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Reading acquisition involves learning individual printed 
words as well as the underlying regularities of a writing 
system. These regularities are characterizations of how 
the visual symbols of writing map onto the sounds and 
meanings of spoken language. One important regularity 
in alphabetic writing systems is the relationship between 
spellings and sounds (e.g., the letter “B” maps onto the 
sound /b/). There has been substantial interest in how 
we acquire this spelling-to-sound mapping (e.g., Seymour, 
Aro, Erskine, & COST Action A8 Network, 2003), but 
there are also powerful regularities between spelling 
and meaning conveyed through morphology (e.g., “-ed” 
at the end of a word indicates the past; Ulicheva, Harvey, 
Aronoff, & Rastle, 2020). Literate individuals use knowl-
edge of both spelling-to-sound and spelling-to-meaning 
regularities to generalize, that is, to interpret words that 
they have not seen before, such as when pronouncing 
a nonword (e.g., “chilb”) or understanding an unfamil-
iar word (e.g., “TikTokker”).

There is wide agreement that learning these regulari-
ties is vital in reading acquisition, but there is also pro-
found and long-standing debate about how this learning 
should be supported (e.g., Castles, Rastle, & Nation, 
2018). One approach advocates explicit instruction of 
the regularities. For example, in systematic phonics 
training, a child may be taught that “D” makes the sound 
/d/ and then asked to read aloud examples such as 
“dog,” “dad,” and “dig.” An alternative approach suggests 
that these regularities may be discovered without explicit 
instruction, simply through text experience. Discovery 
learning is an important concept within constructivism 
(e.g., Bruner, 1961), in which it is argued that “knowl-
edge [that] students construct on their own . . . is more 
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valuable than the knowledge that is modeled for them; 
told to them; or shown, demonstrated, or explained to 
them” (Loveless, 1998, pp. 285–286). This view is fre-
quently articulated in the popular media; for example, 
Michael Rosen, former Children’s Laureate of the United 
Kingdom, has argued that children discover regular pat-
terns for themselves through experience and may there-
fore not require explicit instruction:

We sit with our children reading whole books, 
talking about them, sometimes pointing at whole 
words, sometimes at letters. We sit with them 
writing shopping lists, labelling things in their 
rooms, doing texting on phones, planning holidays 
looking at pictures and reading out the names of 
places . . . these are ways in which many people 
. . . have learned in part or whole how to read. 
(Rosen, 2013, para. 19)

The notion that regular patterns may be discovered 
through text experience appears consistent with a vast 
body of research on statistical learning. One of the most 
important findings of the past 20 years of psychological 
research is that infants (e.g., Saffran, Aslin, & Newport, 
1996) and adults (e.g., Siegelman & Frost, 2015) extract 
information about regularities in the environment. These 
demonstrations of statistical learning tend to be rather 
circumscribed (Frost, Armstrong, & Christiansen, 2019), 
although there is evidence that similar learning pro-
cesses arise in reading acquisition. Training studies 
demonstrate that children (Apfelbaum, Hazeltine, & 
McMurray, 2013) and adults (Taylor, Davis, & Rastle, 
2017) can discover simple underlying regularities 
through experience with whole words and use this 
knowledge to generalize. Similarly, studies of general-
ization in children (Treiman & Kessler, 2019) and adults 
(Ulicheva et al., 2020) reveal knowledge of statistical 
regularities in the writing system that are not often 
taught explicitly, such as context-sensitive spelling-to-
sound regularities (e.g., the pronunciation of initial “G” 
is influenced by the following vowel) and morphologi-
cal regularities (e.g., word-final “-ous” conveys adjective 
status). Finally, the most sophisticated models of read-
ing acquisition learn underlying regularities through 
experience with whole words (e.g., Harm & Seidenberg, 
2004).

Remarkably little is known about how explicit 
instruction influences the learning of underlying regu-
larities beyond these basic statistical-learning processes. 
Several artificial-language-learning studies have shown 
benefits of explicit instruction in acquiring knowledge 
of underlying patterns. However, design issues limit the 
conclusions that can be drawn. Many of these studies 
included few trained items (between 4 and 18) paired 

with features that may hinder discovery processes, such 
as use of visual symbols in as few as one word (Bishop, 
1964; Jeffrey & Samuels, 1967) or inclusion of highly 
complex mappings in which two or three symbols were 
combined in different orders to represent single pho-
nemes within a word (Bitan & Booth, 2012; Bitan & 
Karni, 2003). Other studies used training and testing 
protocols that do not resemble reading experience, 
such as short periods of passive exposure (Yoncheva, 
Blau, Maurer, & McCandliss, 2010) or use of forced-
choice tests to probe generalization (Bitan & Booth, 
2012; Bitan & Karni, 2003). The instruction manipula-
tion in another study was confounded with the nature 
of the writing system; instructed participants learned a 
systematic writing system, but discovery-learning par-
ticipants learned an arbitrary writing system (Yoncheva, 
Wise, & McCandliss, 2015). Finally, several of these 
studies had low participant numbers (e.g., 9; Bitan & 
Karni, 2003), and none accounted for item-based varia-
tion in the analysis of behavioral data.

