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Abstract 

Trabecular bone is responsive to mechanical loading, and thus may be a useful tool for 

interpreting past behaviour from fossil morphology. However, the ability to meaningfully interpret 

variation in archaeological and hominin trabecular morphology depends on the extent to which 

trabecular bone properties are integrated throughout the postcranium or are locally variable in 

response to joint specific loading. We investigate both of these factors by comparing trabecular bone 

throughout the lower limb between a group of highly mobile foragers and two groups of sedentary 

agriculturalists. Trabecular bone structure is quantified in four volumes of interest placed within the 

proximal and distal joints of the femur and tibia. We determine how trabecular structures correspond 

to inferred behavioural differences between populations and whether the patterns are consistent 

throughout the limb. A significant correlation was found between inferred mobility level and 

trabecular bone structure in all volumes of interest along the lower limb. The greater terrestrial 

mobility of foragers is associated with higher bone volume fraction, and thicker and fewer trabeculae 

(lower connectivity density). In all populations, bone volume fraction decreases while anisotropy 

increases proximodistally throughout the lower limb. This observation mirrors reductions in cortical 

bone mass resulting from proximodistal limb tapering. The reduction in strength associated with 

reduced bone volume fraction may be compensated for by the increased anisotropy in the distal tibia. 

A similar pattern of trabecular structure is found throughout the lower limb in all populations, upon 

which a signal of terrestrial mobility appears to be superimposed. These results support the validity of 

using lower limb trabecular bone microstructure to reconstruct terrestrial mobility levels from the 

archaeological and fossil records. The results further indicate that care should be taken to appreciate 

variation resulting from differences in habitual activity when inferring behaviour from the trabecular 

structure of hominin fossils through comparisons with modern humans. 

  



Introduction 

Variation in cortical bone morphology has been  used successfully to infer past behaviour in 

archaeological populations and hominin fossils (Ruff and Hayes, 1983; Stock and Pfeiffer, 2001; 

Holt, 2003; Marchi, 2008; Ruff, 2008; Shaw and Stock, 2009b; Stock et al., 2011; Macintosh et al., 

2014; Ruff et al., 2015). Trabecular bone is also responsive to mechanical loading (Wolff, 1867; 

Huiskes et al., 2000; Pontzer et al., 2006; Sugiyama et al., 2010; Barak et al., 2011; Ryan and Shaw, 

2015). While trabecular bone has been of interest for a long time (Macchiarelli et al., 1999), the 

increased availability of high resolution µCT scanning and high-throughput computing has made 

broad and detailed comparisons of primates and fossil hominins feasible (DeSilva and Devlin, 2012; 

Barak et al., 2013; Su et al., 2013; Skinner et al., 2015). Correlations between primate locomotor 

mode and trabecular microstructure have received much attention over the past decade and a half 

(Fajardo et al., 2002; Maga et al., 2006; Griffin et al., 2010; Lazenby et al., 2011; Ryan and Shaw, 

2012; Scherf et al., 2013). However, variation in trabecular structure within and between modern 

human populations has not been considered widely in anthropology (Ryan and Shaw, 2015). The 

ability to infer behaviour from hominin fossils would be strengthened by a greater knowledge of 

adaptive constraints on morphology and clear evidence for a relationship between trabecular structural 

variation and inferred patterns of habitual activity in archaeological populations.  

Bone tissue is well known to repair microdamage and model in response to mechanical 

loading (Frost, 2003). Bone is added under high dynamic strain (Sugiyama et al., 2010) and removed 

when dynamic strain is low (Squire et al., 2008). As a result, bone structure should reflect an 

individual’s mechanical homeostasis. While long bone diaphyses are plastic in response to mechanical 

loading, the external morphology of joints is highly canalised (Rafferty and Ruff, 1994; Barak et al., 

2011). In contrast, trabecular bone has been shown to be highly plastic in response to loading history 

(Pontzer et al., 2006; Barak et al., 2011; Wallace et al., 2013). While bone turnover rates vary 

substantially between anatomical locations and bone types, trabecular bone turnover is generally 

higher than that of cortical bone (Eriksen, 1986; Parfitt, 2002). Due to its complex structure, large 



surface area, and high modeling rate, trabecular bone may be highly dynamic in its response to 

mechanical loading. 

A considerable body of literature has now investigated trabecular bone variation across taxa 

in relation to primate locomotor patterns (Ryan and Ketcham, 2002; Fajardo et al., 2007; Griffin et al., 

2010; Saparin et al., 2011; Ryan and Shaw, 2012; Shaw and Ryan, 2012) and allometric scaling 

(Doube et al., 2011; Barak et al., 2013; Fajardo et al., 2013; Ryan and Shaw, 2013). Experimental 

work on sheep (Barak et al., 2011), mice (Sugiyama et al., 2010; Wallace et al., 2013), and guinea 

fowl (Pontzer et al., 2006) has demonstrated the adaptability of trabecular bone in response to 

magnitude and directionality of mechanical loading, although in another study trabecular bone was 

not responsive to exercise induced loading (Wallace et al., 2012). A small number of studies have 

explored trabecular bone structure in hominin fossils (Macchiarelli et al., 1999; DeSilva and Devlin, 

2012; Barak et al., 2013; Su et al., 2013; Skinner et al., 2015). While many aspects of external skeletal 

morphology may be constrained by phylogeny or function, the sensitivity of trabecular bone to 

mechanical loading in combination with high modeling rates may provide a dynamic source of data, 

reflecting the mechanical forces placed upon bones during life. 

Before trabecular bone can be employed to infer past behaviour confidently from hominin 

fossils, we require a more nuanced understanding of the developmental, mechanical, and other 

physiological influences that underlie within-species variation in trabecular bone morphology. In 

comparison to interspecific research among other primates, trabecular bone variation within modern 

humans has not been thoroughly explored. Several studies have investigated the ontogeny of human 

trabecular bone across several anatomical locations (Ryan and Krovitz, 2006; Gosman and Ketcham, 

2009; Raichlen et al., 2015). Raichlen et al. (2015) reported evidence that instability during the early 

stages of gait maturation is reflected in the trabecular structures of developing children. Ryan and 

Shaw (2015) demonstrated that modern human trabecular bone gracilisation in the proximal femur 

occurred after the shift from hunting and gathering to agriculture, which was associated with a general 

pattern of decreasing terrestrial mobility (Ruff et al., 1984, 2015; Macintosh et al., 2014). Ryan and 

Shaw (2015) found that hunter-gatherers displayed levels of trabecular bone volume fraction (BV/TV) 



predicted for a primate of human body size. Less mobile agriculturalists were found to have 

significantly lower BV/TV for primates of their body size. These results demonstrate that modern 

humans are not systemically or uniformly gracile in trabecular bone structure. This suggests that 

human locomotor anatomy evolved in a physiological and mechanical context of high levels of 

loading throughout life (Ryan and Shaw, 2015). These results stress the need for the appreciation of 

human variation when performing comparative analyses between fossil hominins and modern humans 

or other primates.  

