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Numerical Modelling of Detonation and Ignition of Condensed Phase
Explosives

Simon Wilkinson

A good understanding of the physical properties of explosives is essential for their
safe and efficient usage. Numerical simulations have proven to be an excellent
tool with which to develop and verify models which describe both ignition and
detonation of explosives.

The objective of this work is to improve the robustness and accuracy of numerical
simulations of both ideal and non-ideal explosives. Much of the complexity of the
detonation phenomenon arises due to the finite width of the reaction zone, which
causes the properties of the detonation wave to deviate from the predictions of
the ZND model. If numerical models are to predict the attributes of the explosive
to greater accuracy, then the dynamics of the reaction zone must be adequately
resolved. This thesis also reviews the scientific literature in order to contextualise
the developments presented here.

The approach taken in this thesis is to describe the thermodynamics in the re-
action zone as a mixture of reactants and products which exist at pressure and
thermal equilibrium. To this end, mechanical equations of state of Mie-Grüneisen
form are developed with extensions, which allow the temperature to be evaluated
appropriately, and the temperature equilibrium condition to be applied robustly.
Furthermore the snow plow model is used to capture the effect of porosity.

The methodology is applied to predict the velocity of compliantly confined detona-
tion waves. Once reaction rates are calibrated for unconfined detonation velocities,
simulations of confined rate sticks and slabs are performed, and the experimental
detonation velocities are matched without further parameter alteration, demon-
strating the predictive capability of our simulations. We apply the same methodol-
ogy to both the non-ideal explosive EM120D (an ANE or ammonium nitrate based
emulsion) and the comparatively ideal TATB based explosive PBX 9502. Fur-
thermore, this thesis presents a novel methodology to use gauge data from shock
initiation experiments to calculate values for the reaction rate. The methodology
can be applied to determine rate law parameters without the use of computation-
ally intensive hydrocode simulations. The validity and limitations of this approach
are demonstrated through its application to simulated gauge data for an idealized
explosive. The resulting rate law is then used in simulations of shock to detonation
transition, and confined detonation waves of the TATB based explosive PBX 9502.
Comparison of the results with experimental data is favourable.
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1 Introduction

1.1 Background

The phenomenon of detonation is of great interest for a wide variety of industrial

and military applications. There are many examples of numerical studies conducted

with the aim of expanding our understanding of the phenomenon. These studies

have the potential to contribute to the design of efficient, safe, commercial explosives

for mining applications.

One dimensional detonation waves are described by the ZND theory, which was

developed during the second world war by Zeldovich [134], von Neumann [94] and

Döring [38] independently. A detonation wave consists of a leading shock wave and

a reaction zone. The shock wave raises the pressure and density in accordance with

the Rankine-Hugoniot conditions. The state immediately behind the shock wave

is known as the von Neumann spike. This is the point of maximum pressure and

density. Pressures at the von Neumann spike will typically range from 10GPa to

40GPa, of order 105 times atmospheric pressure. The density, on the other hand

will typically only be of order twice the density of the unshocked explosive. The

detonation wave will typically propagate into the unburned explosive at speeds of

order 1000ms−1.

The increased temperature following the initial shock causes the explosive to begin

to burn. The state after the burning process is complete is known as the Chapman-

Jouguet (CJ) state [29, 65]. The region in between the von Neumann spike and

the CJ state is called the reaction zone. The temperatures in this region can be of

order 1000K.
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Figure 1.1: The pressure in a ZND wave propagating through the domain to the right is

shown. The red curve shows the portion by mass of the explosive consisting of

reactants, i.e. the portion which is not yet burned. The values of the pressure

and reaction zone width are representative of the ammonium nitrate based

emulsion explosive EM120D.

A schematic diagram of a one dimensional ZND wave is shown in Figure 1.1. This

Figure shows a ZND wave for EM120D with a reaction zone length of approximately

5mm.

The reaction zone is of special interest because in this region the reactants and

products co-exist. Much of the uncertainty surrounding the behaviour of explo-

sives is associated with the extreme conditions in the reaction zone. There are

many possible chemical reactions which can occur during very short time periods

of order of 10ns to 100ns. The extremely short duration makes experimental inves-

tigations into what is occurring in the reaction zone difficult. Even measuring the

temperature presents a significant challenge.

In multi-dimensional geometries, on the other hand, the phenomenon is more

complex. Subsequent developments in the field have therefore relied on the use

of computational simulations to make predictions and to compare models with

experimental data.

In this thesis the focus will be specifically on condensed phase explosives, for which

detonation waves are typically stable. In gaseous explosives, however, instabilities

can lead to complex cellular structures in detonation phenomena [44, 75].
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1.1 Background

Figure 1.2: This image shows the density field for a cut out of a rate stick. The confining

material (air) is not shown. The cylindrical shape of the unburned rate stick is

visible on the right. The shock wave is identifiable as the area with the highest

density. The gaseous products expand to low density behind the shock wave.

An important mechanism by which the dynamics of multi-dimensional detonation

waves deviate from the ZND model arises due to the non-instantaneous burning of

the explosive; this occurs when the reaction zone is of non-zero width. If the

partially burnt explosive interacts with the surroundings, the state following the

reaction will no longer be the CJ state, and the properties of the wave will deviate

from those predicted by the ZND model [9, 16, 17, 67, 93].

Figure 1.2 shows a detonating cylindrical rate stick confined by air. Behind the

detonation wave the product gases expand and do mechanical work as they push the

confiner away. Due to the interaction of the detonation wave with the surrounding

air, the shock front is curved, and propagates slower than the theoretical ZND

detonation velocity.

Explosives are characterised as high explosives if they will detonate, even with

weak confinement, while low explosives will instead deflagrate in many circum-
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stances. Explosives may be further characterised as sensitive or insensitive in ref-

erence to the impetus required to induce a detonation.

An explosive is considered ideal if the reaction rate is fast, and so the ZND model

offers a good first approximation to the detonation wave. The mining industry,

in particular, is concerned with the use of so-called non-ideal explosives, which

exhibit a long reaction zone of the order of several mm. In this case, the nature of

the confining material and the geometry of the charge must be taken into account

if the detonation velocity is to be predicted accurately [61, 62]. Strong confinement

(offered by a confining material with large acoustic impedance) will absorb less

energy and cause the detonation to behave more ideally.

The effect of confinement is dependent on both the properties of the confining

material and the geometry of the explosive charge. Charges are often cylindri-

cally shaped, in which case the confinement effect will depend on the radius of

the charge. For charges of small radius, the surface area is larger in comparison

to the volume and energy content of the charge. The confinement therefore has

a more pronounced effect on small radius cylinders. In the limit of small radius,

the effect of confinement goes to infinity. For sufficiently small charge radius, even

high explosives will fail to detonate. This occurs at the failure radius, defined to

be the critical radius below which detonation waves will slow down and eventually

dissipate. The failure radius is in general dependent on the acoustic impedance of

the confining material. Experiments can be done to evaluate the failure radius of

an explosive for a particular confiner [96, 97, 101].

In this thesis we focus on two specific condensed phase high explosives. EM120D

is an ammonium nitrate based emulsion manufactured by Orica. It is a mixture of

ammonium nitrate, water, oil and emulsifier. The emulsion is sensitised through

the addition of glass micro-balloons. The micro-balloons make the explosive porous

and serve to reduce the density [108]. EM120D is a non-ideal explosive – detonation

waves with velocity as slow as 60% of the CJ velocity have been measured [39]. The

reaction zone length is approximately 5mm.

We also study the insensitive high explosive PBX 9502, which is 95 wt. % TATB

(triamino-trinitrobenzene) powder and 5 wt. % Kel-F 800 plastic. The porosity has

been measured to be 2.6% [37], although this depends on the exact manufacturing
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procedure. The name PBX stands for plastic-bonded explosive. When the explosive

is exposed to shock pressures greater than 7GPa, a shock to detonation transition

will occur. This is insensitive in comparison to conventional explosives such as

HMX, TNT and PETN with typical ignition shock pressure thresholds of around

1GPa [55]. PBX 9502 is also comparatively ideal when compared with EM120D,

with a much shorter reaction zone length of approximately 1mm.

Further experiments which can be used to test the validity of computational

models include those measuring the dynamics of ignition. Ignition can occur in

many regimes, ranging from low energy, long timescale ignition mechanisms to

high energy, fast mechanisms [55]. At one end of the spectrum there is cook-off,

where the explosive is heated up thermally, eventually causing a thermal explosion

which may develop into a detonation. Cook-off can occur over a time period of

hours and is difficult to model, since the physics describing the thermal heating

occurs over a time scale very much longer that that associated with the detonation

itself.

An intermediate regime is deflagration to detonation transition (DDT). A defla-

gration wave is a subsonic combustion wave, which propagates as a result of heat

transfer. In contrast, the mechanism by which detonation waves propagate is via a

shock wave.

At the opposite end of the spectrum is the regime of shock to detonation transi-

tion (SDT). A shock wave is created in the explosive, usually by firing a projectile

at the sample. The shock wave propagates into the explosive for a distance on the

order of mm and a time on the order of µs before transitioning to a detonation

wave. If the explosive sample is set up appropriately, the ignition is approximately

a one dimensional phenomenon. It must be borne in mind that it is impossible to

completely eliminate the influence of three dimensional diffraction effects in exper-

iments. Nevertheless, confinement effects have comparatively reduced influence on

the results, which make SDT a convenient phenomenon with which to test explosive

models.

The distance covered by the shock wave before transitioning to detonation can

be measured as a function of the shock wave pressure in order to characterise the
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explosive. These measurements typically lie on a straight line when plotted on a

log-log plot, which is known as a pop-plots in reference to Popolato [46].

The dynamics of the shock to detonation transition are an important character-

istic of explosives. Two distinct types of behaviour were observed by Campbell et

al. [25, 26]. For liquid and homogeneous explosives, thermal runaway occurs at the

interface between the impacting projectile and the explosive. The detonation wave

develops at the interface some time interval after the shock wave passes. It prop-

agates faster than the shock wave and eventually overtakes it. For heterogeneous

explosives, on the other hand, the shock wave gradually increases in strength as it

propagates through the explosive before transitioning to detonation [55, 83]. The

two types of behaviour can be distinguished, since in the first case two distinct

waves can be observed before the overtake. The distinction and possible mecha-

nisms behind it will be discussed further in this thesis.

A common type of experiment for studying shock to detonation transition uses

embedded gauges placed in the explosive. Manganin gauges can be used to measure

pressure [3]. Placing the experimental setup in a magnetic field means electromag-

netic gauges can be used to measure the flow velocity. The gauges allow us to

observe the dynamics of the shock prior to the development of a detonation wave,

and also to measure the time and position at which this occurs. These experiments

are also useful since they allow us to measure the shock Hugoniot of the unreacted

explosive [48, 50, 116, 117]. Note that for sufficiently strong shocks the immediate

onset of chemical reactions limits our capacity to make direct measurements of the

unreacted Hugoniot.

Similar experiments also allow further properties of the explosive to be measured,

and thus offer further opportunities to test our models. For example the dependence

of the dynamics on the initial temperature [8] and the dependence on the explosive

porosity [53]. Furthermore the explosive can be shocked multiple times [10, 11].

Short shocks can be used to observe how a release wave alters the dynamics [49].

These variations of the experiment are important since they allow us to explore

parts of the state space away from the single-shock Hugoniot of the explosive in

ambient conditions.
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Other types of experiment include the study of detonation waves propagating

towards the point of a conically shaped charge [43, 102]. As discussed previously,

a detonation wave will only propagate along a cylindrical charge if the radius is

larger than some critical failure radius. A detonation wave will therefore stop before

reaching the end of a cone [102]. In more complex geometries, such as corner turning

geometries, desensitization is an additional phenomenon which must be considered

when building explosive models [36]. This is where an initial weak shock is observed

to desensitize the explosive. The subsequent passing of a stronger shock does not

cause the explosive to ignite as would otherwise be expected.

The first computational models employed “programmed burn”. With this ap-

proach, the energy release associated with the exothermic reaction is programmed

to happen at a specific time, chosen in accordance with a previously determined

detonation velocity. This enables predictions of how the energy released will inter-

act with the surrounding environment. However it cannot be used to predict the

detonation velocity itself [55].

Detonation shock dynamics is a simulation approach which relies on the use of

a Dn -κ relationship. This is an empirical relationship between the normal velocity

of a wave, Dn, and the curvature of the wave surface, κ. This approach can be

used to calculate the effect of confinement and geometry on the propagation of a

detonation wave [6, 63, 119]. The implementation is reliant on shock polar analysis

to describe the interface between the explosive and the inert confining material [9].

It is therefore non-trivial to extend the approach to more complex geometries.

Neither of the above approaches explicitly resolve the conversion from reactants

to products in time, or the reaction zone in space. As a result they cannot be used

to model ignition.

In order to resolve the reaction zone explicitly, the explosive may be modelled

directly using reactive fluid dynamics. This means that the energy release associated

with the exothermic reaction is controlled by a state-dependent rate law, while the

evolution of the state is described by hydrodynamics. This approach to modelling

does not require the explicit inclusion of a pre-determined detonation velocity (like

programmed-burn) or a Dn -κ relationship. Direct computational modelling of the

fluid dynamics and thermodynamics which govern the behaviour of explosives thus
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allows us to predict the dynamics of the more complex phenomena which we have

introduced above: the deviation of the detonation velocity from the ZND prediction

due to interaction with the confiner, and shock to detonation transition.

On the one hand, this approach is more computationally intensive; the reaction

zone must be resolved with sufficient numerical resolution [112]. On the other hand,

deviations from the ZND theory are captured automatically, both those dependent

on the geometry of the explosive and those dependent on the material properties

of the inert confiner. Furthermore, the approach is suitable for modelling ignition.

The properties of the explosive are incorporated into the simulation via the equa-

tion of state and the reaction rate model. The equation of state for the explosive

is typically constructed using two independent equations of state: one for the con-

densed phase reactants and one for the gaseous phase products. The conversion of

mass from reactants to products is calculated using the reaction rate model. These

two equations of state and the reaction rate model control the properties of the

explosive and can collectively be termed the explosive model.

In this thesis I will present an encompassing methodology to build a computational

model using experimental data from the types of experiments which have been

introduced above.

1.2 Outline

Chapter 2 reviews the literature upon which the work presented in this thesis is

built. This chapter examines the advantages and disadvantages of a range of ex-

plosive models which have been presented in the literature. All of the models dis-

cussed here are viewed from the perspective of computational physics. This means

the focus is on models which have been designed with the intention of being imple-

mented in a numerical software package which explicitly integrates the governing

set of partial differential equations (a hydrocode). For example, the equations of

state considered in this thesis are all in mechanical form, expressed without ex-

plicit use of entropy. This is the most convenient approach for implementation in

a hydrocode where entropy is cumbersome to evaluate. Similarly, the reaction rate

models considered in this thesis are all relatively simple empirical forms. More
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advanced models of chemical reaction have been developed in the field of chemical

kinetics, however these are overly complex for the present application. Given the

degree of uncertainty surrounding variables such as the temperature, a full chemical

kinetics model involving explicit chemical species would offer little improvement in

predictive capability and yet would dramatically increase simulation running times.

Chapter 2 also clarifies the novel contributions of this thesis in the context of the

state of the art.

In Chapter 3, the equation of state models are discussed in more detail. Novel

equations of state are presented with the aim of improving the robustness of the

explosive model. Particular attention is paid to the mixture rules of pressure equi-

librium and temperature equilibrium and the applicability of the equations of state

in this context. Furthermore, a methodology is presented with which the equation

of state parameters for a specific explosive can be determined. The content of this

chapter has been been published previously [132].

Chapter 4 presents the ZND theory of one dimensional detonations and an ap-

proach to calculate the structure of the ZND wave, including the reaction zone,

given an explosive model. This approach is applicable even in the case where the

reactants and products are each described using separate equations of state of Mie-

Grüneisen form. The analysis is thus more general than the ZND theory as it is

generally presented in the literature. This chapter follows the chapter on equations

of state since the specific equations of state developed in the previous chapter are

employed to calculate the structure of ZND waves for the explosives at hand.

Having calibrated equations of state for both reactants and products, a reaction

rate model with calibrated parameters is still required in order to complete the

explosive model. Two approaches are used in this thesis. The most typical ap-

proach [8, 129] is to apply an optimization algorithm to determine parameters with

which simulations using the explosive model can reproduce experimental data. This

approach is taken in Chapter 5.

Chapter 5 introduces the numerical methods used to solve the set of partial dif-

ferential equations required to run a simulation. The numerical methods are val-

idated. The equations of state are also validated by comparing the ZND wave

structure from simulation of a detonation wave with the wave structures calculated

9



1 Introduction

in Chapter 4. Experimental data is used along with an optimization algorithm to

determine suitable reaction rate parameters. Finally, predictions obtained using

the calibrated rate law are presented and compared favourably with experimental

data. This chapter serves to demonstrate the validity, robustness and accuracy of

the equation of state models which are presented in chapter 3.

Chapter 6 presents a novel approach to calibrating the reaction rate model, which

avoids an expensive optimization procedure involving many executions of the hy-

drocode. The results presented in this chapter rely on the equations of state which

are introduced in this thesis. It is shown that values for the reaction rate can be

calculated via direct analysis of experimental data from embedded gauges in shock

to detonation transition experiments. The predictive capability of the resulting

model is then tested by comparing simulation results with experimental data.

1.3 Novel Contributions of this Thesis

The novel contributions of this thesis include

• Developed a robust, temperature capable equation of state for porous ex-

plosive reactants, along with a methodology to systematically determine

parameter values using experimental data.

• Developed a simple and robust temperature capable equation of state for the

explosive products based on the use of a thermochemical code.

• Developed and implemented a method to directly calculate reaction rate val-

ues from experimental measurements of shock to detonation transition.
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1.4 Publications

• S. D. Wilkinson, M. Braithwaite, N. Nikiforakis, and L. Michael. “A com-

plete equation of state for non-ideal condensed phase explosives”. Journal of

Applied Physics 122.22 (2017), p. 225112 based on the results of Chapters 3

to 5.

• S. D. Wilkinson, N. Nikiforakis, and L. Michael. “Calibration of Rate Laws for

Hydrocode Modeling of Explosives” (in preparation) comprising the content

of Chapter 6.

Furthermore, work pertaining to this thesis has been presented at

• 16th International Conference on Numerical Combustion, Orlando, FL, 2017,

• 16th International Detonation Symposium, Cambridge, MD, 2018.
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2 Literature Review

2.1 Equations of State

2.1.1 Fundamentals

The evolution of an inviscid, compressible fluid in d dimensions is described by the

Euler equations [73],

∂ρ

∂t
+∇ · ρu = 0 (2.1)

∂ρuk
∂t

+∇ · ρuku = −(∇p)k for k ∈ {1, ..., d} (2.2)

∂ρE

∂t
+∇ · ρEu = −∇ · pu. (2.3)

The equations corresponds to conservation laws for mass, the components of the

momentum and energy respectively. They are expressed using the density, ρ, the

flow velocity, u, and the specific energy, E. The left hand side of the equations

describes the advection of the material with the flow. The right hand side corre-

sponds to the physical forces of relevance to the physical system at hand. For this

application it is only necessary to consider the force corresponding to gradients of

the pressure field, since this force is very much stronger than contributions arising

from gravity or viscosity for example [44]. It is apparent that to solve the Euler

equations, an equation of state with which to calculate the pressure field is required.

The most convenient variables with which to construct the equation of state are

density and energy. Equations of state for use in this context are therefore often

of ‘mechanical’ form and define the pressure, p, as a function of specific volume, v,

and specific internal energy, e,

p = p(v, e), (2.4)
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where the specific internal energy is obtained by subtracting the kinetic component

from the specific energy,

e = E − 1

2
‖u‖2, (2.5)

and the specific volume is defined as v = 1/ρ.

From the perspective of thermodynamics, on the other hand, the starting point

from which to construct an equation of state is the first law of thermodynamics

[18],

de = T dS − p dv, (2.6)

which describes a change in specific internal energy, e, in terms of the change in

specific entropy, S, and specific volume, v. In the context of this thesis, it is

convenient to express the law in terms of intensive variables, as opposed to the

more common extensive form. The temperature, T , and pressure, p, correspond to

the first derivatives of the energy,

T :=

(
∂e

∂S

)
v

, p :=

(
∂e

∂v

)
S

. (2.7)

A complete equation of state must therefore be a function of either the entropy or

temperature. Such an equation of state is described as ‘complete’ in contrast to

incomplete, mechanical equations of state.

Use of complete equations of state can be cumbersome in the context of fluid

dynamics simulations since evaluation of the entropy and temperature is non-trivial.

As is discussed in [34], a hydrodynamics code calls the equation of state O(Nd+1)

times for a d-dimensional simulation where N is a measure of the resolution. It is

therefore of great importance that the equation of state allow for the pressure to

be calculated as an explicit function of volume and energy.

Mechanical equations of state are therefore more convenient to use in practice,

but their construction necessarily includes some simplification with regard to the

thermodynamics of the material. In this thesis we use equations of state of linear

Mie-Grüneisen form [85]. The assumption in this case is that the Grüneisen gamma,

Γ, is a function of volume only, and is independent of entropy.

An equation of state is a function of two variables, and can be thought of as a sur-

face in three dimensional space. The Mie-Grüneisen equation of state is constructed
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using reference functions, pREF(v) and eREF(v), which define a one dimensional line

on the surface. This implies that

p(v, eREF(v)) = pREF(v). (2.8)

States away from this one dimensional line can then be expressed using a Taylor

expansion in the change in specific internal energy,

p(v, e) = p(v, eREF(v)) +

(
∂p

∂e

)
v

(e− eREF(v)) +
1

2

(
∂2p

∂e2

)
v

(e− eREF(v))2 + · · · .
(2.9)

The Grüneisen gamma is defined in terms of the mixed second derivative of the

energy,

Γ(v, S) = − v
T

∂2e

∂S∂v
. (2.10)

The derivatives in (2.9) are dependent on the Grüneisen gamma, since we can write

Γ(v, S) = −v∂S
∂e

∂2e

∂S∂v
= v

(
∂p

∂e

)
v

. (2.11)

The Grüneisen gamma is in general a function of both volume and entropy, and

therefore indirectly a function of specific internal energy. However, by making the

assumption that the Grüneisen gamma is a function of volume only, the higher

order terms of the Taylor expansion (2.9) go to zero. We can then construct the

mechanical linear Mie-Grüneisen equation of state,

p(v, e) = pREF(v) +
Γ(v)

v
(e− eREF(v)), (2.12)

henceforth simply referred to as the Mie-Grüneisen equation of state. A similar

constructions is presented by Menikoff among many others [81].

This assumption is valid provided the state sampled by the equation of state

remains sufficiently close to the reference curve. This could be for example an

isentrope, an isotherm or a Hugoniot locus. The physics of the material being

modelled is encoded in the definition of the reference functions and Γ(v). These

functions can be arbitrarily complex, nonlinear functions, and the equation of state

remains invertible. That is to say that the equation can be rearranged to express

the specific internal energy as an explicit function of volume and pressure,

e(v, p) = eREF(v) +
v

Γ(v)
(p− pREF(v)). (2.13)
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This is an important consideration if the equation of state is to be implemented

efficiently in a hydrodynamic code.

The modelling of explosives creates an additional complication in that we must

model mixtures of materials. As discussed in the introduction, accurate modelling of

detonation waves requires resolution of the reaction zone, where burned (products)

and unburned (reactants) explosive coexist. The combustion is exothermic, and for

condensed phase explosives, the combustion is also associated with a phase change

from condensed phase to a dense gas.

The first attempt to construct a complete physical description of multiphase re-

active fluids was developed by Baer and Nunziato (BN) in 1986 [12]. The BN

model has a complete set of Euler equations for each phase present in the simula-

tion. Source terms allow for the exchange of momentum and energy between the

various phases and correspond to physical effects such as drag (due to velocity dis-

equilibrium) and compression/expansion (due to pressure disequilibrium). Source

terms in the volume fraction account for the influence of compaction - the change

in the volume fraction arising from the compression of a mixture, the constituents

of which have differing compressibilities.

The complete model is generally considered too complex and computationally

intensive for use in numerical simulations. Furthermore it is not trivial to scale the

model up to an arbitrary number of phases; even three phases creates significant

complications as compared to a two phase system.

The full two phase BN model consists of seven equations: three for each phase

and an additional equation for the compaction dynamics. Kapila et al. [66] jus-

tify simplifications to the BN model by approximating the time- and length-scales

across which mechanical equilibrium occurs. This occurs via two mechanisms: the

exchange of momentum due to drag forces means the flow velocities will tend to-

wards each other, while the expansion and compression due to variations in pressure

lead to pressure equilibrium.

The time scale associated with velocity equilibrium can be estimated with ref-

erence to experimental measurements of permeability such as that presented by

Shepherd and Begeal [118]. Kapila et al. [66] concluded that for condensed phase
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explosives the time scale is of order 0.1µs. The length-scale of velocity equilibrium

is found to be of the same order as the grains size or mean free path of the fluid,

motivating a unique velocity field. The number of equations is thus reduced to six.

Furthermore, the time scale of pressure equilibration between the phases due to

volume exchange is found to be shorter than a microsecond, depending on factors

such as the sound speed of the fluid. If the dynamics of the problem under investi-

gation occur over longer time-scales, a single-pressure, single-velocity five equation

model is justified.

Thermal equilibration on the other hand, is estimated to occur significantly more

slowly with timescales on the order of 10ms. In any case, thermal equilibration

cannot be incorporated into the model, or the system would be reduced to the

single phase model.

Saurel et al. [106] report on the difficulties associated with Kapila’s five equa-

tion model. They offer an improvement to the model by relaxing the problematic

pressure equilibrium condition. In particular the problem is separated into a hy-

perbolic part without the pressure equilibrium condition, and a separate relaxation

step. The model was further developed by Petitpas et al. [98]. It was calibrated

for the explosive EM120D and shown to have predictive capability by Schoch et al.

[108].

While the reduced model is both mechanically and thermodynamically consistent,

the equations cannot be expressed in conservative form. As a result a regularization

scheme is required to fully specify the system in the presence of shock waves. This

is of particular relevance to this work, since we aim to model both ignition and

detonation. In a detonation wave, there is a single strong shock wave, across which

the regularization scheme can be applied. However in ignition phenomena, a shock

wave develops dynamically. A pressure wave develops, and the pressure gradient

increases gradually. Eventually the pressure gradient is steep enough for the wave

to be considered a shock wave, but the exact point at which the transition is

considered to have occurred is somewhat arbitrary. In hydrodynamic simulations

shock waves are never completely sharp, they will diffuse over a space of 3 to 5

cells. It is therefore difficult to distinguish between a shock wave and a pressure
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wave algorithmically, thus making the implementation of a regularization scheme

tricky in practice.

Further problems can arise from the fact that the speed of sound in the multiphase

fluid does not change monotonically. Moreover, the pressure equilibrium condition

can lead to robustness issues relating to the positivity of the volume fraction.

An alternative approach to model mixtures is to do so implicitly – two independent

equations of state are constructed, and are then combined with the help of mix-

ture rules and closure rules. The equations then constitute a system of non-linear

equations. From the perspective of the system of partial differential equations, this

approach is equivalent to using a single equation of state for the mixture with the

addition of a mass fraction parameter, λ, to represent the degree to which the ex-

plosive is burned. The mass fraction parameter is then advected with the flow of

the fluid, and serves as an additional parameter for the equation of state.

p = p(v, e, λ) (2.14)

This approach avoids complications associated with a regularization scheme; the

same algorithm is applied to every cell. The algorithm can therefore be applied to

both ignition and detonation without modification.

The difficulty in the construction of a combined equation of state lies in the con-

struction of the mixture rules. This is related to the ambiguity over the subdivision

of space and energy in the explosive between reactants and products. Even in the

case where the density of the explosive is known, the densities of the constituents

may vary, and the density of the reactants need not equal that of the products.

Moreover the internal energy may be arbitrarily distributed between reactants and

products. As a result, the construction of an equation of state for the mixture

introduces two additional degrees of freedom [137].

A commonly used closure rule is that of pressure equilibrium. Any differences in

pressure are neglected on the assumption that they will equilibrate on a sufficiently

fast time scale [66]. In the limit of long time scales, the second closure condition is

that of temperature equilibrium. The temperature equilibrium condition has been

applied successfully in many studies [8, 91, 129]. However the time scales associated

with detonation mean that application of a temperature equilibrium condition is
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not physically motivated. An alternative assumption, based on the limit of short

time scales, is that no heat transfer occurs between the reactants and products [51,

120]. This is a thermal isolation closure condition and has been termed the ISE

(Isentropic Solid Equation) mixture rule [55]. Following Zukas and Walters [137],

the physical case will be somewhere between these two extreme assumptions; some

heat will transfer between reactants and products, but there will not be sufficient

time for the materials to reach thermal equilibrium.

