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Machine Learning for Sensor Transducer
Conversion Routines

Thomas Newton, James T. Meech, Student Member, IEEE and Phillip Stanley Marbell, Senior Member, IEEE

Abstract—Sensors with digital outputs require software con-
version routines to transform the unitless analogue-to-digital
converter samples to physical quantities with correct units.
These conversion routines are computationally complex given
the limited computational resources of low-power embedded
systems. This article presents a set of machine learning methods
to learn new, less-complex conversion routines that do not
sacrifice accuracy for the BME680 environmental sensor. We
present a Pareto analysis of the tradeoff between accuracy and
computational overhead for the models and models that reduce
the computational overhead of the existing industry-standard
conversion routines for temperature, pressure, and humidity by
62%, 71%, and 18% respectively. The corresponding RMS errors
are 0.0114 ◦C, 0.0280KPa, and 0.0337%. These results show
that machine learning methods for learning conversion routines
can produce conversion routines with reduced computational
overhead which maintain good accuracy.

Index Terms—Machine Learning, Regression, Sensor.

I. INTRODUCTION

THERE is a constant drive to make sensors more power-
efficient. Users require embedded sensor systems such

as wearable fitness trackers and battery-powered smart ther-
mostats to be small with long battery life. In resource-
constrained sensor applications, engineers optimise code for a
small memory footprint and low computational overhead [1].

This article describes new methods to optimise the compu-
tational overhead of the conversion routines for the BME680, a
digital temperature, pressure, humidity, and indoor air quality
sensor [2]. Digital sensors require conversion routines to have
meaningful outputs. Embedded sensor systems require low-
power microcontrollers with sufficient random-access memory
(RAM), flash storage, and computational performance to store
and run the conversion routines to use sensors: Optimising the
conversion routines will help meet these requirements under
tighter memory size and power consumption constraints.

A. Contributions
This article presents the following three contributions:

1) A new approach and its implementation of alternative,
machine-learned conversion routines for temperature,
pressure, and humidity. We demonstrate the methods
using a state-of-the-art sensor, the Bosch BME680 but
the insights and methods are applicable to other sensors.

2) Quantitative evaluation of the computational overhead,
accuracy, RAM, and flash storage usage of these con-
version routines.
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Fig. 1. Block diagrams for the original and new learned conversion routines.

3) A Pareto analysis of accuracy against computational
overhead for the conversion routines.

B. Why do Sensors Need Conversion Routines?

Typical sensors with digital outputs have a transducer which
is sensitive to the signal they are designed to measure (the
measurand), e.g., temperature, and produce a voltage which is
converted to a digital signal by an analogue-to-digital converter
(ADC). The ADC outputs a single unsigned integer with a
fixed number of bits (the measurement). Obtaining a reading
with meaningful units requires a transformation to map these
unsigned integers into the correct real number range. If the
transducer is non-linear then the conversion must also invert
the sensor transducer transfer function after the ADC has
digitised its analogue output signal [3].

C. Manufacturer-Provided Conversion Routines

The top half of Figure 1 shows the BME680 conversions
provided by Bosch Sensortec [2]. An external microcontroller
computes the conversion routines in real time each time the
microcontroller samples the sensor. For the BME680, the
manufacturer provides calibration constants specific to each
sensor. These are parameters of the conversion routine, which
tune the conversion on a per-sensor basis to reduce the impact
of any manufacturing variability in sensor properties.

D. Learning New Conversions from Data

We can use machine learning to learn alternative conversion
routines from data. The bottom half of Figure 1 shows a
block diagram of the process. Using the original manufacturer-
provided conversion routines and a set of calibration constants,
our method generates training datasets, to train the models.
Our method saves the trained weights so that at inference
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time the models are a direct replacement for the manufacturer-
provided conversion routines in Figure 1. The calibration
constants used to generate the training data are specific to
one physical sensor, therefore the trained weights will only be
accurate for that sensor.

II. TRAINING DATA

We produced synthetic mesh datasets and sequence datasets for
training and testing the models. The synthetic datasets take the
original conversion routines, provided by the manufacturer [2],
as ground truth. We generated mesh datasets by producing a
fine mesh of equally-spaced points across the unconverted do-
main. We applied the original conversion routines to produce
labels for all of these data points.