Our ability to meaningfully interpret variation in trabecular bone structure depends largely on 

three issues—the response of bone tissue to mechanical loading, the extent to which trabecular bone 

properties are integrated throughout the postcranium, and the contribution of genes and developmental 

factors to the formation of trabecular bone structures. Theoretical and experimental work have 

demonstrated that not all regions of limb bone diaphyses are equally plastic in response to mechanical 

loading (Hallgrímsson et al., 2002; Skedros et al., 2003; Stock, 2006). There is an energetic trade-off 

between bone strength and mass, the effect of which becomes more pronounced distally along the 

lower limb. Bones must be strong enough to resist fracture but also as light as possible to reduce the 

energetic requirements of movement (Stock, 2006). Selective pressure for tissue economy appears to 

act less on proximal elements (Stock, 2006). Lower distal limb bone mass keeps the mass of the limb 

bones closer to the axis of rotation, which reduces the moment of inertia. This pattern is supported by 

evidence from the increasing frequency of fractures moving from proximal to more distal locations 

along the limbs of race-horses (Vaughan and Mason, 1975). Theory predicts a decrease in robusticity 

along individual limb bones, as well as along the limb as a whole, combined with reduced variability 

in strength in the more canalised distal elements (Pearson and Lieberman, 2004; Shaw et al., 2014). A 

pattern of decreasing proximo-distal robusticity is found in the diaphyseal strength of the human 

femur and tibia (Stock, 2006; Trinkaus and Ruff, 2012; Shaw et al., 2014). However, the predicted 

reduction in variation in the distal tibia has not been observed in the cortical morphology of the lower 

limb (Shaw et al., 2014). Recent work using pQCT scanning showed a decrease in trabecular bone 

mineral density throughout the lower limbs of cursorial and non-cursorial mammals, including 



humans (Chirchir, 2015). However, the integration of trabecular bone morphology throughout the 

postcranium is poorly understood. The interplay between adaptation to local loading environment and 

potential morphological constraints on trabecular structure has not been explored. 

In this paper, we will assess variation in trabecular microstructure throughout the lower limb 

within three archaeological populations. Our sample consists of one population of highly mobile 

hunter-gatherers and two more sedentary agriculturalist populations. First, we test the hypothesis that 

trabecular structure in the joints along the lower limb reflects inferred variation in mobility between 

the different populations. Second, we ask how trabecular structures are organised in the joints of the 

proximal and distal femur and tibia. We will test the hypothesis that, like cortical bone, trabecular 

bone will display a pattern of variation within the limb reflective of limb tapering. Finally, we will 

describe the patterns of variation in trabecular bone properties throughout the lower limbs to assess 

whether the joint specific loading environment in the lower limb is reflected in trabecular structure.  

 

Materials and methods 

 

Samples 

Three populations with different levels of inferred mobility were used in this study (Table 1). 

Mobility is defined here as the total sum of all locomotor activities using the lower limb (Pearson et 

al., 2014). The hunter-gatherer population from Black Earth in southern Illinois is dated to 3000 B.C. 

and the site has been interpreted as a multi-season forager base camp (Jefferies and Avery, 1982; 

Jefferies, 2013). Individuals from the Black Earth site subsisted mainly on white-tailed deer, a wide 

range of other fauna, nuts, and seeds (Lopinot and Lynch, 1979, Brietburg, 1980). The Norris Farms 

#36 site is located in central Illinois, US, and associated with the Oneota culture. Dated to 

approximately 1300 A.D., the people from Norris Farms #36 practised a form of village agriculture 

supplemented with foraging. Their diet included deer, bison, fish, nuts, wild rice, corn, beans, and 

squash (Birmingham and Eisenberg, 2000). The Kerma derive from the ancient Nubian city of Kerma, 

one of the first urban centres that arose in eastern Africa. Kerma society was highly stratified, 

evidenced by large variation in the size of tombs and grave goods (Thompson et al., 2008). The 



samples analysed represent a 12th Dynasty Nubian population of Nilotic intensive farmers, dated 

between 2100 and 1500 B.C. Comparisons of Kerma to other regional samples (Starling and Stock, 

2007) indicate that they were in comparatively good health. Increased stature has also been observed 

in the Kerma population relative to earlier samples (Stock et al., 2011). Finally, the relatively low 

femoral midshaft robusticity of the Kerma population compared to earlier populations in the Nile 

Valley has been interpreted as evidence of reduced mobility associated with an agricultural lifestyle 

(Stock et al., 2011). 

The three populations used in this study represent a gradient of mobility from highly 

terrestrially mobile (Black Earth) to highly sedentary (Kerma), with the Norris Farms #36 village 

agriculturalists intermediate between these two groups. Only non-pathological adult specimens were 

included in the current study. Trabecular bone can be significantly affected by age-related bone loss. 

Individuals showing osteological signs of old age were not included in the sample to limit possible 

effects of age-related bone loss. Age-at-death estimates for the Norris Farms and Black Earth 

populations were taken from existing museum collection records. Age-at-death for the Black Earth 

individuals was estimated using the multifactorial method described in Lovejoy et al. (1985), and 

transition analysis was used to estimate age-at-death for the Norris Farms (Milner and Smith, 1990). 

The mean ages in years for the Black Earth sample were 31.3 ± 4.39 for the males and 35 ± 9.51 for 

the females. The median ages (non-normal distribution) for the Norris Farms sample were 31.36 ± 

4.39 for males and 26.9 ± 6.95 for the females. While no numerical estimates were given in museum 

records for the Kerma sample, only individuals aged as young and middle adult based on Buikstra and 

Ubelaker’s (1994) standards were selected.  

 

Computed tomography scanning and trabecular bone analysis 

The proximal and distal aspects of the femur and tibia of the Norris Farms and Black Earth 

populations were scanned on the ONMI-X HD600 High-Resolution X-ray computed tomography 

(HRCT) scanner at the Center for Quantitative Imaging (CQI), Pennsylvania State University (Ryan 

and Krovitz, 2006; Shaw and Ryan, 2012; Macintosh et al., 2013; Ryan and Shaw, 2015). The Kerma 



specimens were scanned using an identical protocol with a Nikon XTH 225 ST HRCT laboratory 

scanning system at the Cambridge Biotomography Centre, University of Cambridge. The Kerma 

HRCT scans were made using optimised energy settings (125 kV, 135 µA, 1080 views), and the 

Norris Farms and Black Earth scans were made using source energy settings 180 kV, 110 µA, and 

between 2800 and 4800 views. For the Norris Farms and Black Earth samples, resolution was 

maximised for the given size of the specimen resulting in resolutions between 0.050 and 0.057 mm. 

