DDX18 2 118258797 118389164 44 3.34 1.64 6.80 ++ 8.84E-04 

Triple Neg. BRCA1 17 41188342 41363651 72 40.55 21.70 75.76 ++ 3.64E-31 

Triple Neg. Intergenic_DPP10_DDX18 2 118258797 118389164 40 6.56 2.83 15.18 ++ 1.13E-05 

Triple Neg. Intergenic_DPP10_DDX18 2 117973154 118107795 48 4.54 1.88 10.97 ++ 7.92E-04 

 654 

  655 
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Table 3. Subtype associations for duplications 656 

Subtype Locus Chr. Start 

(Build37) 

End Total 

Carriers 

Odds 

Ratio 

Lower 

CI 

Upper 

CI 

Direction 

(OncoArray, 

iCOGs) 

P-value 

ER Positive 17p13.3_VPS53;NXN 17 13905 1559829 454 0.67 0.55 0.81 -- 4.44E-05 

ER Positive 21q22.11_HUNK_LINC00159 21 33410933 33863246 77 2.55 1.6 4.06 ++ 7.88E-05 

ER Positive 15q13 15 28440287 32797352 1250 0.83 0.75 0.93 -- 6.95E-04 

ER Negative BRCA1 17 41188342 41363651 42 5.93 2.31 15.19 +- 2.09E-04 

Triple Neg. BRCA1 17 41188342 41363651 35 10.80 3.33 35.02 +- 7.29E-05 

Triple Neg. Intergenic_TMC3_MEX3B 15 81960409 82104822 231 2.39 1.55 3.71 ++ 9.25E-05 

 657 
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Table 4. Gene burden results for deletions 658 

Gene Cases  Controls Odds 

Ratio 

Lower 

CI 

Upper 

CI 

P-value 

BRCA1 171 22 7.66 4.84 12.13 3.72E-18 

CHEK2 103 48 1.83 1.29 2.61 7.66E-04 

SUPT3H 10 25 0.27 0.13 0.59 9.24E-04 

PCDHGB2 25 3 7.03 2.10 23.52 1.55E-03 

MEAK7 59 24 2.19 1.34 3.58 1.66E-03 

ATM 35 8 3.43 1.56 7.51 2.11E-03 

MAD1L1 54 25 2.00 1.23 3.26 5.53E-03 

NPHP1 477 351 1.22 1.06 1.41 6.13E-03 

ZNF320 29 7 3.28 1.39 7.73 6.63E-03 

BRCA2 65 33 1.81 1.17 2.81 7.82E-03 

 659 

Table 5. Gene burden results for duplications 660 

Gene Cases  Controls Odds 

Ratio 

Lower 

CI 

Upper 

CI 

P-value 

VPS53 40 65 0.50 0.33 0.75 9.46E-04 

ATP12A 48 66 0.57 0.39 0.84 3.97E-03 

USP18 12 23 0.34 0.17 0.71 4.16E-03 

RPS6KA2 10 22 0.32 0.14 0.70 4.20E-03 

RSU1 21 8 3.40 1.47 7.84 4.23E-03 

AC008132.1 7 17 0.26 0.10 0.66 4.49E-03 

PNPLA4 479 346 1.23 1.06 1.42 5.30E-03 

NLGN4X 291 320 0.79 0.67 0.93 5.55E-03 

ZNF439 31 9 2.98 1.37 6.45 5.72E-03 

TRIM6 5 19 0.24 0.09 0.67 6.34E-03 

RP11.363G10.2 13 27 0.39 0.20 0.78 7.39E-03 

USP31 7 18 0.30 0.12 0.73 8.02E-03 
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TRDN 15 29 0.42 0.22 0.80 8.26E-03 

ABR 51 69 0.61 0.42 0.88 8.88E-03 

DNAJC15 109 67 1.52 1.11 2.09 9.29E-03 

 661 

Table 6. Direction of Effect Results 662 

Category Analysis 

ustat 

Max.ustat of 

50 

simulations 

Min. ustat of 

50 

simulations 

Simulations with 

larger/smaller 

ustat  

P-value 

Deletion regions 9.48 6.96 -7.81 0 0.04 

Deletion regions 

minus known
1
 

5.9 6.96 -7.81 2 0.12 

Duplication regions -9.2 6.54 -6.99 0 0.04 

Gene Deletions 9.18 5.64 -9.67 0 0.04 

Gene Deletions 

minus known
2
 

5.01 5.64 -9.67 4 0.20 

Gene Duplications -4.33 5.96 -11.26 33 1.29 

1. BRCA1, CHEK2 regions excluded; 2. BRCA1, CHEK2, ATM, BRCA2 removed. 663 

  664 
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Figures 665 

Figure 1: Flow diagram showing the calling and analysis pipeline. 666 

Figure 2. QQ plots for association of deletion regions (a), duplication regions (b), gene 667 

burden analysis for deletions (c) and gene burden for duplications (d). 668 

Figure 3. Plot of log odds ratios for probes within the 17p13.3 duplication region showing 669 

genes and 1000 Genomes CNVs from Ensembl.  670 
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