The present study simulated the impact of explicit 
instruction on learning to read. We trained two groups 
of adults to read novel words in two artificial alphabets 
comprising different underlying spelling–sound and 
spelling–meaning regularities. Both groups received 10 
days of training on learning to read 48 novel words, 
but for one group, the initial day of orthography train-
ing was substituted for a short session of explicit 
instruction on the structure of the two writing systems. 

Statement of Relevance 

Learning to read is the most important milestone 
of a child’s education, but there is profound debate 
about how reading should be taught. We report a 
laboratory simulation of reading acquisition in which 
adults, over a period of 10 days, learned to read 
new words printed in unfamiliar writing systems. 
One group received explicit instruction about the 
structure of the writing systems before training, and 
one group discovered this structure through their 
reading experience. Both groups learned the trained 
words to a high standard over approximately 18 
hr of training. However, instruction had a dramatic 
impact on participants’ ability to read and understand 
new, untrained words; less than 25% of discovery 
learners achieved the same standard as those who 
had received explicit instruction. These findings 
have important implications for literacy policy and 
practice because they suggest that providing explicit 
instruction may be transformative in helping all 
learners to become skilled readers.
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Behavioral tests administered at the end of training 
assessed how this short period of explicit instruction 
influenced participants’ learning of underlying regulari-
ties, as well as their retention of the individual trained 
items.

Method

Data availability

Stimulus materials, instructions, trial-level data, and 
analysis scripts are available on OSF (https://osf.io/
rtx5j/).

Design

The study had a 2 × 2 design manipulating two factors: 
group and semantic marker. The group factor was 
manipulated between participants and referred to the 
nature of instruction received; one group received 
explicit instruction on the underlying regularities of the 
writing system (explicit-instruction group), whereas the 
other group discovered these regularities through expe-
rience with whole words (discovery-learning group). 
The semantic-marker factor was manipulated within 
participants and referred to the nature of the artificial 
alphabet learned. Both participant groups learned to 
read novel words printed in two artificial alphabets. 
Novel words were always composed of four symbols, 
and the final symbol was silent. In one of the alphabets, 
the final symbol of each word referred to its semantic 
category (systematic language); in the other alphabet, 
the final symbol of each word was meaningless (arbi-
trary language). The other symbols within both alpha-
bets mapped consistently to the sounds within each 
novel word.

Participants

Participants were 50 native-English speakers (39 
women) between the ages of 18 and 35 years from 
Royal Holloway, University of London. Participants 
reported no history of language or literacy impairment 
and were paid for their time. Twenty-four participants 
were assigned to the discovery-learning condition, and 
26 were assigned to the explicit-instruction condition. 
One participant from the explicit-instruction condition 
dropped out of the study following pretraining, and 
another from this condition was excluded from all anal-
yses because of noncompliance (i.e., chance-level per-
formance on button-press tasks coupled with very rapid 
responding). Participants in the discovery-learning con-
dition were involved in 2 days of MRI scanning follow-
ing training; data from those MRI scans are reported by 
Taylor, Davis, and Rastle (2019). Participant numbers 

were based on our previous artificial-language-learning 
research (N = 24; Taylor et al., 2017), in which partici-
pants showed good item-based learning following 10 
days of training on 48 novel words printed in two arti-
ficial alphabets. Though we did not have a reliable 
estimate of the size of the between-groups instruction 
manipulation, we have shown in previous artificial-
language-learning studies using these same participant 
numbers that between-groups effects can be observed 
(Lally, Taylor, Lee, & Rastle, 2019).

Materials

Twenty-four novel words were designed in each of two 
artificial alphabets. These novel words were associated 
with phonological and semantic forms (see Fig. 1 for 
examples).

Phonological forms. Twenty-four consonant-vowel-
consonant phonological forms were constructed for each 
of two languages. They were built from eight consonants 
(/b/, /f/, /g/, /m/, /p/, /t/, /v/, /z/) and eight vowels, four 
of which were used in each language (/ԑ/, /Ʌ/, /ai/, /ƏƱ/ 
and /æ/, /ɒ/, /i/, /u/). Consonants occurred three times 
in onset and coda positions for each language, and vow-
els occurred six times each. Stimuli were recorded by a 
female native-English speaker at a sampling rate of 44.1 
kHz.

