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Causality and the initial value problem in Modified Gravity

Abstract

Lovelock and Horndeski theories are natural generalisations of Einstein’s theory
of General Relativity. They find applications in Astrophysics, Cosmology and
String Theory. This dissertation discusses some issues regarding the mathematical
consistency of these theories.

In the first part of the thesis we study the Shapiro time delay for gravitons in
spherically symmetric spacetimes in Einstein–Gauss–Bonnet gravity (a Lovelock
theory). In Lovelock theories, gravitons can propagate faster or slower than light.
We show that, thanks to this property, it is possible for them to experience a
negative time delay. It was recently argued that this feature could be employed
to construct closed causal curves, implying that the theory should be discarded as
causally pathological. We show that this construction is unphysical, for it cannot be
realised as the evolution of sensible initial data.

The second part investigates the local well-posedness of the initial value problem
for Lovelock and Horndeski theories. For the initial value problem to be well-posed
it is necessary that the equations of motion be strongly hyperbolic. It is known that
when the background fields are large, even weak hyperbolicity may fail. Hence, we
consider the weak field regime, in which these equations can be considered as small
perturbations of the Einstein equations. We prove that both Lovelock and Horndeski
theories are weakly hyperbolic in a generic weak field background in harmonic and
generalised harmonic gauge, respectively. We show that Lovelock theories fail to be
strongly hyperbolic in this setting. We also prove that the most general Horndeski
theory which is strongly hyperbolic is simply a “k-essence” theory coupled to Einstein
gravity and that any more general theory would necessarily fail to be so.

Our results imply that the standard methods used to prove the well-posedness of
the initial value problem for the Einstein equations cannot be extended to Lovelock
or Horndeski theories. This raises the possibility that these theories may not admit a
well-posed initial value problem even for weak fields and hence might not constitute
a valid alternative to General Relativity.
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Chapter 1

Introduction

General Relativity is, without doubt, one of the greatest achievements of modern
Physics. It provides a simple and elegant description of gravity compatible with
Special Relativity. In General Relativity, the fixed space and absolute time of
Newtonian physics are replaced by a dynamical manifold, the spacetime, whose
geometry describes the gravitational field. The geometry of the spacetime affects how
matter “moves” and is in turn influenced by the matter present in it. The relation
between the curvature of the spacetime and its matter content is determined by the
Einstein field equations:1

Gab = 8πTab.

Since its inception in 1915 [1, 2], General Relativity has performed remarkably
well in all of the experimental tests, from Eddington’s measurement of the deflection
of light in 1919 [3] to the recent direct observation of gravitational waves by the
LIGO collaboration [4].

Despite its numerous achievements, Einstein’s theory still presents some short-
comings which motivate the study of alternative theories of gravity.

The presence of singularities [5, 6] suggests that General Relativity breaks down
at curvatures comparable with the Planck scale. At these scales, both gravitational
and quantum mechanical effects become important and hence a quantum description
of gravity becomes necessary. It is well-known that, due to its non-renormalisability,
General Relativity cannot provide such description. A more fundamental theory
reconciling gravity with the other forces is needed.

On large scales, General Relativity fails to provide a satisfying explanation for
certain cosmological phenomena. The accelerated expansion of our Universe [7, 8]
suggests that its energy content must be dominated by Dark Energy, a non-clustering

1We choose units in which c = G = 1.
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form of energy which takes the form of a perfect fluid with sufficiently negative
pressure (ω < −1/3). A simple model for Dark Energy is provided by adding a
positive Cosmological Constant term to the Einstein equations2

Gab + Λgab = 8πTab.

Observations set the Cosmological Constant to have a small, positive value in this
model, known as ΛCDM model.

While giving good phenomenological predictions, the ΛCDM model can be
considered unsatisfactory from a theoretical point of view. The main issue, known
as the Cosmological Constant problem [10], is related to the discrepancy between the
natural scale and the measured value of Λ. In fact, the vacuum energy contribution
to Λ expected from Particle Physics is more than one-hundred orders of magnitude
larger than the observed one. To account for the observed smallness of Λ, its “bare”
value should be such as to almost cancel the vacuum energy contribution. The
reasons for such “miraculous” cancellation are not known.

Many believe that a modification of General Relativity is needed in order to
address these issues. Lovelock theorem [11] — which we will discuss in more detail
in Chapter 3 — on one hand provides a nice proof of “uniqueness” for General
Relativity (under certain assumptions), on the other it “embeds” the theory in a
more general framework. In a way, it provides us with a consistent “guide” on how
to generalise General Relativity. Thinking of General Relativity as a “special case”
of a more general theory can be interesting from the mathematical point of view.
Moreover, the study of more general theories can be beneficial to our understanding
of General Relativity itself, by providing insight or by developing new useful tools
and techniques. How are these generalisations of Einstein’s theory obtained? In
brief, Lovelock’s theorem tells us that if we want to modify General Relativity
whilst maintaining some of its essential properties — such as having second order
equations of motion arising from a diffeomorphism-invariant action — we must do
so by adding extra degrees of freedom in specific ways. One way to do so consists
in including additional fields (scalars, vectors or tensors) in our theory. A second
way of achieving this consists instead in maintaining the metric as the only field
mediating the gravitational interaction but considering a spacetime of dimension
greater than four. We will examine these possibilities shortly.

2The Cosmological Constant was first introduced by Einstein himself in order to obtain static
Universe solutions [9]. The idea was later dropped after Hubble’s discovery of the expansion of the
Universe.
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Chapter 1. Introduction

Higher dimensions and Lovelock theories

Let us consider the case of a higher dimensional spacetime. Lovelock proved that
in dimensions greater than four, the most general diffeomorphism-covariant metric
theory of gravity with second order equations of motion is not General Relativity,
but rather a generalisation of it known as Lovelock gravity [12, 11]. In this theory
the Einstein tensor in the field equations is replaced by a more general tensor,
consisting of “powers” of the Riemann curvature tensor. An interesting property
of Lovelock gravity is that it automatically reduces to Einstein’s theory in four
spacetime dimensions. Since this theory basically satisfies the same assumptions as
General Relativity and reduces to it in four dimensions, we have no a priory reason
to prefer one to the other. It is therefore important to understand the properties
of this theory and to look for evidence that either supports it or invalidates it. But
why would we be interested in a theory that differs from General Relativity only in
higher dimensions?

Over the past few decades several reasons, other than pure mathematical curiosity,
have motivated the study of theories of gravity in higher dimensions, initiated by the
pioneering work of Kaluza [13] and Klein [14, 15] shortly after the birth of General
Relativity. They proposed a model to unify gravity and electromagnetism based
on the addition of a fifth (compact) dimension. The five-dimensional equations
would then yield the four-dimensional Einstein and Maxwell equations. This theory,
however, also predicts the existence of an additional non-minimally coupled scalar
field. We will come back to this point later in this section.

A great effort has been devoted to the quest for a theory of everything which
would reconcile Gravity with the other fundamental forces. Many consider String
Theory to be the best candidate, as it contains General Relativity and appears to
be renormalisable. Consistency of this theory, however, requires the underlying
spacetime to have ten (or more) dimensions [16] rather than four, as postulated
in Einstein’s theory. An understanding of gravity in more than four dimensions
is essential in order to make sense of this theory. Interestingly, effective action
computations of certain String Theories yield corrections to the Einstein–Hilbert
action that take the form of Lovelock theories [17, 18]. We will come back to this
last point later.

In the past twenty years, the interest in higher dimensions was further fuelled
by the rising popularity of the “gauge/gravity duality” [19, 20]. Roughly speaking,
this duality relates a strongly coupled d–dimensional (conformal) field theory, to
a (d + 1)–dimensional, weakly-coupled, theory of gravity. In particular, certain
four-dimensional quantum field theories are conjectured to be “equivalent” to five-

3
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dimensional theories of gravity. Thanks to this equivalence it is possible to map
certain challenging computations in the field theory to more tractable ones in the
gravitational theory. For this reason, the study of higher dimensional theories of
gravity could bring useful contributions to the understanding of strongly coupled
field theories.

Scalar fields and Horndeski theories

Let us now consider the possibility of adding extra degrees of freedom in four
spacetime dimensions. We will only be interested in the simplest such modification,
that is we will consider the case of a single additional scalar degree of freedom.
Theories in which the gravitational interaction is mediated by the metric and a scalar
field are known as scalar-tensor theories. The most general diffeomorphism-covariant
scalar-tensor theory of gravity with second order equations of motion is known as
Horndeski gravity [21].

The idea of considering an additional scalar degree of freedom is not a new one.
As mentioned earlier, the model of Kaluza and Klein gives rise to a scalar field
non-minimally coupled to gravity. The idea was further explored by Jordan [22],
Brans and Dicke [23]. In their theory, the scalar field was taken to represent a
dynamical Newton’s constant (an idea first put forward by Dirac [24]). Despite
being tightly constrained by observation, Jordan–Brans–Dicke theory has played a
fundamental role in the development of scalar-tensor theories.

Scalar fields also play an important role in String Theory, Astrophysics and
Cosmology. For example, scalar fields — such as the dilaton — naturally appear in
the dimensional reduction of higher dimensional theories such as String Theory or
Kaluza-Klein theory. In fact, certain subclasses of Horndeski theory can be obtained
as dimensional reduction of Lovelock theories.

Certain theories — such as quintessence [25, 26] — attempt to solve the issues
related with the fine-tuning of the Cosmological Constant and its interpretation as
the vacuum energy by modelling Dark Energy as a dynamical scalar field. Dark
energy models in the context of Horndeski theory are discussed in e.g. [27].

Furthermore, scalar fields play an essential role in the theory of Cosmological
inflation, proposed by Guth [28] in order to explain the observed isotropy and (spatial)
flatness of the Universe [29, 30]. Horndeski theories provide a framework to study
the most general single-field inflation models [31].

The importance of Horndeski theories in Early Universe Cosmology is not limited
to inflation models. In fact, they play an important role in alternative models such
as bouncing cosmologies [32, 33].

4



Chapter 1. Introduction

More generally, many scalar-tensor theories of interest — such as Jordan–Brans–
Dicke, k-essence, Einstein–dilaton–Gauss–Bonnet, Galileons, etc. — can be recovered
as special cases of Horndeski gravity.

Effective field theory

As mentioned earlier, when performing effective action calculations in certain String
Theories, Lovelock terms appear among more general higher order corrections. More
generally, both Lovelock and Horndeski theories are obtained by adding higher
derivative terms to the Einstein–Hilbert action. One may wonder whether these
theories can be recovered as effective theories for some more fundamental theory.

The higher order corrections present in Lovelock and Horndeski theories form a
special class of terms that yield second order equations of motion. In the context of
effective field theory, all higher order derivatives terms in the action are suppressed
by some UV mass scale M . This scale does not distinguish between the “special” and
the more general terms. This means that the “special” terms only become important
when all higher order terms do.

The natural question to ask then is how would Lovelock and Horndeski theories
be recovered in this framework? A possible solution to this problem is given by
postulating the existence of a second mass scale M ′ associated with the “special”
terms. If this scale is much larger than the scale M associated with the more general
higher order terms, i.e. M ′ � M , then there exist a regime in which the general
higher order terms are negligible compared to the “special” ones. Lovelock and
Horndeski theories could then be recovered as effective theories at this energy scale.
One could, in principle, investigate whether this situation could arise from some UV
theory. However, in order to do so we would need to make assumptions about such
unknown UV theory.

While many people do, in fact, treat both Lovelock and Horndeski theories as
effective theories, this ad hoc approach seems rather unnatural and it is not clear
how and why the separation of scales needed for this to work would happen in nature.
Others, instead, follow the more conservative approach of considering these theories
to be the fundamental theories describing the gravitational interaction. In this case,
for these to be considered physical theories, they must be shown to be classically
self-consistent — a problem that has not received much attention in the literature.
The main goal of this thesis will be to shed some light on this issue.
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Experimental constraints

The recent direct observation of gravitational waves [4] — besides being a remarkable
scientific and technological achievement — opened up the possibility of studying
gravitational physics in regimes never tested before. In particular, testing the
behaviour of gravity in regimes where alternative theories are expected to deviate
from General Relativity could provide useful constraints for ruling out unphysical
models.

As we will see in more detail later on, in these theories, contrary to what happens
in General Relativity, gravitational perturbations do not in general propagate on
null curves of the spacetime metric. In other words, the “speed of gravity” will, in
general, differ from the speed of light. The nature and magnitude of this effect
depends on the free parameters of these theories, as well as other factors, such as
the direction and polarization of the gravitational waves. Providing experimental
bounds for the speed of gravitational waves could therefore impose constraints on
the free parameters of these theories.

On 17th August 2017, a few seconds after the LIGO and VIRGO detectors picked
up a loud signal, the Fermi gamma-ray satellite detected a strong burst of gamma
rays coming from the same location. The event, GW170817, was then confirmed to
be a neutron star merger [34, 35]. The delay between the arrival of the gravitational
and electromagnetic signals can be used to estimate the speed of gravitational waves,
which was found to agree with the speed of light within one part in 1015 [36].

The implications of these observations for Horndeski theories were discussed in
Refs. [37, 38, 39, 40]. They consider the Cosmological models commonly used to
explain the accelerated expansion of the Universe and show that the observation
GW170817 imposes stringent constraints on most free parameters, forcing them to
vanish.3 While the remaining free parameters can still be tuned as to reproduce
Cosmic acceleration in the absence of a Cosmological Constant, the resulting models
are incompatible with other observations such as the correlation between galaxy
distributions and the CMB. They then conclude that in this context, a large subclass
of Horndeski (and beyond-Horndeski) theories — including theories such as Galileons,
Einstein–dilaton–Gauss–Bonnet, Fab Four, etc. — should be ruled out. The surviving
class of Horndeski theories consists simply of Einstein gravity coupled to a “k-essence”
field.

The results presented in this Thesis are compatible with the above discussion. We
3In these Cosmological models, both the metric the scalar field mediating the gravitational

interaction are taken to be functions of time only, an assumption which considerably simplifies the
phenomenology.
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will conclude that the aforementioned class of Horndeski theories is, in fact, better
behaved than the others from the mathematical point of view (cf. Chapter 6).

Objectives

While both Lovelock and Horndeski theories have been extensively studied in the
Physics literature, the issue of their mathematical consistency has received little
attention. In this thesis we will be concerned with two main themes: causality and
the well-posedness of the initial value problem.

As mentioned earlier, in these theories, the propagation speed of the gravitational
perturbations will in general depend on the background fields and will differ from
the speed of light. In particular, gravitons can propagate faster than light in these
theories. We will focus on Einstein–Gauss–Bonnet gravity (a Lovelock theory) and
we will study the causal structure of the theory in a static, spherically symmetric
spacetime. One of our objectives will be to verify a recent claim [41] that gravitons
can experience a negative Shapiro time delay in Lovelock gravity. Ref. [41] then
argued that this property could be used to construct closed causal curves. They
conclude that since this theory suffers from causal pathologies, it should be discarded.
We will study the proposed construction in detail in order to assess its viability and
establish whether these arguments are sufficient to deem the theory “pathological”.

The core of the thesis will focus on the initial value problem for Horndeski
and Lovelock theories. The local well-posedness of the initial value problem is a
fundamental requirement for any classical physical theory to make sense. By well-
posedness we mean that once the initial state of the system is specified (and is
sufficiently “well behaved”), then a solution to the equations of motion must exist, be
unique and continuously depend on the initial data. By “locally” we mean that the
time of existence could be infinitesimally small, but must be strictly greater than zero.
Roughly speaking, these properties ensure that the theory is deterministic and has
predictive power. While a local well-posedness theorem for the Einstein equations has
been proved in 1952 [42], a corresponding result for Lovelock or Horndeski theories
is still lacking.

We will investigate whether these theories admit a well-posed initial value problem.
In particular, we will focus on the linearised theory, since its well-posedness is a
necessary condition for the well-posedness of the non-linear problem.

The well-posedness of the linearised theory is tightly related to the hyperbolicity
of the equations of motion. In contrast to General Relativity, these theories may fail
to be hyperbolic around certain backgrounds. Examples of this failure usually involve

7
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considering backgrounds with “large fields”.4 One may still hope that restricting to
“weak fields” could cure this problem and ensure that the initial value problem be
well-posed in this regime, where the equation of motion can be considered as “small
perturbations” of the Einstein equations.

Note that there are backgrounds around which the equations can be shown to
be well-posed at the linearised level. However, these solutions are non-generic, i.e.
they exhibit a high degree of symmetry. This feature is not sufficient to establish
well-posedness at the non-linear level. In fact, it is necessary that the linearised
theory be well-posed around a generic background.

We will study in detail the hyperbolicity of Lovelock and Horndeski theories
in generic weak fields backgrounds. We will discuss the implications for the well-
posedness of the initial value problem and how this affects the viability of these
theories as alternatives to General Relativity.

Conventions

We summarise here some of the conventions we will use throughout the thesis. We
use units such that c = G = 1. The spacetime metric is taken to have signature
(−+ . . .+). Latin indices a, b, c, . . . are abstract indices denoting tensor equations
valid in any basis. Greek indices µ, ν, . . . refer to a particular basis, e.g. a coordinate
basis. In a basis, Greek indices are “spacetime” indices, running from 0 to d − 1,
while Latin indices i, j, k, . . . are “spatial” indices, running from 1 to d− 1.

Outline

This thesis is organised as follows. In the next Chapter we will introduce the initial
value problem and review the theory of hyperbolic partial differential equations which
will be used in the other chapters. In Chapter 3 we will review some background ma-
terial on Lovelock and Horndeski theories. The rest of the thesis contains the original
results of our research. Chapter 4 is based on Ref. [43]. We will discuss aspects of the
causal structure of Lovelock theories. In particular we will study the Shapiro time
delay and the possibility of constructing “time machines” in Einstein–Gauss–Bonnet
gravity. Chapters 5 and 6 are based on Refs. [44, 45] and contain our main results.
There we discuss the local well-posedness of Lovelock and Horndeski equations of
motion around a weak-field background. Finally, in Chapter 7 we summarise our
results and discuss their implications.

4In Lovelock theories by “large fields” we mean large curvature. In Horndeski theories we also
have large values of the scalar fields and its gradients.
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Chapter 2

Hyperbolic PDEs and the initial

value problem

In this Chapter we will review some theoretical background on hyperbolic partial
differential equations. The first section briefly introduces the initial value problem in
Classical Physics. Sections 2.2 and 2.3 will be devoted to the discussion of different
notions of hyperbolicity in first and second order systems. These sections are mainly
based on [46, 47]. In Section 2.4, mainly based on [48, 49, 50, 51], we will discuss the
causal structure induced by an hyperbolic PDE. Finally, we will show as an example
how these concepts apply to General Relativity (Section 2.5).

2.1 The initial value problem

Many systems in classical physics are modelled through an initial value problem.
In simple terms, this means that they are described by a system of differential
equations determining the evolution of the system, together with an initial data
set, characterising the initial state of the system. A simple example is given by the
motion of a particle of mass m, subject to a force F in Newtonian mechanics

d2x(t)

dt2
=

1

m
F (x(t), ẋ(t), t)

x(0) = x0 ẋ(0) = v0

(2.1.1)

(2.1.2)

Once the initial data (2.1.2) — consisting of the particle’s initial position and velocity
— is specified, the ODE (2.1.1) has a unique solution determining the position of the
particle at any later time t > 0.

The requirement that the solution be unique, given the initial data, is of crucial
importance: it ensures that classical physics be deterministic. Moreover, one can
show that the solution to (2.1.1) will depend continuously on x0 and v0. This is

9
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also a desirable property from the physical point of view: the solution should not
change discontinuously if we slightly perturb the initial data. If this were not the
case, then it would be necessary to measure the initial position and velocity with
infinite precision in order to extract meaningful predictions out of this model, which
is clearly not possible in reality.

These requirements were formalised by Hadamard [52].

Definition 1. The initial value problem is well-posed if a solution exists, it is unique
and it depends continuously on the initial data.

We will regard (local) well-posedness as a necessary condition for a physical theory to
be meaningful.

If a problem does not satisfy the above definition, it is said to be ill-posed. A
classical example of an ill-posed initial value problem is given by the Laplace equation
(in fact, it was the study of this problem that led Hadamard to formulate the above
conditions). Let us look at the initial value problem for the two-dimensional Laplace
equation: {

∆φ(x, y) = 0

φ(x, 0) = f(x) ∂yφ(0,x) = h(x)

(2.1.3)

(2.1.4)

Consider a sequence of initial data f(x) = fn(x) and h(x) = hn(x), where

fn(x) = 0, hn(x) = e−
√
n sin(nx). (2.1.5)

The solution is then given by

φn(x, y) =
e−
√
n

n
sin(nx) sinh(ny). (2.1.6)

In the n→∞ limit, the initial data converges to zero,

fn → f̄ ≡ 0, hn → h̄ ≡ 0. (2.1.7)

Note that the solution of (2.1.3)-(2.1.4) for trivial data, i.e. f = f̄ and h = h̄, is
φ̄(x, y) = 0. On the other hand, in the n→∞ limit, the solution φn(x, y) blows up
exponentially for any non-zero value of y. In other words, we have that ||φn−φ̄|| → ∞
while ||fn − f̄ ||, ||hn − h̄|| → 0. From this we can conclude that the solution does
not depend continuously on the initial data and hence, since the third condition in
Definition 1 is violated, we conclude that this problem is ill-posed.5

5This example is quite special, since the Laplace equation does describe a perfectly physical
system. It does, in fact, admit a well-posed boundary value problem. The issue here lies in the fact
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Chapter 2. Hyperbolic PDEs and the initial value problem

For the purpose of illustration let us consider two examples of well-posed problems.
The linear wave equation (which, as we will see in the following sections, is the
prototypical example of a hyperbolic PDE) has a well-posed initial value problem{

�φ(t,x) = 0

φ(0,x) = φ0(x) ∂tφ(0,x) = ψ0(x)

(2.1.8)

(2.1.9)

where the initial data consists of the initial profile of the wave φ0 and its time
derivative ψ0. Similarly, Maxwell’s equations (in vacuum) can be cast as a system of
linear wave equations for the electric and magnetic field

�E(t,x) = 0

�B(t,x) = 0

E(0,x) = E0(x) ∂tE(0,x) = E1(x)

B(0,x) = B0(x) ∂tB(0,x) = B1(x).

(2.1.10)

(2.1.11)

(2.1.12)

(2.1.13)

together with a set of constraints

∇ · E(t,x) = 0 ∇ ·B(t,x) = 0. (2.1.14)

In contrast with what happens for the linear wave equation (2.1.8), the presence of
such constraints means that the initial data cannot be completely arbitrary. On the
other hand, the structure of the equations ensures that if the constraints are satisfied
by the initial data, then they will be satisfied by the solution at any time. As we
will see, the structure of the Einstein equations will present some similarity with
Maxwell’s equations.

We will now discuss how one may establish hyperbolicity and prove well-posedness
for first and second order systems.

2.2 First order systems

Let (M, g) be a d−dimensional spacetime and let (t, xi) be a coordinate chart on
it. Consider a first order linear partial differential equation for an N−dimensional
vector u:6

Aut + P i∂iu+ Cu = 0, (2.2.1)

that we considered the Laplace equation — an elliptic equation — as if it had the character of a
wave equation — an hyperbolic equation. Elliptic equations do not describe the “time evolution” of
a system, (e.g. they do not account for the propagation of signals with finite speed) and hence,
intuitively, it does not really make sense to pose the problem as an initial value problem. Note
that, in general, ill-posedness of the initial value problem does not tell us that the equation will
instead admit a well-posed boundary value problem.

6ut := ∂tu.
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Causality and the initial value problem in Modified Gravity

where A, P i and C are real N × N matrices. We assume that A is invertible.
Let us first consider a PDE with constant coefficients, i.e. the case in which the
aforementioned matrices have constant entries. Since we are dealing with constant
coefficients, we can obtain a formal solution to this system using Fourier transforms.
Taking a spatial Fourier transform

ũ(t, ξ) =
1

(2π)(d−1)/2

∫
dd−1x exp(−iξixi)u(t, x) (2.2.2)

Eq. (2.2.1) becomes
ũt − iM(ξi)ũ = 0, (2.2.3)

where we have defined
M(ξi) = A−1(−P iξi + iC). (2.2.4)

We can solve Eq. (2.2.3)

ũ(t, ξi) = exp(iM(ξi)t)ũ(0, ξi) (2.2.5)

and hence we find a formal solution to (2.2.1)

u(t, x) =
1

(2π)(d−1)/2

∫
dd−1ξ exp(iξix

i) exp(iM(ξi)t)ũ(0, ξi). (2.2.6)

For general initial data, this integral may not converge as the integrand will not
necessarily decay fast enough as |ξ| → ∞. Here we have defined

|ξ| =
√
ξiξi. (2.2.7)

We will now investigate which conditions should M satisfy in order to ensure
convergence of the integral. Convergence is guaranteed ifM(ξi) satisfies, for all ξi
and t > 0,

|| exp(iM(ξi)t)|| ≤ f(t) (2.2.8)

for some continuous function f(t), independent of ξi. When this condition holds, the
integral converges and the resulting solution satisfies (using Plancherel’s theorem)

||u||(t) ≤ f(t)||u||(0) (2.2.9)

where || · · · || denotes the spatial L2-norm.
Using this, one can prove that the initial value problem is locally well-posed.

To see this, consider two solutions u1 and u2, arising from initial data u0
1 and u0

2,
respectively. The above inequality implies

||u1 − u2||(t) ≤ f(t)||u0
1 − u0

2|| (2.2.10)

12



Chapter 2. Hyperbolic PDEs and the initial value problem

from which we immediately deduce that the solution depends continuously on the
initial data. Moreover, considering the case u0

1 = u0
2 we see that the solution is

unique. Note that since we are only interested in local well-posedness, we do not
need to impose any condition on f(t) other than continuity. In fact, even if it were
growing exponentially, it could not grow unbounded in a finite time.

We thus need to determine under which circumstances (2.2.8) is satisfied. Since
the convergence of (2.2.6) is a high-frequency problem, we will only be interested in
the high-frequency behaviour ofM. To study this, we let

t =
t′

|ξ|
ξ̂i =

ξi
|ξ|

(2.2.11)

and consider the |ξ| → ∞ limit at fixed t′. Equation (2.2.8) becomes

|| exp(iM(ξ̂i)t
′)|| ≤ k, (2.2.12)

where k = f(0) and
M(ξi) = −A−1P iξi (2.2.13)

is the principal part ofM.
Consider an eigenvector v of M(ξ̂i) with eigenvalue λ = λ1 + iλ2. We have

exp(iM(ξ̂i)t
′)v = eiλ1t

′
e−λ2t

′
v. (2.2.14)

The condition (2.2.12) will be satisfied only if λ2 ≥ 0 for all ξ̂i. However, M(ξ̂i) is
a real matrix and hence, if λ is an eigenvector then so is its complex conjugate λ̄.
Hence, consistency with (2.2.12) requires ±λ2 ≥ 0, i.e.

λ2 = 0.

We deduce that (2.2.12) implies that all eigenvalues of M(ξ̂i) must be real. This
motivates the definition of weak hyperbolicity : Eq. (2.2.1) is weakly hyperbolic if, and
only if, for any real ξi (with ξiξi = 1), all eigenvalues of M(ξ̂i) are real.

A failure of weak hyperbolicity would be a disaster for the initial value problem
because the integrand in (2.2.6) would grow exponentially with |ξ| at large |ξ| so
convergence would require highly fine-tuned initial data. However, while necessary,
weak hyperbolicity is not sufficient to ensure well-posedness.

The matrix M(ξ̂i) can be brought to Jordan normal form by a similarity trans-
formation

M(ξ̂i) = S(ξ̂i)J(ξ̂i)S(ξ̂i)
−1 (2.2.15)

so
exp(iM(ξ̂i)t

′) = S(ξ̂i) exp(iJ(ξ̂i)t
′)S(ξ̂i)

−1. (2.2.16)
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Causality and the initial value problem in Modified Gravity

Suppose that M were not diagonalisable, i.e., J contains a n × n, n ≥ 2, Jordan
block associated to some eigenvalue λ. In this case, the RHS of (2.2.6) would exhibit
polynomial growth in t′. To see why this is the case, consider the following example:
let J2 be a 2× 2 block associated to the eigenvalue λ

J2 =

(
λ 1

0 λ

)
(2.2.17)

then

exp(iJ2t
′) = eiλt

′

(
1 it′

0 1

)
. (2.2.18)

If the equation is weakly hyperbolic, then we are guaranteed that λ is real and hence
that there is no exponential growth in t′. However, the presence of the term linear in
t′ implies that (2.2.12) is not satisfied. More generally, the presence of an n×n block
would lead to terms t′p for some integer p ≤ n. Using t′ = |ξ|t this gives rise to terms
proportional to |ξ|p. The presence of such terms implies that it is not possible to
obtain a bound of the form (2.2.9). The best one could hope for is that it is possible
to modify the RHS to include sufficiently many spatial derivatives of u. Whether
or not this is possible depends on the form of the zero derivative term Cu in the
equation of motion [53].7 But even if this is possible, the “loss of derivatives” in
(2.2.9) would be worrying if we are considering an equation obtained by linearising
some non-linear equation. This is because the loss of derivatives would be a serious
obstruction to establishing local well-posedness for the non-linear equation.

To avoid this problem, M(ξ̂) must be diagonalizable, i.e., there exists a matrix
S(ξ̂i) such that M = SDS−1 where D(ξ̂i) is diagonal. Defining a positive definite
hermitian matrix K(ξ̂i) = (S−1)†S−1 we then have

K(ξ̂i)M(ξ̂i)K(ξ̂i)
−1 = M(ξ̂i)

†.8 (2.2.19)

This motivates the definition of strong hyperbolicity. With constant coefficients,
equation (2.2.1) is strongly hyperbolic if, and only if, there exists a positive definite
hermitian matrix K(ξ̂i) depending smoothly on ξ̂i such that (2.2.19) holds.

Note that (2.2.19) states that M(ξ̂i) is Hermitian w.r.t. K(ξ̂i). This implies
that M(ξ̂i) is diagonalizable with real eigenvalues. Using K one can define an inner
product between solutions, and the corresponding norm can be shown to satisfy an
inequality of the form (2.2.9). This is called the energy estimate. Using this one can

7There are examples of weakly hyperbolic systems for which || exp(iM(ξi)t)|| grows as
exp (c

√
|ξ|t) for some constant c > 0 [53], in which case one could not even obtain a bound

of this weaker type.
8In our case, since these matrices are real, the hermitian conjugate is simply the transpose.
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Chapter 2. Hyperbolic PDEs and the initial value problem

prove that the initial value problem is locally well-posed independently of the form
of the zero derivative term Cu in (2.2.1) [53].

So far the discussion has considered first order linear PDEs with constant coeffi-
cients. We can now discuss the case of non-constant coefficients.

Let the matrices A, P i and C in (2.2.1) depend smoothly on time and space, with
A still invertible. At some point (t0, x

i
0) we define the “frozen coefficients” equation

by fixing A, P i and C to their values at (t0, x
i
0). It is believed that a necessary

condition for local well-posedness of the varying coefficients equation near (t0, x
i
0) is

that the “frozen coefficients” equation should be locally well-posed. The idea behind
this is that, since well-posedness is a question about the short wavelength behaviour
of the coefficients of the differential operator, we can limit our considerations to small
neighbourhoods where the coefficients, being smooth, are approximately constant
and hence, intuitively, the non-constant coefficient problem can be reduced to the
“frozen coefficients” problem.

For this to be the case, the “frozen coefficients” equation must satisfy the above
definitions of weak and strong hyperbolicity. For the varying coefficients equation to
be locally well-posed, we need these definitions to be satisfied for all (t0, x

i
0). This

motivates extending the definitions of hyperbolicity to equations with non-constant
coefficients in the obvious way: we simply allow M(t, x, ξi) and K(t, x, ξi) to depend
smoothly on (t, x) as well as on ξ [53, 46].

Definition 2. The system (2.2.1) is weakly hyperbolic if, and only if, all eigenvalues
of M(t, x, ξi) are real for any real ξi with ξiξi = 1.

Definition 3. The system (2.2.1) is strongly hyperbolic if, and only if, there exists
a positive definite Hermitian matrix K(t, x, ξ̂i) depending smoothly on t, x, ξ̂i, such
that

K(t, x, ξ̂i)M(t, x, ξ̂i)K(t, x, ξ̂i)
−1 = M(t, x, ξ̂i)

† (2.2.20)

and a real constant C > 0 such that for all t, x, ξ̂i

C−1I ≤ K(t, x, ξ̂i) ≤ CI.9 (2.2.21)

The latter technical condition is required to obtain an energy estimate — it ensures
that K does not behave badly for large t, x e.g. it does not become degenerate or
blow up asymptotically.

9Given two hermitian matrices, A and B, we say that A ≤ B iff u†Au ≤ u†Bu for any vector u.
Condition (2.2.21) is equivalent to saying that the eigenvalues of K must be bounded from above
and below.
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Finally, for completeness, we include the definition of a symmetric hyperbolic
system:

Definition 4. The system (2.2.1) is symmetric hyperbolic if it is strongly hyperbolic
and the matrix K is independent of ξ̂i.

2.3 Second order systems

Our treatment of second order systems is based on [46]. Consider again a d−dimensional
spacetime with coordinates (t, xi). A second order system of linear PDEs takes the
form

P µν∂µ∂νu+Qµ∂µu+Ru = 0 (2.3.1)

where P µν = P (µν), Qµ and R are N ×N real matrices. For a 1-form ξ, the principal
symbol of (2.3.1) is the N ×N matrix

P (ξ) ≡ P µνξµξν . (2.3.2)

As in the previous section, we will start by studying the constant coefficients case.
A spatial Fourier transform of (2.3.1) yields

Aũtt +
(
iB(ξi) +Q0

)
ũt +

(
−C(ξi) + iQiξi +R

)
ũ = 0 (2.3.3)

where
A = P 00 B(ξi) = 2ξiP

0i C(ξi) = P ijξiξj (2.3.4)

and we assume that A is invertible, i.e. that surfaces of constant t are non-
characteristic (characteristic hypersurfaces will be discussed in detail in the next
section). We can re-write this equation in first-order form by introducing the vector

w̃T =
(√

1 + |ξ|2ũ,−iũt
)

(2.3.5)

where, as above, |ξ| =
√
ξiξi. Eq. (2.3.3) is, in fact, equivalent to

w̃t = iM(ξi)w̃ (2.3.6)

where we have defined the 2N × 2N matrix

M(ξi) =

(
0 (1 + |ξ|2)1/2I

−(1 + |ξ|2)−1/2A−1 (C(ξi)− iQiξi −R) −A−1 (B(ξi)− iQ0)

)
. (2.3.7)

Note that the L2−norm of w̃ is a measure of the energy of the field u— it is quadratic
in the field and its first derivatives:

||w̃|| ∼ ||u||+ ||∂u||. (2.3.8)
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Chapter 2. Hyperbolic PDEs and the initial value problem

In order to prove local well-posedness, it is required that the solution obeys an energy
estimate of the form

||w̃||(t) ≤ f(t)||w̃||(0), (2.3.9)

for some continuous function f(t) independent of ξi and w̃.
The solution to (2.3.6) is given by

w̃(t, ξi) = exp(iM(ξi)t)w̃(0, ξi), (2.3.10)

so for the energy estimate to hold for any initial data, we need

|| exp(iM(ξi)t)|| ≤ f(t). (2.3.11)

Similarly to the first order case, it is sufficient to study the high-frequency part of
M(ξi). We define t′ = t|ξ| and ξ̂i|ξ| = ξi and take the |ξ| → ∞ limit at constant t′.
The previous equation reduces to

|| exp(iM(ξ̂i)t
′)|| ≤ k (2.3.12)

where k = f(0) and

M(ξi) =

(
0 I

−A−1C(ξi) −A−1B(ξi)

)
. (2.3.13)

We can now repeat the argument we used for a first order system: if M(ξ̂i) had a
complex eigenvalue then we could violate (2.3.11). Hence we define weak hyperbolicity
as the condition that all eigenvalues of M(ξ̂i) be real.

