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Abstract

Forbes Magazine offers an annual list of the 2000 largest publicly traded companies, shedding light on four
different measurements: Sales, profits, market value and assets held. Soriano-Herndndez, del Castillo-Mussot,
Campirdn-Chdvez and Montemayor-Aldrete [Physica A, 471, 733-749, 2017] modeled these wealth metrics using
composite distributions made up of two parts. In this note, we introduce different composite distributions to more
accurately describe the spread of these wealth metrics.

Index terms— Composite distribution, Forbes Global 2000, Income, Wealth

1 Introduction

In this note, we investigate the Global 2000 data set, compiled by Forbes Magazine. It features the 2000 largest
companies, with their most important financial indicators, namely annual profits, sales, market value and assets along
with employee count and a ranking system based on a combined value.

An analysis was published by Soriano-Herndndez et al. [14], where two part models were introduced along with a
number of different distribution combinations to predict the percentage of companies below a certain wealth threshold.
The tail distribution remained a Pareto distribution of type 1 for all estimations, combined with either a log-normal,
gamma or exponential distribution modeling the body part of the sample. These distributions were chosen on the
grounds of previous successful modeling in finance [I5], [6], [7] or modeling of gas propagation in physics [4].

The basic principle was to divide the data into two parts, and introduce a partial distribution for each part. Both
distributions would then be connected by a hard cut-off, leading to a non-continuous, abrupt transition. Formally,
the probability density function (PDF) and the cumulative distribution function (CDF) of the composite model can
be specified by
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respectively.

Rather than modeling the values provided directly, it was decided that a quotient of a metric and the employee count
would be more expressive, giving insight into how much returns the employees generate. This led to the assumption
that all observed businesses can be divided into two categories, depending on the number workforce employed. The
first category would be companies in retails like Wal-Mart, which have to rely on large numbers of employees for their
services. On the other hand we have companies like Apple, which due to the nature of their products and production
processes can perform with comparatively low employee number in relation to their revenue.
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Figure 1: The four metrics with the respective best fit two part models.

The focus on the application of this model is less in fitting a PDF or CDF to the data, but in a decreasing percentage
function 100 [1 ~-F (m)} to describe the amount of companies below a certain wealth metric. In this note, we introduce

a new approach which suggests a third subpopulation. We then show that it provides a considerable improvement in
fits over the old approach. We verify our results with a number of error measures reflecting the goodness of fit and
comparative plots, visualising the areas of greatest improvement.
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2 Composite models

Contrary to the previously proposed model, we argue that a distinct third population group is present, leading us to
the construction of a three part composite model. The best fitting two part models in Figure 1 do not entirely capture
the proper curvature of the percentage function. More strikingly, they also differ considerably in the tails. While the
parts closer to the catenation point are still somewhat adequately captured, higher values stray further away. This
is especially evident in the profit and sales plots, where we hypothesise that a third section at around 0.1 billion and
0.05 billion could diminish this deviation.

Furthermore, we like to introduce a smoother variant of the composite model, which in its two part form has been
introduced by Bakar and Nadarajah [2]. The PDF and CDF are provided below for arbitrary distributions with PDF's
f1, fo and CDFs Fy, F» merged at point § € R with weight ¥ € R*:
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We now expand this model by a third partial distribution with PDF f3 and CDF F3. Additionally we now mark
0, < 65 as the catenation points between the composites and ¥, © as weights. This yields

14!‘021((51))7 fo S 917
f@)=¢ @%’ if 01 <x < 0, (1)
faa :
vl if 0y < @
and
511((:1)) aF o Zf x < 917
Fz) = ¢ 1+ S22, if 1 <z <6y,

14+ @+ o@Dl g, < g

For convenience, we introduce ( = m as scaling parameter. Soriano-Herndndez et al. [14] have proposed most
prominently the gamma and log-normal distributions for the body (f1, F1) and a Pareto type 1 distribution for the
tail (f2, ). We mostly agree with the choice of distributions being used for the body component, albeit introducing
a beta Weibull (beta Wb) distribution, which we will employ for the body as well as the mid proportion of the data.
The beta Wb distribution due to Lee et al. [11] has the PDF and CDF specified by
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respectively, for x > 0, A > 0, k > 0, & > 0 and 8 > 0, where B(a,b) and I, (a,b) are the beta function and incomplete
beta function ratio defined by
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respectively, for 0 <z < 1, a > 0 and b > 0.