Orthographic forms. Twenty visual symbols were 
selected from each of two archaic scripts (Hungarian 
runes and Georgian Mkhedruli). Sixteen of the symbols 
from each script were associated with the 16 phonemes 
comprising the novel words. The other four symbols for 
each script were silent, and each occurred in the final 
position of six novel words. Orthographic forms of each 
trained word were constructed using the symbols from 
both scripts, and the assignment of script to language 
was counterbalanced across participants.

Semantic forms. Two sets of 24 color pictures depicting 
familiar objects were selected. Each set comprised six 
exemplars in each of four categories: animal, fruit or veg-
etable, vehicle, and tool. For the systematic language, 
each of the four final silent symbols was associated with 
one semantic category. For the arbitrary language, the 
assignment of final symbol to semantic category was ran-
dom. Semantic markers (usually termed semantic classifiers) 
are frequently encountered in East Asian languages (e.g., 
Bengali, Burmese, Chinese, Japanese, Thai, Vietnamese) and 
can denote properties such as number, animacy, shape, 
function, and orientation. The assignment of object set to 
language and the assignment of orthography to the sys-
tematic/arbitrary distinction was counterbalanced across 
participants.

https://osf.io/rtx5j/
https://osf.io/rtx5j/
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Fig. 1. Training and testing protocol. The training tasks were constructed to build knowledge of individual novel words 
and were accompanied by feedback on every trial. The test tasks probed both knowledge of the trained novel words 
(reading aloud, saying the meaning, recognition memory, auditory-semantic matching) and knowledge of underlying 
regularities used to generalize (nonword reading aloud, semantic generalization).
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Test-task items. Three additional sets of 24 items were 
constructed in each language for the test tasks. The first 
set (recognition-memory phonological distractors) changed 
only the vowel, the second set (recognition-memory 
semantic distractors) changed only the final symbol, and 
the third set (nonword reading aloud and semantic gener-
alization) changed both the vowel and final symbol.

Procedure

The training and testing protocol is displayed in Figure 
1. Participants completed 11 consecutive days of behav-
ioral training and testing (hereafter, referred to as ses-
sions) with breaks for weekends. Session 0 involved 
spoken-language training, Sessions 1 through 9 involved 
orthography training, and Session 10 involved testing. 
The training tasks were designed to build participants’ 
knowledge of the novel words. The test tasks were 
designed to probe both knowledge of the novel words 
and knowledge of the underlying regularities in the writing 
systems. Stimulus presentation and data recording were 
controlled by E-Prime software (Version 2.0; Schneider, 
Eschman, & Zuccolotto, 2012). Choice responses were 
collected via key press or mouse click, whereas spoken 
responses were recorded and manually coded for accu-
racy off-line.

Spoken-language training (Session 0). Participants 
learned sound–meaning associations for the novel words 
in each language. The words in each language were 
divided into four blocks of six words, and participants 
completed three runs of each block. Blocks consisted of 
training trials, in which participants saw a picture of each 
item while hearing its pronunciation, followed by two 
types of testing trial, in which they verbally produced the 
spoken form for a picture and verbally produced the 
English meaning for a spoken form.

Instruction (Session 1). Instead of orthography train-
ing, the explicit-instruction group participated in a short 
instruction session. They first received a PowerPoint pre-
sentation showing how the visual symbols in the two 
languages mapped to sounds and meanings. They then 
received four runs of phonics training. In the first run, 
each visual symbol was displayed with its sound. In the 
subsequent three runs, participants were prompted to 
produce the sound in response to each visual symbol; 
they then heard the correct sound as feedback. Finally, 
for the systematic language, they completed one run of 
symbol-to-picture matching and one run of picture-to-
symbol matching (both with feedback). The experiment 
was otherwise identical for the two groups.

Orthography training (Sessions 1–9 or 2–9). Orthog-
raphy training was provided for approximately 90 to 120 

min per day and comprised four tasks. Orthographies 
were presented in alternating blocks during the training 
tasks, and the order of tasks varied across days. Partici-
pants received the correct answer on every trial for every 
task following their response.