Stewart et al. [121] discuss various closure models for modelling of the reaction

zone of detonation waves. A third possible closure rule assumes that the ratio of

specific volumes of the reactants and products remains constant throughout the

burning process. The value of this constant must be chosen carefully using the

thermal properties of each of the reactants and products.

Implementation of a temperature equilibrium condition naturally requires tem-

perature capable equations of state. In the context of equations of state of Mie-

Grüneisen form, this can be accomplished by adding an additional reference function

for temperature, TREF, to go along with the reference functions for pressure and

energy.

From equation (2.10), the Grüneisen gamma can be expressed in terms of tem-

perature and volume,

Γ(v) = − v
T

(
∂T

∂v

)
S

= −v
(
∂ln(T )

∂v

)
S

. (2.15)

In the case where the reference curve is an isentrope, the temperature reference

function, TREF, is therefore related to the Grüneisen gamma by

TREF(v) = T0 exp

(
−
∫ v

v0

Γ(ṽ)

ṽ
dṽ

)
, (2.16)

where T0 = TREF(v0) is the temperature at some reference specific volume, v0.

On the one hand, this means that any values for the Grüneisen gamma which are

available can be used to calculate the reference temperature function. On the other

hand, if temperature data for the material in question is available, this can be used

to calculate the Grüneisen gamma. This is the fundamental idea at the heart of

the equations of state for detonation modelling developed by Davis [34, 35]. It was

also used by Baudin [15] to extend the JWL (Jones-Wilkins-Lee) equation of state,

which is discussed further in Section 2.1.3.
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For states which are displaced from the reference curve the temperature may

be evaluated using a constant volume integral from the reference curve and an

expression for the specific heat capacity at constant volume,

cv =

(
∂e

∂T

)
v

(2.17)

e(v, T ) = eREF(v) +

∫ T

TREF(v)
cv(T̃ ) dT̃ . (2.18)

This is analogous to using the Grüneisen gamma for evaluating the pressure or

energy away from the reference curve.

An expression for the heat capacity can also be used to evaluate the entropy,

cv(S) =

(
∂e

∂T

)
v

= T

(
∂S

∂T

)
v

(2.19)

S(v, T ) = SREF(v) +

∫ T

TREF(v)

cv(T̃ )

T̃
dT̃ . (2.20)

In the case where the reference curve is an isentrope, SREF will of course be in-

dependent of volume. Evaluating an actual value for the entropy is not always

feasible, however this method can still be used to evaluate the change in entropy.

To use these equations, the heat capacity can be defined as a function of tem-

perature or entropy. However, the central assumption used by equations of state

of Mie-Grüneisen form is that the Grüneisen gamma is independent of entropy,

and this is equivalent to the assumption that the heat capacity is independent of

volume. So a volume dependent expression for the heat capacity would lead to

thermodynamic inconsistencies. This can be demonstrated by considering a third

derivative of the energy,

∂

∂S

∂2e

∂S∂v
=

∂

∂v

∂2e

∂S2
(2.21)

∂

∂S

(
−ΓT

v

)
=

∂

∂v

T

cv
(2.22)

−∂Γ

∂S

T

v
− Γ

v

∂T

∂S
=

1

cv

∂T

∂v
− T

c2
v

∂cv
∂v

(2.23)

−∂Γ

∂S

T

v
− ΓT

vcv
= −ΓT

vcv
− T

c2
v

∂cv
∂v

. (2.24)

Therefore
∂Γ

∂S
= 0 ⇐⇒ ∂cv

∂v
= 0. (2.25)
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The extension of an equation of state of Mie-Grüneisen form to include tempera-

ture using this method effectively completes the equation of state; it is now possible

to calculate temperature and entropy. Note however that we have not sidestepped

the need to make an assumption about the thermodynamics of the material. The

assumption that the Grüneisen gamma is independent of entropy is still necessary.

Likewise the convenience provided by the mechanical part of the equation of state

(2.12) can still be exploited for efficiency in hydrodynamic simulations.

2.1.2 Reactants

Following the ZND model, detonation waves consist of a shock wave which is fol-

lowed by the reaction zone. This occurs because the timescale associated with

the shock wave itself is much shorter than the timescale of the reaction. This

means that the properties of the shock wave are described by the normal (inert)

Rankine-Hugoniot conditions along with the equation of state for unreacted ex-

plosive. Accurate modelling of the shock wave therefore necessitates an accurate

Hugoniot locus for the reactants equation of state. This motivates the choice of the

Hugoniot curve as the reference curve.

The shock Mie-Grüneisen equation of state [115, 131] uses the Hugoniot curve as

the reference curve, so that the state will remain on or close to the reference curve

when the material is shocked. It is one of the most commonly used equations of

state for modelling the reactants.

As a shock wave propagates past a piece of material, the flow velocity of the

material is increased. The shock Mie-Grüneisen equation of state is developed based

on the relationship between this change in flow velocity and the velocity of the shock

wave itself. The relation between the shock speed and the flow velocity behind the

shock can be investigated experimentally. An impact between the material under

investigation and a projectile will initiate a shock wave. The speed of propagation

of the shock wave can be measured using gauges placed in the material. The post-

shock flow velocity in the sample is just the speed of the interface after the impact.

The form of the shock Mie-Grüneisen equation of state is based on the assumption

that the shock propagation velocity, D, is linearly related to the flow velocity behind

21



2 Literature Review

the shock, u, such that

D = a+ bu, (2.26)

for two empirically determined constants, a and b. The value of a is just the

ambient speed of sound, since in the limit of small pressure differences, shock waves

are simply sound waves. This linear approximation fits experimental data well for

most solids. It cannot however be applied universally, and can be problematic for

example in the presence of multiple shocks [81]. If a linear relationship is found to

not match the experimental data with sufficient accuracy, a quadratic relationship

may also be used. This approach is presented by Asay and Shahinpoor [5].

Equation (2.26) leads to the following expressions for the Hugoniot pressure and

specific internal energy as a function of volume,

pREF(v) =
ρ0χa

2

(1− bχ)2
(2.27)

eREF(v) =
1

2
(v0 − v)pREF(v), (2.28)

where χ = 1− v

v0
. (2.29)

The energy reference curve is related to the pressure reference curve via the Hugo-

niot equation,

e− e0 =
1

2
(p+ p0)(v0 − v). (2.30)

These expressions are then used as reference functions for an equation of state of

Mie-Grüneisen form. The derivation of these expressions is given in Appendix A.

In the absence of data, Davis [35] assumes that the Grüneisen gamma, Γ, satisfies

Γ

v
=

Γ0

v0
(2.31)

where Γ0 is the value at ambient specific volume, v0. This is a crude approximation,

and thus the equation of state is of limited use for modelling phenomena where the

state deviates significantly from the reference curve. The principal problem with

this choice of reference curve is that it is does lend itself to calculating temperatures.

The temperature on the Hugoniot curve cannot be derived directly, and is not easy

to measure experimentally.

Davis [35] presented an equation of state for the reactants using the same ba-

sic assumption (2.26) but using an isentrope as a reference curve. Following the
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derivation in Appendix B, this leads to the following expression

pREF(v) =
ρ0a

2

4b
[exp(4b(1− v/v0))− 1] (2.32)

eREF(v) =
( a

4b

)2
(exp(4b(1− v/v0))− 1) +

ρ0a
2

4b
(v − v0). (2.33)

In this case the reference curves are related to each other via the thermodynamic

definition for pressure as a derivative at constant entropy,

p = −
(
∂e

∂v

)
S

. (2.34)

Davis [35] defines the Grüneisen gamma using the expression

Γ(v)

v
=

Γ0

v0

(
v

v0

)N
, (2.35)

where Γ0 is the Grüneisen gamma in ambient conditions, and v0 is the initial specific

volume. Note that for N = 0, this expression reduces to the same expression as is

typically used with the shock Mie-Grüneisen equation of state (2.31). The Hugoniot

curve for this equation of state is dependent on N , and so a suitable value for N

can be determined using Hugoniot data.

The motivation for using an isentrope in place of the Hugoniot as a reference

curve comes from the relationship between the Grüneisen gamma and temperature,

Γ(v)

v
=

(
∂p

∂e

)
v

= − 1

T

(
∂T

∂v

)
S

= −
(
∂ln(T )

∂v

)
S

. (2.36)

This relationship permits us to define the temperature on the reference curve in

terms of the Grüneisen gamma. Since the relationship involves a derivative at

constant entropy, application of this equation to find an expression for TREF relies

on the fact that the reference curve is itself an isentrope. The resulting expression

for the temperature on the reference curve is∫ TREF

T0

dT

T
= −

∫ v

v0

Γ(ṽ)

ṽ
dṽ (2.37)

TREF(v) = T0 exp

(
− Γ0

N + 1

[(
v

v0

)N+1

− 1

])
, (2.38)

where T0 is the temperature under ambient conditions, on the reference curve at

specific volume v0.
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Nevertheless, data for the heat capacity is required to determine temperature

values on the Hugoniot. This is because the reference curve is an isentrope at

entropy corresponding to the initial conditions, while states on the Hugoniot curve

are at higher entropy. As such, the predicted temperature for shocked explosive is

also dependent on the expression for the heat capacity. Davis uses a linear function

of the entropy,

cv = cv0 + α(S − S0). (2.39)

Using equation (2.19), this is equivalent to

cv = cv0

(
T

T0

)α
. (2.40)

The linear dependence of the heat capacity on the change in entropy is controlled

by the free parameter α, while cv0 is the heat capacity on the reference curve. The

value of α can only be determined if a temperature at a state off the isentropic

reference curve is known.

One method to obtain temperature values in the shocked explosive applies a

thermal model based on a vibrational spectrum obtained via Raman scattering

[82]. Kittell and Yarrington [68], on the other hand, derive an expression for post-

shock temperatures using a multi-term Einstein oscillator model for the specific heat

capacity. Alternatively the relationship between temperature and the Stokes/anti-

Stokes ratio in Raman spectroscopy can be used to directly measure the temperature

in shocked explosives [80]. However temperature data such as this is only available

for a limited selection of explosives. The references given above all relate to PBX

9502, an explosive which has been the subject of many experimental and numerical

studies. In this thesis we develop a methodology which can also be applied to

explosives for which no direct information for temperature in the shocked explosive

is available, such as EM120D. In the absence of data, some information regarding

the temperature can be inferred from measurements of the Hugoniot locus. A

methodology to do this will be presented in this work.

The Davis equation of state has been developed further and implemented in var-

ious studies [7, 8, 129]. The so-called WSD model [129] uses an extension of the

Davis equation of state designed to accommodate a nonlinear D,u relationship.

This form is derived from a truncated Taylor expansion of the exponential function
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in (2.32),

pREF(v) =
ρ0a

2

4b

 3∑
j=1

(4bχ)j

j!
+ C

(4bχ)4

4!
+

χ2

(1− χ)4

 , (2.41)

where χ = 1− v

v0
. (2.42)

This expression introduces a new parameter for the calibration of the Hugoniot,

C, which affects the predicted pressures for strong shocks. The final term has the

effect of ensuring the correct behaviour of the reference function in the limit of small

volumes. The result of these alterations is that the predicted D,u relationship is

no longer restricted to being a straight line. The parameter C can be adjusted to

permit a closer fit to the experimental data.

In particular for the explosive PBX 9502, the D,u relationship has been observed

experimentally to be nonlinear. As such the extra free parameter, C, facilitates a

closer fit to the data than would otherwise be possible.

The WSD model also employs an alternative form for the Grüneisen gamma,

Γ(χ) = Γ0 +
Γsc − Γ0

χmax
χ, (2.43)

where Γsc and χmax are determined with reference to the equation of state of the

products. Its value is chosen specifically to ensure that the Hugoniot of the reactants

does not intersect the Crussard curve, the behaviour of which is determined by the

equation of state of the products at small volumes.

The Hugoniot curve is defined as the locus of possible states following a shock

wave, on the assumption that no chemical reactions occur, while the Crussard

curve is the locus of states following a shock and the completion of all energetically

favourable chemical reactions. Since the pressure is expected to decrease, and the

volume increase as the shocked condensed phase reactants combust to form a gas,

it is expected that the Hugoniot and Crussard curves will not cross.

Aslam [7] further refines the calibration methodology by using isobaric thermal

expansion data, as well as values for the specific heat from Menikoff [82] to calibrate

an entropy dependent expression for the heat capacity. Additional adjustments

are introduced by Aslam with the specific aim of ensuring that the equation of
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state remains robust in the expansion regime (for volumes larger than the initial

conditions). While the equation of state in this regime is not expected to play a

role in the simulation of detonation waves, it is nevertheless necessary to ensure

that the thermodynamic behaviour is correct to ensure that the governing set of

partial differential equations can be solved robustly in wide-ranging conditions.

A further issue to be considered with regards to the equation of state of the

reactants is porosity. Porosity plays an important role in the dynamics of shock

waves [135]. The pressure-volume relationship as well as the temperature-pressure

relationship of the Hugoniot curve will be different for a porous explosive than for a

homogeneous explosive of the same density. The importance of porosity in explosive

modelling is discussed by Handley et al. [53, 55].

2.1.3 Products

Returning to the ZND model, following the leading inert shock wave and the re-

action zone is a rarefaction (or Taylor) wave. In this region the products expand

adiabatically. While the timescale associated with the chemical reaction is much

longer than that of the shock wave, the timescale of the rarefaction is much longer

again.

If the detonation is ideal (fast reaction rate) the state at the end of the reaction

zone is the CJ state. This state is on the Crussard curve – the Hugoniot curve

corresponding to the passing of a shock wave and subsequent complete combustion

of the explosive.

It should be noted that it is the equation of state of the products along with the

initial conditions and heat of combustion which determine the CJ state and the CJ

detonation velocity [44, 75]. If the CJ state is measured experimentally, then this

information can be used in the process of determining equation of state parameters.

More details can be found in Chapter 4.

The isentrope corresponding to the subsequent rarefaction wave is known as the

principal isentrope, and is the isentrope intersecting the CJ state. Accurately re-

producing the path of the isentrope in pressure volume space is important if models
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are to correctly predict the effect of a detonation wave on the surrounding mate-

rial. The natural choice of reference curve for the reaction products is therefore the

principal isentrope. The mechanical JWL (Jones-Wilkins-Lee) equation of state

[84, 115] for the detonation products uses this choice of reference curve.

Information about the principal isentrope may be measured using cylinder tests

[60]. The data is obtained by measuring the wall velocity of the cylinder using a

streak camera or Doppler velocimetry. Information about the pressure within the

cylinder can then be inferred via a numerical calculation. This method captures

the post reaction expansion of the detonation products and can measure the path

of the isentrope in pressure volume space. The time scale is too short to measure

temperatures.

The isentrope pressure is fitted to the data using the sum of a power law and one

or more exponential terms depending on the accuracy which is required, and the

quality of fit which can be achieved with a single exponential term [84, 103]. The

reference energy can then be derived from the reference pressure using the standard

thermodynamic relation

p = −
(
∂e

∂v

)
S

. (2.44)

pS(v) = A exp(−R1v) +B exp(−R2v) + Cv−(Γ+1) (2.45)

eS(v) =
A

R1
exp(−R1v) +

B

R2
exp(−R2v)− Cv−Γ

Γ
−Q (2.46)

The free parameter Q is the integration constant. In these equations e is the specific

internal energy and v is the specific volume. The integration constant corresponds

to the ‘zero’ energy of the material. It is the energy of the material in the limit

of large volume. Its value is irrelevant to the properties of the products when

considered in isolation. However a convenient method of encoding the release of

energy which occurs in the transfer of mass from reactants to products is to set Q

to a positive value for the products, while the zero energy of the reactants is set

to zero. The value of Q is thus the energy per unit mass which is released by the

chemical reaction. The other free parameters are A, R1, B, R2, C and Γ. The

choice of symbol of Γ is natural since this corresponds to the Grüneisen gamma.

This is because for an ideal gas equation of state with fixed Grüneisen gamma,

isentropes have the form corresponding to the power law in equation (2.45).
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As a result, the parameter C does not play a role. Its value corresponds to the

entropy of the CJ state, but it does not influence the evaluation of the pressure for

a given volume and energy. This is evident, in that the parameter cancels out when

substituting pS and eS as reference curves in the Mie-Grüneisen equation of state,

with fixed Grüneisen gamma, Γ,

p(v, e) = pS +
Γ

v
(e− eS) (2.47)

= A

(
1− Γ

R1v

)
exp(−R1v) +B

(
1− Γ

R2v

)
exp(−R2v) +

Γ(e+Q)

v

(2.48)

As a consequence, the reference functions for the JWL equation of state are usually

quoted as

pREF(v) = A exp(−R1v) +B exp(−R2v) (2.49)

eREF(v) =
A

R1
exp(−R1v) +

B

R2
exp(−R2v)−Q (2.50)

Γ(v) = Γ0, (2.51)

with a fixed value for the Grüneisen gamma, Γ0.

The principal isentrope serves as an appropriate choice for the reference curve.

For the purposes of modelling however, we must include a method to evaluate states

with a differing entropy. This method must also be accurate if the equation of state

is to correctly model non-ideal detonation waves as well as ideal. For non-ideal

detonation waves, the state following the reaction zone will be at lower entropy

than the CJ state. The following rarefaction wave will consequently occur at lower

entropy than that corresponding to the principal isentrope. We therefore need an

accurate value for the Grüneisen gamma.

For many explosives, no experimental data is available for states away from the

isentrope which can inform a suitable choice of the Grüneisen gamma. The JWL

equation of state therefore assumes a constant value for the Grüneisen gamma.

This is not strictly valid but is the best approximation that can be made if cylinder

test data is to be used [33, 120].

Byers Brown et al. [23, 24] developed a complete equation of state for detonation

products called the Williamsburg equation of state. This was used for the first
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analysis of the ZND model for detonation waves which incorporated temperature

and entropy. In particular this allowed for an investigation into the relative merits of

temperature equilibrium and heat isolation closure rules for the mixture of reactants

and products in the reaction zone.

The Williamsburg equation of state [24] can be expressed as

e =
pv

g(v, σ)− 1
(2.52)

g(v, σ) = 1 +
M∑
j=1

(
αj +

1

1 + βjvσᾱj

)
γj (2.53)

σ = exp

(
S − S0

nR

)
, (2.54)

where σ is a reduced entropy factor. The parameters αj , βj , γj and δj are chosen

such as to fit the calibration data as provided by a thermochemical code. Un-

like many other equations of state used for modelling explosives, the Williamsburg

defines the energy as a function of volume and entropy, and is thus a complete

equation of state. Various alternative fitting forms have been applied for the func-

tion g, which corresponds to the adiabatic gamma. The fitting forms given here are

informed by statistical mechanics considerations. However for practical purposes

simpler forms may be used, including

g(v) = 1 +
A(v)

B(v)
(2.55)

for polynomials in the volume A and B. This form was successfully applied by

Schoch et al. [108] to model the products of EM120D. However in this reduced

form, the ability to calculate temperatures is no longer available.

The calibration of the Williamsburg equation of state uses the output from a

thermochemical ideal detonation code. There is some approximation in the use

of an ideal detonation code, since strictly the results only apply to a system in

chemical equilibrium. A non-ideal detonation will inevitably depart from this to

some degree.

Nevertheless this leverages more data than is typically used for JWL including

temperature and entropy values, thus enabling the calibration of a complete equa-

tion of state for detonation products. Test cylinder data, on the other hand, only

allows for the calibration of an incomplete equation of state such as JWL.
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Braithwaite and Sharpe [22] discuss motivation for the development of the Williams-

burg equation of state in relation to further limitations of the JWL equation of state.

The Williamsburg equation of state is formulated such as to have the correct asymp-

totic behaviour in the extreme thermodynamic limits. While such states may not

be expected to be sampled in the running of a simulation, anomalous behaviour

extreme regimes can cause robustness issues. Well behaved, smooth derivatives

are also essential for calculation of properties such as the sound speed which are

required for the simulation. Their results show that the Grüneisen gamma is depen-

dent on volume, and the constant gamma approximation used by JWL is invalid.

This is of particular importance for non-ideal detonations since states are expected

to be significantly removed from the reference curve.

An additional advantage to the Williamsburg equation of state is that its use is

not dependent on the availability of experimental data for each explosive which is

to be investigated. In some cases cylinder tests are not a viable option, such as

when the critical detonation failure diameter is large. The Williamsburg equation

of state has been shown to produce results as accurate as the JWL equation of state

despite not using experimental data for determining the parameters [40].

The WSD model [129] employs an equation of state of Mie-Grüneisen form for

the products which is extended to facilitate calculation of the temperature following

the same approach as was used for the reactants. This form was first introduced

by Davis [34] and was also used by Aslam [8]. The forms chosen for the reference

functions are

pREF(v) = pc

[
1
2

(
v
vc

)n
+ 1

2

(
v
vc

)−n]a/n
(v/vc)k+a

k − 1 + F (v)

k − 1 + a
(2.56)

F (v) =
2a(v/vc)

−n

(v/vc)n + (v/vc)−n
(2.57)

eREF(v) =
pcvc

k − 1 + a

[
1
2

(
v
vc

)n
+ 1

2

(
v
vc

)−n]a/n
(v/vc)k−1+a

(2.58)

Γ(v) = k − 1 + (1− b)F (v) (2.59)

with free parameters k, b, a, n, vc and pc. The value of k corresponds to the

adiabatic gamma of the equation of state in the large volume limit. The parameters
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values are chosen such as to ensure that the equation of state correctly reproduces

the CJ state and the accompanying principal isentrope. Furthermore the integral

corresponding to the work done by the explosive products as they expand, must

correctly reproduce the amount of work which is the explosive is observed to do

experimentally.

The parameter, b, which affects the Grüneisen gamma is fixed using experimental

data for the Crussard curve which is obtained by measuring overdriven detonations.

Overdriven detonations are detonation waves which are supported by a piston caus-

ing the detonation wave to travel faster than a wave supported solely by the energy

content of the explosive. The state following such a wave is at a higher pressure

than the CJ state but nevertheless lies on the Crussard curve, which is related to

the equation of state of the products.

2.2 Reaction Rate Models

2.2.1 Construction and Calibration of Reaction Rate Models

Construction and calibration of equations of state is a critical step in the endeavour

to simulate explosives accurately. However it is only sufficient to recover accurate

results in the case of one dimensional ZND detonation waves. A key effect which

comes into play in the case of multi-dimensional detonations is the loss of energy

to the surroundings of the partially burnt explosive. This energy is lost in the form

of shock waves which propagate into the inert confining material at a direction not

parallel with the propagation vector of the detonation wave itself. It is therefore

not observed in the context of a one dimensional setup. This process and the

chemical reaction are coupled since any loss of energy contributes to a reduction of

temperature and pressure in the reaction zone.

The calibration process has thus far relied on the independent characterisation

of the reactants and products, and we have as yet not considered the reaction

rate model. The CJ model is built on the assumption that the reaction rate is

fast, and thus the reaction zone can be neglected. While this approximation is

inconsequential as regards the propagation of a wave in one dimension, it does play
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a role in multidimensional detonation waves. The degree to which the wave deviates

from the ZND model is strongly dependent on the width of the reaction zone, which

in turn is a function of the reaction rate. See Chapter 4 for more details.

A wide reaction zone permits the loss of energy from the explosive to a yielding

confiner. As a result of this energy loss, the detonation wave propagates at sub-CJ

velocities. This is to be expected given the dependence of the CJ velocity on the

heat of combustion of the explosive. This sub-CJ wave will furthermore exhibit

lower pressures and temperatures which may in turn leads to a further decrease of

the reaction rate. By this mechanism, a detonation wave may decelerate further

and eventually stop (detonation failure) in the right circumstances.

Faithful simulation of detonation failure therefore necessitates accurate thermo-

dynamic dependence of the reaction rate. Similarly ignition phenomena rely on the

thermodynamic dependence of the reaction rate. For steady detonation waves, on

the other hand, the reaction rate only affects the behaviour of the wave via the pro-

file of the reaction zone. This, combined with the difficulties discussed previously

in establishing what the pressures and temperatures in the reaction zone actually

are, makes it difficult in practice to establish what thermodynamic dependency is

appropriate. Furthermore this relationship implies that it may be possible to use

multiple choices of parameters to run accurate simulations in practice.

A comprehensive review of the reaction rate models which have been proposed was

published by the NIMIC shock modelling group in 2002 [99]. This review emphasises

the variety of reaction models which have been employed over the preceding thirty

years. The review by Handley et al. [55] provides a more recent comprehensive

overview. In general, reaction rate models describe the time derivative of the mass

fraction variable, λ, (used to represent the portion by mass of the explosive which

is unreacted) in the generic form

Dλ

Dt
= f(T, p)g(λ), (2.60)

where the material derivative of the mass fraction variable is dependent on one or

more thermodynamic variables as well as λ which also serves as a reaction progress

variable.
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Some recent models also employ so-called ‘shock state’ variables to express the

reaction rate as a function of the shock strength for a specific piece of material. The

shock state variable is set as the shock wave passes, and is subsequently advected

with the material. An example of this is the model presented by Aslam [8].

The rate of a chemical reaction can be modelled using an expression of Arrhenius

form,
Dλ

Dt
= λA exp

(
−TA
T

)
. (2.61)

This form is motivated by thermodynamics. Using the Maxwell-Boltzmann distri-

bution, the reaction rate can be related to the portion of collisions between particles

in a gas for which the energy associated with the collision exceeds some activation

energy which is related to the activation temperature, TA. In the context of explo-

sives this form is at best an empirical relationship. Firstly, the chemical reaction is

unlikely to occur in a single step, but will instead involve intermediary species. Sec-

ondly, the large variations in pressure and density which occur during the reaction

of an explosive can influence the pathway of the reaction as well as the chemistry of

the product gases. Thirdly, especially for condensed phase explosives, heterogene-

ity of the reactants, will create non-uniform pressure and temperature fields in the

explosive following the shock wave. The average reaction rate over a heterogeneous

domain will not match the reaction rate for a homogeneous material with the same

average temperature.

Historically, pressure dependent rate laws have also been favoured due to their

comparative ease of implementation, and the fact that pressures within the reaction

zone are more easily measured experimentally than temperatures. Furthermore, an

equation of state with which to calculate pressures is already necessitated by the

need to calculate the gradient of the pressure field and is therefore already possible

in all explosive models. Whereas temperatures are not available in the context of

some models.

Nevertheless some models describe the rate as a function of temperature. See for

example Menikoff and Shaw [88] for nitromethane and Aslam [8] for PBX 9502.

Many others use pressure dependence, for example the ignition and growth model

[74] and WSD model [129]. A third option is to use entropy dependence like the

CREST model [51].

33



2 Literature Review

One of the first attempts to calibrate a reaction rate model which could be used

to reproduce a wide range of experimental data was the ignition and growth model

presented by Lee and Tarver [74]. This model describes the rate as being a function

of the pressure and the reaction progress variable. The rate law is constructed using

a sum of separately contributing terms, each of which corresponds to a different

physical phenomenon. Many variations of the model have been used by many

different authors, however, following Lee and Tarver [74], a generalised form can be

expressed as

Dλ

Dt
= I(1− λ)xηr +G(1− λ)xλypz, (2.62)

where η = v0/v1 − 1,

where I, x, y, r, G, z are constants. The specific volumes v0 and v1 correspond to

the initial specific volume of the explosive and the present specific volume of the

unreacted explosive respectively.

The first term corresponds to the ignition part of the ignition and growth model.

It is designed to capture the contribution of hot spots which are generated by the

passing shock wave. The term η represents the relative compression of the unreacted

explosive by the shock wave. The second term on the other hand, is dependent on

the pressure, and describes the subsequent growth of the reaction. The constant

G corresponds to a surface area to volume ratio. The exponent z means that the

pressure may serve as a proxy for other thermodynamic variables which may vary

nonlinearly with pressure, such as temperature.

A variation of the ignition and growth model is used in the WSD model [129]. In

this case the rate law is expressed as

Dλ

Dt
= rISI(λ) + rGSG(λ) + [1− SG(λ)] rB. (2.63)

In this case, rI corresponds to the ignition part, while rG represents the growth

part of the model. The ignition term is

rI = kI

(
ρ

ρ0
− 1− a

)7

(1− λ)2/3H

(
ρ

ρ0
− 1− a

)
. (2.64)

The form of SI(λ) is chosen such that rI dominates for λ > 0.975, in other words

almost completely unburned explosive. The form of rI is such that the explosive
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will ignite or not, as a function of the compression and the free parameter, a, due

to the use of the Heaviside function, H(x). The compression is expressed in terms

of the density, ρ, and the initial density ρ0. This term thus also serves to represent

the shock sensitivity of the explosive that is observed empirically. The bulk of the

reaction is controlled by the growth term, which is itself constructed out of two sub-

terms, one of which is chosen to match ignition experiments, rIG, while the other is

calibrated to match detonation velocities, rDG. The switching function, W (ρSH),

compares the post-shock density, ρSH , to some threshold density ρc, which will be

superseded only by strong shocks as found in detonation waves,

rG = rIGW (ρSH) + rDG(1−W (ρSH)) (2.65)

rIG = kIG

(
p

pCJ

)4.5

λ1/3(1− λ) (2.66)

rDG = kDG

(
p

pCJ

)2

λ1/3(1− λ) (2.67)

where pCJ is the pressure at the CJ state.