It is possible to formulate this condition in an alternative way. Let ξ0 be an
eigenvalue of M(ξi) with eigenvector v = (t, t′)T , where t is a two-tensor. Writing
out the eigenvalue equation Mv = ξ0v gives

t′ = ξ0t (Aξ2
0 +B(ξi)ξ0 + C)t = 0. (2.3.14)

This is a quadratic eigenvalue problem with eigenvector t. We can rewrite this in
terms of the principal symbol

P (ξ) · t = 0 (2.3.15)

where ξµ = (ξ0, ξi). This equation states that the 1-form ξ is characteristic (see
Section 2.4 below). Hence we see that the system (2.3.1) is weakly hyperbolic if, for
any real ξi 6= 0, a characteristic covector (ξ0, ξi) has real ξ0.

As for first order systems, if the Jordan normal form of M involves non-trivial
blocks then equation (2.3.12) cannot hold. So we define strong hyperbolicity just as
we did in the previous section: equation (2.3.1) is strongly hyperbolic if, and only
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if, there exists a positive definite Hermitian matrix K(ξ̂i) depending smoothly on
ξ̂i such that M(ξ̂i) is Hermitian w.r.t. K, i.e., satisfies (2.2.19). This implies that
M(ξi) = |ξ|2M(ξ̂i) is diagonalizable with real eigenvalues.

Finally, we can extend these results to the non-constant coefficients case just as
we did for first order systems. Let the coefficients P µν , Qµ and R depend smoothly
on (t, xi). We then define M(t, x, ξi) using (2.3.13). As for first order systems, it is
believed that local well-posedness implies local well-posedness for the equation with
frozen coefficients. Hence we define weak and strong hyperbolicity again as

Definition 5. The system (2.3.1) is weakly hyperbolic if, and only if, all eigenvalues
of M(t, x, ξi) are real for any real ξi with ξiξi = 1.

Equivalently, the system is weakly hyperbolic if, and only if, any characteristic
1-form (ξ0, ξi) with real ξi 6= 0 has real ξ0.

Definition 6. The system (2.3.1) is strongly hyperbolic if, and only if, there exists
a positive definite Hermitian matrix K(t, x, ξ̂i) depending smoothly on t, x, ξ̂i, such
that

K(t, x, ξ̂i)M(t, x, ξ̂i)K(t, x, ξ̂i)
−1 = M(t, x, ξ̂i)

† (2.3.16)

and a real constant C > 0 such that for all t, x, ξ̂i

C−1I ≤ K(t, x, ξ̂i) ≤ CI. (2.3.17)

Again, if K is independent of ξ̂i, the system is said to be symmetric hyperbolic.

In the later chapters we will mainly be interested in showing that certain equations
are not strongly hyperbolic. We will do this by demonstrating that M(t, x, ξ̂i) is not
diagonalizable. Note that M is determined by P µν , i.e., by the principal symbol.
So hyperbolicity depends only on the nature of the second derivative terms in the
equation. Furthermore, to demonstrate that M is not diagonalizable it is sufficient
to work at a single point in spacetime.

Non-linear systems

To conclude this section we will briefly discuss how the theory we have developed so
far can be applied to non-linear systems.

Non-linear systems will, in general, exhibit a more complicated behaviour. In
particular, the non-linearities in the equations may induce the formations of shocks
or cause a solution to blow-up in finite time, even if the initial data is smooth and
“small” (a famous example of this problem was found by John [54]). For these reasons
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one would in general expect (at best) only finite time existence of solutions.10 As
mentioned in the introduction, we will only be interested in the local well-posedness
of the equations.

Let us consider a non-linear system which admits a well-posed initial value
problem. Well-posedness ensures that the solution depends continuously on the
initial data and hence that, given some solution u0, a sufficiently small perturbation
of the initial data will result in a solution lying in a neighbourhood of u0. Let us
consider a 1-parameter family of initial data, parametrised by some ε s.t. it coincides
with the initial data of u0 at ε = 0. For small enough values of ε we have a unique
solution, uε. Expanding

uε(t, x) = u0(t, x) + εv(t, x) +O(ε2) (2.3.18)

and plugging it back into the equations of motion we obtain a well-posed system of
linear equations for v.

In other words, a necessary condition for the well-posedenss of the non-linear
problem is that the corresponding linearised problems, obtained by linearising around
any solution in an open neighbourhood of u0, be well-posed.

Moreover, the converse statement, known as the linearisation principle [53] also
holds: the non-linear problem is well-posed around some solution, if all the linearised
problems obtained by linearising near such a solution are well-posed.

In Chapters 5 and 6 we will investigate whether Lovelock and Horndeski theories,
respectively, satisfy this necessary condition for well-posedness.

2.4 Causality

Hyperbolic partial differential equations describe phenomena with finite propagation
speed. For this reason they define a causal structure on the spacetime: given an event
p, we can define its causal future J+(p) as the set of events that can be influenced
by it, i.e. q ∈ J+(p) if a change in the solution at p will result in a change of the
solution at q. Similarly one can define the causal past. In general, these notions
depend on the solution itself.

The causal structure of a PDE is closely related to its characteristic hypersurfaces.
Loosely speaking these are hypersurfaces on which all of the highest order derivatives
cannot be determined in terms of all the lower derivatives by the equations of

10Famously, Christodoulou and Klainerman showed in 1990 that the “small data” non-linear
problem for General Relativity does in fact admit global-in-time solutions [55].
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motion. If one has a solution which is discontinuous in the highest derivatives
(but continuous in the others) across a hypersurface, then that hypersurface is
necessarily characteristic. Hence, discontinuities in the solution propagate along
characteristics. More “physically”, if one considers high frequency waves propagating
on top of a “background” solution then the surfaces of constant phase are characteristic
hypersurfaces of the background solution. Furthermore, the hypersurfaces bounding
the Cauchy development of some initial data set are characteristic.

More formally, consider a system of N second order non-linear PDEs

EI(p, u, ∂u, ∂
2u) = 0, I = 1, 2, . . . , N. (2.4.1)

In the previous section we have defined the principal symbol for a linear system. The
principal symbol of a non-linear system will be defined as the principal symbol of
the linearised system. Given a 1-form ξ, the principal symbol of the system (2.4.1) is

P (p, ξ)IJ =
∂EI

∂(∂α∂βuJ)
ξαξβ. (2.4.2)

The characteristic polynomial is defined as

Q(p, ξ) = detP (p, ξ). (2.4.3)

It is a homogeneous polynomial in ξ of degree 2N .
We will define a hypersurface Σ to be characteristic if, and only if, its normal

1-form ξ satisfies
Q(p, ξ) = 0 ∀p ∈ Σ. (2.4.4)

Consider the case in which Σ is defined as a level set of some function φ. It will
be characteristic if, and only if, Q(p, dφ) = 0. This defines a first-order non-linear
equation for the function φ, known as the eikonal equation.

Let us consider the scalar linear wave equation (2.1.8) as a simple example. In
this case the principal symbol and the characteristic polynomial take the form

P (ξ) = gµνξµξν ⇒ Q(ξ) = gµνξµξν (2.4.5)

and hence we deduce that a hypersurface is characteristic if, and only if, it is null
w.r.t. the spacetime metric g.

Characteristic hypersurfaces are generated by bicharacteristic curves. These are
defined, in a local chart {xµ}, as the curves (x(s), ξ(s)) in the cotangent bundle
satisfying

dxµ

ds
=
∂Q(x, ξ)

∂ξµ

dξµ
ds

= −∂Q(x, ξ)

∂xµ
, (2.4.6)
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with the initial condition Q(x(0), ξ(0)) = 0 which, by construction, is preserved
along these curves. For the linear wave equation, or for GR, bicharacteristic curves
correspond to null geodesics. The geometric optics approximation tells us that
high-frequency perturbations of a solution will move on bicharacteristic curves. For
example, the high-frequency modes of a perturbation δφ+ φ0 of some solution φ0 to
the wave equation (2.1.8) will propagate along null geodesics.

At a point p, the set of characteristic one-forms defines a convex cone in the
cotangent space, known as the normal cone (or characteristic subset of T ∗pM)

C∗p = {ξ ∈ T ∗pM : Q(p, ξ) = 0}. (2.4.7)

The ray cone at p is defined as the dual of the normal cone:

Cp =
⋃
ξ∈C∗p

Cp,ξ (2.4.8)

where
Cp,ξ = {X ∈ TpM : 〈X, ξ〉 = 0}. (2.4.9)

The projections of the bicharacteristics onto the base manifold are called rays (recall
that the bicharacteristics are curves in the cotangent bundle). Their tangent vectors

Yp =
∂Q(p, ξ)

∂ξµ

∂

∂xµ
∈ Cp (2.4.10)

are called characteristic tangent vectors. The ray cone is simply the “light cone”
defined by null rays.

Generically, the normal and the ray cones will be composed of several sheets.
Physically this can be interpreted as the fact that different degrees of freedom will
propagate with different speeds. Theories that exhibit this property are referred
to as multi-refringent. As we will see more formally below, the fastest propagating
mode will determine the causal structure of the theory: two points will be in causal
contact if (at least) a “fastest” signal could be sent between them.

In order to discuss causality, we need to introduce a special subset of the cotangent
space. Take ξ ∈ C∗p and let ζ ∈ T ∗pM be such that λ 7→ Q(p, ξ + λζ) has m× n real
roots, where m is the order of the PDE and n is the rank of the principal symbol.11

We denote by C∗p the subset of the cotangent space defined by such one-forms ζ. It
can be shown that C∗p consists of two convex, opposite cones C∗p = C∗,+p ∪C∗,−p . These
are non-empty and ∂C∗p ⊂ C∗p . Similarly, denote the dual cones in the tangent space
by Cp = C+

p ∪ C−p . In this case we have Cp ⊂ Cp. If it is possible to continuously

11In the case of GR, it must have d(d− 3)/2 roots. In other words, it must have as many roots
as propagating degrees of freedom. The roots need not be distinct.
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Σ
p

n

Σ
p

n

Figure 2.1: Schematic description of the definition of C∗. Suppose our theory is such
that the normal cone has two sheets, then C∗ corresponds to the shaded region in
the left figure. The hypersurface Σ is spacelike, for its normal one-form n lies in C∗.
In the right figure we portray a case in which the theory fails to be hyperbolic, since
the sheets of the normal cone have empty intersection.

distinguish between the convex cones C±p , we say that the spacetime is time-orientable.
We can finally define the causal structure:

Definition 7. A vector X ∈ TpM is causal if X ∈ Cp. A one-form ξ ∈ T ∗pM is
causal if ξ ∈ C∗p .

It follows, in particular, that a hypersurface Σ is spacelike if its normal one-form is
in the interior of C∗p , ∀p ∈ Σ. Thus in discussing the initial value problem we shall
prescribe initial data on a hypersurface which is spacelike according to this definition.
It is therefore a fundamental requirement for well-posedness that the normal cones
have a non-empty intersection, for otherwise a spacelike hypersurface would not exist
(Figure 2.1).

Note that for a non-linear system, the principal symbol — and hence the causal
cones — will in general depend on the background fields and their derivatives. For
this reason, the choice of the initial data may influence the character of the surface
on which the data itself is specified. Let us illustrate this problem with a simple
example. Consider the following toy model in two-dimensional Minkowski space:

(1 + ∂2
xϕ)�ϕ = 0. (2.4.11)

The principal symbol is given by

P (ξ) = −
[
1 + ∂2

xϕ
]
ξ2
t +

[
1− ∂2

t ϕ+ 2∂2
xϕ
]
ξ2
x. (2.4.12)

Hence the character of a hypersurface of “constant time” ΣT = {t = T} (which has
normal one-form ξ ∝ dt) will be determined by the sign of [1 + ∂2

xϕ]. In particular,
consider initial data (ϕ, ∂tϕ)(0, x) = (ϕ0, ψ0)(x), prescribed on Σ0. The equation will
be hyperbolic for

1− ∂2
t ϕ+ 2∂2

xϕ

1 + ∂2
xϕ

> 0 (2.4.13)
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and the initial surface Σ0 will be spacelike only if the initial data is such that

(1 + ∂2
xϕ0) > 0. (2.4.14)

From this example we learn that one must be careful in the choice of the initial
data, for the character of the initial data surface will in general depend on the initial
values of the fields and their derivatives. In other words, in order to have a well-posed
initial value problem we must choose initial data for the fields such that the initial
surface be spacelike with respect to the causal structure induced by the equations of
motion.

2.5 The initial value problem in General Relativity

While not evident at first, due to their diffeomorphism-covariant nature, the Einstein
equations admit an initial value formulation. In fact, for any diffeomorphism-covariant
theory, it is necessary to impose an appropriate gauge fixing condition in order to
establish the character of the equations. In her seminal paper [42], Choquet-Bruhat
showed that in harmonic gauge12

�gx
µ = 0 (2.5.1)

the Cauchy problem for the Einstein equations is locally well-posed.
In this gauge, the vacuum Einstein equations reduce to a system of quasilinear

wave equations
gαβ∂α∂βgµν = N (g, ∂g)µν (2.5.2)

together with a set of elliptic constraint for the initial data. The initial data consists
of a triple (Σ, ḡab, Kab), where Σ is a spacelike hypersurface, ḡab is a Riemannian
metric on Σ and Kab is the second fundamental form (or extrinsic curvature) of
Σ.13 A fundamental property of this system is that the gauge condition (2.5.1) is
propagated by the evolution equations. This happens because the gauge condition
solves a linear wave equation with trivial initial data. In particular, the gauge
condition is taken to be satisfied initially, while the constraint equations ensure that
its time derivative also vanishes. Once this has been proved, the well-posedness result
follows from known results on systems of quasilinear wave equations.

These results were later extended to the global-in-time case by Choquet-Bruhat
and Geroch [58], and Sbierski (without recurring to Zorn’s lemma) [59] who estab-

12�gxµ := 1√
− det g

∂α(
√
− det ggαµ)

13Rendall [56] and Luk [57] showed that GR also admits a well-posed characteristic initial value
problem, where the spacelike hypersurface Σ is replaced by two intersecting null hypersurfaces.
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lished the existence of a unique maximal globally hyperbolic development of given
initial data for the Einstein equations.

It is worth stressing the importance of the gauge choice. In harmonic gauge, the
Einstein equations admit a well-posed initial value problem. In fact, we will show
below that, in this gauge, they are strongly hyperbolic. This property, however, does
not necessarily hold in other gauges. Other approaches, such as the ADM formulation
[60] of the Einstein equations lead to equations that are only weakly hyperbolic.
More precisely, the ADM equations are weakly hyperbolic for any fixed choice of
shift and densitized lapse [47].14 This implies that these gauges cannot be used to
establish local well-posedness.15 A further consequence is that these equations are
unsuitable for numerical simulations. For numerical simulations, strong hyperbolicity
is regarded as essential. The first successful binary black hole simulations [62, 63, 64]
employed numerical codes based either on (generalised) harmonic gauge [62] or the
BSSN formalism [65, 66, 67]. The latter is a modification of the ADM formalism that
can be shown to be strongly hyperbolic [68, 47]. The generalised harmonic gauge is
obtained by replacing the RHS of Eq. (2.5.1) by a source term [69].

Hyperbolicity of the Einstein equations

We will now see how these concepts introduced in this Chapter can be used to show
that the harmonic gauge Einstein equations are strongly hyperbolic.

The vacuum Einstein equations for a metric g read:16

Gab[g] = 0. (2.5.3)

To compute the principal symbol, we consider a perturbation g → g + h of some
background solution g and linearise in the perturbation

Gab[g + h] = Gab[g] +G
(1)
ab [h] + . . . (2.5.4)

The linearised equations read
G

(1)
ab [h] = 0 (2.5.5)

14The densitized lapse is obtained by rescaling the lapse by (
√

det γ)b, where b is a constant and
γ is the metric induced on the leaves of the time foliation.

15However, there exist strongly hyperbolic modifications of these equations which can be used to
establish local well-posedness [61].

16Equivalently, we could consider the vacuum Einstein equations written in the form Rab = 0.
However, in view of our discussion of Lovelock and Horndeski theories later on, it will be convenient
to consider the Einstein vacuum equations in the form Gab = 0.
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where

G
(1)
ab [h] = −1

2
∂c∂

chab+∂c∂(ahb)c−
1

2
∂a∂bh

c
c−

1

2
gab
(
∂c∂dhcd − ∂c∂chdd

)
+ . . . (2.5.6)

and the ellipsis includes the lower order derivatives terms. We will regard the
principal symbol as a linear map between symmetric rank-2 tensors, i.e., as a N ×N
matrix, where N = d(d + 1)/2. We can deduce its form from the structure of the
second order derivatives in the linearised equations of motion

(PEinstein(ξ) · t)ab = −1

2
ξ2tab + ξcξ(atb)c −

1

2
ξaξbt

c
c −

1

2
gabξ

cξdtcd +
1

2
gabξ

2tcc (2.5.7)

Recall that the Einstein equations are diffeomorphism-covariant. This means that
two solutions g1 and g2 related by a diffeomorphism ϕ

g1 = ϕ∗(g2)

are physically equivalent. At the linearised level, this means that we are free to
perform the gauge transformation

hab → hab +∇(aXb), (2.5.8)

where X is a vector field generating the diffeomorphism ϕ. The corresponding gauge
symmetry at the level of the principal symbol takes the form

tab → tab + ξ(aXb). (2.5.9)

It is easy to see that the principal symbol is invariant under such transformation.
For this reason the principal symbol is always degenerate. We will deal with this
degeneracy by considering equivalence classes of symmetric tensors, where two tensors
tab and t′ab will be considered equivalent if t′ab = tab + ξ(aXb). In particular

Definition 8. A tensor tab is pure gauge if, and only if, tab ∼ 0, i.e., if, and only if,

tab = ξ(aXb), (2.5.10)

for some Xa.

We will now proceed to fixing the gauge.17 At the linearised level, the harmonic
gauge condition (2.5.1) reduces to18

Ha ≡ ∇chac −
1

2
∇ah

c
c = 0. (2.5.11)

17Showing that this gauge condition can always be imposed via a gauge transformation (2.5.8) is
a standard argument. We refer the reader to the discussion below Eq. (6.2.8) where we present a
proof in the more general context of Horndeski gravity.

18To be precise, this should be referred to as Lorenz gauge condition. See discussion below
Eq. (5.2.5).
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The harmonic gauge linearised Einstein equations are given by

G̃
(1)
ab [h] = 0 (2.5.12)

where we have defined

G̃
(1)
ab [h] ≡ G

(1)
ab [h]−∇(aHb) +

1

2
gab∇cH

c (2.5.13)

= −1

2

(
∂c∂chab −

1

2
gab∂

c∂ch
d
d

)
+ . . . . (2.5.14)

To see that the gauge condition (2.5.11) is propagated by the harmonic equations of
motion (2.5.12), we take the divergence of G̃(1)

ab when the equations of motion are
satisfied, obtaining a linear wave equation for Ha

∇c∇cHa +RacH
c = 0. (2.5.15)

Requiring the initial data to satisfy the constraint equations ensures that the time
derivative of Ha is initially vanishing [42]. Therefore, if we take initial data such that
Ha = 0 initially, we are guaranteed that the solution will have Ha ≡ 0. Hence, the
equations of motion (2.5.12) propagate the harmonic gauge condition and hence any
solution will also satisfy the original equations of motion (2.5.5).

The gauge fixed principal symbol can be deduced from Eq. (2.5.14) and takes
the form

(PEinstein(ξ) · t)ab = −1

2
ξ2Gab

cdtcd, (2.5.16)

where
Gabcd =

1

2

(
gacgbd + gadgbc − gabgcd

)
. (2.5.17)

It is now straightforward to find the characteristics for the Einstein equations. Recall
that a hypersurface with normal one-form ξ is characteristic if, and only if, ξ is a
root of the characteristic polynomial, i.e., Q(x, ξ) = 0. This implies that there exists
a non-zero (i.e. not pure gauge) symmetric 2-tensor which belongs to the kernel of
the principal symbol

PEinstein(ξ) · t = 0, t 6= 0. (2.5.18)

Thanks to the non-degeneracy of Gabcd [70] we can conclude that in General Relativity
a hypersurface is characteristic if, and only if, it is null (ξ2 = 0). We see that all
the sheets of the normal cone coincide with the null cone of the metric. For this
reason causality in General Relativity is determined by the lightcone of the spacetime
metric.

We can finally discuss the hyperbolicity of the Einstein equations.
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In a chart xµ = (t, xi), consider a characteristic covector ξµ = (ξ0, ξi) with ξi real.
Denote by ξ±0 the two solutions of ξ2 = gµνξµξν = 0. It is easy to see that these
must be real. We can conclude that any characteristic covector with real spatial
components has a real time component and hence the Einstein equations are weakly
hyperbolic.

For a characteristic covector ξ, we have that PEinstein(ξ) · t = 0 for any symmetric
tensor tab. In the language of Section 2.3 this means that, for the Einstein equations,
the 2N × 2N matrix M has two real eigenvalues, ξ±0 , to which are associated the
eigenvectors (t, ξ±0 t). Since there are N linearly independent eigenvectors associated
to each eigenvalue, the matrixM has 2N linearly independent eigenvectors and hence
is diagonalisable. We conclude that the Einstein equations are strongly hyperbolic in
harmonic gauge, independently of the background solution g.
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Chapter 3

Beyond Einstein’s theory

In this chapter we will introduce the main subjects of the dissertation: Lovelock and
Horndeski theories.

3.1 Lovelock’s theorem

In General Relativity the gravitational field is described by the geometry of spacetime.
The Einstein field equations relate the curvature of the spacetime to its matter content

Gab + Λgab = 8πTab. (3.1.1)

A natural question to ask is whether the choice of the LHS of the field equations is
unique. In order to answer this question, let us examine some of the properties of
these equations.

The LHS encodes the information relative to the gravitational field. The Einstein
tensor is symmetric and depends only on the metric and its first and second derivatives.
In other words, the Einstein equations are of second order and the gravitational field
is mediated solely by the metric tensor. Moreover, these equations can be obtained
by an action principle.

A second important property is that, thanks to the diffeomorphism-covariant
nature of the theory (cf. general covariance principle), both sides of the Einstein
equations must be divergence-free when the the equations of motion for the matter
fields are satisfied. That this condition does not impose any further constraints on
the spacetime is a consequence of the differential Bianchi identities which ensure that
the divergence of the Einstein tensor is always identically vanishing. More generally,
this property is a consequence of requiring the field equation to arise as the metric
variation of a diffeomorphism-invariant action.

Going back to our initial question, Lovelock proved in 1971 [12] that, essentially,
the only theory which satisfies such properties is, in fact, General Relativity.
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Theorem 1 (Lovelock [11]). In four spacetime dimensions, the unique symmetric
rank-2, divergence-free tensors depending only on the metric and its first and second
derivatives are the Einstein tensor and the metric tensor itself.

This means that the only terms we can write on the LHS of (3.1.1) are the
Einstein tensor and a cosmological constant term.

In order to obtain a different theory of gravity we will need to relax some of
the assumptions of Theorem 1. If we require the theories to have second-order field
equations (establishing the well-posedness of higher derivative theories is, in general,
a much harder problem; moreover, higher derivative theories are often plagued by
Ostrogradsky instabilities [71, 72]), to be diffeomorphism-covariant and to arise from
an action principle, we are left with two possible ways of modifying GR:

(i) we can consider spacetimes with more than four dimensions;

(ii) we can consider additional degrees of freedom mediating the gravitational field
(in four spacetime dimensions).

In the first case, assuming that we have no other degree of freedom than the metric
tensor, we will obtain Lovelock theories. The second case is richer, since one could
add scalar, vector or tensor degrees of freedom. We will however only consider the
simplest case, i.e., the addition of a single, non-minimally coupled scalar field. This
will lead to Horndeski theories.

In the following sections, we will discuss in more details what these theories are
and illustrate some of their properties.

3.2 Lovelock theories of gravity

As discussed in the Introduction, modern developments in Theoretical Physics have
resulted in an increased interest in higher dimensions. If spacetime has more than
four dimensions, Lovelock’s theorem does not hold and hence GR will not be the
unique theory satisfying the other assumptions. However, Lovelock proved that a
modified version of Theorem 1 holds.

Theorem 2 (Lovelock [12]). The most general symmetric rank-2 tensor, which is
divergence-free and only depends on the metric and its first and second derivatives is
the Lovelock tensor

Aab ≡
∑
p≥0

kpδ
ac1...c2p
bd1...d2p

Rc1c2
d1d2 · · ·Rc2p−1c2p

d2p−1d2p , (3.2.1)

where kp are dimensionful coupling constants: [kp] = [Length]2(p−1).
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The generalised Kronecker delta is defined as

δ
ac1...cp
bd1...dp

= p!δ
[a
b δ

c1
c2
· · · δcp]

dp
. (3.2.2)

Lovelock theories are the most general diffeomorphism-covariant theories of gravity
involving only the metric tensor and having second order equations of motion:

Aab = 8πTab. (3.2.3)

We will assume that the coupling constants are normalised as

k0 = Λ k1 = −1

4
(3.2.4)

so that the first two terms of (3.2.1) coincide with those appearing in the Einstein
equations

Aab = Λδab +Ga
b +
∑
p≥2

kpδ
ac1...c2p
bd1...d2p

Rc1c2
d1d2 · · ·Rc2p−1c2p

d2p−1d2p . (3.2.5)

The antisymmetry of the generalised Kronecker delta ensures that the sum is finite,
since all terms with 2p > (d − 1) vanish identically. This implies that in d = 4,
Lovelock theories automatically reduce to GR.

Remark. Note that if one were to require this tensor to be linear in the second
derivatives of the metric, then the only possibility would be the Einstein tensor, in
any number of spacetime dimensions [73, 74], i.e. GR is the unique diffeomorphism-
covariant metric theory of gravity with quasilinear second order equations of motion.

The Lagrangian density for Lovelock theories is given by

L = −
∑
p≥0

2kpLp = LEH −
∑
p≥2

2kpLp (3.2.6)

where
LEH = R− 2Λ (3.2.7)

is the usual Einstein-Hilbert term and

Lp = δ
c1...c2p
d1...d2p

Rc1c2
d1d2 · · ·Rc2p−1c2p

d2p−1d2p . (3.2.8)

Each Lagrangian density Lp corresponds to the generalised Euler density of a
2p–dimensional manifold, and hence the Chern–Gauss–Bonnet theorem [75] implies
that the pth Lovelock term of the action becomes topological — that is to say, the
corresponding term in the action is a topological invariant which does not yield any
contribution to the equations of motion — in d = 2p.19 For this reason, in d = 4 the
Lovelock action reduces to the Einstein–Hilbert action.

19Analogously, the Einstein-Hilbert term becomes topological in d = 2.
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Principal symbol

As discussed in Chapter 2, the hyperbolicity of the theory will be related to some
algebraic properties of the principal symbol. Furthermore, the principal symbol also
encodes the information regarding the causal structure of the theory. Hence we will
now compute its form (without fixing the gauge). Recall that, in a chart {xµ}, the
principal symbol is given by

P (x, ξ)µν
ρσ =

δEµν
δ(∂α∂βgρσ)

ξαξβ. (3.2.9)

We will regard it as a linear map between symmetric rank-2 tensors. To compute it,
we will consider a perturbation g + δg of some background solution g and look at
the linearised equations for the perturbation. In the above chart we have

−
∑
p≥1

2kpδ
µρ1...ρ2p
νσ1...σ2p

(∂ρ1∂
σ1δgρ2

σ2)Rρ3ρ4
σ3σ4 · · ·Rρ2p−1ρ2p

σ2p−1σ2p + . . . = 0, (3.2.10)

where the ellipsis denotes terms not involving second derivative of the perturbation.
We can then read off the principal symbol [70]

(P (ξ) · t)ab =
∑
p≥1

δ
ac1...c2p
bd1...d2p

ξc1ξ
d1tc2

d2Rc3c4
d3d4 · · ·Rc2p−1c2p

d2p−1d2p . (3.2.11)

It will be convenient to separate the terms coming from the Einstein equations to
those coming from the Lovelock contribution

P (ξ)abcd = PEinstein(ξ)abcd + δP (ξ)abcd, (3.2.12)

where

PEinstein(ξ)ab
cdtcd = −1

2

(
ξ2tab − 2ξcξ(atb)c + ξaξbt

c
c + gabξ

cξdtcd − gabξ2tcc
)

(3.2.13)

δP (ξ)ab
cdtcd =

∑
p≥2

δ
ac1...c2p
bd1...d2p

ξc1ξ
d1tc2

d2Rc3c4
d3d4 · · ·Rc2p−1c2p

d2p−1d2p . (3.2.14)

Remark. This is the general form of the principal symbol before fixing the gauge. In
order to discuss the initial value problem and the hyperbolicity of the equations, we
will need to fix the gauge. In Section 5.2 we will derive the harmonic gauge linearised
Lovelock equations and their principal symbol.
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Properties of the principal symbol

The principal symbol enjoys the following symmetries [70]:

δP abcdef = δP cdabef (3.2.15)

and
δP (a|bcd|ef) = δP a(bc|de|f) = 0. (3.2.16)

It follows that
ξaδP

abcd(ξ) = ξbξcξfδP
abcdef = 0. (3.2.17)

The validity of these identities can be shown by direct computation from (3.2.14).
However, they are a consequence of the gauge symmetry of the theory and the fact
that δP is not affected by gauge fixing. We will discuss this in detail in Section 6.3.

Note also that the antisymmetrisation in (3.2.14) ensures that the principal
symbol be gauge invariant.

Causality

As discussed in Chapter 2 the causal structure of the theory is determined by the
principal symbol. We see that the principal symbol of Lovelock gravity, Eq. 3.2.14,
depends on the curvature of the spacetime. This implies that the speed of propagation
of gravitational perturbations is determined not only by the metric — as it happens
for photons — but also by its first and second derivatives. In particular, this means
that gravitons do not necessarily propagate at the speed of light. In fact, it was
proven in Ref. [70] that gravitons generically propagate on non-null curves. Note,
however, that in Minkowksi space the vanishing of the Riemann curvature tensor
implies that gravitons will propagate on null curves (w.r.t. the spacetime metric).

We can illustrate these facts with an example. In Lovelock gravity, there exist
non-generic spacetimes for which the characteristic polynomial factors into a product
of quadratic factors:

Q(p, ξ) =
∏
I

(Gab
I ξaξb)

pI . (3.2.18)

It was shown in Ref. [70] that both Ricci flat Type N and static, spherically symmetric
spacetimes belong to this class.

Clearly, the characteristic polynomial has a root whenever

Gab
I ξaξb = 0, (3.2.19)

that is to say, a hypersurface is characteristic if, and only if, it is null with respect to
any of these effective metrics. Similarly, a hypersurface is spacelike if, and only if, it
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is spacelike with respect to all the effective metrics. Each GI can be interpreted as
an (inverse) “effective metric”, governing the propagation of a certain “mode” of the
graviton. Since different polarisations of the graviton propagate at different speed,
we see that Lovelock theories are multi-refringent.

Each effective metric defines through (3.2.19) a “causal cone”. These causal cones,
together with the causal cone of the spacetime metric form a nested set. Modes whose
cone lies inside (outside) the lightcone of the metric will propagate subluminally
(superluminally). We will discuss these topics in more detail in Chapter 4.

3.3 Horndeski theories of gravity

If we consider a four-dimensional spacetime, Lovelock’s Theorem tells us that to
obtain a theory of gravity different from GR, whilst still having second order equations
of motion, we will need to add extra degrees of freedom. The simplest way to do
so is to add a single extra scalar degree of freedom. Theories in which gravity
is mediated by the metric and a scalar field are known as scalar-tensor theories.
In the Introduction we discussed several applications of scalar-tensor theories in
Cosmology and Astrophysics. Furthermore, scalar-tensor theories can also arise in
the dimensional reduction of higher dimensional theories, such as Lovelock theories.

Horndeski theories are the most general diffeomorphism-covariant scalar-tensor
theories of gravity with second order equations. [21]. The action for these theories
has the following form

S =
1

16πG

∫
d4x
√
−g(L1 + L2 + L3 + L4 + L5) (3.3.1)

where

L1 = R +X − V (Φ) (3.3.2)

L2 = G2(Φ, X) (3.3.3)

L3 = G3(Φ, X)�Φ (3.3.4)

L4 = G4(Φ, X)R + ∂XG4(Φ, X)δacbd ∇a∇bΦ∇c∇dΦ (3.3.5)

L5 = G5(Φ, X)Gab∇a∇bΦ− 1

6
∂XG5(Φ, X)δacebdf ∇a∇bΦ∇c∇dΦ∇e∇fΦ (3.3.6)

and we have defined X = −1
2
(∇Φ)2. The functions Gi(Φ, X) are arbitrary. We will

assume that the combinations of these functions that appear in the equations of
motion below be smooth.
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The first Lagrangian density, L1 corresponds to the usual Einstein–scalar field
theory, i.e. gravity minimally coupled to a scalar field Φ with potential V (Φ).