The first training task was reading aloud (24 trials, 
four repetitions per orthography). Participants were 
shown each printed word in a randomized order and 
asked to read it aloud. In Session 1 for the discovery-
learning group and Session 2 for the explicit-instruction 
group, the first block involved seeing the written form 
and hearing and repeating the spoken form. The second 
task was saying the meaning (24 trials, four repetitions 
per orthography). Participants were shown each printed 
word and asked to say its meaning. In Session 1 for 
the discovery-learning group and Session 2 for the 
explicit-instruction group, the first block involved seeing 
the written form and hearing and repeating the mean-
ing. The third task was orthographic search (48 trials 
per orthography). Participants saw a picture and then 
selected the orthographic form from a grid of 24 items; 
they then completed the task in reverse. The final train-
ing task was meaning judgment (72 trials per orthog-
raphy). Participants read a sentence describing the 
appearance, function, location, or taste of an item and 
selected the appropriate trained word from a selection 
of four orthographic forms. Orthographic forms included 
the target, a same-category distractor, and two distrac-
tors from another semantic category.

Testing (Session 10). Participants completed six test 
tasks for each language. Each trained item was presented 
only once in each task (the exception was recognition 
memory, in which trained items were presented twice to 
yield equal numbers of “yes” and “no” responses), and no 
feedback was provided. Items within test tasks were pre-
sented in randomized order for each participant, and lan-
guages were presented in separate blocks for all test 
tasks.

The first test task was reading aloud, in which par-
ticipants read aloud each of the 24 trained novel words 
for each language, and the second was saying the 
meaning, in which participants produced the English 
meaning of each of the 24 trained novel words for each 
language. In the third test task, nonword reading aloud, 
participants read aloud 24 untrained novel words for 
each language. This task assessed participants’ knowl-
edge of underlying spelling–sound regularities. The 
fourth test task was recognition memory, in which par-
ticipants decided whether or not they had previously 
studied visually presented items. The fifth was auditory-
semantic matching, in which participants heard the 
spoken form of each trained novel word and decided 
to which of four semantic categories it belonged. In the 
sixth task, semantic generalization, participants saw 24 
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untrained novel words from each language and decided 
to which of four semantic categories they belonged. 
This task probed participants’ knowledge of underlying 
spelling–meaning regularities. Participants completed 
this task for both languages, although there was no 
correct answer for the arbitrary language.

Results

Training and test data were analyzed using the lme4 
package for generalized mixed models (Version 1.1-20; 
Bates, Mächler, Bolker, & Walker, 2015) in the R pro-
gramming environment (Version 3.5.2; R Core Team, 
2016). Models were specified in a hypothesis-driven 
manner by including fixed factors of interest for each 
training and test task. These typically included group 
(discovery learning vs. explicit instruction), semantic 
marker (systematic vs. arbitrary), and session. Random 
factors for participants were included in each analysis. 
The extensive counterbalancing of stimuli meant that 
there was no single factor able to capture item-based 
variation. Instead, we included spoken word, script, 
and meaning as random factors, as appropriate. βs and 
odds ratios (ORs) are used to report effect sizes. β is 
the logit-transformed fixed-effect coefficient, which 
refers to the estimated difference between conditions 
after analyses controlled for random effects. OR (derived 
from β) measures the difference in odds of being cor-
rect (vs. incorrect) in one level of a fixed effect com-
pared with another. For fixed effects of group, OR 
compares the odds of being correct (vs. incorrect) in 
the explicit-instruction group relative to the discovery-
learning group (e.g., OR = 5.0 would mean that the 
odds of being correct are five times greater for the 
explicit-instruction group relative to the discovery-
learning group; Osborne, 2008). The same principle 
applies when comparing items with systematic markers 
relative to arbitrary markers. For fixed effects of ses-
sion, OR denotes the change in odds for participants 
being correct (vs. incorrect) for every additional train-
ing session.

In the following section, we summarize the results 
of analyses relating to our training and test tasks and 
supplement these with figures displaying average per-
formance and variability. Readers interested in further 
details about model construction and the random-
effects structure may access data, analysis scripts, and 
full output of the models on OSF (https://osf.io/rtx5j/).

Spoken-language training (Session 0)

Analyses treated group as a fixed factor and participant, 
spoken word, and meaning as random factors. Results 
showed that participants in the discovery-learning and 
explicit-instruction groups learned the spoken words 

to a moderate degree of accuracy; there were no sig-
nificant differences between groups either in the saying-
the-meaning component (proportion correct = .63 vs 
.64, respectively; β = 0.12, OR = 1.13, SE = 0.32, Z = 
0.38, p = .704) or in the saying-the-spoken-form com-
ponent (proportion correct = .62 vs .67, respectively;  
β = 0.38, OR = 1.46, SE = 0.31, Z = 1.22, p = .222) of 
the task.