While the Pareto Type-I distribution has been commonly used to describe the distribution of wealth among the
inhabitants of a country or larger region, especially the more prosperous ones, we wish to transfer this approach to the



3 MODEL COMPARISON

wealth spread among international companies. However we believe that the general shape of the type I distribution
cannot accurately capture the most extreme points of the tail. Asymptotic arguments such as the Pickands-Balkema-
de Haan theorem mandate the shift to the generalised Pareto distribution of higher order, offering a better fit through
its more flexible shape. This argument has already found its way into application (see Degen and Embrechts [5] or
Kleiber and Kotz [I0]) and it seems sensible to us to update the preexisting approach.

3 Model comparison

We are now left with three body, two midsection and one tail distribution of interest to us. The next step is to fit all
six different section combinations onto the four wealth metric data sets and compare the resulting error measures for
previous and current approaches. In addition to the squared and absolute aggregate errors, we investigate a number
of variations on the Akaike information criterion (AIC) due to Akaike [I], the Kolmogorov-Smirnov (KS) test statistic
(here the maximum deviation of the percentage function) and the Anderson-Darling (AD) statistic. Specifically, we
use the Bayesian information criterion (BIC) due to Schwarz [13], consistent Akaike information criterion (CAIC)
due to Bozdogan [3], corrected Akaike information criterion (AICc) due to Hurvich and Tsai [9] and Hannan-Quinn
criterion (HQC) due to Hannan and Quinn [8]. The results can be found in Figure 2.

To ensure the optimal fit for the model and to cut down on computation time, we first computed maximum
likelihood estimates (MLEs) for each of the partial distributions and used the resulting parameter estimates as initial
values for the MLEs of the composite model. The MLEs obtained in this way were used to compute on the one hand
the AIC, BIC, etc measures, and secondly serve as initial values for the minimization of the deviation between the
modeled percentage function and empirical percentages (for example, proportion of the data sample below a given
value). All computations were performed using the R software [I2]. The optimization function in the R software used
to find the MLEs is shown in the last column of Figure 2.

If we look into the percentage based measures (for example, squared and absolute aggregate errors), it becomes
evident that the tri-composite model provides a better fit, with up to almost 60 percent reduction in squared error and
up to 50 percent reduction in absolute error. For most instances the choice of body distribution only plays a minor
part, as long as it is sufficiently heavy-tailed (gamma, log-normal, beta Wb distributions tend to perform mostly
similarly). We omitted the exponentially distributed body-variant, since it consistently provided the highest error
margins in our fitting process. With the introduction of a mid-section and the inherent improved flexibility of the
composite distribution, we anticipated lower error measures. Nonetheless by the amount the measures have changed,
we see our hypothesis of a third distinct subgroup within the company samples verified.

The density based measures draw a similar picture. What strikes us, is that not only do the composite models
possess a lower AIC, BIC etc. value than the hard cut-off model, but the values are within a very tight grouping.
We attribute this to the fact that f(x) as described in consists of disjunct partitions, which do not need to be
necessarily continuous at the catenation points.