For the Kerma, the resolution was kept constant per anatomical location with 0.038 in the proximal 

femur, 0.048 in the distal femur, 0.042 in the proximal tibia, and 0.032 in the distal tibia.  

Cubic volumes of interest were collected from the femoral head, the posterior half of the 

medial condyle of the distal femur, the medial condyle of the proximal tibia, and the distal tibia just 

beneath the talar articular surface using Avizo Fire 6.3 (Fig. 1). Kivell et al. (2011) have stressed the 

importance of VOI size and location and their effects on trabecular properties (Harrigan et al., 1988; 

Kivell et al., 2011). We placed the largest VOI possible in each joint in order to ensure that each VOI 

is reflective of structural variation between joints. The protocol ensured the VOI of each distal or 

proximal aspect was homologous in both location and size.  

Once created, the cubic VOI was saved as a stack of dicom files and imported into ImageJ 

(http://rsbweb.nih.gov/ij/) to calculate the trabecular properties. Six trabecular bone morphometric 

variables were quantified using the BoneJ plugin (Doube, 2010). Bone volume fraction (BV/TV) is 

the volume of mineralised bone per unit volume. Trabecular thickness (Tb.Th) and trabecular 

separation (Tb.Sp) are calculated using model-independent distance transform methods (Hildebrand 

and Ruegsegger, 1997; Dougherty and Kunzelmann, 2007). Connectivity density (Conn.D) was 

calculated following the topological approach of Odgaard and Gundersen (1993). Degree of 

anisotropy (DA) was determined using the mean intercept length (MIL) method (Odgaard, 1997), 

calculated using a spherical volume centred in the cubic VOI to avoid edge and corner effects 

(Ketcham and Ryan, 2004). Bone surface-area-to-volume ratio (BS/BV) was calculated by dividing 

the total surface area of the three-dimensional triangulated surface by the calculated volume of the 

three-dimensional surface. Recent work has demonstrated that the widely used structure model index 



is unsuitable for use on real bone geometries and was thus excluded from the analysis (Salmon et al., 

2015). 

 

Statistical analysis 

Body mass (kg) estimates were calculated from measures of femoral head diameter (FHD). 

FHD was measured to 0.01 mm using Mitutoyo digital callipers. Estimates of body mass were 

calculated using the equations provided in Ruff et al. (1997). To assess the effect of variation in body 

mass on trabecular architecture in our sample, Ordinary Least Squares regressions were performed 

between structural variables and body mass. No relationships were found when comparing non-

transformed and log10 transformed variables to non-transformed and log10 transformed body mass. 

Thus, standardisation for body mass was deemed unnecessary. Kruskal-Wallis and post hoc tests were 

performed in R version 3.2.0 by running a multiple comparison test after Kruskal-Wallis. To test for 

possible constraints on trabecular structural variation along the limb, we calculated the coefficients of 

variation for all properties within populations and in a pooled sample.  

 

Results 

The means and standard deviations of trabecular microstructural properties for the pooled 

sample and individual populations are listed in Table 2. First the differences in trabecular structure 

between populations will be described for each anatomical location. This is followed by a description 

of microstructural variation at each anatomical location throughout the lower limb in a pooled sample 

composed of all three populations. 

 

Structural variation between populations 

The results of the Kruskal-Wallis and post hoc tests of trabecular bone microstructural 

properties between populations are presented in Table 3 and are plotted in Figure 2. The Black Earth 

sample has significantly higher BV/TV compared to the other two populations in the proximal femur, 

and to the Kerma in all other VOIs as well. The Black Earth individuals have significantly lower 

Conn.D and BS/BV compared to the other two other populations in all VOIs. The Black Earth have 



significantly thicker trabeculae compared to the Kerma in all locations, and compared to the Norris 

Farms in the proximal femur and proximal tibia. The Black Earth have significantly less anisotropic 

trabeculae in the distal tibia compared to the other populations.  

The Norris Farms individuals have significantly lower BV/TV and Tb.Th than the Black 

Earth in the proximal femur, and significantly higher values compared to the Kerma in all VOIs. The 

Norris Farms individuals also have significantly higher DA in the femoral VOIs relative to the other 

populations, and significantly higher DA compared to the Black Earth in the distal tibia. The Norris 

Farms fall significantly below the Kerma in ConnD in all VOIs. BS/BV is significantly lower 

compared to the Kerma in the proximal femur and both tibial VOIs, but significantly higher than the 

Black Earth in the proximal femur. 

The Kerma have significantly lower BV/TV, Tb.Th, and higher ConnD than the other 

populations. The Kerma have significantly lower femoral DA compared to the Norris Farms in both 

femoral VOIs, and significantly higher DA in the distal tibia compared to the Black Earth. Finally, 

they have significantly higher BS/BV than the other two populations, except in the distal femur.  

 

Comparisons between joints in a pooled sample 

The results of the Kruskal-Wallis and post hoc tests of trabecular properties between volumes 

of interest in a pooled sample are presented in Table 4 and Figure 2. No significant differences were 

found in Tb.Th or BS/BV along the lower limb in the pooled sample. The proximal femur has 

significantly higher BV/TV than the other VOIs. Trabeculae in the proximal femur are packed 

significantly closer together compared to the distal femur and tibia. The DA in the proximal femur is 

similar to that observed in the distal femur, but significantly more isotropic than in the proximal and 

distal tibia. The Conn.D results indicate that trabecular structure of the proximal femur is significantly 

more interconnected than that of the distal tibia, representing a higher number of trabeculae in the 

femoral head.  



The distal femur has relatively low BV/TV, with thin and widely separated struts. Distal 

femoral trabecular structure is significantly less anisotropic than the tibial VOIs. Trabeculae in the 

distal femur are significantly more widely spaced apart than those in the proximal femur and tibia. 

The trabecular structure of the proximal tibia is highly anisotropic with a low number of 

interconnected struts. The proximal tibia has significantly lower BV/TV than the proximal femur. It 

has significantly less trabecular spacing than the distal femur and distal tibia. Trabeculae are 

significantly more anisotropic than those found in the proximal and distal femur.  

The distal tibia is characterised by a combination of the lowest BV/TV and the highest DA. 

Trabecular bone in the distal tibia is significantly more anisotropic compared to that of the proximal 

tibia and femur. Coefficients of variation did not display any distinctive patterns and did not decrease 

along the lower limb within populations or in the pooled sample (see Table 5). 

