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Abstract

A machine learning algorithm, the deep neural network (DNN)1, is trained us-

ing a comprehensive direct numerical simulation (DNS) dataset to predict joint fil-

tered density functions (FDFs) of mixture fraction and reaction progress variable

in Moderate or Intense Low-oxygen Dilution (MILD) combustion. The important

features of the DNS cases include mixture fraction variations, turbulent mixing

lengths, exhaust gas recirculation (EGR) dilution levels, etc., posing a great chal-

lenge for data-driven modelling. The DNN architecture is built and optimised with

extreme care to achieve high robustness and accuracy, resorting to dimensionality

reduction techniques such as principal component analysis (PCA) to identify and

remove the outliers in the training data. To better interpret the predictive ability
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of the DNN, two analytical joint FDF models respectively using two independent

β and copula distributions, are also employed for a detailed comparison with the

DNS data.

The FDFs in MILD combustion behave differently compared to those in con-

ventional flames because the reaction zones are more distributed. They generally

exhibit non-regular (neither Gaussian nor bi-modal) distributions and strong cross

correlations, which cannot be captured adequately by the analytical models. How-

ever, the DNN is well suited for this physico-chemically complex problem and its

predictions are in excellent agreement with the DNS data for a broad range of

mixture conditions and filter sizes. Furthermore, a priori assessment is conducted

for filtered reaction rate closure. It is found that the DNN model significantly out-

performs the analytical models for all cases showing very good predictions for the

filtered reaction rate for a range of filter sizes. The DNN prediction improves as

the filter size becomes larger than the characteristic reaction zone thickness while

the analytical models works relatively better for smaller filter sizes. This is a clear

advantage for the DNN to be used in practical LES applications.

Keywords: Machine learning; Deep neural networks; Filtered density function;

MILD combustion; Subgrid scale modelling

1. Introduction

The increasingly stringent regulations on pollutant emission drive novel tech-

nologies towards cleaner combustion regimes. Moderate or Intense Low-oxygen

Dilution (MILD) combustion has been widely recognised as a promising candi-

date to lead the upcoming green revolution of combustion devices [1, 2]. Due to

the small temperature rise during combustion (typically few hundreds of Kelvin),
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the formation of major combustion pollutants such as NOx is largely reduced. In

addition, MILD combustion is known to have smaller temperature gradients be-

tween the reactants and products, resulting in more homogeneous and distributed

reaction zones [3], which can be beneficial for practical combustion systems [4].

Because of these promising features, MILD combustion research has become

increasingly popular in recent years, including early experimental studies [5–7],

and also numerical investigations using perfectly stirred reactor (PSR) [8], laminar

counterflow [9, 10] and freely propagating premixed flames [11]. While these pi-

oneering studies mainly focused on the overall burning characteristics, laminar re-

action zone behaviours and pollutant formation, recent efforts have shifted towards

understanding MILD combustion in turbulent flows and seeking viable modelling

approaches (see [4] for a review). Direct numerical simulation (DNS) is a pow-

erful tool for fundamental studies and model development. It has been applied

for auto-igniting mixing layer [12] and EGR-type [13] MILD configurations. Mi-

namoto et al. [14, 15] showed that the MILD reaction zones are broadly distributed

with strong interactions, which differs significantly from the classical sheet-like

flamelet structures of conventional combustion. Moreover, they also found that

autoigniting and propagating zones coexist in MILD combustion and their intensi-

ties depend on local behaviours of scalars and their gradients. These observations

were further confirmed in recent DNS studies [16–18] involving mixture fraction

variations to elucidate the effects of scalar mixing on the reaction zone behaviours.

These subtleties and complexities suggest that the turbulence–chemistry interac-

tion models developed for conventional combustion may be inadequate for MILD

combustion.

Among the numerous laboratory-scale MILD burners, the Jet in Hot Co-flow
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(JHC) configurations [19, 20] have received major attentions from the modelling

community. The Adelaide JHC burner [20], for instance, has been simulated with

converging good results by many research groups using a full range of state-

of-the-art approaches (not detailed here, see [4] and Refs. therein) with both

Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) method-

ologies. However, other types of MILD burners including those with cyclonic [21]

and reversed [22] EGR flow motions, which are more industry-relevant, have

mostly been modelled using the computationally more affordable tabulated chem-

istry approaches [23–26] with quite limited success. The predictive discrepancies

can be attributed to two main modelling aspects. Most tabulation approaches in-

volve probability density functions (PDFs) for RANS, or filtered density functions

(FDFs) for LES, and the presumed shapes, e.g., β-PDF, may not represent the

correct scalar statistical behaviour over the homogeneous and distributed MILD

reaction zones. Furthermore, when the burnt mixture is compositionally inhomo-

geneous, i.e., with mixture fraction variations, interactions between scalar fluctu-

ations arise over a range of length scales, leading to significant statistical corre-

lation [27]. This interaction is expected to be stronger under MILD conditions

because of the broadened reaction zones. Therefore, the widely used statistical

independence assumption could result in additional modelling errors. For LES,

these statistical behaviours come into play through the FDF [28] involving some

randomness and filter-size dependency [29], and hence pose further challenges to

the modelling.

The present work aims to address these issues using the DNS datasets gener-

ated in [16–18] and to shed light on the FDF behaviours and subgrid modelling for

LES of MILD combustion, which have not been contemplated in previous works.
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First, a major focus is given to the FDF, which is essential for many modelling ap-

proaches. Given the complex and unconventional features of scalar statistical be-

haviours in MILD combustion, machine learning (ML) techniques are well suited

for the prediction of FDF. A recent study by de Frahan et al. [30] compared differ-

ent ML algorithms for FDF prediction in a conventional swirl methane−air pre-

mixed flame, and a favourable performance was shown for the feed-forward deep

neural network (DNN). Another attractive option is convolutional neural network

(CNN), well known for its excellent ability for image recognition and recently

it was successfully applied for prediction of subgrid flame wrinkling [31]. Since

FDF represents more of the statistical features than topology of the reaction zones,

DNN is chosen for this study and we focus on feature selection/extraction, archi-

tecture and hyperparameter optimisation for the MILD combustion DNS datasets

to achieve the best predictive performance for the FDF. The DNN predictions are

compared against those obtained using classical β and copula (correlated multi-

variant [32]) functions. Moreover, a priori assessment of the filtered reaction rate

closure using these different FDFs is performed to assess their respective accura-

cies.

The remainder of this paper is organised as follows. Section 2 describes the

DNS datasets and the various FDF modelling approaches used with a particular

focus on the DNN learning procedures. The FDF results are then compared and

discussed in Section 3, followed by the a priori assessment of the filtered reaction

rate closure in Section 4. Finally, the conclusions are summarised in Section 5.
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2. Data analysis and modelling methodology

2.1. DNS datasets

DNS of MILD combustion with varying mixture fraction and internal EGR

was performed and reported in [16], and the datasets generated were used to study

the role of radicals [18] and the relative roles of autoignition and flame propagat-

ing phenomena [17] under MILD conditions. In this work, we use these datasets

to explore the FDF modelling aspects of this combustion regime to facilitate fu-

ture simulations of laboratory and industry scale burners. Detailed descriptions

of the DNS methodology and initial data preprocessing can be found in [16], and

only the essential information is provided here.

All three DNS cases, differing in mixing lengthscale and dilution level, are

considered in this study, and their initial conditions are summarised in Table 1.