An additional term, rB is used to capture the reaction rate at the back of the

reaction zone, and has been designed to reproduce the specific properties of PBX

9502. This serves to capture the effect of coagulation of solid carbon products

which corresponds to energy released on a time scale of order 5 times longer than

the principle sources of energy release. The form of SG(λ) is chosen such that this

term only affects the rate for λ < 0.1, where the explosive is almost completely

burnt.

rB = kB

(
p

pCJ

)
(1− λ)1/2 (2.68)

The free parameters of this model are ρc, kI , kIG, kDG, kB, a, and there are

other degrees of freedom associated with the exponents and the form of the model

itself. The switching functions, SI(λ), SG(λ) and W (ρSH) are expressed using the

hyperbolic tangent functions, such that the overall reaction rate changes smoothly

from one regime to the next.

By setting each of the parameters in accordance with the data from various exper-

iments, it is possible to reproduce a wide range of data with a single parameter set.

While ignition and growth is still one of the most used models [13, 59], it is often
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cited as a model lacking predictive capability [8, 55, 130] – the inclusion of new ex-

perimental data frequently requires a retrospective adjustment of the parameters.

The large number of parameters means that the successful calibration of the model

to fit a set of data does not necessarily justify the specifics of the various terms in

the model. This also implies that the underlying physics has not been captured

correctly. This is especially relevant when the parameter values are chosen based on

a global optimization of the simulation results with respect to experimental data.

A second criticism of the ignition and growth model arises from its use of pres-

sure dependency. On the one hand, pressure dependent models are commonly

implemented, due to the limited availability of experimental data relating to other

thermodynamic properties of the explosive such as temperature. They can be im-

plemented using standard mechanical equations of state, while the implementation

of alternative temperature or entropy dependent models requires suitable equation

of state models. Furthermore, pressure dependent models have proven to be robust

and predictive in practice [108, 129]. The correlation of pressure with other thermo-

dynamic variables, in particular temperature, can be used as physical justification

for pressure dependence. However, this correlation only applies for a limited subset

of possible experiments. For certain experiments it has been demonstrated that

pressure dependence is inappropriate [10]. Temperature dependence, on the other

hand, is motivated by chemical kinetics models, which can be applied much more

generally. The issue with temperature dependent models is that its success relies on

the homogeneity of the temperature field. This will be discussed further in section

2.2.2.

Most experiments are carried out in ambient conditions – the explosive is subject

to a single shock wave before undergoing a chemical reaction. In this case the

state in the unburned explosive is a state on the Hugoniot curve of the ambient

state. On this curve, there is a one to one relationship between pressure and

temperature. The experiments presented by Aslam et al. [10] deliberately avoid

this one to one relationship by subjecting the explosive to a pair of shocks. The

state in the explosive is thus no longer on the single-shock Hugoniot. The results

show that in this case it is no longer appropriate to describe the rate as a function of

pressure only. Aslam [8] has also presented experiments carried out using explosive

at a range of initial temperatures, and the results support this conclusion. The
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experiments sample multiple states of equal pressure and demonstrate that the

states do not correspond to a single value for the reaction rate. These experiments

motivate the use of either temperature or entropy to distinguish between these

states.

A recent experimental method has been presented by Aslam et al. [11], with which

temperature dependent and entropy dependent models may be compared. In this

experimental set up, an initial shock wave is followed by a release wave. The release

wave affects the temperature in the explosive, but leaves the entropy unchanged.

The predictions of an entropy dependent model will therefore be different to those

of a temperature dependent model in this case.

2.2.2 Homogeneous and Heterogeneous Explosives

The discussion above makes an implicit assumption about the homogeneity of ex-

plosives. The equations of state are such that the explosive is described as having

a single uniform temperature on the length scale of computational cells, and thus

the explosive is also assumed to burn homogeneously.

Experiments have shown that the properties of explosives are affected by physics

which occurs on the length scale of micrometre heterogeneities in the explosive. This

has been observed for granular explosives [25, 26]. The properties of homogeneous

explosives such as nitromethane can also be altered through the introduction of

artificial heterogeneities such as glass micro-balloons. The effects arising from the

presence of cavities in explosives have been studied extensively [19, 20, 92, 100].

The size of these cavities is on the scale of micrometres. The computational

power of modern technology means that it is generally prohibitively expensive to

resolve the cavities directly in the context of a simulation of an explosive. Recently,

however, research has been carried out which takes this approach [89].

Much research has been done with the aim of indirectly including these effects

in hydrodynamic simulations [55]. The exact mechanism by which the collapse of

cavities affects the reaction of the explosive is still not fully understood. The most

important mechanism is likely the development of hot spots at which the reaction
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rate is much faster than the in the surrounding comparatively cold bulk material

[92]. However there may be an additional contribution to the overall rate resulting

from the compression of the bulk material which occurs as the hot spots burn [55].

The contribution of temperature diffusion may also be significant.

Analysis on the effect of pores on the macroscopic reaction rate has been carried

out by Levesque et al. [77, 78]. Saurel et al. [105], on the other hand evaluate the

macroscopic reaction rate directly, based on analysis of the evolution of spherical

hot spots. These approaches necessarily lead to the introduction of free parameters

associated with physical unknowns such as the thermal diffusivity. Furthermore

there are unknowns related to the size distribution of the pores. Menikoff has also

discussed the influence of heterogeneities in the explosive via shock waves which

are reflected off impurities [88]. A recent approach relies on the use of a stochastic

reaction rate model [69].

The heterogeneity of explosives has also been used as an argument against re-

action rate models which are a function of temperature only. This is because of

the heterogeneous temperature field arising from cavity collapse in the explosive

following a shock wave. A nonlinear Arrhenius temperature dependence means a

heterogeneous temperature field will have a faster average reaction rate than what

would be predicted by applying the same Arrhenius rate law to the average temper-

ature. As such a heterogeneous explosive is expected to have a faster rate following

a shock wave, than following an isentropic raise in temperature. This dependency

can be accounted for in an empirical rate law through the inclusion of a pressure

or entropy dependent term [83, 87].

Alternatively, this can be handled through the use of shock state dependent reac-

tion rate models [8, 129]. With this approach the reaction rate for a piece of material

of the explosive is determined using the strength of the shock which passed that

piece of material. In other words, a variable is set as the shock wave passes. This

variable is then advected with the flow, and does not change according to the sub-

sequent thermodynamic evolution of the material. This method has been argued

for by James and Lambourn [64]. Their analysis of experimental data yielded a

correlation between local shock strength and the subsequent reaction rate.
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In the case of the WSD model [129], the shock state is used merely as a switch

to distinguish between the ignition regime and the detonation regime. However

the value may also be used as a quantitative variable. An early example of this

approach is the DAGMAR rate form [3], which is a modified Arrhenius rate law,

Dλ

Dt
= λZ0p

n
SH exp

(
−TA
T

)
, (2.69)

with calibration parameters Z0, n and TA. The value of pSH is determined using

the pressure at the time when the explosive begins to burn, after which it is kept

fixed. It is a separate variable to the thermodynamic pressure, which continues

to evolve with the flow. The inclusion of this term allows for the construction of

a model which is strongly dependent on the shock strength, with a comparatively

weak dependence on the subsequent evolution of the state. This can therefore go

some way to capturing the increased reaction rate which occurs on account of the

heterogeneity of the temperature field following a strong shock wave.

A more recent example of this approach is the reaction rate model for PBX 9502

presented by Aslam [8]. In this work, the reaction rate is a product of a pressure

dependent expression and an Arrhenius-like expression,

Dλ

Dt
= Fp(F1 + F2)Fλ, (2.70)

Fp =

{
exp (−(p0/p)

np) , if p > pζ

0 otherwise
(2.71)

F1 = k1 exp(−T1/TSH)(λ+ a1Fp)(1− λ)b1 (2.72)

F2 = k2 exp(−T2/TSH)(1− λ)b2 (2.73)

Fλ = fs +
1

2
(1− fs)

(
1− tanh

(
λc − λ
δλ

))
(2.74)

Here pζ serves to limit the sensitivity of the explosive to weak shock waves. In

this case the dependence on the temperature is kept fixed after the initial shock;

TSH is determined as the shock passes, and then kept fixed. The pressure, p, on

the other hand, corresponds to the thermodynamic variable and continues to vary.

The free parameters in this case are k1, k2, b1, b2, a1. The expression for Fλ is

chosen such that its value will be close to unity for λ > λc and reduce to fs for the

final stage of the reaction. Once again, this behaviour is specifically designed to

reproduce the empirically observed properties of PBX 9502 and is analogous to a
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similar term used in the WSD model. The two terms F1 and F2 permit the model

to be calibrated for both ignition and detonation.

The limitations of pressure dependent models has also been used as motivation for

the development of the entropy dependent CREST model (Computational Reaction

Evolution on entropy (S) and Time) [51, 54, 130]. Entropy dependence offers a

solution to two of the problems discussed above. On the one hand, pure pressure

dependent models are not capable of reproducing experiments which sample states

off the single-shock Hugoniot. On the other hand, the heterogeneity of granular

condensed phase explosives motivates a dependence on the strength of the shock

wave. Entropy dependence addresses both of these issues. Firstly, the entropy

dependence can account for the difference between a single shock and a pair of

shocks. Secondly, CREST does not require explicit shock state dependence. This

is because CREST is usually implemented in models with an ISE (Isentropic Solid

Equation) closure law for the mixture of reactants and products. This closure law

means that no heat will transfer between reactants and products, and so the entropy

of the unburned reactants will not change as the explosive begins to burn (unless

the explosive is subject to a second shock wave). The entropy of the explosive thus

serves implicitly as a shock-state variable.

The rate law is expressed as expressed as a weighted sum of fast and slow com-

ponents of the reaction rate [51],

Dλ

Dt
= m1

Dλ1

Dt
+m2

Dλ2

Dt
(2.75)

Dλ1

Dt
= b1t(1− λ1) (2.76)

Dλ2

Dt
= b2tλ1(1− λ2) (2.77)

b1 = c0Z
c1
S (2.78)

b2 = c3Z
c3
S (2.79)

where ZS is a function of entropy obtained by integrating the heat capacity from

an isentropic reference curve. The form of m1 and m2 is chosen such as to match

experimental data.
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Handley and James [52] have used CREST with the aim of capturing desensiti-

zation effects directly, without the inclusion of a specifically designed term as has

been used with pressure dependent models [36].

2.3 Discussion

The current state of the art in explosive modelling makes use of empirical reaction

rate forms which can be dependent on a number of thermodynamic variables. On

the one hand, pressure dependent models are often convenient to use and produce

accurate results. On the other hand, more complex experiments have revealed the

limited capability of pressure dependency to fully describe the properties of the ex-

plosive. Furthermore, experiments have shown that these issues cannot necessarily

be resolved by simply using temperature in the place of pressure, for example when

heterogeneities are present in the explosive.

The typical approach taken to determine suitable parameter values for these re-

action rate models involves application of an optimization algorithm. This limits

our ability to quantify the correctness of a model. Firstly, the propagation of a

detonation wave is a function of the structure of the reaction zone, and thus only

indirectly a function of the reaction rate model. Secondly, thermodynamic prop-

erties are strongly correlated with each other within the reaction zone. A global

optimization algorithm can therefore find parameters which work well in practice

even if the ideas motivating the original rate law were flawed.

The question of the reaction rate model is naturally strongly dependent on the

equations of state. To address these issues, accurate, reliable temperature-capable

equations of state are essential. An assessment of the effectiveness of a temperature

dependent rate law relies on the accuracy of the temperature values that are used.

In particular, the equations of state should only rely on calibration data which is

available for a wide range of explosives, such that the method presented in this thesis

is widely applicable without significant alteration for each explosive of interest.

The most commonly applied equation of state for the reactants is the shock Mie-

Grüneisen equation of state, however it cannot be extended to incorporate temper-
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atures, since it uses the Hugoniot curve directly as a reference curve rather than

an isentrope. The approach introduced by Davis, on the other hand, successfully

incorporates temperatures into the model. However, the original form of the ref-

erence curves has been shown to only be robust over a narrow range of specific

volumes. Furthermore a porosity model must be used if the equation of state is

to be applied to explosives such as EM120D. The modifications introduced in the

WSD model for PBX 9502, on the other hand, introduce more parameters than can

be justified to model explosives for which less experimental data is available.

In the case of the products, the JWL equation of state is very popular, and has

the advantage of using simple empirical functional forms for the reference functions.

The Davis equation of state for the detonation products, is much more complex.

This is in part because of the difficulty associated with inferring temperatures for

the products using experimental data for the Crussard curve. The Williamsburg

equation of state, on the other hand, was developed with the aim of using data

made available by a thermochemical code. The form of the Williamsburg equation

of state is motivated by statistical mechanics, however this form is unnecessarily

complex for implementation in a hydrocode, where efficient evaluation of the state

is paramount.

Chapter 3 of this thesis is focused on developing equations of state with which tem-

peratures in the reaction zone can be evaluated. The equations of state presented

are shown to be appropriate for modelling both ideal and non-ideal explosives, and

are only reliant on a limited experimental dataset, thus making them applicable to

a wide variety of condensed-phase explosives. There are four key issues which must

be addressed.

Firstly, an equation of state is introduced for the reactants. This extends the

equation of state of Davis [35] with a porosity model. An important distinction

between this method and other work is that it relies only on experimental data which

is generally available. The data used includes only the thermodynamic properties

of the explosive in ambient conditions, and single shock Hugoniot data. While

additional data does exist for some explosives [80], this method is applicable to

other explosives for which such data is unavailable. The method includes a porosity

model, and it is demonstrated that this is necessary for accurate predictions.
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Secondly, a modified JWL equation of state is introduced. The equation of state

is amended to include a temperature reference curve and a volume dependent ex-

pression for the Grüneisen gamma. It is designed with the intention of using a

thermochemical equilibrium code to determine suitable parameters for the equa-

tion of state of the products. This not only allows for temperatures to be calcu-

lated, but furthermore renders the equation of state more accurate for states where

the entropy deviates from that of the principal isentrope, as is expected in non-

ideal detonation waves. The reference curves are however expressed using the same

simple form as is used in the standard JWL equation of state.

The third issue is that of implementing closure laws in the reaction zone. The

equations of state presented in Chapter 3 have been developed while keeping the

need to implement pressure and temperature equilibrium laws in mind. To do so

robustly requires equations of state which are well behaved, and so the mathematical

form for the reference curves must be chosen carefully. In this thesis we present

mathematical forms for the reference curves and demonstrate that these can be

used robustly in practice.

Finally, the validity of temperature equilibrium itself must be considered. Any

heat transfer between reactants and products will affect the temperature of the

reactants and thus will have a knock-on effect on the reaction rate. This is discussed

in Chapter 4. A method is presented with which the amount of heat transfer

expected in the reaction zone of a ZND wave can be directly evaluated. This permits

a direct comparison between the predictions of the model when using temperature

equilibrium and those of a model employing heat isolation, where no heat transfers

between the reactants and products.

To establish the accuracy of the equations of state, we must make some predictions

which can be compared with experimental data. To do this, an empirical reaction

rate is calibrated for simulating the detonation of compliantly confined rate sticks.

The calibration is done via global optimization of the rate law parameters, and thus

given the arguments presented above, does not necessarily justify the rate forms

which were chosen. Nevertheless, this does allow for a rigorous test of the equations

of state. If the rate law calibrated in this way can then be used to predict detonation

velocities in other contexts such as different geometries or different confiners, then
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it demonstrates that the material properties of the explosive are being reproduced

accurately in the simulations.

The general applicability of the calibration methods and equation of state forms

is demonstrated by applying the same method to two explosives with very different

characteristics. Once the accuracy, and validity of the equations of state has been

established, these can be used to address the question of thermodynamic depen-

dence of the reaction rate model.

A systematic approach is required to quantitatively establish the thermodynamic

dependence of the reaction rate. The Arrhenius form is not necessarily suitable in

the case of heterogeneous explosives, where a shock wave may create a heterogenous

temperature field. On the other hand, pressure dependent models have been shown

to fail in the contexts of some types of experiment. This suggests that when pressure

dependent models do work, it is as a result of the correlation between pressure and

other thermodynamic variables. This has led to the development of shock state

models, which effectively introduces a history-dependence on the reaction rate by

advecting additional variables with the flow. The entropy dependent CREST model

is to some degree equivalent to this since the entropy can be used to determine the

strength of the shock wave incident on the material.

Chapter 6 introduces a mechanism with which experimental data from shock to

detonation transition experiments can be interpreted. This mechanism permits

direct evaluation of the reaction rate immediately following a shock wave which

induces a reaction in the explosive. This approach avoids the computationally

expensive optimization procedure which is otherwise necessary to determine the

rate law parameters. The resulting data can be used to quantitatively assess how

the reaction rate depends on the various thermodynamics properties of the shocked

explosive. For example, the reaction rate can be evaluated following a 1GPa shock

wave. An equivalent evaluation can be carried out for a pair of shock waves with an

equal final pressure of 1GPa. If the reaction rates do not match, then this provides

a quantitative justification for the inclusion of other thermodynamic properties

besides the pressure in the rate form.
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3.1 Introduction

The objective of the work presented in this chapter is to improve the robustness

and accuracy of numerical simulations of condensed phase explosives by developing

temperature capable mechanical equations of state (EoS models) for reactants and

products. We aim to develop EoS models applicable to both ideal and non-ideal

explosives. In order to evaluate the velocity of non-ideal detonations, the intention

is to implement the EoS models in a direct numerical simulation which resolves the

mixture of reactants and products in the reaction zone via the implementation of

a temperature equilibrium condition. The EoS models must therefore be suitable

for calculating the temperature.

In addition, for non-ideal detonations, the EoS of the products must be valid even

for states at lower entropy than the CJ or principal isentrope. This is achieved using

a thermochemical equilibrium code (also called an ideal detonation code) IDeX [21],

with which properties of the equation of state can be calculated that are difficult to

measure experimentally. In particular, temperature and the Grüneisen gamma can

be evaluated, and used to calibrate an equation of state. Accurate values for the

Grüneisen gamma ensure that the EoS is valid for states farther from the reference

curve than the JWL EoS which assumes a constant value for the Grüneisen gamma.

Furthermore an equation of state for the reactants which permits estimation of

the temperature is required. A calibration methodology is developed which uses

readily available experimental data. As such the methodology can be applied to a

wide range of explosives.
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The EoS models were calibrated for two explosives. The plastic bonded explosive

PBX 9502 is chosen since it is the subject of many experimental and numerical

studies [8, 63, 129]. The method is also applied to the ANFO based emulsion

EM120D as an example of a non-ideal explosive; the detonation velocity in narrow

rate sticks can deviate from the Chapman Jouguet (CJ) velocity by as much as 35%

(compare with the 5% deviation observed in PBX 9502). EM120D has also been

the subject of a previous numerical study [108].

The EoS model for the reactants is extended with a porosity model. EM120D is

porous (14% by volume) and as such a porosity model is necessary to accurately

predict post-shock temperatures. To a lesser degree, PBX 9502 is also porous. We

demonstrate that the nonlinear D,u relationship which has been measured for PBX

9502 [49] can be successfully reproduced through application of the porosity model.

For both reactants and products a fitting form for the temperature reference

curve consisting of a power law and an exponential term is used. Note that for

an ideal gas at constant entropy the temperature and pressure can be expressed as

a power law in the volume. So for large volumes, for which the exponential term

is negligible, the power law dominates and the material behaves like an ideal gas,

with constant adiabatic gamma and Grüneisen gamma. This fitting form has the

desirable property that the Grüneisen gamma is well-behaved for all volumes: it

remains positive everywhere and does not diverge. As a result, the implementation

of the thermal equilibrium condition is much more robust.

3.2 Mie-Grüneisen

All the equations of state in this work are presented in Mie-Grüneisen form,

p− pREF(v) =
Γ(v)

v
(e− eREF(v)). (3.1)

The Mie-Grüneisen form uses reference functions to constrain the equation of

state such that if one of the pressure or energy are on the reference curve for the

current density then the other property will also be on its respective reference

curves. The reference curves specify a one dimensional path through the equation

of state (which has two degrees of freedom).
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These equations can be used in lieu of a complete equation of state since knowledge

of the Grüneisen gamma (3.2) allows for states away from the reference curves to

be approximated too. It is assumed that the Grüneisen gamma can be expressed

as a function of specific volume only.

Γ = v

(
∂p

∂e

)
v

(3.2)

If the reference curve is chosen to be an isentrope, then the EoS can be supplemented

with a reference function for temperature, TREF. This is because the Grüneisen

gamma can be expressed in terms of the derivative of temperature with respect to

volume at constant entropy

Γ = v

(
∂p

∂S

)
v

(
∂S

∂e

)
v

= − v
T

(
∂T

∂v

)
S

(3.3)

where use has been made of one of Maxwell’s relations.

∂2e

∂S∂v
= −

(
∂p

∂S

)
v

=

(
∂T

∂v

)
S

(3.4)

Note that the Grüneisen gamma is analogous to the adiabatic gamma γ which can

be defined as

γ = −v
p

(
∂p

∂v

)
S

. (3.5)

Furthermore if the reference curve is an isentrope then the reference energy and

pressure functions can be related (although the integration constant may be an

additional degree of freedom)

de|S = −p dv. (3.6)

Finally a value for the specific heat capacity at constant volume, cv, can be used to

evaluate temperatures for states off the reference curve. In this thesis, a constant

value for the heat capacity is assumed. This choice ensures that the temperature

can be expressed as an explicit function of volume and energy. Since this function

must be evaluated for each iteration of the temperature equilibrium root finding

algorithm, this has a significant bearing on the overall performance of the algorithm.
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The equation of state is thus fully constrained with just two reference functions:

one of pREF and eREF and one of Γ and TREF.

p− pREF(v) =
Γ(v)

v
(e− eREF(v)) (3.7)

T − TREF(v) =
e− eREF(v)

cv

pREF(v) = − deREF(v)

dv
Γ(v)

v
= − 1

TREF(v)

dTREF(v)

dv

The methodology above defines an EoS with temperature without having to ex-

plicitly calculate any entropies. The fundamental assumption being made here is

that any changes in entropy (at constant volume) can be modelled using entropy

independent values for the Grüneisen gamma and specific heat capacities.

The frozen speed of sound in a material modelled by such an equation of state

can be calculated using

c2 =

(
∂p

∂ρ

)
S

= −v2

(
∂p

∂v

)
S

(3.8)

= −v2

[(
∂p

∂v

)
e

+

(
∂p

∂e

)
v

(
∂e

∂v

)
S

]
(3.9)

= −v2

[(
∂p

∂v

)
e

− Γ

v
p

]
(3.10)

where, from (3.7),(
∂p

∂v

)
e

=
∂pREF

∂v
+
∂ρΓ

∂v
(e− eREF)− ρΓ

∂eREF

∂v
. (3.11)

If this equation gives a negative value for the square of the sound speed, this

indicates that the functions chosen for the reference curves are unphysical.

While the entropy is usually not used explicitly as a variable, it is nevertheless

possible to calculate isentropic paths on the equation of state and changes in en-

tropy. To calculate the specific internal energy, e, at volume, v, such that the

entropy matches that of a reference state with volume and energy, v0 and e0, we

can simply solve the ordinary differential equation

de

dv
= −p(v, e), (3.12)
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3.2 Mie-Grüneisen

using the reference state as initial conditions. This can always be evaluated nu-

merically using an ODE algorithm such as a Runge-Kutta method. However, if the

reference curve itself corresponds to an isentrope, as is often the case in this thesis,

the expression can be simplified. This is done by defining a reduced pressure and

energy,

p̂ := p− pREF (3.13)

ê := e− eREF (3.14)

If the reference curve is isentropic,

deREF

dv
= −pREF ⇒

(
∂ê

∂v

)
S

= −p̂. (3.15)

We can then derive an explicit expression for the energy on the isentrope,

∂ê

∂v
= −p̂ = −ρΓê (3.16)

ln

(
ê

ê0

)
=

∫ v

v0

−Γ(ṽ)

ṽ
dṽ (3.17)

e(v, S(v0, e0)) = eREF(v) + (e0 − eREF(v0)) exp

(
−
∫ v

v0

Γ(ṽ)

ṽ
dṽ

)
. (3.18)

This expression can be further simplified using the relationship between the Grüneisen

gamma and temperature,

TREF(v) = TREF(v0) exp

(
−
∫ v

v0

Γ(ṽ)

ṽ
dṽ

)
(3.19)

⇒ e(v, S(v0, e0)) = eREF(v) + (e0 − eREF(v0))
TREF(v)

TREF(v0)
. (3.20)

The difference in entropy between two states, (v0, e0) and (v1, e1) can be evaluated

by first calculating the energy of an intermediate state with the volume of one state,

v1, and the entropy of the other, S(v0, e0), using equation (3.20). The change in

entropy can now be expressed as an integral at constant volume with respect to

temperature,

∆S =

∫ T1

T ∗

cv
T

dT, (3.21)

where T ∗ is the temperature of the intermediate state and T1 is the temperature

corresponding to (v1, e1).

T ∗ = T (v1, e(v1, S(v0, e0))) (3.22)

T1 = T (v1, e1) (3.23)
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3 Equations of State

In the case where the heat capacity is independent of temperature,

∆S = cv ln

(
T1

T ∗

)
. (3.24)

3.3 Products

Cylinder test experiments only provide data for the pressure and energy reference

curves of the EoS. Hence, data must be leveraged from elsewhere if a complimentary

reference function for the temperature is to be constructed. An ideal detonation

code (IDeX ) such as that presented by Braithwaite et al. [21] can be used for this

purpose.

An ideal detonation code is a stand-alone program for evaluating the equation of

state of a material composed of atoms of various elements in a specific distribution.

Given the chemical composition of the reactants, we know the relative abundance

of carbon, nitrogen, oxygen and hydrogen and potentially other elements – and

we know that the number of atoms of each element will be conserved during the

chemical reaction. The ideal detonation code then uses equations of state for each

of the chemicals which may form during the reaction. The relative amount of each

chemical product is determined using an optimization algorithm which distributes

the atoms among the chemical products such as to minimize the total Helmholtz

free energy for a given volume and temperature. This minimization is done on the

assumption that the reaction products are in chemical equilibrium. This assumption

is reliant on the hypothesis that the chemical reaction occurs at sufficiently high

temperatures to break all chemical bonds, thus allowing the energetically optimal

combination of chemicals to form in the products.

The energy for any given combination of chemicals is evaluated using empirical

equations of state for each product along with empirical mixing rules which account

for the entropy of mixing. IDeX code uses fluid EoS based on an intermolecular

Buckingham alpha exponential 6 potential.

The atomic abundances for EM120D and PBX 9502 are presented in Table 3.1.

The chemical products considered were CH4, CO, CO2, H2, NH3, H2O, N2, NO, O2.
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3.3 Products

EM120D PBX 9502

C 2.955260000 22.753076846

H 2.475539268 22.248408665

N 9.490254873 22.080185938

O 8.920408921 22.080185938

Si 0.208055925

Cl 1.177559088

Table 3.1: Atomic abundances in moles/kg used to evaluate the equation of state of the

detonation products in IDeX.

With the addition of SiO2 for EM120D, and HCl, Cl2 and C (diamond) for PBX

9502.

Once the equation of state, F (v, T ), of the burnt products can be evaluated, it

is then straightforward to evaluate the Crussard curve – the locus of states in the

explosive following a shock and complete reaction. This is achieved by finding for a

fixed specific volume, v, the temperature, T , such that the specific internal energy

defined as

e(v, T ) = F (v, T )− TS(v, T ) (3.25)

satisfies the Hugoniot equation,

e(v, T )− e0 =
1

2
(p(v, T ) + p0)(v0 − v), (3.26)

where

S(v, T ) = −
(
∂F

∂T

)
v

and p(v, T ) = −
(
∂F

∂v

)
T

(3.27)

and e0 is the mechanical and chemical energy content of the unreacted explosive

with initial pressure and specific volume p0 and v0 respectively. The Crussard curve,

denoted with the subscript C, is thus a function of one variable, conventionally

chosen to be volume. The Crussard pressure can thus be expressed as pC(v).