 

Discussion 

 

Are inferred levels of terrestrial mobility reflected in trabecular structure? 

Our results indicate that human populations with divergent terrestrial mobility patterns 

display significantly different trabecular bone structure along the lower limb. The highly mobile 

foragers in our sample possess significantly more robust trabecular bone than both of the more 

sedentary agricultural groups. The mobile foragers have higher bone volume fraction, and fewer and 

relatively thick trabeculae, leading to low bone surface area to volume ratio. This pattern is especially 

evident in the proximal femur. Within the agricultural groups, the Norris Farms are significantly more 

robust than the Kerma in the proximal femur. While the Kerma were fully committed to agriculture, 

the Oneota people from the Norris Farms #36 site practised a mix of agriculture and foraging 

(Buikstra and Milner, 1991), and were thus expected to be more mobile than the Kerma but less 

mobile than the Black Earth. The distinctive pattern of fewer and thicker trabeculae with increasing 

levels of terrestrial mobility in Black Earth foragers may represent a relatively straightforward pattern 



of skeletal responses to differing levels of mechanical loading in the human lower limb. These results 

suggest a relatively straightforward pattern of skeletal responses to differing levels of mechanical 

loading in the human lower limb. 

The differences in individual structural properties between the three groups are pronounced in 

the proximal femur, but become less distinct moving distally along the lower limb. While the 

significant differences between the Kerma and the two more mobile populations persist throughout 

the lower limb, the differences between the Black Earth and the Norris Farms become less 

pronounced. Our results indicate significant variation in structure along the lower limb, suggesting 

that not all lower limb locations are equally sensitive to mechanical loading associated with mobility.  

Trabecular bone structural features are highly correlated with the elastic properties of bone. 

High BV/TV, Tb.Th, and low Conn.D and BS/BV are associated with high levels of mechanical strain 

(Hodgskinson and Currey, 1990; Goulet et al., 1994; Odgaard et al., 1997; Kabel et al., 1999; Ulrich 

et al., 1999; Rubin et al., 2002; Mittra et al., 2005; Rincón-Kohli and Zysset, 2009; Barak et al., 2011; 

Karim and Vashishth, 2011; Ryan and Shaw, 2015). Bone volume fraction is a common predictor of 

fracture risk in clinical settings and correlates strongly with ultimate bone strength and elastic 

modulus (Ulrich et al., 1999; Mittra et al., 2005). In addition to BV/TV, trabecular structural 

organization (Tb.Th, Tb.Sp, Conn.D, DA) has been shown to play a significant role in bone’s 

resistance to fracture. Trabecular thickness correlates positively with elastic modulus and ultimate 

strength (Rubin et al., 2002; Mittra et al., 2005). The fabric anisotropy is also of significant 

importance to the stiffness of trabecular structures (Odgaard et al., 1997; Ulrich et al., 1999), and has 

been found to correlate significantly to ultimate strength and elastic modulus (Mittra et al., 2005). 

Trabecular bone is stiffest when loaded in the primary direction in which struts are oriented (Odgaard 

et al., 1997). These relationships between elastic properties and trabecular bone structure, independent 

of the constitutive material properties, provides an opportunity to use trabecular bone structural 

variation as a tool to interpret behavioural patterns in past human groups. Our results support the 

hypothesis that trabecular bone properties are reflective of mechanical loading history in these human 

groups with divergent behavioural patterns and, therefore, can potentially be used to evaluate and 



reconstruct patterns and levels of terrestrial mobility in the past. Future work should investigate 

whether the mobility signals observed between these populations hold up in a wider range of 

archaeological populations, and whether subtle differences in activity between largely mobile 

Palaeolithic populations can be detected. This could be tested experimentally using animal models, 

but advances to high resolution pQCT now allows researchers to also study living humans. The 

effects of large as well as subtle variation in behaviour can be tested using modern human athletes 

participating at different levels in various sports. While we have demonstrated a link between 

terrestrial mobility and lower limb trabecular bone variation, the next logical step is to also investigate 

the upper limbs of different human populations with different inferred manual activity regimes. The 

first question that needs to be answered conclusively is whether trabecular bone adapts locally or 

systemically to levels of physical activity. Variation in upper limb diaphyseal cross-sectional 

geometry is indicative of habitual upper limb loading and has been used to interpret behaviour in 

archaeological populations (Trinkaus et al., 1994; Stock and Pfeiffer, 2001; Shaw and Stock, 2009a). 

Previous work indicates that the relationship between trabecular structure and diaphyseal cross-

sectional geometry is not always straightforward (Shaw and Ryan, 2012). Shaw and Ryan (2012) 

found correlations between humeral head trabecular structure and mid-humerus diaphyseal bone 

properties, but found none in the femur. In interspecific comparisons between femoral and humeral 

diaphyseal cross-sectional geometry, Shaw and Ryan (2012) found an osteological locomotor signal, 

but not in trabecular bone architecture. However, in a subsequent paper using discriminant function 

analysis of trabecular bone properties in the femoral head and humeral head, distinct trabecular 

locomotor signatures were found between primate locomotor modes (Ryan and Shaw, 2012). Using 

principal components analysis, Scherf et al. (2013) also managed to clearly distinguish between the 

proximal humeral trabecular structure of humans, chimpanzees, and orangutans. Scherf et al. (2016) 

compared humeral head trabecular bone properties of Neolithic and contemporary human samples. 

The Neolithic population was predicted to have a higher physical workload compared to 

contemporary humans. They found significantly higher values of humeral BV/TV in a Neolithic 

human population compared to a modern contemporary sample. The work of Shaw and Ryan (2012), 

Ryan and Shaw (2012, 2015), Scherf et al. (2013, 2016), and the current study indicates that while the 



relationship between trabecular structure and diaphyseal cross-sectional geometry is not always 

straightforward, both appear to be informative of loading history. 