The initial turbulence is the same for the three cases having an integral length

scale of Λ0 ≈ 4.12 mm and a global velocity fluctuation of u′ ≈ 16.66 m/s. The

corresponding turbulence and Taylor-microscale Reynolds numbers are Ret ≈ 96

and Reλ ≈ 35, respectively. The characteristic length for the mixture fraction

field, lZ, is about 1.67Λ0 for case AZ1, larger than 1.27Λ0 for AZ2. This means

that the fuel/oxidiser mixing is faster and more homogeneous in case AZ2. The

third case BZ1 has the same mixing length scale as AZ1 but with a higher dilution

level of 2% O2 (by volume) compared to that of 3.5% for cases AZ1 and AZ2.

Thus, this leads to a smaller stoichiometric mixture fraction value and an over-

all lower reactivity for case BZ1 compared to the other two cases. The reaction

progress variable fields based on normalised fuel mass fraction used for the three

cases have similar statistics as listed in Table 1.

The DNS was performed inside a cubic numerical domain of size Lx×Ly×Lz =
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Table 1: Summary of initial conditions for the DNS cases considered.

Case lZ/Λ0 Xox
O2% Zst 〈Z〉 σZ/ 〈Z〉 〈c〉 σc/ 〈c〉

AZ1 1.67 3.5 0.01 0.008 1.05 0.56 0.46

AZ2 1.27 3.5 0.01 0.008 1.31 0.56 0.5

BZ1 1.67 2 0.0058 0.0046 1.23 0.56 0.46

10×10×10 mm. 512 uniformly distributed grid points were used for each physical

direction and this resolution with δx ≈ 20 µm is sufficient to resolve all turbulent

flow and chemical lengthscales of interest. A modified mechanism of Smooke and

Giovangigli [33] with OH∗ chemistry [34] was used for the methane/air combus-

tion considered. Detailed description and validation are in [16]. The high-order

compressible DNS code SENGA2 was used. The inflow and non-reflective out-

flow boundary conditions were used for the x-direction and periodic conditions

were employed for the transverse y- and z- directions. For each DNS case, simu-

lation was first run for one flow-through-time, τ f = Lx/Uin, where Uin = 20 m/s

is the inflow bulk mean velocity, to allow the transients to pass out of the domain.

The subsequent about 60 snapshots spanning over 0.5τ f were then taken for statis-

tics and these snapshots are used for the data training and subsequent analyses in

this study.

2.2. FDF and presumed models

In transported filtered density function models, the FDFs of all compositional

space scalars can be solved using various methods (e.g. Lagrangian particles [35],

Eulerian stochastic fields [36] and multi-environment [37]), and the reaction source

terms appear in closed form. However, such sophisticated modelling is quite com-

putationally demanding and hence many combustion models, especially for those
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widely used by industry, rely on a presumed statistical description of the subgrid

scalar fluctuations to close the reaction source terms in the LES transport equa-

tions [38, 39]. Few key variables are often chosen to represent the leading-order

physical processes that influence the reaction rates, such as fuel/oxidiser mixing,

reaction progress, flame stretch/straining, non-adiabaticity, etc. The subgrid reac-

tion rate can be obtained using an appropriate moment of the joint FDF of these

variables. A major advantage of this approach is that only the statistical moments

(usually the mean and variance) of the key variables need to be transported in the

LES, whereas other quantities of interest can be retrieved from a tabulated man-

ifold through post-processing. Therefore, the computational cost is significantly

reduced, typically by orders of magnitude.

It is important to note that in the LES context, there is a conceptual difference

between FDF and subgrid PDF [38]. The FDF for a given point at a given time

can be extracted by applying a fine-grain filtering function to a single ensemble

(or realisation) of the fully resolved DNS or experimental data [40]. It has all

statistical properties of a PDF but also involves some randomness due to the un-

steady nature of single realisations [28]. To remove this randomness, one needs

to collect the samples in a given physical subgrid space at a given time over many

ensembles having the same resolved fields [29]. This would require excessively

long runtimes for either experiments or simulations with enormous data storage

requirements, which may not be practical. In this work, similar to [27], filtering is

applied to single DNS snapshots and thus what we obtain are FDFs with certain

levels of randomness. However, this randomness is removed to a good extent if

the training data for machine learning are selected over many DNS realisations at

a statistically stationary state, which is discussed further in Section 3.2.
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Two commonly used conditioning variables, Bilger mixture fraction, Z, and a

temperature-based reaction progress variable, cT , are used for this study, and the

latter is defined as

cT =
T − Tu

Tb(Z) − Tu
, (1)

where Tu is 1500 K for all three cases listed in Table 1 as in the DNS initial con-

ditions. The burnt temperature Tb is determined using the MILD Flame Element

(MIFE) method [14], which depends on the local mixture fraction. Favre-filtered

fields can be obtained by performing a low-pass box filtering procedure, e.g, for

mixture fraction and a given filter width ∆:

Z̃(x, t) =
1

ρ(x, t)

∫ x+ ∆
2

x− ∆
2

ρ(x′, t) Z(x′, t)dx′, (2)

where · and ·̃ denote the Reynolds and Favre filtering respectively, and ρ is the

mixture density. The coordinate vectors, x and x′, correspond to the reference

frames of the entire DNS domain and the filter sub-space, respectively. The sub-

grid variance is obtained using

σ̃2
Z(x, t) =

1
ρ(x, t)

∫ x+ ∆
2

x− ∆
2

ρ(x′, t)
[
Z(x′, t) − Z̃(x, t)

]2
dx′. (3)

The c̃T and σ̃2
cT

fields can be calculated in a similar manner.

The Z-cT joint FDF can be obtained using

P̃(ξ, η; x, t) =
1

ρ(x, t)

∫ x+ ∆
2

x− ∆
2

ρ(x′, t) δ
[
ξ − Z(x′, t)

]
× δ

[
η − cT (x′, t)

]
dx′, (4)

where ξ and η are the sample-space variables and δ[·] is the Dirac delta function.

The discrete FDF can be obtained for a given point in a given DNS snapshot by
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binning the Z and cT samples in the corresponding filtering sub-space. This proce-

dure is illustrated in Fig. 1 for an arbitrarily chosen filtering point at the snapshot

of t = 1.5τ f for case AZ1. The Z and cT fields are shown for the bottom and side

planes of the DNS domain respectively. Uniformly spaced 31 bins between 0 and

1 are used for cT , whereas 35 non-uniform bins are used for Z with the majority

clustered between 10−3 and 10−2 (see Fig. 1b) to accommodate most points in all

three DNS cases listed in Table 1. Note that for notational concision Z and cT

are used directly instead of the sample-space variables to denote the FDFs, e.g.,

P̃(Z, cT ), P̃(Z), P̃(cT ), hereafter in this work. It can be seen in Fig. 1 for the FDF

shape that, (i) the distribution in the progress variable space is quite broad and ir-

regular compared to the bi-modal behaviour in conventional flames; and (ii) there

is an evident cross correlation in subgrid Z and cT fluctuations. Both features

are difficult to capture using commonly employed analytical distribution models,

which are briefly described next.