To produce datasets which are continuous sequences, we
used Gaussian processes, adjusting the characteristics using a
kernel function. We used a five-halves Matern kernel function
and set the length scale to 20 times the virtual sampling period.
The virtual sampling period is the constant interval between
evaluating the Gaussian process and has no link to any real
sampling period. To ensure that the generated sequence fills
the required range, we apply a linear transformation after
generating the function. This makes the amplitude parameter
of the kernel function irrelevant. For multi-dimensional inputs,
we evaluated a single dimensional sample function for each
input. We drew sample functions independently from the same
single dimensional Gaussian process. We applied the original
conversions to provide labels for the dataset.

An optional refinement, the inverse refinement, ensures
datasets precisely match the sensor operating range. Instead
of generating data in the unconverted domain, we generate
data in the converted domain, where it is easy to enforce the
limits of the operating range. We compute the unconverted
values by inverting the original conversion routines.

III. EVALUATION METHOD

We measured the accuracy of the models using a sequence of
synthetic data which was 1000 points long. We averaged each
result over ten similar datasets. For models that included an
element of randomness such as neural networks, we averaged
the results over five different random seeds.

A. Accuracy Measure
Let yPredict be the value predicted by the machine learning
model, yTrue be the ground truth value from the original
conversion routine, and y

(Max)
True and y

(Min)
True be the maximum

and minimum values of the operating range of the sensor for
the physical quantity of interest. We used a normalised RMS
error to quantify accuracy, where:

ERMS =
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100

y
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True − y

(Min)
True

)2
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This allows comparison between the measurements from dif-
ferent sensors (e.g., temperature -40 to 85 ◦C, pressure 30 kPa
to 110 kPa, and humidity 0 to 100% [2]).

B. Computational Overhead and Memory Usage Measures

We first implemented each model in Python making use of the
TensorFlow library [4]. We then exported the trained weights
and created C-language implementations of the inference
functions based on these weights. We measured overhead
as the number of RISC-V instructions needed to convert a
single ADC sample into a physically-meaningful real-valued
number with units. We used the Sunflower embedded system
emulator [5] to measure the number of dynamic instructions
executed at run time by a binary compiled from a given C-
language implementation: We used a feature in Sunflower to
precisely and deterministically measure the dynamic instruc-
tions executed for a given region of source code. Computa-
tional overhead translates almost linearly to energy consump-
tion so we use computational overhead as the cost metric [5].
We measured the flash and RAM usage of the implementations
of the models generated by each machine learning method
by taking the size of the .text section as the flash storage
requirement. We summed the .bss and .data section sizes
to determine the RAM requirement for global variables and
manually counted the memory required for local variables.

IV. TESTED MODELS

We evaluated both function approximation methods and time
series methods.

A. Function Approximation Methods

We trained most models with datasets generated by the mesh
method described in Section II using the inverse refinement
and 20 discretisation levels each for temperature, pressure, and
humidity. We used other datasets where explicitly mentioned.
The methods that we trained fall into five broad categories:

1) Linear Regression: Simple linear-in-the-parameters re-
gression using linear feature vectors. We used a simple non-
Bayesian linear regression.

2) Quadratic Regression: A linear-in-the-parameters re-
gression using quadratic feature vectors.

3) Linear Interpolation Lookup Table: A lookup table that
linearly interpolates between three nearby points. We used be-
spoke datasets using the mesh method described in Section II
without the inverse refinement. We did this to ensure a regular,
square grid in the unconverted (input) domain to simplify the
interpolation. We tested discretisation levels of 3, 10, and 20.

4) Gaussian Process Regression: Gaussian Process regres-
sion as described by Rasmussen [6]. We used a Gaussian
likelihood function and Gaussian kernel to solve the regression
analytically. The training datasets used discretisation levels of
two and three. We optimised the hyper-parameters in the kernel
function to maximise the log-likelihood of generating the data.

5) Neural Networks: Simple feed-forward fully-connected
neural networks. Every neuron uses the same activation func-
tion. A preliminary evaluation showed that the exponential,
Gaussian kernel, sigmoid, RELU, hard sigmoid, tanh, and soft
sign activation functions had dynamic instruction overheads
of 109, 131, 122, 19, 33, 124, and 11 RISC-V instructions
respectively. We therefore chose to use the RELU function
because it is commonly used and has low computational
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overhead (19 dynamic instructions). We trained models to
minimise the RMS error (Equation 1). To aid training, we
rescaled the inputs and outputs to the range [0, 1].

B. Sequence-Based Models

Sequence-based models may be able to provide lower com-
putational overhead by taking advantage of the fact that the
sensors measure physical systems and we have prior knowl-
edge of what a sequence of sensor data might look like.