The CJ state of the explosive is found by determining the CJ volume, vCJ , such

that the Crussard cruve is tangent to the Rayleigh line in pressure volume space,

p′C(vCJ) =
p0 − pC(vCJ)

v0 − vCJ
. (3.28)

More details on the derivation of these equations is presented in Chapter 4.
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3 Equations of State

Finally, data for the principal isentrope which intersects the CJ state can found

by using the equation of state to integrate the ordinary differential equation(
∂e(v, T )

∂v

)
S

= −p. (3.29)

This also requires knowledge of the energy content of the explosive. If in practice

the energy content is not known accurately, it can be reverse engineered using an

experimental value for the ideal detonation velocity. Using empirical EoS models for

each of the product chemicals and mixture rules, an EoS for the product mixture

can be constructed. However, it is cumbersome to use such an EoS directly in

hydrocodes. So instead the code is used to output pressure, energy and temperature

data for the principal isentrope, which is used to calibrate numerical expressions

for the reference functions.

Reference functions of the following form

p(v)|SCJ = avb + c exp(−dv) (3.30)

e(v)|SCJ = − a

b+ 1
vb+1 +

c

d
exp(−dv)−Q (3.31)

T (v)|SCJ = aT v
bT + cT exp(−dT v), (3.32)

where SCJ represents the entropy of the CJ state which lies on the principal isen-

trope are then fit to the data. The energy reference function is obtained by inte-

grating the pressure reference function, with integration constant Q representing

the specific energy in the large volume limit. The value of the constant is arbitrary,

but is by convention chosen to be the specific energy release associated with the

conversion of material from reactants to products. The specific energy of the reac-

tants in the large volume limit is set to zero. The energy release associated with

the reaction from reactants to products is thus accounted for directly in the EoS.

The fitting process is done by fitting the high volume data to a power law first,

and then adding the exponential term as a correction such as to also fit the low

volume data and to satisfy the CJ criterion. In the large volume limit, where

the exponential term goes to zero, the presence of the power law means that the

isentrope approximately takes on the properties of an ideal gas and is well behaved

even at volumes far larger than the volume range of the data used for the fitting.
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Figure 3.1: The form chosen for TSCJ
ensures that the Grüneisen gamma is bounded and

well behaved in both the limit of large volume and the limit of large density.

The values plotted here are for the EoS of the products of PBX 9502, the

parameters of which are presented in Table 3.2.

In order to accurately reproduce the CJ pressure and ideal detonation velocity

it is important that the value and the derivative of the pressure reference function

are exactly reproduced at the CJ state [44, 75]. To this end, the parameters c and

d are fixed in terms of a and b using

pCJ = avbCJ + c exp(−dvCJ)
∂p
∂v

∣∣∣
S,v=vCJ

= abvb−1
CJ − cd exp(−dvCJ)

 ⇒

 d =
abvb−1

CJ −
∂p
∂v |S,v=vCJ

pCJ−avbCJ
c = exp(dvCJ)

(
pCJ − avbCJ

)
(3.33)

The form of the function for the Grüneisen gamma is derived from (3.3) and (3.32).

The chosen form for T |SCJ is shown to be suitable in Figure 3.1 which demonstrates

that for the products of PBX 9502 the Grüneisen gamma is well behaved across

the whole range of volumes – it never diverges, nor does it go negative or close to

zero. This takes the form:

Γ(v) = −vaT bT v
bT−1 − cTdT exp(−dT v)

aT vbT + cT exp(−dT v)
. (3.34)

The physical interpretation of the parameters is discussed further in the following

section since the same form is used for the reactants.

Parameters for the product EoS were determined for the two explosives PBX

9502 and EM120D. The parameters are presented in Table 3.2. Note that for
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3 Equations of State

PBX 9502 EM120D

a 0.2865 17.47

b −3.219 −2.712

c 2.233 × 1011 Pa 2.109 × 1011 Pa

d 10700 kgm−3 6571 kgm−3

aT 264.8 107.5

bT −0.2195 −0.3861

cT 3188 K 1171 K

dT 3053 kgm−3 2025 kgm−3

Q 2.953 MJkg−1 2.446 MJkg−1

cV 2500 JK−1kg−1 2500 JK−1kg−1

vCJ 1/2450.2 m3kg−1 1/1598.4 m3kg−1

pCJ 26.12 GPa 12.00 GPa

DCJ 7755.0 ms−1 6389.5 ms−1

Table 3.2: Parameters for the product EoS models for PBX 9502 and EM120D. The pro-

posed reference curves are shown in Figures 3.2 and 3.3. The first four rows

of parameters correspond to the pressure and energy reference curves, while

the next four (with subscript T ) correspond to the temperature reference curve

(3.32).

PBX 9502, the ideal detonation velocity of 7755 ms−1 from Jackson and Short [63]

was used to calibrate the heat of reaction, since IDeX predicts a slightly higher

ideal detonation velocity of 7933 ms−1. This may be a reflection of the limited

applicability of the chemical equilibrium assumption, and suggests that in this case

not all of the theoretically available chemical energy is released and is available to

sustain the propagation of the detonation wave.

For EM120D, on the other hand, the ideal detonation velocity is taken to be the

one which is predicted by IDeX, as this is found to be in close agreement with what

is expected experimentally. Figures 3.2 and 3.3 show the reference curves along

with the constituent exponential and power law terms. This is to show that the

presented fitting parameters are such that the power law is the dominant term,

especially in the large volume limit.
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Figure 3.2: A fit to the principal isentrope from IDeX for PBX 9502. The principal

isentrope data are given as blue dots. The fit (red) is the sum of the power

law (cyan) and the exponential curve (green). The energy reference curve

also includes a non-zero constant, Q, corresponding to the energy content

of the explosive. Note how the fitting parameters are chosen such that the

exponential term only plays a role in the small volume regime.
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Figure 3.3: A fit to the principal isentrope from IDeX for EM120D.
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Figure 3.4: The EoS calibrated using the ideal detonation code data is used to calculate

the Crussard curve for PBX 9502. It matches the experimental data from

Tang et al. [123] reasonably well. The CJ state is at the intersection of the

Crussard curve with the Rayleigh line.

Having calibrated the EoS to fit the principal isentrope, it cannot be assumed that

the EoS will accurately reproduce the Hugoniot curve for the products (also called

the Crussard curve) for overdriven detonations. These states are at higher entropy

than the principal isentrope, and thus rely on accurate values for the Grüneisen

gamma, as well as an accurate isentrope. Figure 3.4 shows that the EoS for PBX

9502 nevertheless matches the overdriven detonation data from Tang et al. [123]

reasonably well. This serves to validate the calibration.

3.4 Reactants

A methodology presented by Davis [35] can be used to construct an EoS for explosive

reactants using an isentropic reference curve. An equation for the isentrope pressure

is derived using the assumption of a linear D,u relationship (2.26) as is used in the
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3 Equations of State

shock Mie-Grüneisen EoS

D = a+ bu (3.35)

pREF(v) =
ρ0a

2

4b
[exp(4b(1− v/v0))− 1] (3.36)

eREF(v) =
( a

4b

)2
(exp(4b(1− v/v0))− 1) +

ρ0a
2

4b
(v − v0). (3.37)

Note that these expressions for the pressure and energy reference curves do not

diverge in the limit of small volumes, but grow sufficiently quickly to avoid potential

practical issues. The derivation is reproduced in Appendix B.

Data for the volume and pressure on the Hugoniot curve can be used to calibrate

the Grüneisen gamma, Γ. Across a shock wave the entropy increases, and thus

states on the Hugoniot curve lie above the reference curve which is an isentrope.

This is demonstrated mathematically in Chapter 4. The expression for the Hugoniot

curve (4.9),

pH(v) =

pREF(v)
ρΓ − eREF(v) + e0 + 1

2p0(v0 − v)
1
ρΓ − 1

2(v0 − v)
, (3.38)

is justified in Chapter 4. Note, that in practice this calibration process is somewhat

ill-conditioned. Small relative errors in pressure measurements for Hugoniot states

become more significant when the isentrope pressure is subtracted from it. The

fitting process must therefore be carried out with care.

Figure 3.5 shows the isentrope which is used as a reference curve for PBX 9502,

and compares it with the Hugoniot curve. The data for the Hugoniot curve informs

the choice of parameters for the Grüneisen gamma, since the difference between the

curves is a function of the Grüneisen gamma.

The Grüneisen gamma must not diverge or go negative for a thermodynamically

stable EoS [110]. To ensure that this is the case, we fit it with the same form that

was used for the products EoS,

Γ(v) = −vaT bT v
bT−1 − cTdT exp(−dT v)

aT vbT + cT exp(−dT v)
, (3.39)

constructed such that the reference temperature is

TREF(v) = aT v
bT + cT exp(−dT v). (3.40)
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Figure 3.5: The isentrope through the initial state is shown in green. The empty marker

indicates the neat specific volume. The porosity model means that the isen-

trope is flat in between the initial the specific volume and the neat specific

volume. For smaller volumes, the difference in pressure between an isentropic

compression and following a shock wave is evident.

The fitting produre restricts the values of the parameters such as to ensure that

the EoS behaves normally: aT , cT and dT are set to be positive, while bT must

be negative. The values of the parameters can be further constrained by observing

that −bT is the Grüneisen gamma in the limit of large volumes, where the EoS

begins to behave like an ideal gas. As such we expect −bT to have a value close to

the ambient Grüneisen gamma, Γ0,

Γ0 =
βc2

cp
, (3.41)

where β is the ambient coefficient of thermal expansion, c is the ambient frozen

sound speed and cp is the ambient specific heat capacity at constant pressure.

Furthermore we choose initial values for the fitting process such that the power law

is the dominant term. As a result, the EoS will approach ideal gas-like behaviour

in the large volume limit.

3.5 Porosity Model

For porous materials of total specific volume, v0, we define the crushing specific

volume, v00, to be the specific volume of the matrix material - the material excluding
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3 Equations of State

the pores. Compression of the material at low densities requires little work, since

it principally leads to closing of the pores, while the density of the matrix material

remains largely unchanged. Compression at higher density, on the other hand, leads

to compression of the matrix material and requires more work.

The leading shock at the front of a detonation wave compresses the material to

volumes significantly smaller than the crushing volume. As such it is adequate

to adapt the reference curves of the reactant EoS following the snow plow model

[54, 136]. The compressibility of the material at volumes larger than the crushing

specific volume is taken to be infinity. In other words, it is assumed that the integral

of pressure with respect to volume, which represents the work done compressing

the material, is entirely due to the work done for compression beyond the crushing

volume. The reference pressure on the isentrope is thus taken to be zero for larger

volumes.

It is possible to calibrate the EoS such as to match the volume-pressure experimen-

tal data for the Hugoniot curve even without employing any porosity model. How-

ever the temperature and D,u relationship is significantly affected by the explosive

porosity. Figure 3.6 shows how the temperature of the Hugoniot path is increased

if the porosity of the reactants is captured using the method presented here. The

explosive modelled is PBX 9502 with an initial density of 1886 kgm−3. The density

corresponding to the crushing specific volume [37] is taken to be 1942 kgm−3.

Note that when using the porosity model, the parameters representing the EoS

of the solid are chosen such that the EoS of the porous solid is in agreement with

the experimental data. In other words as an intermediate result we recover the EoS

of the non-porous solid. This equation of state could therefore be used to predict

the behaviour of the explosive with a different amount of porosity to that present

in the experimental data. However, no data is available with which to validate

a predictions made in this way. A similar methodology was applied in order to

construct a model for TNT with varying initial density by Erkman and Edwards

[41].

It has been noted before that the D,u relationship for PBX 9502 is not linear

across all shock velocities [115]. Figure 3.7 shows however that an EoS constructed

using a linear fit for the D,u relationship and extended with a porosity model will
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3.6 Temperature of Reactants in the Expansion Regime

match the experimental data for moderate as well as strong shocks. Use of the

porosity model here means a simple linear fit of the D,u data in the strong shock

regime is sufficient to model a wide range of shock strengths. The WSD model

[129], on the other hand, uses a nonlinear fit to the D,u data.

Modelling porosity in this way can be problematic in the weak shock regime. The

speed of sound in the porous reactants under ambient conditions is unphysical. This

is because the compressibility of the porous material is of course finite, but we have

assumed it to be infinite. Furthermore the predicted shock velocity is unphysical

for weak shocks. Figure 3.7 shows that the Hugoniot curve in the D,u space curves

towards zero in the limit of small u. As such the snow plow model must be improved

upon if for example ignition is to be modelled.

More complex models of porous materials, such as the P -α model capture the

effect of porosity for weak shocks much more accurately [1, 28, 57, 86].

The curved shape of the D,u Hugoniot arising from the snow plow model matches

that presented by Lambourn and Handley [72], Menikoff [81], and Schoch [107,

Appendix G] where the porosity is modelled explicitly using a multiphase model.

In the multiphase model, the matrix material is represented by the shock Mie-

Grüneisen EoS which is calibrated using data for the non-porous explosive. The

pores are modelled using the ideal gas EoS.

3.6 Temperature of Reactants in the Expansion Regime

The modelling of explosive reactants poses difficulties when states in the expansion

regime occur [110]. The data available for calibration relate exclusively to states

under compression – which is the regime of interest for modelling shock waves.

However states in the expansion regime can occur in the context of direct numerical

simulation of detonation waves. The usual location of these states is far behind the

detonation wave where the detonation products have rarefied and depressurised to

ambient conditions. If the loss of pressure is fast, the explosive may stop burning

while a small amount of reactants is still present. The pressure in these cells must be

found by applying the usual pressure and temperature closure conditions. The EoS
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Figure 3.6: Comparison of Hugoniot curves when using the porosity model, and when

using the standard EoS for neat materials. The EoS models are compared

with experimental data for PBX 9502 [37, 49]. Both EoS models are calibrated

using the same volume-pressure Hugoniot data. The predicted temperatures

at each volume increase as a result of using the porosity model.
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Figure 3.7: The relationship between shock velocity and flow velocity is affected by the

porosity model. The linear relationship curves towards zero for weak shocks.

In the limit of small shocks, this is clearly not valid, however for moderate

shocks this curve fits the data well [37, 49].

62



3.6 Temperature of Reactants in the Expansion Regime

models must therefore be suitable for finding pressure equilibrium and temperature

equilibrium under these conditions, even though the state has much less energy

than typical cells in the reaction zone.

Other authors have also encountered this problem. Arienti et al. [4] developed an

approach for dealing with large volume states when using the shock Mie-Grüneisen

EoS. Menikoff [82] also introduces a work-around specifically for the expansion

regime. Since states in the expansion regime will only occur far from the front of

the detonation wave, outside the detonation driving zone, the handling of these

states will not influence the predicted detonation velocity. It is only required to

ensure that the model can be applied robustly across the entire domain of the

simulation.

Given the porosity model discussed above, the pressure reference curve is chosen

to be exactly zero for volumes above v00. It is clearly not isentropic in this regime,

as such an additional term (which increases with volume) must be added to the

temperature reference curve for large volumes. This ensures that the coefficient of

thermal expansion,

β =
1

v

(
∂v

∂T

)
p

, (3.42)

is positive for all volumes, including the expansion regime. This is essential for

robust solution of the thermal equilibrium equations.

The form of this additional term required by the temperature reference curve in

the expansion regime is calculated by considering the difference between the new

pREF which has been set to zero for the purpose of modelling the porosity and the

original form, p̃REF,

pREF − p̃REF = ρΓ(v)
TREF − T̃REF

cV
. (3.43)
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The summarized equations for the reactant EoS are

p̃REF(v) =
ρ0a

2

4b
[exp(4b(1− v/v00))− 1] (3.44)

ẽREF(v) =
( a

4b

)2
[exp(4b(1− v/v00))− 1] +

ρ0a
2

4b
(v − v00) (3.45)

T̃REF(v) = aT v
bT + cT exp(−dT v) (3.46)

Γ(v) = −vaT bT v
bT−1 − cTdT exp(−dT v)

aT vbT + cT exp(−dT v)
(3.47)

for v < v00


pREF(v) = p̃REF(v)

eREF(v) = ẽREF(v)

TREF(v) = T̃REF(v)

(3.48)

for v ≥ v00


pREF(v) = 0

eREF(v) = 0

TREF(v) = T̃REF(v)− p̃REF

ρΓ(v)cV

(3.49)

The equation for the Grüneisen gamma is the same as for the products EoS (3.34).

Note that volume-pressure data for the Hugoniot curve are required to calibrate

for the temperature reference curve of the EoS above. For the emulsion explosive

EM120D, these data are not available. We therefore use the Hugoniot curve as

calculated by Schoch [107], where the shock response of the porous material is

modelled using a multiphase model. The parameters for the reactants of both

explosives are presented in Table 3.3.

3.7 Closure Rules for Coexistence of Materials

Modelling of non-ideal detonation waves requires resolution of the DDZ (detonation

driving zone) – only cells in this zone play a role in determining the velocity of

detonation [44, 75]. This zone includes part of the reaction zone, where the explosive

consists of both reactants and products. Since the reactants and products are

modelled using independent EoS models, the coexistence of both materials in the

reaction zone requires careful attention.

We aim to construct an equation of state of the form

p = p(v, e, λ) (3.50)
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PBX 9502 EM120D

a 2970 ms−1 2170 ms−1

b 1.81 1.82

aT 5.141 2.073

bT -0.5371 -0.6867

cT 258020 K 22805 K

dT 19960 kgm−3 10660 kgm−3

ρ00 1942 kgm−3 1400 kgm−3

ρ0 1886 kgm−3 1210 kgm−3

cV 1000 JK−1kg−1 1000 JK−1kg−1

Table 3.3: Parameters for the reactant EoS models for PBX 9502 and EM120D.

with which to evaluate the pressure in the explosive. If the mass fraction variable,

λ, is either zero or one, then this equation of state must yield the same results

as would be obtained using the equation of state for the reactants or products

respectively. In the case where the explosive is partially burnt, and both reactants

and products coexist, the pressure must depend on both equations of state. It is

also necessary to invert the equation of state, such that the energy can be evaluated

for a known pressure.

Energy and volume are extensive variables and can be explicitly expressed in

terms of the energy and volume of the constituents of the mixture. The mixing

rules for the two-material mixture are presented here along with general equations

of state of Mie-Grüneisen form

v = λvα + (1− λ)vβ (3.51)

e = λeα + (1− λ)eβ (3.52)

pk − pk,REF(vk) = ρkΓk(vk)(ek − ek,REF(vk)) for k ∈ {α, β}. (3.53)

The subscripts distinguish the reactants, α, from the products, β. Variables

without a subscript refer to the properties of the two-material mixture, which is

collectively referred to as the explosive. Equation (3.51) expresses the explosive

specific volume, v, as a combination of the material specific volumes, vα and vβ.

This equation is an average weighted by the mass fraction, λ. The derivation of
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3 Equations of State

this relation is explained fully in Appendix C. The specific internal energy of the

mixture, e, of the three-material system (3.52) is defined using the sum of the

specific internal energies contributions from each of the reactants and products, eα

and eβ, weighted by the mass fraction. Note that to calculate the specific internal

energy from the total specific energy, E, we can simply use

e = E − 1

2
u2, (3.54)

on the assumption that the materials have equal flow velocity, u.

Coexisting materials will reach pressure equilibrium and temperature equilibrium

given sufficient time. The time scale on which pressure equilibrium is reached is very

fast, typically taken to be less than 1µs. The assumption of pressure equilibrium

is applied almost universally in the literature. The temperature equilibrium time

scale, however, may be of order a thousand times as long and is not necessarily

fast in comparison to the time scale associated with the detonation wave. Davis

[137, chap. 3] and Stewart et al. [121] discuss the merits of various closure laws

that could be used in place of temperature equilibrium. Matignon et al. [79] discuss

various such laws and their effect on detonation shock dynamics.

The pressure equilibrium closure condition can be used with the energy mixture

rule (3.52) and the equations of state to express the pressure, p, as

e = p

(
λ

ραΓα(vα)
+

1− λ
ρβΓβ(vβ)

)
+ λREFα +(1− λ) REFβ, (3.55)

where

REFk =
−pk,REF(vk)

ρkΓk(vk)
+ ek,REF(vk) for k ∈ {1, α, β}.

The unknowns in this equation are p, vα and vβ. The mixture law (3.51) reduces

the number of degrees of freedom to two. One additional closure condition is still

required.

Implementation of a temperature equilibrium condition is achieved by using the

difference in temperatures as an objective function for a nonlinear root-finding

algorithm,

f(vα) = Tα(p, vα)− Tβ(p, vβ), (3.56)

where

vβ =
v − λvα
1− λ . (3.57)
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The temperatures are calculated using

Tk(vk, p) = Tk,REF(vk) +
p− pk,REF(vk)

ρkΓk(vk)cv,k
, (3.58)

and the pressure is calculated using (3.55).

To invert the equation of state (3.50) and calculate the energy when the pressure is

known, we can solve the temperature equilibrium equation (3.56) directly. Equation

(3.55) is only required to calculate the energy once the root has been found.

If the mixture consists of mainly products (λ < 0.5) then vα is taken as the

independent variable, and vβ is calculated using (3.57), while for mixtures with

mainly reactants (λ > 0.5), vβ is chosen as the independent variable. This is

necessary because evaluating vβ using (3.57) is ill-conditioned for λ close to one,

since it involves subtracting two numbers of almost equal magnitude.

An alternative to temperature equilibrium is the heat isolation condition, where

it is assumed that no heat transfer occurs between the reactants and products.

Usually this is implemented in practice by imposing a fixed entropy for the shocked

reactants. Of course the entropy is expected to change as a result of passing shock

waves. Implementing such a closure condition therefore requires special handling

of the state in the presence of shock waves, or a set up in which it can be assumed

that the explosive is not shocked once it has begun to react. The objective function

can be defined as

f(vα) = pα(vα, eα(vα, S(v0, e0)))− pβ(vβ, eβ) (3.59)

where vβ and eβ are defined by the mixture rules (3.51) and (3.52), and eα is calcu-

lated using equation (3.18). The reference values v0 and e0 are used to determine

the entropy of the reactants. For isentropic flow, these values can be advected with

the flow. In the presence of shocks however, these values must be updated to reflect

the change in entropy.

Inversion of an equation of state defined using this closure condition can be done

by solving

f(vα) = p− pα(vα, eα(vα, S(v0, e0))), (3.60)
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where pα represents the pressure as calculated using the equation of state of the

reactants, while p is the known pressure. Finally the energy is calculated using

equation (3.55).

3.8 Sound speed in the Mixture of Materials

A method is also required to evaluate the speed of sound in the mixture of materials.

The form used for the speed of sound in a single material (3.10), is inconvenient to

apply in this case. This is because the pressure is only known implicitly – we can

evaluate the pressure, but cannot express the pressure explicitly.

It is more convenient to derive the speed of sound using the following expression

for an infinitesimal change in energy on an isentrope.

de =

(
∂e

∂p

)
v

dp+

(
∂e

∂v

)
p

dv (3.61)

−p =

(
∂e

∂v

)
S

=

(
∂e

∂p

)
v

(
∂p

∂v

)
S

+

(
∂e

∂v

)
p

(3.62)

⇒ c2 = −v2

(
∂p

∂v

)
S

= v2
p+

(
∂e
∂v

)
p(

∂e
∂p

)
v

. (3.63)

The derivatives of the specific internal energy can be evaluated using the mixture

rule for the energy (3.52)

e = λeα + (1− λ)eβ (3.64)(
∂e

∂p

)
v

= λ
∂eα
∂p

+ (1− λ)
∂eβ
∂p

(3.65)(
∂e

∂v

)
p

= λ
∂eα
∂vα

∂vα
∂v

+ (1− λ)
∂eβ
∂vβ

∂vβ
∂v

(3.66)

=
∂eα
∂vα

+
∂eβ
∂vβ

(3.67)
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3.9 Approach for robust solution of the root-finding

problem

Solving nonlinear equations like those introduced here can be problematic given

the limited applicability of the EoS models. It cannot be guaranteed in general

that a solution will exist. Furthermore, care should be taken, in view of the fact

that mathematical solutions may exist which are physically invalid. In particular

the negative density domain may have mathematical solutions which are physically

meaningless. Depending on the EoS models, regions of negative temperature or

negative pressure can also cause the root-finding algorithm to fail.

The solution is found by applying a numerical nonlinear root-finding method.

This is done using a modified version of Brent’s method. Brent’s method uses the

secant method principally, but resorts to the bisection method under certain con-

ditions, thus guaranteeing convergence provided a root exists. We modify Brent’s

method slightly in order to use the Newton-Raphson method in place of the secant

method.

Initially a volume range is defined in which to search for the solution. The objec-

tive function is evaluated along with its derivative in order to carry out an iteration

of the Newton-Raphson method,

xn+1 = xn −
f(xn)

f ′(xn)
. (3.68)

If the new value for the independent variable, xn+1, is not inside the search space,

we instead resort to the bisection method. Note that if an iteration of the Newton-

Raphson method is successful, the function evaluation is also used to update the

search space, thereby continuing to use the bisection method in parallel. It is

also possible to take advantage of thermodynamic understanding of the objective

function. For example, when solving equation (3.56), we can deduce that in the limit

of large vα, we have Tα > Tβ and therefore f will be large and positive. Similarly

for small vα, we expect f to be large and negative. As such, the derivative of the

objective function is expected to be positive over the physically valid volume range.

This information can be used to further improve the robustness of the root-finding

algorithm.
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In practice it was found that the great majority of the iterations of the method

proceed according to the Newton-Raphson method. The computationally expensive

evaluation of the derivative required by Newton-Raphson (which would not be

necessary using standard Brent’s method) is therefore worthwhile, given that the

Newton-Raphson method converges quadratically. This is faster than the usual

form of Brent’s method which utilises inverse quadratic interpolation, the order of

convergence of which is ≈ 1.839.

Note that the computational cost of evaluating the derivative of equation (3.56)

can be greatly reduced by evaluating the function and its derivative together, thus

eliminating multiple superfluous evaluations of the various reference functions.

The first consideration when establishing a suitable search domain should be

the requirement that the specific volume of each material must be positive. This

restriction can be expressed as

λvα < v or (1− λ)vβ < v. (3.69)

In other words the volume occupied by material α cannot be greater than the total

volume occupied by the mixture. If vα violates this restriction the corresponding

value for vβ will be negative. This is easily understood when it is considered that

equation (3.51) is an addition of volumes, each of which must necessarily be positive.

This is the fundamental reason that the set of equations is not guaranteed to

have solutions. If equation (3.56) is considered on its own (assuming the pressure

has some fixed value) without any restrictions on the specific volumes, then it is

guaranteed to have solutions for well behaved EoS models.

As the density of a material approaches zero, the temperature will also approach

zero. In doing so the density of the other material will increase, and its temperature

will accordingly increase. At some point these temperature curves are bound to

cross; this is the point of temperature equilibrium. However this crossing point

may be in the region that has been excluded by the restrictions on density (3.69).

It is thus not realistic to guarantee that the problem will have solutions for an

arbitrary state. We can however ensure that the equations will have a solution for

all realizable states by ensuring the thermodynamically consistent behaviour of the

EoS models in the limits of large and small volumes.
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Firstly, the Grüneisen gamma must be positive and bounded for all possible vol-

umes accessed by the simulation. The form of the fitting function chosen for TREF

ensures that this is the case as shown in Figure 3.1 which demonstrates that the

limiting behaviour of the Grüneisen gamma is appropriate for large volumes as well

as large densities.

Secondly, the temperature must increase monotonically with volume at any fixed

pressure. In other words the coefficient of thermal expansion

β =

(
∂T

∂v

)
p

(3.70)

must be positive. This can be verified for given EoS parameters before running the

simulation. For the product EoS the isobars were found to increase monotonically

across all volumes, while for the reactants the isobars were found to have a mini-

mum, but at sufficiently low volumes to play no role in the simulation. To ensure

that anomalous roots at these unphysically small volumes do not appear, smaller

volumes are explicitly excluded from the search domain.

In this work we (somewhat arbitrarily) restrict the domain for the specific volume

using the state with a pressure of 1.5 times the von Neumann pressure and zero

temperature. This is the volume, vk,min, such that

0 = Tk,REF(vk,min) +
1.5pvN − pk,REF(vk,min)

ρkΓk(vk,min)cv,k
(3.71)

for k ∈ {α, β}. This choice was found to eliminate any unphysical behaviour in the

small volume limit, while ensuring that the physical solution was never wrongly

excluded from the search domain. No further explicit limitation on the maximum

volume is required, since this is already controlled by the physical limits imposed

by (3.69). Furthermore the equations of state are designed such that in the limit

of large volumes, the behaviour approaches that expected of an ideal gas.

Using a minimum volume for both equations of state also means that the physical

limits do not have to be considered explicitly. The maximum volume allowed for vα

is such that material the specific volume for material β is vβ,min, in which case vα

must necessarily satisfy the physical maximum (3.69). The search domain is thus

vα,min ≤ vα ≤
v − (1− λ)vβ,min

λ
. (3.72)
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vα,min v/λ
vα

vβ,min

vβ

ρα,maxλ/ρ

ρα

ρβ,max

0

ρβ

Figure 3.8: The dashed lines indicate where the restrictions on the domain are applied.

The blue dashed lines indicate the limitation imposed by the equation of

state for material β. The red dashed lines are the equivalent for material α.