The Horndeski equations of motion can then be obtained by varying the ac-
tion (3.3.1) with respect to the metric and the scalar field

Eab[g,Φ] ≡ − 1√
− det g

δS

δgab
= 0 (3.3.7)

EΦ[g,Φ] ≡ − 1√
− det g

δS

δΦ
= 0. (3.3.8)

In the most general case, these read

Ea
b ≡−

1

4
[1 + G4 − 2X∂XG4 +X∂ΦG5] δac1c2bd1d2

Rc1c2
d1d2

+
1

4
[∂XG4 − ∂ΦG5] δac1c2c3bd1d2d3

∇c1Φ∇d1ΦRc2c3
d2d3

− 1

4
[X∂XG5] δac1c2c3bd1d2d3

∇c1∇d1ΦRc2c3
d2d3

− 1

2

(
2X + G2 + 2X∂ΦG3 + 4X∂2

ΦG4

)
δab

− 1

2

(
2 + ∂XG2 + 2∂ΦG3 + 2∂2

ΦG4

)
∇aΦ∇bΦ

+
[
X∂XG3 + ∂ΦG4 + 2X∂2

XΦG4

]
δacbd∇c∇dΦ

+
1

2

[
4∂2

XΦG4 + ∂XG3 − ∂2
ΦG5

]
δac1c2bd1d2

∇c1Φ∇d1Φ∇c2∇d2Φ

+
1

2

[
∂XG4 + 2X∂2

XG4 − ∂ΦG5 −X∂2
XΦG5

]
δac1c2bd1d2

∇c1∇d1Φ∇c2∇d2Φ

+
1

2

[
∂2
XG4 − ∂2

XΦG5

]
δac1c2c3bd1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

− 1

6
[∂XG5 +X∂2

XG5]δac1c2c3bd1d2d3
∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ = 0 (3.3.9)
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and

EΦ ≡− [1 + ∂XG2 + 2X∂2
XG2 + 2∂ΦG3 + 2X∂2

XΦG3]�Φ

− [∂2
XG2 + 2∂2

XΦG3 + 2∂3
XΦΦG4]δc1c2d1d2

∇c1Φ∇d1Φ∇c2∇d2Φ

− [∂XG3 +X∂2
XG3 + 2X∂3

XXΦG4 + 3∂2
XΦG4]δc1c2d1d2

∇c1∇d1Φ∇c2∇d2Φ

− 1

4
[∂XG3 + 4∂2

XΦG4 − ∂2
ΦG5]δc1c2c3d1d2d3

∇c1Φ∇d1ΦRc2c3
d2d3

− [X∂XG3 + ∂ΦG4 + 2X∂2
XΦG4]R

− 1

2
[∂2
XG3 + 4∂3

XXΦG4 − ∂3
XΦΦG5]δc1c2c3d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

− 1

2
[∂XG4 + 2X∂2

XG4 − ∂ΦG5 −X∂2
XΦG5]δc1c2c3d1d2d3

∇c1∇d1ΦRc2c3
d2d3

− 1

2
[∂2
XG4 − ∂2

XΦG5]δc1c2c3c4d1d2d3d4
∇c1∇d1Φ∇c2Φ∇d2ΦRc3c4

d3d4

− 1

3

[
3∂2

XG4 + 2X∂3
XG4 − 2∂2

XΦG5 −X∂3
XXΦG5

]
δc1c2c3d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ

− 1

3
[∂3
XG4 − ∂3

XXΦG5]δc1c2c3c4d1d2d3d4
∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

+
1

12
[2∂2

XG5 +X∂3
XG5]δc1c2c3c4d1d2d3d4

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ∇c4∇d4Φ

+
1

4
[∂XG5 +X∂2

XG5]δc1c2c3c4d1d2d3d4
∇c1∇d1Φ∇c2∇d2ΦRc3c4

d3d4

+
1

16
X∂XG5δ

c1c2c3c4
d1d2d3d4

Rc1c2
d1d2Rc3c4

d3d4

+ 2X(∂2
ΦG3 + ∂2

XΦG2)− ∂ΦG2 = 0. (3.3.10)

Principal symbol

As in the previous section on Lovelock theories, we will compute the principal symbol
for Horndeski theories. The linearised equations of motion take the form

P abcdef
gg ∇e∇fhcd + P abef

gΦ ∇e∇fψ + . . . = 0 (3.3.11)

P cdef
Φg ∇e∇fhcd + P ef

ΦΦ∇e∇fψ + . . . = 0, (3.3.12)

where the ellipses denote terms with fewer than two derivatives of the perturbation.
We can then define the principal symbol for this system

P (ξ) =

(
P abcdef
gg ξeξf P abef

gΦ ξeξf

P cdef
Φg ξeξf P ef

ΦΦξeξf

)
. (3.3.13)

We think of it as acting on vectors of the form (tcd, α)T , where tcd is a symmetric
2-tensor and α is a number.

Similarly to the Lovelock case, the principal symbol can be separated into an
Einstein–scalar field part and a Horndeski part

P (ξ) = PEsf(ξ) + δP̃ (ξ). (3.3.14)
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The principal symbol for the Einstein–scalar field equations reads

PEsf(ξ) =

(
PEinstein(ξ) 0

0 −ξ2

)
, (3.3.15)

where PEinstein(ξ) is defined in Eq. (3.2.13). The Horndeski terms read

(δP̃gg(ξ) · t)ab =− 1

2
[G4 − 2X∂XG4 +X∂ΦG5]δac1c2bd1d2

ξc1ξ
d1tc2

d2

− 1

2
[∂XG4 − ∂ΦG5]δac1c2c3bd1d2d3

ξc1ξ
d1tc2

d2∇c3Φ∇d3Φ

+
1

2
X∂XG5δ

ac1c2c3
bd1d2d3

ξc1ξ
d1tc2

d2∇c3∇d3Φ (3.3.16a)

δP̃gΦ(ξ)ab =− 1

4
[X∂XG5] δac1c2c3bd1d2d3

ξc1ξ
d1Rc2c3

d2d3

+
[
X∂XG3 + ∂ΦG4 + 2X∂2

XΦG4

]
δacbdξcξ

d

+
1

2

[
4∂2

XΦG4 + ∂XG3 − ∂2
ΦG5

]
δac1c2bd1d2

ξc1ξ
d1∇c2Φ∇d2Φ

+
[
∂XG4 + 2X∂2

XG4 − ∂ΦG5 −X∂2
XΦG5

]
δac1c2bd1d2

ξc1ξ
d1Φ∇c2∇d2Φ

+
[
∂2
XG4 − ∂2

XΦG5

]
δac1c2c3bd1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

− 1

2
[∂XG5 +X∂2

XG5]δac1c2c3bd1d2d3
ξc1ξ

d1∇c2∇d2Φ∇c3∇d3Φ (3.3.16b)

δP̃Φg(ξ)
a
b = δP̃gΦ(ξ)ab (3.3.16c)

δP̃ΦΦ(ξ) =− [1 + ∂XG2 + 2X∂2
XG2 + 2∂ΦG3 + 2X∂2

XΦG3]ξ2

− [∂2
XG2 + 2∂2

XΦG3 + 2∂3
XΦΦG4]δc1c2d1d2

ξc1ξ
d1∇c2Φ∇d2Φ

− 2[∂XG3 +X∂2
XG3 + 2X∂3

XXΦG4 + 3∂2
XΦG4]δc1c2d1d2

ξc1ξ
d1∇c2∇d2Φ

− [∂2
XG3 + 4∂3

XXΦG4 − ∂3
XΦΦG5]δc1c2c3d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

− 1

2
[∂XG4 + 2X∂2

XG4 − ∂ΦG5 −X∂2
XΦG5]δc1c2c3d1d2d3

ξc1ξ
d1Rc2c3

d2d3

− 1

2
[∂2
XG4 − ∂2

XΦG5]δc1c2c3c4d1d2d3d4
ξc1ξ

d1∇c2Φ∇d2ΦRc3c4
d3d4

−
[
3∂2

XG4 + 2X∂3
XG4 − 2∂2

XΦG5 −X∂3
XXΦG5

]
δc1c2c3d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3∇d3Φ

− [∂3
XG4 − ∂3

XXΦG5]δc1c2c3c4d1d2d3d4
ξc1ξ

d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

+
1

3
[2∂2

XG5 +X∂3
XG5]δc1c2c3c4d1d2d3d4

ξc1ξ
d1Φ∇c2∇d2∇c3∇d3Φ∇c4∇d4Φ

+
1

2
[∂XG5 +X∂2

XG5]δc1c2c3c4d1d2d3d4
ξc1ξ

d1∇c2∇d2ΦRc3c4
d3d4 . (3.3.16d)

Remark. As in the previous section, this is the general form of the principal symbol
before fixing the gauge. In Section 6.2 we will derive the generalised harmonic gauge
linearised Horndeski equations and their principal symbol.

The principal symbol of Horndeski theory satisfies similar symmetries as that of
Lovelock theory, i.e. Equations (3.2.15)–(3.2.17). We will prove these properties in
Section 6.3.
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Chapter 4

Graviton time delay in

Einstein–Gauss–Bonnet gravity

The contents of this chapter are the result of original research conducted in collabor-
ation with my supervisor, Harvey Reall, and have been published in [43].

Introduction

In Lovelock theories, gravitons do not generally propagate at the speed of light
[76, 77, 70]. At each point, the speed of propagation depends on the curvature of
the spacetime, as well as the metric and the direction of propagation. Moreover the
speed will, in general, also depend on the polarisation of the graviton, i.e. these
theories are multi-refringent.

Consider the special case of gravitons propagating on flat Minkowski space. In
this case the Riemann curvature tensor vanishes and the gravitons propagate at the
speed of light even in Lovelock gravity. On a flat background, the causal structure of
Lovelock gravity coincides with that of General Relativity.

Since gravitons can propagate faster than light in curved space, this property
suggests that it could in principle be possible to send a signal between two points in
curved space “faster” than if the two points were in flat space.20 In other words, it
seems that one could observe a negative Shapiro time delay (i.e. a time advance)
[78].

In 2014, Camanho, Edelstein, Maldacena and Zhiboedov (CEMZ) studied the
Shapiro time delay in Einstein–Gauss–Bonnet gravity (EGB, the simplest Lovelock

20Note that it is not always possible to perform a unique identification between points on a
curved manifold and points in Minkowski space. This point will be discussed in more detail later
on.
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theory) and showed that it is indeed possible to observe a time advance. They
considered gravitons propagating on the Aichelburg–Sexl (AS) [79, 80] shock-wave
spacetime, an exact solution to EGB theory which can be interpreted as the geometry
describing the gravitational field of a highly-boosted particle. They showed that for
an appropriate choice of polarisation and impact parameter, a graviton scattering off
the shock-wave can experience a time advance. Furthermore, they showed that the
same result is also obtained from a scattering amplitude calculation.

These results should however be treated with care. The background spacetime
considered — the AS solution — is singular: curvature presents a delta function
supported on the worldline of the particle generating the shock. For this reason, one
must ask whether such solution can be considered “physical”. Usually it is regarded
as such since it can be obtained as the limit of smooth black hole solutions. Consider
a boosted black hole, taking the boost to infinity, while scaling the mass of the black
hole to zero and keeping the energy constant yields the shock-wave spacetime. One
can then “regulate” the shock-wave solution by replacing it with a small, highly
boosted black hole.

This is a valid motivation in GR, but it suffers problems in EGB theory. First
of all, “small” black holes are unphysical in d = 5, 6:21 it was shown in [70] that in
this case small black holes present a region outside the event horizon in which the
equations are not hyperbolic. Moreover in d = 5 one cannot consider black holes
of arbitrarily small mass, for there exists a mass gap. In d ≥ 7, instead, we will
show that one cannot boost a black hole arbitrarily fast: considering initial data
describing a small boosted black hole, we will see that if the boost is too large then
the surface on which the initial data is specified will not be everywhere spacelike.
This implies that we cannot have a well-posed initial value problem. In particular, if
we consider a generic smooth perturbation of the initial data, then the initial value
problem with this initial data will have no solution. This means that we cannot
consider the solution as physical since it cannot arise as the Cauchy development of a
“good” initial data set without fine tuning. We thus deduce that in EGB theory it is
not possible to boost a small black hole arbitrarily close to the speed of light: there
is a speed limit. These reasons suggest that the AS geometry may not be physical
and that an independent confirmation of the possibility of time advance would be
desirable.

In this chapter we will study the Shapiro time delay for gravitons in static,
spherically symmetric, black hole solutions of EGB theory. A further motivation for
considering these spacetime comes from the fact that, in general, it is not possible to

21Here “small” is defined in comparison to the length scale set by the EGB coupling constant.
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define the Shapiro time delay in a gauge-invariant manner [81]. The problem lies
in the fact that there is no gauge-invariant way of identifying points of a curved
spacetime with points in Minkowski space. It is however possible to overcome
such problem if the spacetime enjoys sufficient symmetry. In particular, for static,
spherically symmetric spacetimes it is possible to define the Shapiro time delay
unambiguously [82].22 The idea is to consider a spherical cavity surrounding the
black hole and calculate the proper time it takes for a graviton to cross the cavity.
This is then compared to the time it takes for the graviton to travel between the
corresponding points of a spherical cavity in flat spacetime.

The main result of this Chapter will be to confirm that gravitons can indeed
experience a time advance when they propagate around small EGB black holes. This
occurs for gravitons of a certain polarisation incident on the black hole with an
impact parameter comparable to the length scale set by the Gauss–Bonnet coupling,
analogously to what was found by CEMZ. We further show that such gravitons can
undergo a deflection through an angle smaller than π. These features indicate that
certain polarisations of the graviton experience a repulsive gravitational interaction
at distances comparable to the scale set by the coupling constant. This is confirmed
by the analysis of the “effective potential” which determines the graviton trajectories.
Close to the event horizon, where the impact parameter is small, the gravitons
experience an attractive gravitational interaction and hence the deflection angle is
larger than π.

If the net deflection angle is non-vanishing then we can only have a time advance
if the size of the cavity is not too large. If the graviton suffers a net deflection, then
its path on the curved manifold will necessarily be longer than the corresponding
straight line path in flat spacetime.23 This results in a positive contribution to the
time delay which grows with the radius of the cavity. On the other hand the negative
contribution to the time delay only comes from a bounded region (whose size is set
by the Gauss–Bonnet coupling). This means that for large enough radius of the
cavity, the positive contribution will overcome the negative one, hence resulting in a
positive time delay. However, since for different values of the impact parameter the
graviton can experience deflections larger or smaller than π, by continuity there must
be choices of the impact parameter for which the graviton suffers no net deflection.
There are in fact two possible choices of impact parameter for which this is the case
and the time delay remains finite in the infinite cavity radius limit. For the larger

22The large symmetry of the AS solution implies that the time delay should be unambiguous in
this case too.

23CEMZ evaded this effect by considering a graviton propagating between two AS shocks, resulting
in zero deflection.
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of these values, the time delay is positive. However, for the smaller one it can be
negative. Hence we find an example of a graviton incident from, and returning to,
infinity in less time than it would in flat space.

According to CEMZ, one of the main implications of the negative time delay
is that it would make it possible to violate causality, rendering EGB unviable as a
classical theory. They employ an argument asserting that superluminal propagation
in a Lorentz covariant theory can be exploited to construct “time machines”, i.e.,
spacetimes containing closed causal curves (where “causal” is defined with respect to
the causal structure induced by the equations of motion, cf. Chapter 2.4). Arguments
of this sort have been applied to various non-gravitational field theories in Ref. [83].
They have however been criticised by Geroch [84], who notes that the existence of a
causally pathological solution is not enough to reject the theory (see also Ref. [85]).
After all, even GR admits causally pathological solutions. A simple example of this
is given by Minkowski spacetime with a periodic time direction. However, nobody
would discard GR because of this. The reason why such pathological solutions
should not be considered problematic for the theory is that they cannot be formed
dynamically, i.e. they do not arise as the Cauchy evolution of some “good” initial
data. In other words, they are not “physical” solutions.

We will argue that, in fact, the “time machine” constructions of Adams et al. [83]
and CEMZ [41] do not arise as the Cauchy development of a legitimate initial data
set. The reason behind this is that the initial data surface will fail to be everywhere
spacelike. Hence it is not a well-posed problem to specify a solution in terms of such
data: either no solution exists, or it is infinitely fine-tuned.

This Chapter is organised as follows. In Section 4.1 we review the static, spher-
ically symmetric, black hole solutions of EGB and derive a “speed limit” for small
black holes. In Section 4.2 we will investigate the Shapiro time delay and deflection
of gravitons propagating in a static, spherically symmetric, black holes solution of
EGB. In Section 4.3 we discuss the “time machine” constructions of Ref. [83] and
CEMZ. The details of our perturbative calculation of the time delay and deflection
angle are treated in Appendix 4.A.

4.1 Spherically symmetric EGB black holes

The equation of motion of Einstein–Gauss–Bonnet (EGB) theory is obtained by
varying the action

S =
1

16π

∫
ddx
√
−g
[
R + λGB(R2 − 4RabR

ab +RabcdR
abcd)

]
(4.1.1)
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where λGB is the Gauss–Bonnet (GB) coupling constant and we have set G = 1.24

This theory admits static, spherically symmetric solutions with metric [86]:

g = −f(r)dt2 + f(r)−1dr2 + r2gSd−2 (4.1.2)

where gSd−2 is the standard round metric on the unit (d− 2)-sphere, Sd−2, and

f(r) = 1 +
r2

α
(1− q(r)), (4.1.3)

q(r) =

√
1 +

2αµ

rd−1
, (4.1.4)

α = 2(d− 3)(d− 4)λGB. (4.1.5)

We assume α > 0 since for α < 0 the metric has a naked singularity [86].25 The
parameter µ is proportional to the ADM mass M :

M =
(d− 2)Vol(Sd−2)

16π
µ. (4.1.6)

The event horizon is a hypersurface r = rH ,26 where rH is the largest root of

µ = rd−5
H

(
r2
H +

α

2

)
. (4.1.7)

The coupling α has dimensions of length squared so EGB theory has a length scale
√
α. We will say that a black hole is “small” if rH �

√
α and “large” if rH �

√
α.

Equivalently, for d > 5, a black hole is small if

µ� α(d−3)/2 (4.1.8)

and large if µ� α(d−3)/2. Note that black holes with arbitrarily small mass do not
exist for d = 5 because there is a mass gap (however rH can be arbitrarily small):
µ > α/2. The function q varies over a length scale

L ≡ (µα)
1

d−1 . (4.1.9)

For r � L we have
f ≈ 1− µ

rd−3
(4.1.10)

i.e., the solution reduces to the higher-dimensional Schwarzschild solution. For a large
black hole rH � L so this approximation is valid everywhere outside the horizon.

24In the notation of Section 3.2, this theory corresponds to λGB = −8k2, kp = 0 for p > 2.
25A priori, the sign in front of q in the expression for f is arbitrary. We choose the negative

branch, corresponding to asymptotically flat solutions.
26Since some modes of gravitational perturbations can travel faster than light, it could be possible,

a priori, that such perturbations could escape the black hole region (as defined by the causal
structure given by the physical metric). However it was shown in [87, 70] that a Killing horizon is
always a characteristic hypersurface for all graviton polarizations, excluding this possibility when
the event horizon is a Killing horizon, as is the case here.
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4.1.1 Effective metrics and bicharacteristic curves

Characteristic hypersurfaces of the above solution were determined in Ref. [70]. The
symmetries of the solution imply that the characteristic polynomial factorizes into a
product of quadratic factors, each associated to an “effective metric” as discussed
above. A hypersurface is characteristic iff it is null w.r.t. one of these effective
metrics. The explicit form of the effective metrics was determined by considering
linear perturbations of such solutions. Such perturbations can be classified into
scalar (S), vector (V ) and tensor (T ) types w.r.t. the spherical symmetry. For each
type, one can obtain a “master equation” [88, 89] and from these one can read off
the effective metric for that type. Hence the characteristic polynomial factorizes as

Q(p, ξ) = (Gab
S ξaξb)

pS(Gcd
V ξcξd)

pV (Gef
T ξeξf )

pT (4.1.11)

where pS, pV , pT denote the number of degrees of freedom of each type of modes.
Viewing Gab

S , etc., as inverse metrics, the corresponding metrics are given by

GA = −f(r)dt2 + f(r)−1dr2 +
r2

cA(r)
gSd−2 (4.1.12)

for certain smooth functions cA(r) given by [70]

cS(r) = 3

(
1− 1

d− 2

)
A(r) +

(
1− 3

d− 2

)
1

A(r)
− 3

(
1− 2

d− 2

)
, (4.1.13)

cV (r) = A(r), (4.1.14)

cT (r) = −
(

1 +
1

d− 4

)
A(r)−

(
1− 1

d− 4

)
1

A(r)
+ 3. (4.1.15)

where
A(r) = q(r)−2

(
1

2
+

1

d− 3

)
+

(
1

2
− 1

d− 3

)
, (4.1.16)

It is convenient to take the index A ∈ {0, S, V, T} where 0 refers to the physical
metric, i.e.,

c0(r) ≡ 1. (4.1.17)

For a large black hole, the functions cA(r) are positive everywhere outside the horizon.
This ensures that the effective metrics have Lorentzian signature, and their null cones
form a nested set, with the outermost cone (in the tangent space) corresponding
to the effective metric with the largest value of cA(r). (The physical metric G0

is included in this nested set.) This ensures the hyperbolicity of the theory, and
causality is determined by this outermost null cone. If cA > 1 then the associated
modes propagate faster than light [70].

For d = 5, 6, for small enough rH , it turns out that one of the cA(r) vanishes at
some value r = r∗ > rH and becomes negative for r < r∗ [70]. The corresponding
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inverse effective metric Gab
A is smooth at r = r∗ but becomes degenerate there. For

r < r∗ it has Lorentzian signature, but with the opposite overall sign. This implies
that the theory is non-hyperbolic in such black hole spacetimes. Therefore small
black holes are unphysical for d = 5, 6. This does not occur for EGB theory with
d ≥ 7.27

Note that the function cA are determined entirely by the length scale L defined
by (4.1.9). If r � L then

cA(r) = 1 + 2βA

(
L

r

)d−1

+O

((
L

r

)2(d−1)
)

(4.1.18)

where the constants βA are given by

βS = −(d− 1)

(d− 3)
, βV = −1

2

(d− 1)

(d− 3)
, βT =

(d− 1)

(d− 3)(d− 4)
, β0 = 0. (4.1.19)

We see that cS, cV < 1 at large r so the scalar and vector polarizations propagate
slower than light in this region. However cT > 1 at large r so tensor polarizations
propagate faster than light at large r. Hence causality at large r is determined by
the effective metric for the tensor modes.

We will now prove that cS < 1 and cV < 1 everywhere. Since q(r)−2 is monoton-
ically increasing we see that also A(r) is monotonically increasing. We also have
A(∞) = 1. It follows that A(r) < 1 hence cV (r) < 1. Now we look at cS(r). We
have:

c′S(r) =

[
3

(
1− 1

d− 2

)
−
(

1− 3

d− 2

)
A(r)−2

]
A′(r). (4.1.20)

Since A(r) is monotonically increasing, the sign is determined by the terms in
parentheses. For d = 5 this is constant and positive, hence c′S > 0 so cS(r) <

cS(∞) = 1. For d 6= 5, the expression in parentheses is negative at small r and
positive at large r. Hence, starting from r = 0, cS(r) decreases to a minimum and then
increases monotonically with r. Hence cS(r) < max{cS(∞), cS(0)} = cS(∞) = 1.

The same argument allows us to determine an upper bound for cT . We have:

c′T (r) = −
[(

1 +
1

d− 4

)
−
(

1− 1

d− 4

)
A(r)−2

]
A′(r). (4.1.21)

If d = 5 then the expression in square brackets is constant and positive so we see
that cT is monotonically decreasing hence

cT (r) < cT (0) = 3 (d = 5). (4.1.22)
27However, it does occur for more general Lovelock theories with d ≥ 7. Generically, it occurs

when the equation of motion includes the highest order Lovelock term [70].
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If d > 5 then cT has a maximum at r0 where

A(r0) =

√
1− 1/(d− 4)

1 + 1/(d− 4)
(4.1.23)

and hence

cT (r) < cT (r0) = 3− 2

√
1− 1

(d− 4)2
(4.1.24)

Note that the RHS is greater than 1.

4.1.2 Speed limit for small black holes

We will now consider the effect of boosting one of these black holes. To construct
initial data describing a boosted black hole, we can consider the data induced on a
boosted hypersurface in the black hole spacetime. Such a hypersurface is spacelike
w.r.t. the metric for any boost velocity v such that |v| < 1. However, since the null
cone for the tensor modes can lie outside the null cone of the physical metric, it is
possible that, for |v| close to 1, the hypersurface may fail to be everywhere spacelike
w.r.t. the tensor effective metric. This implies that it will fail to be spacelike in
the sense defined in the Introduction and hence it would not be a valid initial data
surface. We will now show that this is indeed what happens.

First we introduce an “isotropic” radial coordinate r̃ defined by

d log r̃

dr
=

1

r
√
f

(4.1.25)

so that the physical metric is

g = −fdt2 +H
(
dr̃2 + r̃2gSd−2

)
(4.1.26)

where
H =

r2

r̃2
. (4.1.27)

For r � L we can use the approximation (4.1.10) to obtain

r̃ ≈ r

(
1− µ

2(d− 3)rd−3

)
(4.1.28)

and hence
f ≈ 1− µ

r̃d−3
H ≈ 1 +

µ

(d− 3)r̃d−3
. (4.1.29)

To construct initial data describing a boosted black hole we convert to Cartesian
coordinates xi so that x1 = r̃ cos θ1, etc., (where θ1, θ2, . . . are the angles on Sd−2)
and then perform the Lorentz transformation

x1 = γ(x1′ − vt′), t = γ(t′ − vx1′), γ = (1− v2)−1/2. (4.1.30)
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We now consider the data induced on a surface of constant t′. By inverting the
Lorentz transformation, we see that this is the same as the data induced on a surface
of constant t+ vx1, i.e., a surface of constant t+ vr̃ cos θ1. Let Σ be such a surface.
Define a 1-form ξ normal to Σ:

ξ = dt+ v cos θ1dr̃ − vr̃ sin θ1dθ1. (4.1.31)

We want to take the data induced on Σ as initial data describing a boosted black hole.
To do this, we must check that Σ is spacelike in the sense defined in the Introduction.
This is equivalent to Σ being spacelike w.r.t. all of the effective metrics, i.e., ξ must
be timelike w.r.t. to all of the effective metrics. To investigate whether this is this
case, consider the norm of ξ w.r.t. GA at θ1 = π/2:

Gµν
A ξµξν |θ1=π/2 = −f−1 + v2cA

r̃2

r2
. (4.1.32)

Now assume that the black hole is small and consider the region L� r �
√
α where

µ/rd−3 � Ld−1/rd−1. Using our expansion for cA we then obtain

Gµν
A ξµξν |θ1=π/2 ≈ −(1− v2) + 2βAv

2

(
L

r

)d−1

. (4.1.33)

For the scalar, vector and physical metrics we have βA ≤ 0 so the RHS is always
negative. However, for the tensor effective metric we have βT > 0 and hence if v is
too close to 1 then the second term above, although small, will overwhelm the first
and the RHS will be positive, i.e., ξ will be spacelike w.r.t. GT and hence Σ will not
be everywhere spacelike.

As discussed in the Introduction, it is not a well-posed problem to evolve initial
data if Σ is not spacelike. Of course, we know that this particular data on Σ can
be evolved - the resulting solution is just the black hole solution described above.
However, the lack of well-posedness implies that this procedure is infinitely fine-tuned:
if we make a generic (smooth) perturbation to the initial data on Σ (for v very close
to 1) then it will not be possible to evolve the perturbed data either forwards or
backwards in time. Hence there is a speed limit for small black holes: they cannot
be boosted to velocities arbitrarily close to the speed of light.

One might criticise this argument on the grounds that there is no unique way
to boost a black hole. One could consider a different surface which is asymptotic
to Σ but differs in the region L � r �

√
α in which Σ can fail to be spacelike.

However, note that in our argument, the physical metric is actually flat to the level
of approximation used because we neglected terms of order µ/rd−3. The boost used
above is a symmetry of this flat metric. Therefore our surface Σ conforms to the
usual idea of a boosted hypersurface in the region relevant for the above argument.
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Of course the effective metrics are not flat to this level of approximation because
they include larger terms, of order αµ/rd−1 = (L/r)d−1.

It is interesting to determine the critical value of v below which Σ is spacelike.
For Σ to be spacelike w.r.t. the tensor metric we need ξ to be timelike everywhere,
which is true iff28

v2 < v2
max ≡ min

r2

r̃2fcT
(4.1.34)

where the minimum is taken over, say, r > rH . For a small black hole, the minimum
is achieved for L ∼ r �

√
α, for which f ≈ 1 and r̃ ≈ r hence

v2
max ≈

1

max cT
=

1

3− 2
√

1− 1
(d−4)2

< 1. (4.1.35)

This is the speed limit for an arbitrarily small black hole. More generally, vmax will
depend on the mass of the black hole, with vmax → 1 for a large black hole.

It is natural to ask what would happen if one attempted to accelerate a small
black hole to a speed greater than vmax. As emphasized in Ref. [84], one would have
to specify the details of how one would attempt to achieve this acceleration using
only the fields present in the theory. Perhaps one could set up initial data consisting
of several black holes in the hope that a “gravitational slingshot” effect could be
used to accelerate a small black hole to a speed greater than vmax. However, as we
will see in more detail below, the gravitational interaction associated with small
black holes in EGB is very different from GR so there is no reason to believe that
a small black hole in such a system would behave in the same was as it would in
GR. Whatever the system does, it will not result in a small black hole moving with
a speed arbitrarily close to the speed of light at some later time. This is because an
“instant of time” corresponds to a spacelike hypersurface and the argument above
excludes the possibility of a small black hole moving arbitrarily close to the speed of
light on such a surface.

4.1.3 Graviton trajectories

As discussed above, characteristic hypersurfaces are generated by bicharacteristic
curves and, in the present case, these are simply the null geodesics of the effective
metrics. Hence, in the geometric optics approximation, the worldlines of high-
frequency gravitons are null geodesics of the effective metrics. We will need to
determine these geodesics in order to calculate the time delay.

28We used θ1 = π/2 to derive this. It is not hard to show that other values of θ1 gives less
stringent constraints.
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Consider a null geodesic of GAab. Introducing polar coordinates (θ1, θ2, . . . , θd−3, φ)

on Sd−2, spherical symmetry allows us to assume that the geodesic is confined to the
equatorial plane θ1 = · · · = θd−3 = π/2. Associated to the Killing fields ∂/∂t and
∂/∂φ are the conserved quantities

E = f(r)ṫ J =
r2

cA(r)
φ̇ (4.1.36)

where a dot denotes a derivative w.r.t. an affine parameter λ. E and J are not
physical because they depend on the choice of affine parameter. However their ratio
is independent of this choice:

b =
J

E
(4.1.37)

and this is the impact parameter of the geodesic. The null condition gives

1

2
ṙ2 + J2V

(A)
eff (r) =

1

2
E2, (4.1.38)

where the effective potential is given by

V
(A)

eff (r) =
f(r)cA(r)

2r2
. (4.1.39)

Plots of the effective potential for some different cases are given in Ref. [70] and also
in Figure 4.1.

The effective potentials exhibit a local maximum corresponding to an unstable
graviton orbit analogous to the photon sphere in GR. Hence in EGB there is a
distinct “graviton sphere” for each graviton polarisation. We will refer to these as
the “scalar sphere”, “vector sphere” and “tensor sphere”. In some cases, it turns out
that there are two local maxima and a local minimum of the effective potential and
hence three graviton spheres. If V (A)

max denotes the maximum of the effective potential
then a graviton incident from large distance will be absorbed by the black hole if

b2 <
1

2V
(A)

max

⇒ absorption. (4.1.40)

We will consider only gravitons with larger impact parameter, which are scattered
by the black hole.

For r � L, equations (4.1.10) and (4.1.18) imply that the effective potentials
have the expansion

V
(A)

eff (r) =
1

2r2
− µ

2rd−1
+ βA

αµ

rd+1
+ . . . (4.1.41)

The first two terms are familiar from GR: the first is a centrifugal barrier and the
second is responsible for the deflection of light rays and the time delay of photons.
The third term arises from the Gauss–Bonnet interaction. For the effects of this
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Figure 4.1: Effective potentials for a black hole with rH = 1 in d = 5, 6, 7, 8

dimensions. We fix the Gauss–Bonnet coupling λGB = 2. The red curve corresponds
to the effective potential for photons, i.e., null geodesics of the physical metric (c = 1).
Superluminal propagation (cA > 1) corresponds to an effective potential which is
larger than that for photons. This happens only for tensor polarizations. The
violation of hyperbolicity is associated with the region in which one of the effective
potentials becomes negative. This happens near the horizon for small black holes in
five and six dimensions.

term to be non-negligible compared to the second term we need r .
√
α. Since we

have assumed r � L this requires L�
√
α, which implies (4.1.8), i.e., the black hole

has to be small compared to the GB scale for this term to be important.29 Notice
that this term is negative for vectors and scalars but positive for tensors. Hence,
for a small EGB black hole, tensor-polarized gravitons experience a new repulsive
interaction for L � r .

√
α. It is this repulsive interaction that allows for the

possibility of a time advance.
For a small black hole, the effective potential also simplifies in the region L ∼

r �
√
α. In this region we can approximate f ≈ 1 and hence

V (A)(r) ≈ cA(r)

2r2
(4.1.42)

which depends only on the length scale L. For tensor modes, the RHS typically has
29This is not possible for d = 5, 6 because of the failure of hyperbolicity for small black holes

with d = 5, 6.
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a maximum at some value r ∼ L so we deduce that the “tensor sphere” has r ∼ L.
Since cA ∼ 1, we deduce from (4.1.40) that tensor-polarized gravitons which scatter
from the black hole (rather than being absorbed) must have b & L.30 Note also that
the presence of this maximum implies that the interaction between tensor-polarized
gravitons and the black hole must become attractive again for r . L.

4.2 Time delay and time advance

4.2.1 Photon time delay in GR

As discussed in the Introduction, there is no gauge-invariant definition of the Shapiro
time delay applicable to a large class of spacetimes [81]. However, for a static,
spherically symmetric spacetime, there is an unambiguous definition of this quantity
[82]. The idea is to compare the time it takes a photon to travel between two points
of a spherical cavity with the corresponding time in Minkowski spacetime. In more
detail, one can introduce coordinates (t, r, θ, φ) (in 4-dimensional GR) so that the
metric takes the form

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2 (4.2.1)

with A,B > 0. Now one can consider a photon trajectory which starts and ends
at r = R, with r ≤ R along the trajectory. Using the spherical symmetry, we can
assume that the motion is confined to the equatorial plane θ = π/2. Assume it
starts at t = t0, φ = φ0 and ends at t = t0 + ∆t, φ = φ0 + ∆φ (Fig. 4.2, left). The
coordinate time to traverse the cavity is ∆t. The proper time (according to a cavity
observer) is

∆τ =
√
A(R)∆t. (4.2.2)

One can compare this with corresponding quantity in Minkowski spacetime where
the trajectory is simply a straight line traversing the cavity (Fig. 4.2, right), which
takes proper times

∆τMink = 2R sin

(
∆φ

2

)
. (4.2.3)

Hence the time delay can be defined as

D ≡ ∆τ −∆τMink. (4.2.4)

A simple argument (based on [82]) shows that, in GR, it is impossible to have
D < 0 for a large class of spacetimes of the above form. Consider spacetimes for

30Hence the absorption cross-section for (high frequency) tensor-polarized gravitons by a small
black hole scales as Ld−2 rather than rd−2

H .
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p

q

BH p′

q′

Figure 4.2: Schematic set-up of the problem: the dashed line represents the trajectory
of the graviton. The solid circle represents the spherical cavity of area-radius R in
the curved spacetime (left) and in Minkowski (right). The endpoints of the path in
the curved spacetime, p and q, are identified with p′ and q′ in Minkowksi, using the
spherical symmetry of the problem.

which A′(r) ≥ 0 and B(r) ≥ 1. Examples of such spacetimes include the (positive
mass) Schwarzschild solution and perfect fluid stars with positive energy density and
pressure. Now let λ ∈ [0, 1] be an arbitrary parameter along the photon trajectory
(which has r(λ) ≤ R). Since the photon trajectory is null we have

∆t =

∫ 1

0

√
A−1Bṙ2 + A−1r2φ̇2 dλ ≥ 1√

A(R)

∫ 1

0

√
ṙ2 + r2φ̇2 dλ

≥ 2R√
A(R)

sin

(
∆φ

2

)
(4.2.5)

where the first inequality follows from B(r) ≥ 1 and A′(r) ≥ 0, so A(r) ≤ A(R) for
r ≤ R. The second inequality follows from the fact that the distance in Euclidean
space is minimized by a straight line. It follows immediately that D ≥ 0.31

4.2.2 Time delay in EGB

We can now calculate the Shapiro time delay for gravitons propagating across a
spherical cavity in the geometry (4.1.2). The cavity is taken to be the surface r = R.32

Consider a graviton worldline parametrised by λ ∈ [0, 1] that has r ≤ R and starts
and ends at r = R with φ(0) = 0, φ(1) = ∆φ. From the fact that this world line is
null w.r.t. the relevant effective metric, the coordinate time t taken for the graviton
to traverse the cavity is

∆t =

∫ 1

0

√
ṙ2

f 2
+

r2

fcA
φ̇2 dλ. (4.2.6)

31 If we normalize t so that A(r)→ 1 as r →∞ then A′(r) ≥ 0 implies A(r) ≤ 1 everywhere so
∆τ ≤ ∆t. Hence the time delay defined using ∆t instead of ∆τ also will be positive [82].