Despite the recognition of a locomotor behavioural signal, there are several limitations to the 

conclusions we can draw from this data, the most prominent of which is the sample diversity. Three 

archaeological populations were compared with approximate mobility levels ranked relative to each 

other. The Kerma group is derived from a geographically and climatically different environment, with 

more significant genetic differences to the North American groups due to their Northeast African 

ancestry, factors that may have contributed to the observed differences (Turner et al., 2000; Stock, 

2006; Wallace et al., 2012). However, the Black Earth and Norris Farms collections derive from 

geographically and climatically proximate sites in Illinois, USA, with differences less likely to be 

explained by ancestry. The influence of sex was compensated for by selecting roughly equal numbers 

of males and females from each population. The largest discrepancy in the ratio of males to females is 

found in the Kerma population (M = 13, F = 7). Independent t-tests were used to assess possible sex 

differences within the three populations and a pooled sample but no significant differences were 

found in the trabecular properties in any population. Another factor known to influence bone biology 

is diet. The dietary shift towards cultivated grains in agriculturalists is associated with reduced 

calcium intake in some populations (Eaton and Nelson, 1991; Heaney, 2003). The archaeological 

record provides some insight into the diets of the three populations. Stable isotope, archaeobotanical, 

and zoological data point towards a broad diet consumed by the inhabitants of Kerma. The faunal 

dietary component consisted of a mix of sheep, goat, cattle, and aquatic resources. Cereals were 

excavated from bakeries that housed rows of ovens capable of producing large quantities of bread 

(Bonnet, 1988). The cemetery also yielded grains of barley (Hordeum vulgare), cucurbits 

(Curcurbitaceae), and legumes (Leguminosae) (Thompson et al., 2008). The Norris Farms engaged in 

a mixed subsistence strategy that combined the cultivation of maize and other plants with hunting, 

fishing, and gathering of wild plants (Buikstra and Milner, 1991). The Black Earth foragers subsisted 

on a diverse diet of large and small mammals, birds, fish, and seasonally available plant resources 

(Jefferies and Lynch, 1983). In addition to the mobility differences, these dietary factors could have 



contributed to a reduction in bone mass in the agriculturalists compared to foragers. Finally, the 

relative contributions of the mechanical and genetic environment to trabecular bone ontogeny are 

poorly understood and require further investigation (Judex et al., 2004; Wallace et al., 2012). Despite 

the effects of confounding variables, past work suggests activity plays a significant role in 

determining skeletal strength and robusticity (Ruff et al., 1984; Bridges, 1989; Stock and Pfeiffer, 

2001; Shaw and Stock, 2009b, 2013; Ryan and Shaw, 2015). 

 

Microstructural variation Throughout the lower limb 

While the three populations showed significant differences in the trabecular bone structural 

properties throughout the lower limb, some distinct patterns can be observed. All groups displayed a 

similar trend of proximodistal reductions in BV/TV along the femur and tibia, and along the lower 

limb as a whole. Additionally, in all populations the femoral VOIs were significantly more isotropic 

than the tibia. Trabecular bone in the three populations follows the same design constraints as cortical 

bone: significant structural tapering exists within the femur and tibia, as well as along the lower limb 

as a whole (Stock, 2006; Shaw et al., 2014; Chirchir, 2015). The proximal femur is characterised by 

having the highest BV/TV and the highest number of struts. The distal tibia has the lowest BV/TV 

combined with the most anisotropic structure. The variables at the knee joint are generally 

intermediate between those of the hip and ankle. No significant differences in Tb.Th were found 

throughout the lower limb in the pooled sample, and within populations only in the Kerma, where the 

proximal femur had thicker trabeculae than the distal tibia. Thus, the decrease in BV/TV found along 

the lower limb does not appear to be driven by a decrease in strut thickness. The increase in Tb.Sp and 

decrease in BV/TV, combined with the equal amount of Tb.Th found in the distal femur and tibia, 

suggests that a decrease in the number of trabeculae may be driving the gracilisation along the lower 

limb. Lower limb tapering keeps the mass of the limb bones closer to the axis of rotation, which 

reduces the moment of inertia. It has been proposed that one of the factors controlling the tapering of 

robusticity along the lower limb is a greater level of canalisation in the distal limb segments 

(Hallgrímsson et al., 2002; Stock, 2006). If trabecular structure is proximodistally canalised, one 



would predict lower levels of inherent variation within individual and pooled populations in distal 

segments (Shaw et al., 2014). Shaw et al. (2014) did not find a reduction in coefficients of variation of 

cortical bone throughout the lower limbs. Similarly, in the current study, CVs for trabecular bone did 

not decrease along the lower limb within populations or in the pooled sample. Unlike the clear pattern 

of decreasing trabecular BV/TV along the lower limb, a corresponding trend of decreasing structural 

variability is not found (see Table 5). 

If trabecular bone mass is constrained distally, then other macro- or microstructural 

adaptations may be favoured over adaptations that increase relative bone volume. The increased 

anisotropy in the tibia may reduce the requirement of additional bone mass by aligning the trabecular 

structure in the primary direction of loading. More likely, however, higher anisotropy may be 

reflective of the more constrained, unidirectionally loaded joints of the proximal and distal tibia. 

These differences in fabric anisotropy may also reflect differences in bone shape between the 

relatively straight tibia and the more complexly shaped femur. Raichlen et al. (2015) found an 

increase in DA and a decrease in variability in DA between individuals associated with increasing 

balance and neuromuscular control during locomotor development in human children. Barak et al. 

(2013) found significantly more isotropic trabecular bone in the distal tibia of chimpanzees compared 

to modern humans and Australopithecus africanus. This finding was interpreted as the result of a 

greater range of loading orientations during climbing and other activities in chimpanzees (Barak et al., 

2013). In the current study, we found substantially less variation in the DA in the distal tibia 

compared to the femur in all populations (Table 5), indicating that this may indeed may be a 

distinctive feature of adult human bipedal locomotion. While the Au. africanus specimen with the 

highest BV/TV included in the study by Barak et al. (2013) had considerably higher BV/TV than their 

most robust human specimen, it falls within one standard deviation of the Black Earth mean BV/TV 

and thus within the human range of variation. However, caution should be employed when comparing 

results from different studies, as variation in VOI size and location can significantly affect mean 

trabecular properties (Kivell et al., 2011). Ryan and Shaw (2012, 2015) investigated trabecular 

architecture in the femoral head of 32 primate species including humans and found that humans have 



highly anisotropic structures compared to quadrupedal primates. This matches predictions of the 

stereotypical loading at the hip joint imposed during bipedal locomotion compared to quadrupedal and 

climbing apes, which are likely to experience more diverse postural and locomotor loads. These 

interspecific analyses combined with the results from the current study demonstrate the 

correspondence of trabecular bone structure to habitual loading and indicate that the analysis of 

trabecular bone variation may be a useful tool to interpret behaviour in the hominin fossil record. 

Postcranial morphology suggest that Australopithecine locomotor repertoires most likely included an 

arboreal component alongside terrestrial bipedalism, although retentions of primitive traits are 

difficult to dismiss (Ward, 2002). Based on the results of these interspecific analyses and the current 

study, Australopithecines would be expected have lower levels of DA compared to humans but higher 

DA compared to arboreal primates. Barak et al. (2013) did indeed find levels of DA in the distal tibia 

of Australopithecus africanus between those of humans and chimpanzees. In terms of future work in 

this direction, we suggest that a combined study of the upper limbs and feet alongside the lower limbs 

may present a more nuanced picture of the relationships between postcranial trabecular morphology 

and locomotor behaviour.  