The Favre FDF of mixture fraction with a presumed β-distribution is calcu-

lated as

P̃β(ξ; Z̃, σ̃2
Z) =

Γ(a + b)
Γ(a)Γ(b)

ξa−1 (1 − ξ)b−1 (5)

with a = Z̃ (1/g̃Z − 1) and b =
(
1 − Z̃

)
(1/g̃Z − 1), where Γ is the gamma function

and g̃Z = σ̃2
Z /

(
Z̃(1 − Z̃)

)
is the segregation factor. With the progress variable

FDF, P̃β(η; c̃, σ̃2
cT

), obtained using a similar procedure, the joint FDF is modelled

as

P̃ (Z, cT ) = P̃β

(
ξ; Z̃, σ̃2

Z

)
P̃β

(
η; c̃T , σ̃2

cT

)
, (6)

using the common assumption of statistical independence between the subgrid

fluctuations of Z and cT . Although this assumption has been broadly used for LES
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of conventional combustion showing promising outcomes [38, 41], its validity is

questionable for MILD conditions since the distributed reaction zone behaviour is

likely to result in stronger subgrid interactions of scalar fluctuations [15].

To consider the cross correlation, Darbyshire and Swaminathan [32] proposed

a correlated joint PDF model using the Plackett copula method [42] for stratified

premixed flames, and it was also applied for lifted flames [43, 44] showing im-

proved prediction of the lift-off height as compared to the double-β approach in

Eq. (6) in the RANS context. As for LES, one would expect the cross correlation

effect to be less influential at the subgrid scales as shown in a recent DNS anal-

ysis [27] on a lifted hydrogen flame. In this study, it is of interest to explore the

correlation effects in MILD combustion and hence the copula method is adopted

to construct the correlated joint FDF. The subgrid covariance, σ̃ZcT , computed as

σ̃ZcT (x, t) =
1

ρ(x, t)

∫ x+ ∆
2

x− ∆
2

ρ(x′, t)
[
Z(x′, t) − Z̃(x, t)

]
×

[
cT (x′, t) − c̃T (x, t)

]
dx′ (7)

is used in the copula method to couple the univariate marginal distributions, P̃β(Z)

and P̃β(cT ). For non-zero values of σ̃ZcT , the correlated joint FDF is calculated as

P̃ (Z, cT ) =
θ P̃β(Z)P̃β(cT ) (A − 2B)(

A 2 − 4θB
)3/2 (8)

with

A = 1 + (θ − 1)
[
C̃β(Z) + C̃β(cT )

]
and (9)

B = (θ − 1)C̃β(Z)C̃β(cT ) , (10)
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where C̃β is the β cumulative distribution function (CDF) and θ is the odds ratio

calculated using a Monte Carlo approach. More details can be found in [32] and

[43].

Alternative presumed PDF models have also been proposed, e.g. the statis-

tically most likely distribution [45], laminar flamelet PDF [46], top-hat distribu-

tion [47], etc. Although these models were validated for specific configurations,

they are less commonly used and often require on-the-fly calculation. For the pur-

pose of this work, which is to demonstrate the potentials of using ML for FDF

against the classical presumed models, only the β and copula models are consid-

ered for comparison.

2.3. Machine learning procedures for FDF

A feed-forward DNN algorithm is constructed and optimised for the FDF

model training and validation in this study. For any ML activity, the pre-learning

data selection, arrangement and manipulation play a vital role in the final perfor-

mance of the trained model. Additional care is also required for physics-based

ML as intended here, because the standard over-fitting and outliers treatment may

be constrained by relevant physical processes [48]. Therefore, these details are

described and discussed in this subsection in four progressive steps as follows.

2.3.1. Step (i): data extraction from DNS

First, eight 3D (512×512×512) DNS field matrices are prepared to extract the

training samples for the DNN. The unfiltered ρ, Z and cT fields are used to obtain

the Favre FDFs for the target matrix Y. The filtered Z̃, c̃T , σ̃2
Z, σ̃2

cT
and σ̃ZcT fields

are used to construct the input matrix X. This procedure is shown schematically

in Fig. 2 for a typical snapshot of case AZ1. The filtered fields are presented in 2D
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with the thin DNS grid-lines for visual clarity. The looping for “LES filter cubes”

(red boxes) is performed in 3D as illustrated using the indices i, j and k for the

x, y and z directions, respectively. The filter size used in this figure is ∆ = 80δx,

which corresponds to a normalised filter size of ∆+ = 1, defined as

∆+ =
∆

δst
th

, (11)

where δst
th = 1.6 mm is the reference thermal thickness obtained from the MILD

Flame Element (MIFE) laminar calculation [14] using the stoichiometric mixture

fraction. It should be noted here that overlapping is applied between neighbouring

cubes (see Fig. 2b) to increase the number of samples per DNS snapshot, which

is equal to n3
cube. The overlap length, i.e., the distance between two neighbour-

ing cube centres (red points), is adjusted for different filter sizes to have a similar

number of samples. When the filter size increases, the number of samples per

DNS snapshot decreases at a cubic rate and hence more snapshots are required to

keep a similar number of total training samples. Each snapshot is about 10 GB

and only one snapshot is loaded at a time while the training data are collected

accumulatively. Different ∆+ relevant to common LES practice are investigated

to elucidate the effect of filter size on the model performances for the three DNS

cases. These details are summarised in Table 2. It can be seen that the num-

ber of training sets is kept similar across all cases to ensure comparable learning

qualities.

2.3.2. Step (ii): manipulation of the training datasets

As required by the DNN, the two multi-dimensional matrices extracted from

Step (i), X and Y, are transformed (flattened) to two-dimensional input and target

matrices with the same number of rows, i.e., n3
cube. Each input and output row con-
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Table 2: Summary of filter sizes applied for the DNS cases.

Case ∆+ δst
th[mm] ∆/δx Training sets DNS snapshots

AZ1 & AZ2 0.5 1.6 40 27648 2

AZ1 & AZ2 1 1.6 80 23958 18

AZ1 & AZ2 1.5 1.6 120 25515 35

BZ1 0.5 3 74 24192 14

BZ1 1 3 148 28672 56

tains 5 and 1085 components (columns), which are the statistical moments and the

discrete FDF values, respectively (see Fig. 2). Appropriate centring and scaling

are generally beneficial for ML, and it was found that the training predictions im-

prove significantly when subtracting the mean and then dividing by the standard

deviation of the n3
cube rows for each column of X. Other scaling approaches were

also tested with no further improvement observed.

Applying a similar preprocessing for Y, however, gave much worse predic-

tions compared to using the FDFs directly as the output of the DNN. One way to

explain this is that the statistical moments can be seen as independent inputs and

their relative values within each row are not influential, whereas the FDF must be

considered as a whole within each target row and the relative significance across

the components bins must be kept the same for the training. On the other hand, the

FDF is mathematically unbounded and its values can vary across several orders of

magnitudes, as shown in Fig. 1, which is not ideal for the DNN. To address this

issue, the values of the discretised FDF in each row are transformed into proba-

bility ones (by multiplying every FDF value by the area of the corresponding bin

of the Z-cT filtering sub-space, shown in Fig. 2). As such, every number in Y
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varies between 0 and 1, and they also sum up to unity across each target row.

Another advantage of using probabilities is that the softmax activation function

(see Eq. (19) for details) can be employed for the output layer of the DNN [30] to

ensure the summation of outputs to unity.

2.3.3. Step (iii): identifying and removing outliers

Subsequent to the above scaling procedures, the outliers in the training datasets

need to be identified and removed to further improve the training quality. The

usual procedure for outlier detection in multivariate data analysis is to measure

the distance of the i-th observation from the sample mean using the so-called Ma-

halanobis distance:

DM =
(
X − X

)T
S−1

(
X − X

)
, (12)

where X is a matrix containing the average values, x j = 1
n

∑n
i=1 xi j, of the dataset

variables, and S is the covariance matrix defined later. The observations associated

with large values of DM are classified as outliers and then discarded. A robust

methodology based on the Principal Component Analysis (PCA) can be leveraged

for outlier identification and removal given the known relationship between the

Principal Components (PCs) and the Mahalanobis distance. Before showing this

relationship, a brief description on PCA is given as follows.