Orthography training (Sessions 1–9)

Results for orthography-training tasks are displayed in 
Figure 2. Analyses of all training tasks included group, 
semantic marker, and session as fixed factors and par-
ticipant, spoken word, meaning, and script as random 
factors. Note that the explicit-instruction group did not 
participate in the orthography training in Session 1.

Reading aloud. Performance on the reading-aloud 
training task is shown in Figure 2a. Participants in the 
explicit-instruction group showed superior reading-aloud 
accuracy (β = 1.39, OR = 4.01, SE = 0.44, Z = 3.14, p = 
.002). Performance improved across sessions (β = 0.46, 
OR = 1.58, SE = 0.01, Z = 62.04, p < .001), although this 
improvement was more pronounced in the discovery-
learning group (Session × Group interaction, β = −0.34, 
OR = 0.71, SE = 0.01, Z = −27.87, p < .001) because per-
formance of the explicit-instruction group was near ceil-
ing from the beginning of training. Finally, there was a 
significant effect of semantic marker (β = 0.18, OR = 1.20, 
SE = 0.03, Z = 5.95, p < .001), although the systematicity 
advantage was greater in the discovery-learning group 
(Semantic Marker × Group interaction, β = −0.28, OR = 
0.75, SE = 0.05, Z = −5.18, p < .001). This may indicate 
that although the explicit-instruction group was aware 
that the final symbol was silent for both languages, the 
discovery-learning group was more likely to discover that 
the final symbol was silent in the systematic language 
than in the arbitrary language, and this information sup-
ported their reading-aloud performance.

Saying the meaning. Performance on the saying-the-
meaning training task is shown in Figure 2b. Performance 
improved across sessions (β = 0.54, OR = 1.72, SE = 0.01, 
Z = 73.20, p < .001). There was also evidence that partici-
pants in the explicit-instruction group were able to use 
knowledge of the final symbol to improve their performance 
(Semantic Marker × Group interaction, β = 0.60, OR = 1.82, 
SE = 0.05, Z = 12.24, p < .001). This contrasts with the reading-
aloud results; in this task the explicit-instruction group used 
information about the semantic marker to improve perfor-
mance for the systematic language because the instruction 
indicated that the final symbol was relevant to meaning for 
that language. There were no other significant effects or 
interactions.

https://osf.io/rtx5j/
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Orthographic search. Performance on the orthographic-
search training task is shown in Figure 2c. Performance 
was collapsed for simplicity across the two components 
of the orthographic-search task (selecting a picture and 
selecting the orthographic form), so trials from both of 
these components were included in the same model. Per-
formance improved across sessions (β = 0.46, OR = 1.59, 

SE = 0.01, Z = 47.83, p < .001). There was also evidence 
that performance was superior when there was a system-
atic semantic marker (β = 0.11, OR = 1.11, SE = 0.04, Z = 
2.61, p = .009), although this effect was more pronounced 
in the explicit-instruction group (Semantic Marker × 
Group interaction, β = 0.61, OR = 1.84, SE = 0.07, Z = 8.96, 
p < .001). Once again, the explicit-instruction group used 
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information about the final symbol in this task because 
they knew it was relevant to meaning. There were no 
other significant effects or interactions.

Meaning judgment. Performance on the meaning-
judgment training task is shown in Figure 2d. Performance 
improved across sessions (β = 0.29, OR = 1.34, SE = 0.01, 
Z = 42.96, p < .001), although improvement was steeper 
in the discovery-learning group (Group × Session inter-
action, β = −0.04, OR = 0.96, SE = 0.01, Z = −3.38, p < 
.001) because the explicit-instruction group was more 
accurate from the beginning of training. As in the other 
meaning-based tasks, there was evidence that participants 
in the explicit-instruction group used their knowledge of 
the final symbol to improve performance (Semantic 
Marker × Group interaction, β = 0.40, OR = 1.49, SE = 
0.05, Z = 7.64, p < .001). There were no other significant 
effects or interactions.

Instructional time. The data in Figure 2 suggest that 
participants in both groups learned the trained items to a 
high degree of accuracy by Session 9 and that perfor-
mance on some tasks was superior earlier in training for 
the explicit-instruction group. However, it is also possible 
to interpret the training data in a different manner, by 
asking how many sessions it took for participants to 
reach a good standard of accuracy and whether this was 
influenced by instruction. The horizontal boxplots in Fig-
ure 2 display the mean session number at which accu-
racy reached 75% for each instruction group, and the 
data points around the boxplots refer to individual per-
formance. Session 1 was the first day of orthography train-
ing for the discovery-learning group; Session 2 was the 
first day of orthography training for the explicit-instruc-
tion group (these participants had received instruction in 
lieu of orthography training in Session 1). We considered 
only the systematic language, as this is the language in 
which the impact of instruction should be greatest.