The black arrow indicates the region of the domain that will yield physical

solutions. The left hand plot uses specific volumes while the right plot is in

terms of density.

Figure 3.8 illustrates the search domain using both specific volume as well as

density. The black dashed lines in figure 3.8 indicate the physical limit which will

exist irrespective of the validity of the equations of state that are used. These

restrictions on the search domain were consistently found to be sufficient to ensure

that exactly one root of the thermal equilibrium existed within the domain to be

searched.

3.10 Conclusions

In this chapter, equations of state have been developed for modelling the reactants

and products of explosives. The focus throughout has been on ensuring that the

resulting forms can be applied in practice to a wide range of explosives. This means

the calibration process to determine parameters must only rely on readily available

experimental data. This has been addressed, firstly, by adopting a method which

infers information about the temperature in the shocked explosive directly from

Hugoniot data. Explicit inclusion of a porosity model, means the method can also

be applied to porous explosives. Secondly the equations of state must be suitable
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for both ideal and non-ideal explosives. This is addressed through the use of the

ideal detonation code to calibrate a modified JWL equation of state, which permits

more accurate values for the Grüneisen gamma than is possible with the standard

JWL form.

Finally, the mathematical forms are chosen with the aim of ensuring that a ther-

mal equilibrium closure law can be implemented in a hydrocode and used to run

simulations robustly in practice.

The reactant EoS was developed following Davis [35] and is calibrated using exper-

imental data for the Hugoniot curve, thus reproducing the desired shock-response

behaviour. The temperatures are derived solely from the Hugoniot data and the

thermodynamics of the explosive in ambient conditions, since there is very limited

thermal data available for explosive reactants. The EoS explicitly accounts for the

influence of porosity on the post-shock temperatures using the snow plow model.

The product EoS is an adaptation of the JWL EoS which accommodates eval-

uation of the temperature. The reference curves are calibrated to data for the

principal isentrope from the ideal detonation code IDeX [21]. The ideal detonation

code requires the chemical composition of the explosive as well as the energy con-

tent of the explosive in comparison to the detonation products. Note that if the

energy content is unknown, then an experimental measurement of the ideal velocity

of detonation can be used instead.

Use of the ideal detonation code not only permits the calculation of temperatures

but more accurate values for a volume-dependent Grüneisen gamma. This is im-

portant, since in non-ideal detonation waves the state of the products is expected

to lie below the reference curve of the EoS. Away from the reference curve, the

validity of the EoS relies on an accurate expression for the Grüneisen gamma.
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4.1 Introduction

In the previous chapter we discussed how to construct and calibrate equations of

state suitable for faithful modelling of explosives. The rationale for this was based

on the structure of ZND waves as predicted by the one dimensional ZND theory

and the information which can be obtained from experimental measurements. In

this chapter we will assume that the equations of state for both the reactants and

products are known. We present a general methodology to calculate the structure

of the ZND wave following Lee [75]. Furthermore, a method is presented to numer-

ically calculate the structure of the reaction zone given a reaction rate model. The

methods presented in this chapter will be applied to calculate the ZND structure

of the explosives studied in this thesis directly. In Chapter 5 the numerical results

will be compared to the results of this chapter in order to validate the numerical

methods.

4.2 Inert Shock Waves

The ZND theory is an extension of the CJ theory, which in turn is derived through

application of the Rankine-Hugoniot conditions. The Rankine-Hugoniot conditions

are an expression of the fact that the conservation of mass, momentum and energy

apply across a discontinuity in the flow.

It is assumed that the jump discontinuity (or shock) is steady, which is to say

that the discontinuity propagates at a steady velocity, and the states before and

after the discontinuity are constant. For each conservation law the flux flowing into
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the shock from the unshocked fluid must equal the flux leaving the shock on the

other side.

Since only relative velocities are significant, the velocity of the unshocked fluid

can be arbitrarily set to zero without loss of generality. The unshocked fluid is

taken to have density ρ0 and pressure p0. The density, velocity and pressure of the

shocked fluid are labelled ρ, u and p. The speed of propagation of the shock itself

is D and the specific internal energies for the unshocked and shocked fluid are e0

and e respectively. The conservation of mass implies that

ρ(D − u) = ρ0D (4.1)

since a mass of ρ0D is passed by the shock per unit time. Momentum conservation

leads to

p− p0 = uρ0D, (4.2)

where we have equated the force across the shock wave (the pressure difference) with

the momentum gained by the fluid through which the shock has passed. Finally the

work done by the force in pushing the shock, pu, must equal the change in energy.

As the shock passes, the fluid gains both kinetic and internal energy,

pu =

(
1

2
u2 + e− e0

)
ρ0D. (4.3)

We wish to characterise the state behind the shock in terms of the initial state

and the shock’s propagation speed. Eliminating u from equations (4.1) and (4.2)

gives the Rayleigh line:

p− p0 = ρ2
0D

2 (v0 − v) (4.4)

where v0 and v represent the specific volume before and after the shock respectively.

When plotted in pressure volume space, the Rayleigh line is a straight line passing

through the initial state p0, v0 and the final state p, v. The line has a gradient

which is proportional to the shock velocity, D.

Eliminating D in place of u yields the hyperbola,

u2 = (p− p0)(v0 − v), (4.5)
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which has a unique intersection with the Rayleigh line. In other words, D and u

are sufficient to fully specify the state of the shocked fluid.

The position of the final state can be calculated as the intersection between the

Rayleigh line and the Hugoniot curve, which is derived by eliminating D and u

from equations (4.1) to (4.3),

pu2 = (
1

2
u2 + e− e0)(p− p0) (4.6)

⇒ e− e0 =
1

2
(p+ p0)(v0 − v). (4.7)

Using an equation of state of Mie-Grüneisen form,

p− pREF(v) = ρΓ(e− eREF(v)), (4.8)

the post-shock pressure, pH , can be expressed as a function of the post-shock specific

volume,

pH(v) =

pREF(v)
ρΓ − eREF(v) + e0 + 1

2p0(v0 − v)
1
ρΓ − 1

2(v0 − v)
. (4.9)

Notice that the Rayleigh line is a representation of the path of the thermodynamic

state as the shock passes, because it relates to the mechanical equilibrium of the

fluid. The Hugoniot curve, on the other hand, uses the conservation of energy which

is only expressed in terms of the initial and final states. As a result the Hugoniot

curve does not represent the path, but the locus of all possible final states.

Weak shock waves, associated with a small change in specific volume, are nothing

but isentropic sound waves. Stronger shock waves are associated with an increase

in entropy and propagate faster than the speed of sound in the unshocked material

in front of the shock. For shock waves with an associated decrease in the specific

volume from v0 to v, the increase in entropy across the shock front is O((v0− v)3).

To demonstrate this we introduce a Taylor expansion of the pressure on an isen-

trope, around a reference state (v0, p0),

pS(v) = p0 +

(
∂p

∂v

)
S

(v − v0) +
1

2

(
∂2p

∂v2

)
S

(v − v0)2 +O((v − v0)3). (4.10)
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Assuming that the energy at the reference state is e0, the energy on the isentrope

is given by

eS = e0 +

∫ v

v0

−p dv

= e0 + p0(v0 − v)− 1

2

(
∂p

∂v

)
S

(v0 − v)2 +
1

6

(
∂2p

∂v2

)
S

(v0 − v)3 +O((v0 − v)4).

(4.11)

On the other hand, using equation (4.7), the energy on the Hugoniot curve is related

to pressure by

eH = e0 +
1

2
(pH + p0)(v0 − v)

= e0 + p0(v0 − v)− 1

2

∂pH
∂v

(v0 − v)2 +
1

4

∂2pH
∂v2

(v0 − v)3 +O((v0 − v)4). (4.12)

The quadratic terms in the expansions are equal in the limit as v → v0, since(
∂p

∂v

)
S

=

(
∂p

∂v

)
e

+

(
∂p

∂e

)
v

(
∂e

∂v

)
S

(4.13)

=

(
∂p

∂v

)
e

− ρΓp, (4.14)

while, using equation (4.12),

∂pH
∂v

=

(
∂p

∂v

)
e

+

(
∂p

∂e

)
v

∂eH
∂v

(4.15)

=

(
∂p

∂v

)
e

− ρΓp0, (4.16)

and at v = v0, p = p0 by definition. If follows that

eH − eS = O((v0 − v)3). (4.17)

Using the equation of state itself, this in turn implies that

pH − pS = O((v0 − v)3) (4.18)

⇒
(
∂2p

∂v2

)
S

=
∂2pH
∂v2

. (4.19)

Finally, subtracting equation (4.11) from equation (4.12), the increase in entropy

can be quantified as

eH − eS =
1

12

(
∂2p

∂v2

)
S

(v0 − v)3 +O(v0 − v)4), (4.20)
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from which it is apparent that the convexity of the isentrope is sufficient to guar-

antee that weak shock waves will be associated with an increase in entropy.

Furthermore, the speed of a shock wave can be expressed as

D2 = v2
0

p− p0

v0 − v
(4.21)

= v2
0

p0 +
(
∂p
∂v

)
S

(v0 − v)− p0

v0 − v
+O(v0 − v) (4.22)

= c2 +O(v0 − v), (4.23)

where c is the sound speed at the reference state, (v0, p0).

4.3 Reactive Shock Waves

In the case of a detonation wave, additional energy is released by the combustion

of the explosive. The Hugoniot equation (4.7) must be adjusted to account for this

additional energy. In practice this is done implicitly, by using independent equations

of state to describe the state in the reactants and products. The equation of state

of the products is used for the final state at the back of the wave. The initial

internal energy, however, is calculated using the equation of state of the reactants.

The Crussard curve is the name given to shock locus after the inclusion of the heat

of combustion. This is the equivalent of the Hugoniot curve for inert shock waves.

The Crussard curve is sometimes described as the Hugoniot curve of the products.

The Crussard curve is a function of the initial specific internal energy, eα,0, which

is calculated using the equation of state of the reactants. However, since the initial

specific internal energy is usually very small in comparison to that on the Crussard

curve, this dependence is not very strong. The pressure on the Crussard curve, pC ,

is primarily dependent on the equation of state of the products,

pC(v) =

pβ,REF(v)
ρβΓβ

− eβ,REF(v) + eα,0 + 1
2p0(v0 − v)

1
ρβΓβ

− 1
2(v0 − v)

. (4.24)

The reference functions of the products equation of state are those denoted with the

subscript β. Faithful reproduction of the final state at the back of the ZND wave
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Figure 4.1: The Hugoniot curve and Crussard curve are shown in pressure volume space.

The dotted line is the Rayleigh line, which is tangent to the Crussard curve.

This corresponds to the slowest wave which intersects the Crussard curve.

The intersection of the Rayleigh line with the Crussard curve is the CJ state.

The von Neumann state is at the intersection of the Rayleigh line with the

Hugoniot curve. This plot uses the equations of state for EM120D as presented

in Chapter 3.

(also known as the CJ state) is thus primarily reliant on the products equation of

state.

Just as the Hugoniot curve is a locus of possible final states following the passing of

a shock wave, the Crussard curve is similarly a locus of possible final states following

a detonation wave. Empirically, a self-sustaining detonation wave will propagate

at the slowest velocity which is consistent with a final state on the Crussard curve.

This is known as Chapman’s minimum velocity criterion. The justification for this

choice was initially based on empirical observations. In the context of Figure 4.1,

equation (4.4) tells us that the slowest wave is the wave with the shallowest gradient

(negative gradient closest to zero) in pressure volume space. Chapman’s criterion

is thus equivalent to the statement that the Rayleigh line corresponding to a self-

sustaining detonation is a tangent to the Crussard curve. The intersection point is

the point at the back of the detonation wave, known as the CJ state.
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4.3 Reactive Shock Waves

As an aside, note that in this chapter we are only concerned with ZND waves,

which occur in ideal explosives or one dimensional geometries. Non-ideal detona-

tions in multi-dimensional geometries, where energy is lost to the environment, will

propagate at speeds slower than those predicted using the ZND model.

To calculate the CJ state, we apply a nonlinear root finding method to calculate

the CJ volume, vCJ , which satisfies an equation relating the gradient of the Crussard

curve with the initial conditions,

∂

∂v
pC(vCJ) =

p0 − pC(vCJ)

v0 − vCJ
. (4.25)

The CJ state can be used to calculate the velocity of the detonation wave, DCJ ,

using the equation of the Rayleigh line (4.4).

One possible justification for Chapman’s criterion is the principle of minimum

entropy [71]. The entropy increase associated with a shock wave is a strictly mono-

tonically increasing function of the shock speed. The slowest wave is therefore

the wave with the smallest associated increase in entropy. This implies that the

Rayleigh line for a self-sustaining detonation is not only tangent to the Crussard

curve, but also tangent to an isentrope at the same point.

Jouguet [65], on the other hand, proposed that the state at the back of the

detonation must be a sonic point. This choice is motivated by the experimental

observation that the dynamics of the flow downstream of the detonation wave does

not have any effect on the detonation wave itself.

We demonstrate here, with reference to Fickett and Davis [44] that these choices

are equivalent. We show that if an isentrope of the products is tangent to the

Rayleigh line at the CJ state then this state is indeed a sonic point. To show that

the CJ state is a sonic point we need to show that the velocity, u, plus the sound

speed, c, is equal to the propagation velocity of the wave, D,

u+ c = D. (4.26)

From the Rankine-Hugoniot conditions we have that

D2 = −v2
0

p− p0

v − v0
(4.27)

u2 = −(p− p0)(v − v0) (4.28)
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where v and p refer to the CJ state and v0, p0 refer to the initial conditions. Using

the assumption that the isentrope is tangent to the Rayleigh line, the speed of

sound can be related to the gradient of the Rayleigh line,

c2 =

(
∂p

∂ρ

)
S

= −v2

(
∂p

∂v

)
S

= −v2 p− p0

v − v0
. (4.29)

⇒ (u+ c)2 = u2 + c2 + 2uc (4.30)

= −(p− p0)(v − v0)− v2 p− p0

v − v0
+ 2

√
v2
p− p0

v − v0
(p− p0)(v − v0)

=
p− p0

v − v0

[
−(v − v0)2 − v2 + 2v(v − v0)

]
= −v2

0

p− p0

v − v0

= D2

⇒ u+ c = D (4.31)

Chapman’s criterion of minimum velocity is thus equivalent to Jouguet’s sonic

criterion, which states that the state at the back of the detonation wave is a sonic

point.

4.4 The Reaction Zone

Having established the pressure and volume at the CJ state at the back of the

detonation wave, we also know the propagation speed of the wave. We can use

this information to calculate the structure of the wave. The rise time of the shock

wave propagating into the explosive is much shorter than the time scale of the com-

bustion. The state immediately following the shock wave, but before the explosive

has begun to burn is known as the von Neumann spike, and is the state with the

highest pressure and density in the wave. This state is on the Hugoniot curve for

the inert reactants, and can be determined using the shock wave speed, DCJ , and

the equation of state of the reactants. The specific volume at the von Neumann

spike, vvN , will be such that

ρ2
0D

2
CJ =

pH(vvN )− p0

v0 − vvN
, (4.32)
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4.4 The Reaction Zone

where pH is the Hugoniot curve of the inert reactants.

Between the von Neumann state and the CJ state is the reaction zone, where

the explosive is partially burnt. Mechanical equilibrium implies that states in the

reaction zone lie on the Rayleigh line in between the von Neumann spike and the

CJ state. Furthermore, each state in the reaction zone will lie on a Hugoniot curve

corresponding to the amount of energy which has been released by the chemical

reaction up to that point. For each value of λ, there is a corresponding Hugoniot

curve which lies between the Hugoniot of the inert reactants and the Crussard

curve.

Using equations of state of Mie-Grüneisen form for the reactants (with subscript

α) and the products (with subscript β), the specific internal energy for a mixture

of reactants and products in pressure equilibrium is

e = λeα(vα, p) + (1− λ)eβ(vβ, p) (4.33)

= λREFα +(1− λ) REFβ +p

(
λ

ραΓα(vα)
+

1− λ
ρβΓβ(vβ)

)
(4.34)

where

REFk =
−pk,REF(vk)

ρkΓk(vk)
+ ek,REF(vk) for k ∈ {α, β}.

This can be substituted into the Hugoniot equation

e− e0 =
1

2
(p+ p0)(v0 − v), (4.35)

to yield

pH(v, λ) =
e0 − λREFα−(1− λ) REFβ +1

2p0(v0 − v)
λ

ραΓα(vα) + 1−λ
ρβΓβ(vβ) − 1

2(v0 − v)
. (4.36)

This is the Hugoniot curve corresponding to a partial burn of the explosive. For

each specific volume, the pressure on this Hugoniot curve lies between the Hugoniot

curve of the inert reactants and the Crussard curve corresponding to a complete

reaction. Each of these Hugoniot curves will necessarily intersect the Rayleigh line

somewhere in between the von Neumann state and the CJ state. The partial burn

Hugoniot curves for EM120D are plotted in Figure 4.2.
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Figure 4.2: The partial burn Hugoniot curves for EM120D are plotted for several values

of λ. Note that the curve for λ = 1 corresponds to the Hugoniot of the inert

reactants, while the λ = 0 curve is the Crussard curve corresponding to a

complete reaction.

Equation (4.36) has unknowns vα, vβ, v and p, so must be solved along with the

mixture rule and the temperature equilibrium condition,

v = λvα + (1− λ)vβ (4.37)

Tα(vα, p) = Tβ(vβ, p). (4.38)

This is done by a method analogous to that presented in Chapter 3 but with a

different expression for the pressure. Either vα or vβ is chosen as the independent

variable. A nonlinear root finding method is used to find the value of the indepen-

dent variable such that the temperature equilibrium condition (4.38) is satisfied,

using the pressure as calculated by substituting (4.37) into (4.36).

We can thus evaluate the pressure as a function of specific volume for the partial

burn Hugoniot corresponding to the given value of λ. The final step to evaluate

states in the reaction zone is to apply a second root finding method to determine

the specific volume such that the partial burn Hugoniot intersects the Rayleigh line

corresponding to the CJ velocity,

ρ0DCJ =

√
p− p0

v0 − v
. (4.39)
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4.4 The Reaction Zone

Now that we can evaluate states within the reaction zone as a function of λ only,

it is possible to evaluate the time taken, ∆t, for the detonation wave to traverse

a piece of material. This is done using a reaction rate model, which defines the

time derivative of λ for a specific piece of material as a function of thermodynamic

variables and λ itself,
Dλ

Dt
= f(T, p)g(λ). (4.40)

The time taken for the traversal of the detonation wave can be evaluated by inte-

grating the material derivative of λ from the initial state of pure reactants (λ = 1),

to the final state of pure products (λ = 0),

∆t =

∫ 0

1
1/

Dλ

Dt
dλ. (4.41)

Note that when using this definition of the reaction progress variable, the reaction

rate as defined in (4.40) is negative.

The distance between points at which the reactant mass fraction is λ1 and λ2, w

is

w =

∫ λ2

λ1

∂x

∂t
/

Dλ

Dt
dλ, (4.42)

where the derivative ∂x
∂t represents the speed of a element of material relative to

the detonation wave. This is simply the difference between the wave speed, DCJ ,

and the flow velocity,

u(λ) =
√

(p(λ)− p0)(v0 − v(λ)). (4.43)

The width of the reaction zone is therefore

∆x =

∫ 0

1

DCJ − u(λ)

f(T (λ), p(λ))g(λ)
dλ. (4.44)

Typical mathematical forms for the reaction rate are such that g(0) = 0. In this

case, the above integral must be calculated with care. In particular if we define n

such that

lim
λ→0

g(λ) ∝ λn (4.45)

then for n ≥ 1 the integral in (4.44) diverges. In practice such a reaction rate

model will not prevent the formation of a detonation wave with a finite reaction
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zone width, but the rarefaction of the detonation products will begin to be the

dominant influencer of the flow already at some small, non-zero value of λ.

In the case where 0 < n < 1, the integral is finite despite the divergence of the

integrand. The integral over a range of λ close to zero can be evaluated numerically

using integration by parts.∫ ε

0
f(x)x−n dx =

[
f(x)

x1−n

1− n

]ε
0

−
∫ ε

0

x1−n

1− nf
′(x) dx

=
1

1− n

[
f(ε)ε1−n −

∫ ε

0
x1−nf ′(x) dx

]
=

ε1−n

1− n
[
f(ε) + cε+O(ε2)

]
where c ≤ 1

2− n max
ξ∈[0,ε]

|f ′(ξ)| (4.46)

Calculation of states in the reaction zone of a ZND wave provides a direct method

with which to evaluate the effect of temperature equilibrium in comparison to al-

ternative closure conditions. The temperature equilibrium condition implies that

heat transfers between reactants and products to the extent that the material tem-

peratures equilibrate. As discussed in the literature review, a commonly applied

alternative to temperature equilibrium, is ISE (isentropic solid equation), which

assumes the opposite: that no heat transfer between reactants and products takes

place.

The method presented in this chapter can be applied with the temperature equi-

librium condition, and can be trivially modified to use a heat isolation closure

condition. Solution of the equations to evaluate the thermodynamic state of the

reactants and products in the reaction zone permits a direct comparison of the two

closure conditions.

Figure 4.3 shows the ZND wave for PBX 9502 in pressure volume space. The blue

line indicates the evolution of the state in the explosive as a whole, which follows

the Rayleigh line as predicted by the ZND model. However in the reaction zone,

the explosive consists of a mixture of reactants and products, the density of each of

which will not be the same as the density of the explosive as a whole. The pressures

on the other hand will always match, since we are using a pressure equilibrium

closure condition. The figure shows the evolution of the reactants and products
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Figure 4.3: The markers indicate the evolution of the state in pressure-volume space across

the reaction zone of a ZND wave in PBX 9502. The red and green markers

represent the state of the reactants and products respectively. The black lines

represent the paths expected for heat isolation, in which case the reactants

and products evolve isentropically. The blue line represents the path of the

explosive mixture, which follows the Rayleigh line.

separately using the markers. The isentropes are shown for comparison. Since heat

transfer is equivalent to a change in entropy, the deviation of the path from the

isentropes is representative of the amount of heat transfer which is required in order

to satisfy the temperature equilibrium closure condition. Likewise the isentropes

themselves are representative of the path which would be followed, were we to

assume that no heat transfer takes place.

Note that the deviation of each material from its respective isentrope is not very

substantial. This indicates that there is not much heat transfer between reactants

and products in the reaction zone. The isentropic closure law could therefore be

applied in place of temperature equilibrium and we would not expect the results to

change considerably.

This is illustrated in Figure 4.4. The temperature in the reactants is at temper-

atures of order 100K greater when using the isentropic closure law as compared to

the temperature equlilibrium closure condition.
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Figure 4.4: The temperature in the reaction zone as a function of the mass fraction of the

explosive, λ, which consists of reactants. Note that as the reaction proceeds,

the mass fraction goes from 1 to 0.

However, this is not true in general. Figure 4.5 shows the equivalent plot for the

emulsion EM120D. The product density at the front of the reaction zone places the

state above the principal isentrope. This shows that in the first stage of the burning

the temperature equilibrium constraint causes heat to transfer from reactants to

products, and the reactants compress to a higher density than the von Neumann

density. Figure 4.6 shows that in this case the change in temperature is much larger

- of order 500K. It is very unlikely that such a significant amount of heat transfer

could occur on the timescale of a detonation wave.

The extent to which heat transfer between reactants and products occurs is de-

pendent on the temperature at the von Neumann spike as predicted by the equation

of state of the reactants, and how this temperature compares to the temperatures

on the principal isentrope of the product equation of state. To illustrate this de-

pendence, Figure 4.7 shows the ZND wave for the emulsion EM120D but with the

specific heat capacity of the reactants arbitrarily increased from 1000 JK−1kg−1 to

1500 JK−1kg−1. This change reduces the von Neumann spike temperature in the

reactants and alters the behaviour to be analogous to what is observed in PBX

9502. Depending on the heat capacities, and other parameters which are known

with little precision, the difference between a thermal equilibrium condition and an
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Figure 4.5: The one-dimensional ZND wave for EM120D is presented as for Figure 4.3.

In this case the temperature equilibrium condition leads to more heat transfer

between the reactants and products.
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Figure 4.6: The temperatures in the reaction zone of EM120D are more disparate than

what is predicted for PBX9502. In this case the temperature equilibrium

condition leads to significantly lowered temperatures in the reactants than a

heat isolation cclosure condition.
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Figure 4.7: The temperatures in the reaction zone for EM120D are presented again, but

this time with an increased heat capacity for the reactants. This has the effect

of lowering the von Neumann spike temperature. In contrast to Figure 4.6,

there is significantly less heat transfer in this case.

isentropic closure law may be of little significance. It is thus not possible to defini-

tively conclude whether the thermal equilibrium condition is physically justified or

otherwise.

4.5 Conclusions

An approach has been presented with which to calculate the structure of ZND

waves for an explosive. This approach is suitable for explosives which are described

by independent equations of state of Mie-Grüneisen form and closure conditions

to fully constrain the mixture of materials in the reaction zone. This method can

be used to validate numerical methods, by comparing the predicted ZND structure

with the results of a simulated one dimensional detonation wave. Furthermore, the

method presented here permits us to calculate the width of the reaction zone given

a reaction rate model. This is helpful when determining the values of parameters

for the reaction rate model, since it is expected that the deviation of a multi-

dimensional detonation wave from the ZND wave is related to the width of the

reaction zone.
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4.5 Conclusions

This method can be used to quantitatively compare various closure conditions

which may be suitable. For example, it allows us to directly evaluate the amount of

heat transfer which is actually generated by a temperature equilibrium condition.

The results show that temperature equilibrium does not necessarily imply that

a large amount of heat transfer must occur, and therefore the results may not be

dissimilar to those from a heat isolation model. In addition, the results are also

dependent on equation of state parameters, some of which are not known to a

great degree of certainty. These results suggest that it is not possible to reach a

meaningful conclusion as to which of the closure conditions will lead to the most

accurate results for generic explosives.

From a physical perspective, large differences in temperature between the reac-

tants and products suggest that some heat transfer is likely to take place, even

on the short time scales associated with the ZND wave. On the other hand, large

differences in temperature suggest that the temperatures are unlikely to fully equi-

librate.

From a numerical perspective, the temperature equilibrium condition is more con-

venient, since it can be applied to every cell of the domain. Since the entropy of the

explosive will change in the presence of shock waves, a heat isolation closure condi-

tion cannot be implemented by simply assuming that the entropy of the reactants

is fixed.
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5 Detonation Modelling

5.1 Formulations for multi-material fluid simulations

Detonation waves are not one dimensional phenomena; the observed detonation

velocity depends on the geometry of the explosive charge as well as the properties

of the confining material. Thus, numerically simulating detonation phenomena

necessitates a mathematical formulation describing the evolution of the explosive

and the confiner as well as the interface between the explosive and the confining

material.

In previous chapters the discussion has addressed in detail the issue of modelling

the material properties of the explosive. This is done through the introduction of

a mass fraction parameter which indicates the portion of the explosive which is

reacted and serves as a reaction progress variable. A pressure for the explosive

material can then be calculated using the mass fraction parameter and indepen-

dent equations of state for each of the reactants and products along with closure

conditions.

This can be easily applied in the context of a hydrocode. The Euler equations are

used to describe the properties of the flow of the explosive as a whole. The mass

fraction parameter is simply advected with the flow,

∂ρλ

∂t
+∇ · ρλu = K, (5.1)

thus allowing us to model both reactants and products, even as the explosive moves

with the flow field. The source term, K, represents the time derivative of λ corre-

sponding to the chemical reaction. This approach can also be used to model the

interface between the explosive and the confiner. This creates a formulation with

two mass fraction parameters, and a root finding problem analogous to the one
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introduced in chapter 3. However in this case it has two degrees of freedom. This

is because the pressure equilibrium and temperature equilibrium conditions must

now be applied to all three materials. This method is sometimes referred to as the

Banks model [13, 14]. While it is possible to solve such a system numerically, it

has been reported to not be robust [91]. Furthermore it cannot be extended to

model more materials. In general such an approach will require the solution of a

root finding problem of dimensionality n − 1 in order to simulate a system of n

materials.

A contrasting approach to the numerical representation of fluids with multiple

constituents is with so-called ‘multiphase’ models, as has been discussed previously

in Chapter 2. However, for the purpose of modelling the explosive-confiner inter-

face it is not necessary to use such a complex approach. Whereas the reactants and

products of the explosive are a true mixture, the confiner and explosive are immis-

cible, with a well defined interface between the two. The nature of the relationship

between the confiner and explosive is physically different, motivating an alterna-

tive numerical treatment. Numerical resolution of dynamically changing interfaces

can be split into two broad categories: sharp interface methods (SIM) and diffuse

interface methods (DIM) [106].