Several factors are potentially driving the observed similarities between the human 

populations in the patterns of trabecular bone structure throughout the lower limb. These include 

variation in joint specific loading conditions, variation in joint morphology along the limb, and 

canalisation of structure through growth and development. More data are needed to understand the 

differences in magnitude and direction of joint moments throughout the lower limb during normal 

bipedal locomotion. The contact forces at the hip, knee, and ankle have been measured with implants 

instrumented with strain gauges (Bergmann et al., 2001; Heller et al., 2001; Stansfield et al., 2003; 

Foucher et al., 2012). Peak contact force at the hip joint during normal walking has been measured 

between 2.5 and 4.6 times body weight, and 5.5 times body weight during jogging (Bergmann et al., 

1993, 2001). Peak contact forces at the knee have been measured in vivo at 2.1–2.9 times body weight 

(Taylor et al., 2004). The medial side of the knee experiences significantly greater loads compared to 

the lateral side. The reaction forces on the ankle joint are equal to or greater than those on the hip and 



knee (Hagins and Pappas, 2012). Maximum compressive ankle joint reaction force was 4.6 times 

body weight (Stauffer et al., 1977). During weight bearing, 77–90% of the load is transmitted through 

the tibial plafond to the talar dome depending on foot position (Calhoun et al., 1994). It should be 

noted that these are just normal walking forces. Activities such as running, standing from a sitting 

position, or climbing stairs can produce forces much higher on different joints. The greater BV/TV of 

the femoral head may result from the fact that, unlike the other joints, the femoral head is 

continuously loaded during daily activities. However, joint contact forces alone do not explain the 

pattern of trabecular bone volume fraction along the lower limb. Trabecular structure at the distal tibia 

has the lowest bone volume fraction despite being subjected to the highest peak loading. The high 

degree of anisotropy in the distal tibia likely compensates for the low bone mass by aligning into the 

primary direction of loading. The combination of low BV/TV and high anisotropy in the distal tibia 

may be explained by the canalisation of bone mass in the distal limb, combined with structural 

optimisation for strength relative to habitual loading, however, it leaves the distal tibia more 

vulnerable to fractures resulting from eccentric loading.  

Variation in joint function and joint morphology likely influences underlying trabecular bone 

structure (Patel and Carlson, 2007). The femoral head is a highly mobile ball and socket joint, 

whereas the knee and ankle are hinge joints with more restricted movement. While the direction of 

force transmitted through the tibial joints mostly travels in the same direction, the proximal and distal 

femur are exposed to more varied loading directions during gait (Frankel et al., 2012; Hagins and 

Pappas, 2012; Sheikzadeh et al., 2012). The greater range of joint loading directions of the proximal 

and distal femur joints accounts for the lower DA in the femur compared to the tibia. A final 

possibility is that the observed patterns are the result of developmental processes with proximal and 

distal epiphyses canalised into somewhat hardwired growth trajectories upon which loading related to 

mobility levels is superimposed. Further work on the development of trabecular structures during 

ontogeny in relation to gait maturation and growth are required to evaluate this possibility. It is 

expected that the tapered trabecular pattern observed in this study is not unique to humans among 

hominins. Chirchir (2015) used pQCT to investigate whether trabecular bone mass in the distal limbs 



is relatively lower than that in the proximal limb in cursorial compared to non-cursorial species in 

hominids, cercopithecines, and felids. A proximodistal decrease in trabecular bone mass was observed 

irrespective of cursoriality in hominid and cercopithecine hind limbs, indicating that this tapered 

pattern is likely present in fossil hominins as well, and may not be a good indicator of cursoriality. It 

should be noted that Chirchir (2015) only investigated trabecular bone mass but not its morphology. 

While comparative data is not present, we suspect that cursors may be differentiated from non-cursors 

by increased DA, resulting from more uniform limb loading.  

While all of the considerations discussed in this paper can account for some of the variation 

we observe in human lower limb trabecular microstructure, no single factor explains all observations. 

We have found patterns of decreasing trabecular bone volume fraction along the lower limb as well as 

in limb segments, in similar fashion to cortical bone strength along the lower limb bone shafts. The 

mobility gradients appear to be superimposed upon this pattern of proximodistal variation. The exact 

mechanism behind this observation requires further investigation. 

 

Conclusions 

To infer behaviour from hominin fossil morphology, a more thorough understanding of within 

species variation and adaptive constraints on trabecular structure is required. We have documented the 

variation in trabecular microstructural organisation along the lower limb between three human 

populations with different inferred terrestrial mobility patterns. Significant differences were found 

throughout the lower limb between the three populations, indicating that trabecular bone structure 

along the lower limb reflects terrestrial mobility levels. However, not all lower limb regions were 

equally sensitive to loading associated with the inferred levels of terrestrial mobility. Femoral head 

microstructure was found to most successfully separate the three populations based on variation in 

individual structural properties.  

While the average magnitudes of structural properties differ significantly between 

populations, similar patterns in structural properties are observed along the lower limb. Trabecular 



structures follow the same tapered design as cortical bone in the shafts of long bones. There are 

signals indicating that trabecular bone adapts to joint specific loading conditions, evidenced by the 

reduction in anisotropy in the femoral VOIs that is associated with a higher joint mobility compared 

to the tibia. However, the distal tibia had the lowest bone volume fraction despite experiencing the 

highest peak loading of all joints, arguing for a certain degree of morphological constraint. No 

significant differences in the coefficients of variation of trabecular properties were found throughout 

the limb. Thus, there may be a baseline pattern of trabecular bone variation throughout the lower limb 

upon which a mobility signal is imposed, but the mechanisms driving the observed patterns require 

further study. Comparisons of structural variation along the lower limb should be performed with a 

more diverse sample of human populations and nonhuman primates, in order to determine whether the 

patterns described in this study are unique to human bipedal locomotion. By carefully selecting 

human groups for comparison, a better understanding of the range of variation among human 

populations and the environmental and behavioural conditions under which trabecular bone structure 

varies can be obtained. Future work combining kinematic and kinetic studies with finite element 

modelling may be able to shed additional light on the mechanisms controlling human lower limb 

microstructure. The findings reported in this study are relevant to fields including human evolution, 

bone biology, reconstructions of past activity, and bone health in contemporary human populations.  

We have demonstrated a strong relationship between terrestrial mobility and trabecular 

variation throughout the lower limb within human populations. A number of major shifts occurred in 

hominin evolution with the emergence of Homo erectus ~1.8 million years ago, including increased 

variation in body size (Will and Stock, 2015), increased brain size (McHenry and Coffing, 2000), 

greater efficiency of bipedal locomotion (Pontzer, 2007), and increased mobility (Braun et al., 2009). 