PCA is a statistical method used to reduce a large number of interdependent

variables to a smaller number of uncorrelated variables, while retaining as much

as possible of the original data variance [49]. Given a dataset X of n rows (obser-

vations) and m columns (variables), which is originally centred and scaled (by the

m means and standard deviations of the observations, respectively), it is possible

to compute the m×m covariance matrix S = 1
(n−1)X

T X, and then to obtain its eigen-
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value decomposition: S = ALAT . The eigenvectors of the covariance matrix, i.e.,

the columns of the orthogonal matrix A, are called Principal Components (PCs),

while the eigenvalues located on the main diagonal of the matrix L represent the

share of the dataset variance they account for. The matrix X can be expressed as

a function of the Principal Components through the scores matrix Z:

Z = XA. (13)

The original variables are thus transformed into a new set of uncorrelated vari-

ables. The dimensionality reduction is achieved by considering only a subset

containing q ≤ m PCs, which contains the most energetic eigenvectors, i.e., the

columns of A associated with the largest eigenvalues of L. By considering the

submatrix Aq, the original dataset X can be correctly compressed to the chosen

reduced dimensionality by finding the matrix of the scores Zq, through Zq = XAq,

similarly to Eq. (13). The original data matrix X can be reconstructed from the

lower dimensional space Zq:

X ≈ Xq = ZqAT
q . (14)

It has been shown [49] that the sum of the squares of the PC scores, nor-

malised by the corresponding eigenvalue, equals the Mahalanobis distance for the

i-th observation:

m∑
k=1

z2
ik

lk
= DM,i, (15)

where m is the number of PCs, zik is the k-th PC score for the i-th observation, and

lk is the associated eigenvalue. In this work, the outliers are identified by examin-

ing the last few PCs, which represent linear combinations of the original variables
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with minimal variance. Therefore, the last PCs are sensitive to the observations

that are inconsistent with the covariance structure of the data, even if these obser-

vations are not outliers with respect to the original individual variables [49]. Thus,

the summation of Eq. (15) was calculated on the last PCs of the input matrix X of

the DNN. Given the already low dimensionality of X (5 variables), only the last

two PCs were considered. An observation X(i, :) is classified as a leverage outlier

if
m∑

k=m−q+1

z2
ik

lk
> ψ1, (16)

where q is the number of last PCs considered (equal to 2 in this case), and ψ1 is

chosen as the 98th quantile of the empirical distribution of
∑m

k=m−q+1(z2
ik/lk).

Subsequently, an additional outlier removal method was applied. The method

focuses on identifying the so-called orthogonal outliers [50] by examining the

reconstruction error ε between the input matrix X and the matrix Xq (computed

according to Eq. (14) with q=2). The i-th element of the vector ε is given by

εi =

√√ n∑
j=1

(xi j − xq,i j)2, (17)

where n is the number of variables. The i-th observation xi is classified as a or-

thogonal outlier if its corresponding εi > ψ2, being ψ2 the 98th quantile of the

empirical distribution of ε. Once leverage and orthogonal outliers are removed

from the dataset, the DNN training is then performed on the remaining observa-

tions as discussed next.

2.3.4. Step (iv): DNN architecture and training

A feed-forward, fully connected DNN was constructed for the prediction of

31 × 35 joint probability values. The network consists of two hidden layers and
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an output layer as schematically shown in Fig. 3. The hidden layers have 256

and 512 fully connected neurons respectively, and a leaky rectified linear unit

(LeakyReLU) activation function:

yi =


xi if xi ≥ 0

αxi otherwise
(18)

where xi is the weighted sum of the neuron input, yi is the neuron output, and

α = 0.01 is the slope. Each hidden layer is followed by a batch normalization

layer [51]. A softmax activation function is used for the output layer, composed

of 1085 neurons, to predict the probability values:

yi =
exp(xi)∑n

j=1 exp(x j)
, (19)

where xi and yi correspond to the i-th neuron of the output layer. The softmax

function ensures that
∑n

i=1 yi = 1 and yi ∈ [0, 1] ∀i = 1, ..., n, with n = 1085 in our

case. The loss function for the network is the binary cross entropy between the

target t and the output y:

L(y, t) =
1
n

n∑
i=1

(ti log(yi) + (1 − ti) log(1 − yi)), (20)

which represents a proper metric for measuring differences between probability

distributions. The Adam optimizer [52] with an initial learning rate of 10−4 is

used as gradient-descent algorithm. The training occurs for a maximum of 1000

epochs, i.e., training cycles through the entire training data. An early stopping

method is used to avoid overfitting and a split of 80/20% between training and

validation samples is applied. Validation samples are held out from the training of

the neural network. The training terminates when the loss function, calculated at
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the end of each epoch for the validation samples, does not decrease after a certain

number of epochs (10 in this work). For each epoch, the training data are fully

shuffled and divided into batches with 256 training samples per batch.

In summary, the DNN used in the work has the following architecture:

• linear layer with 5 input features and bias, LeakyReLU activation function

with α=0.01, and 256 output features;

• batch normalization with 256 input and output features, and momentum

equals to 0.9;

• linear layer with 256 input features and bias, LeakyReLU activation func-

tion with α=0.01, and 512 output features;

• batch normalization with 512 input and output features and momentum

equals to 0.9;

• linear layer with 512 input features and bias, Softmax activation function,

and 1085 output features.

The loss function is the binary crossentropy. Additional DNN hyperparameters are

the learning rate (=10−4), the number of epochs (=1000), the batch size (=256),

and the patience (=10) of the early stopping method.

The above learning algorithm is applied for the different DNS cases with a

range of filter sizes listed in Table 2, followed by a prediction step on the entire

training datasets. The time required to generate the DNN model depends on the

particular case because more than 95% is spent on Step (i), where multiple large

DNS snapshots are read and preprocessed. The most costly case in this work is

therefore the last case in Table 2 (BZ1 with ∆+ = 1), which took about 4 hours
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using a 3.0 GHz single core with GPU acceleration for the learning. Once the the

DNN is generated, the computational cost for the prediction step is negligible (as

it will be in a posteriori LES) since it only involves simple algebraic operations

and function evaluations using already calibrated node weights and biases. The

predicted joint FDFs for the different cases listed in Table 2 are compared with

the DNS and analytically modelled results in the following section.

3. FDF behaviour and model prediction

Owing to the distinct reaction zone and scalar gradient behaviours in MILD

combustion [14, 16], the corresponding FDF characteristics are little known and

expected to be significantly different from those in conventional combustion. These

attributes have not been reported in previous studies. Therefore, in this section it

is of interest to examine the basic features of FDFs obtained from the three DNS

cases listed in Table 1, and then their conditional means are compared with those

obtained by the DNN and analytical models described earlier in Section 2. Fur-

thermore, the importance of subgrid covariance is studied by training the DNN

with and without it in the input matrix. The results are compared with the DNS

data to assess model performance under different conditions.