We trained all the sequence-based models to minimise the
RMS error. We generated 5000 point training datasets using
the sequence method from Section II. Training required ap-
proximately 20, 000 epochs. By comparison, the feed-forward
neural networks required fewer than 10, 000 epochs. We
trained four categories of sequence-based models:

1) Auto-Regressive Moving Average (ARMA): ARMA mod-
els are usually used in systems with many wide sense station-
arity assumptions and where the inputs are white noise. With
these assumptions the optimal parameters can be computed
analytically but in this case, with no simplifying assumptions,
we trained them iteratively using TensorFlow.

2) Gated Recurrent Unit (GRU): A single GRU cell with
a history vector of length one, providing a scalar output as
required. There are two different versions of the GRU: We
used the version proposed by Chung et al. [7], but both usually
perform similarly [7]. Long short term memory (LSTM)
neurons, used by Oldfrey et al. [3] are more complicated than
the GRU and have higher computational overhead.

3) Half GRU: A GRU cell without the output gate. The
output is returned directly after applying the activation func-
tion. This reduces computational overhead.

4) Simple RNN: The simple RNN is the least-complex of
all, with no gating. The non-linear activation function allows
it to model more complex data than the ARMA models.

V. EXPERIMENTAL EVALUATION

For each of the models increasing the number of input di-
mensions increases the computational overhead, the humidity
routines are slightly more complex than the those for pressure
because they clamp the output between 0 and 100 %. The
sequence-based methods introduce additional computational
overhead without providing a corresponding decrease in error.
More complicated sensor conversion routines using sequence-
based methods could produce a reduction in the error that
justifies the increased overhead. Machine learning models
are most uncertain (or over confident) where they have the
least training data [8]. We trained the function approximation
methods using a mesh of points that uniformly span the
domain. The model never had to generalise outside of the
training data and therefore overfitting is not a problem. For
sequence-based methods the performance on real data and
synthetic training and test data was similar indicating that
overfitting was not a problem.
Temperature conversion routines: Figure 2(a) shows the
Pareto plot of error and computational overhead for the tem-
perature conversion routine. Quadratic regression (D) Pareto
dominates the original conversion (its normalised RMS error

was of the order 10−12, rounded to 0) and its computational
overhead is 47% lower than the original. Linear regression
(C) achieves a 62% reduction in overhead compared to the
original. There is a small increase in normalised RMS error,
from approximately 10−12 to 0.00909, which corresponds
to an RMS error of 0.0114 ◦C. Figure 3(a) shows that the
linear and quadratic regression also have lower RAM and flash
storage usage than any other method including the original.
Pressure conversion routines: Figure 2(b) shows that the
pressure Pareto frontier includes the original (B), the linear
interpolation lookup table with 400 entries (N), the quadratic
regression (D), and the linear regression (C). The original
conversion has zero error by definition since we used it as
ground truth. The linear interpolation lookup table with 400
entries (N) has the next smallest error of 0.0223 with an over-
head reduction of 49%. Although it results in an increase in
normalised error of 0.0350 (i.e., 28.0Pa), quadratic regression
(D) offers a larger reduction in computational overhead of
71% compared to the original. Linear regression (C) offers a
greater reduction in overhead of 85% but with increased error
of up to 0.998 which is 798Pa. Figure 3(b) shows that the
linear and quadratic regression have lower resource usage than
the original but the linear interpolation lookup table with 400
entries (N) has a high RAM usage of 1652 bytes compared to
60 bytes for the original conversion routine. This is because it
stores a lookup table consisting of 400 floating-point numbers
in RAM. Storing the lookup table in flash storage would be
possible but it would increase the overhead due to the need to
move the data between flash storage and memory.
Humidity conversion routines: Figure 2(c) shows the Pareto
plot for the humidity conversion. The Pareto frontier includes
the same four methods as for the pressure: original (B), the lin-
ear interpolation lookup table with 400 entries (N), quadratic
(D) and linear (C) regression. As before the original conver-
sion (B) has an error of 0. The linear interpolation lookup table
with 400 entries (N) has normalised error of 0.0344 and an
overhead reduction of 18%. Quadratic regression (D) provides
a larger reduction in overhead of 51% with a normalised error
of 0.626. This error is much larger than that for the quadratic
regression for the pressure conversion. Linear regression (C)
provides the best computational overhead with a reduction of
71% compared to the original but the normalised error is high
at 4.77. Figure 3(c) shows that the RAM usage of the linear
interpolation lookup table with 400 entries (N) is high, but the
other methods on the Pareto frontier have lower resource usage
than the original. If we exclude the linear interpolation lookup
table with 400 entries (N), a smaller lookup table replaces it
on the Pareto frontier. Most methods had larger error on the
humidity conversion than on the pressure conversion. The 400
entry linear interpolation lookup table (N) was an exception.