The long evolutionary history of high levels of physical activity in Homo suggests that the human 

skeleton evolved in a mechanical context involving high levels of persistent loading throughout life 

(Bramble and Lieberman, 2004; Raichlen et al., 2012; Shaw and Stock, 2013). Previous work on 

trabecular bone (Chirchir et al., 2015; Ryan and Shaw, 2015) and cortical bone (Holt, 2003; Shaw and 

Stock, 2013; Macintosh et al., 2014; Ruff et al., 2015) shows a substantial decrease in bone mass in 



human populations associated with increased sedentism after the adoption of agriculture. Reduced 

physical activity is thought to be a major cause for the increased prevalence of osteoporosis in 

contemporary society (Borer, 2005). While we have demonstrated significant variation between 

populations with substantially different inferred mobility levels, it is not clear if trabecular bone can 

pick up subtler behavioural differences. It is thus unknown whether trabecular bone can be employed 

to investigate behaviour in pre-agricultural populations who are all thought to have been largely 

mobile.  

There are important trends in robusticity throughout human evolution, particularly in the last 

10,000 years. To confidently interpret these trends, we must gain a more detailed understanding of the 

factors that influence trabecular bone microstructure. There is significant potential for using trabecular 

structural variation to inform behavioural inferences from fossils. However, before hominin behaviour 

can be inferred, we require a greater appreciation of the possible variation in modern and past Homo 

sapiens. Previous work has tended to focus on one particular anatomical location, but this study has 

demonstrated the value of investigating patterns of trabecular microstructure throughout the lower 

limb. In order to investigate whether species specific patterns of trabecular bone structure can be 

distinguished, future research should focus on trabecular variation in multiple anatomical locations 

throughout the postcranium in multiple human populations and primate species, and consider 

multivariate analyses to complement univariate comparisons of trabecular properties. Advances in 

high resolution pQCT scanning now allows trabecular bone to be quantified in living humans, 

opening up the possibility of investigating trabecular structure in high level athletes. This type of 

work will result in a detailed framework in which fossil trabecular morphology can be confidently 

examined and interpreted in the context of locomotor behaviour and physical activity levels. 
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Figures 

 

 

Figure 1. Cubic VOI locations and relative size differences. Black arrows denote the superior (s), 

posterior (p), and medial (m) axes. 

 



 

 

Figure 2. Boxplots of trabecular bone structural properties throughout the lower limb in individual 

populations. The bar indicates the median, the box contains the interquartile range, whiskers denote 

the minimum and maximum, and dots denote outliers.  BV/TV = bone volume fraction, Tb.Th = 

trabecular thickness, Tb.Sp = trabecular separation, Conn.D = connectivity density, DA = degree of 

anisotropy, BS/BV = bone surface-area-to-volume ratio. 

  



Tables 

 

Table 1. Attributes of the populations included in this study 

Population Geographic 

location 

Subsistence 

strategy 

Sex Body mass 

(SD) in kg 

Relative 

mobility 

   Male Female   

Black Earth Illinois, USA Hunter-

gatherers 

11 9 63.72 (3.91) 

55.19 (2.78) 

High 

Norris Farms Illinois, USA Mixed 

agriculture 

and foraging 

10 10 66.36 (9.02) 

60.17 (6.41) 

Intermediate 

Kerma Sudan Agriculture 13 7 66.35 (8.40) 

56.74 (5.07) 

Low 

 

  



Table 2. Pooled sex mean (SD) of trabecular microstructural propertiesa in individual and pooled 

populations. 

 Proximal femur Distal femur Proximal tibia Distal tibia 

Black Earth (n) 20 19 18 20 

BV/TV 0.464    (0.060) 0.342    (0.065) 0.417   (0.079) 0.346    (0.070) 

Tb.Th 0.464    (0.057) 0.397    (0.058) 0.467   (0.096 ) 0.469    (0.104) 

Tb.Sp 0.696    (0.101) 0.861    (0.166) 0.732   (0.091) 0.856    (0.180) 

Conn.D 1.959    (0.505) 2.337    (0.754) 1.973   (0.674) 1.854    (0.465) 

DA 0.627    (0.059) 0.591    (0.121) 0.719   (0.074) 0.726    (0.027) 

BS/BV 4.670    (0.630) 5.311    (0.602) 4.761   (0.950) 4.615    (0.813) 

Norris Farms (n) 18 20 19 16 

BV/TV 0.391    (0.034) 0.289    (0.048) 0.330   (0.067) 0.301    (0.051) 

Tb.Th 0.363    (0.039) 0.350    (0.040) 0.353   (0.047) 0.371    (0.056) 

Tb.Sp 0.708    (0.085) 0.954    (0.137) 0.792   (0.171) 0.884    (0.166) 

Conn.D 2.630    (0.697) 2.021    (0.628) 2.243   (0.723) 2.040    (0.512) 

DA 0.694    (0.055) 0.696    (0.088) 0.767   (0.081) 0.772    (0.045) 

BS/BV 5.458    (0.465) 5.800    (0.355) 5.745   (0.621) 5.166    (0.560) 

Kerma (n) 20 18 18 20 

BV/TV 0.304    (0.048) 0.210    (0.037) 0.218   (0.042) 0.173    (0.041) 

Tb.Th 0.264    (0.029) 0.254    (0.029) 0.225   (0.025) 0.207    (0.025) 

Tb.Sp 0.732    (0.095) 0.885    (0.160) 0.766   (0.103) 0.934    (0.184) 

Conn.D 5.616    (2.404) 3.734    (1.751) 4.177   (1.680) 3.285    (1.311) 

DA 0.593    (0.068) 0.530    (0.133) 0.727   (0.064) 0.777    (0.038) 

BS/BV 8.147    (0.757) 6.275    (0.561) 7.920   (1.465) 10.109  (0.925) 

Pooled Data (n) 58 57 55 56 

BV/TV 0.389    (0.081) 0.282   (0.074) 0.322   (0.103) 0.272   (0.094) 

Tb.Th 0.367    (0.092) 0.335   (0.073) 0.349   (0.117) 0.347   (0.132) 

Tb.Sp 0.711    (0.094) 0.901   (0.157) 0.764   (0.128) 0.892   (0.178) 

Conn.D 3.325    (2.110) 2.668   (1.341) 2.788   (1.475) 2.418   (1.560) 

DA 0.639    (0.073) 0.609   (0.132) 0.738   (0.075) 0.758   (0.043) 

BS/BV 6.021    (1.598) 5.787   (0.639) 6.135   (1.683) 6.734   (2.664) 

a BV/TV = bone volume fraction, Tb.Th = trabecular thickness, Tb.Sp = trabecular separation, 

Conn.D = connectivity density, DA = degree of anisotropy, BS/BV = bone surface-area-to-volume 

ratio. 