3.1. Basic instantaneous features

The x-y midplane instantaneous contours of Z, cT and ω̇cT at t = 1.5τ f with

typical reaction zone FDFs are shown in Figs. 4, 5 and 6 for cases AZ1, AZ2

and BZ1, respectively. The mean flow moves in the x-direction. First of all, it

is worth recalling the different characteristics of the three DNS cases summarised

in Table 1. AZ1 is the base case with a maximum oxygen mole fraction (Xox
O2) of

3.5% and a mixing length (lZ) larger than reaction zone length scale (lc). Case
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AZ2 differs from AZ1 only in the turbulent mixing characteristics with lZ ≈ lc.

One can easily observe that the Z field of AZ2 in Fig. 5b is more wrinkled as

compared to that of AZ1 in Fig. 4b. As a result, the reaction zones shown in

Fig. 5c are more distributed in the computational domain for AZ2 compared to

those in Figs. 4c for AZ1, which is a common feature of MILD combustion as the

Damköhler number tends toward unity [15, 53]. Another difference caused by the

mixing length is that the mixture fraction fluctuations are statistically stronger in

AZ2 having a standard deviation about 30% higher than that in AZ1 (see Table 1).

Case BZ1 has the same mixing characteristics as AZ1 but is more diluted with

Xox
O2 = 2%. As one would expect, the peak reaction rate shown in Fig. 6c drops

significantly due to the dilution. The stronger turbulence effect also gives rise to

rather distributed reaction zones similar to AZ2 despite a larger mixing length.

The FDFs shown in Figs. 4, 5 and 6 are extracted for an arbitrarily chosen

point (marked by black dot) in the given x-y plane for each case, such that this

point is located in a reaction zone, and also the mixing and reaction states, i.e.,

local (Z/Zst) and c values, are similar among the three cases. Three filter sizes

with ∆+ = 0.5, 1 and 1.5 are applied for cases AZ1 and AZ2. These filter sizes are

illustrated using the to-the-scale boxes with corresponding colours. Only ∆+ = 0.5

and 1 are explored for BZ1 which has a reference thermal thickness nearly twice

that for AZ1 and AZ2 (see Table 1), and a larger ∆+ leads to insufficient number

of samples for the subsequent DNN training. Nevertheless, larger filter sizes (∆ >

3 mm) are not of interest as they would not resolve sufficient amount of turbulent

kinetic energy in a posteriori LES. The marginal FDFs, P(Z) =
∫

P(Z, cT ) dcT and

P(cT ) =
∫

P(Z, cT ) dZ, are also shown in the small inset figures. The following

observations are made by a careful and close examination of the FDFs in Figs. 4,
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5 and 6:

• case AZ1 with conditions relatively less MILD among the three cases, ex-

hibits FDF behaviours that share more similarities with those appearing in

conventional flames. For example, the distribution in cT -space shown in

Figs. 4d, 4e and 4f is more or less bi-modal. This is not at all surprising if

one sees the f lamelet-like structures (as commonly found in conventional

combustion) inside the filter boxes in Fig. 4c, where the probabilities of

falling into either unburnt (cT = 0) or burnt (cT = 1) mixtures are much

higher. The corresponding local scalar gradient of cT in Fig. 4a is also quite

strong, clearly marking the wrinkled local flame fronts. Such structures are

not as evident in cases AZ2 and BZ1 due to the more distributed reaction

zones.

• The marginal FDF for mixture fraction has a single pronounced peak and

behaves quite consistently across all three cases. This is expected for the

passive scalar. For the progress variable, however, its statistical distributions

in cases AZ2 and BZ1 become very different in their own ways compared

to the bi-modal shapes observed for AZ1 in Fig. 4. Specifically, for AZ2

one can identify a peak on one side of the marginal PDF of cT , accompa-

nied with a plateau extending towards the other side. As ∆+ becomes larger

the height of this plateau increases and its value can be quite close to the

peak as can be seen in Fig. 5f. Differently in Fig. 6 for case BZ1, P(cT ) is

rather broadly distributed between 0 and 1 without dominant (or with mul-

tiple) peaks. Both of these are difficult to capture using classical presumed

models.
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• There is a negative cross correlation between Z and cT in all three cases,

which is in line with previous numerical [27] and experimental [54] studies

on jet flames. This cross correlation is stronger in the diluted case BZ1,

which is not surprising since the distribution of cT spreads more evenly

over a broader range resulting in a stronger interaction with variations of Z

as compared to cases AZ1 and AZ2. Modelling the cross correlation in the

FDF is also quite challenging.

Next, it is of interest to examine the DNN and analytical model abilities to

capture the above complex FDF behaviours, which are presented in Figs. 7, 8 and

9 for cases AZ1, AZ2 and BZ1, respectively. The corresponding temporal and

spatial points are the same as those marked in Figs. 4, 5 and 6. Before making

the comparisons, it is stressed here again that one must be cautious with the FDFs

directly extracted from the instantaneous DNS snapshots. As already discussed

in Section 2.2, these FDFs are random variables (containing subgrid statistical

information) but not statistics [35, 38], whereas the often used analytical models,

e.g., β and copula PDFs, presume statistical distributions. Although strictly they

should not be compared directly against one another, this comparison using single

snapshot data is made here to provide a clear view of the typical individual model

performance for the specific filter points shown in the previous figures. Detailed

quantitative comparison of the statistics is presented later in Section 3.2.

It can be seen in these figures that the DNN model significantly outperforms

both analytical models and its prediction agrees very well with the DNS data for

all cases with different filter sizes and initial conditions. This is particularly evi-

dent for the marginal distributions of cT , where both the β and copula models fail

to predict with satisfactory accuracy, although the latter seems to capture the corre-
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lation qualitatively well (the correct slope is observed). Relatively, the prediction

by DNN is even better at larger ∆+ showing excellent agreement with the DNS. As

a general observation, the marginal FDF of progress variable tends to always have

different non-regular shapes from one case to another. The DNN captures these

shapes quite well, as compared to those given by the β and copula models always

having Gaussian-like distributions. This difference has important implications for

the reaction rate modelling, because the pronounced peak in the Gaussian FDF

leads to larger reaction rate gradients through the double-integration procedure,

as one shall see later in Section 4. For the mixture fraction, however, all models

give good results but only the DNN is able to capture the asymmetry of the FDF

as can be seen more clearly in Figs. 9b and 9d for case BZ1. These results indicate

promising capabilities of the DNN to predict the complex subgrid scalar fluctua-

tions in MILD combustion, and this is further confirmed by comparing the FDF

statistics next.

3.2. Statistics: conditional FDF & Jensen-Shannon divergence

Following the experimental studies of Tong et al. [29, 55, 56], the instan-

taneous FDFs obtained from the DNS are conditioned on the resolved scalars,

Z̃ and c̃T , and then ensemble-averaged. It would be insightful to condition the

FDFs also on the variances, ideally all five statistical moments, but there is not

sufficient number of samples available to perform a statistically meaningful av-

eraging. Thousands of DNS snapshots would be required, which is impractical

for the state-of-the-art computational infrastructures. Thus, only two conditional

variables are considered in this work. The resolved mixture fraction and progress

variable are chosen here so that the selected samples are located in the reaction

zone (c̃T ≈ 0.5) and with a relevant lean equivalence ratio.
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Figures 10 and 11 show the conditional FDFs,
〈
P̃(Z, cT )

∣∣∣ Z̃, c̃T

〉
, for cases AZ1

and BZ1, respectively. The results for AZ1 and AZ2 are similar and hence the lat-

ter is not shown here (can be found in Supplementary Material). The correspond-

ing values for the conditioning variables can be found in the figure captions. These

values are chosen such that the conditional FDFs shown here consistently reflect

the statistics of the previous instantaneous FDFs in Figs. 7 and 9. Comparing with

those instantaneous FDFs, the random fluctuations are smoothed out by the condi-

tional averaging as one would expect, which makes it more valid to be compared

with the β and copula distributions. Similarly, the conditional DNN results also

appear to be relatively more statistically converged. The key observations from

Figs. 10 and 11 are summarised as follows.