32Note that R is the area-radius of the cavity w.r.t. the physical metric, not w.r.t. an effective
metric.
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One can show that f is monotonically increasing33 so f(r) ≤ f(R) ≤ f(∞) = 1.
Hence

∆t >
1√
f(R)

∫ 1

0

√
ṙ2

f
+
r2

cA
φ̇2 dλ >

1√
f(R)

∫ 1

0

√
ṙ2 +

r2

cA
φ̇2 dλ. (4.2.7)

We showed above that cS < 1 and cV < 1. This implies that for scalar or vector
polarizations (or for photons, which have c0 = 1) we have

∆t >
1√
f(R)

∫ 1

0

√
ṙ2 + r2φ̇2 dλ ≥ 2R√

f(R)
sin

(
∆φ

2

)
≡ ∆τMink√

f(R)
(4.2.8)

where, as before, ∆τMink is the time it takes a photon (or graviton) in Minkowski
spacetime to travel across the cavity between the same two points. Converting to
proper time we therefore have

∆τ =
√
f(R)∆t > ∆τMink (4.2.9)

so the time delay is always positive for scalar or vector polarized gravitons. More
physically: gravitons with these polarizations travel slower than photons so, since
photons experience a positive time delay, these gravitons must also experience positive
time delay.

The story is different for tensor modes: as we have shown, cT (r) can be larger
than one, so one cannot rule out the possibility of time advance (e.g. in d = 5 we
would have cT (r) ∈ [1, 3] and thus ∆τ ≥ ∆τMink/

√
3). In the next subsection we will

show that time advance is indeed possible, in agreement with [41].

4.2.3 Time advance in EGB: perturbative results

We will now show how one can achieve a negative time delay, i.e., a time advance,
for gravitons of tensor polarizations in the space time of a small black hole. We will
calculate the time delay explicitly. For completeness, we will also present results
for the time delay for vector and scalar graviton polarizations, and also for photons.
Consider a graviton trajectory, given by a null geodesic of the relevant effective
metric. As before, we assume that this starts at t = 0, r = R, φ = 0 and ends at
t = ∆t, r = R, φ = ∆φ with r ≤ R along the trajectory. Let R0 be the minimum
value of r along the trajectory. As in GR, R0 uniquely labels the trajectory. This is
related to the impact parameter b as:

b2 =
R2

0

f(R0)cA(R0)
. (4.2.10)

33 Use q′ = −(d− 1)(q2 − 1)/(2rq) to show that f ′ > 0.
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We can compute the proper time and the deflection angle from the geodesic equations:

∆φ = 2b

∫ R

R0

dr cA(r)

(
r2

√
1− f(r)cA(r)b2

r2

)−1

, (4.2.11)

∆t = 2

∫ R

R0

dr

(
f(r)

√
1− f(r)cA(r)b2

r2

)−1

. (4.2.12)

As before, this includes results for photons (with c0 = 1). Recall that R0 must be
larger than the radius of the photon/graviton sphere for the physical/effective metrics.
Both the time delay and the deflection angle will diverge as R0 approaches this value
since the corresponding trajectories will orbit the black hole many times.

We will first calculate the above quantities for a graviton trajectory that has
R0 � L and alsoR0 � µ1/(d−3), and hence r � L, r � µ1/(d−3) along the trajectory.34

Under these assumptions, b and R0 are related by

b2 = R2
0

[
1 +

µ

Rd−3
0

(
1− 2αβA

R2
0

)
+ . . .

]
. (4.2.13)

We will assume also that the cavity radius is large: R � R0. The perturbative
calculation of the deflection angle is explained in Appendix 4.A. The result is

∆φ ≈ π − 2
R0

R
+

µ

Rd−3
0

√
π(d− 1)

(
1− 2αβA

R2
0

(d− 2)

(d− 1)

)
Γ
(
d
2

)
2Γ
(
d+1

2

) . (4.2.14)

This has a well-defined limit when the cavity radius is taken to infinity at fixed R0.
Using b ≈ R0 to write the result in terms of b gives

∆φ∞ ≡ lim
R→∞

∆φ ≈ π +
µ

bd−3

√
π(d− 1)

(
1− 2αβA

b2

(d− 2)

(d− 1)

)
Γ
(
d
2

)
2Γ
(
d+1

2

) . (4.2.15)

This is analogous to the result for the deflection of light by the Schwarzschild solution
in GR. Note that ∆φ∞ > π if βA ≤ 0 so scalar and vector polarised gravitons, and
photons, are always deflected towards the black hole. However, for tensor polarised
gravitons, since βT > 0, we see that ∆φ∞ < π when

b <

√
2(d− 2)α

(d− 3)(d− 4)
. (4.2.16)

This is consistent with our previous assumptions if, and only if, (4.1.8) holds, i.e., iff
the black hole is small. Hence, for a small black hole, tensor-polarized gravitons with
b obeying (4.2.16) (and b ≈ R0 � L from our previous assumptions) are deflected

34For a large black hole, i.e., rH �
√
α, these conditions reduce to R0 � rH . For a small black

hole, i.e., rH �
√
α, they reduce to R0 � r

d−5
d−3

H α
1

d−3 .
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away from the black hole. This is precisely because such gravitons experience the
repulsive short-distance interaction in (4.1.41) that we discussed above.

Using the same approximations as above we find that the time it takes a graviton
to cross the cavity is

∆t = 2R+
µ

Rd−4
0

[
√
π

(
1− 2αβA

R2
0

(d− 4)

(d− 3)

)
(d− 1)(d− 3)

(d− 4)

Γ
(
d
2

)
2Γ
(
d+1

2

)]+ . . . (4.2.17)

and R� R0 implies that ∆τ = ∆t to this level of approximation. The corresponding
time in flat spacetime, with deflection angle ∆φ is given by (4.2.3), which can be
written as

∆τMink = 2R cos

(
π −∆φ

2

)
= 2R

[
1− 1

2

(
π −∆φ

2

)2

+ . . .

]
(4.2.18)

so plugging in our perturbative result (4.2.14) gives

∆τMink = 2R +
µ

Rd−4
0

[
√
π

(
1− 2αβA

R2
0

(d− 2)

(d− 1)

)
(d− 1)

Γ
(
d
2

)
2Γ
(
d+1

2

)] (4.2.19)

+O

(
R

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)2
)
. (4.2.20)

Note that second order corrections to this result grow linearly with R. For these to
be small compared to the terms that we have retained we need

R

R0

� Rd−3
0

µ
,

R

R0

�
(
R0

L

)d−1

=
Rd−1

0

αµ
(4.2.21)

i.e. the cavity is large (R/R0 � 1) but not too large. If these assumptions are not
satisfied then most of the trajectory is in a region where spacetime is almost flat and
a large positive time delay (proportional to R) results simply because, in this flat
region, there is a shorter (straight line) path available which remains far from the
black hole.

Combining the above results gives the time delay as (using R0 ≈ b)

D = ∆τ −∆τMink ≈
µ

bd−4

[
√
π

(
1− 2αβA

b2

(d− 4)

(d− 1)

)
(d− 1)

(d− 4)

Γ
(
d
2

)
2Γ
(
d+1

2

)] . (4.2.22)

We see that scalar or vector polarised gravitons, or photons, suffer a positive time
delay as expected. However, for tensor polarised gravitons, a negative time delay, i.e.
a time advance results when

b <

√
2α

(d− 3)
. (4.2.23)
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Since b ≈ R0, this is consistent with R0 � L, as assumed above, only for a small
black hole. For such a black hole, stated in terms of b, our assumptions in deriving
(4.2.22) are

b� L, 1� R

b
� bd−3

µ
,

(
b

L

)d−1

. (4.2.24)

Note that this overlaps the region for which ∆φ∞ < π, i.e., the gravitons that
experience a time advance are also deflected away from the black hole. Both effects
arise from the repulsive term in the effective potential discussed above.

As discussed above, we need to impose an upper bound on R/b to see the time
advance since for very large R there will be a large time delay, proportional to R,
which occurs because the trajectory has undergone a deflection. However, for the
special case of a trajectory which saturates (4.2.16), we have ∆φ∞ = π, i.e., there is
no net deflection (the effect of the short-distance repulsion is cancelled by the effect
of the long-distance attraction). In this case, we no longer need to impose an upper
bound on R: it is easy to see that the above derivation holds for arbitrarily large R.
Hence the result (4.2.22) is valid for R → ∞ in this special case. It is easy to see
that, for this value of b, the expression (4.2.22) is positive, so this special trajectory
experiences a time delay. Hence, in this special case, we have a gauge-invariant
definition of the time delay for a graviton propagating in from infinity and returning
to infinity.

4.2.4 Time advance in EGB: numerical results

The above perturbative calculation demonstrates that a time advance is possible
for tensor-polarized gravitons propagating in the geometry of a small black hole for
d ≥ 7. However, several questions remain. As discussed above, small black holes
are unphysical for d = 5, 6. So for d = 5, 6 we will have to study black holes which
are not small in order to demonstrate that a time advance is possible. Furthermore,
we would like to determine (for any d) how large the time advance can be. The
perturbative result indicates that the time advance increases as the impact parameter
decreases so we would like to consider b as small as possible. The lower bound on
the impact parameter is b ∼ L but the above calculation assumes b� L. Hence to
determine the largest possible time advance we will need to use a different method.
Finally, we discussed above the case of special trajectories which experience no net
deflection, for which the time delay is finite as R→∞. We saw that, the resulting
time delay is always positive when the perturbative calculation is valid. But what
about trajectories with b ∼ L? Could these exhibit zero net deflection? If so, can
they exhibit a time advance?
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To address the above questions, we will resort to numerical integration.35 We will
compute numerically both the deflection angle (4.2.11) and the time delay (4.2.12)
for the tensor modes as functions of the impact parameter and plot the results for
different parameters. In practice, we do this calculation by using R0, the minimum
value of r, to label the trajectory and determine b from R0 using (4.2.10).

We start by calculating the deflection angle for tensor-polarized gravitons by a
small black hole with d ≥ 7, in the limit of infinite cavity radius. We will compute the
deflection angle ∆φ∞ as a function of the impact parameter b. For d ≥ 8, complicated
behaviour arises at small b because the tensor effective potential for small black holes
has a complicated form with a local minimum and two local maxima - see Figure 4.3.
The local minimum corresponds to stable circular graviton orbits around the black
hole. The maxima correspond to unstable circular graviton orbits. Hence there are
three “tensor spheres”. Only the local maxima are relevant for scattering of (high
frequency) gravitons. As noted above, the deflection angle must diverge at impact
parameters corresponding to these maxima and this can be seen in in Fig. 4.3. This
figure also shows that ∆φ∞ > π when R0 lies between the two maxima.

Figure 4.4 shows plots of ∆φ∞ for d = 7, 8 outside the outer tensor sphere. At
large b, our perturbative results show that ∆φ∞ > π although this is not apparent
from the plots because ∆φ∞−π is very small. As b decreases, our perturbative result
shows that ∆φ∞ − π becomes negative, as seen in the plots. The plots show that
∆φ∞ − π decreases to a negative minimum and then increases, becoming positive as
b is decreased further. This lies outside the validity of the perturbative calculation.
Note that there are two values of b for which ∆φ∞ = π, i.e., for which there is no
net deflection. The larger of these, with b� L is encompassed by our perturbative
approximation, and we showed above that it gives a trajectory with a positive time
delay in the infinite cavity limit. However, we will show that the smaller value of
b ∼ L can give a time advance in the infinite cavity limit.

Figure 4.5 plots the time delay for different values of the cavity radius R with
d = 7, 8.36 At large b, the time delay is small and positive, but becomes negative as b
is decreased, i.e. there is a time advance as predicted by our perturbative calculation.
The size of the time advance increases as b is decreased further but at small enough b,
the time delay becomes positive again. As expected, increasing R tends to increase
the time delay. The only trajectories for which this does not happen correspond to
the two special values of b for which the trajectory does not undergo a net deflection.

35We perform the numerical integration with Wolfram Mathematica using a GlobalAdaptive

method.
36For d = 8 we only show results for R0 outside the outer tensor sphere. The time delay is

positive for R0 between the two maxima of the effective potential.
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Figure 4.3: Effective potential (left) and deflection angle (right) for tensor polarized
gravitons scattered by a small black hole in d = 8. We set rH = 0.03

√
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µ ≈ 1.4× 10−5α5/2 and L ≈ 0.2
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Figure 4.4: Deflection angle for small black holes in d = 7, 8. We set rH = 0.03
√
α

which gives µ ≈ 4.5 × 10−4α2, L ≈ 0.28
√
α in d = 7, and µ ≈ 1.4 × 10−5α5/2,

L ≈ 0.2
√
α in d = 8. The dashed line represents the perturbative approximation

(4.2.15).
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Figure 4.5: Time delay for small black holes in d = 7, 8. We set rH = 0.03
√
α as

before. The solid, dashed, dot–dashed and dotted lines correspond to R = 2.5
√
α,

R = 5
√
α, R = 10
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α and R = 50

√
α respectively. The black dashed line corresponds

to the perturbative approximation (4.2.22).
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Figure 4.6: Time delay for fixed b (such that ∆φ∞ = π) expressed as a function of
the radius of the cavity for a small black hole in d = 7. We set rH = 0.03

√
α as

before. The dashed line corresponds to the limit R→∞.

Hence as R is increased, the minimum in these plots, corresponding to the largest
time advance, becomes more and more localized around the smaller value of b for
which ∆φ∞ = π.

Figure 4.6 shows how the maximum time advance, corresponding to the minimum
in Fig. 4.5, behaves as R is increased. As R→∞ we see that the (negative) time
delay converges to a finite limit D∞, as expected for a trajectory with zero net
deflection. We would like to understand what scale determines the amplitude of D∞.
The obvious guess is the scale L and this turns out to be correct. In Figure 4.7 we
plot |D∞| against the mass parameter µ for small black holes in d = 7. From the plot
we deduce that the relation should be a power law: |D∞| ∼ µκ (in units α = 1). By
estimating the value of κ in different dimensions (Figure 4.7) we obtain numerically
κ ≈ 1

d−1
. Recalling that L ∼ µ1/(d−1) (since α = 1), we have found:

|D∞| ∼ L. (4.2.25)
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One can explain this result analytically as follows. Denote by b∗ the value of b
close to the tensor sphere (i.e. b∗ ∼ L) for which ∆φ∞ = π. From Fig. 4.6 it is clear
that most of the time advance arises from the region r ∼ L. For a small black hole,
we have f ≈ 1 in this region (see end of section 4.1.3). This suggests that we can
calculate D∞ for a small black hole by approximating f = 1 in the integral for the
time delay. If we do this then the integrand now varies only over the scale L and so
all quantities in the problem are of order L. Hence, by dimensional analysis, D∞
must be proportional to L. To get an idea of the error made in setting f = 1 we
note that this approximation eliminates the usual GR time delay effect. We can
estimate the error made by our approximation by estimating the size of this delay
as µ/bd−4

∗ ∼ µ/Ld−4 = L3/α. For a small black hole L �
√
α hence the error is

parametrically smaller than the scale L and therefore negligible.
In summary, we have shown that, for a small black hole with d ≥ 7, there is a

tensor-polarized graviton trajectory with impact parameter b ∼ L that experiences
no net deflection and, in the infinite cavity limit, experiences a finite time advance
of order L.

Finally, we study the cases d = 5, 6 for which we cannot consider arbitrarily
small black holes because of the failure of hyperbolicity.37 We want to show that a
negative time delay is possible for d = 5, 6. To do this, consider the case in which
R = R0(1 + ε) with ε� 1. Under the change of variable r = R0(1 + x) the integral

37In d = 5 the theory is hyperbolic in the exterior of the black hole for rH/
√
α >

√
1 +
√

2 ≈ 1.6,

while in d = 6 this happens for rH/
√
α >

(√
5
(
5 + 2

√
6
)
− 1

)−1/2

≈ 0.4
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for ∆t becomes:

∆t = 2R0

∫ ε

0

dx

(
f(R0(1 + x))

√
1− f(R0(1 + x))cA(R0(1 + x))b2

R2
0(1 + x)2

)−1

. (4.2.26)

We can now expand in powers of x� 1 and integrate:

∆t =
4R0

√
ε√

f(R0)
√

2− R0f ′(R0)
f(R0)

− R0c′A(R0)

cA(R0)

+O(ε3/2). (4.2.27)

Similarly one can compute the deflection angle:

∆φ =
4
√
cA(R0)

√
ε√

f(R0)
√

2− R0f ′(R0)
f(R0)

− R0c′A(R0)

cA(R0)

+O(ε3/2). (4.2.28)

It follows that the time delay is given by:

D =
4R0

√
ε√

f(R0)
√

2− R0f ′(R0)
f(R0)

− R0c′A(R0)

cA(R0)

(
1−

√
cA(R0)

)
+O(ε3/2). (4.2.29)

Since cS, cV < 1 we see that in this setting the time delay is always positive for scalar
and vector modes, as expected. For tensor modes this can be negative. In particular,
in d = 5 we have cT > 1 everywhere and thus, for a black hole of arbitrary size we
have a negative time delay when R = R0(1 + ε). In d = 6, for r & L we also have
cT > 1. Motivated by this, we compute numerically the time delay in d = 5, 6 for
values of R comparable to R0. The numerics confirm that it is possible to obtain a
time advance when d = 5, 6 (Figure 4.8). We have also studied the deflection angle,
which we find is always greater than π, so zero net deflection trajectories do not
occur for d = 5, 6.

4.3 Time machines

In this section we will discuss the suggestion that one can exploit the negative Shapiro
time delay to construct a causality violating spacetime, i.e., a “time machine”, in
Einstein–Gauss–Bonnet theories [41]. This argument is closely related to arguments
applying to any Lorentz covariant field theory with superluminal propagation, some
of which have appeared in Ref. [83], which considers various flat space field theories
with superluminal propagation. Such time machine constructions have been criticized
by Geroch [84] (see also Ref. [85]). In this section we will discuss how these criticisms
apply to the constructions of Refs. [41, 83].

Consider first the case of General Relativity. There are many solutions of the
Einstein equation which exhibit causality violation e.g. Minkowski spacetime with
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Figure 4.8: Time delay for tensor-polarized gravitons in d = 5, 6 dimensions. In
d = 5 we set rH = 2

√
α, which gives µ = 4.5α, L ≈ 1.5

√
α, and we choose R = 3

√
α.

In d = 6 we set rH =
√
α, which gives µ = 1.5α3/2, L ≈ 1.1

√
α, and we choose

R = 2
√
α.

a periodically identified time direction. We do not reject GR as a physical theory
because it admits such solutions. This is because one cannot “make” these time
machines starting from initial data. Stated mathematically: such causality-violating
solutions are not the Cauchy development of any initial data.38

Let’s consider now the argument of Ref. [83], which discussed several flat spacetime
field theories with superluminal propagation. The simplest example is a scalar field
with action

S = −1

2

∫
d4x

[
ηµν∂µπ∂νπ −

c3

Λ4
(ηµν∂µπ∂νπ)2

]
, (4.3.1)

where Λ is a mass scale and c3 a dimensionless constant. For this theory, the equation
of motion is:

E(π, ∂π, ∂2π) ≡
(

1− 2c3

Λ4
∂π · ∂π

)
∂µ∂µπ −

4c3

Λ4
∂µπ∂νπ∂µ∂νπ = 0. (4.3.2)

For this equation, a hypersurface is characteristic if, and only if, it is null w.r.t. the
(inverse) “effective metric”:

Gµν(∂π) =

[
1− 2c3

Λ4
(∂π · ∂π)

]
ηµν − 4c3

Λ4
∂µπ∂νπ. (4.3.3)

38More generally, the class of spacetimes of interest in GR is the class of spacetimes that arises as
the maximal Cauchy development of suitable initial data, where “suitable” depends on the physical
situation e.g. one would usually require the initial data to be geodesically complete and impose some
asymptotic boundary condition e.g. asymptotic flatness. By definition, the maximal development
is globally hyperbolic and so it can never violate causality. But the maximal development might
be extendible beyond a Cauchy horizon into a causality violating region, which would capture the
notion of formation of a time machine. The strong cosmic censorship conjecture asserts that, for
suitable initial data, the maximal development is generically inextendible. Hence, if correct, strong
cosmic censorship excludes time machines because either they can’t be formed or they are infinitely
fine-tuned (non-generic).
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Assume that there exists a fiducial inertial frame for which |∂µπ| � Λ2.39 Then Gµν

has Lorentzian signature, which implies that the equation of motion is hyperbolic.
Note that Sylvester’s law of inertia guarantees that the signature of Gµν remain
invariant under a change of basis, hence the above statement regarding the hyper-
bolicity of the equations is frame independent. It is Gµν that determines causal
properties of this equation. Following the terminology of the Introduction, we say
that a covector ξ is timelike iff it is timelike w.r.t. Gµν etc.

Inverting Gµν gives the effective metric. In the fiducial inertial frame we have

Gµν(∂π) ≈ ηµν +
4c3

Λ4
∂µπ∂νπ. (4.3.4)

Contracting with a vector Xµ gives

GµνX
µXν ≈ ηµνX

µXν +
4c3

Λ4
(X · ∂π)2. (4.3.5)

From this it can be seen that the null cones of Gµν and ηµν are nested, with the null
cone of Gµν inside that of ηµν when c3 > 0 and outside that of ηµν when c3 < 0, i.e.,
the theory has superluminal propagation when c3 < 0 [83].

We can now discuss the initial value problem. Given some inertial frame xµ, we
would like to specify initial data (π, ∂0π) on Σ = {x0 = 0}. Of course Σ is spacelike
w.r.t. ηµν but for a well-posed problem it is necessary that Σ also be spacelike w.r.t.
Gµν . For c3 > 0 this is automatic. If c3 < 0 then this appears to restrict our freedom
to choose the initial data for ∂0π. But this is not a new restriction: we already
imposed a restriction on the initial data, i.e., the existence of the fiducial inertial
frame. In the fiducial frame, the surface x0 = 0 is obviously spacelike w.r.t. Gµν .

If, in some inertial frame, the surface x0 = 0 is not spacelike w.r.t. Gµν then the
initial value problem will not be well-posed. In this case, for generic initial data,
one would not expect a solution of the equation of motion to exist, even locally near
x0 = 0. One might be able to find a solution for very special initial data e.g. if
the data is analytic then a solution will exist locally by the Cauchy-Kowalevskaya
theorem. But this is infinitely fine-tuned: if one perturbs the initial data in a compact
region then the resulting data will be non-analytic and no solution can be expected
to exist. More generally, the solution does not depend continuously on the initial
data.

Ref. [83] argues heuristically that it is possible to construct a time machine when
c3 < 0 by considering two lumps of scalar field, well-separated in the x2 direction,
which are highly boosted w.r.t. to each other in the x1-direction. So consider initial
data at x0 = 0 consisting of two such lumps with a large relative boost.40 The

39This is probably required for the validity of effective field theory.
40 Note that such initial data will not satisfy the condition |∂µπ| � Λ2 everywhere.
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problem is that such an initial data surface is not everywhere spacelike w.r.t. Gµν

[83] so this initial value problem is not well-posed. In general one would not expect
any solution of the equations of motion to exist for such initial data. So one cannot
build a time machine this way.

One might argue that it is obvious that a time machine could never result from
Cauchy evolution of initial data since Cauchy evolution will break down when one is
on the threshold of forming a time machine. So the question we should really ask
is whether such a breakdown can occur starting from “good” initial data. In more
physical terms: if one wishes to employ a large relative boost to build a time machine
one must specify how this large relative boost will arise from “good” initial data [84].

For the scalar field theory above, “good” means that the initial data surface
x0 = 0 should be spacelike w.r.t. Gµν . Cauchy evolution remains well-posed as long
as surfaces of constant x0 remain spacelike w.r.t. Gµν so a necessary condition for
formation of a time machine would be existence of a time T > 0 at which the solution
remains smooth but the surface x0 = T becomes null w.r.t. Gµν at one more more
points. This would correspond to the threshold of formation of the time machine.

Can this happen? It is well-known that such behaviour does not occur starting
from small initial data, i.e., data such that π and its first few derivatives are small.
The solution arising from small initial data simply disperses in a similar way to a
solution of the linear wave equation [90, 91]. So superluminal propagation leads to
no pathologies in the behaviour of solutions arising from small initial data. Not
much is known about the global behaviour of solutions of non-linear wave equations
for large initial data. For most non-linear equations, global regularity of solutions
is not expected. Solutions can suffer shock formation, i.e., blow-up of the field π
(or a derivative of π) at some time T > 0. See for example Ref. [92] (albeit not
for a Lorentz covariant equation). As far as we know, it is not excluded that the
equation discussed above could have large data solutions that evolve to the threshold
of formation of a time machine. But, as we have discussed, there is no compelling
reason to believe that this is the case.

We now turn to the proposal of Ref. [41] that it is possible to construct a time
machine in EGB theory. This is done by exploiting the negative Shapiro time delay
experienced by gravitons. The proposed time machine arises from two high energy
gravitons, moving in opposite directions with non-zero impact parameter. Each
graviton is described by an Aichelburg–Sexl “shock-wave” solutions [79, 80]. It is
assumed that the spacetime resulting from the collision is well-approximated by two
outgoing Aicheburg–Sexl shock waves. Under these assumptions one can argue that
there exist closed causal curves in the spacetime.
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One problem with this construction is the use of Aichelburg–Sexl solutions. The
curvature of an AS solution is a delta-function localized on a null hypersurface (with
the amplitude of the delta-function diverging on a null line within this hypersurface:
this is viewed as the worldline of the graviton). Owing to special symmetries of its
curvature tensor, this is an exact solution of Einstein–Gauss–Bonnet theory. Now
clearly one can superpose two such solutions moving in opposite directions (since
the spacetime is flat between them) to obtain a solution valid until the two null
hypersurfaces intersect. But when these hypersurfaces intersect, it is far from clear
that there is any sense in which the equation of motion can be satisfied. This is
because the equation of motion involves products of curvature tensors. Hence along
the line of intersection of the hypersurfaces, there will be a product of delta functions
that cannot be balanced. Therefore it seems unlikely that the spacetime can be
extended to the future of this intersection.41

This problem arises from the fact that an AS solution is singular. So maybe
we can solve the problem by smoothing out the singularity. As discussed in the
Introduction, an AS solution can be obtained by taking a limit in which one boosts a
black hole solution and takes the boost to infinity whilst scaling the black hole mass
to zero, keeping the total energy fixed. This suggests that we should consider initial
data consisting of two small (compared to the GB scale) black holes, moving with
high relative boost in opposite directions with large impact parameter. It would be
a difficult matter to construct such data explicitly, solving the constraint equations,
but there is no reason to doubt that this can be done.

Now the question is whether this is “good” initial data. As discussed above, black
holes with arbitrarily small mass don’t exist for d = 5. When d = 6, small black holes
are unphysical because the equation of motion is not hyperbolic. So consider d ≥ 7.
In section 4.1.2 we showed that there is a speed limit for small black holes arising
from the condition that the initial data surface be spacelike. Hence we cannot start
from initial data describing two black holes with a very large relative boost: such
initial data will not be everywhere spacelike and hence this data cannot be evolved
(or is infinitely fine-tuned), just as for the scalar field example discussed above.

We can attempt to construct legitimate initial data by requiring that the speed
limit is respected. Consider two small black holes, each of mass parameter µ, boosted
in opposite directions with speed v ≤ vmax, separated in the transverse direction by
a distance R. Assume that the distance is sufficiently large for the gravitational
interaction between the black holes to be negligible, i.e. R� L. Consider a tensor-

41Note that a theory of interacting impulsive (i.e. delta-function curvature) gravitational waves
does exist for GR [93].
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polarized graviton propagating between the holes. Our numerical results suggested
that, for a black hole at rest, the maximum time advance |D| that a graviton can
experience is of order L and is achieved for b ∼ L. If we now boost the black hole in
a direction transverse to the motion of the graviton ( in order to avoid issues related
to the length contraction effect), the time advance gets amplified by γ = (1− v2)−1/2:
|D| ∼ γL. For the argument of [41] to work we need the time advance to “compensate”
the time taken by the graviton to travel between the two black holes, i.e. |D| ∼ R.
However for this to hold we would need γL ∼ R� L, that is γ � 1, which cannot
be achieved because of the restriction v < vmax.

In summary, we have argued that attempting to build a time machine spacetime
in EGB theory using the method suggested in Ref. [41] will not work. This is because
the initial data required is not everywhere spacelike (in the sense defined in the
Introduction) so the initial value problem is not well-posed: either no solution will
exist, or it will be infinitely fine-tuned.

Appendix

4.A Time delay: perturbative calculations

We give here more details on the perturbative calculation of the time delay and
deflection angle. Recall from section 4.2.3 that we want to compute:

∆φ = 2b

∫ R

R0

dr cA(r)r−2h(r), ∆t = 2

∫ R

R0

dr f(r)−1h(r), (4.A.1)

where we have introduced:

h(r) =

(
1− f(r)cA(r)b2

r2

)−1/2

. (4.A.2)

We want to calculate the above quantities subject to the assumption that R0 is large
compared to the black hole size in the following sense

µ

Rd−3
0

� 1,
L

R0

� 1 (4.A.3)

We will assume that the cavity radius is large:

R

R0

� 1 (4.A.4)

For the time delay we will need to assume that the cavity radius is not too large:

R

R0

� Rd−3
0

µ
,

(
R0

L

)d−1

. (4.A.5)
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Approximation for h(r)

The impact parameter is related to R0 by equation (4.2.10). Using (4.A.3) we have:

b2 = R2
0

(
1 +

µ

Rd−3
0

(
1− 2αβA

R2
0

))
+ . . . (4.A.6)

similarly, introducing z = R0/r (so 0 < z ≤ 1):

f(r)cA(r)

r2
=
z2

R2
0

(
1− µ

Rd−3
0

(
zd−3 − 2αβA

R2
0

zd−1

))
+ . . . (4.A.7)

And hence:

h(r) = (1− z2)−1/2

(
1 +

1

2

µ

Rd−3
0

z2

1− z2

(
(1− zd−3)− 2αβA

R2
0

(1− zd−1)

))
+ . . .

(4.A.8)

and the ellipsis denotes terms of order O
((

µ

Rd−3
0

+ Ld−1

Rd−1
0

)2
)
.

Approximation for the deflection angle

Changing the integration variable to z:

∆φ = 2
b

R0

∫ 1

R0/R

dz cAh (4.A.9)

In our approximation, denoting by . . . terms of order O
((

µ

Rd−3
0

+ Ld−1

Rd−1
0

)2
)
, we

obtain:

cAh = (1−z2)−1/2

(
1 +

µ

Rd−3
0

(
1

2
z2 (1− zd−3)

(1− z2)
− α

R2
0

βA

(
z2 + zd+1 − 2zd−1

1− z2

)))
+. . .

(4.A.10)
Which yields:

∆φ = 2 arccos

(
R0

R

)
+

µ

Rd−3
0

[
2

(
1

2
− αβA

R2
0

)
arccos

(
R0

R

)
+ 2J

]
+ . . . (4.A.11)

where we have defined:

J =

∫ 1

R0/R

dz (1−z2)−1/2

(
1

2
z2 (1− zd−3)

(1− z2)
− αβA

R2
0

(
z2 + zd+1 − 2zd−1

1− z2

))
. (4.A.12)

Using the large cavity radius assumption (4.A.4) we have J = J0 +O(R2
0/R

2), where

J0 =
√
π(d− 1)

(
1− 2αβA

R2
0

(d− 2)

(d− 1)

)
Γ
(
d
2

)
2Γ
(
d+1

2

) − π

2

(
1

2
− αβA

R2
0

)
. (4.A.13)

Moreover we have that

2 arccos

(
R0

R

)
= π − 2

R0

R
+O

(
R2

0

R2

)
(4.A.14)
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and hence

2

(
1

2
− αβA

R2
0

)
arccos

(
R0

R

)
+2J =

√
π(d−1)

(
1− 2αβA

R2
0

(d− 2)

(d− 1)

)
Γ
(
d
2

)
2Γ
(
d+1

2

)+O
(
R0

R

)
.

(4.A.15)
We can then conclude that

∆φ = π − 2
R0

R
+

µ

Rd−3
0

[
√
π(d− 1)

(
1− 2αβA

R2
0

(d− 2)

(d− 1)

)
Γ
(
d
2

)
2Γ
(
d+1

2

)]

+O

([
R0

R
+

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)]2
)
. (4.A.16)

Approximation for the proper time

Denoting again by . . . terms of order O
((

µ

Rd−3
0

+ Ld−1

Rd−1
0

)2
)
, we have:

f(z)−1h(z) = (1−z2)−1/2

(
1 +

µ

Rd−3
0

z2

(
zd−5 +

1

2

(1− zd−3)

1− z2
− 2αβA

R2
0

(1− zd−1)

1− z2

))
+. . .