Examples of SIM include Lagrangian methods, where the mesh itself distorts to

match the change in position of the material interface. However this is inconvenient

to accommodate with an Eulerian numerical scheme, which captures shock waves

more accurately. The volume of fluid (VOF) approach [58] uses a colour function

to indicate the identity of the present fluid in each cell. The colour function is then

advected with the fluid. This method is typically used for incompressible fluids [58,

106].

An alternative is the ghost fluid method [42]. With this method, an arbitrary

function called the level set is defined such that the zero space of the function

corresponds to the interface. The location of the interface is then calculated by

interpolating the level set, and can thus be evaluated with greater precision than

the resolution of the mesh. This method is well suited to the simulation of objects

with rigid boundaries. Wescott et al. [129] use a level-set algorithm to model the

explosive confiner interface in simulations of PBX 9502 [122].
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In contrast to sharp interface methods, diffuse interface methods simplify the

problem substantially by allowing the interface to spread out over several cells.

While this leads to inaccuracies in the resolution of the interface itself, advantages

include the fact that the same algorithm can be implemented for the entire domain.

Furthermore, such algorithms are computationally less expensive than sharp inter-

face methods. This is because sharp interface methods require special methods to

update the cells which are intersected by the interface. For example, the ghost fluid

method involves an interpolation of the level set to determine the precise location of

the interface, followed by an extrapolation of the data across the interface to pop-

ulate the ghost cells. Finally a suitable mixed Riemann solver is required. These

complications can all be avoided through the use of a diffuse interface method.

Allaire et al. [2] developed a five equation model for simulating diffuse interfaces

using equations based on multiphase models [104]. The interface is tracked using

a parameter, z, representing the volume fraction of the materials which can take

non-integer values between 0 and 1. The interface may spread out and become

diffuse. This is not equivalent to the mass fraction parameter used in the Banks

model since each phase is governed by its own separate mass conservation law:

∂zρ1

∂t
+∇ · zρ1u = 0 (5.2)

∂(1− z)ρ2

∂t
+∇ · (1− z)ρ2u = 0 (5.3)

∂ρuk
∂t

+∇ · ρuku = −(∇p)k for k ∈ {1, ..., d} (5.4)

∂ρE

∂t
+∇ · ρEu = −∇ · pu. (5.5)

The densities of the two phases are ρ1 and ρ2. This is a single-velocity, single-

pressure model, and there is therefore just a single flow velocity, u, and specific

energy, E, for the two phase fluid. The specific energy is the sum of the specific

internal energy, e, and kinetic energy,

E = e+
1

2
‖u‖2. (5.6)

The corresponding mixture rules are

ρ = zρ1 + (1− z)ρ2 (5.7)

ρe = zρ1e1 + (1− z)ρ2e2. (5.8)
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The asymmetry between these mixture rules and those used in Chapter 3 is ex-

plained in Appendix C. Unlike the mass fraction, λ, the volume fraction, z, is not

conserved. The volume fraction is not conserved – it is passively advected according

to

∂z

∂t
+ u · ∇z = 0. (5.9)

In contrast to the Banks model [14], only one closure rule is required since the

density of each of the individual phases is known explicitly. Both isobaric and

isothermal closure conditions are investigated by Allaire et al. [2]. The resulting set

of partial differential equations is shown to be hyperbolic in both cases. However the

isobaric scheme is found to be favourable, since it allows for the interface between

fluids to be simulated without spurious oscillations forming in the pressure profile.

An important difference between the Allaire model and the multiphase model

by Kapila [66] is that the Allaire model neglects the compaction term, which ac-

counts for variation in the compressibility of mixture constituents. The compaction

term would normally manifest as a non-zero source term on the right hand side of

equation (5.9). As a result the Allaire model is not suitable for modelling genuine

mixtures, despite the successful handling of mixture cells which occur within the

diffuse interface. In the Allaire model, the fluid mixture has a unique value for

the compressibility, and each constituent of the mixture will compress at the same

rate. Consequently the Allaire model does not accurately reproduce the behaviour

of fluid mixtures without sharp interfaces. It is better suited to modelling situations

where there is only a narrow intermediate zone in which the fluids are mixed, and

most of the domain is occupied by only one constituent. As a result, it would not

be possible to use the Allaire model to describe the reactant product mixture which

constitutes the explosive.

The approach for modelling the two-material explosive presented in chapter 3

has been combined with the Allaire multiphase approach in the MiNi16 formula-

tion introduced by Michael et al. [90, 91]. It uses a mass fraction, λ, to simulate

the mixture of reactants and products using pressure equilibrium, temperature

equilibrium and a single mass conservation equation. These materials collectively

constitute the explosive. The explosive confiner interface, on the other hand, is
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modelled using a volume fraction, z, pressure equilibrium and separate mass con-

servation equations. An attractive property of the MiNi16 formulation is that the

same algorithm is applied to every cell of the simulation. No special handling of

shock waves is required as in multiphase models of the type presented by Schoch

et al. [108]. Furthermore the temperature equilibrium condition can be applied in

every cell using the same algorithm, irrespective of the presence or absence of shock

waves. In contrast, the isentropic solid equation (ISE) applied in CREST requires

special handling of the shock wave, since the entropy of the reactants is expected

to change across the shock wave, but not in the subsequent reaction zone [55].

These properties render the MiNi16 formulation very practical for modelling igni-

tion. The same algorithm as is implemented for modelling detonation waves can be

applied without additional work to simulations which exhibit partial burn, ignition

and transition to detonation.

5.2 MiNi16 Formulation

The mathematical formulation employed in this thesis to model detonation and

ignition of explosives is the MiNi16 formulation for a three-material fluid system

[91]. The three materials correspond to the confiner (labelled 1), the reactants (α)

and the products (β). In addition, the reactants and products collectively constitute

the explosive, which is referred to as the second phase (labelled 2). Variables

without subscript labels refer to the properties of the three-material mixture.

The governing equations consist of a mass conservation equation for each of phases

1 and 2. It is a single-velocity single-pressure model and so has just one equation

for the conservation of each of momentum and energy. There is an equation which

specifies the evolution of the volume fraction, z, of the first phase with respect to

the two phase mixture. Finally the mass fraction of the reactants with respect to

the explosive, λ, is advected with the fluid. Note that this is not the mass fraction
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with respect to the three-material mixture, but with respect to the second phase.

∂zρ1

∂t
+∇ · zρ1u = 0 (5.10)

∂(1− z)ρ2

∂t
+∇ · (1− z)ρ2u = 0 (5.11)

∂ρuk
∂t

+∇ · ρuku = −(∇p)k for k ∈ {1, ..., d} (5.12)

∂ρE

∂t
+∇ · ρEu = −∇ · pu (5.13)

∂z

∂t
+ u · ∇z = 0 (5.14)

∂ρ2λ

∂t
+∇ · ρ2λu = K (5.15)

The mixture rules for the three-material mixture are

ρ = zρ1 + (1− z)ρ2 (5.16)

1

ρ2
=

λ

ρα
+

1− λ
ρβ

(5.17)

ρe = zρ1e1 + (1− z)ρ2e2 (5.18)

e2 = λeα + (1− λ)eβ. (5.19)

Equation (5.16) expresses the overall density, ρ, in terms of the phase densities, ρ1

and ρ2. The density of the second phase is itself a function of the reactant density,

ρα, and the product density, ρβ, (5.17). The total specific internal energy, e, of the

three-material system is defined in (5.18), and is once again related to the specific

energy E by

E = e+
1

2
‖u‖2. (5.20)

The reaction rate is represented by K, a source term in the equation for the evo-

lution of the mass fraction variable, λ. Note that there is no source term in the

energy equation, because the energy source is handled implicitly by the equations

of state for the reactants and products.

The three materials are each modelled with an EoS model of Mie-Grüneisen form

pk − pk,REF(vk) = ρkΓk(vk)(ek − ek,REF(vk)) for k ∈ {1, α, β}. (5.21)

Following MiNi16 [91], pressure equilibrium is assumed between phases 1 and 2.

For the second phase, both pressure and temperature equilibrium are applied. Thus
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pressure equilibrium applies to all three materials, while temperature equilibrium

is applied between materials α and β.

Unfortunately the closure conditions of pressure and temperature equilibrium,

which are introduced to remove the degrees of freedom associated with space and

energy distribution, do not permit a closed form expression for the pressure. The

new equation for the pressure is derived by substituting the component EoS models

into the energy equation (5.18)

ρe =p

(
z

Γ1(v1)
+

(1− z)ρ2λ

ραΓα(vα)
+

(1− z)ρ2(1− λ)

ρβΓβ(vβ)

)
+ zρ1 REF1 +(1− z)ρ2λREFα +(1− z)ρ2(1− λ) REFβ, (5.22)

where

REFk =
−pk,REF(vk)

ρkΓk(vk)
+ ek,REF(vk) for k ∈ {1, α, β}.

This equation has two unknowns: the pressure and one or other of vα and vβ (the

other is fully constrained by (5.17)). The pressure equation is solved along with

the equation for temperature equilibrium between the reactants and products,

Tα = Tβ. (5.23)

The method used to solve this equation is described fully in Chapter 3.

The speed of sound in the three-material mixture is found in two steps. First the

speed of sound of the explosive is calculated using partial derivatives of the mixture

(see section 3.8), while the sound speed in the confiner is calculated according to

(3.10).

Following [2], the sound speed in the multiphase system with densities ρi, and

corresponding volume fractions zi and mass fractions λi, is calculated using the

standard relation

c2 =
h−

(
∂ρe
∂ρ

)
p(

∂ρe
∂p

)
ρ

, (5.24)
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where h is the enthalpy. Using (5.16) and (5.18), it follows that

h =
∑
i

λihi (5.25)(
∂ρe

∂ρ

)
p

=
∑
i

zi

(
∂ρiei
∂ρi

)
p

(
∂ρi
∂ρ

)
p

(5.26)(
∂ρe

∂p

)
ρ

=
∑
i

zi

(
∂ρiei
∂p

)
ρi

. (5.27)

In the Allaire model, the compaction term is neglected. In other words the volume

fraction does not change as a result of the addition of energy. It therefore follows

that (
∂ρi
∂ρ

)
p

=

(
∂ρi
∂ρ

)
zi,λi

=
λi
zi
, (5.28)

where we have used the general relationship

zi =
λiρ

ρi
, (5.29)

which is derived in Appendix C.

Hence

c2 =

∑
i λi

(
hi −

(
∂ρiei
∂ρi

)
p

)
∑

i zi

(
∂ρiei
∂p

)
ρi

. (5.30)

Introducing the thermodynamic quantity ξ

ξ =

(
∂ρe

∂p

)
ρ

=
1

Γ
=

1

γ − 1
(5.31)

which is the inverse of the Grüneisen gamma, we may express the speed of sound,

c, in terms of the speed of sound of each phase, ci, as(∑
i

ziξi

)
c2 =

∑
i

λiξic
2
i . (5.32)

Following MiNi16 [91], the value of ξ in the explosive is evaluated with reference

the adiabatic gamma, which is found by taking a weighted average of the constituent

adiabatic gamma values. The weighting is determined by the relative heat capacity

which is the mass fraction, λ, multiplied by the specific heat capacity cv,k,

γ =
λγαcv,α + (1− λ)γβcv,β
λcv,α + (1− λ)cv,β

. (5.33)
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5.3 Numerical Methods

The equations of the MiNi16 formulation presented above comprise a system of

hyperbolic partial differential equations. The equations are solved numerically using

a conservative finite volume method. By defining the flux with the Godunov scheme

[47, 125], the problem is reduced to solving a Riemann problem at each cell interface.

The stability of the Godunov method requires that the time step satisfies the CFL

condition (Courant-Friedrichs-Lewy) [32]. We therefore formulate the equations in

conservative form, with an explicit expression for the flux.

The equation for the evolution of z, (5.14), is not conservative, however it is

possible to recast it in conservative form with an explicit source term,

∂z

∂t
+∇ · (zu) = z∇ · u. (5.34)

The set of partial differential equations is expressed using the vector of conserved

variables, U. For simplicity, only the equations for one dimensional flow are pre-

sented:
∂U

∂t
+
∂F(U)

∂x
= S(U), (5.35)

where

U =



zρ1

(1− z)ρ2

ρu

ρE

z

(1− z)ρ2λ


, F(U) =



zρ1u

(1− z)ρ2u

ρu2 + p

u(ρE + p)

uz

(1− z)ρ2λu


, S(U) =



0

0

0

0

z ∂u∂x

K


.

The Harten, Lax and van Leer, Contact (HLLC) approximate Riemann solver is

used to calculate the fluxes at cell interfaces. It was first presented by Toro, Spruce

and Spears [126] and is an extension of the HLL method first published in 1983

[56]. This is extended to second order using MUSCL-Hancock with the van Leer

limiter [76, 125].

The numerical methods are implemented in a code developed at the Laboratory

of Scientific Computing at the University of Cambridge. This code is capable of
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adaptive mesh refinement (AMR) and parallel execution through subdivision of the

domain. Simulations of rate stick detonations can be greatly accelerated with adap-

tive mesh refinement, because the detonation wave has a complex structure, which

is very narrow in comparison to the typical distance travelled in the time required

to reach steady state. A high resolution is required to resolve the detonation wave,

but it is impractical to use such a fine resolution over the whole domain.

5.4 Rotational Symmetry

The detonation of rate sticks is a three dimensional phenomenon. However, the

three dimensional symmetry of the rate stick can be exploited to avoid a three

dimensional simulation [14, 91, 108]. The source term associated with the geometric

effects is

S(U) =
ur
r



zρ1

(1− z)ρ2

ρur

ρuz

ρE + p

(1− z)ρ2λ

z


, (5.36)

where ur and uz are the radial and axial velocities respectively.

5.5 Validation

5.5.1 Riemann Tests

A common method to validate the implementation of numerical methods for com-

pressible inviscid fluid dynamics problems is based on Riemann problems. The

solution of a typical Riemann problem will involve a rarefaction wave, a contact

discontinuity as well as a shock wave, thus testing multiple aspects of the numerical

method at once. Furthermore, the simplicity of the initial conditions means that

it is possible to calculate the exact solution of a Riemann problem directly [125].
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t

x

UL

U∗L
U∗R

UR

Figure 5.1: The waves originating from the discontinuity of the Riemann problem are

plotted in space and time. The contact discontinuity is shown with a dashed

line. The solid lines indicate the propagation of rarefaction waves or shock

waves across which the flow velocity and pressure change.

Exact solutions provide a reference against which to compare the numerical results.

Since the numerical method uses the equation of state to calculate pressures and

the speed of sound, Riemann problems also allow us to verify that the equations of

state have been implemented correctly.

Figure 5.1 shows the structure of the solution to a Riemann problem. Three waves

originate from the origin at x = 0, t = 0. The left and right hand waves are either

rarefaction waves or shock waves, while the middle wave is a contact discontinuity.

The exact solution of a Riemann problem can be calculated using the fact that the

flow velocity and pressure are both constant across the contact discontinuity [125].

The two states initially on either side of the discontinuity which define the initial

conditions of the Riemann problem are labelled UL and UR respectively. The

states on either side of the contact discontinuity are labelled as U∗L and U∗R. For

each state we refer to the pressure, p, specific volume, v, and flow velocity to the

right, u, using the corresponding subscripts and superscripts. For the solution of

the Riemann problem we therefore have

u∗L = u∗R = u∗ (5.37)

p∗L = p∗R = p∗. (5.38)

The properties of rarefaction waves and shock waves are such that there will always

be a pair of waves which solve the problem [125]. To find the solution we must use
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a root finding method to find the waves such that the change in both pressure and

flow velocity across the two waves, are such that equation (5.38) is satisfied.

If a shock wave is travelling to the right, we have from Chapter 4

p∗R(v∗R, vR, pR) =

pREF(v∗R)
ρΓ − eREF(v∗R) + eR(vR, pR) + 1

2pR(vR − v∗R)
1
ρΓ − 1

2(vR − v∗R)
(5.39)

u∗R = uR +
√

(p∗R − pR)(v0 − v∗R). (5.40)

To calculate the pressure, p∗L, we can simply replace the subscript R with L in

(5.39). Since u is by convention defined as the flow velocity to the right, there is a

change in sign when calculating the properties of shock waves propagating to the

left, in which case

u∗L = uL −
√

(p∗ − pL)(v0 − v∗L). (5.41)

For rarefaction waves, we can use the isentropic property of rarefaction waves and

calculate the change in pressure by simply calculating the pressure on the isentrope

for some candidate new specific volume, v∗R. This is calculated using equation

(3.20),

p(v∗k) = pREF(v∗k) +
Γ(v∗k)

v∗k
(ek(vk, pk)− eREF(vk))

TREF(v∗k)

TREF(vk)
, (5.42)

which applies for k ∈ {L,R}. For rarefaction waves there is also a restriction on

the physically valid choices for v∗,

v∗L > vL v∗R < vR. (5.43)

The change in flow velocity across the rarefaction wave can be calculated using

the Riemann invariant,

u∗L = uL +

∫ v∗L

vL

c(v, p(v))

v
dv (5.44)

u∗R = uR +

∫ vR

v∗R

c(v, p(v))

v
dv, (5.45)

where the speed of sound, c, is a function of volume and pressure (3.10), and the

pressure is given by equation (5.42).
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Test Case ρL pL ρR pR tfinal x0

EM120D Products 1600 1.2× 1010 1200 1× 105 8× 10−5 0.5

EM120D Reactants 2200 2× 1010 1200 1× 105 5× 10−5 0.5

Table 5.1: Initial conditions for Riemann tests in units of kgm−3,Pa,m and s.

The final step is to sample the solution. For each x, t we can sample the solution

using the corresponding wave speed, s = x/t. By comparing s with the wave speeds

of the solution, we can work out which part of the solution we are sampling. The

speed of the contact discontinuity is simply u∗. The speed of a shock wave can

be calculated using (4.4), which gives us the speed of the wave, D, relative to the

unshocked material. Rarefaction waves are more complicated, since they spread

out in time. Each point in the rarefaction propagates at a speed u ± c depending

on the direction of the wave. So a rarefaction wave travelling to the left will cover

the range

uL − cL ≤ s ≤ u∗L − c∗L. (5.46)

To sample values of s inside this range we must find the value of v ∈ [vL, v
∗
L] such

that

u− c = s, (5.47)

where u is calculated using (5.44).

Figures 5.2 and 5.3 show the numerical results for Riemann tests overlaid on the

exact solutions. Figure 5.2 uses the equation of state for the explosive products, as

presented in Chapter 3, while Figure 5.3 uses the equation of state for the reactants.

In each case the parameters of the equation of state are those for EM120D. The

equations of state parameters are presented in Tables 3.2 and 3.3. The initial

conditions are in Table 5.1.

5.5.2 Shock Speed

The equation of state for the reactants can be tested further by verifying that

the expected shock velocities are reproduced accurately in the simulations. The

reactants equation of state uses the snow plow model to capture the effect of porosity

on the properties of the explosive. One of the consequences of the porosity model
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Figure 5.2: Riemann test to verify the implementation of the products equation of state

for EM120D. The numerical results (red markers) can be compared with the

exact solution (black line).
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Figure 5.3: Riemann test to verify the implementation of the equation of state for the

porous reactants of EM120D. The numerical results (red markers) can be

compared with the exact solution (black line).
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Figure 5.4: Comparison of the shock velocity to flow velocity relationship predicted by

the Rankine-Hugoniot conditions with numerical results. The bar chart shows

the error between the analytically calculated shock speed and the numerical

values.

is that the shock speed is no longer a linear function of the change in flow velocity

associated with the shock. This is illustrated in Figure 3.7 in Chapter 3.

To verify that this relationship is reproduced accurately in the simulations, shock

waves of varying strengths were initialised. The shock wave speed is evaluated by

simply observing the rate at which the wave propagates through the domain. The

shock waves are created by initialising the explosive with a uniform flow velocity

towards a reflective boundary. The results are shown in Figure 5.4. The x-axis

corresponds to the flow velocity, u, used to initialise the explosive. The shock

speed, D, is measured relative to the unshocked explosive.

5.5.3 Detonation Waves in 1D

The ZND model for the structure of one dimensional detonation waves can be

used to calculate the Rayleigh line, the von Neumann spike, the CJ state and

the principal isentrope of the rarefaction wave. This can be done using solely the

equations of state (EoS) of the reactants and products, and the Rankine-Hugoniot

conditions. Furthermore, using some closure conditions for the mixture of reactants
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and products, states inside the reaction zone may be evaluated too (see Chapter

4).

ZND waves can also be simulated numerically using the numerical methods pre-

sented in this chapter. Here we compare the path of the numerical solution in

pressure volume space with that calculated analytically. Figure 5.5 shows the ZND

wave for PBX 9502 and compares the numerical simulation of a one-dimensional

detonation wave with the calculated ZND wave structure as has been calculated in

Chapter 4. Figure 5.6 shows the equivalent validation for EM120D.

The cyan markers indicate the evolution of the state in the explosive as a whole.

Across the shock wave (approximately three cells) the state approaches the von

Neumann spike in the top left of the plot. As the explosive burns, the state of the

explosive (blue) follows the Rayleigh line towards the CJ state. During this stage,

the explosive is a mixture of reactants and products, which are at pressure equilib-

rium but have different specific volumes. The red and green markers represent the

states of the reactants and products respectively. After the CJ state, the explosive

consists entirely of products and rarefies following the principal isentrope. The plot

can be compared those presented in Chapter 4.

The cyan markers lie on the Rayleigh line as expected, and the rarefaction of

the detonation products follows the principal isentrope as used for the calibration.

This demonstrates that the calibration process is working as expected. The accu-

rate reproduction of the reactant and product specific volumes for states inside the

reaction zone serves to validate the numerical implementation of the closure condi-

tions in the code, and in addition corroborates the analysis presented in Chapter 4

which is used to calculate the ZND wave structure directly. Furthermore the speed

of propagation of the wave is observed to be equal to the CJ detonation velocity as

predicted.

Figures 5.7 and 5.8 show the pressure in the ZND waves as a function of position.

These figures serve to demonstrate how much resolution is required for the numerical

solution to converge in the reaction zone. The simulation of PBX 9502 requires

significantly higher resolution, as is expected given the smaller reaction zone. The

required resolution to reach convergence is in the range of 60 to 100 cells per reaction
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Figure 5.5: The cyan markers indicate the evolution of the state in pressure-volume space

across the ZND wave of PBX 9502. The red and green markers represent the

state of the reactants and products respectively. The black lines represent the

predicted paths which are calculated analytically.
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Figure 5.6: The one-dimensional ZND wave for EM120D is presented as for Figure 5.5.
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Figure 5.7: The numerical solution for a one dimensional detonation wave in PBX 9502

is plotted for a range of resolutions.

zone length. The results are in broad agreement with the results of Sharpe and

Braithwaite [112].

5.6 Evaluating the detonation velocity

In order to compare the simulation results with experimental measurements of the

detonation velocity it is necessary to extract wave velocities from the results. This

cannot be done accurately from a single time snapshot in multiple dimensions, since

any curvature of the shock front means that the one dimensional Rankine-Hugoniot

conditions no longer apply. To avoid these complications, we instead measure the

wave velocity directly, by using the position of the wave at different times.

In finite volume simulations, the shock wave will naturally be smeared across a

number of cells. This smearing of the wave is unavoidable, and as such the precision

with which the position of the shock can be measured is limited by the resolution

of the simulation. In this work we improve the accuracy by fitting the data to a

sharp shock. The position of the fitted shock is chosen such that the integral of the

density under the fitted shock wave matches that under the data. This process is

illustrated in Figure 5.9.
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Figure 5.8: The convergence criteria for EM120D is evaluated in the same manner as for

PBX 9502 in Figure 5.7.

This procedure allows for the speed of a shock wave or detonation wave to be

measured accurately, even over comparatively short time periods.

5.7 Predictive Modelling of Detonation Waves in Rate

Sticks and Slabs

5.7.1 Simulation Setup

In one-dimensional domains, the velocity of the detonation wave is the CJ velocity,

which depends solely on the EoS of the products and the initial conditions of the

explosive. However the velocity of detonation (VoD) measured in rate sticks (cylin-

ders) and slabs is significantly reduced from the ideal VoD, as a result of the loss

of energy to the confining material. The measured VoD therefore depends on the

geometry and material of the confiner and will also depend on the reaction rate.

Near-ideal explosives, with a faster reaction rate, deviate from the ideal VoD to

a lesser degree than non-ideal explosives with slower reaction rates. For example,

detonation waves in PBX 9502 can deviate in speed by approximately 10%. For

EM120D, on the other hand, detonation velocities in rate sticks can be close to 50%

slower than the ideal VoD.
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Figure 5.9: Sample data showing the position of a shock wave from a finite volume sim-

ulation. The position of the shock wave illustrated by the red line is chosen

such that the total mass over the domain is unchanged.

It is currently impractical to model the chemistry of the reaction directly. A

one-step reaction model is used to calculate the rate at which reactants transition

to products. An approach for calibrating a reaction rate model using shock to

detonation transition data will be presented in Chapter 6. In the present chapter,

however, the reaction rate is calibrated using direct optimization: the parameters

are chosen such that the simulations match the given experimental data. This

approach nevertheless permits predictive modelling of detonation waves. It is found

in practice that only a few measurements are required for the calibration of the

parameters, and that these same parameters can be used to predict detonation

velocities in multiple different contexts.

For PBX 9502, the reaction rate is calibrated using VoD data for unconfined

rate sticks (air confinement) of multiple radii. The resulting parameters are used to

predict the VoD in slabs of varying thickness. For the less ideal explosive, EM120D,

data for unconfined rate sticks are used for the calibration. Predictions are then

made for rate sticks confined by concrete and steel.

The detonation wave is initiated using a booster - an area of high pressure gas

which shocks the explosive, initiating the reaction. After the start of the simulation,

the detonation wave must be modelled for some time to allow it to settle to its
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steady speed. Once the wave has converged, the speed can be measured by simply

observing the distance covered in some time interval, as described in section 5.6.

The measurement of the position of the shock wave introduces an error related to

the discretisation of the grid. However the error in the speed measurement can be

reduced by measuring the speed over longer time intervals, once the wave is steady.

For unconfined rate sticks and slabs, the confining air is modelled with the ideal

gas EoS with adiabatic gamma equal to 1.4. For rate sticks of EM120D with solid

confinement, the shock Mie-Grüneisen EoS is used to model concrete and steel

with the same parameters as Schoch et al. [108]. Note that while the mathematical

formulation uses a temperature equilibrium condition between reactants and prod-

ucts, only pressure equilibrium is used between the explosive and confiner [91]. As

such, temperatures in the confiner are inconsequential and use of the shock Mie-

Grüneisen EoS is appropriate. This EoS does however neglect the effect of strength

in the solid confiner. The pressures generated in the detonation wave are however

very large in comparison to the yield stress, which justifies this simplification.

A linear fit of experimental data for the shock speed is used to determine the

parameters a and b

D = a+ bu. (5.48)

Using the empirically justified assumption that the relationship is indeed a straight

line, the Rankine-Hugoniot conditions can be used to derive the pressure and energy

as a function of volume on the Hugoniot locus. The Hugoniot is then used as a

reference curve for an EoS of Mie-Grüneisen form:

p− pREF(v) = ρΓ(e− eREF(v)) (5.49)

pREF(v) =
ρ0χa

2

(1− bχ)2
(5.50)

eREF(v) =
1

2
(v0 − v)pREF(v) (5.51)

ρΓ = ρ0Γ0, (5.52)

where Γ0 is the ambient Grüneisen gamma, ρ0 = 1/v0 is the initial density and χ

is defined as

χ = 1− v

v0
. (5.53)

The parameters for modelling concrete and steel are given in Table 5.2.
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ρ0[kgm−3] a[ms−1] b Γ0

Steel [127] 7840 3670 1.645 2.0

Concrete [30] 2340 2235 1.745 2.0

Table 5.2: Parameters for the shock Mie-Grüneisen EoS for modelled confinement.

Figure 5.10: Time progression of air confined EM120D. Times are 0, 16µs, 32µs, 50µs.

Figure 5.10 shows four snapshots of a slice through the centre of a cylindrical

rate stick. In the left-most plot, the unreacted rate stick is visible as the green

rectangle, while the blue, lower-density area shows the confining air. The thin

yellow rectangle at the bottom of the domain is the high pressure booster which

initiates the detonation. In the subsequent plots, the detonation wave, which can

be identified as the red area of highest density propagates upwards through the

domain. Note that the simulations are done in half the domain with a reflective

boundary through the middle and a cylindrical symmetry source term (see Section

5.4).

The acoustic impedance of air is low, meaning rate sticks confined by only air are

‘weakly’ confined. This means that the sonic locus intersects the shock front at the
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explosive confiner interface. This is clearly visible in Figure 5.11. For solid confiners

with higher acoustice impedance which provide ‘strong’ confinement, on the other

hand, the sonic locus intersects the explosive confiner interface behind the shock

front. This regime change is discussed in detail by Bdzil and Stewart [16]. Figures

5.12 and 5.13 show strongly confined detonation waves for EM120D confined by

concrete and steel respectively. In contrast to Figure 5.11, the shock wave in the

confining material has a higher pressure, and the product gases depressurize much

more slowly. Furthermore the shockfront is less curved. In each case the sonic locus

can be identified as the back boundary of the detonation driving zone (DDZ).