• The DNN is able to remarkably reproduce the conditional FDFs precisely

with a maximum error smaller than 0.1% across all cases considered. This

includes all the joint FDFs and marginal ones for both Z and cT . It also

captures the significant changes in the FDF shape with the varying filter

size, especially for the progress variable.

• For case AZ1 (and also AZ2), both the β and copula models over-predict the

peak when ∆+ 6 1 for both Z and cT distributions. However, for ∆+ = 1.5,

the overall prediction is quite good for P̃(Z) and the peak of P̃(cT ) is also

similar to the DNS value, but the shape show significant deviations.

• For case BZ1, the mixture fraction distribution is generally predicted well

by all models for different ∆+ values. However, the both analytical models

fail to capture the bimodal-plateau shape of P̃(cT ), which is typical of MILD

combustion but rarely seen in conventional flames.
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In order to demonstrate the model performances in terms of statistics over a

large number of test points under various conditions, a commonly used metric

is employed to quantify the deviation of the model predictions from the DNS

data. The Jensen-Shannon divergence [57], which measures the similarity of two

probability distributions, Q1(n) and Q2(n), is computed using

JSD(Q1||Q2) =
1
2

N∑
n=1

{
Q1(n) ln

[
Q1(n)
Q2(n)

]
(21)

+ Q2(n) ln
[
Q2(n)
Q1(n)

] }
for a given filter point (see number of samples in Table 2). Q1 and Q2 are taken to

be the DNS and modelled FDFs, respectively. The JSD is mathematically bounded

between 0 and ln(2), with 0 indicating Q1 = Q2 and hence the smaller the JSD

value the more similar the two distributions. The PDFs of JSD for different DNS

cases and filter sizes are presented in Fig. 12. As can be seen, the JSD values

given by the DNN are clustered near zero and overall much lower than those

for the β and copula models. Moving from small to large filter sizes, all three

models give improved predictions as the PDFs shift towards smaller JSD values

and the improvement is particularly significant for the DNN having more than

95% lower than 0.05 as seen in Figs. 12c, 12f and 12h. The DNN model seems to

be insensitive to the scalar considered, whereas the β and copula models perform

better for Z, which is consistent with the observations in previous figures.

3.3. Importance of covariance

It is of interest to understand how the covariance influences the DNN perfor-

mance. To this end, the DNN training was repeated using the same DNS cases,

snapshots and filter sizes with the only change made by removing the covari-

26



ance from the input matrix, which reduces to X4
i, j,k = {Z̃, c̃T , σ̃

2
Z, σ̃

2
cT
}i, j,k. The

JSD of the four-variable DNN predictions are calculated in a similar manner as

before, and compared with the five-variable DNN results in Figs. 13 and 14 for

the progress variable and mixture fraction, respectively. Overall, the model be-

haviour and prediction trends are similar between the two scalars and the results

generally improve as the filter size increases. Without considering the covariance,

the DNN predictions for cases AZ1 and AZ2 become considerably poorer, i.e.,

the PDF shifts towards larger JSD values, but little difference is observed for the

more diluted case BZ1.

While all LES sample cubes from the DNS domain were used to reconstruct

these PDFs, additional analysis was also carried out to investigate the influence

of covariance at different axial locations (x-direction). This was motivated by

Ref. [16], which showed that different combustion modes occur as the mean flow

convects the reacting mixtures from the inlet to outlet: autoigniting spots first

form in the lean mixture upstream, and subsequently these hot spots trigger prop-

agating fronts moving towards richer mixtures. The JSD results at different x-

locations (see Supplementary Material), however, were found to be quite similar

to the global behaviours seen in Figs. 13 and 14, suggesting that the influence of

covariance on the FDF prediction is independent of the physical locations, ther-

mochemical state or burning modes. Therefore, this demonstrates the promising

general applicability of the DNN method for various conditions which may occur

in different regions of the computational domain.

3.4. DNN prediction using “unknown” inputs

The results presented so far are still self-predictions, meaning that the predic-

tions are performed on the training datasets, which is essential for model assess-
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ment. However, a key ability determining the genuine usefulness of ML-based

approaches is that when a model is trained and validated using a given set of data,

it should be able to take unknown inputs from other datasets (often having similar

features) which have not been explicitly included in the learning, and accurately

predict the corresponding outcomes. To demonstrate this ability for the present

DNN approach, the sampling method for the training data selection is revised

such that the DNN model learns from the snapshots spanning between t = τ f and

1.2τ f , and subsequently the predictions are made for snapshots between t = 1.4τ f

and 1.5τ f . There are substantial levels of temporal variations in the turbulent

mixing characteristics and composition (including EGR dilution) for the inflow

mixtures and hence the MILD combustion behaviours within each snapshot, as

time evolves from τ f to 1.5τ f (see [16] for details). Therefore, such a DNN setup

poses considerable challenges for the model to handle scenarios that have not been

explicitly seen during its training process.

The PDFs of JSD for the self- and unknown-predictions of the FDF are com-

pared in Fig. 15. The filter size of ∆+ = 1 is used for all cases. As shown consis-

tently across three cases, the DNN provides a similar level of predictive accuracy

when unknown inputs are fed into the model with a very small drop from the

self-predictions. The JSDs are generally (> 80%) smaller than 0.05. This is to

be compared with the results given by the β and copula FDF models in Fig. 12

(middle column), both having significant amount of JSD values larger than 0.1

indicating significant deviations from the DNS data.

Since the above “unknown” inputs come from the DNS case on which the

DNN was trained, these inputs may still have similar physical patterns and fea-

tures despite the large variations in turbulence and composition. Therefore, a fur-
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ther step is considered by training and validating the DNN model using the data

collected from cases AZ1 and BZ1, and subsequently the testing is performed on

case AZ2. Note that the three DNS cases were simulated independently with very

different initial fields (see Table 1), leading to distinct turbulent mixing and com-

bustion behaviours as demonstrated earlier in Figs. 4 to 6. Figure 16 compares

the JSD results obtained from this new test with the self-predictions for ∆+ = 0.5.

Although a considerable drop is seen at the peak of the PDF near JSD = 0.02,

the overall performance is still quite good with the majority of the JSD smaller

than 0.1 for both the mixture fraction and progress variable FDFs. This suggests

that the present DNN approach is robust and able to predict the FDFs accurately

with the capability to handle the unknown variations in the input data, which is

promising for broader applications in MILD combustion modelling.