The explicit-instruction group required fewer ses-
sions on average to reach 75% correct performance on 
all four tasks. However, when data were analyzed using 
between-subjects t tests, this difference in instruction 
time reached statistical significance only in the reading-
aloud task, t(46) = −2.34, p = .024, d = 0.68. Differences 
were not statistically significant in the saying-the-mean-
ing task, t(46) = −1.53, p = .132, d = 0.44; orthographic-
search task, t(46) = −1.51, p = .138, d = 0.44; or 
meaning-judgment task, t(46) = −1.27, p = .211, d = 
0.37. It may be that explicit instruction on regular pat-
terns in the writing system impacts the speed of learn-
ing new words when the task can be achieved through 
knowledge of those regular patterns (as is the case for 
reading aloud). Explicit instruction provided no signifi-
cant reduction in instruction time for those tasks that 

required at least some degree of specific item-based 
knowledge.

Testing (Session 10)

Performance on the nonword-reading-aloud task and 
semantic-generalization task is shown in Figure 3. 
These test tasks provide an index of participants’ learn-
ing of spelling–sound and spelling–meaning regularities 
within the writing systems. Figure 3 displays group-
level performance and performance of individual par-
ticipants averaged across systematic and arbitrary 
languages in the nonword-reading-aloud task and for 
the systematic language only in the semantic-general-
ization task (there was no correct answer for the arbi-
trary language in this task).

Nonword reading aloud. Performance on the non-
word-reading-aloud test task is shown along the x-axis of 
Figure 3 (averaged across systematic and arbitrary lan-
guages). Performance is broken down further into system-
atic and arbitrary languages in Figure S1 in the Supplemental 
Material available online. Analyses included group and 
semantic marker as fixed factors and participant, spoken 
word, and script as random factors. Critically, perfor-
mance was superior in the explicit-instruction group (β = 
1.45, OR = 4.24, SE = 0.73, Z = 1.99, p = .047). The OR for 
this result indicates that the odds of being correct (vs. 
incorrect) were more than four times greater in the 
explicit-instruction group relative to the discovery-learning 
group. There was also a positive influence of the system-
atic semantic marker on reading-aloud performance (β = 
0.47, OR = 1.60, SE = 0.22, Z = 2.13, p = .033; see Fig. S1). 
Though there was no interaction with group, this effect 
of semantic marker appears to be driven by performance 
in the discovery-learning group. In accordance with our 
interpretation of the results in the reading-aloud training 
task (Fig. 2a), we believe that this suggests that partici-
pants in the discovery-learning group were more likely to 
learn that the final symbol was silent in the systematic 
language than in the arbitrary language, and they used 
this information to improve performance on the non-
word-reading-aloud task. There were no other significant 
effects or interactions.

Semantic generalization. Performance on the seman-
tic-generalization test task is shown along the y-axis of 
Figure 3 (systematic language only; there was no correct 
answer for the arbitrary language in this task). Analyses 
on the systematic language included group as a fixed fac-
tor and participant and spoken word as random factors. 
Critically, performance was again superior in the 
explicit-instruction group (β = 7.77, OR = 2,374.25, 
SE = 1.52, Z = 5.12, p < .001). The OR for this result 



The Dramatic Impact of Explicit Instruction 479

indicates that the odds of being correct (vs. incorrect) 
were many times greater in the explicit-instruction group 
relative to the discovery-learning group. Data plotted in 
Figure 3 indicate that nearly half of the discovery-
learning participants performed at chance in this task, 
but performance was at ceiling for all participants in the 
explicit-instruction group.

Data provided in Figure 3 reveal that nearly all 
participants in the explicit-instruction group performed 
at ceiling on both tasks, indicating that they had 
learned the underlying spelling–sound and spelling–
meaning regularities of the writing system. Perfor-
mance of the discovery-learning group was clearly 
very different. Despite having up to 18 hr of orthog-
raphy training on the 48 novel words over a 2-week 
period, very few of the discovery-learning participants 
uncovered both forms of regularity to a sufficient 
degree to generalize (indicated by performance in the 
upper right corner of the plot). It is also striking that 
performance in this group did not fall along the diago-
nal of the plot, which would have indicated learning 
of both regularities to at least some degree. Instead, 
most participants in the discovery-learning group 
uncovered one regularity but not the other (indicated 
by performance in the bottom right and top left cor-
ners of the plot).