The cell size of the coursest grid for these simulations was 0.5mm with two levels

of adaptive mesh refinement of factor 2 and 4 respecitvely. The finest grid, which

covered the whole detonation driving and the material interface thus had a cell

width of 62.5µm. This corresponds to approximately 80 cells per reaction zone

width.

Figure 5.14 shows a detonation wave in a PBX 9502 rate stick. Note that the

rate stick is much narrower with radius 8mm, and yet the shock front is flatter than

what was observed in a 25mm radius rate stick of EM120D (Figure 5.11). In PBX

9502 the lengthening of the reaction zone in the rate stick is quite pronounced in

comparison to a one dimensional detonation wave. In comparison to EM120D, the

detonation velocity (7516± 10ms−1) is much closer to the ideal detonation velocity

of 7755ms−1.

For PBX 9502 the resolution of the coursest grid was doubled with respect to the

simulations of EM120D, and two levels of adaptive mesh refinement of factor 4 were

used, such that the finest grid had a cell width of 15.625µm. This corresponds to

approximately 65 cells per reaction zone width.

5.7.2 Calibration of the Reaction Rate for EM120D

The reaction rate is very difficult to measure experimentally or to evaluate on the

basis of chemical arguments. In reality the explosive does not transition directly

from reactants to products but undergoes many intermediate reactions associated

with varying amounts of energy. For the purposes of the simulation, these processes
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Figure 5.11: The pressure is plotted for a detonation wave propagating upwards in a

EM120D rate stick of radius 25mm confined by air. The black line indicates

the explosive-air interface, while the red contour serves to show the boundary

of the detonation driving zone (DDZ). The detonation velocity was measured

to be 5274± 10ms−1, significantly slower than the ideal detonation velocity

of 6389ms−1.
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Figure 5.12: The pressure is plotted for a detonation in EM120D confined by concrete.

The interface between explosive and confiner is shown in black, while the

red line shows the boundary of the DDZ. The detonation wave speed for this

radius (25mm) was 5486± 10ms−1, faster that the rate stick confined by air

(Figure 5.11).
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Figure 5.13: This plots shows a detonation wave in a rate stick of EM120D confined by

steel. The wave is qualitatively similar to Figure 5.12, however the deflection

of the explosive-confiner interface (black) is even less, due to the higher

acoustic impedance of steel. The detonation wave was faster still at 5940±
10ms−1.
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Figure 5.14: The pressure distribution in a detonation rate stick of PBX 9502 with radius

8mm confined by air is plotted. The wave is qualitiatively similar to what

was observed for EM120D (Figure 5.11), however the pressure is significantly

larger, and the shock front is noticeably flatter despite the rate stick having

a lower diameter.
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are combined into a single pressure-dependent expression, K, for the reaction rate

as is used by Schoch et al. [108],

K =
dλ

dt
= −λindx

(
p

1− ah
τs

+H(p− ph)
ah
τh

(
p[Pa]

109

)Np
× 109

)
, (5.54)

where

ah = exp

(
−
(

1− λ
ωh

)Na)
.

The leading coefficient causes the reaction rate to slow as the reaction nears com-

pletion. The regression index of the reaction is indx. The second term represents

the hotspot reaction, where H(x) is the Heaviside function, and ph is the criti-

cal pressure required for ignition. The first term is a bulk burning term which

determines the reaction rate once the explosive is fully ignited. The parameter

ah is initially 1, causing the hotspot reaction term to dominate. As the reaction

progresses, ah approaches zero, and the equation becomes dominated by the bulk

burning term.

ωh determines the degree to which the hotspot process consumes the available

explosive. τs and τh determine the time scales of the reaction, and the constant

Na controls the speed at which the hotspots transition to a bulk burning process.

Note that it is the pressure in GPa which is raised to the power of Np.

The calibration was carried out using data from Dremin [39] (which is also used

by Schoch et al. [108]) for the rate sticks confined by air. It is then demonstrated

that the same parameters allow for predictions to be made for detonation waves in

rate sticks confined by solids. The only input required for the predictions is the

EoS of the confining material.

It was found that the principal parameters affecting the VoD were τh and Np.

The other parameters were assigned the same values as were used by Schoch et al.

[108]. This was done purely because it was found that changing these parameters

was not necessary to achieve the desired predictive capability.

Since there were only two degrees of freedom in the calibration process, only two

data points were required to fully constrain the system. These were chosen to be

the detonation velocities for 20 mm and 30 mm rate sticks which were 4920 ms−1
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and 5470 ms−1 respectively [39]. The merit function was simply the sum of the

absolute difference of the VoD between experiments and simulations for the two

radii.

A two-dimensional implementation of the secant method was applied to minimize

the difference between the numerical results and the experimental data. For each

radius three evaluations of the velocity with different parameters are required to

construct a two-dimensional plane in three dimensional space relating the values of

the parameters with the VoD. The intersection of this plane with the experimental

VoD constitutes a line through the two-dimensional parameter space. The final

step is to find the intersection between this line and a similarly calculated line for

the second value of the radius.

This process is repeated iteratively until good agreement with the experimental

velocities is found. The results of the calibration along with the other parameters

are presented in Table 5.3.

τh 13 µsGPa

τs 20 µsGPa

ph 1.51 GPa

indx 0.667

ωh 0.95

Na 9.0

Np 1.11

Table 5.3: Parameters for the reaction rate model for EM120D. See equation (5.54).

Figure 5.15 shows the simulation results as squares for the calibrated reaction

rate. These results are fit using the empirical Eyring equation [27]

D = DCJ

(
1− A

R−RC

)
. (5.55)

The resulting values for A and RC are in Table 5.4.

Figure 5.15 shows good agreement between the predictions from the Eyring fits

and the experimental data [39]. The magenta markers represent the experimental

measurements which are used to inform the reaction rate parameters. The blue
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Confiner A[mm] RC [mm]

Air 3.73 3.5

Concrete 3.61 −0.6

Steel 1.94 −2.8

Table 5.4: Parameters for the fits of the radial dependence of the VoD with rate stick

radius for EM120D, with ideal VoD DCJ = 6.3895 kms−1.
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Figure 5.15: The plot shows the radial dependence of the VoD for rate sticks of EM120D.

The lines interpolate the numerical results (square markers) using Eyring

fits. The circular markers with error bars are the experimental data [39].

The experimental data for unconfined rate sticks that were used for the

calibration are highlighted with magenta markers.
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markers are measurements of unconfined rate sticks with other radii. The box

markers represent individual simulations. The lines are the Eyring fits through the

simulation results. The lines for steel and concrete show good agreement over a

wide range of radii with the exception of the narrowest steel confined rate stick.

This is consistent with the results of Schoch et al. [108]. Furthermore the detona-

tion velocities for unconfined rate sticks show good agreement for all radii despite

the calibration having been done using the data points for 20 mm and 30 mm ra-

dius only. The Eyring equation fits the simulation data well, indicating that the

simulations are converging towards the ideal VoD in the large radius limit as is

expected.

The fact that the calibration was successful using just two parameters and two

data points demonstrates that the physics of the detonation waves is being captured

well by the EoS models and the MiNi16 formulation.

5.7.3 Calibration of the Reaction Rate for PBX 9502

For PBX 9502 we use a simplified version of the ignition and growth model presented

by Tarver and McGuire [124] and used by Wescott et al. [129]. We calibrate the

reaction rate model using VoD data for unconfined rate sticks [63]. The model is

used to predict the VoD in slabs of varying thickness. The predictions are then

compared with experimental data [63].

The form of the reaction rate was chosen to be

K = rDGSG(λ), (5.56)

where

rDG = kDG(1− λ)1/3λNλ (5.57)

SG =
1

2
(1− tanh(30(0.1− λ))). (5.58)

However the results presented here are not necessarily incompatible with a pressure

dependent model. This could be achieved through modification of the form of the

reaction rate or adjustment of the exponents.
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Figure 5.16: The dependence of the VoD with size is presented for both rate sticks and

slabs. The lines are Eyring fits through the simulation data (square markers),

while the markers represent the experimental data [63]. Note that for slabs

the x axis represents the inverse thickness, where the thickness is measured

across the whole slab, while for rate sticks the radius, not the diameter, is

used.

Confiner A[mm] RC [mm]

Rate sticks 0.34 −2.8

Slabs 0.37 −2.3

Table 5.5: Parameters for the fits of the radial dependence or thickness dependence of the

VoD of PBX 9502, with DCJ = 7.755 kms−1.

The calibration was carried out using the same methodology as was applied for

the emulsion in section 5.7.2. In this case the two free parameters are kDG and Nλ.

The final value for kDG was 60.65 µs−1, while Nλ was 1.56.

The results are shown in Figure 5.16. The parameters for the Eyring fits are given

in Table 5.5. The simulations match the experimental measurements for rate sticks

across the whole range of radius. The predictions for detonation velocities in slabs

of varying thickness are also in good agreement with the experimental data.
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5.8 Conclusions

In this chapter we have presented the MiNi16 mathematical formulation [91] for

modelling an explosive and its interaction with other materials. The interface be-

tween the explosive and the confiner is modelled using a diffuse interface model.

Furthermore the explosive is modelled using pressure and temperature equilibrium,

which can be applied irrespective of the presence of shock waves. The resulting

formulation is thus agnostic to the state of the material within a particular cell; the

same algorithm can be applied across the whole domain of the simulation.

The implementation of the numerical methods has been validated using Riemann

tests. The numerical methods have also been tested by simulating one dimensional

detonation waves. This allows us to confirm that we can successfully reproduce the

detonation wave structure predicted by the ZND theory. This validates the work

presented in Chapter 4. It also tests the implementation of the closure conditions

which affect the evolution of the state in the reaction zone.

We have also demonstrated that given some experimental data with which to

calibrate parameters for the reaction rate, it is possible to predict the detonation

velocity in a variety of situations. Due to the loss of energy to the confiner, deto-

nation waves in rate sticks and slabs propagate at a velocity slower than the ZND

velocity. The deviation between the actual detonation velocity and that predicted

by the ZND theory depends on the geometry of the explosive, the material proper-

ties of the confiner and the reaction rate. Having determined suitable values for the

parameters of the reaction rate model, the same parameters have been used to pre-

dict the detonation velocity. For both PBX 9502 and EM120D, we have taken this

approach to predict detonation velocities and found good agreement with experi-

mental data. These predictions serve to validate the equations of state presented

in Chapter 3.
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Models

6.1 Introduction

In the previous chapters a methodology has been presented to calibrate equations

of state and a reaction rate model, which collectively constitute a model for the

explosive. We have shown that an explosive model calibrated in this way can be

used to predict detonation velocities. This calibration process involves application

of an optimization algorithm in order to determine the parameters of the reaction

rate model. The objective function of this optimization is the difference between

the hydrocode results and the experimental measurements of the detonation veloc-

ity. Given the computationally intensive nature of the hydrocode simulations, the

optimization quickly becomes intractable for large datasets or a large number of

calibration parameters.

In this chapter, an approach is presented with which to determine reaction rate

parameters directly. In other words without resorting to the use of the hydrocode.

This is done by exploiting the gauge data from shock to detonation transition

experiments. These experiments use embedded gauges in the explosive to measure

the flow velocity and/or the pressure to study the shock to detonation transition

which occurs following an impact of a projectile with the explosive. The flow is

naturally dependent on the reaction rate, and thus we can analyse the data and

extract information about the reaction rate.

The approach taken here builds on the Lagrangian analysis presented by Seaman

[109]. Similar analysis was also carried out in the development of the DAGMAR

(Direct Analysis Generated Modified Arrhenius Rate) reaction rate model [3, 45,
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128]. The method presented here is built around the observation that, unlike a

shock wave in an inert material, a shock wave in a reactive material will accelerate.

This acceleration results from the exothermic chemical reaction which is induced by

the increase of pressure and temperature behind the shock wave. This phenomenon

is of course closely related to the mechanism by which a shock wave in a reactive

material will transition to detonation.

Shock to detonation transition has been studied experimentally, theoretically as

well as numerically. The exact mechanism by which the transition occurs can be

split into two regimes. These two mechanisms were first observed experimentally

by Campbell et al. [25, 26].

In each case the impact of a projectile creates a shock wave which propagates

from the projectile explosive interface into the explosive. On the one hand, for

homogeneous explosives it has been observed that following some induction time,

thermal runaway occurs at the interface [31, 113, 114]. This occurs since the part

of the explosive closest to the interface was shocked earliest, and thus has been

undergoing chemical reaction for longest. Following thermal runaway, a detonation

wave develops at the interface. This detonation wave is propagating in material

which has already been subject to a shock wave. The detonation wave therefore

propagates faster than it would otherwise, and is described as a ‘super-detonation’.

The super-detonation propagates faster than the initial shock wave and eventually

overtakes it. It is the overtake time which is typically considered the point at which

the wave transitions to detonation.

In heterogeneous explosives, on the other hand, experiments show that the initial

shock wave will gradually accelerate until it eventually transitions to detonation

[49, 133]. Detailed analysis of the dynamics of this process is presented by James

[64]. This dichotomy of behaviour is discussed by Menikoff [83], and has also been

reproduced numerically by Mi et al. [89].

The methodology presented in this chapter is most suitable for heterogeneous ex-

plosives, since in this case the shock wave exhibits a faster acceleration, which can

be evaluated more accurately from the experimental data. A shock wave propagat-

ing through a reactive material will accelerate, and the shape of such an accelerating

wave cannot be the same as that of a shock wave in an inert material. From exper-
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imental measurements it is clear that the flow behind the shock wave is not steady,

as it would be in an inert material [49]. Instead, during the ignition stage, the flow

velocity and pressure increase continuously following the initial discontinuity.

Given information about the flow field and reaction rate at a given instance, the

Euler equations can be applied to calculate the evolution of the flow and the accel-

eration of the wave. Furthermore, it follows that this calculation can be inverted;

experimental observations of the evolution of the wave permit direct calculation of

the reaction rate. Naturally this process relies on the accuracy of the equations of

state for both the reactants and products. In the analysis presented here, we apply

the equations of state calibrated for PBX 9502 in Chapter 3. We therefore consider

the parameters of the equation of state fixed. Nevertheless it should be noted that

errors involved in the equation of state calibration will contribute to further errors

in the calculation of the reaction rate.

There are two principal sources of data which can be used, firstly measurements

obtained from Lagrangian gauges which measure flow velocity or pressure as a

function of time and move with the flow. We can also make use of data from a shock

tracker to directly measure the velocity and acceleration of the shock wave. Details

of the methodology for these experimental techniques are given by Gustavsen et al.

[49].

Values for the reaction rate calibrated in this way can be applied in two ways.

Firstly, values for the reaction rate can be used to quantitatively assess the suit-

ability of a given reaction rate model. For example, shock to detonation transition

experiments can be carried out at different initial temperatures thus sampling states

which are offset from the Hugoniot curve corresponding to ambient initial condi-

tions [8]. Application of the method presented in this chapter to such data would

permit us to quantitatively assess the validity of a pressure rate law in this situ-

ation. This would be done by directly comparing the calculated reaction rate at

some fixed pressure for various initial temperatures. It is already well known that

a pressure dependent rate law is inadequate in these circumstances [8]. However

it is still unclear how a temperature dependent rate law such as that presented

by Aslam [8] compares to an entropy dependent model such as CREST [51]. The

method presented here offers an opportunity to answer such questions.
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Secondly, the results can be applied to calibrate the parameters for a given reac-

tion rate law. The data obtained from shock to detonation transition experiments

corresponds to the reaction rate in the pure reactants immediately following a shock

wave (at λ = 1). In this work we make the assumption that the reaction rate, a

function of both the thermodynamics and the reactant mass fraction, λ, is separa-

ble,
Dλ

Dt
= f(T, p, S)g(λ). (6.1)

In this case the method presented here can be used to fully determine the param-

eters of the thermodynamic dependence, f . The parameters of g must be deter-

mined separately. Significantly, the parameters of g can be determined by global

optimization significantly more efficiently than an equivalent optimization involving

the parameters of both f and g.

For some applications, it may be desirable to avoid the use of optimization entirely,

in which case the parameters of g may be determined using data for the width of

the reaction zone. This can be done following the method presented in Section 6.6.

On the other hand, it may be required to use optimization in order to achieve a

greater degree of accuracy. In this case, parameters calculated using this method

can serve as a starting point, dramatically reducing the time required for the opti-

mization.

In this chapter we present the methodology behind this approach and demonstrate

that the method can be applied in practice using sample data which has been

generated for an idealized explosive. The method is then applied to the TATB

based explosive PBX 9502. Finally we present simulations that were carried out to

compare our model with experiments of detonations of both rate sticks and slabs.

6.2 Methodology

The key idea behind this method is to analyse the flow which is measured by

experimental gauges in the explosive material directly following the shock wave.

An inert, supported shock wave will cause a gauge to accelerate, and then continue

to be carried by the flow at a steady velocity. In shock to detonation experiments,
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Figure 6.1: This figure shows two time snapshots of an accelerating shock wave with

velocity, D, and acceleration, a, as a function of space. The grey line shows

the shock wave ∆t before the blue line.

on the other hand, gauges are observed to accelerate following the shock [49, 133].

This acceleration can be explained by considering two properties of the flow. Firstly,

the shock wave is itself accelerating as it propagates. Secondly, following the passing

of the shock wave, the material will begin to react.

With knowledge of the equations of state and the rate law, it is possible to calcu-

late the properties of the flow field. And similarly if the properties of the shocked

material can be measured experimentally, this gives us information about the rate

of the chemical reaction.

The key step for this analysis is to observe that for the flow behind the shock

wave, for any thermodynamic variable, we can relate the spatial derivative, with

the acceleration of the shock wave, and the time derivative. This relationship is

dependent on the Rankine-Hugoniot conditions and thus also dependent on the

equation of state.

Figure 6.1 shows two time snapshots of an accelerating shock wave in space,

using some thermodynamic variable y (y could represent pressure, density or flow

velocity). The subscript H is used to represent the value immediately after the

shock, which can be calculated using the Rankine-Hugoniot conditions and the

shock speed, D. Since the shock is accelerating, the post-shock state yH(D) is

reduced for the grey line.
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The wave is travelling to the right at a speed D, so the distance covered by the

wave in time ∆t is to first order D∆t. As such, we can write

∂y

∂x
= lim

∆t→0

yH(D)−
(
yH(D − a∆t) + ∂y

∂t∆t
)

D∆t

= lim
∆t→0

∂yH
∂D a∆t− ∂y

∂t∆t

D∆t

=
1

D

(
a
∂yH
∂D
− ∂y

∂t

)
. (6.2)

where a = ∂D
∂t is the acceleration of the wave and ∂y

∂x is the space derivative imme-

diately to the left of the shock wave.

It is convenient to write the equation using the material derivative, which is

defined as

D

Dt
=

∂

∂t
+ u

∂

∂x
, (6.3)

where u is the flow velocity. This can be done by considering the system in Figure

6.1 in a reference frame where the flow velocity behind the shock is zero. Equation

(6.2) is equivalent to

∂y

∂x
=

1

us

(
a
∂yH
∂D
− Dy

Dt

)
, (6.4)

where us = D − uH(D) is the propagation velocity of the wave in the boosted

reference frame.

An equation of the form of (6.4) is required for the flow velocity, u, and the

pressure, p,

∂u

∂x
=

1

us

(
a
∂uH
∂D

− Du

Dt

)
(6.5)

∂p

∂x
=

1

us

(
a
∂pH
∂D
− Dp

Dt

)
. (6.6)

The derivatives of the Hugoniot functions are dependent on the equation of state.

The pressure, pH(v), on the Hugoniot is given by equation (4.9) in Chapter 4.

The expression for pH can be substituted into equation (4.5) and equation (4.4) to

calculate uH(v) and the shock speed, D, as a function of post-shock specific volume,
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v,

uH(v) =
√

(pH(v)− p0)(v0 − v) (6.7)

D(v) = v0

√
pH(v)− p0

v0 − v
. (6.8)

We can now calculate the derivatives using

∂uH
∂D

=
∂uH
∂v

/
∂D

∂v
(6.9)

∂pH
∂D

=
∂pH
∂v

/
∂D

∂v
. (6.10)

Note that these derivatives are done entirely via analytic methods, even for complex

non-linear equations of state.

The Euler equations can be expressed using material derivatives as

Dρ

Dt
+ ρ

∂u

∂x
= 0 (6.11)

ρ
Du

Dt
+
∂p

∂x
= 0 (6.12)

DE

Dt
+ (E + p)

∂u

∂x
= 0, (6.13)

where ρ is the density and E is the total specific energy. Note that we have implicitly

made the assumption that there is a single value for the flow velocity and the

pressure in the reactant product mixture.

Using a general equation of state for the explosive,

e = e(ρ, p, λ), (6.14)

which defines the specific internal energy, e, as a function of the density, ρ, pressure,

p, and the mass fraction of the explosive which is unreacted, λ, we can relate the

material derivatives of the thermodynamic variables using

DE

Dt
=

D

Dt
(ρe(ρ, p, λ))

=

(
e+ ρ

∂e

∂ρ

)
Dρ

Dt
+ ρ

∂e

∂p

Dp

Dt
+ ρ

∂e

∂λ

Dλ

Dt
. (6.15)

Since we are operating in a reference frame where the flow velocity is zero, the energy

has no first order kinetic energy contribution. In this equation Dλ
Dt is nothing but

the reaction rate.
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Equations (6.5),(6.6),(6.11),(6.12),(6.13),(6.15) constitute a system of six linear

equations with eight unknowns:

Dρ

Dt
,
Du

Dt
,
Dp

Dt
,
DE

Dt
,
Dλ

Dt
, a,

∂u

∂x
,
∂p

∂x
.

The remaining terms and coefficients can all be calculated using the equations of

state of the reactants and products and the strength of the shock wave. Given two

of these eight unknowns, the system is fully constrained and we can calculate the

remaining six unknowns.

Flow velocity data from gauges in shock to detonation transition experiments can

be used to evaluate the strength of the shock (via measurement of uH) and the

material derivative Du
Dt . Using the data from neighbouring gauges in the explosive,

it is furthermore possible to evaluate the acceleration of the shock wave. Note that

for this purpose, data from a shock tracker could also be used and may potentially

offer greater accuracy if the number of gauges is small. The most accurate way of

doing this was found to be through evaluating the derivative of an interpolating

cubic spline for uH(t), constructed using the uH values from gauges shocked at

different times. As such the accuracy of this method is dependent on having many

gauges with sufficiently small separation from each other. However if data from

pressure gauges were available, Dp
Dt could be used to constrain the system in place

of the acceleration.

It is interesting to consider the physical significance of the fact that this system

of equations has two degrees of freedom. It means that the acceleration of a shock

wave in the explosive is not solely a function of the reaction rate – the acceleration is

dependent on the gradients behind the shock, and is thus dependent on the history

of the shock wave (the speeds of the shock wave at previous times).

This is significant since it means that it is not possible in general to construct

a function which describes the acceleration of a shock wave in terms of the shock

wave strength. While we can construct such a function using the data from a single

experiment, we cannot expect the same function to work for a different experiment

which is carried out in different conditions, for example with a different initial

pressure.
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6.3 Proof of Concept

To demonstrate the validity of the approach presented above, we begin by applying

it to an idealized explosive. We simulate shock to detonation transition in an

ideal, gas phase explosive, and generate flow velocity data as would be measured

by experimental gauges. The idea is to create some gauge data, which is free of

experimental error, for a case where the reaction rate is known. We will then apply

the methodology developed above to calculate the reaction rate in the explosive

and verify the applicability of the method in practice.

For this purpose we model the explosive with the inviscid Euler equations and an

ideal gas equation of state,

p = ρ(γ − 1)(e+ (1− λ)Q), (6.16)

which is dependent on the reactant mass fraction, λ, (λ = 1 for reactants, and

λ = 0 for products). In this case, if the reaction rate is to be positive, it must be

defined as −Dλ
Dt . The specific heat of combustion is Q. The adiabatic gamma, γ, is

chosen to be 1.4 throughout. For this idealized explosive we have

∂e

∂λ
= Q (6.17)

∂e

∂p
=

1

ρ(γ − 1)
(6.18)

∂e

∂ρ
= − p

ρ2(γ − 1)
. (6.19)

The Hugoniot pressure, pH(v), is expressed in terms of specific volume as

pH(v) =
p0v0 + γ−1

2 p0(v0 − v)

v − γ−1
2 (v0 − v)

, (6.20)

where v0 and p0 are the initial specific volume and initial pressure respectively. For

the present objectives we can work in dimensionless variables, and so we define the

temperature, T , as

T = p/ρ. (6.21)

The initial conditions for the explosive are chosen to be ρ = p = T = 1.

We employ an Arrhenius form for the reaction rate

− Dλ

Dt
(T, λ) = λA exp

(
−TA
T

)
(6.22)
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We define the parameters A and TA in terms of the dimensionless activation

temperature, T̃A, the initial post-shock temperature, TH , and Ã.

TA = T̃ATH (6.23)

A =
Ã

Q
exp(T̃A)

1

T̃A
(6.24)

The form of these equations has been chosen such that the initial post-shock rate

of change of the temperature is

DT

Dt
=
∂T

∂λ

∣∣∣∣
ρ,e

Dλ

Dt

= (γ − 1)Qλ
Ã

Q
exp(T̃A)

1

T̃A
exp

(
− T̃ATH

TH

)
= (γ − 1)λÃ

1

T̃A
(6.25)

With this choice, the induction time is to a first approximation a function of Ã

only.

We use Q = 11.6269 and Ã = 9.3765. These values have been chosen such that if

we were to use T̃A = 14.99 and a Mach 3 ignition shock wave, the dynamics of the

system would be the same as that modelled by Nikiforakis and Clarke [95]. However

the high activation temperature used in that study leads to ignition behaviour which

is not conducive to application of the method presented in this work. For higher

activation energies, the shock propagates through the explosive with very little

acceleration. After some induction time, thermal runaway occurs at the boundary,

and a super-detonation wave develops.

In the present work, we use a lower activation temperature of T̃A = 10. The

behaviour is qualitatively different in this case. We have done two simulations, one

with an ignition shock of Mach 3, and the other with an ignition shock of Mach

3.25. However TH is kept fixed at the value corresponding to a Mach 3 wave, so

that the reaction rate is the same for the two simulations. The ignition shock wave

is created in the simulation using a reflective boundary condition and by initializing

the explosive with a non-zero velocity towards the boundary, u0. The parameters

are summarized in Table 6.1. Figures 6.2 and 6.3 show the gauge data for an initial

shock of Mach number 3 and 3.25 respectively. For clarity, only 15 of the 45 gauges

are shown in the plot.
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6.3 Proof of Concept

Q 11.6269

Ã 9.3765

T̃A 10

TH 2.6790

Initial Mach number 3 3.25

u0 2.6294 2.9012

Table 6.1: Parameters for ignition to detonation of an idealized explosive.
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Figure 6.2: Gauge data for shock to detonation transition for an idealized explosive, with

a Mach 3 ignition shock. The units are dimensionless.
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Figure 6.3: Gauge data for shock to detonation transition for an idealized nondimension-

alised explosive, with a Mach 3.25 ignition shock. Each line corresponds to a

particular gauge.
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Figure 6.4: Reaction rate data extracted from simulated gauge output for an ideal explo-

sive is compared with the known rate law used to generate the data.

Figure 6.4 shows the reaction rate data which was extracted from the gauges. The

error bars correspond to the uncertainty in measurement of the post-shock deriva-

tive. The errors are larger for higher temperatures, since these gauges measure the

shock close to the detonation transition. The velocity profile of these gauges is more

curved, which increases the uncertainty associated with measuring the derivative.

The majority of the data points are collected around two temperatures values

(one at 2.7 and the other at 3.05). These correspond to the initial post-shock

temperatures for the two simulations. Using multiple simulations with differing

initial shock strength thus allows us to sample a wider temperature range, and

significantly improve the accuracy of the resulting fit.

The line of best fit to the extracted data has parameters Ã = 9.0329 and T̃A =

9.5681. These values can be compared to the exact parameters in Table 6.1. We

note that the resulting parameters do not exactly match the chosen values used

to generate the data. This is because the results are affected by numerical errors,

despite the absence of experimental error. These arise from the numerical errors

in the simulation itself, which was carried out with a hydrocode. Furthermore the

data generated for the gauges is of finite resolution, which leads to errors in the

evaluation of the shock strength and post-shock derivatives.
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6.4 Application to PBX 9502

The methodology presented above is applied here to the TATB based explosive

PBX 9502. The application of this method first requires equations of state for

each of the reactants and products. We further require closure rules with which to

evaluate the derivative ∂e
∂λ .