VI. RELATED WORK

As far as we are aware there is no prior work on using
machine learning to find conversion routines with reduced
computational overhead and memory requirements for an
existing, commercially-available sensor. Two recent review
papers discuss the use of machine learning for signal pro-
cessing on the same physical hardware as the sensor but this
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(a) Temperature.
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(b) Pressure.
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(c) Humidity.

B: Original C: Linear Regression
D: Quadratic Regression E: Linear Interpolation LUT 20
F: Linear Interpolation LUT 10 G: Linear Interpolation LUT 3
H: Gaussian Process 3 I: Gaussian Process 2
J: Neural Network 3-3-1 K: Neural Network 3-1
L: Neural Network 1-1 M: Neural Network 1
N: Linear Interpolation LUT 400 O: Linear Interpolation LUT 100
P: Linear Interpolation LUT 9 Q: Gaussian Process 9
R: Gaussian Process 4 S: AR 1 MA 1
T: AR 2 MA 1 U: AR 3 MA 1
V: AR 3 MA 2 W: GRU 1 tanh sigmoid
X: GRU 1 RELU sigmoid Y: GRU 1 RELU softsign
Z: Half GRU 1 RELU softsign [: Simple RNN 1 tanh
\: Simple RNN 1 RELU

Fig. 2. Pareto plots for each conversion routine where smaller overhead and
normalised RMS error is desirable. Pareto frontiers marked in black. See the
caption of Figure 3 for an explanation of the omitted results.
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(a) Temperature.
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(b) Pressure.
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(c) Humidity.

Fig. 3. RAM and flash storage usage of each model. The caption of Figure 2
shows the key for the y-axis. The hatched regions correspond to models which
are not appropriate for the conversion routine being modelled or where we
had prior knowledge that the quadratic regression would Pareto dominate all
the sequence based methods.

requires bespoke hardware with integrated sensing and com-
puting capability [9], [10]. Our method of learning new sensor
conversion routines from data can run on existing hardware
without modification. Oldfrey et al. present a machine learning
approach that linearises the output of cheap, highly-non-linear
stretch sensors [3] and Zhang et al. reconstruct a full spectrum
from reduced data [11]. Neither of these methods are directly
applicable to the learning of sensor conversion routines for
existing commercially-available sensors from data.

VII. CONCLUSION

Lookup tables with linear interpolation, quadratic and linear
regression are all superior to the original conversion routines

in terms of computational overhead. The Pareto frontiers for
the conversions we tested were entirely occupied by func-
tion approximation methods: Sequence-based methods ranging
from ARMA to RNNs, LSTMs, and GRUs, were not on the
Pareto frontier. The function approximation methods avoid the
overheads of sequence models including initialising internal
state, the possibility that error will be worse on some unusual
sequences, and the possibility that models are unstable.

For temperature, linear regression provides a reduction in
computational overhead of 62% with an error of 0.0114C.
For pressure, quadratic regression provides a 71% reduction
in computational overhead and an error of 0.0280KPa. For
humidity, a linear interpolation lookup table with 400 data
points performs well with a 18% reduction in computational
overhead and an error of 0.0337%.

Computational overhead reductions translate almost linearly
to energy savings and are therefore useful in low-power
systems using the BME680 sensor. There is no obvious reason
why these methods will not work with similar sensors and their
conversion routines.

ACKNOWLEDGEMENTS

This research is supported by an Alan Turing Institute award
TU/B/000096 under EPSRC grant EP/N510129/1, by EP-
SRC grant EP/V047507/1, and by the UKRI Materials Made
Smarter Research Centre (EPSRC grant EP/V061798/1). We
thank Vasileios Tsoutsouras and Orestis Kaparounakis for
assistance with the figures.

REFERENCES

[1] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev et al., “Tensorflow lite micro: Embedded
machine learning on tinyml systems,” arXiv:2010.08678, 2020.

[2] BME680 Datasheet, Bosch Sensortec, https://www.bosch-sensortec.
com/products/environmental-sensors/gas-sensors/bme680/, 2020.

[3] B. Oldfrey, R. Jackson, P. Smitham, and M. Miodownik, “A deep
learning approach to non-linearity in wearable stretch sensors,” Frontiers
in Robotics and AI, vol. 6, p. 27, 2019.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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