Table 3. Kruskal-Wallis post hoc comparison of trabecular propertiesa throughout the lower limb 

between populations. P values adjusted for multiple comparisons, significant results are in bold. 

 Black Earth versus 

Kerma 

Norris Farms versus 

Black Earth 

Kerma versus 

Norris Farms 

p (test statistic) p (test statistic) p (test statistic) 

Proximal femur    

BV/TV .000 (34.0) .019 (14.6) .001 (19.4) 

Tb.Th .000 (37.7) .003 (17.5) .001 (20.3) 

Tb.Sp .390 (7.1) .853 (2.9) .722 (4.2) 

DA .687 (6.6) .006 (16.5) .000 (23.1) 

Conn.D .000 (33.5) .044 (13.1) .001 (20.5) 

BS/BV .000 (35.8) .034 (13.5) .000 (22.3) 

Distal femur    

BV/TV .000 (30.8) .136 (10.6) .001 (20.1) 

Tb.Th .000 (32.9) .253 (9.2) .000 (23.7) 

Tb.Sp .929 (0.5) .212 (2.4) .389 (1.9) 

DA .435 (8.0) .035 (13.4) .000 (21.3) 

Conn.D .006 (17.0) .818 (5.8) .000 (22.8) 

BS/BV .000 (25.0) .054 (12.6) .062 (12.5) 

Proximal tibia    

BV/TV .000 (31.2) .071 (11.9) .001 (19.3) 

Tb.Th .000 (34.5) .030 (13.6) .000 (20.9) 

Tb.Sp .431 (6.6) .663 (4.6) .917 (2.0) 

DA .991 (0.7) .077 (11.4) .102 (10.8) 

Conn.D .000 (27.6) 1.000 (4.6) .000 (23.1) 

BS/BV .000 (31.3) .059 (12.3) .001 (19.0) 

Distal tibia    

BV/TV .000 (30.4) .491 (7.6) .000 (22.8) 

Tb.Th .000 (33.3) .090 (11.9) .000 (21.4) 

Tb.Sp .283 (7.9) .929 (1.9) .521 (5.9) 

DA .000 (20.1) .005 (17.3) 1.000 (2.8) 

Conn.D .000 (21.8) 1.000 (4.3) .004 (17.6) 

BS/BV .000 (31.0) .652 (6.8) .000 24.3) 



a BV/TV = bone volume fraction, Tb.Th = trabecular thickness, Tb.Sp = trabecular separation, 

Conn.D = connectivity density, DA = degree of anisotropy, BS/BV = bone surface-area-to-volume 

ratio.  

  



Table 4. Kruskal-Wallis post hoc comparison of trabecular propertiesa across the limb in a pooled 

sample of all populations. P values adjusted for multiple comparisons, significant results are in bold. 

 Proximal 

femur 

Distal femur Proximal tibia 

p (test statistic) p (test statistic) p (test statistic) 

BV/TV    

Distal femur .000 (71.7) X  

Proximal tibia .001 (45.6) .205 (26.2) X 

Distal tibia .000 (76.0) 1.000 (4.3) .085 (30.5) 

Tb.Th    

Distal femur .483 (19.9) X  

Proximal tibia .922 (15.8) .985 (4.1) X 

Distal tibia .894 (16.9) .991 (3.0) 1.00 (1.1) 

Tb.Sp    

Distal femur .000 (84.2) X  

Proximal tibia .168 (27.0) .000 (57.1) X 

Distal tibia .000 (76.2) 1.000 (7.9) .000 (49.2) 

Conn.D    

Distal femur .401 (19.0) X  

Proximal tibia .743 (12.4) .951 (6.6) X 

Distal tibia .041 (32.4) .698 (13.4) .374 (20.0) 

DA    

Distal femur 1.000 (0.4) X  

Proximal tibia .000 (71.8) .000 (71.4) X 

Distal tibia .000 (86.6) .000 (86.2) 1.000 (14.8) 

BS/BV    

Distal femur .871 (9.3) X  

Proximal tibia .824 (10.6) 1.000 (1.3) X 

Distal tibia .957 (6.7) 1.000 (2.6) .998 (3.9) 

a BV/TV = bone volume fraction, Tb.Th = trabecular thickness, Tb.Sp = trabecular separation, 

Conn.D = connectivity density, DA = degree of anisotropy, BS/BV = bone surface-area-to-volume 

ratio.  

  



Table 5: Coefficients of variation of trabecular propertiesa from pooled sex samples throughout the 

lower limb. 

 BV/TV Tb.Th Tb.Sp SMI Conn.D DA BS/BV 

Proximal femur        

Black Earth 0.1299 0.1226 0.1453 0.6733 0.2579 0.0946 0.1348 

Norris Farms 0.0860 0.1080 0.1199 0.1851 0.2717 0.0785 0.0855 

Kerma 0.1595 0.1099 0.1304 0.1978 0.4280 0.1139 0.0929 

Pooled  0.2087 0.2509 0.1318 0.4314 0.6345 0.1141 0.2654 

Distal femur        

Black Earth 0.1914 0.1453 0.1928 0.2324 0.3228 0.2044 0.1133 

Norris Farms 0.1674 0.1142 0.1434 0.1578 0.3106 0.1261 0.0612 

Kerma 0.1769 0.1127 0.1811 0.2027 0.4688 0.2510 0.0894 

Pooled 0.2637 0.2183 0.1742 0.2715 0.5028 0.2174 0.1104 

Proximal tibia        

Black Earth 0.1976 0.2358 0.1322 0.3862 0.3999 0.1076 0.2515 

Norris Farms 0.2030 0.1337 0.2153 0.1944 0.3224 0.1053 0.1081 

Kerma 0.1794 0.1142 0.1215 0.1631 0.4150 0.0791 0.1907 

Pooled  0.3203 0.3351 0.1672 0.3070 0.5290 0.1016 0.2744 

Distal tibia        

Black Earth 0.2033 0.2210 0.2104 0.2257 0.2510 0.0370 0.1762 

Norris Farms 0.2382 0.1206 0.1975 0.1324 0.3991 0.0485 0.0915 

Kerma 0.1692 0.1514 0.1878 0.1193 0.2509 0.0587 0.1085 

Pooled 0.3457 0.3800 0.1994 0.1941 0.4475 0.0572 0.3957 

a BV/TV = bone volume fraction, Tb.Th = trabecular thickness, Tb.Sp = trabecular separation, 

Conn.D = connectivity density, DA = degree of anisotropy, BS/BV = bone surface-area-to-volume 

ratio 

 

 