(4.A.17)
from which:

∆t = 2
√
R2 −R2

0 + 2
µ

Rd−4
0

I + . . . (4.A.18)

where:

I =

∫ 1

R0/R

dz (1− z2)−1/2

(
zd−5 +

1

2

(1− zd−3)

(1− z2)
− αβA

R2
0

(1− zd−1)

1− z2

)
. (4.A.19)

For large cavity radius, i.e., (4.A.4), we have:

∆t = 2R− R2
0

R
+ 2

µ

Rd−4
0

I0 +O

(
R0

[
R0

R
+

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)]2
)
, (4.A.20)

where

I0 =
√
π

(
1− 2αβA

R2
0

(d− 4)

(d− 3)

)
(d− 1)(d− 3)

(d− 4)

Γ
(
d
2

)
4Γ
(
d+1

2

) . (4.A.21)

Plugging back in the above we obtain

∆t = 2R +
µ

Rd−4
0

[
√
π

(
1− 2αβA

R2
0

(d− 4)

(d− 3)

)
(d− 1)(d− 3)

(d− 4)

Γ
(
d
2

)
2Γ
(
d+1

2

)]

+O

(
R0

[
R0

R
+

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)]2

+
R2

0

R

)
. (4.A.22)

Finally, note that in this approximation we have

f(R) = 1 +O
( µ

Rd−3

)
and

µ

Rd−3
=

µ

Rd−3
0

(
R0

R

)d−3

(4.A.23)

which is negligible to the order of approximation used above, hence

∆τ ≈ ∆t. (4.A.24)
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Approximation for the time in Minkowski

We have:

2R sin (∆φ/2) = 2R sin

[
arccos(R0/R) +

µ

Rd−3
0

((
1

2
− αβA

R2
0

)
arccos (R0/R) + J

)
+ . . .

]
= 2
√
R2 −R2

0 +
µ

Rd−4
0

((
1

2
− αβA

R2
0

)
arccos (R0/R) + J

)
+O

(
R

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)2
)
. (4.A.25)

We now use the condition (4.A.5) that the cavity is not too large. This ensures that
the last term above is small and we obtain:

∆tMink = 2R +
µ

Rd−4
0

(
√
π(d− 1)

(
1− 2αβA

R2
0

(d− 2)

(d− 1)

)
Γ
(
d
2

)
2Γ
(
d+1

2

)) (4.A.26)

+O

(
R

[
R0

R
+

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)]2
)
. (4.A.27)

Approximation for the time delay

Finally, putting the above results together, we have determined the time delay under
the conditions (4.A.3), (4.A.4), (4.A.5):

D =
µ

Rd−4
0

[
√
π

(
1− 2αβA

R2
0

(d− 4)

(d− 1)

)
(d− 1)

(d− 4)

Γ
(
d
2

)
2Γ
(
d+1

2

)] (4.A.28)

+O

(
R

[
R0

R
+

(
µ

Rd−3
0

+
Ld−1

Rd−1
0

)]2
)
. (4.A.29)
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Chapter 5

On the local well-posedness of

Lovelock theories

In this chapter we will discuss the initial value problem for Lovelock theories. The
contents of this Chapter are the results of original research conducted in collaboration
with my supervisor, Harvey Reall, and have been published in [44].

5.1 The initial value problem in Lovelock gravity

In this section we will discuss the initial value problem for Lovelock theories of
gravity in vacuum. Similar considerations will apply to the Horndeski case analysed
in Chapter 6.

In Chapter 2 we highlighted the importance of the initial value problem in physics
and we reviewed how one may obtain a well-posed formulation for the Einstein
equations. As discussed in the Introduction, a corresponding result is still missing
for most modified gravity theories, in particular for Lovelock and Horndeski theories.
Recall that in order to consider a theory physical we must prove that the initial
value problem be (at least locally) well-posed. It is therefore important to investigate
whether these theories admit a well-posed initial value problem, for a negative result
would mean that they do not constitute viable alternatives to Einstein’s General
Relativity.

In order to discuss the initial value problem for a diffeomorphism-covariant theory,
we will first need to address the issue of gauge fixing. For the Einstein equations it
is well-known that the choice of harmonic coordinates leads to a well-posed initial
value formulation [42] (see Section 2.5). We will use the same gauge in our study of
Lovelock gravity.

The question of well-posedness for Lovelock gravity was first addressed by
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Choquet-Bruhat in Ref. [77], where she dealt with the harmonic gauge Lovelock
equations. In harmonic gauge, similarly to what happens for the Einstein equations
(cf. Sec 2.1), the vacuum Lovelock equations separate in a set of constraints for the
initial data and an evolution equation for the metric

gαβ∂α∂βgµν = N (g, ∂g, ∂2g)µν . (5.1.1)

In contrast with the Einstein equations N depends on second derivatives of the metric
and, moreover, it does so in a non-linear manner. It can be shown, however, that
these equations are actually linear in the “time” derivatives ∂2

0g [76, 77, 70].42 Thanks
to this property it is possible to use the Cauchy–Kovalevskaya Theorem to establish
local existence and uniqueness for analytic data [77]. However, this is far from ideal.
In this setting, in general, the solution will not depend continuously on the initial
data. In particular, if we smoothly perturb the initial data in a compact region, then
generically there will exist no solution arising from the perturbed data. Furthermore,
analytic data is somewhat unphysical as, in a certain sense, it does away with
causality: the solution can be described in terms of a power series whose coefficients
are constants which can be entirely determined from the initial data by solving
a set of algebraic equations at a point; in other words the solution is determined
everywhere in an open neighbourhood by its behaviour at a point. Moreover, in
the class of analytic solutions, it is not possible to make sense of the finite speed of
propagation of signals, a fundamental feature of systems described by hyperbolic
equations. Roughly speaking, finite speed of propagation means that if a solution is
compactly supported at some instant of time then it must be compactly supported
at all later times, with the support “moving” at a finite speed. Analytic solutions do
not have this property, since they can only be compactly supported if they vanish
identically. These reasons highlight that the results of [77] are unsatisfactory and
that one must consider a more general class of data.

The main issue with establishing the well-posedness of the initial value problem
for Lovelock theories is that the equations are not necessarily hyperbolic. Recall from
Chapter 2 that for the initial value problem to be well-posed it is necessary that
the equations of motion be hyperbolic. In particular we distinguished two notions of
hyperbolicity: weak and strong hyperbolicity, with the latter implying the former
(see Definitions 5 and 6). Roughly speaking, weak hyperbolicity means that there
are no solutions which grow exponentially fast in time and frequency, while strong
hyperbolicity corresponds to the existence of an “energy estimate” bounding the energy
of a solution at a time t in terms of the energy of the initial data. The existence of

42This property holds in any gauge.
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such “energy estimate” is sufficient to establish, via a standard technique, the local
well-posedness of the linearised problem. Moreover, energy estimates constitute a
standard tool used in establishing the well-posedness of the non-linear problem.

In Chapter 2 we argued that for a non-linear problem to be well-posed, it is
necessary that all the initial value problems obtained by linearising the original
problem around any background solution in a given open neighbourhood in solution
space be well posed. Since the well-posedness of the linearised problems is related
to the hyperbolicity of the equations of motion, we infer that a necessary condition
for the well-posedness of these theories is that their equations of motion be strongly
hyperbolic.

We have seen in Section 2.5 that this condition is always verified in GR, inde-
pendently of the background. In Lovelock theories, however, it is know that even
weak hyperbolicity can fail when the background curvature becomes too large. As
discussed in Chapter 4, it was shown in Ref. [70] that weak hyperbolicity fails (in any
gauge) for linear perturbations of “small” black hole solutions of Lovelock theories.
Here “small” refers to the length scale set by the dimensionful coupling constants of
such theory. More generally, one expects that weak hyperbolicity will fail in a large
class of backgrounds with large curvature. These examples show that the equations
of motion of Lovelock theory are not always weakly hyperbolic. Hence, for general
initial data one cannot expect local well-posedness. However, one might hope that
restricting the initial data so that the equations of motion are hyperbolic will lead
to a well-posed initial value problem. In particular, one might expect that this issue
could be resolved by restricting to “weak curvature” backgrounds.

The equations of motion for Lovelock gravity can be split in an Einstein part and
Lovelock “correction”. The “size” of this correction is determined by the magnitude
of the coupling constants and the background curvature. When these are small,
the equations can be considered as “small perturbations” of the Einstein equations.
Naively, one would expect that if the background curvature and the couplings are
sufficiently small then these corrections should not spoil the strong hyperbolicity
of the Einstein equations. This, however, is not necessarily true; the reason being
that, albeit small, these corrections affect the highest order derivatives and hence
the structure of the principal symbol. Let us illustrate this problem with an example.
Consider the following system of scalar fields in two-dimensional Minkowski space:

�ϕ = k ε ∂0∂1ψ �ψ = −k ε ∂0∂1ϕ. (5.1.2)

We can consider this as a toy model for the equations governing linear perturbations
around a “weak field” background solutions in Lovelock or Horndeski theory. The
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parameter k will play the role of the coupling constant of the theory, while ε will be
a measure of the strength of the background fields. Using the formalism of Chapter 2
we can study the hyperbolicity of this system. For small ε (i.e. “weak fields”), the
matrix M has the following eigenvalues

ξ±0 = ±ξ1

(
1 +

i

2
kε+O(ε2)

)
ξ̃±0 = ±ξ1

(
1− i

2
kε+O(ε2)

)
(5.1.3)

From this we can deduce that when the coupling vanishes, k = 0, the eigenvalues
are all real and hence the system is (strongly) hyperbolic. However, for k 6= 0, the
eigenvalues will fail to be real, even if ε� 1. In particular they are all complex and
hence the perturbation has made an hyperbolic system into an elliptic one, which
does not admit a well-posed initial value problem. In other words, this example
shows that if we perturb a strongly hyperbolic system at the level of the highest
order derivatives, then the resulting system might fail to be hyperbolic, no matter
how small the perturbation is.43

One of the main results of this dissertation will be to show that, in fact, Lovelock
and Horndeski theories do not suffer from such problem. We will prove in Sec. 5.4
and 6.4 that both these theories are weakly hyperbolic when the background fields
are small.

As discussed in Chapter 2, weak hyperbolicity is not sufficient to establish the
well-posedness of the theory. In order for the initial value problem to be well-posed
we will need the equations to be strongly hyperbolic.

Our most important results concern strong hyperbolicity of Lovelock and Horndeski
theories. As discussed above, strong hyperbolicity is needed in order to establish local
well-posedness of the initial value problem, and in numerical applications. However,
we will prove that for Lovelock theories, in harmonic gauge, the linearised equation of
motion is not strongly hyperbolic in a generic weakly curved background. The word
“generic” is important here: there certainly exist particular backgrounds for which
the linearised equation of motion is strongly hyperbolic (e.g. Minkowski spacetime
[86]) so the equation of motion for linear perturbations around such backgrounds
is locally well-posed. However, such backgrounds are non-generic e.g. they always
have symmetries. In order to have any hope of establishing local well-posedness for
the non-linear theory for weak fields, one would need strong hyperbolicity for any
weakly curved background. This is not the case, at least not in harmonic gauge.
Hence the most straightforward approach to establishing local well-posedness for
Lovelock theories does not work.44

43There is, however, an important difference between the system (5.1.2) and a Lovelock (or
Horndeski) theory, which is that (5.1.2) is not obtained from an action principle.

44Note that the recent discussion of local well-posedness in Ref. [94] simply assumes that the
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Finally, one could argue that these results suggest that in order to have a well-
posed problem one may need to further restrict initial data so that the equations
are strongly hyperbolic. Besides being extremely restrictive in the first place, this
argument does not work. We will show that even restricting to non-generic initial data
for which the equations are strongly hyperbolic does not guarantee that hyperbolicity
will be preserved throughout evolution. In particular, we will consider non-generic
initial data with small curvature such that the equations of motion are strongly
hyperbolic. The solution develops large curvature over time causing even weak
hyperbolicity to fail dynamically.

The rest of the Chapter is organised as follows. We begin by deriving the linearised
Lovelock equations in harmonic gauge (Section 5.2). In Section 5.4 we present the
proof of weak hyperbolicity in a low curvature background, while in Section 5.5
we show that, in this setting, strong hyperbolicity does not hold. We conclude
the Chapter by discussing how strong hyperbolicity may be violated dynamically
(Section 5.6).

5.2 Equations of motion in harmonic gauge

We begin our study by deriving the linearised Lovelock equations in harmonic gauge
and their principal symbol.

The vacuum equations of motion of Lovelock gravity in d > 4 spacetime dimen-
sions are given by (cf. Section 3.2)

Aab[g] ≡ Ga
b + Λδab +

∑
p≥2

kpδ
ac1c2...c2p
bd1d2...d2p

Rc1c2
d1d2 · · ·Rc2p−1c2p

d2p−1d2p = 0, (5.2.1)

where we assumed that the coefficient of the Einstein term does not vanish and is
normalised to one. To investigate hyperbolicity we linearise around a background
solution gab, i.e. we consider the metric perturbation gab + hab and linearise in the
perturbation hab

Aab[g + h] = Aab[g] + A
(1)
ab [h] + . . . (5.2.2)

so that the linearised equation of motion is

A
(1)
ab [h] = 0. (5.2.3)

The diffeomorphism covariance of the theory implies that we will need to choose an
appropriate gauge in order to conclude whether the theory is strongly hyperbolic or
not.
harmonic gauge equation of motion is suitably hyperbolic. Our result shows that this assumption
is incorrect.

72
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For the non-linear equation, one can choose harmonic coordinates :

0 = gνρ∇ν∇ρx
µ =

1√
−g

∂ν
(√
−ggµν

)
. (5.2.4)

Upon linearisation this reduces to the Lorenz gauge condition for the linearised
metric perturbation:

Hb ≡ ∇ahab −
1

2
∇bh

a
a = 0. (5.2.5)

Actually, linearising the harmonic gauge condition around a non-trivial background
gives a generalized Lorenz gauge condition with a non-vanishing RHS. But this
RHS does not depend on derivatives of hab which implies that it does not affect the
hyperbolicity analysis. Therefore we will just use the standard Lorenz gauge.

Although most properly referred to as Lorenz gauge, henceforth we will refer to
(5.2.5) as harmonic gauge because it is inconvenient to use different words for the
linear and non-linear gauge conditions. Of course, it is well-known that the gauge
condition (5.2.5) can always be achieved by a suitable gauge transformation in the
linearised theory.

In harmonic gauge, the Einstein equation is strongly hyperbolic (and in fact
locally [42] and globally [58] well-posed). We will investigate whether the same is true
for Lovelock theory. We will do this by studying the hyperbolicity of the linearised
theory. The harmonic gauge linearised equation of motion is

Ã
(1)
ab [h] = 0, (5.2.6)

where
Ã

(1)
ab [h] ≡ A

(1)
ab [h]−∇(aHb) +

1

2
gab∇cHc (5.2.7)

This is the equation of motion whose hyperbolicity we will study.
A standard argument shows that the harmonic gauge condition is propagated by

the harmonic gauge equation of motion [77]. The argument is based on the fact that
the tensor Aab arises from a diffeomorphism covariant action and therefore satisfies a
contracted Bianchi identity ∇bAab = 0. Linearising around a background solution
gives, for any hab,

∇bA
(1)
ab [h] = 0 (5.2.8)

so, when (5.2.6) is satisfied, the divergence of (5.2.7) gives

∇b∇bHa +RabH
b = 0. (5.2.9)

This is a standard linear wave equation so provided the initial data is chosen such
that Ha and its first time derivative vanish then the solution will have Ha ≡ 0. (As
for the Einstein equation, vanishing of the first time derivative of Ha is equivalent, via
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the equation of motion, to the condition that the initial data satisfies the constraint
equations [77].) This proves that the gauge condition (5.2.5) is propagated by the
equation of motion (5.2.6). Hence the resulting solution will satisfy the original
equation of motion (5.2.3).

The linearised harmonic gauge equation of motion (5.2.6) takes the form

P abcdef∇e∇fhcd + . . . = 0 (5.2.10)

where the ellipsis denotes terms involving fewer than two derivatives of hab. The
coefficient here defines the principal symbol (3.2.11)

P (ξ)abcd ≡ P abcdefξeξf (5.2.11)

for an arbitrary covector ξ. The coefficient is symmetric in ab and in cd. It can be
split into the terms coming from the (harmonic gauge) Einstein tensor, and those
coming from the extra Lovelock terms:

P (ξ)abcd = PEinstein(ξ)abcd + δP abcd(ξ) (5.2.12)

The Einstein term was computed in Section 2.5 and takes the form (2.5.16). For a
symmetric tensor tab we have

PEinstein(ξ)abcdtcd = −1

2
ξ2Gabcdtcd

with ξ2 = gabξaξb and

Gabcd =
1

2

(
gacgbd + gadgbc − gabgcd

)
. (5.2.13)

Viewed as a quadratic form on symmetric tensors, Gabcd has signature (d, d(d− 1)/2),
i.e., d negative eigenvalues and d(d− 1)/2 positive eigenvalues.

The Lovelock contribution is given by [70] (see also Section 3.2, Eq. (3.2.14))

δP (ξ)ab
cdtcd =

∑
p≥2

kpδ
ac1...c2p
bd1...d2p

ξc1ξ
d1tc2

d2Rc3c4
d3d4 · · ·Rc2p−1c2p

d2p−1d2p . (5.2.14)

Recall from our discussion in Section 3.2 that the principal symbol satisfies the
following identities

δP abcdef = δP cdabef (5.2.15)

and
δP (a|bcd|ef) = δP a(bc|de|f) = 0, (5.2.16)

from which it follows that

ξaδP
abcd(ξ) = ξbξcξfδP

abcdef = 0. (5.2.17)

We will discuss these properties in more detail in Section 6.3.
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5.3 Setting up the problem

We will investigate whether the harmonic gauge linearised Lovelock equation of
motion is hyperbolic when the curvature of the background spacetime is small. Here,
“small” means small compared to any of the scales defined by the dimensionful
coupling constants kp, so one expects the Lovelock terms in the equation of motion
to be small compared to the Einstein term.

To relate to the discussion of Section 2.3 we need to introduce coordinates
xµ = (t, xi). We assume that these are chosen so that surfaces of constant t are
spacelike, i.e. g00 < 0, which ensures that the initial value problem for the harmonic
gauge linearised Einstein equation is well-posed. We want to ask whether the same
is true for the harmonic gauge linearised Lovelock equation when the background
curvature is small. Here, by small, we mean that there exists an orthonormal basis
{eµ} with e0 orthogonal to surfaces of constant t, for which the magnitude of the
largest component of the Riemann tensor is L−2 where

|kp|L−2p � 1, ∀ p ≥ 2. (5.3.1)

This ensures that the Lovelock terms in the principal symbol are small compared to
the Einstein term.

The principal symbol P (ξ) maps symmetric tensors to symmetric tensors so we
regard it as a N ×N matrix where N = d(d+ 1)/2. We define N ×N matrices A(x),
B(x, ξi) and C(x, ξi) using equation (2.3.4), i.e.,

A = P 00 B(ξi) = 2ξiP
0i C(ξi) = ξiξjP

ij. (5.3.2)

Here ξi is real with ξiξi = 1 (since this is what we need in the definitions of strong
and weak hyperbolicity).45 Throughout this section we will not write explicitly the
dependence on the spacetime coordinates xµ. Note that these matrices are real and
symmetric: the latter property arises because the equation of motion can be obtained
from a Lagrangian (see Section 6.3).

Our assumption that the surfaces of constant t are spacelike ensures that A
is invertible when the Lovelock terms are absent. Hence, by continuity, A is also
invertible when the background curvature is small. We can therefore define M(ξi) as
above, i.e.,

M(ξi) =

(
0 I

−A−1C(ξi) −A−1B(ξi)

)
. (5.3.3)

45We denote ξiξi = δijξiξj .
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Recall that weak hyperbolicity is the requirement that the eigenvalues of this matrix
are real. For strong hyperbolicity it is necessary that the eigenvalues are real and
the matrix is diagonalizable.

From the discussion of section (2.3) we know that ξ0 is an eigenvalue of M(ξi) if,
and only if, the corresponding eigenvector v has the form

v =

(
t

ξ0t

)
(5.3.4)

for some non-zero symmetric tµν such that

P (ξ) · t = 0 (5.3.5)

where ξµ ≡ (ξ0, ξi) in the argument of P .
Consider first the case of the linearised Einstein equation. Since Gabcd is non-

degenerate, equation (2.5.16) implies that ξµ is characteristic if, and only if, it is
null:

PEinstein(ξ) · t = 0, t 6= 0 ⇔ gµνξµξν = 0. (5.3.6)

Let ξ±0 denote the two solutions of gµνξµξν = 0 for the given ξi. Of course these
solutions are real, so the (harmonic gauge) Einstein equation is weakly hyperbolic.
We define the null covectors

ξ±µ = (ξ±0 , ξi). (5.3.7)

These covectors will play an important role throughout this Chapter. By solving
explicitly one finds that

ξ+
0 + ξ−0 = −2

g0iξi
g00

⇒ ξ0+ + ξ0− = 0. (5.3.8)

Hence we can adopt the convention ξ0+ < 0, ξ0− > 0.46

We have PEinstein(ξ±)t = 0 for any tab. Hence for the Einstein equation, the
matrix M has two real eigenvalues ξ±0 and the associated eigenvectors are (t, ξ±0 t)

T .
Each eigenvalue has N eigenvectors associated to it. It follows that M has 2N

linearly independent eigenvectors and hence M is diagonalizable, as required by
strong hyperbolicity.

We now return to the general case of Lovelock theory. Define a 2N × 2N real
symmetric (and hence hermitian) matrix H(ξi) by

H(ξi) =

(
B(ξi) A

A 0

)
. (5.3.9)

46We cannot have ξ0± = 0 because that would violate the facts that ξ±µ is null and e0 is timelike.
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We then have
H(ξi)M(ξi)H(ξi)

−1 = M(ξi)
T (5.3.10)

so M is real symmetric (and hence hermitian) w.r.t. H. It is easy to see that H is
non-degenerate: if v = (t, t′)T then Hv = 0 implies t = t′ = 0 using the fact that A
is invertible.47 H is hermitian and non-degenerate so its eigenvalues are real and
non-zero. We can determine the signature of H by writing the Lovelock couplings as

kp = εk̃p p ≥ 2. (5.3.11)

Since the eigenvalues of H are real, non-vanishing, and depend continuously on ε
(with k̃p and the background curvature fixed), the signature of H cannot depend
on ε. Hence it can be evaluated at ε = 0, i.e. for the linearised Einstein equation.
The result is that H has N positive eigenvalues and N negative eigenvalues, even for
strong background fields. Thus, although H and M satisfy the condition (2.3.16),
this does not imply strong hyperbolicity because H is not positive definite.48

5.4 Proof of weak hyperbolicity in a low curvature

background

To proceed, we will use a continuity argument involving the parameter ε defined
in (5.3.11). Note that taking ε small at fixed k̃p and fixed background curvature is
equivalent to assuming the background curvature to be small at fixed kp. We will
establish weak hyperbolicity for small ε, which is equivalent to establishing it for
small background curvature. In what follows we will suppress the dependence of M
and H on ξi and write simply M(ε) and H(ε).

For ε = 0 we showed above that ξ±0 are the only eigenvalues of M(ε), each with
degeneracy N . The eigenvalues of M(ε) depend continuously on ε [96]. Hence, for
small ε, they can be split unambiguously into two sets according to whether they
approach ξ+

0 or ξ−0 as ε → 0. We will follow [96] and refer to these sets as the
ξ+

0 -group and the ξ−0 -group. Each group contains N eigenvalues.
Since we do not know whether or not the eigenvalues and eigenvectors of M(ε)

are real, we will regard M(ε) and H(ε) as acting on a complex vector space V of
dimension 2N .

47The matrix H is closely related to the symplectic current density ωµ defined in [95]. Roughly
speaking, H is the high spatial frequency part of the Fourier space analogue of −iω0.

48This is the case even for the Einstein equation (ε = 0). However, for the Einstein equation
we have shown that we can diagonalize M so we can construct a positive definite matrix K as
explained above equation (2.2.19).
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For ε = 0, the eigenvalues ξ±0 are degenerate but “semi-simple”, i.e., M(0) is
diagonalizable. However, there is no reason for this to remain true when ε 6= 0:
the Jordan canonical form of M(ε) may involve non-trivial Jordan blocks. For any
eigenvalue ξ0, one can define a generalized eigenspace as

{v : ∃r such that (M − ξ0I)rv = 0} . (5.4.1)

This is the sum of the vector spaces associated with the Jordan blocks corresponding
to that eigenvalue. We define the “total generalized eigenspace for the ξ±0 -group”
V ±(ε) as the sum over generalized eigenspaces of the eigenvalues in the ξ±0 -group.
Since any eigenvalue belongs to one of these groups we have

V = V +(ε)⊕ V −(ε). (5.4.2)

We denote the projection onto V ±(ε) as Π±(ε), i.e.,

V ±(ε) = Π±(ε)V. (5.4.3)

These projection matrices are holomorphic in ε for small ε, in fact there is an explicit
formula [96]

Π±(ε) = − 1

2πi

∫
Γ±

(M(ε)− zI)−1dz (5.4.4)

where Γ± is a simple closed curve in the complex plane such that ξ±0 lies inside Γ±

but ξ∓0 lies outside Γ±. Note that Γ± does not depend on ε. For small non-zero ε, the
integrand has poles at the eigenvalues of M(ε) but only the eigenvalues that belong
to the ξ±0 -group lie inside Γ±.

It can be shown that M(ε) and H(ε) satisfying (5.3.10) can be brought simul-
taneously to a block-diagonal canonical form, where M(ε) is in Jordan canonical
form and M(ε) and H(ε) have the same block structure [97]. Since V +(ε) and
V −(ε) contain different Jordan blocks of M(ε) it follows that these subspaces are
orthogonal w.r.t. H(ε). Consider the restriction of H(ε) to these subspaces. Define
the projection of H(ε) onto V ±(ε):

H±(ε) = Π±(ε)†H(ε)Π±(ε). (5.4.5)

This is a hermitian matrix which depends holomorphically on ε. We will need to
determine its signature. Any vector in V ∓(ε) is an eigenvector with eigenvalue 0

hence H±(ε) has at least N vanishing eigenvalues. The remaining eigenvalues are
associated to eigenvectors living in V ±(ε). Since the restriction of H±(ε) to V ± is the
same as the restriction of H(ε) to V ±, it follows that this restriction is non-degenerate,
i.e., these remaining eigenvalues are all non-zero. Therefore we can determine the
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signs of these eigenvalues by looking at the signs of the eigenvalues when ε = 0, and
using continuity. For ε = 0, we know that V ±(0) consists of vectors of the form
v = (t, ξ±0 t)

T . Taking the inner product of two such vectors w.r.t. H±(0) gives

v†1H
±(0)v2 = t†1B(0)t2 + 2ξ±0 t

†
1A(0)t2

= 2ξ±µ t
†
1P

0µ
Einsteint2 = −ξ0±t†1Gt2 (5.4.6)

where G is defined in (5.2.13). Hence the signature of H±(0) restricted to V ±(0)

is the same as the signature of −ξ0±G. Recall that ξ0+ < 0, ξ0− > 0. It follows
that within V ±(0), H±(0) has the same signature as ±G, i.e., d negative eigenvalues
and d(d − 1)/2 positive eigenvalues for H+(0) and vice-versa for H−(0). Hence,
by continuity, it follows that H+(ε) has d negative eigenvalues and d(d − 1)/2

positive eigenvalues, with eigenvectors in V +(ε), as well as N = d(d+ 1)/2 vanishing
eigenvalues with eigenvectors in V −(ε). Similarly forH−(ε) with positive and negative
interchanged.

We can identify an important subset of eigenvectors of M(ε) explicitly, for any ε.
They are associated to a residual gauge freedom. These “pure gauge” eigenvectors
have v of the form (5.3.4) with (cf. Def. 8, page 25)

ξ0 = ξ±0 tµν = ξ±(µXν) (5.4.7)

for arbitrary complex Xµ. Of course a pure gauge eigenvector with eigenvalue ξ±0
belongs to V ±(ε). It is interesting to calculate the inner product of two pure gauge
eigenvectors so let t′µν = ξ±(µX

′
ν) and consider the associated vector v′ defined by

(5.3.4). Since v, v′ are elements of V ±(ε), their inner product w.r.t. H±(ε) is the
same as their inner product w.r.t. H(ε):

v
′†H(ε)v = t

′†B(ε)t+ 2ξ±0 t
′†A(ε)t

= 2ξ±µ t
′†P 0µ(ε)t

= 2ξ±µ ξ
±
ν ξ
±
ρ X̄

′
σXτP

νσρτ0µ(ε) = 0 (5.4.8)

where in the final step we used the second equation in (3.2.17), and the fact that
two such “pure gauge” vectors t, t′ are orthogonal w.r.t. Gµνρσ. This result shows
that the pure gauge eigenvectors with eigenvalue ξ±0 define a d-dimensional subspace
N± of V ±(ε) that is null w.r.t. H±(ε).

We can now prove that the harmonic gauge linearised equation of motion of
Lovelock theory is weakly hyperbolic in a small curvature background. Consider the
possibility of an eigenvalue ξ0 that is complex, with eigenvector v. For concreteness,
assume that ξ0 belongs to the ξ+

0 -group, so v ∈ V +(ε). Equation (5.3.10) implies that
a pair of eigenvectors whose eigenvalues are not complex conjugates of each other
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must be orthogonal w.r.t. H(ε). This implies that v is orthogonal, w.r.t. H+(ε),
to the “pure gauge” eigenvectors in V +(ε). Furthermore, since ξ0 is complex, the
H(ε)-norm of v must vanish, which implies that v is null w.r.t. H+(ε). The linear
span of v and N+ now gives a (d + 1)-dimensional subspace of V +(ε) that is null
w.r.t. H+(ε). However, this is impossible because we showed above that for small ε,
H+(ε) has d negative eigenvalues and d(d− 1)/2 positive eigenvalues which implies
the maximal dimension of a null subspace of V +(ε) is given by min(d, d(d−1)/2) = d

[97]. This proves that complex ξ0 is not possible for small ε.
The final step is to note that the above argument assumed fixed ξi, i.e., for given

ξi then complex ξ0 is not possible for small enough ε. But we need our final result to
be uniform in ξi, i.e., we need to show that the upper bound on ε does not depend
on ξi. To do this we recall that our definition of weak hyperbolicity refers only to ξi
satisfying the condition ξiξi = 1, i.e., ξi belonging to a compact set. The spectrum
of a matrix M has uniformly continuous dependence on M when M is restricted to
a bounded set [96]. It follows that the spectrum of M(ε) and H(ε) has uniformly
continuous dependence on ε and ξi when ε is restricted to a bounded set and ξiξi = 1.
Using this it can be shown that our results above are indeed uniform in ξi. The same
argument establishes that our result is uniform in the spacetime point xµ provided
we restrict to a compact region of spacetime.

The above argument is restricted to a weakly curved background spacetime. If the
curvature is not weak then the argument can fail. Imagine increasing ε to arbitrarily
large values. There are two things that could go wrong. First, our assumption that A
is invertible may fail, i.e., we might reach a value of ε for which a surface of constant
t becomes characteristic somewhere. Second, it might not be possible to separate the
eigenvalues into the ξ+

0 group and the ξ−0 group as we did above. For example, as
we increase ε, an eigenvalue from one group might coincide with an eigenvalue from
the other group. At larger ε, this eigenvalue could then split into a pair of complex
conjugate eigenvalues, violating weak hyperbolicity.

5.5 Failure of strong hyperbolicity in a generic low

curvature background

For strong hyperbolicity, M must be diagonalizable. We will now demonstrate that
this is not the case for a generic weakly curved background spacetime.49 We showed
above that eigenvalues ξ0 are all real in a weakly curved background. Therefore in

49 In this section, we will not write explicitly the dependence on the parameter ε e.g. we write
M instead of M(ε).
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this section we will assume that all vector spaces V ±, N±, etc., are real. Note that
the assumption that the background is weakly curved is required to define these
spaces.

As discussed above, M and H satisfying (5.3.10) can be brought simultaneously
via a change of basis to a certain canonical form [97]. We need to discuss this
canonical form in more detail. In the canonical basis, M has Jordan normal form
and H is block diagonal, with the same block structure as M . By this we mean
that a n× n Jordan block in M corresponds to a n× n block in H. Such a block
of H consists of zeros everywhere except on the diagonal running from top right to
bottom left. Along this diagonal, the elements are all equal to 1 or all equal to −1.
For example, if M has a 3× 3 Jordan block then the corresponding 3× 3 block in H
has the form 

0 0 ±1

0 ±1 0

±1 0 0

 . (5.5.1)

Each n× n block in H is non-degenerate and has signature either +1 or −1 (if n is
odd) or 0 (if n is even).

Recall the definition (5.4.1) of a generalized eigenspace. Note that a generalized
eigenspace corresponds to a sum of all Jordan blocks associated to the given eigenvalue.
Hence V ± is a direct sum of the basis vectors associated to Jordan blocks of eigenvalues
in the ξ±0 -group. Hence any Jordan block is associated either to V + or to V −. The
canonical form then implies that V + and V − are orthogonal w.r.t. H, as stated
above.

Let E± ⊂ V ± denote the generalized eigenspace of the eigenvalue ξ±0 . We have
shown that N± ⊂ E±. Hence, when restricted to E±, H± must admit a d-dimensional
null subspace. Consider H+. From the canonical form we know that H+ is non-
degenerate when restricted to E+. If this restriction has signature (r, s) then the
dimension of a maximal null subspace of E+ is min(r, s) [97] hence we have r, s ≥ d.
However we already know that H+ has signature (d, d(d − 1)/2) within V +. The
canonical form for H shows that the signature is equal to the union of the signatures
of each block. Therefore H+ can have at most d negative eigenvalues within E+,
i.e., we must have r ≤ d. Combining these inequalities we see that r = d and s ≥ d.
Hence E+ has dimension r + s ≥ 2d. Similarly E− has dimension at least 2d.

A necessary condition for strong hyperbolicity is that M is diagonalizable, i.e.
there should be no non-trivial Jordan blocks. In other words, strong hyperbolicity
requires that all generalized eigenspaces are simply eigenspaces. Hence if the theory
is strongly hyperbolic then E± must be an eigenspace. Hence strong hyperbolicity
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requires that M admits at least 2d eigenvectors with eigenvalue ξ±0 . We already
know that there are d such eigenvectors in N±. But for strong hyperbolicity there
must exist at least an extra d eigenvectors beyond these “pure gauge” ones. In terms
of the principal symbol, this condition is that there exist at least 2d solutions tab
of P (ξ±)t = 0 or equivalently (since PEinstein(ξ±) = 0) δP (ξ±)t = 0. In other words
ker δP (ξ±) should have dimension at least 2d. Furthermore, for strong hyperbolicity,
this must be true for any ξi and hence for any null ξ±. In other words:

Condition 1. A necessary condition for strong hyperbolicity is that, for any null ξ,
ker δP (ξ) has dimension at least 2d.

There are certainly examples of background spacetimes for which this condition
is satisfied. An extreme example is a flat background, for which δP = 0. In this case
M is diagonalizable and the equation of motion is strongly hyperbolic. A less trivial
example is supplied by the class of Ricci flat spacetimes with Weyl tensor of type N,
which are solutions of Lovelock theory with Λ = 0. In this case, the results of Ref. [70]
imply that M is diagonalizable so the equation of motion is strongly hyperbolic in
such a background (even for large curvature). For this class of spacetimes, in addition
to the pure gauge eigenvectors, generically there exist d additional eigenvectors in
E±. This implies that ker δP (ξ±) generically has dimension 2d for these spacetimes,
in agreement with the above argument.