The very stark differences between the discovery-
learning and explicit-instruction groups in generaliza-
tion performance may reflect poor learning of individual 
items in the discovery-learning group. However, this 
explanation is inconsistent with analyses of test tasks 
conducted in Session 10 that assessed learning of the 
trained items. These analyses showed a high degree of 
accuracy on trained items for both groups and null or 
moderate effects of instruction condition. Data from 
these test tasks are visualized in Figure 4.

Reading aloud. Performance on the reading-aloud test 
task is shown in Figure 4a. Participants in both groups showed 
a high degree of accuracy in reading aloud trained novel 
words, although performance in the explicit-instruction 
group was superior (β = 2.11, OR = 8.25, SE = 0.74, Z = 
2.83, p = .005). There was some evidence for an effect of 
semantic marker (β = 0.54, OR = 1.72, SE = 0.23, Z = 2.33, 
p = .020) that was larger in the discovery-learning group 
(Semantic Marker × Group interaction, β = −1.69, OR = 
0.19, SE = 0.44, Z = −3.86, p < .001). Model comparisons 
within each group revealed a significant effect of seman-
tic marker in the discovery-learning group (β = 0.54, 
OR = 1.72, SE = 0.22, Z = 2.42, p = .016), but not the 
explicit-instruction group (β = −0.62, OR = 0.54, SE = 
0.33, Z = −1.91, p = .056), mirroring the training data.
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Saying the meaning. Performance on the saying-the-
meaning test task is shown in Figure 4b. Participants in 
both groups showed a high degree of accuracy in retriev-
ing the meanings of visually presented trained novel words. 
There were no significant effects or interactions in this task.

Auditory-semantic matching. Performance on the 
auditory-semantic matching test task is shown in Figure 
4c. Participants in both groups showed a high degree of 
accuracy in verifying the meanings of aurally presented 
trained novel words. There were no significant effects or 
interactions in this task.

Recognition memory. Performance on the recognition-
memory test task is shown in Figure 5. Participants’ rec-
ognition of visually presented trained items was 
assessed in two analyses using d′ calculated with pho-
nological distractors (Fig. 5a) and with semantic distrac-
tors (Fig. 5b). The statistical models included group 
and semantic marker as fixed factors and participant as 
a random factor. Results showed good discrimination 

against phonological distractors for both groups, and no 
significant effects were observed. However, the partici-
pant groups differed markedly with regard to discrimina-
tion of trained items against semantic distractors. The 
discovery-learning group showed relatively poor perfor-
mance on this task, indicating that many participants in 
this group may have learned to ignore the final symbol 
during training. In contrast, the explicit-instruction group 
showed strong discrimination performance but only for the 
language in which the semantic marker conveyed system-
atic information (Semantic Marker × Group interaction,  
β = 2.67, SE = 0.24, Z = −11.19, p < .001). This result suggests 
that participants in the explicit-instruction group retained 
the identity of the final symbol only in conditions in 
which this symbol was informative.

General Discussion

Our work reveals dramatic differences in learning out-
comes between participants who receive explicit instruc-
tion on the underlying regularities of a writing system 
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and those who discover these regularities through text 
experience alone. Participants learned to read novel 
words printed in artificial alphabets over 10 days (Fig. 
2). We probed participants’ retention of these trained 
novel words (Figs. 4 and 5) and used generalization 
tasks to assess their knowledge of the regularities of the 
writing systems (Fig. 3). The critical finding was that 
virtually all participants in the explicit-instruction group 
reached a good standard of performance on both gen-
eralization tasks, but only 5 of 24 participants in the 
discovery-learning group showed the same level of per-
formance, despite having up to 18 hr of training (see 
Fig. 6).1

In contrast to generalization, instruction did not exert 
a strong influence on learning of individual words. Partici-
pants in both groups learned novel words to a high degree 
of accuracy over the 10 days of training (Figs. 2, 4, and 5), 
although participants reached a good standard of perfor-
mance on the reading-aloud task more quickly in the pres-
ence of instruction. Further, although the discovery-learning 