4. A priori assessment of reaction rate modelling

4.1. Filtered reaction rate closure

Once the joint FDF, P̃(Z, cT ), has been obtained through the models described

earlier, now one is able to close the reaction rate source term in the transport

equation for filtered progress variable using

ω̇cT (x, t) = ρ(x, t)
∫ 1

0

∫ 1

0
〈ω̇cT 〉P̃(Z, cT ; x, t)dZ dcT , (22)

where 〈ω̇cT 〉 =

〈
ω̇cT (x, t)/ρ(x, t)

∣∣∣∣∣Z, cT

〉
is the doubly conditional mean reaction

rate obtained from the DNS data. According to Eq. (1), the instantaneous reac-

tion rate of cT is calculated as, ω̇cT = q̇/[cp(Tb − Tu)], with q̇ and cp being the

volumetric heat release rate and mixture specific heat capacity respectively.
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The conditional averages are performed using samples collected over the en-

tire DNS computational domain including all snapshots available (≈ 60) to achieve

good statistical convergence. It was verified (not shown) that the doubly condi-

tional mean rates only have negligible variations in time and space within the DNS

datasets. This supports the fundamental assumption for many turbulent combus-

tion models that the conditional means have relatively small temporal and spatial

gradients, if appropriate conditioning variables are chosen. These models include

the two main categories, namely flamelets [58–61] and conditional moment-based

approaches (with transport equation closure − CMC [62] or source-term estima-

tion − CSE [63]).

Figure 17 presents the conditional mean reaction rates of progress variable for

cases AZ1 and BZ1. Note that case AZ2 was found to have very similar ther-

mochemical characteristics as AZ1 and thus is not considered further in this sec-

tion. A heart-shaped distribution pattern is seen for the conditional mean reaction

rates for both cases. Also, high reaction rates are located mostly in lean regions

although mixtures spanning over the entire flammable range are present in the

DNS domain. The reaction rates seen here are very different to those occurring in

conventional combustion where they are usually clustered near the stoichiometric

mixture fraction and an intermediate value of progress variable, typically form-

ing a Gaussian bell shape. This can be explained as follows. When the inflow

mixtures enter the DNS domain, reactions immediately occur as autoignition (AI)

spots due to the high temperature and presence of radials [16]. AI happens in the

very lean mixtures which have much smaller ignition delay times as marked using

stars in Fig. 17. These spots then diffuse into slightly richer mixtures promot-

ing to form lean flame fronts. This process involves a temperature drop and we
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can see the reaction rates in regions with small cT . Once the fronts are formed,

then they propagate into even richer mixtures resulting in a large amount of heat

release. This behaviour is observed for both AZ1 and BZ1 cases, with the latter

completing combustion earlier (no rich flames seen) because of the higher dilution

level, i.e., lower fuel concentrations. Such observations for the conditional reac-

tion rates are consistent with the findings in [17] using Lagrangian particles to

track the autoigniting spots and propagating flame fronts, further confirming the

multi-regime nature of MILD combustion. Next, the conditional reaction rates,

along with the FDFs obtained in Section 3, are used to model the filtered reaction

rate via Eq. (22), and the results are then compared with the explicitly filtered

reaction rate to assess the model performance.

Figure 18 shows the typical instantaneous mid-plane contours of the unfil-

tered, filtered and modelled reaction rates for case AZ1 and ∆+ = 0.5 (see results

for other ∆+ in Supplementary Material). In this figure, the filtering effect can

be seen clearly by comparing the ω̇cT and ω̇cT contours. It is also important to

note that ω̇
m−DNS
cT

is the best possible result one would obtain using two-scalar (Z

and cT ) based modelling approaches (e.g., flamelets, CMC, CSE), since both the

conditional mean reaction rate and FDF in Eq. (22) are directly obtained from

the DNS data. It is shown in Fig. 18 that the ω̇
m−DNS
cT

field is in good agreement

with ω̇cT although the former seems slightly more diffusive, which may be due

to the limited samples and number of bins used for the conditional averaging and

FDF construction. A more quantitative comparison is shown in Fig. 19 for the

joint PDF of ω̇cT and ω̇
m−DNS
cT

for different filter sizes. It can be observed clearly

that the joint PDFs fall within the vicinity of the diagonal suggesting an excellent

agreement between ω̇cT and ω̇
m−DNS
cT

for a range of ∆+ values. The observations
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in Figs. 18 and 19 for case AZ1 are also representative for the other cases AZ2

and BZ1 (included in Supplementary Material). Thus, these results demonstrate

that Eq. (22) is an adequate and robust model for the filtered reaction rate closure

in MILD combustion under different turbulence and thermochemical conditions.

The key question now is, however, whether this model performs accurately with

the modelled FDFs, although the qualitative contours in Fig. 18 (lower row) seem

quite promising.

The scatter plots of ω̇
m−DNS
cT

and the reaction rates computed using β, copula

and DNN FDF models are presented in Fig. 20. The qualitative behaviours and

trends are similar among the three cases (see Supplementary Material) and hence

only AZ1 is shown here. It can be seen that although all models give reasonable

predictions near the diagonal line, the DNN outperforms the analytical models

for all filter sizes. The DNN predictions generally exhibit good symmetry about

the diagonal, indicating a bias towards neither under- nor over-prediction. As

∆+ increases, the DNN prediction improves considerably. The performance of

the analytical models, by contrast, shows more complex behaviour with respect

to the filter size change. While the scatters for both the β and copula models are

asymmetric, there seems to be a trend in the off-diagonal samples moving from

under-predictions at small ∆+ to over-predictions at larger ∆+.

The model performance can be examined quantitatively via the normalised

prediction error, which is defined as

εm =
ω̇

m
cT
− ω̇

m−DNS
cT

ω̇
m−DNS
cT

, (23)

for every filter point. Figure 21 compares the PDFs of εm for the DNN and analyt-

ical models, with the samples collected from all three cases AZ1, AZ2 and BZ1
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for each filter size. The results shown here generally support the observations and

arguments made earlier for Fig. 20. The DNN gives accurate, robust and unbiased

predictions with the εm values located symmetrically near zero. For the analytical

models, the asymmetry in the reaction rate prediction observed earlier is further

confirmed, as well as the shift from under- to over-predictions when ∆+ increases.

The overall accuracy also decreases slightly at larger ∆+ for both the β and copula

models.

5. Concluding remarks

In this work, the DNN machine learning algorithm is applied to train a predic-

tive model for the joint FDF of mixture fraction and progress variable in the con-

text of MILD combustion. A state-of-the-art DNS dataset considering detailed-

chemistry methane/air combustion with EGR dilution is used for the DNN training

and validation. Three DNS cases, differing in the inflow turbulent mixing char-

acteristics and dilution levels, are investigated, firstly to provide physical insight

into the FDF behaviours with respect to those found in conventional combustion,

and then secondly to assess the accuracy and robustness of the DNN model un-

der various MILD conditions of practical interest. In addition, a range of filter

sizes, of the order of the thermal thickness for a reference planar laminar flame,

are studied for each DNS case, composing a comprehensive group of test cases

for model development and validation. For comparison, two commonly used an-

alytical FDF models, presuming double independent β and correlated copula dis-

tributions respectively, are used to show the relative performance of the DNN

model. Moreover, the mean reaction rate doubly conditioned on the mixture frac-

tion and progress variable is computed using the DNS data for different MILD
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conditions, showing complex behaviours that significantly deviate from those ob-

served in conventional combustion. This conditional reaction rate is then used

along with the presumed and DNN-predicted FDFs to compute the filtered reac-

tion rate source term for a priori assessment. The main findings of the above

investigations in this work are summarised as follows.

• The FDFs in MILD combustion are found to be non-regular and signifi-

cantly different from the classical shapes, e.g., Gaussian and bi-modal com-

monly found in conventional non-premixed and premixed jet flames. The

differences are particularly evident for the DNS cases where the character-

istic mixing and reaction lengths are comparable or dilution level is high,

both promoting more distributed reaction zone behaviours.