These background spacetimes are clearly very special because they have sym-
metries. In a generic weakly curved background, with null ξ, there is no reason to
expect that ker δP (ξ) contains any non-gauge elements. To explain this, first note
that if we are interested in non-gauge elements of ker δP (ξ±) then we can regard
δP (ξ±) as a map from the quotient space V ±/N±, which has dimension d(d− 1)/2,
to the space of symmetric tensors which have vanishing contraction with ξ± (because
of (3.2.17)). The latter space also has dimension d(d− 1)/2. There is no reason to
expect this map to have non-trivial kernel.

Perhaps we are overlooking some hidden symmetry of δP that would guarantee
that its kernel is larger than we expect. To exclude this possibility, we have calculated
ker δP (ξ) for null ξ in a generic background using computer algebra as follows.50

We fix a point in spacetime and work at that point. Note that δP is determined
by the Riemann tensor of the background. For given null ξ we can introduce a
null basis for which ξ is one of the basis vectors. In this basis, we can generate
a random Riemann tensor satisfying the background equation of motion. To do
this, we generate a random (small) Weyl tensor then use the background equation

50We use the xTensor and xCoba packages for Wolfram Mathematica [98].
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of motion to determine the Ricci tensor and hence the Riemann tensor. Since the
equation of motion is non-linear in curvature, there can be multiple solutions for
the Ricci tensor but typically only one of these has small components, so this is the
one we use. We then calculate ker δP (ξ) for this background Riemann tensor. The
result is that, generically, this kernel has dimension d, i.e., it consists only of the
“pure gauge” elements.

In summary, we have proven Condition 1 and we argued that it fails for a generic
background, testing our claim numerically. Our argument suggests that M is not
diagonalizable for a generic weak field background. Therefore the harmonic gauge
linearised Lovelock equation of motion is not strongly hyperbolic in a generic weak
field background.

It is interesting to consider the canonical form of M in more detail. Let’s examine
the condition for M to have a n× n Jordan block with n ≥ 2. From the canonical
form, it is clear that the eigenvector associated to such a block must be null.51

Assume that this eigenvector lives in V +. If the eigenvalue is not ξ+
0 then this

eigenvector must be H+-orthogonal to N+, which implies that we could add this
eigenvector to N+ to construct a null subspace of dimension d + 1, contradicting
the fact that N+ is a maximal null subspace. Hence the eigenvalue must be ξ+

0 .
Similarly if the eigenvector lives in V − then the eigenvalue is ξ−0 . We conclude that
a non-trivial Jordan block must have eigenvalue ξ±0 , so the basis vectors associated
to the block must lie in E±.

Any such Jordan block admits a vector v ∈ E± such that (M − ξ±0 )2 · v = 0 but
(M − ξ±0 ) · v 6= 0 (v is simply the second basis vector associated to the block) hence
(M − ξ±0 ) · v is an eigenvector of M with eigenvalue ξ±0 . So we must have

(
M − ξ±0

)
· v =

(
s

ξ±0 s

)
(5.5.2)

for some non-zero sµν such that (using PEinstein(ξ±) = 0)

δP (ξ±) · s = 0 . (5.5.3)

To examine whether such a block is possible, we need to determine whether (5.5.2)
admits a solution v for some sµν 6= 0. If such a solution exists then M is not
diagonalizable.

Writing v = (t, t′)T we find that (5.5.2) reduces to

t′ = ξ±0 t+ s (5.5.4)
51For example, for a 3×3 block, in the canonical basis, the eigenvector is (1, 0, 0)T and evaluating

the norm of this using (5.5.1) gives 0.

83



Causality and the initial value problem in Modified Gravity

and
δP (ξ±) · t = −(2ξ±0 A+B) · s. (5.5.5)

The necessary and sufficient condition for this equation to admit a solution t is for
the RHS to have vanishing contraction with any element of ker δP (ξ±). We know
this kernel always contains the “pure gauge” eigenvectors, i.e., it contains N±. So
contract with a “pure gauge” vector of the form rµν = ξ±(µYν). The LHS vanishes and
we can rewrite the RHS in terms of H to obtain

0 =
(
r ξ±0 r

)
·H ·

(
s

ξ±0 s

)
. (5.5.6)

Hence (s, ξ±0 s)
T must be orthogonal (w.r.t. H) to all pure gauge eigenvectors in

E±, i.e., orthogonal to N±. Furthermore, equation (5.5.3) shows that s belongs to
the kernel of δP (ξ±) so we also need the contraction of s with the RHS of (5.5.5)
to vanish. This implies that (s, ξ±0 s)

T is null w.r.t. H. Therefore if this vector is
not pure gauge, we could add it to N± to enlarge our null subspace, contradicting
maximality of this null subspace. This proves that s must be pure gauge, i.e.,

sµν = ξ±(µXν) (5.5.7)

for some Xν 6= 0. Hence, non-trivial Jordan blocks can arise only from pure gauge
eigenvectors. For sµν of this form, the RHS of (5.5.5) has vanishing contraction with
any element of N±.

We argued above that, in a generic weakly curved background, all elements
of ker δP (ξ±) are “pure gauge”, i.e., ker δP (ξ±) = N±. It follows that in such
a background, (5.5.5) can be solved for any pure gauge sµν , i.e., all pure gauge
eigenvectors belong to non-trivial Jordan blocks of M . So generically there are d
non-trivial Jordan blocks in each of E± and M has 2d non-trivial blocks in total. In
non-generic backgrounds, ker δP (ξ±) may contain non-gauge elements in which case
M may have fewer than 2d non-trivial blocks.

We have shown that, in a generic weak field background, every pure gauge
eigenvector is associated to a n× n Jordan block of M with n ≥ 2. It is interesting
to ask whether we could have n ≥ 3. If n ≥ 3 then there is a vector v ∈ E± such
that (M − ξ±0 )3v = 0 with (M − ξ±0 )2v 6= 0. Let (M − ξ±0 )v ≡ (t, t′)T , then (t, t′)

must obey the equations (5.5.4), (5.5.5). Writing v = (u, u′)T then gives

u′ = ξ±0 u+ t (5.5.8)

δP (ξ±) · u = −(2ξ±0 A+B) · t− A · s. (5.5.9)
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As with (5.5.5), the necessary and sufficient condition for this equation to admit a
solution is that the RHS has vanishing contraction with any element of ker δP (ξ±).
Generically we have ker δP (ξ±) = N± so we need the RHS to have vanishing
contraction with any pure gauge vector rµν = ξ±(µYν). This contraction is just the
H-inner product of (t, t′) with (r, ξ±0 r), so these vectors must be H-orthogonal for any
pure gauge vector r. But there is no reason why this should be true. So generically
we do not expect the above equations to admit a solution, i.e., the generic situation
is n = 2.

To summarize: we have shown that, in a generic weak field background, every
pure gauge eigenvector of M belongs to a Jordan block of size 2× 2.52 Since non-
trivial Jordan blocks can arise only from pure gauge eigenvectors, it follows that,
generically, V ± consists of d 2× 2 Jordan blocks, one for each pure gauge eigenvector,
and d(d− 3)/2 additional non-gauge eigenvectors. For a generic Ricci flat type N
spacetime, it has been shown that these d(d − 3)/2 additional eigenvectors have
eigenvalues distinct from ξ±0 [70] so they do not belong to E± hence we expect this
to be the behaviour in a generic spacetime. Therefore, generically, E± will have
dimension 2d.

Note that the d(d − 3)/2 eigenvectors in V ± that do not belong to E± can be
regarded as the “physical graviton polarizations” [70]. To understand why, note
that these eigenvectors have the form (5.3.4) where tµν satisfies the harmonic gauge
condition. To prove the latter statement, simply contract the equation

P (ξ)µνρσtρσ = 0 (5.5.10)

with ξν and use (3.2.17) to obtain

ξ2

(
ξνtµν −

1

2
ξµt

ρ
ρ

)
= 0 ⇒ ξνtµν −

1

2
ξµt

ρ
ρ = 0 (5.5.11)

where we used the fact that ξ2 6= 0 because the eigenvector is not in E±. Here the
LHS is the “high frequency part” of the harmonic gauge condition. It is easy to check
that the “pure gauge” eigenvectors in N± also satisfy this condition. However, there
is no reason to expect that the vectors tµν obtained by solving (5.5.5) will satisfy
this condition. Hence, generically, the d “non-gauge” vectors in E± are associated to
tµν which violate the harmonic gauge condition. So generically E± consists only of
“pure gauge” and “gauge violating” vectors, which is why the d(d− 3)/2 elements of
V ± that do not belong to E± can be regarded as the “physical polarizations”.

52More precisely, this is true for a generic point and for generic ξi, in a generic weakly curved
background.
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5.6 Dynamical violation of weak hyperbolicity

We have shown that the linearised harmonic gauge equation of motion of Lovelock
theory is not strongly hyperbolic in a generic weak curvature background. However,
as mentioned above, it can be strongly hyperbolic in a non-generic weak curvature
background. In this section, we will discuss a class of such backgrounds, namely
homogeneous, isotropic, cosmological solutions of Lovelock theory. The aim is
to demonstrate that weak (and hence also strong) hyperbolicity can be violated
dynamically : there are “collapsing universe” solutions that start with small curvature
but develop large curvature over time, in such a way that weak hyperbolicity is
violated. Once this happens, local well-posedness of the equation of motion is lost,
which implies that generic linear perturbations of the solution can no longer be
evolved.

Lovelock theories admit FLRW-type solutions [99, 100]

g = −dt2 + a(t)2γ (5.6.1)

where γ is the metric of a (d − 1)-dimensional submanifold of constant curvature
K. We denote by D the Levi-Civita connection associated to γ. The non-vanishing
components of the Riemann tensor associated to g are

Rij
kl = α(t)δklij R0i

0j = β(t)δji (5.6.2)

where, in terms of the Hubble parameter H = ȧ/a,

α =
K

2a2
+H2 β = H2 + Ḣ. (5.6.3)

The non-vanishing components of the Lovelock tensor (3.2.1) are

A0
0 =

∑
p

k′pα
p (5.6.4)

Aij =δij
∑
p

k′p
(d− 1)

αp−1(2pβ + (d− 2p− 1)α) (5.6.5)

where, for convenience, we have rescaled the coupling constants

k′p = 2p
(d− 1)!

(d− 2p− 1)!
kp k0 = Λ, k1 = −1/4 . (5.6.6)

Taking our matter source to be a perfect fluid with equation of state P = ωρ, the
equations of motion read∑

p

k′pα
p = −ρ (5.6.7)

β = −
∑

p k
′
pα

p [(d− 1)(ω + 1)− 2p]∑
p 2pk′pα

p−1
. (5.6.8)
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To observe how weak hyperbolicity can be violated dynamically in this setting,
it is sufficient to look at the linearised equations for transverse-traceless tensor
perturbations g → g + δg:

δg0µ = 0 δgij = 2a2hij hij = hji γijhij = 0 Dihij = 0. (5.6.9)

These are governed by the equation

− F1(t)ḧij + F2(t)a−2(t)DkD
khij + . . . = 0 (5.6.10)

where the ellipsis denotes terms with fewer than 2 derivatives and we have defined

F1(t) =
∑
p

(d− 3)pk′pα
p−1 (5.6.11)

F2(t) =
∑
p

pk′p[2(p− 1)αp−2β + (d− 2p− 1)αp−1]. (5.6.12)

From this we can read off the principal symbol (restricted to tensor perturbations)
and construct the matrices A,B and C described in Section 2.3

Aijkl = −γi(kγl)jF1(t) (5.6.13)

Bijkl = 0 (5.6.14)

Cijkl = γi(kγl)ja−2(t)γmnξmξnF2(t). (5.6.15)

We can then compute the eigenvalues of M , or equivalently find the ξ0 that solves
(ξ2

0A+ C) · t = 0. For F1(t) 6= 0 we find

ξ0 = ξ̃±0 ≡ ±
1

a(t)

√
γijξiξj

F2(t)

F1(t)
. (5.6.16)

Since γ is a Riemannian metric (hence it is positive definite), the hyperbolicity of
the theory is determined by the sign of F2(t)/F1(t). If the background is weakly
curved then the Einstein term dominates F1 and F2 and both of these quantities
are negative so ξ̃±0 are real and the theory is weakly hyperbolic. However, if the
curvature becomes large, e.g. in a collapsing universe solution, then one of these
quantities might become positive, which makes F2/F1 negative so the theory is no
longer weakly hyperbolic.

In agreement with the comments at the end of Section 5.4, we see that weak
hyperbolicity can fail either when F1 vanishes, i.e., the matrix A becomes singular,
or when F2 vanishes, in which case an eigenvalue from the ξ+

0 group becomes equal
to an eigenvalue from the ξ−0 group, i.e., it is no longer possible to distinguish these
two groups.

87



Causality and the initial value problem in Modified Gravity

If F1 or F2 becomes positive then ξ0 is imaginary and there exist linearised
solutions which grow exponentially with time. For this reason, in the cosmology
literature, a change in sign of F1 or F2 is usually referred to as an “instability” of the
background solution. More specifically, if F1 becomes negative then the background
is said to suffer a “ghost instability” and if F2 becomes negative it is said to suffer a
“gradient instability”.53 However, this nomenclature is misleading. For the concept
of stability to make sense, one needs the initial value problem for perturbations
to be locally well-posed so that one can ask what happens when a generic initial
perturbation is evolved in time. But when F1/F2 becomes negative then the equation
for linear perturbations is not weakly hyperbolic which implies that the initial value
problem is not well-posed: a generic linear perturbation cannot be evolved in time
so dynamics no longer makes sense.

Further examples of dynamical violation of weak hyperbolicity can be obtained
by considering the interior of a static, spherically symmetric black hole solution of a
Lovelock theory [86, 99]. For a large black hole, the equations for linear perturbations
are weakly hyperbolic outside the event horizon [70].54 However, one can show that in
the interior of such a black hole, the equations of motion fail to be weakly hyperbolic
in a region 0 < r < r∗. Here r is the area-radius of the (d − 2)-spheres, orbits of
the symmetry group. Inside the black hole, surfaces of constant r are spacelike
and −∂/∂r provides a time orientation. One can impose initial data for linear
perturbations on a surface r = r0 > r∗ inside the black hole. For large enough r0,
the curvature will be small on such a surface. Evolving this data then leads to a
violation of weak hyperbolicity at time r = r∗. Generic linear perturbations cannot
be evolved beyond this time.

53This behaviour was first discussed in the context of cosmological solutions of Horndeski theories
[101, 102, 31].

54We expect them to be also strongly hyperbolic although we have not checked this.
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Chapter 6

On the local well-posedness of

Horndeski theories

In this Chapter we will discuss the initial value problem for Horndeski theories,
using the machinery developed in Chapters 2 and 5. The contents of this Chapter
are the result of original research. Sections 6.2 to 6.5 contain results obtained in
collaboration with my supervisor, Harvey Reall, published in [44]. The rest of the
Chapter consists of research conducted on my own, published in [45].

6.1 The initial value problem in Horndeski gravity

We begin by briefly introducing the initial value problem for Horndeski theories.
Most of the issues with these theories are analogous to those encountered in the
Lovelock case. We refer the reader to Section 5.1 for a more detailed discussion.

As discussed in Chapter 3, Horndeski theories are the most general four-dimensional
diffeomorphism-covariant theories involving a metric tensor and a scalar field, with
second order equations of motion [21].

Again, the diffeomorphism-covariant nature of the equations requires us to choose
an appropriate gauge in order to study the initial value problem. Our arguments in
the previous Chapter relied on considering Lovelock’s equations as deformations of
the Einstein equations. We will follow an analogous approach in this case. Given the
presence of the scalar field, we will consider the Horndeski equations as a deformation
of the Einstein–scalar field equations. Intuitively, we may need to deform the gauge
condition to account for this deviation from Einstein–scalar field theory. While
Einstein–scalar field theory is well-posed in harmonic gauge, since at the level of
the principal symbol it decouples into the Einstein equation together with a scalar
wave equation, the Horndeski contribution to the equations of motion introduces
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terms involving second derivatives of the scalar field which affect the structure of
the principal symbol. One may expect that terms involving derivatives of the scalar
field must be included in the gauge condition in order to cancel the problematic
terms whilst retaining those that yield a strongly hyperbolic system. A natural way
to achieve this is by considering a generalised harmonic gauge — i.e., by adding a
source term on the RHS of the harmonic gauge condition

�xµ = Jµ(g,Φ, ∂Φ). (6.1.1)

Note that we are considering a more general version of what is usually referred to
as “generalised harmonic gauge”, as we are taking the source function to depend on
the metric, the scalar field and its gradient.55 The Einstein–scalar field equations
are strongly hyperbolic in any (i.e., for any choice of Jµ) generalised harmonic
gauge and for any background. Horndeski theories, instead, exhibit pathologies
similar to Lovelock theories. It has been shown, in fact, that cosmological solutions
suffer from “ghost and gradient instabilities” when the background fields become
large [101, 102, 31]. As in Lovelock gravity, these “instabilities” are not dynamical
instabilities but rather indicate a failure of weak hyperbolicity in such backgrounds.
We will therefore restrict our analysis to “weak background fields”.

Recall that even restricting to “weak fields” does not guarantee a priori that the
equations will be weakly hyperbolic (cf. Eq. 5.1.2). We will prove that Horndeski
theories are weakly hyperbolic around a weak field background, in any generalised
harmonic gauge.

To prove the well-posedness of the system it is necessary that the equations
of motion be, not only weakly, but strongly hyperbolic. We will prove that for
a particular class of Horndeski theories, namely ∂XG4 = G5 = 0, there exists a
generalised harmonic gauge for which the linearised equation of motion is strongly
hyperbolic for arbitrary weak background fields. This class of theories involves
no coupling between derivatives of the scalar field and curvature tensors in the
action. This class includes various models of interest, e.g. “k-essence” theories or
scalar-tensor theories such as Brans-Dicke theory [23]. However, for more general
Horndeski theories, we find that the situation is analogous to the Lovelock case:
there exists no generalised harmonic gauge for which the linearised theory is strongly
hyperbolic in a generic weak field background. We will precede the proof of the
failure of hyperbolicity in the most general case (G5 = G5(Φ, X) 6= 0) by a detailed
study of Einstein–dilaton–Gauss–Bonnet (EdGB) theory — a special case of the

55If we considered instead the standard generalised harmonic gauge, where Jµ = Jµ(x), then its
presence would not alter the structure of the principal symbol.
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general Horndeski theory. This, besides being a theory of particular interest on its
own, will provide a “pedagogical” introduction to the proof of the general result.

The results obtained can be strengthened considerably as follows. Consider a
Horndeski theory for which there exists a generalised harmonic gauge such that the
linearised equation of motion is strongly hyperbolic in a generic weak field background.
We can now ask: does this extend to the non-linear theory? In particular, does there
exist a generalised harmonic gauge for the non-linear theory such that the non-linear
equation of motion is strongly hyperbolic in a generic weak-field background? For
this to be the case, the generalised harmonic gauge condition for the non-linear
theory must, upon linearisation, reduce to the generalised harmonic gauge condition
for the linearised theory. However, this implies that the source function appearing
in the gauge condition of the linearised theory must satisfy a certain integrability
condition. This condition is not satisfied in general. Using this condition we find
that the class of Horndeski theories for which there exists a generalised harmonic
gauge for which the non-linear theory is strongly hyperbolic in a generic weak-field
background is simply the class of “k-essence” type theories coupled to Einstein gravity
(i.e. G3 = ∂XG4 = G5 = 0).

The rest of the Chapter is organised as follows. In the next section we will derive
the linearised Horndeski equations in generalised harmonic gauge. In Section 6.3 we
will prove that the identities (6.3.5) — which played a crucial role in the proof of weak
hyperbolicity for Lovelock theories — are a consequence of the gauge symmetry of the
theory and that they hold for Horndeski theories as well. In Section 6.4 we establish
that, in generalised harmonic gauge, all Horndeski theories are weakly hyperbolic
around a weak field background. The remaining is devoted to the study of strong
hyperbolicity: we introduce the set up in Section 6.5. Section 6.6 considers the G5 = 0

case; Section 6.7 deals with Einstein–dilaton–Gauss–Bonnet gravity, an example of
the general theory considered in Section 6.8. We conclude the chapter by summarising
the results and by showing how they can be strengthened by requiring the linearised
gauge condition to arise as the linearisation of a corresponding non-linear condition.

6.2 Equations of motion in generalised harmonic gauge

We will begin our study of the hyperbolicity of Horndeski theories by deriving the
generalised harmonic gauge equations of motion.

Recall from our discussion in Chapter 3 that the equations of motion for Horndeski
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theories can be obtained by varying the action (3.3.1):

Eab[g,Φ] ≡ − 1√
−g

δS

δgab
= 0 (6.2.1)

EΦ[g,Φ] ≡ − 1√
−g

δS

δΦ
= 0. (6.2.2)

We refer the reader to Eqs. (3.3.9) and (3.3.10) for the explicit form of the equations
of motion. To study the hyperbolicity of these equations, we linearise around a
background solution (g,Φ), i.e. we consider (g + h,Φ + ψ) and linearise in h and ψ

Eab[g + h,Φ + ψ] = Eab[g,Φ] + E
(1)
ab [h, ψ] + . . . (6.2.3)

EΦ[g + h,Φ + ψ] = EΦ[g,Φ] + E
(1)
Φ [h, ψ] + . . . (6.2.4)

so the linearised equations of motion are

E
(1)
ab [h, ψ] = E

(1)
Φ [h, ψ] = 0. (6.2.5)

Recall that the equations of motion resulting from the Einstein–scalar field theory
are strongly hyperbolic if we impose the usual harmonic gauge condition which is56

Gabcd∇bhcd ≡ ∇bh
ab − 1

2
∇ahbb = 0, (6.2.6)

where Gabcd is defined by (5.2.13). Motivated by this, we will attempt to obtain
hyperbolic equations of motion for Horndeski theory by imposing a generalised
harmonic gauge condition

Ha ≡ (1 + f)Ga
bcd∇bhcd −Ha

b∇bψ = 0, (6.2.7)

where the scalar f and the tensor Ha
b depend only on background quantities. The

idea is that when we deform the theory away from the Einstein-scalar field theory
we may need to deform the gauge condition in order to preserve hyperbolicity. The
quantities f and H describe such a deformation.57 This gauge condition could be
generalised further by including terms that do not involve derivatives of hab or ψ.
However such terms do not affect the principal symbol and therefore do not influence
hyperbolicity.

To see that we can impose such a gauge condition, let Y a be a vector field and
consider the infinitesimal diffeomorphism generated by Y a:

hab → hab +∇(aYb) ψ → ψ + Y · ∇Φ. (6.2.8)
56More properly we should call this a Lorenz gauge condition, but we will refer to it as a harmonic

gauge condition for the reasons discussed below equation (5.2.5).
57Of course we could divide through by (1 + f) to absorb f into H. The reason for including f

here is that it leads to a more general class of gauge-fixed equations of motion when we perform
the gauge-fixing procedure described below.
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Under such transformation Ha will change as

Ha → Ha +
1

2
(1 + f)(∇b∇bYa +RabY

b)−Ha
b∇b(Y · ∇Φ) (6.2.9)

and can then be set to zero by choosing Ya to solve

∇b∇bYa −
2

1 + f
Ha

b∇b(Y · ∇Φ) +RabY
b = − 2

1 + f
Ha . (6.2.10)

This is a linear wave equation of a standard type, which guarantees the existence of
such Ya. Note that if we changed the tensor structure of the first derivatives of hab
in (6.2.7) then this argument would no longer work.

To obtain the equations of motion in the generalised harmonic gauge, consider
expanding the action to quadratic order in (h, ψ) to obtain an action governing the
linearised perturbation. Now to this action we add the gauge-fixing term58

Sgauge = −1

2

∫ √
−g HaH

a. (6.2.11)

This will contribute to the equations of motion for the metric and the scalar field via
terms

1√
−g

δSgauge

δhab
= Gabcd∇c((1 + f)Hd) (6.2.12)

1√
−g

δSgauge

δψ
= −∇b(H

aHa
b) (6.2.13)

respectively. We can now write the generalised harmonic gauge linearised equations
as

Ẽ
(1)
ab = 0, Ẽ

(1)
Φ = 0, (6.2.14)

where

Ẽ
(1)
ab = E

(1)
ab −Gab

cd∇c((1 + f)Hd) (6.2.15)

Ẽ
(1)
Φ = E

(1)
Φ +∇b(H

aHa
b). (6.2.16)

It remains to show that the generalised harmonic gauge condition is propagated
by the equations of motion. To see this, recall that the action for Horndeski is
diffeomorphism invariant, thus for the non-linear theory we have

0 =

∫
d4x

(
δS

δgab
∇aYb +

δS

δΦ
Y b∇bΦ

)
=

∫
d4x
√
−g (∇aEab − EΦ∇bΦ)Y b.

(6.2.17)
This holds for arbitrary Y a hence, independent of any equation of motion,

∇aEab − EΦ∇bΦ = 0 (6.2.18)
58The reason for implementing the gauge-fixing this way is because obtaining the equation of

motion from an action guarantees symmetry of the principal symbol, see section 6.3.
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and so linearising around a background solution gives

∇aE
(1)
ab − E

(1)
Φ ∇bΦ = 0. (6.2.19)

Taking the divergence of (6.2.15) when (6.2.14) holds and using the above we obtain

0 = ∇aE
(1)
ab +Gab

cd∇b∇c((1 + f)Hd)

= E
(1)
Φ ∇bΦ−

1

2
(1 + f)(∇c∇cHb +RbcH

c)−∇bf∇bHa −
1

2
Ha∇b∇bf, (6.2.20)

that is

(1 + f)∇b∇bHa + 2∇bf∇bHa + 2∇c(HcdHd)∇aΦ + (1 + f)RabH
b +Ha∇b∇bf = 0.

(6.2.21)
This is a linear wave equation of a standard type for Ha, thus, provided that Ha and
its time derivative both vanish initially, they will continue to vanish throughout the
evolution, i.e. the gauge condition (6.2.7) is propagated by the equations of motion
(6.2.14). It then follows that a solution of the generalised harmonic gauge equations
(6.2.14) is also a solution of the original linearised Horndeski equations of motion
(6.2.5).

We will now compute the principal symbol in generalised harmonic gauge. The
procedure is analogous to the one employed in Section 3.3, with the difference that
now we will have contributions arising from the gauge fixing terms in the equations
of motion. The linearised generalised harmonic gauge equations of motion (6.2.14)
take the following form

P abcdef
gg ∇e∇fhcd + P abef

gΦ ∇e∇fψ + . . . = 0, (6.2.22)

P cdef
Φg ∇e∇fhcd + P ef

ΦΦ∇e∇fψ + . . . = 0, (6.2.23)

where the ellipses denotes terms with fewer than 2 derivatives. We can then define
the principal symbol for this system

P (ξ) =

(
P abcdef
gg ξeξf P abef

gΦ ξeξf

P cdef
Φg ξeξf P ef

ΦΦξeξf

)
(6.2.24)

and we think of it as acting on vectors of the form (tcd, α)T , where tcd is a symmetric
2-tensor and α is a number.

It is convenient to split the principal symbol in its Einstein-scalar field and
Horndeski parts

P (ξ) = PEsf(ξ) + δP (ξ) (6.2.25)

where

PEsf(ξ) =

(
−1

2
ξ2Gabcd 0

0 −ξ2

)
(6.2.26)
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is the principal symbol for the generalised harmonic gauge Einstein-scalar field
equations of motion. We write

δP (ξ) = δP̃ (ξ) + δQ(ξ) (6.2.27)

where δP̃ denotes the terms arising from the Horndeski terms, already computed
in Section 3.3 (cf. Eqs. (3.3.16)); δQ denotes the f - and H-dependent parts of the
gauge-fixing terms. Explicitly we have

δQ(ξ) =

(
−f(f + 2)GabehGh

fcdξeξf (1 + f)ξeGfhabξhHef

(1 + f)ξeGfhcdξhHef −Hh
eHhfξeξf

)
. (6.2.28)

From the form of PEsf it is clear that all characteristics of the harmonic gauge
Einstein-scalar field system are null.

Weak background fields

We conclude this section by making precise the notion of “weak background fields”
in the Horndeski setting. We follow a similar approach to the one used for Lovelock
theories (cf. Section 5.3). Consider an orthonormal basis {eµ}, such that e0 is
orthogonal to constant t surfaces. Denote by L−2

R , L−1
1 and L−2

2 the magnitude of the
largest components in such a basis of the Riemann tensor, ∇Φ and ∇∇Φ respectively
and define

L−2 = max{L−2
R , L−2

1 , L−2
2 }. (6.2.29)

We want our definition of “weak fields” to ensure that the Horndeski terms in the
principal symbol be small compared to the Einstein–scalar field terms, i.e., δP
(Eq. (3.3.16)) must be small compared to PEsf . This is achieved by requiring the
background fields to satisfy59

|∂kX(X∂XG5)|L−2(1+k) � 1, k = 0, 1, 2 (6.2.30a)

|∂kX(∂XG4 − ∂ΦG5)|L−2(1+k) � 1, k = 0, 1, 2 (6.2.30b)

|∂kX(G4 − 2X∂XG4 +X∂ΦG5)|L−2k � 1, k = 0, 1, 2 (6.2.30c)

|∂kX(X∂XG3 + ∂ΦG4 + 2X∂2
XΦG4)|L−2k � 1, k = 0, 1 (6.2.30d)

|∂kX(∂XG3 + 4∂2
XΦG4 − ∂2

ΦG5)|L−2(1+k) � 1, k = 0, 1 (6.2.30e)

|∂XG2 + 2X∂2
XG2 + 2∂ΦG3 + 2X∂2

XΦG3| � 1, (6.2.30f)

|∂2
XG2 + 2∂2

XΦG3 + 2∂3
XΦΦG4|L−2 � 1. (6.2.30g)

59Note that these conditions are weaker than those expressed in [44]. If the conditions in [44]
hold, then these hold as well.
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We will also require smallness of the functions appearing in the gauge condition:

|f | � 1, |Hµ
ν | � 1. (6.2.31)

In practice, we will see that strong hyperbolicity will force us to take f and Ha
b

to be particular functions of the background fields, and (6.2.31) then follows from
weakness of the background fields.

6.3 Symmetries of the principal symbol

For Lovelock theories, our argument for weak hyperbolicity exploited equations
(3.2.17) following from the identities (3.2.16). Therefore we will need to determine
the analogous identities for Horndeski theories. This could be done by explicit
computation. Instead we will derive the identities as a consequence of the gauge
symmetry of the theory. We will appeal to results of Lee and Wald [95] to do this.

Consider some diffeomorphism covariant theory of gravity, possibly coupled to
additional fields, and expand the action to second order around a background solution:

S =

∫
ddx
√
−g
(
−1

2
KIJab∇auI∇buJ + . . .

)
, (6.3.1)

where uI denotes the perturbation to the fields (including the metric perturbation),
the ellipsis denotes terms with fewer than two derivatives, and

KIJab(x) = KJIba(x). (6.3.2)

Varying the action gives the (linearised) equation of motion

KIJab∇a∇buJ + . . . = 0, (6.3.3)

where the ellipsis denotes terms with fewer than two derivatives of uI . From this we
read off the principal symbol

P IJab = KIJ(ab), (6.3.4)

so from (6.3.2) we have
P IJab = P JIab. (6.3.5)

Hence, the symmetry of the principal symbol is a consequence of the variational
principle. Varying the action also gives a total derivative term ∇aθ

a, where

θa = −KIJabδuI∇buJ + . . . (6.3.6)

where the ellipsis denotes terms without derivatives. We then define the symplectic
current for two independent variations δ1uI and δ2uI [95]

ωa = δ1θ
a
2 − δ2θ

a
1 = KIJabδ1uI∇bδ2uJ − (1↔ 2) + . . . (6.3.7)
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Given coordinates (t, xi) where t is a time function, we define the symplectic form as
an integral over a surface Σ of constant t with unit normal na

ω(δ1u, δ2u) =

∫
Σ

ωµnµ =

∫
Σ

dd−1x
√
−g ω0. (6.3.8)

For a theory with a gauge symmetry, Ref. [95] proves that this vanishes if δ2u is taken
to be an infinitesimal gauge transformation and δ1u satisfies the (linearised) equation
of motion. In particular, it will vanish if δ1u and δ2u are both infinitesimal gauge
transformations. Taking them to be compactly supported gauge transformations we
can integrate w.r.t. t to obtain

0 =

∫
ddx
√
−g
[
KIJ0νδ1uI∇νδ2uJ − (1↔ 2) + . . .

]
. (6.3.9)

As before, the ellipsis denotes terms without derivatives of δ1u or δ2u.
Consider first the case of Lovelock theory (without any gauge-fixing), for which

uI = hab and we have the symmetries

Kabcdef = Kbacdef = Kabdcef . (6.3.10)

The gauge transformations are infinitesimal diffeomorphisms:

δhab = ∇(aXb), (6.3.11)

whereXa is an arbitrary vector field, assumed compactly supported. Gauge invariance
of the action implies, via integration by parts,

0 =

∫
ddx
√
−gXb

(
−Kabcdef∇a∇e∇fhcd + . . .

)
(6.3.12)

where the ellipsis denotes terms with fewer than 3 derivatives of hµν . Since Xa is
arbitrary, this implies

0 = Kabcdef∇a∇e∇fhcd + . . . (6.3.13)

and since hab is arbitrary, terms with different numbers of derivatives must vanish
independently. From the 3-derivative term we obtain

0 = K(a|bcd|ef), (6.3.14)

which implies
P (a|bcd|ef) = 0. (6.3.15)

Now we consider the implications of (6.3.9). Take the two gauge transformations to
be

δ1hµν = ∇(µXν), δ2hµν = ∇(µYν), (6.3.16)
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for arbitrary compactly supported vector fields Xµ, Y µ. Compact support lets us
integrate by parts in (6.3.9):

0 =

∫
ddx
√
−g
[
∇µXνK

µνρσ0α∇α∇ρYσ − (1↔ 2) + . . .
]

=

∫
ddx
√
−gXν

[
−Kµνρσ0α∇µ∇α∇ρYσ −Kµσρν0α∇α∇ρ∇µYσ + . . .

]
, (6.3.17)

where the ellipsis denotes terms with fewer than 3 derivatives of Y µ. Since Xν is
arbitrary we must have

0 = Kµνρσ0α∇µ∇α∇ρYσ +Kµσρν0α∇α∇ρ∇µYσ + . . .

=
(
Kµνρσ0α +Kµσρν0α

)
∂µ∂ρ∂αYσ + . . .