group showed numerically lower performance on some 
test tasks probing item learning, this difference was sig-
nificant only in the reading-aloud task (Fig. 4a). This is 
likely because the reading-aloud task can be performed 
through spelling–sound knowledge; it does not require 
item-specific knowledge (see also Fig. 2). These results 
suggest that even when good item-based learning is 
achieved, text experience alone does not guarantee dis-
covery of regularities required for generalization. It is also 
important to note that the discovery of regularities should 
have been far easier in our experiment than in a natural-
istic setting. Our writing systems were characterized by 
one-to-one mappings, a uniform structure across all exem-
plars, and an absence of inconsistent exemplars—features 
rarely shared with real writing systems. Further, our par-
ticipants received multiple exemplars illustrating the 
underlying regularities in a structured manner, but learners 
outside of the laboratory encounter words relevant to par-
ticular patterns sporadically and within highly skewed 
frequency distributions (Yang, 2016).
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Our results raise questions about the extent to which 
statistical learning can provide a neurocognitive basis 
for reading acquisition (e.g., Sawi & Rueckl, 2019). We 
have previously demonstrated discovery and generaliza-
tion of simple underlying regularities in laboratory train-
ing studies in the absence of instruction (Taylor et al., 
2017). However, the present results expose the limitations 
of discovery processes when writing systems increase in 
complexity (in this case, involving both spelling–sound 
and spelling–meaning regularities; see also Yim, Dennis, 
& Sloutsky, 2021). Indeed, emerging evidence suggests 
that although children do display knowledge of statistical 
regularities that are not typically taught explicitly, this 
knowledge develops very slowly and is weaker than 
might be expected (e.g., Pacton, Perruchet, Fayol, & 
Cleeremans, 2001; Treiman & Kessler, 2019). These find-
ings suggest that discovery learning may be a relatively 
inefficient way of learning underlying regularities even 
given years of text experience.

Participants in our explicit-instruction group received 
approximately 30 min of training on the underlying 
structure of the writing systems (or ~3% of their total 
training time). Yet this brief session had a transformative 
impact on their ability to generalize 10 days later. The 
mechanisms that underpin the benefits of instruction 
are poorly understood. One influential theory suggests 
that instruction assists individuals to analyze and 
encode a stimulus optimally and to avoid false trails in 

a complex problem-solving space (Sweller, 2003). 
According to this view, instruction on its own is unlikely 
to be sufficient for participants to learn a new writing 
system; individuals will still require text experience to 
develop long-term stored knowledge of underlying 
regularities. However, instruction may act as a form of 
scaffold that allows learners to make the most of their 
text experience. Precisely how instruction interacts with 
text experience to create long-term knowledge struc-
tures is an important matter for future research.

These questions connect to a related debate concern-
ing the role of explicit instruction in acquiring scientific 
concepts.2 One influential study revealed that instruc-
tion yields a substantial immediate benefit over discov-
ery learning on children’s knowledge about the control 
of variables in experiments (Klahr & Nigam, 2004). 
Critically, this knowledge generalized to a subsequent 
task in which children made rich, wide-ranging judg-
ments about science-fair posters (Klahr & Nigam, 
2004). Yet other research in this domain has suggested 
that the benefits of instruction may be short lived 
(Dean & Kuhn, 2007) and that the process of discovery 
learning ultimately yields more robust knowledge than 
arises through instruction (e.g., Kuhn, 2002). Our 
research cannot speak to these issues concerning 
much longer timescales. However, the poor perfor-
mance of our discovery-learning participants even 
after hours of training raises questions about whether 
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75% in the nonword-reading-aloud task (spelling–sound mapping) or the semantic-generalization task (spelling–
meaning mapping).
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a purely discovery-based approach would be viable, 
given the vast body of knowledge that must be acquired 
in learning to read. Furthermore, school-based research 
increasingly suggests that a fast pace of reading 
instruction yields superior outcomes later (Sunde, 
Furnes, & Lundetrae, 2020), possibly because reading 
skills provide the opportunity to gain vital text experi-
ence through independent reading (van Bergen, 
Vasalampi, & Torppa, 2020).

The critical conclusion from this work is that the way 
that an individual is taught has a dramatic impact on 
the nature of stored knowledge acquired through text 
experience. Some of our discovery learners were able 
to learn the structure of the writing system in the 
absence of instruction, but most were not. Further, 
although our findings were based on laboratory meth-
ods using adults, they are consistent with observations 
about children learning to read—namely, that although 
some children may spontaneously discover underlying 
regularities through their experience with printed words 
(Thompson, Cottrell, & Fletcher-Flinn, 1996), the major-
ity do not (Byrne & Fielding-Barnsley, 1989). We sug-
gest that the safest way to ensure that all learners 
acquire knowledge of important underlying regularities 
within the writing system is to offer explicit instruction 
of how the visual symbols of writing relate to the 
sounds and meanings of spoken language.
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Notes

1. One reviewer noted that instruction yielded a larger benefit for 
generalization of the spelling–meaning regularity than the spell-
ing–sound regularity and wondered whether instruction may be 
less useful when the nature of the regularity is familiar. Our results 
cannot speak to this issue, though we note that both forms of 
regularity would be unfamiliar to children learning to read.
2. The term “direct instruction” is typically used in this literature. 
We have avoided this term because it can sometimes refer to a 
specific intervention for foundational literacy and mathematics 
skills.
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