We use equations of state of Mie-Grüneisen form for the reactants, α, and the

products, β,

pk − pk,REF(vk) = ρkΓk(vk)(ek − ek,REF(vk)) for k ∈ {α, β}. (6.26)

The reference functions and their parameters are those developed in Chapter 3.

Evaluation of states in the reaction zone where both reactants and products coexist

requires mixture rules and closure conditions. In this chapter we use pressure

equilibrium and temperature equilibrium,

v = λvα + (1− λ)vβ (6.27)

e(v, p, λ) = λeα(vα, p) + (1− λ)eβ(vβ, p) (6.28)

Tα(vα, p) = Tβ(vβ, p), (6.29)

where pressure equilibrium means we have a single value for the pressure, p. The

methodology to use these closure rules to evaluate states with non-integer values

of λ is discussed in Chapter 3. A heat isolation closure rule may be implemented

in place of temperature equilibrium, in which case the entropy of the reactants is

kept fixed following the shock wave.

The state immediately behind the shock consists of reactants only, and so using

only the equation of state of the reactants we can evaluate

∂e

∂p
=

1

ρΓ
, (6.30)

∂e

∂ρ
=
∂v

∂ρ

∂e

∂v
= − 1

ρ2

∂e

∂v

= − 1

ρ2

[
∂eREF

∂v
− p− pREF

(ρΓ)2

∂ρΓ

∂v
− 1

ρΓ

∂pREF

∂v

]
. (6.31)

Similarly the Hugoniot pressure, pH(v), can be calculated using the equation of

state of the reactants with the expression given in equation (4.9) in Chapter 4.
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The remaining term ∂e
∂λ also depends on the equation of state used to model

the products, and the closure rules used to describe the mixture of reactants and

products in the reaction zone. Evaluating the energy at states with non-integer

λ requires the solution of a nonlinear equation. The equation of state for the

mixture cannot be written as an explicit function of λ and involves the solution of

a nonlinear equation, and so we cannot differentiate the equation of state for the

mixture explicitly. The derivative with respect to λ is instead evaluated using finite

differences, (
∂e

∂λ

)
v,p

=
e(v, p, 1−∆λ)− e(v, p, 1)

−∆λ
. (6.32)

The value of λ is always one immediately after the shock, because the reactants do

not burn prior to the passing of the shock. A value of 10−4 for ∆λ was found to

give an accurate value for the derivative.

We calculate values for the reaction rate for the experiments which are presented

by Gustavsen [49]. Some of the experiments were not included due to the small

number of gauges. We used experiments denoted by the codes 2s-85, 2s-86, 2s-116

and 2s-117, for which additional gauge data is available in Wescott et al. [129] and

Aslam[8]. The reaction rate values are presented in Table 6.2. Data such as this can

be used to quantitatively assess the suitability of the thermodynamic dependence of

a proposed reaction rate model for modelling the experiments under consideration.

The resulting reaction rate values are plotted with the post-shock temperature

in Figure 6.5. We fit an Arrhenius reaction rate form for the thermodynamic

dependence,

− Dλ

Dt
(T, λ = 1) = A exp

(
−TA
T

)
. (6.33)

With the limited experimental data employed here, an Arrhenius function provides

a good fit to the data. However a more complex rate form may be required in order

to fit a more wide-ranging data set. The parameters for the best fit to the data are

A = 365.88µs−1, TA = 6729.7K.

It is emphasised that the data in Table 6.2 can be used to determine parameters

for alternative rate models with very little additional work required. For example

the same data can be used to calibrate a pressure dependent rate law,

− Dλ

Dt
(p, λ = 1) = 106

( p

17.36 GPa

)6.66
. (6.34)
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Experiment v p T −Dλ
Dt uH

duH
dt

Du
Dt

cm3/kg GPa K µs−1 mmµs−1 ms−2 ms−2

2s-86 0.3925 13.23 864.5 0.1113 1.349 1.908e+08 2.899e+08

2s-86 0.3905 13.87 905.7 0.3221 1.392 4.144e+08 4.606e+08

2s-86 0.3875 14.89 972.1 0.3562 1.458 4.628e+08 5.496e+08

2s-86 0.3848 15.91 1041 0.3885 1.521 5.724e+08 8.161e+08

2s-86 0.3806 17.70 1167 0.9954 1.627 9.711e+08 8.776e+08

2s-85 0.3839 16.29 1068 0.5882 1.544 6.576e+08 6.778e+08

2s-85 0.3791 18.43 1219 1.579 1.669 1.353e+09 9.869e+08

2s-117 0.4028 10.49 701.7 5.286e-04 1.156 7.339e+07 2.186e+08

2s-117 0.4007 11.01 730.9 0.04844 1.194 1.185e+08 2.256e+08

2s-117 0.3983 11.61 765.9 0.07739 1.238 1.630e+08 2.836e+08

2s-117 0.3944 12.68 830.2 0.2548 1.312 3.666e+08 4.528e+08

2s-117 0.3915 13.54 884.2 0.2231 1.370 3.870e+08 5.977e+08

2s-117 0.3888 14.43 941.8 0.3047 1.428 4.485e+08 6.073e+08

2s-116 0.3930 13.08 855.1 0.1998 1.339 3.391e+08 5.085e+08

2s-116 0.3891 14.33 935.1 0.3337 1.422 4.175e+08 4.556e+08

2s-116 0.3862 15.38 1005 0.4152 1.488 5.132e+08 5.833e+08

2s-116 0.3824 16.90 1110 0.9822 1.581 8.906e+08 6.152e+08

Table 6.2: Reaction rate values for PBX 9502 as calculated from shock to detonation

transition experiments using the methodology presented in this chapter. The

thermodynamic values correspond to the state immediately following the shock

wave and are calculated using the experimental post-shock flow velocity, uH ,

and the previously calibrated equation of state for the reactants (Chapter 3).

The final two columns of data are obtained from analysis of the experimental

gauge data and are used to calculate the reaction rate, Dλ
Dt , using the method

presented in this chapter.
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Figure 6.5: Data extracted from experimental data from shock to detonation transition

experiments of PBX 9502.[8, 49, 129]

6.5 Validation

The above work demonstrates how we can use gauge data from shock to detonation

transition experiments to directly evaluate the rate. However these values apply to

the rate immediately following the shock wave. The method does not give us any

information regarding the reaction rate in partially burnt explosive. We can make

the assumption that the reaction rate model can be expressed as

Dλ

Dt
= f(T )g(λ) (6.35)

where f may be a function of various thermodynamic functions of state. The

function g controls the evolution of the reaction rate as the concentration of the

reactants is reduced. We may define g(λ) such that g(1) = 1 and g(0) = 0, since

any constant multiple in g may be factored out and included in f .

The form and parameters of g(λ) may be determined using experimental data for

the length of the reaction zone in detonation waves. Such an approach could be

used to constrain the reaction rate as a whole. However it would not be possible to

evaluate the temperature dependence or pressure dependence of the reaction rate

directly from an experimental measurement of the reaction zone width, since for a

given explosive ZND waves pass through a fixed path in temperature and pressure

space.
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Figure 6.6: Simulation results for shock to detonation transition are compared with ex-

perimental data from Gustavsen et al. [49]. Only one degree of freedom was

used for optimization, and yet the calibrated rate law fits the experimental

data over a range of impact pressures. The vertical red lines correspond to

individual simulations.

In this section we use the pop-plot data from Gustavsen [49] and optimization to

determine the remaining free parameter, n, in the rate law

− Dλ

Dt
(T, λ) = Aλn exp

(
−TA
T

)
. (6.36)

The parameters for the thermodynamic dependence are fixed at A = 365.88µs−1,

TA = 6729.7K. Only the value of n is adjusted during the calibration. The value

of n found to best fit the experimental data was 1.69. The resulting pop-plot is

shown in Figure 6.6 along with the experimental data from Gustavsen et al. [49].

The simulations show good agreement to the experimental data despite using only

a single parameter for the calibration. This demonstrates that the thermodynamic

dependence of the reaction rate is correctly capturing the change in the reaction

rate which occurs as a result of different projectile velocities and impact pressures.

Figure 6.6 plots the average of the positions corresponding to a wave velocity of

90% and 95% of the CJ velocity. This is necessary because particularly for high

impact pressures the transition to detonation is gradual and ill-defined. This is

expected to some degree since PBX 9502 is heterogeneous, and this behaviour is

typical for heterogeneous explosives.
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Note that the impact pressure is recalculated using the projectile velocity reported

by Gustavsen, and the equation of state for PBX 9502 which was developed and

calibrated in the present work. The equation of state for the Kel-F projectile was

the same as that used by Gustavsen et al. [49].

6.6 Reaction Zone Width

An alternative approach to determine the parameters of the function g is presented

in this section. This method uses data for the width of the reaction zone, and

allows parameters for g(λ) to be determined without resorting to optimization using

hydrocode simulations for any parameters.

For PBX 9502, we use the values for the width of the reaction zone from Seitz

et al. [111]. In this paper the width of the reaction zone is measured in terms of

the time it takes a gauge to be traversed by the wave. This is done by matching a

ZND model directly with experimental data. To calculate the size of the reaction

zone in time, we can simply integrate the rate over the reaction zone. This is the

integral defined in equation (4.41) in Chapter 4. This corresponds to the amount

of time it takes for the reaction zone to propagate past a particle embedded in the

explosive. The procedure for evaluating this integral is explained fully in Chapter

4.

From Seitz et al. [111] the explosive is 85% burnt (λ = 0.15) after 25ns and

98% burnt after 300ns. The substantial reduction of the reaction rate at around

λ = 0.1 is a distinguishing feature of PBX 9502 arising from the comparatively time

scales associated with the coagulation of solid carbon. It makes sense therefore to

construct g(λ) such as to account for this behaviour. While the precise value of λ

at which the reaction rate is reduced employs some degree of speculation, this value

is largely consistent with the literature [8, 63, 70, 123, 129].

Following Aslam [8], the chosen form for g was

g(λ) = λn
(
fs +

1− fs
2

(
1 + tanh

(
λ− 0.1

0.02

)))
, (6.37)

with free variables n and fs. g(1) is almost exactly 1, and g(λ) approaches fsλ
n for

small λ.
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A 365.88µs−1

TA 6729.7K

Ttransition 2000K

TA2 7877K

n 0.5

fs 0.036

Table 6.3: Parameters for the calibrated rate law of PBX 9502.

Unfortunately, it was found that the form of f , which was determined using

shock to detonation transition experiments, is too slow when evaluated at the von

Neumann spike. In other words, no matter the choice of parameters for g, it is

not possible to reach λ = 0.15 within 25ns. Since the temperature of the von

Neumann spike is well above the temperature range which is sampled (see Figure

6.5), this does not necessarily indicate that the previous results are incorrect. It

merely indicates that we are extrapolating beyond the regime of data which was

used to calibrate the model. To match the data we introduce a new parameter to

f(T ).

f(T ) =

 A exp
(
−TA

T

)
if T ≤ Ttransition

A2 exp
(
−TA2

T

)
if T > Ttransition

(6.38)

A2 = exp

(
TA2

Ttransition

)
A exp

(
− TA
Ttransition

)

A2 is chosen such that f will be continuous at the transition temperature, which

is chosen to be 2000K, a value well below the von Neumann temperature, 2730K,

but significantly higher than the temperatures in Figure 6.5. Since A and TA for the

low temperature regime have already been determined, the only new free parameter

is TA2 .

It is now possible to achieve a good fit with the experimental data from Seitz et

al. [111]. This is shown in Figure 6.7. The parameters are summarized in Table

6.3.
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Figure 6.7: The plot shows the time taken for a piece of material to evolve from the initial

condition of λ = 1 following the passing of a ZND wave. The red markers

represent the experimental results from Seitz et al. [111].

6.7 Results

The rate law presented above can be tested by modelling both shock to detonation

transition and the detonation of confined rate sticks. The rate law, along with

the equations of state are used in the MiNi16 Eulerian formulation [91], which was

described in Chapter 5.

It is important to emphasize that the parameters of the model (the parameters

of the equation of state and the parameters of the reaction rate model) are all fully

determined without the use of the hydrocode. No optimization is required where

the objective function involves execution of the hydrocode.

The pop-plot is generated by simulating the shock to detonation transition of

the explosive in one dimension. The results are compared with the experimental

data from Gustavsen et al. [49] in Figure 6.8. The simulations predict distances

to detonation slightly below the spread of the experimental data. However these

are genuine predictions in the sense that the pop-plot data is not used at all to

determine the various parameters. Even in the case where it is desirable to use

any available pop-plot data with the aim of producing a more accurate model, it is

apparent that the parameters calibrated here would serve as a more than adequate

starting point from which to begin an optimization algorithm.
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Figure 6.8: Pop-plot using the reaction rate parameters for the best fit to the data in

Figure 6.5. The lower and upper red lines indicate transition to detonation

defined as the point where the wave velocity first exceeds 90% and 95% of

the CJ velocity respectively. The vertical red lines correspond to specific

simulations.

Detonation waves of the confined explosive are also simulated using two geometries

- cylindrical rate sticks, and two dimensional slabs. In each case we may take

advantage of the symmetry of the system to do the simulation in two dimensions.

The velocity of detonation is measured as a function of the rate stick radius, and

the slab thickness. In either case the confining material is air, modelled with an

ideal gas equation of state with adiabatic gamma 1.4.

The results are compared with the experimental measurements of Jackson and

Short[63] in Figure 6.9. The model does not reproduce the curvature in the velocity

of detonation dependence on the radius which is observed experimentally. This

curvature has been reproduced in this work (Figure 5.16). However there is an

important distinction which is that the model presented in this chapter has been

calibrated without the use of any detonation velocity data. Similar predictions could

therefore be made even for explosives for which no detonation velocity experimental

data is available. Note that for rate sticks with 1/R > 200m−1, and slabs with

1/T > 200m−1, the detonation failed. This manifests as a gradual deceleration of

the detonation wave until the pressures and temperatures reduce to the point where

chemical reactions cease entirely.
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Figure 6.9: Predictions for the velocity of detonation in PBX 9502 rate sticks and slabs.

The graph plots the velocity against the inverse radius, R, for rate sticks, and

thickness, T , for slabs. The square markers represent individual simulations,

while the lines are Eyring fits [27] through the simulation results. The circular

markers represent experimental data from Jackson and Short [63].

Once again it is emphasised that the detonation velocity data is not used at all in

the calibration process, and as such the simulation results in Figure 6.9 are genuine

predictions. This is in contrast to the results presented in Chapter 5, where the

rate stick data is used in the calibration procedure. The resulting model is then

used to predict the detonation velocity of the slabs and for rate sticks of differing

radii.

6.8 Conclusions

A methodology has been presented to calculate reaction rate values directly from

the gauge data which is generated in shock to detonation transition experiments.

By relating the acceleration of the igniting shock wave with the derivatives of the

flow field, a linear system is constructed. Measurement of the acceleration of the

shock wave itself and the post-shock acceleration of a gauge fully constrains the

system. We can thus determine the reaction rate in the material after the passing

of the shock wave.
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6.8 Conclusions

This method offers an opportunity to avoid the global optimization of parameters

through a direct comparison of simulation results with experimental data. The

reaction rate parameters can instead be calibrated independently of the hydrocode,

an approach which is dramatically more efficient.

Direct calculation of the reaction rate with this method can form the basis for

a direct evaluation of the thermodynamic dependence of the reaction rate. This

can be used to motivate the choice of mathematical function used to express the

reaction rate.

The method relies on the accuracy of the equations of state. The method also

uses a closure condition to evaluate the partial derivative of the specific internal

energy with respect to the progress variable, ∂e
∂λ . The accuracy of the predicted

reaction rate values are therefore dependent on the extent to which the temperature

equilibrium condition is physically justified. The method can however be trivially

modified to use a heat isolation condition instead.

The method has been validated using simulated gauge data for an idealized ex-

plosive. This demonstrates that the method can work in principle. The method is

further validated by correctly capturing the thermodynamic dependence of the re-

action rate of PBX 9502. This is demonstrated by reproducing the thermodynamic

dependence exhibited in the pop-plot experimental data, despite the use of a fairly

small dataset.

Use of experimental values for the width of the reaction zone, allows the model

to be further extended to the detonation regime. The accuracy of the predictions

is necessarily limited by the accuracy of the experimental data. In Chapter 5,

the calibration of the reaction rate uses measurements of the detonation velocity.

Since detonation waves eventually converge to a steady wave, their velocity can be

measured with comparatively high accuracy. In contrast, the data from embedded

gauges which is used in this chapter, is subject to more experimental error. Never-

theless predictions of the velocity of confined detonation waves using this method

match the experimental data with reasonable accuracy.

The results presented in this chapter show the potential of the method which

has been presented, and motivate a future investigation using more experimental
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6 Direct Calibration of Reaction Rate Models

data. Furthermore the method can evidently serve as an excellent tool for reducing

the amount of time required to calibrate a reaction rate model by determining a

suitable set of parameter values from which to start the optimization.
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7 Conclusions

This thesis develops a comprehensive methodology for modelling ignition and det-

onation of explosives. The objective was to be able to simulate the combustion of

explosives and their interaction with the environment in complex geometries. In

particular, the aim was to develop robust models, which are applicable in a wide

range of scenarios and make accurate, quantitative predictions. The work has been

presented in the form of a methodology which can be applied to construct a model

for any condensed phase high explosive.

The methodology has been applied to construct explosive models for two condensed-

phase explosives, PBX 9502 and EM120D. The TATB based explosive, PBX 9502,

is an insensitive high explosive which is comparatively ideal. EM120D, on the other

hand, is an ammonium nitrate based emulsion, which is significantly porous and is

also non-ideal. The explosive model is of a form suitable for implementation in a hy-

drocode and consists of two independent equations of state, a reaction rate model

and mixture rules. Application of the methodology to both of these explosives

serves to validate the methodology for both ideal and non-ideal explosives.

In Chapter 3, the form of the equation of state models was developed with the

aim of improving the robustness of the explosive model with particular focus on

the mixture rules of pressure equilibrium and temperature equilibrium and the

applicability of the equations of state in this context. Reliable and robust solution

of the temperature equilibrium condition requires equations of state which behave

according to the physical requirements of thermodynamics.

Furthermore the equations of state were developed to be applicable to a wide

variety of explosives; they do not rely on experimental data which is rarely avail-

able. Many explosives are significantly porous, and therefore the equations of state
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were developed such as to be able to incorporate the porosity explicitly. Finally

the mathematical forms were chosen to be as simple as possible, with the aim of

developing equations of state which can be used in efficient hydrocode simulations.

The reactant equation of state is an adaptation of the equation of state of Davis

[35]. The reference functions are altered such as to incorporate the snow plow

porosity model. The porosity model has been shown to successfully reproduce the

curved D,u relationship that has been measured experimentally in PBX 9502. A

simple modification to the mathematical form for the Grüneisen gamma widens

the range of validity of the equation of state, while avoiding the complexity of the

WSD model. The temperatures are derived solely from the Hugoniot data and the

thermodynamics of the explosive in ambient conditions, since there is very limited

thermal data available for the reactants of many explosives.

The product equation of state is an adaptation of the JWL equation of state which

accommodates evaluation of the temperature. As is the case for the Williamsburg

equation of state, the reference curves are calibrated to data for the principal isen-

trope from a thermochemical code. However this data is used to calibrate parame-

ters for reference curves which are based on the simple empirical form used by the

standard JWL equation of state. This takes advantage of the additional accuracy

offered by the ideal detonation code, while preserving the simplicity and efficiency

of JWL.

A methodology has been presented to determine all the various parameters re-

quired to use the equations of state for a specific explosive. The methodology was

applied to the non-ideal explosive emulsion EM120D and the ideal TATB based

explosive PBX 9502.

In Chapter 4, the equations of state are used to directly calculate the structure

of one dimensional detonation waves using the ZND theory. This permits us to

calculate states inside the reaction zone, and make a direct comparison between

candidate closure rules. Evaluation of the state in the reaction zone allows us to

quantify how much heat transfer must occur if the reactants and products are to

remain at temperature equilibrium.
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The equations of state for the explosives were also used in the context of the

MiNi16 formulation [91] to perform direct numerical simulation of the detonation

wave and its interaction with the confiner. The numerical implementation was

validated using one dimensional Riemann tests. The equation of state models and

numerical method were also validated by simulating one dimensional detonation

waves, which can be compared with the predictions of the ZND theory.

An accurate reaction rate model is still required in order to make predictions. The

most common approach is to use an empirical form for the reaction rate with free

parameters. The values of the free parameters are determined by optimizing the

accuracy of the hydrocode predictions using experimental data. This involves many

executions of the hydrocode and is a computationally intensive process. In Chapter

5 this approach was used to calibrate a reaction rate model for both EM120D and

PBX 9502.

For EM120D, the predictive capability demonstrated by Schoch et al. [108] was

successfully reproduced. The methodology was shown to be capable of predict-

ing the effect of strong confinement on the detonation velocity, despite only using

data for weakly confined rate sticks in the calibration process. For PBX 9502, the

methodology was applied to predict the dependence of the detonation velocity on

the geometry. The model was calibrated using rate stick data, and used to pre-

dict the detonation velocity in a slab geometry. In each case, the accuracy of the

predictions was verified using experimental data. The results demonstrate that the

equations of state are both accurate and robust in practice.

A method has also been presented to directly calculate values for the reaction

rate from experimental data, and thus avoid the expensive optimization procedure.

This exploits the experimental data from gauges embedded in an explosive which is

ignited by shock to detonation transition. By relating the acceleration of the ignit-

ing shock wave with the derivatives of the flow field, a linear system is constructed.

Measurement of the acceleration of the shock wave itself and the post-shock accel-

eration of a gauge fully constrains the system. We can thus determine the reaction

rate in the material after the passing of the shock wave. The method has been

validated by applying it to simulated gauge data for an idealized explosive with a

known reaction rate.
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7 Conclusions

The principal advantage of the proposed method to directly calculate values for

the reaction rate is that the resulting values can be used to establish the thermody-

namic dependence of the reaction rate. Given data for an explosive which samples

states other than the single shock Hugoniot, this method can quantitatively evalu-

ate the relative accuracy of pressure dependent forms in comparison to temperature

or entropy dependent forms.

This method also offers an opportunity to avoid the global optimization of param-

eters through a direct comparison of simulation results with experimental data. The

reaction rate parameters can instead be calibrated independently of the hydrocode,

an approach which is significantly more efficient. Furthermore, the resulting explo-

sive model is independent of the numerical methods used in the hydrocode. This

approach therefore serves to further validate the numerical methods used, since in

this case there is no scope for errors in the explosive model to be compensated for

in the optimization process.

This method has been applied to the insensitive high explosive PBX 9502 to

calculate reaction rate values directly. The resulting values justify an empirical

reaction rate model, which has been developed to match the resulting reaction rate

values as well as experimental data for the width of the reaction zone in a ZND

wave.

The resulting model can be used to simulate both ignition and detonation of PBX

9502. While the predictions (Figure 6.9) are not as precise as those achieved via

optimization (Figure 5.16), the calibration procedure is much less computationally

intensive. Furthermore the calibration presented in Chapter 6 relies on a limited

set of experimental data and is completely independent of the experimental con-

fined detonation velocity measurements. Detonation velocities of rate sticks can

be measured much more precisely than the acceleration of the shock wave during

ignition. As such, it is to be expected that the direct optimization of parameters

approach presented in Chapter 5 will yield a more precise model.

The best approach may be to use a combination of the two methods. The analysis

of embedded gauge data can be used to motivate the form of the reaction rate model,

and provide a first guess to the parameters of the model. The parameters could

then be refined further by optimization of the simulation results with respect to
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experimental measurements. This will still lead to a significant increase in efficiency,

since the number of iterations required for optimization is strongly dependent on

the accuracy of the initial guess.
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A Derivation of the Shock

Mie-Grüneisen Equation of State

As a shock wave passes a piece of material, the flow velocity of the material is

increased. The relation between this velocity, u, and the shock velocity, D, is

empirically found to be approximately linear for many solids [5, 131],

D = a+ bu, (A.1)

where a is the ambient speed of sound, and b is an empirically determined constant.

Note that the shock velocity is measured with respect to the unshocked material.

Using the Rankine-Hugoniot condition for mass conservation,

ρ(D − u) = ρ0D (A.2)

u =

(
1− ρ0

ρ

)
D = χD (A.3)

where χ has been defined such that

χ =

(
1− ρ0

ρ

)
. (A.4)

The shock velocity can then be expressed as a function of volume only,

D = a+ bu (A.5)

= a+ bχD (A.6)

=
a

1− bχ. (A.7)
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Using the Rankine-Hugoniot condition for conservation of momentum (4.2) we can

calculate the pressure on the Hugoniot curve, pH ,

pH − p0 = uρ0D (A.8)

= ρ0χD
2 (A.9)

=
ρ0χa

2

(1− bχ)2
. (A.10)

The final step is to determine the energy reference function. This is most easily

done using the Hugoniot equation,

eH − e0 =
1

2
(pH + p0)(v0 − v). (A.11)

For the applications which are the subject of the present thesis, typical shock

waves are such that the pressure increases by several orders of magnitude. The

initial pressure, p0, and initial energy, e0, can therefore be neglected to obtain the

pressure and energy on the Hugoniot curve,

pH =
ρ0χa

2

(1− bχ)2
(A.12)

eH =
1

2
(v0 − v)pH . (A.13)
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B Derivation of Davis Equation of State

This derivation follows that presented by Davis [35]. Experimentally, the relation

between shock velocity, D, and post-shock flow velocity, u, is approximately linear.

In the limit of weak shocks, the shock velocity is the ambient speed of sound, a. As

such, we may express the shock velocity as

D = a+ bu, (B.1)

where b is a positive dimensionless parameter. The Rankine-Hugoniot condition for

momentum can be used to determine the pressure, p,

p = ρ0uD = ρ0u(a+ bu), (B.2)

where ρ0 is the ambient density. By completing the square, we have

u = − a

2b
+

1

2

√
a2

b2
+

4p

bρ0
. (B.3)

In the limit of weak shock waves, the Hugoniot curve is isentropic. Therefore,(
∂p

∂u

)
S

= aρ0 + 2bρ0u (B.4)

= bρ0

√
a2

b2
+

4p

bρ0
. (B.5)

Furthermore, the propagation speed, D, of weak shock waves is nothing but the

ambient sound speed, a, so(
∂p

∂u

)
S

= ρ0a = ρ0

√(
∂p

∂ρ

)
S

= −
√(

∂p

∂v

)
S

(B.6)

⇒
(
∂p

∂v

)
S

= −
(
a2ρ2

0 + 4bρ0p
)
. (B.7)
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This is a first order differential equation with solution

pS(v) = e−4bρ0v

∫
(−a2ρ2

0)e4bρ0v dv (B.8)

=
−a2ρ0

4b
+ ce−4bρ0v. (B.9)

The pressure at the initial specific volume, v0 = 1/ρ0, is orders of magnitude

smaller than the shock pressure for typical applications, and so can be assumed to

be zero. This determines the value of the integration constant, c. The isentrope

pressure can finally be expressed in terms of specific volume as

pS(v) =
a2ρ0

4b

(
−1 + e4be−4bρ0v

)
(B.10)

=
a2ρ0

4b

(
e4b(1−v/v0) − 1

)
(B.11)
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C Volume and Mass Fractions for

Parametrising Multiphase Fluids

The method used in this thesis frequently refers to both the mass fraction and

volume fraction of a multiphase fluid. Consider a two phase fluid. Let each fluid

have Nk particles of mass mk and occupy a volume Vk where k is a label. The

overall density of the fluid is

ρ =

∑
kNkmk∑
k Vk

. (C.1)

The density of each phase is

ρk =
Nkmk

Vk
. (C.2)

The volume fraction, zk, and mass fraction, λk, of each phase are defined to be

zk =
Vk∑
i Vi

1 =
∑
i

zi

λk =
Nkmk∑
iNimi

1 =
∑
i

λi.
(C.3)

We wish to find mixture rules which define the overall density as a function of

the densities of the fluid’s constituents using either the volume fraction or mass

fraction as a parameter. Firstly, consider∑
k

Vk =

∑
kNkmk

ρ
=
∑
k

Nkmk

ρk
(C.4)

1

ρ
=
∑
k

λk
ρk

(C.5)

On the other hand we have∑
k

Nkmk = ρ
∑
k

Vk =
∑
k

ρkVk (C.6)

ρ =
∑
k

zkρk. (C.7)
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In terms of the specific volume, v, these relations are

v =
∑
k

λkvk (C.8)

1

v
=
∑
k

zk
vk
. (C.9)

It also possible to relate the volume fraction with the mass fraction for an indi-

vidual phase,

zk =
Vk∑
i Vi

=
Nkmk/ρk

(
∑

iNimi)/ρ
=
λkρ

ρk
. (C.10)
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