Furthermore, the tail distribution remains identical and the mid distributions only differ slightly from one another.
Since we developed the model in order to more accurately determine the percentage function as characterized in [14],
we give direct error measures of the percentage deviation more weight.
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Model Metric Partial Distribution Optimized via Percentage Function Optimized via Density
Body Mid Tail Absolute Squared Rel. Abs. Rel. Sq. KS AD | AIC BIC AICc HQC CAIC | Function
LogNorm - Paretol 673.20 347.18 0.338 0.174 127 1999 | 7416 7438 7416 7424 7442 optim
Market Value | Gamma - Paretol 825.37 690.55 0.414 0.346 2.43 1943 | 7853 7876 7853 572 7880 optim
- Expon - Paretol 1593.89 2825.00 0.800 1.417 4.16 1861 | 10287 10303 10287 10293 10306 optim
2 LogNorm - Paretol 861.61 530.10 0.276 0.266 1.37 1934 | 4062 4085 4062 4070 4089 optim
_‘;:; Sales Gamma - Paretol 966.82 1015.43 0.485 0.509 2.86 1875 | -2067  -2045  -2067  -2059  -2041 optim
é Expon Paretol 1148.76 1058.17 0.576 0.531 246 1891 | 7524 7540 7524 7530 7543 optim
g LogNorm - Paretol 1189.89 1095.36 0.597 0.550 1.86 2089 | 9909 9932 9909 9917 9936 optim
?:- Assets Gamma - Paretol 630.88 309.96 0.317 0.156 0.99 2015 | 6682 6705 6682 6690 6709 optim
E Expon - Paretol 1889.23 2436.54 0.948 1.223 2.92 1871 | 11410 11426 11410 11416 11429 optim
) LogNorm - Paretol 1041.46 801.72 0.574 0.442 143 1834 | -4150  -4128  -4150  -4142  -4124 optim
Profits Gamma - Paretol 1345.97 1396.64 0.742 0.769 229 1741 501 523 501 509 527 optim
Expon - Paretol 2375.88 5842.95 1.309 3.219 4.69 1637 | 2953 2970 2953 2959 2973 optim
LogNorm Paretod  Pareto4 595.08 259.95 0.299 0.130 1.05 2006 2456 2534 2456 2485 2548 optim
Gamma  Pareto4  Pareto4 550.04 252.90 0.276 0.127 1.33 1983 | 2455 2534 2455 2484 2548 optim
Market Value BetaWb  Pareto4  Pareto4 459.11 173.07 0.230 0.087 0.95 2162 | 2446 2536 2446 2479 2552 optim
LogNorm BetaWb Paretod 517.76 224.03 0.260 0.112 117 1998 | 2461 2539 2461 2490 2553 optim
Gamma  BetaWb Paretod 497.78 202.54 0.250 0.102 1.01 1999 | 2467 2546 2468 2496 2560 optim
BetaWb BetaWb  Parctod 593.58 231.47 0.298 0.116 0.92 2011 2505 2595 2506 2538 2611 optim
LogNorm  Pareto4  Pareto4 493.65 190.27 0.248 0.095 0.84 2019 | -9878  -9800  -9878  -9849  -9786 optim
_ Gamma  Pareto4 Pareto4 514.17 195.64 0.258 0.098 0.96 2008 | -10232 -10153 -10231 -10203 -10139 optim
'552) Sales BetaWb  Pareto4 Paretod 482.84 186.34 0.242 0.093 0.90 2101 | -9740  -9650  -9739  -9707  -9634 optim
i LogNorm BetaWb  Pareto4 515.18 223.08 0.258 0.112 117 1986 | -9891  -9813  -9891  -9862  -9799 | optim+nlm
2 Gamma BetaWb  Paretod 426.80 134.63 0.214 0.068 0.72 2022 | -9914  -9836  -9914  -9885 -9822 | optim+nlm
:‘? BetaWb  BetaWb  Pareto4 502.86 198.86 0.252 0.100 1.03 1982 | -9922  -9833  -9922  -9889  -9817 | optim+nlm
8 LogNorm  Pareto4  Pareto4 340.82 93.27 0.171 0.047 0.65 2016 | 3813 3891 3813 3841 3905 optim
g Gamma Paretod  Paretod 93.86 0.175 0.047 0.58 2017 | 3784 3862 3784 3813 3876 optim
g Assets BetaWb  Paretod  Paretod 98.92 0.177 0.050 0.63 2002 | 3824 3914 3824 3857 3930 optim
=) LogNorm  BetaWb  Paretod 90.91 0.175 0.046 0.57 2013 | 3811 3890 3812 3840 3904 optim
Gamma  BetaWb Pareto4 88.60 0.169 0.044 0.59 2008 | 3796 3875 3797 3825 3889 optim
BetaWb  BetaWb Pareto4 337.00 89.79 0.169 0.045 0.67 2006 | 3802 3891 3802 3834 3907 optim
LogNorm  Pareto4  Pareto4 547.78 248.90 0.302 0.137 1.03 1926 | -18081 -18004 -18080 -18052 -17990 optim
Gamma  Paretod  Paretod 578.11 326.53 0.319 0.180 122 1802 | -18107 -18030 -18107 -18079 -18016 optim
Profits BetaWb  Paretod  Pareto4 602.18 290.41 0.332 0.160 1.07 1857 | -18032 -17944 -18032 -18000 -17928 optim
LogNorm  BetaWb  Pareto4 474.65 193.04 0.262 0.106 0.85 1910 | -17998 -17920 -17997 -17969 -17906 optim
Gamma  BetaWb Pareto4 432.23 161.55 0.238 0.089 0.85 1903 | -17881 -17803 -17880 -17847 -17789 optim
BetaWb  BetaWb Pareto4 596.69 286.05 0.329 0.158 1.07 1862 | -17831 -17743 -17831 -17799 -17727 optim

Figure 2: Error measure compilation for composite models, loop tolerance=10"2 for percentage function fitting.