=
(
Kµνρσ0α +Kρνµσα0

)
∂µ∂ρ∂αYσ + . . . (6.3.18)

Since Yµ is arbitrary, the terms with different numbers of derivatives of Yµ must
vanish independently. Vanishing of the 3-derivative term requires

0 = Kν(µρ|σ0|α) +Kν(ρµ|σ|α)0 = 2P ν(µρ|σ0|α). (6.3.19)

Since the 0 index refers to an arbitrary time function t, this equation implies

P a(bc|de|f) = 0. (6.3.20)

The above argument applies to the theory before fixing the gauge. Of course we can
do the same for the Einstein equation. Subtracting the Einstein results from the
Lovelock results gives

δP (a|bcd|ef) = δP a(bc|de|f) = 0. (6.3.21)

We can now apply this to the harmonic gauge Lovelock equation of motion because
the harmonic gauge condition does not affect δP . In particular we have

δP abcdefξaξeξf = δP abcdefξbξcξf = 0. (6.3.22)

Hence we see that the identities (3.2.17) are a consequence of the gauge symmetry.
For a Horndeski theory (before any gauge fixing) we have uI = (hab, ψ). A gauge

transformation is
δhab = ∇(aXb) δψ = Xa∇aΦ. (6.3.23)

Repeating the above argument for gauge invariance of the action gives

P (a|bcd|ef)
gg = P

(a|b|cd)
gΦ = 0. (6.3.24)

The symmetry of the principal symbol (6.3.5) then implies that

P
(a|b|cd)
Φg = P

(a|b|cd)
gΦ = 0. (6.3.25)
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Repeating the argument based on (6.3.9), the highest derivatives of the gauge
transformation parameters Xµ and Yµ arise only from the transformation of hµν so
the result is essentially the same as for Lovelock theory:

P a(bc|de|f)
gg = 0. (6.3.26)

These results apply also to the Einstein-scalar field theory (before gauge fixing). So
subtracting the principal symbols for these two cases gives

0 = δP̃ (a|bcd|ef)
gg = δP̃

(a|b|cd)
gΦ = δP̃

(a|b|cd)
Φg = δP̃ a(bc|de|f)

gg . (6.3.27)

Finally, we note that the gauge fixing terms do not affect δP̃ so these results apply
also to the generalised harmonic gauge equation of motion.

6.4 Weak hyperbolicity for weak field background

We will now begin our study of the hyperbolicity of the linearised Horndeski equations
in a generalised harmonic gauge. In this Section we will establish weak hyperbolicity
of these equations in a weak field background for any generalised harmonic gauge.
Much of the analysis is similar to the analysis of the weak hyperbolicity of harmonic
gauge Lovelock theories performed above so we will be briefer here.

As in Section 5.3 we introduce coordinates xµ = (t, xi) such that dt is timelike
so surfaces of constant t are non-characteristic for the Einstein–scalar field theory.
Again we will denote by ξ±0 the two solutions of gµνξµξν = 0 for fixed real ξi, and we
define the null covectors ξ±µ = (ξ±0 , ξi).

The principal symbol can be regarded as a quadratic form acting on vectors of
the form (tµν , χ)T , with tµν symmetric. Such vectors form an 11-dimensional space.
Hence A, B(ξi) and C(ξi) (defined in Sec. 5.3) are 11× 11 matrices. Explicitly we
have

A =

(
P µνρσ00
gg P µν00

gΦ

P ρσ00
Φg P 00

ΦΦ

)
B(ξi) =

(
2P

µνρσ(0i)
gg ξi 2P

µν(0i)
gΦ ξi

2P
ρσ(0i)
Φg ξi 2P

(0i)
ΦΦ ξi

)

C(ξi) =

(
P µνρσij
gg ξiξj P µνij

gΦ ξiξj

P ρσij
Φg ξiξj P ij

ΦΦξiξj

)
(6.4.1)

where, again, ξi is real and ξiξi = 1. These matrices are all real and symmetric: the
latter property follows from the fact that the gauge-fixed equations of motion can be
derived from an action so (6.3.5) holds.

For the harmonic gauge Einstein–scalar field equations, since surfaces of constant
t are spacelike, the matrix A is invertible. By continuity, this will continue to hold for
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sufficiently weak background fields, once we include the Horndeski terms. Hence we
can define real M(ξi) as in (5.3.3) and real symmetric H(ξi) as in (5.3.9). These are
22× 22 matrices. As for Lovelock, the matrix H is non-degenerate so its signature
can be determined by continuity, i.e., by its signature for the Einstein-scalar field
equations. The result is that it has signature (11, 11), i.e., 11 positive eigenvalues
and 11 negative eigenvalues. As for Lovelock, M is symmetric w.r.t. H, i.e., equation
(5.3.10) holds here.

We consider these matrices as acting on a complex vector space V of dimension
22. For the Einstein-scalar field theory we know that M is diagonalizable with
eigenvalues ξ±0 , each with degeneracy 11. So, for linearised Horndeski theory in a
weak field background we can proceed as in Sec. 5.4 and define the 11-dimensional
subspaces V ± as the sum over the generalised eigenspaces of the eigenvectors (of M)
belonging to the ξ±0 -group, respectively. The restriction of H to V ± is denoted by
H±.

Let us summarize the proof of weak hyperbolicity that we used for Lovelock
theories. First we showed that there exist “pure gauge” eigenvectors of M , with
eigenvalue ξ±0 . We then showed that such eigenvectors are null and orthogonal
w.r.t. H so they form null subspaces N± of V ±, and that these null subspaces have
the maximum dimension consistent with the signature of H±. This then excludes
the possibility of M possessing a complex eigenvalue ξ0 in, say, the ξ+

0 -group, for
the corresponding eigenvector would have to be null and orthogonal to N+ so we
could add it to N+ to produce a larger null subspace of V +, thereby violating
maximality of N+. Hence M cannot have a complex eigenvalue, which establishes
weak hyperbolicity.

All of this extends straightforwardly to Horndeski theories. First note that, as in
section 2.3, an eigenvector v of M with eigenvalue ξ0 must have the form

v =

(
T

ξ0T

)
, (6.4.2)

where the 11-vector T must satisfy

P (ξ) · T = 0 (6.4.3)

with ξµ = (ξ0, ξi). We can identify a set of “pure gauge” eigenvectors, with eigenvalue
ξ±0 , given by60

T =

(
ξ±(µXν)

0

)
(6.4.4)

60The vanishing of the final component of this vector is related to the fact that under the gauge
transformation (6.2.8), the transformation of ψ does not involve a derivative of Ya.
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for some Xµ. That this satisfies (6.4.3) (with ξ = ξ±) can be seen as follows. First
PEsf(ξ

±) = 0 because ξ±µ is null. Second, the results in (6.3.27) imply

δP̃ (ξ±) · T = 0. (6.4.5)

Finally, it can be checked explicitly that δQ(ξ±) · T = 0.
We define N± to be the 4-dimensional subspace of V ± defined by these pure

gauge eigenvectors. We now want to prove that N± is null w.r.t. H±. Consider
two pure gauge eigenvectors v, v′ ∈ N± with corresponding T = (ξ±(µXν), 0)T and
T ′ = (ξ±(µX

′
ν), 0)T . Their inner product w.r.t. H± is the same as their inner product

w.r.t. H, i.e., as in (5.4.8), we have

v
′†Hv = 2ξ±µ T

′†P 0µT = 2ξ±µ ξ
±
ν ξ
±
ρ X̄

′
σXτP

νσρτ0µ
gg = 0, (6.4.6)

where the final equality follows from PEsf(ξ
±) = 0, the final symmetry in (6.3.27),

and the fact that
ξ±µ ξ

±
ν ξ
±
ρ δQ

νσρτλµ
gg = 0. (6.4.7)

It follows that any two elements of N± are orthogonal w.r.t. H± hence N± defines a
4-dimensional H±-null subspace of V ±.

Since H± is the restriction of H to V ±, it follows that H± is non-degenerate when
restricted to V ±. Hence its signature can be determined by continuity, as we did for
Lovelock. In other words, its signature can be determined using the Einstein–scalar
field theory. For this theory, consider two vectors v1 and v2 in V ±, and hence of the
form (6.4.2) with ξ0 = ξ±0 . Let the corresponding 11-vectors be T1 = (t1ab, χ1)T and
T2 = (t2ab, χ2)T . The inner product of v1 and v2 w.r.t. H± is the same as the inner
product w.r.t. H:

v†1Hv2 = T †1BT2 + 2ξ±0 T
†
1AT2 = 2ξµT

†
1P

0µT2 = −ξ0±
(
t†1Gt2 + χ̄1χ2

)
. (6.4.8)

The argument following (5.4.6) now shows that, when restricted to V +, H+ has 4

negative eigenvalues and 6 + 1 = 7 positive eigenvalues (the +1 coming from χ̄1χ2).
Similarly for H− when restricted to V −, with positive and negative interchanged.
Hence the dimension of a maximal null subspace of V ± is 4 so N± are maximal null
subspaces of V ±. The proof of weak hyperbolicity follows as explained above.
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6.5 Strong hyperbolicity: setting up the problem

We have shown that, in any generalised harmonic gauge, linearised Horndeski theory
is weakly hyperbolic in a weak field background. We will now investigate whether it
is also strongly hyperbolic. In particular, strong hyperbolicity requires that M be
diagonalizable, i.e., it has no non-trivial Jordan blocks. We can investigate whether
or not this is true using the method of Section 5.5.

As in Section 5.5 we define E± to be the generalised eigenspace of the eigenvalue
ξ±0 . Since N± ⊂ E± it follows as in Section 5.5 that E± must have dimension at least
8. If M is diagonalizable, then E± are genuine eigenspaces and hence there must
exist at least 8 eigenvectors with eigenvalue ξ±0 . So using (6.4.3) and PEsf(ξ

±) = 0

we must have 8 vectors T satisfying δP (ξ±) · T = 0. So we have the following

Condition 2. A necessary condition for strong hyperbolicity is that, for any null ξ,
ker δP (ξ) has dimension at least 8.

Hence, strong hyperbolicity implies that, for any null ξ, ker δP (ξ) must contain
at least 4 linearly independent “non-gauge” elements.

Let us now look at the condition for a non-trivial Jordan block to exist. As in
Section 5.5, one can show that the corresponding eigenvalue must be ξ±0 so the block
must lie in E±. For any such block, there exists a vector v ∈ E± such that (M−ξ±0 )v

is an eigenvector of M with eigenvalue ξ±0 , so we must have

(
M − ξ±0

)
· v =

(
S

ξ±0 S

)
(6.5.1)

for some non-zero S = (sµν , ω)T such that (using PEsf(ξ
±) = 0)

δP (ξ±) · S = 0. (6.5.2)

Writing v = (T, T ′)T we find that (6.5.1) reduces to equations analogous to (5.5.4)
and (5.5.5):

T ′ = ξ±0 T + S (6.5.3)

and
δP (ξ±) · T = −(2ξ±0 A+B) · S. (6.5.4)

As in Section 5.5 we contract this with an arbitrary “pure gauge” vector

R = (ξ±(µXν), 0)T . (6.5.5)

The LHS vanishes and the RHS gives the H±-inner product of (R, ξ±0 R)T with
(S, ξ±0 S)T . It follows that (S, ξ±0 S)T must be H± orthogonal to any pure gauge
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eigenvector. Similarly, contracting this equation with S and using ( 6.5.2) shows that
(S, ξ±0 S)T is null w.r.t. H±. Hence if this vector were not pure gauge then we could
add it to N± and violate maximality of this null subspace. Therefore this vector
must be pure gauge, i.e., we have S = (ξ±(µYν), 0)T for some Yµ 6= 0. So, writing
T = (tµν , χ)T , (6.5.4) takes the form

δP (ξ±) ·

(
tρσ

χ

)
= −(2ξ±0 A+B) ·

(
ξ±(ρYσ)

0

)
. (6.5.6)

If this equation admits a solution for some Yµ 6= 0 then M has a non-trivial Jordan
block. So strong hyperbolicity requires that this equation admits no solution (tµν , χ)T

for any Yµ 6= 0.

Outline of the proofs

In the following sections we will study in detail the strong hyperbolicity of Horndeski
theories. The main idea will be to verify for which subclasses of Horndeski theories
Condition 2 is satisfied. For those theories that satisfy this condition we then check
whether Eq. (6.5.6) admits a solution for non-vanishing Y µ. Note that requiring
these conditions to be satisfied will force f and H in the gauge condition to take
specific forms.

Since various Horndeski theories exhibit different qualitative features — in partic-
ular, the tensorial structure of the principal symbol is not the same for all theories —
we will not tackle the problem of establishing the strong hyperbolicity of the most
general Horndeski theory directly. Instead, we will begin from the simplest non-trivial
case (i.e. the simplest theory with non-minimal coupling between the metric and
the scalar field) and then we will progressively include more general terms. More
precisely, in Section 6.6 we consider all the Horndeski theories with G5 = 0: we start
from the G4 = G5 = 0 case, we then include a non-vanishing G4 term, distinguishing
between two cases according to whether it depends on X or not.

Before moving onto the general G5 6= 0 we will study in Section 6.7 a special case
of this theory: Einstein–dilaton–Gauss–Bonnet gravity. This, besides being a theory
of particular interest on its own, will provide a “pedagogical” introduction to the
proof of the general result. Finally, in Section 6.8 we will build upon the results
obtained to study the hyperbolicity of the most general Horndeski theory.
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6.6 Strong hyperbolicity: the G5 = 0 case

Proof of strong hyperbolicity for G4 = G5 = 0

Let us begin by considering the theory with Lagrangian

L = L1 + L2 + L3. (6.6.1)

The non-linear equations of motion for this theory are

Eab ≡Gab + ∂XG3

[
−1

2
�Φ∇aΦ∇bΦ +Gab

ed∇c∇eΦ∇cΦ∇dΦ

]
+ . . . = 0 (6.6.2)

EΦ ≡ − (1 + ∂XG2 + 2∂ΦG3 + 2X∂2
XΦG3)�Φ

+ ∂2
XG2∇aΦ∇bΦ∇a∇bΦ

− (∂XG3 +X∂2
XG3)δc1c2d1d2

∇c1∇d1Φ∇c2∇d2Φ

− 1

2
∂2
XG3δ

c1c2c3
d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

− 2∂2
XΦG3δ

c1c2
d1d2
∇c1∇d1Φ∇c2Φ∇d2Φ

+ ∂XG3Rab∇aΦ∇bΦ + . . . = 0 (6.6.3)

where again the ellipsis denotes terms not involving second derivatives. After
determining the linearised equations in generalised harmonic gauge (6.2.14), we
compute the principal symbol and we find that

δPgg(ξ)
abcd = δQgg(ξ)

abcd (6.6.4)

δPgΦ(ξ)ab =δPΦg(ξ)
ab = −1

2
∂XG3∇aΦ∇bΦ ξ2 + ξcGdeabξeKcd (6.6.5)

δPΦΦ(ξ) = (−∂XG2 − 2∂ΦG3 + 2X∂2
XΦG3 − 2∂XG3�Φ− 2X∂2

XG3�Φ) ξ2

+ 2
(
∂XG3 +X∂2

XG3

)
ξcξd∇c∇dΦ + (2∂2

XΦG3 + ∂2
XG2)(ξ · ∇Φ)2

− ∂2
XG3δ

c1c2c3
d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ + δQΦΦ(ξ) (6.6.6)

where
Kab ≡ (1 + f)Hab + ∂XG3∇aΦ∇bΦ. (6.6.7)
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For strong hyperbolicity to hold, equation (6.5.6) must admit no solution (tµν , χ)T

when Yµ 6= 0. Writing out this equation gives

LHS =


Gµνρσ[−f(f + 2)Gρ

λαβξ±σ ξ
±
λ tαβ + ξ±λKλρξ±σ χ]

ξ±µGνλρσξ±λ tρσKµν + δPΦΦ(ξ±)χ

 (6.6.8)

RHS =


ξ0±Gµνρσξ±ρ Yσ

(∂XG3)ξ0±(ξ± · ∇Φ)(Y · ∇Φ)−Kλσξ±λGµνσ0ξ±µ Yν

 . (6.6.9)

Looking at the first row of this equation, the non-degeneracy of Gµνρσ implies that if
f 6= 0 then we can solve for the “non-transverse” part of tµν :61

Gµ
νρσξ±ν tρσ =

1

f(f + 2)
(ξ±ρKρµχ− ξ0±Yµ). (6.6.10)

This can then be substituted into the second row to obtain an equation that determines
χ. Hence if f 6= 0 then a solution of (6.5.6) exists for any Yµ 6= 0. Therefore strong
hyperbolicity requires that f = 0. With f = 0, the first row of (6.6.8) implies

ξ0±Yµ = ξ±ρKρµχ. (6.6.11)

Plugging this into the second row of (6.6.8) now gives a linear homogeneous scalar
equation for χ and tµν . Since this is only one equation for 11 unknowns, there exist
non-trivial solutions. We see that we can solve (6.5.6) for Yµ of the form (6.6.11).
Hence if this Yµ is non-vanishing then the equation is not strongly hyperbolic.
Therefore strong hyperbolicity, requires (6.6.11) to vanish for any (null) ξ±µ which
implies (since generically χ 6= 0) Kµν = 0. Hence strong hyperbolicity selects a
unique generalised harmonic gauge:

f = 0 Hab = −∂XG3∇aΦ∇bΦ. (6.6.12)

Note that this guarantees that the smallness condition (6.2.31) is satisfied. This
follows from (6.2.30e), which in the G4 = G5 = 0 case reduces to:

|∂kX(∂XG3)|L−2(1+k) � 1, k = 0, 1. (6.6.13)

If our gauge functions f and Hab satisfy this equation then M is diagonalizable,
as required by strong hyperbolicity. As explained above (2.2.19), diagonalizability
ensures that there exists a positive definite symmetrizer K satisfying (2.3.16). To
complete the proof of strong hyperbolicity we need to check that K depends smoothly
on ξi. We will do this in a more general setting later in this Chapter (see the discussion
below Eq. (6.6.52)).

61Note that our smallness assumption (6.2.31) implies that f 6= −2.
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Failure of strong hyperbolicity for ∂XG4 6= 0, G5 = 0

The situation is different if we include L4 i.e. we work with the theory

L = L1 + L2 + L3 + L4 (6.6.14)

We will show that if ∂XG4 6= 0 then there is no generalised harmonic gauge for which
this theory is strongly hyperbolic.

The terms in the equations of motion Ea
b and EΦ arising from L4 are [31, 103]

Ea(4)
b = (G4 − 2X∂XG4)Ga

b +
1

4
∂XG4δ

ac1c2c3
bd1d2d3

Rc1c2
d1d2∇c3Φ∇d3Φ

+
1

2
(∂XG4 + 2X∂2

XG4)δac1c2bd1d2
∇c1∇d1Φ∇c2∇d2Φ

+
1

2
∂2
XG4δ

ac1c2c3
bd1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

+ 2∂2
XΦG4δ

ac1c2
bd1d2
∇c1∇d1Φ∇c2Φ∇d2Φ

+ (∂ΦG4 + 2X∂2
XΦG4)δac1bd1

∇c1∇d1Φ (6.6.15)

E
(4)
Φ = − (∂ΦG4 + 2X∂2

XΦG4)R

− 1

2
(∂XG4 + 2X∂2

XG4)δc1c2c3d1d2d3
∇c1∇d1ΦRc2c3

d2d3

− 1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

∇c1∇d1Φ∇c2Φ∇d2ΦRc3c4
d3d4

− ∂2
XΦG4δ

c1c2c3
d1d2d3

∇c1Φ∇d1ΦRc2c3
d2d3

−
(
∂2
XG4 +

2

3
X∂3

XG4

)
δc1c2c3d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ

− 2∂3
XΦΦG4δ

c1c2
d1d2
∇c1Φ∇d1Φ∇c2∇d2Φ

− (2X∂3
XXΦG4 + 3∂2

XΦG4)δc1c2d1d2
∇c1∇d1Φ∇c2∇d2Φ

− 2∂3
XXΦG4δ

c1c2c3
d1d2d3

∇c1∇d1Φ∇c2∇d2Φ∇c3Φ∇d3Φ

− 1

3
∂3
XG4δ

c1c2c3c4
d1d2d3d4

∇c1∇d1Φ∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ. (6.6.16)

Linearising these equations, and including the gauge-fixing terms, one can then
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compute δP̃ (4), the contribution to δP̃ arising from L4. It takes the following form

δP̃ (4)
gg (ξ)ab

cdtcd =− 1

2
(G4 − 2X∂XG4)δac1c2bd1d2

ξc1ξ
d1tc2

d2

− 1

2
∂XG4δ

ac1c2c3
bd1d2d3

ξc1ξ
d1tc2

d2∇c3Φ∇d3Φ (6.6.17)

δP̃
(4)
gΦ (ξ)ab = δP̃

(4)
Φg (ξ)ab =(∂XG4 + 2X∂2

XG4)δac1c2bd1d2
ξc1ξ

d1∇c2∇d2Φ

+ ∂2
XG4δ

ac1c2c3
bd1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

+ 2∂2
XΦG4δ

ac1c2
bd1d2

ξc1ξ
d1∇c2Φ∇d2Φ

+ (∂ΦG4 + 2X∂2
XΦG4)δac1bd1

ξc1ξ
d1 (6.6.18)

δP̃
(4)
ΦΦ(ξ) =− 1

2
(∂XG4 + 2X∂2

XG4)δc1c2c3d1d2d3
ξc1ξ

d1Rc2c3
d2d3

− 1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

ξc1ξ
d1∇c2Φ∇d2ΦRc3c4

d3d4

− (3∂2
XG4 + 2X∂3

XG4)δc1c2c3d1d2d3
ξc1ξ

d1∇c2∇d2Φ∇c3∇d3Φ

− ∂3
XG4δ

c1c2c3c4
d1d2d3d4

ξc1ξ
d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

− 4∂3
XXΦG4δ

c1c2c3
d1d2d3

ξc1ξ
d1∇c2∇d2Φ∇c3Φ∇d3Φ

− 2(2X∂3
XXΦG4 + 3∂2

XΦG4)δc1c2d1d2
ξc1ξ

d1∇c2∇d2Φ

− 2∂3
XΦΦG4δ

c1c2
d1d2

ξc1ξ
d1∇c2Φ∇d2Φ. (6.6.19)

As discussed above, for the equations to be strongly hyperbolic it is necessary that
the kernel of δP (ξ±) has dimension 8 or greater. We will now study whether this
condition is satisfied. A vector (tab, χ)T is in ker δP (ξ±) if, and only if,(

δPgg(ξ
±)abcdtcd + δPgΦ(ξ±)abχ

δPΦg(ξ
±)cdtcd + δPΦΦ(ξ±)χ

)
= 0. (6.6.20)

We now assume that ∂XG4 6= 0. In this case we can separate out a term proportional
to tab in the first row of (6.6.20) and write this equation as

(ξ± · ∇Φ)2tab =− ξ±a ξ±b (∇cΦ∇dΦtcd + G4t
c
c)

+ 2ξ±(atb)c

(
G4

∂XG4

ξ±c +∇cΦ(ξ± · ∇Φ)

)
− 2ξ±(a∇b)Φ(tcc(ξ

± · ∇Φ)− ξ±c∇dΦtcd)

− gab
(

2ξ±c∇dΦtcd(ξ
± · ∇Φ) +

G4

∂XG4

ξ±cξ±dtcd − tcc(ξ± · ∇Φ)2

)
−∇(aΦ∇b)Φξ

±cξ±dtcd −∇(aΦtb)cξ
±c(ξ± · ∇Φ)

+
2

∂XG4

(δQgg(ξ
±)ab

cdtcd + δPgΦ(ξ±)abχ). (6.6.21)

Note that for a generic weak-field background, and generic ξ±, we have

ξ± · ∇Φ 6= 0. (6.6.22)
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From the tensor structure of this equation, we deduce that tab must take the form

tab = ξ±(aYb) + λgab + Z(a∇b)Φ + µ∇a∇bΦ (6.6.23)

for some Ya, λ, Za and µ. The last term in this expression comes from the fact that
δPgΦ(ξ±)ab contains terms proportional to ∇a∇bΦ as well as terms of the other three
types. There is some degeneracy in this expression, e.g. degeneracy between the first
and third terms implies that Za is defined only up to addition of a multiple of ξ±a , i.e.,
the part of Za parallel to ξ±a is “pure gauge”. For strong hyperbolicity we need there
to exist at least 4 linearly independent “non-gauge” elements of ker δP (ξ±). The first
term in (6.6.23) is pure gauge. The “non-gauge part” is determined by χ, λ, µ and
the non-gauge part of Za.

Plugging (6.6.23) back into the first row of (6.6.20) we get

0 = δPgg(ξ
±)ab

cdtcd + δPgΦ(ξ±)abχ

= δac1c2c3bd1d2d3
ξ±c1ξ

±d1∇c2∇d2Φ∇c3Φ∇d3Φ

(
−1

2
∂XG4µ+ ∂2

XG4χ

)
+ δac1c2bd1d2

ξ±c1ξ
±d1
[
∇c2Φ∇d2Φ

(
−1

2
∂XG4λ+ 2∂2

XΦG4χ

)
− 1

4
(G4 − 2X∂XG4 − f(f + 2))(Zc2∇d2Φ +∇c2ΦZ

d2)

]
+ δac1c2bd1d2

ξ±c1ξ
±d1∇c2∇d2Φ

[
(∂XG4 + 2X∂2

XG4)χ

− 1

2
µ(G4 − 2X∂XG4 − f(f + 2))

]
− ξ±aξ±b

[
(∂ΦG4 + 2X∂2

XΦG4)χ− λ(G4 − 2X∂XG4 − f(f + 2))

]
+ ξ±cGdea

bξ
±
e Kcdχ, (6.6.24)

where Kab is defined in (6.6.7). We will now show that the requirement of strong
hyperbolicity fixes our choice of gauge. Consider first the case

G4 − 2X∂XG4 − f(f + 2) 6= 0. (6.6.25)

In this case, (6.6.24) contains Za-dependent terms proportional to

δac1c2bd1d2
ξ±c1ξ

±d1(Zc2∇d2Φ +∇c2ΦZ
d2) = 4Ga

b
ceξ±dξ±e Gcd

fhZf∇hΦ. (6.6.26)

View the RHS as an operator O acting on Za. Let’s determine the kernel of this
operator. Since Gabcd is non-degenerate, vectors in the kernel must satisfy

ξ±dξ±(eGc)d
fhZf∇hΦ = 0 ⇒ ξ±dGcd

fhZf∇hΦ = 0. (6.6.27)
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However, for generic ∇aΦ, it is easy to show that all solutions of this equation
have Za proportional to ξ±a . Hence the kernel of O generically contains only vectors
proportional to ξ±a . This implies that, generically, if equation (6.6.24) admits a
solution then Za is determined up to a multiple of ξ±a , in terms of χ, λ, µ. In other
words, the non-gauge part of Za is fixed uniquely by the 3 quantities χ, λ, µ. Therefore,
there exist at most 3 linearly independent non-gauge elements of ker δP (ξ±), whereas
strong hyperbolicity requires at least 4 such elements. So if our gauge condition
satisfies (6.6.25) then the equation is not strongly hyperbolic.

We have shown that strong hyperbolicity requires that our gauge function f

obeys
G4 − 2X∂XG4 − f(f + 2) = 0. (6.6.28)

We can solve this quadratic equation and choose the root that satisfies the smallness
condition (6.2.31) when the conditions (6.2.30d) are satisfied:

f = −1 +
√

1 + G4 − 2X∂XG4. (6.6.29)

The contraction of (6.6.24) with ∇bΦ gives

0 = ξ±cξ±e ∇bΦG
deabK̃cdχ, (6.6.30)

where
K̃cd ≡ Kcd − (αgcd + β∇c∇dΦ), (6.6.31)

with

α = ∂ΦG4 + 2X∂2
XΦG4 +∇a∇aΦ(∂XG4 + 2X∂2

XG4), (6.6.32)

β = −2(∂XG4 + 2X∂2
XG4). (6.6.33)

Consider first the case in which our gauge condition is such that, generically,

ξ±cξ±e ∇bΦG
deabK̃cd 6= 0. (6.6.34)

Then, in a generic background, for generic null ξ±a , (6.6.30) implies that we must
have χ = 0 and equation (6.6.24) then reduces to

0 = −1

2
∂XG4µ δ

ac1c2c3
bd1d2d3

ξ±c1ξ
±d1∇c2∇d2Φ∇c3Φ∇d3Φ−∂XG4λG

a
b
ecξ±dξ±e Gcd

fh∇fΦ∇hΦ.

(6.6.35)
In a generic background this implies λ = µ = 0 (using ∂XG4 6= 0). But with
χ = λ = µ = 0, the “non-gauge” part of the vector (tab, χ)T is determined entirely by
Za which has at most 3 independent non-gauge components. So in this case we do
not have enough non-gauge elements of ker δP (ξ±) for strong hyperbolicity.
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We have shown that strong hyperbolicity requires that, generically,

ξ±cξ±e ∇bΦG
deabK̃cd = 0. (6.6.36)

For this to be satisfied for generic null ξ± we must have

Gabde∇bΦK̃cd = ρaδec (6.6.37)

for some vector ρa. Contracting with ∇aΦ we see that

(∇Φ)2K̃ab = 2K̃ac∇cΦ∇bΦ− 2(ρ · ∇Φ)δba (6.6.38)

from which we deduce that the most general form K̃ can take is

K̃ab = κgab +Wa∇bΦ. (6.6.39)

for some scalar κ and vector Wa. Note that we can determine ρa in terms of these
quantities by taking the trace over the e and c indices in (6.6.37)

ρa =
1

4

(
−κ∇aΦ +GabcdWc∇dΦ∇bΦ

)
. (6.6.40)

Plugging these back into (6.6.37) we find that the only solution is given by κ = 0

and Wa = 0, that is
K̃ab = 0. (6.6.41)

Hence strong hyperbolicity for a generic weak-field background forces us to make the
gauge choice

f = −1 +
√

1 + G4 − 2X∂XG4

(1 + f)Hab = αgab + β∇a∇bΦ− ∂XG3∇aΦ∇bΦ. (6.6.42)

With this choice of gauge, (6.6.24) reduces to

0 = δac1c2c3bd1d2d3
ξ±c1ξ

±d1∇c2∇d2Φ∇c3Φ∇d3Φ

(
−1

2
∂XG4µ+ ∂2

XG4χ

)
+ 2Ga

b
ecξ±dξ±e Gcd

fh∇fΦ∇hΦ

(
−1

2
∂XG4λ+ 2∂2

XΦG4χ

)
. (6.6.43)

For a generic background, this fixes λ and µ in terms of χ:

λ = 4
∂2
XΦG4

∂XG4

χ µ = 2
∂2
XG4

∂XG4

χ. (6.6.44)

We now consider the second row of (6.6.20), which takes the form

Aχ = 0 (6.6.45)
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where

A =− 1

2
[∂XG4 + 2X∂2

XG4]δc1c2c3d1d2d3
ξ±c1ξ

±d1Rc2c3
d2d3

− 1

2
∂2
XG4δ

c1c2c3c4
d1d2d3d4

ξ±c1ξ
±d1∇c2Φ∇d2ΦRc3c4

d3d4

−
[
3∂2

XG4 + 2X∂3
XG4 +

2(∂XG4 + 2X∂2
XG4)2

1 + G4 − 2X∂XG4

]
δc1c2c3d1d2d3

ξ±c1ξ
±d1∇c2∇d2Φ∇c3∇d3Φ

+ [2(∂XG4)−1(∂2
XG4)2 − ∂3

XG4]δc1c2c3c4d1d2d3d4
ξ±c1ξ

±d1∇c2∇d2Φ∇c3∇d3Φ∇c4Φ∇d4Φ

+ 4

[
∂3
XXΦG4 + 2

∂2
XG4∂

2
XΦG4

∂XG4

− ∂XG3(∂XG4 + 2X∂2
XG4)

2(1 + G4 − 2X∂XG4)
− ∂2

XG3

]
δc1c2c3d1d2d3

ξ±c1ξ
±d1∇c2∇d2Φ∇c3Φ∇d3Φ

+ 2

[
− 8

(∂2
XΦG4)2

∂XG4

+
∂XG3(∂ΦG4 + 2X∂2

XΦG4 +X∂XG3)

(1 + G4 − 2X∂XG4)

+

(
∂2
XΦG3 +

1

2
∂2
XG2 + ∂3

XΦΦG4

)]
(ξ± · ∇Φ)2

+ 2

[
2

(∂XG4 + 2X∂2
XG4)(∂ΦG4 + 2X∂2

XΦG4 −X∂XG3)

1 + G4 − 2X∂XG4

+ (∂XG3 +X∂2
XG3 + 2X∂3

XXΦG4 + 3∂2
XΦG4)

]
ξ±a ξ

±
b ∇

a∇bΦ.

If A 6= 0 then we must have χ = 0, and hence λ = µ = 0 and Za is arbitrary.
Hence, in a generic weak-field background, ker δP (ξ±) consists of vectors of the form
(tab, 0)T where tab is given by (6.6.23) with λ = µ = 0. Given that one component
of Za is “pure gauge” (i.e. degenerate with the first term in (6.6.23)), it follows
that ker δP (ξ±) generically has dimension 7 and hence the equation of motion is not
strongly hyperbolic.

The only way to escape this conclusion is if the theory is one for which A = 0

for any background. For this to happen, terms with different dependence on the
Riemann tensor, ∇Φ and ∇∇Φ have to cancel independently in A. However this
cannot happen in the case we are considering. To see this, note that vanishing of the
terms of the (schematic) form R∇Φ∇Φ in any background requires ∂2

XG4 = 0. But
then vanishing of the terms proportional to R requires ∂XG4 = 0, contradicting our
assumption ∂XG4 6= 0. Hence in a generic background we have A 6= 0 and therefore
a vector in the kernel must have χ = 0.

In summary, we have shown that when ∂XG4 6= 0, there does not exist a generalised
harmonic gauge for which the equations of motion are strongly hyperbolic in a generic
weak-field background. The best one can do is to choose the gauge (6.6.42), for
which ker δP (ξ±) has dimension 7 in a generic weak-field background (i.e. 4 pure
gauge elements, and 3 non-gauge elements). This implies that, in such a background,
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the matrix M will have two non-trivial Jordan blocks: one in V + and one in V −.
Generically each of these will be 2× 2.

Proof of strong hyperbolicity for G4 = G4(Φ), G5 = 0

We continue working with the theory defined by (6.6.14), but now consider the case
∂XG4 = 0, i.e., G4 = G4(Φ).62 We will show that such theories are strongly hyperbolic
in a suitable generalised harmonic gauge. The proof is analogous to that for the
theory with G4 = G5 = 0 so we will be brief. For ∂XG4 = 0, (6.5.6) reduces to

LHS =


Gµνρσ[(G4 − f(f + 2))ξ±σ Gρ

λαβξ±λ tαβ + ξ±λξ±σ (Kλρ − ∂ΦG4gλρ)]χ

Gµνρσtµνξ
±
ρ ξ
±λ(Kλσ − ∂ΦG4gλσ) + δPΦΦ(ξ±)χ


(6.6.46)

RHS =


ξ0±(1 + G4)Gµνρσξ±ρ Yσ

ξ0±[(∂XG3)(ξ± · ∇Φ)(Y · ∇Φ) + ∂ΦG4(ξ± · Y )]−Kλσξ±λGµνσ0ξ±µ Yν

 .