• The DNN is generally able to capture the complex FDF behaviours and their

variations with excellent accuracy across various turbulence and MILD ther-

mochemical conditions for a range of filter sizes. This can be achieved with

very little effort in parametric tuning, typically fixing network architecture

and all hyper-parameters using one case and then applying to others as a

black-box. It is also shown that the DNN can handle unknown inputs quite

well, suggesting a good model robustness. By contrast, the β and copula

models in most cases cannot capture the MILD FDF behaviours especially

in the progress variable space, although the latter could provide an accurate

cross-correlation slope in the joint space.

• The doubly conditional reaction rate of the progress variable exhibit com-

plex multi-regime behaviours, with autoignition and flame propagation dom-

inating in different regions in the joint conditional space. The former always
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appears in leanest mixtures, which have much shorter ignition delay times,

whereas the latter tends to be initiated by the autoignited spots and then

propagates from lean to richer mixtures. Also, autoignition-driven heat re-

lease occurs mostly in the upstream (close to the inlet), and the flame fronts

can be found all over the entire DNS domain.

• Despite its physical-space dependent behaviour above, the conditional reac-

tion rate is found to vary only slightly (< 5% maximum) in space and time,

at least for the DNS cases considered. As a result, the filtered reaction rate

closure based on the joint FDF performs consistently well for all cases. The

DNN predictions show much better agreement with the DNS reaction rates

than those given by the analytical models for a range of filter sizes.

Although the above observations clearly demonstrate the attractive potential

of using Eq. (22) and DNN-based FDF model for the reaction rate modelling

in MILD combustion, there is still a remaining challenge which requires further

investigation. Even though the FDF may be modelled well using the DNN, esti-

mating the mean reaction rate conditioned on the mixture fraction and progress

variable prior to a posteriori LES is challenging. In conventional combustion,

the initial thermochemical state can be determined by mixture fraction alone (at

least for two-stream problems). However, as a unique feature of MILD combus-

tion, the mixing between unburnt reactants and recirculated burnt products (often

cooled and thus non-adiabatic) can change the reactivity of local mixtures, and it

is difficult to describe in a pre-tabulation step. All canonical flame/reactor calcu-

lations require well defined initial thermochemical state and/or boundary condi-

tions, which are not straightforward to specify for MILD combustion, particularly

for cases involving mixture fraction variations. An additional parametric variable

35



marking the local dilution level may be necessary, which will be a central topic

for follow-up works.
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Fig. 1: Illustration of the joint FDF binning procedure using a typical DNS snapshot for case

AZ1. White arrow in (a) indicates the mean flow direction. Colourbar values in (b) are normalised

counts (i.e., densities).
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(b) Filtered DNS 
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(a) FDF from unfiltered DNS (Fig. 1)

Fig. 2: Schematic demonstration of the ML training data extraction process from the DNS (same

snapshot as in Fig. 1).
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Fig. 3: Schematic of the DNN architecture with input and output matrices (yellow symbols) and

hidden layers (green symbols).
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(a) (b) (c)

(d) (e) (f)

[-] [-] [kg/m3/s]

Fig. 4: Case AZ1: typical instantaneous x-y plane contours of unfiltered fields for (a) cT , (b) Z and

(c) ω̇cT ; and FDF behaviours with three different filter sizes, (d) ∆+ = 0.5, (e) 1 and (f) 1.5, at an

arbitrarily chosen point.
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(d) (e) (f)

(a) (b) (c)[-] [-] [kg/m3/s]

Fig. 5: Case AZ2: typical instantaneous x-y plane contours of unfiltered fields for (a) cT , (b) Z and

(c) ω̇cT ; and FDFs with three different filter sizes, (d) ∆+ = 0.5, (e) 1 and (f) 1.5, at an arbitrarily

chosen point.
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(a) (b) (c)[-] [-] [kg/m3/s]

(d) (e)

Fig. 6: Case BZ1: typical instantaneous x-y plane contours of unfiltered fields for (a) cT , (b) Z and

(c) ω̇cT ; and FDF behaviours with two different filter sizes, (d) ∆+ = 0.5 and (e) 1, at an arbitrarily

chosen point.
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(a)
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(e)

(f)

Fig. 7: Case AZ1: comparison of joint and marginal FDFs between DNS and model predictions

for filter sizes of (a)-(b) ∆+ = 0.5, (c)-(d) ∆+ = 1 and (e)-(f) 1.5 for the filter point shown Fig. 4.
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(f)

Fig. 8: Case AZ2: comparison of joint and marginal FDFs between DNS and model predictions

for filter sizes of (a)-(b) ∆+ = 0.5, (c(-(d) ∆+ = 1 and (e)-(f) 1.5 for the filter point shown Fig. 5.
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(a)

(b)

(c)

(d)

Fig. 9: Case BZ1: comparison of joint and marginal FDFs between DNS and model predictions

for filter sizes of (a)-(b) ∆+ = 0.5 and (c)-(d) ∆+ = 1 for the filter point shown Fig. 6.
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(f)

Fig. 10: Case AZ1: conditional joint and marginal FDFs for (a)-(b) ∆+ = 0.5, Z̃ = 0.007, c̃T =

0.45; (c)-(d) ∆+ = 1, Z̃ = 0.0066, c̃T = 0.43; and (e)-(f) ∆+ = 1.5, Z̃ = 0.0064, c̃T = 0.39.
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(c)

(d)

Fig. 11: Case BZ1: conditional joint and marginal FDFs for (a)-(b) ∆+ = 0.5, Z̃ = 0.00034,

c̃T = 0.48; and (c)-(d) ∆+ = 1, Z̃ = 0.0036, c̃T = 0.46.
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Fig. 12: Probability density function of Jansen-Shannon divergence for DNS and modelled FDFs.

Solid and dished lines correspond to progress variable and mixture fraction, respectively.
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Fig. 13: Probability density function of Jansen-Shannon divergence for the DNN predicted

progress variable FDFs for cases (a) AZ1, (b) AZ2 and (c) BZ1. Solid and dished lines corre-

spond to learning with and without the covariance.

Fig. 14: Probability density function of Jansen-Shannon divergence for the DNN predicted mixture

fraction FDFs for cases (a) AZ1, (b) AZ2 and (c) BZ1. Solid and dished lines correspond to

learning with and without the covariance. See colour legend in Fig. 13.
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Fig. 15: Comparison of Jansen-Shannon divergence for DNN self- and unknown-predictions of

FDF for (a) progress variable and (b) mixture fraction . The filter size for all cases is ∆+ = 1.

Fig. 16: Comparison of Jansen-Shannon divergence for case AZ2 FDF predictions using self and

new case inputs. The filter size is ∆+ = 0.5.
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Fig. 17: Conditional mean reaction rates of progress variable. Dashed lines indicate stoichiometric

mixture fraction.
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[kg/m3/s]

Fig. 18: Typical reaction rate contours for case AZ1 with ∆+ = 0.5. Mean flow moves from left to

right.

(a) (b) (c)

Fig. 19: Joint PDF of ω̇cT and ω̇
m−DNS
cT

(in units of kg/m3/s) for case AZ1 with different filter sizes.
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(a) (b) (c)

under-predict

over-predict

Fig. 20: Scatter plot of ω̇
m−DNS
cT

and ω̇
m
cT

(in units of kg/m3/s) modelled using different FDF models

(denoted using different markers) for case AZ1 with different filter sizes.

(a) (b) (c)

Fig. 21: PDFs of normalised prediction error for the filtered reaction rate using different FDF

models. The samples for each filter size are collected from all three cases for each model.
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