Next we turn our attention to the comparative plots in Figure 3. All variants of the newer model indeed capture
the distribution of the wealth metrics more closely. While the logarithmic nature of the plots overemphasizes the tail
deviations, where especially sales and profits data can seen with increased accuracy, the greatest improvement has
been achieved in the body and mid-sections of the data (for example, when the sample size is less than 1500). We
therefore have provided a plot of the absolute error propagation throughout the data sample, with the previous model
in gray and our approach in red once more. See Figure 4.

As we can see for the sales and assets metric, the sharp error peaks through the entire sample have been trimmed
considerably (Fig. 4). It seems that the improvement of the 3-part model streches through all sections for those two
particular attributes. The samples of the market values and especially profits draw a somewhat different picture. Most
of the improvement of the new model over the previous two part approach is accumulated within the last section, or
more accurately the third tercile.

The improvement in the lower two parts are due to higher flexibility of the composite distribution as a whole and a
more accurate choice of partial distributions, based on empirical findings with a large number of parametric functions.
Contrarily the reason the tail distribution achieves a superior fit lies within the expected asymptotic convergence of the
population tail towards a generalized pareto distribution [5]. While the historically applied Pareto type-I distribution
is an appropriate starting point, the shape remains too restrictive to provide an accurate fit. It is expected as stated
earlier that the sample tail converges against a Pareto distribution of high order, as the tail threshold is moved higher
towards the last sample point. The introduction of the additional section thus concentrates this partial distribution
better on the respective data, e.g. a higher quantile of samples, to capture this effect.
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Figure 3: A comparative log-scale plot between the best fit variants of old (grey) and new (red) models.

In figure 4 we have singled out this fact. We can clearly see how the standard Pareto distribution fails to accurately
describe the behaviour of the very last data points. Especially in the latter three metrics this circumstance presents
itself quite dramatically. Due to the double logarithmic scale which is used, the differences in the higher quantiles are
somewhat exaggerated.

We therefore provide a table of the deviation measures to compare both tail modeling approaches numerically.
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Figure 4: A log-scale plot of the top 10% of the respective samples, with only Pareto-I and Pareto-IV distributions
fitted.

In figure 5 we can see the improvement of the type IV distribution over the standard Pareto is considerable. As
anticipated we can see how the more general distribution is better suited to capture the extreme tails of all 4 metrics.

Absolute Error Squared Error Kolmogorov - Smirnov
Pareto Distribution | Typel  Type IV Typel TypelV | Typel Type IV
Assets 14.2098  1.650316 | 42.37595 15.14181 | 0.690889  0.241456
Market Value 9.353292 2.781869 | 34.75241 18.93321 | 0.530084  0.329805
Profits 15.17699  4.587656 | 47.47998  23.92047 | 0.542113  0.343262
Sales 6.682243 1.578278 | 30.39588 14.12695 | 0.450729  0.213245

Figure 5: Deviations of the Pareto Type distributions
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4 Conclusions

As our initial observations in the original model suggested, a third distinct subgroup in the sample seems likely, and
its addition into the composite model greatly enhanced the distribution fit, more precisely the proposed percentage

~

function 100 |1 — F (m)} Not only did the errors in the newly introduced section drop, but it also allowed a more

precise fit for the body and tail sections, which now stretch over a significantly smaller sample.
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Figure 6: From top to bottom: market value, sales, assets and profits with the absolute error of the two part (black)
and three part (red) models.
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While the parameter count has considerably swollen up to 16, which leads to a significant increase in computation
time, the smooth tri-composite distribution does give a more accurate impression of the wealth distribution between
major international companies as all tested error measures verify. In our opinion this handicap is negligible, since the
data set is released annually, hence the actual fitting procedure only has to be done sporadically. Furthermore, the
multi step optimization approach we used (parameter estimates of section distributions used as initial values) narrows
down the search process significantly, such that a practical use of the composite model seems likely to us.

Since we noticed that the actual choice of the body distributions does in most cases not affect the accuracy of the
model too greatly, one might go as far as suggesting that for most practical purposes a single model (for example, the
gamma-beta Wh-Pareto type 4 model, which has consistently performed well) can be utilized to replace all incarnations
of the previous two part model.
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