(6.6.47)

Recall that for strong hyperbolicity to hold, this equation must have no solution
(tµν , χ)T when Yµ 6= 0. By the non-degeneracy of Gµνρσ we see that if

G4 − f(f + 2) 6= 0 (6.6.48)

then we can use the first row of this equation to solve uniquely for Gµ
νρσξ±ν tρσ (the

non-transverse part of t). This can then be substituted into the second row of the
equation to give an equation which determines χ. Hence, if G4 − f(f + 2) 6= 0 then,
for any non-zero Yµ, Eq. (6.5.6) has a solution. Therefore for strong hyperbolicity to
hold, we need

G4 − f(f + 2) = 0 ⇒ f = −1 +
√

1 + G4 (6.6.49)

where we have chosen the root that satisfies the smallness condition (6.2.31). With
this choice of f , the first row of (6.5.6) implies

ξ0±Yµ =
1

1 + G4

ξ±ρK̃ρµχ. (6.6.50)

where
K̃ab = Kab − ∂ΦG4gab. (6.6.51)

62An example of such a theory is Brans-Dicke theory [23] with positive coupling constant ω. After
a redefinition of the scalar field, this has G2 = G3 = 0 and G4 = Φ/

√
2ω + Φ2/(8ω).
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When we plug this into the second row of (6.5.6) we obtain a linear homogeneous
scalar equation for χ and tab. This equation has 11 unknowns and therefore admits
a non-trivial solution, generically with χ 6= 0. It follows that if Yµ in (6.6.50) is
not vanishing, then strong hyperbolicity fails. This means that strong hyperbolicity
requires ξ±ρK̃ρµχ = 0 for arbitrary null ξ±. Since generically χ 6= 0, this implies that
we must choose our gauge such that K̃µν = 0. Thus we see that strong hyperbolicity
in a generic weak-field background requires us to make the gauge choice

f =− 1 +
√

1 + G4

(1 + f)Hab =∂ΦG4gab − ∂XG3∇aΦ∇bΦ. (6.6.52)

In this gauge, equation (6.5.6) implies Yµ = 0 so M has no non-trivial Jordan block,
i.e., M is diagonalisable. Note that when G4 = 0 this reduces to the gauge choice
(6.6.12).

Smoothness of the symmetrizer

Diagonalizability of M is a necessary condition for strong hyperbolicity to hold. It
ensures the existence of a positive definite symmetrizer K satisfying (2.3.16). But we
need to check that the remaining conditions in the definition of strong hyperbolicity
are satisfied. In particular, we need to prove that K depends smoothly on ξi. To
do this, recall that K is constructed from the matrix S which diagonalizes M , as
explained above (2.2.19). S is the matrix whose columns are the eigenvectors of
M . Hence if the eigenvectors of M depend smoothly on ξi then so does K. We will
explicitly construct the eigenvectors of M to demonstrate that they depend smoothly
on ξi.

Recall that the eigenvectors of M have the form (6.4.2) where T satisfies (6.4.3).
In the gauge (6.6.52), we have

δPgg(ξ
±) = δPgΦ(ξ±) = δPΦg(ξ

±) = 0 (6.6.53)

which implies that any vector of the form T = (tab, 0)T satisfies (6.4.3) when ξ = ξ±.
This proves that the eigenvalues ξ±0 each have degeneracy 10. If we choose a
basis of symmetric tensors tab that is independent of ξi then the ξi-dependence of
these eigenvectors arises only through the ξ0 in (6.4.2), which implies that these
20 eigenvectors depend smoothly on ξi. A calculation reveals that the final two
eigenvectors have T = (tab, 1)T where

tab = − ∂XG3

1 + G4

[∇aΦ∇bΦ + gabX]− ∂Φ log(1 + G4)gab (6.6.54)
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and eigenvalues ξ0 determined by

0 = fµνξµξν ≡ −PΦΦ(ξ)− 1

(1 + G4)

[
X2(∂XG3)2 + 2(∂ΦG4)2

]
ξ2. (6.6.55)

For a weak field background, fµν is close to gµν and is therefore a Lorentzian metric
with f 00 6= 0. This ensures that there will be two real eigenvalues ξ0 depending
smoothly on ξi. As before, the eigenvectors depend on ξi only through ξ0 and are
therefore smooth. Hence all eigenvectors have the required smoothness in ξi so the
symmetrizer is smooth. This establishes strong hyperbolicity in the gauge (6.6.52).63

6.7 Failure of strong hyperbolicity for EdGB gravity

As explained at the end of Section 6.5, before investigating the strong hyperbolicity
of the G5 6= 0 Horndeski theory, we will discuss a special case, namely Einstein–
dilaton–Gauss–Bonnet (EdGB) gravity [105]. The action for this theory is given
by

S =
1

16π

∫ √
−g (R +X + F (Φ)LGB) (6.7.1)

where F (Φ) is a smooth function and

LGB =
1

4
δc1c2c3c4d1d2d3d4

Rc1c2
d1d2Rc3c4

d3d4 . (6.7.2)

The equations of motion take the form64

Ea
b ≡ Ga

b + (F ′′(Φ)∇cΦ∇dΦ + F ′(Φ)∇c∇dΦ)δacc1c2bdd1d2
Rc1c2

d1d2 − 1

2
T

(Φ)
ab = 0 (6.7.3)

EΦ ≡ −�Φ− 1

4
F ′(Φ)δc1c2c3c4d1d2d3d4

Rc1c2
d1d2Rc3c4

d3d4 = 0 (6.7.4)

where
T

(Φ)
ab = ∇aΦ∇bΦ + gabX. (6.7.5)

This theory can be cast in Horndeski form with the following choice of Gi [31]:

G2(Φ, X) = 8X2F (4)(Φ)(3− log |X|) (6.7.6)

G3(Φ, X) = −4XF (3)(Φ)(7− 3 log |X|) (6.7.7)

G4(Φ, X) = 4XF ′′(Φ)(2− log |X|) (6.7.8)

G5(Φ, X) = −4F ′(Φ) log |X|. (6.7.9)

63Actually we should also check the inequality below (2.3.16). This follows trivially if we restrict
to a compact region of spacetime. For the L1 + L2 theory, a stronger result can be obtained
[104]: this theory is symmetric hyperbolic even outside of the “weak field” regime provided that
1 + ∂XG2 > 0 and 1 + ∂XG2 + 2X(∂2

XG2) > 0. In our case, the smallness condition (6.2.30c) implies
that these conditions are satisfied.

64Note that in the metric equation of motion it is sometimes included a term
− 1

8F (Φ)δac1c2c3c4bd1d2d3d4
Rc1c2

d1d2Rc3c4
d3d4 . However, in d = 4 we have that δac1c2c3c4bd1d2d3d4

= 0 and hence this
term vanishes identically.
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Note that, in this case, while the functions Gi are not smooth at X = 0, the
combinations that appear in the equations of motion (and in the principal symbol)
are. We can linearise the generalised harmonic gauge EdGB equations of motion
around a background (g,Φ) and compute the principal symbol. The part of the
principal symbol which arises from the Horndeski terms reads

(δP̃gg(ξ) · t)ab = −2(F ′′(Φ)∇cΦ∇dΦ + F ′(Φ)∇c∇dΦ)δacc1c2bdd1d2
ξc1ξ

d1tc2
d2 (6.7.10)

δP̃gΦ(ξ)ab = δP̃Φg(ξ)
a
b = F ′(Φ)δacc1c2bdd1d2

ξcξ
dRc1c2

d1d2 (6.7.11)

δP̃ΦΦ(ξ) = 0. (6.7.12)

Note that for this theory the “weak field” conditions reduce to

|F ′(Φ)|L−2 � 1 |F ′′(Φ)|L−2 � 1. (6.7.13)

Following the approach outlined in Section 6.5 we will study ker δP (ξ), for null ξ,
to determine whether this theory can be strongly hyperbolic. Recall that a vector
(tab, χ)T is in ker δP (ξ) if, and only if,(

δPgg(ξ)
abcdtcd + δPgΦ(ξ)abχ

δPΦg(ξ)
cdtcd + δPΦΦ(ξ)χ

)
= 0. (6.7.14)

Let ξ be a null covector and look at the first row of (6.7.14),

δPgg(ξ)
abcdtcd + δPgΦ(ξ)abχ = 0. (6.7.15)

If this equation admitted a solution, then it could be used to fix tab as a function of χ,
up to addition of linear combinations of elements of ker δPgg(ξ). It follows from the
symmetries of the principal symbol that “pure gauge” vectors belong to this kernel
[44]. If these were the only elements, then the above equation would fix completely
the non-gauge part of tab, implying that ker δP (ξ) will contain at most one non-gauge
element (and thus five elements at most), violating the necessary condition for strong
hyperbolicity. Hence, for strong hyperbolicity to hold it is necessary that ker δPgg(ξ)

contains non-gauge elements. We will therefore proceed to calculate ker δPgg(ξ).
Defining, for convenience, the tensor

Fab = −2(F ′′(Φ)∇aΦ∇bΦ + F ′(Φ)∇a∇bΦ) (6.7.16)

we can rewrite the condition for a tensor rab to be in ker δPgg(ξ) — that is to say
δPgg(ξ)

abcdrcd = 0 — as

δacc1c2bdd1d2
ξc1ξ

d1rc2
d2Fcd −

1

2
f(f + 2)δac1c2bd1d2

ξc1ξ
d1rc2

d2 = 0. (6.7.17)
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In order to find solutions to this equation, we fix a point in spacetime and introduce
a null basis {e0, e1, ei} for the tangent space at that point. We take this basis to
be adapted to ξ, i.e. ξµ = eµ0 , e0 · e0 = e1 · e1 = 0, e0 · e1 = 1, ei · ej = δij and
e0 · ei = e1 · ei = 0. In this basis, the system (δPgg(ξ) · r)µν = 0 reduces to

1

2
f(f + 2)(r22 + r33)−F33r22 + 2F23r23 −F22r33 = 0 (6.7.18a)

−1

2
f(f + 2)r02 + F33r02 −F23r03 −F03r23 + F02r33 = 0 (6.7.18b)

−1

2
f(f + 2)r03 + F22r03 −F23r02 + F03r22 −F02r23 = 0 (6.7.18c)

1

2
f(f + 2)r00 −F33r00 + 2F03r03 −F00r33 = 0 (6.7.18d)

1

2
f(f + 2)r00 −F22r00 + 2F02r02 −F00r22 = 0 (6.7.18e)

F23r00 −F03r02 −F02r03 + F00r23 = 0. (6.7.18f)

Note that the “gauge” components of rab, i.e. r1µ, do not appear in the equations.
This is a system of six linear equations for the six non-gauge components of rab.
Since the number of unknowns equals the number of equations, this system will have
no non-trivial solution unless the determinant of the matrix of coefficients vanishes.
We will now show that this determinant does not vanish for any choice of generalised
Harmonic gauge.

The matrix of coefficients takes the form

C =



0 0 0 f(f+2)
2
−F33 2F23

f(f+2)
2
−F22

0 F33 − f(f+2)
2

−F23 0 −F03 F02

0 −F23 F22 − f(f+2)
2

F03 −F02 0
f(f+2)

2
−F33 0 2F03 0 0 −F00

F23 −F03 −F02 0 F00 0
f(f+2)

2
−F22 2F02 0 −F00 0 0


.

(6.7.19)
In the null basis, its determinant reads

detC = −1

8

[
F00(f(f + 2))2 + f(f + 2)

(
−2F00F22 − 2F00F33 + 2F2

02 + 2F2
03

)
+ 4F00F22F33 − 4F00F2

23 − 4F2
02F33 + 8F02F03F23 − 4F2

03F22

]2

.

(6.7.20)

The condition detC = 0 can be rewritten covariantly and is equivalent to the
following

f 2(f + 2)2ξcξdFcd − 2f(f + 2)(δc1c2c3d1d2d3
ξc1ξ

d1Fc2d2Fc3d3)

− 8

3
δc1c2c3c4d1d2d3d4

ξc1ξ
d1Fc2d2Fc3d3Fc4d4 = 0. (6.7.21)
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Solving for f gives f = f∗, with65

f∗ = −1 +

√
(1− 2F ee) +

2FaeFbeξaξb ±
√
A

Fcdξcξd
(6.7.22)

where

A = (δc1c2c3d1d2d3
ξc1ξ

d1Fc2d2Fc3d3)2 +
8

3
Fbaξaξbδc1c2c3c4d1d2d3d4

ξc1ξ
d1Fc2d2Fc3d3Fc4d4 . (6.7.23)

Note that f should only depend on background fields, it cannot depend on ξ. The
function f∗ could only be independent of ξ if the second term in the square root in
the above expression were independent of ξ; that is if

2FaeFbeξaξb ±
√
A = λFabξaξb (6.7.24)

for some scalar λ independent of ξ. By rearranging the terms and squaring them,
we see that we can equivalently look for a λ which solves (expanding A and using
ξ2 = 0)

Fabξaξb[Fcdξcξd(λ2 − 8FefF ef + 4F eeFf f )

− 4FceFdeξcξd(λ+ 2F ee) + 16F efFceFdfξcξd] = 0. (6.7.25)

However, since the three terms in square parenthesis have different dependence on ξ,
they would have to vanish independently and there is no choice of λ for which this
happens in a generic background. Note that there is no special choice of F (Φ) for
which this result would be different. To see this, we substitute the explicit form of
Fab in Eq. (6.7.25); the last term will give rise to a term of the form

(F ′(Φ))3∇e∇fΦ∇c∇eΦ∇d∇fΦξ
cξd. (6.7.26)

Since there is no other term involving ξ contracted with the same combination of
derivatives of Φ, for (6.7.25) to hold for λ independent of ξ it is necessary that this
term vanishes in a generic background, i.e. F ′(Φ) = 0. However, for such choice of
F (Φ), EdGB theory would reduce to GR.

We can deduce from this argument that any f∗ which solves detC = 0 would
necessarily depend on ξ, which is not allowed. This implies that for any “good” choice
of the function f , in a generic background (for which Fab does not have any special
properties) the system (6.7.18) has no non-trivial solution. Therefore we can conclude
that, in a generic weak field background, for any choice of generalised harmonic
gauge, the only elements of ker δPgg(ξ) are “pure gauge” vectors, i.e. rab = ξ(aXb).

65Note that there is only one choice of sign in front of the square root for which f∗ satisfies the
smallness assumptions (6.2.31).
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Going back to our original question, this result implies that if a tab solving (6.7.15)
exists, then this solution will be unique up to the addition of multiples of “pure gauge”
vectors; that is (6.7.15) completely fixes the non-gauge part of tab in terms of χ. If
we then substituted such tab in the second row of (6.7.14), we would obtain a linear
homogeneous equation for χ which, for a generic background, would only admit the
solution χ = 0. This would in turn imply that the “non-gauge” part of tab had to
vanish, i.e. tab = ξ(aYb). Hence we can conclude that, for any choice of generalised
harmonic gauge, in a generic “weak field” background we have that dim ker δP (ξ) = 4

and thus the linearised EdGB equations are not strongly hyperbolic in this setting,
since Condition 2 is not satisfied.

6.8 Strong hyperbolicity: the general case

We will now investigate whether general Horndeski theories are strongly hyperbolic
or they suffer from problems similar to EdGB theory.

The G5 = G5(Φ) case

Consider first the case in which G5 = G5(Φ). The corresponding contribution to the
Horndeski Lagrangian will read

L5 = G5(Φ)Gab∇a∇bΦ. (6.8.1)

However, it can be shown that this is equivalent — up to a total derivative term,
which does not contribute to the equations of motion — to [31, 106]

L5 = −∂ΦG5XR− ∂ΦG5δ
ac
bd∇a∇bΦ∇c∇dΦ + 3∂2

ΦG5X�Φ− 2∂3
ΦG5X

2, (6.8.2)

and hence the full Horndeski Lagrangian can be rewritten as

L = L1 + L̃2 + L̃3 + L̃4 (6.8.3)

where

G̃2 = G2 − 2∂3
ΦG5X

2 G̃3 = G3 + 3∂2
ΦG5X G̃4 = G4 − ∂ΦG5X. (6.8.4)

As this is effectively equivalent to an Horndeski theory with G̃5 = 0, it will be strongly
hyperbolic around a generic “weak field” background, in a generalised harmonic gauge
if, and only if, ∂X G̃4 = 0 = G̃5, i.e. if, and only if,

∂XG4 = ∂ΦG5. (6.8.5)

However, with this choice the theory simply reduces to one of those discussed in
Section 6.6. In order to avoid this degeneracy, we will need G5 to depend on X.
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The G5 = G5(Φ, X) case

Let us consider the most general Horndeski theory, i.e. Gi 6= 0 and G5 = G5(Φ, X) 6= 0.
The equations of motion and the principal symbol for this theory are reported in
Chapter 3.

The main obstruction to strong hyperbolicity in EdGB theory, as discussed in
the previous section, arose from the fact that the dimension of the kernel of δPgg(ξ)
was not large enough. We will therefore proceed to study the corresponding operator
in the general Horndeski theory. From Eq. (3.3.16a) we see that, for null ξ, it takes
the form

(δPgg(ξ) · t)ab =

(
F1(Φ, X)− 1

2
f(f + 2)

)
δac1c2bd1d2

ξc1ξ
d1tc2

d2

+ F2(Φ, X)δac1c2c3bd1d2d3
ξc1ξ

d1tc2
d2∇c3Φ∇d3Φ

+ F3(Φ, X)δac1c2c3bd1d2d3
ξc1ξ

d1tc2
d2∇c3∇d3Φ (6.8.6)

where

F1(Φ, X) = −1

2
(G4 − 2X∂XG4 +X∂ΦG5) (6.8.7)

F2(Φ, X) = −1

2
(∂XG4 − ∂ΦG5) (6.8.8)

F3(Φ, X) =
1

2
X∂XG5. (6.8.9)

We will assume F3 6= 0, for otherwise the theory would reduce to the case G5 = G5(Φ)

discussed earlier. Consider now the condition (6.7.14) for a vector T = (tab, χ)T to
belong to ker δP (ξ). The first row reads

δPgg(ξ)
abcdtcd + δPgΦ(ξ)χ = 0. (6.8.10)

In the EdGB case, we used the fact that ker δPgg(ξ) only contained “pure gauge”
elements to conclude that if this equation admitted a solution then it would fix
completely the “non-gauge” part of tab in terms of χ, implying that the dimension of
ker δP (ξ) could not be large enough for strong hyperbolicity to hold. We will now
show that the same statement holds in the general case. Consider the equation

(δPgg(ξ) · r)ab = 0. (6.8.11)

Its tensorial structure is essentially identical to that of the corresponding equation
in EdGB theory, Eq. (6.7.17). In fact, defining

F̃ab = F2(Φ, X)∇aΦ∇bΦ + F3(Φ, X)∇a∇bΦ (6.8.12)

f̃ = −1 +
√

(1 + f)2 − 2F1 (6.8.13)
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Eq. (6.8.11) takes the form

δacc1c2bdd1d2
ξc1ξ

d1rc2
d2F̃cd −

1

2
f̃(f̃ + 2)δac1c2bd1d2

ξc1ξ
d1rc2

d2 = 0. (6.8.14)

Note that even if F1 = 0 or F2 = 0, the form of this equation would be unchanged and
hence we do not need to consider these cases separately. We can study this system in
the same way as we studied (6.7.18). Recall that this is a system of six equations for
the six “non-gauge” components of rab (the “pure gauge” components do not appear
in these equations). An analogous argument allows us to conclude that there is
no admissible choice of f for which this system would generically admit non-trivial
solutions.66 Therefore we can deduce that for a generic “weak field” background and
for any choice of generalised harmonic gauge, ker δPgg(ξ) will only contain “pure
gauge” elements.

Since ker δPgg(ξ) contains only “pure gauge” elements, then if a solution to (6.8.10)
exists it will be unique up to addition of multiples of “pure gauge” vectors. In other
words, (6.8.10) completely fixes the non-gauge part of a tab in ker δP (ξ) in terms of χ.
If we then substitute such tab into the second row of (6.7.14), we will obtain a linear
homogeneous equation for χ, which for generic background has only trivial solutions
χ = 0. This implies that all elements in ker δP (ξ) have vanishing “non-gauge” part,
i.e. ker δP (ξ) only contains “pure gauge” elements.

Finally, since dim ker δP (ξ) = 4 < 8, we conclude that the necessary condition
for strong hyperbolicity — i.e., Condition 2 — is not satisfied and hence the most
general Horndeski theory fails to be strongly hyperbolic in a generic “weak field”
background for any choice of generalised harmonic gauge.

66In this setting, Eq. (6.7.25) would have a solution independent of ξ if, and only if, F3 = 0.
However, since we are assuming F3 6= 0, this does not happen. To see that this condition is
necessary, we could repeat the argument following Eq. (6.7.25) where now F3 plays the role of F ′

in Eq. (6.7.26).
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6.9 Summary of results

In summary, we have proven that all Horndeski theories are weakly hyperbolic around
a weak field background, for any choice of generalised harmonic gauge.

We further showed that any Horndeski theory for which G5 6= 0 or ∂XG4 6= 0

fails to be strongly hyperbolic around a weak field background, for any choice of
generalised harmonic gauge. On the other hand, we proved that there exists a
unique choice of generalised harmonic gauge, Eq. (6.6.52), which makes the class of
Horndeski theories with ∂XG4 = G5 = 0, i.e.,

L = (1 + G4(Φ))R +X − V (Φ) + G2(Φ, X) + G3(Φ, X)�Φ. (6.9.1)

strongly hyperbolic around a weak field background.

Causality

Causal properties of theories of the form (6.9.1) have been discussed in Ref. [27].67

It is interesting to discuss causality using our results above. We showed above that,
in an appropriate generalised harmonic gauge, a null co-vector ξa is characteristic
if, and only if, either gabξaξb = 0 or fabξaξb = 0, where fab is defined by (6.6.55).
Furthermore, if ξa satisfies the former condition then P (ξ) generically has a 10-
dimensional kernel consisting of vectors of the form (tab, 0) for general tab, whereas
if ξa satisfies the latter condition then P (ξ) generically has a 1-dimensional kernel
consisting of vectors of the form (tab, 1) with tab given by (6.6.54). Hence, roughly
speaking, causality for the 10 tensor degrees of freedom is determined by gab whereas
causality for the 1 scalar degree of freedom is determined by fab, the inverse of fab.
This agrees with Ref. [27]. Of course these degrees of freedom are coupled together
so causality for the theory as a whole is determined by both metrics gab and fab.
More precisely, the characteristic surfaces of the theory are surfaces which are null
w.r.t. either gab or fab.

Non-linear considerations

The above discussion shows that there exists a preferred generalised harmonic gauge
(6.6.52) for which a theory of the form (6.9.1) is strongly hyperbolic when linearised
around a generic weak field background. We can now ask: does this generalised
harmonic gauge condition for the linearised theory arise by linearising a generalised
harmonic gauge condition for the non-linear theory?

67 Ref. [27] assumed G4 = 0 but for a theory of the form (6.9.1) we can always set G4 = 0 using a
field redefinition, specifically a conformal transformation.

121



Causality and the initial value problem in Modified Gravity

It is important to address this question for, in the end, what we are interested
in is the well-posedness of the full non-linear problem. As discussed earlier, for
the non-linear problem to be well-posed it is necessary that the all the problems
obtained by linearising it (i.e. linearising both the equations of motion and the gauge
condition) be well-posed. We saw in the previous sections that the requirement of
strong hyperbolicity forced a unique choice of generalised harmonic gauge at the
linear level. If such a choice of gauge cannot be realised by linearising a corresponding
non-linear gauge condition, we can conclude that there is no choice of generalised
harmonic gauge which makes the non-linear problem well-posed.

Consider a non-linear generalised harmonic gauge condition of the form

1√
−g

∂ν
(√
−ggµν

)
= Jµ(g,Φ, ∂Φ). (6.9.2)

Note that we would not want Jµ to depend on second or higher derivatives of Φ

because this would give a gauge-fixed equation of motion involving third derivatives
of Φ.

Linearising around a general background solution gives

∇νh
µν − 1

2
∇µhνν +

∂Jµ

∂(∂νΦ)
∂νψ = . . . (6.9.3)

where the ellipsis denotes terms that do not involve derivatives of hµν or ψ and
therefore do not influence hyperbolicity. Comparing with (6.2.7) we see that the
linearised gauge condition has

Hµν

1 + f
= − ∂Jµ

∂(∂νΦ)
. (6.9.4)

It follows that the functions appearing in the linearised gauge condition must satisfy
the integrability condition

∂

∂(∂ρΦ)

(
Hµν

1 + f

)
=

∂

∂(∂νΦ)

(
Hµρ

1 + f

)
. (6.9.5)

Plugging in the functions (6.6.52), this equation reduces to

∂XG3 (gµν∂ρΦ− gµρ∂νΦ) = 0. (6.9.6)

By contracting this equation it is easy to see that the only way this can hold in
a generic background is if ∂XG3 = 0. But if G3 is independent of X, then L3 is
equivalent (up to a total derivative) to L2.68 In other words, requiring the above

68Explicitly, neglecting terms which do not contribute to the equations of motion, we have
L3 = �ΦG3(Φ) = 2X∂ΦG3(Φ). We see that this is equivalent to L2 with G2(Φ, X) = 2X∂ΦG3(Φ).
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equation to hold implies G3 = 0. If G3 = 0 then we can find a source function Jµ

consistent with equation (6.9.4):

Jµ = − ∂ΦG4

1 + G4

∂µΦ. (6.9.7)

In summary, we have imposed the requirement that the preferred generalised harmonic
gauge condition for the linearised theory arises by linearising a generalised harmonic
gauge condition for the non-linear theory. The result is that this requirement excludes
theories with non-trivial G3. So demanding that there exists a generalised harmonic
gauge for which the non-linear theory is strongly hyperbolic in a generic weak-field
background restricts the theory to one of the form

L∗ = (1 + G4(Φ))R +X − V (Φ) + G2(Φ, X). (6.9.8)

Since G4 can be eliminated by a field redefinition (footnote 67), this theory is
equivalent to Einstein gravity coupled to a “k-essence” theory. With the gauge choice
(6.9.7), this theory is not just strongly hyperbolic, it is symmetric hyperbolic (see
Footnote 63 and Definition 4, page 16).
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Chapter 7

Conclusions

In this dissertation we studied certain mathematical properties of two important
classes of Modified Gravity theories: Lovelock and Horndeski theories.

In the first part of the thesis, Chapter 4, we studied aspects of the causal structure
of Lovelock theories in static, spherically symmetric backgrounds.

The core of the thesis, Chapters 5 and 6, has been devoted to the study of the
initial value problem for these theories.

We will now summarise and discuss the main results.

Causality

In Chapter 4 we studied the propagation of high frequency gravitons on static,
spherically symmetric black hole spacetimes in Einstein–Gauss–Bonnet gravity. In
this theory gravitons do not necessarily propagate at the speed of light. In particular,
they can propagate faster than light. It was recently argued that, thanks to this
property, gravitons could experience a negative Shapiro time delay and that this
fact could be used to construct a “time machine”, implying that these theories could
violate causality. These arguments, however, need to be treated with care: the
negative Shapiro time delay was observed in a singular shock-wave geometry, while
the argument for the construction of the “time machine” is not obviously realisable
dynamically.

Our main result was to confirm that gravitons with certain polarisations can
indeed experience a negative time delay when scattering off a regular geometry,
namely a small, spherically symmetric black hole spacetime. Interestingly, we
observed that gravitons of such polarisation feel a repulsive gravitational force at
distances comparable to the length scale set by the coupling constants. In particular,
we found that for certain values of the impact parameter a graviton can suffer no net
deflection, implying that it is possible for a graviton to experience a negative time
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delay when scattering from and to infinity! We then examined the “time machine”
construction and we showed that it is not possible to realise it as the evolution of
“good” initial data. The construction relies on the possibility of boosting a black
hole to a speed arbitrarily close to the speed of light. We showed that one cannot
boost an object arbitrarily fast as this would cause the leaves of “constant time” to
become non-spacelike, hence causing time-evolution to break down. This implies
that the construction cannot be physically realised and hence that closed causal
curves cannot form in this way, suggesting that these theories may, in fact, not be
causally pathological.

Initial value problem

The main results of this thesis concern the well-posedness of the initial value problem
for Lovelock and Horndeski theories.

We have shown that, in harmonic gauge, the linearised equation of motion of a
Lovelock theory is always weakly hyperbolic in a weakly curved background. However,
it is not strongly hyperbolic in a generic weak-field background.

We have shown that, in a generalised harmonic gauge, the linearised equation of
motion of a Horndeski theory is always weakly hyperbolic in a weak-field background.
For some Horndeski theories, a generalised harmonic gauge can be found for which the
linearised equation of motion is also strongly hyperbolic in a weak field background.
In particular this is true for theories of the form (6.9.1). However, for more general
Horndeski theories, we have shown that there is no generalised harmonic gauge for
which the equation of motion is strongly hyperbolic in a generic weak-field background.
Furthermore, even for theories of the form (6.9.1), imposing the requirement that
the gauge condition for the linearised theory is the linearisation of a generalised
harmonic gauge condition for the non-linear theory restricts the theory further, to
one of the form (6.9.8):69

L∗ = (1 + G4(Φ))R +X − V (Φ) + G2(Φ, X).

Without strong hyperbolicity, the best one can hope for is that the linearised
equation of motion is locally well-posed with a “loss of derivatives”. This means that
the k-th Sobolev norm Hk of the fields at time t cannot be bounded in terms of its
initial value but only in terms of the initial value of some higher Sobolev norm Hk+l

with l > 0. Whether or not even this can be done depends on the nature of the terms
with fewer than two derivatives in the equation of motion [53]. But even if this can

69Note that this coincides with the class of Horndeski theories which has not been ruled out by
the neutron star merger GW170817 [37, 38, 39, 40].
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be achieved, the loss of derivatives is likely to be fatal for any attempt to prove that
the non-linear equation is locally well-posed in some Sobolev space, as is the case for
the Einstein equation.70 This is because establishing well-posedness for a non-linear
equation usually involves a “bootstrap” argument in which one assumes some bound
on the Hk norm and then uses the energy estimate to improve this bound, thereby
closing the bootstrap. This is not possible if the energy estimate exhibits a loss of
derivatives.

Note that our result is a statement about the full equations of motion. If one
restricts the equations of motion by imposing some symmetry on the solution (e.g.
spherical symmetry) then it is possible that the resulting equations might be strongly
hyperbolic. This is because the resulting class of background spacetimes would be
non-generic and, as we have seen, for non-generic backgrounds it is possible for the
equation of motion to be strongly hyperbolic even if it is not strongly hyperbolic for
a generic background.

Our results demonstrate that we do not have local well-posedness for the harmonic
gauge Lovelock equation of motion for general initial data. So the situation is worse
than for the Einstein equation, for which the harmonic gauge equation of motion is
locally well-posed for any initial data [42]. But in practice we are not interested in
general initial data, but only in initial data satisfying the harmonic gauge condition.
Since the failure of strong hyperbolicity appears to be associated to modes which
violate the harmonic gauge condition, perhaps we could restrict to initial data
satisfying this condition exactly and thereby obtain a well-posed problem. One could
not do this numerically on a computer because the gauge condition could never be
imposed exactly – there would always be numerical error. But perhaps this could be
done in principle. One way to proceed would be to consider sequences of analytic
initial data, satisfying the gauge condition, which approach some specified smooth
initial data. For analytic data one can solve the equation of motion locally [77].
If one could prove that the resulting analytic solution satisfies an energy estimate
without a loss of derivatives (because it satisfies the gauge condition), then perhaps
it would be possible to establish local well-posedness. Having said this, we note that
one could make exactly the same remarks about the Einstein equation written in a
“bad” (non-strongly hyperbolic) gauge so it is far from clear that this method has
any chance of succeeding.

70It is conceivable that one might have local well-posedness in some much more restricted function
space, such as a Gevrey space. This class of functions consists of C∞ functions whose successive
derivatives satisfy inequalities weaker than those required for the convergence of a Taylor series. The
important property of such functions is that they are “almost” analytic but they are not determined
by their values in the neighbourhood of a point [49].
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If the equation of motion is not strongly hyperbolic in (generalised) harmonic
gauge then could there be some other gauge in which it is strongly hyperbolic? For
example, maybe one could modify the (generalised) harmonic gauge condition to
include additional terms involving first derivatives of hab, contracted in some way
with the background curvature tensor (or scalar field). But this raises the question
of whether it is always possible to impose the new gauge condition via a gauge
transformation (cf. Eqs. (6.2.8)–(6.2.10)). This would involve solving an equation
for the gauge parameters. We would then have to analyse whether this new equation
has a well-posed initial value problem, and whether the resulting gauge condition is
propagated by the gauge-fixed equation of motion. This may amount to analysing
equations that suffer from the same kind of problems as the equations we have
discussed in this Thesis.

In this Thesis, we have been working with equations of motion for the metric. An
alternative approach would be to derive an equation of motion for curvature. The
Bianchi identity can be used to write ∇e∇eRabcd in terms of second derivatives of the
Ricci tensor, and terms with fewer than two derivatives of curvature. For the Einstein
equation, one can eliminate the Ricci tensor to obtain a non-linear wave equation
for the Weyl tensor. This equation is strongly hyperbolic and admits a well-posed
initial value problem. For a Lovelock theory one cannot solve explicitly for the Ricci
tensor but one could still replace the Ricci tensor terms using the expression obtained
from the equation of motion of the theory. This gives an equation of motion for
the Riemann tensor. In contrast with what happens for the Einstein equation, the
resulting equation is subject to a constraint, which is simply the Lovelock equation
of motion. If this constraint is satisfied by the initial data then it will be satisfied by
any solution of the equation of motion for the Riemann tensor. The situation looks
analogous to the case of the harmonic gauge equation of motion for the metric, but
with more indices. It seems very likely that this equation of motion for the Riemann
tensor will fail to be strongly hyperbolic in a generic background.

Another approach would be to investigate equations of motion based on a space-
time decomposition of the metric, as in the ADM formalism. It is known that the
ADM formulation of the Einstein equation gives equations that are not strongly
hyperbolic [47]. However, suitable modification of the ADM method gives equations
that are strongly hyperbolic [47, 61]. Perhaps something similar would work for
Lovelock or Horndeski theories. However, it appears that there is no obvious way of
extending the approaches used for the Einstein equation to Lovelock theories [107].

Moreover, note that the way we obtained the generalised harmonic gauge equations
is by no means unique. One could, for example, use different Hab in the metric and
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scalar field gauge fixing terms. However, fixing the gauge in this way would break the
symmetry of the principal symbol: PgΦ 6= PΦg. Our proof of weak hyperbolicity relies
crucially on this symmetry and therefore it seems unlikely that such modification of
the gauge fixing term could be useful.

Finally, there is also the possibility that these theories may only be well-posed
for initial data belonging to some highly restrictive class. In fact, the situation could
be even worse: these theories might not admit a well-posed initial value problem at
all! This scenario would likely be fatal for these theories since, as discussed several
times in this thesis, any sensible classical theory must admit a well-posed initial
value problem. In other words, this would lead to the satisfying conclusion that these
theories are unviable as physical alternatives to General Relativity.
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