
Sample-Efficient Deep Reinforcement
Learning for Continuous Control

Shixiang Gu

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Jesus College July 2019

I would like to dedicate this thesis to my loving family . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Shixiang Gu
July 2019

Acknowledgements

First and foremost, I would like to acknowledge my advisors Richard E. Turner, Zoubin
Ghahramani, and Bernhard Schölkopf for their kind and patient support in my rather ex-
ploratory PhD endeavor. They have inspired me with theories and ideas from Bayesian
machine learning, kernel methods, and causality, and most importantly, they all valued my
personal growth as a researcher more than specific research directions and allowed me to
explore various promising directions of research. I appreciate Rich for again and again ex-
plaining complex machine learning concepts in absolute clarity, and helping me generalize or
concretize research ideas. I also thank Zoubin for creating a collaborative, open atmosphere
in Cambridge Machine Learning Group, and illuminating how different machine learning
methods connect to one another with simple diagrams. My time working with Bernhard was
more limited; however, he served as an inspirational figure for me for his endless curiosity as
a scientist, as he always thought toward creating new fields of research with most impacts.
I received a lot of wisdom and inspiration from all my advisors, and they are researchers
I aspire to one day become. If I list one of the most important lessons, that is the art of
abstraction. Machine learning research, particularly of deep learning, has recently exploded
in terms of the amount of papers. The key technique that helped me navigate this breadth
of work is to understand the fundamentals of each method, to abstract away its details,
and to position each of them in a unified picture. Cambridge, Max Planck Institute, and
Bayesian philosophy of thinking particularly encouraged me to think in these terms, and such
ability allowed me to explore practical yet fundamental enough algorithmic improvements in
probabilistic machine learning, deep learning, and reinforcement learning through my PhD.
The inspiration for this thesis also comes from abstraction, as I aim to abstract, connect and
improve model-based, value-based, and policy-based approaches in reinforcement learning.

Besides my PhD advisors, there are many other individuals who have inspired and
supported me. I would like to first thank two key mentors who first inspired to pursue PhD
and the career as a researcher: Professor Steve Mann and Professor Geoffrey Hinton during
my undergraduate time at the University of Toronto. I was exposed to the excitements of
pushing the frontier of what know through research, by working with Professor Mann on
a project that we later demoed at SIGGRAPH. When I worked with Professor Hinton on

viii

my undergraduate thesis, it was a truly exciting time at his lab. The results on speech and
image recognitions were about to revolutionalize these research fields and it was the dawn
of deep learning. Beyond his humble victory speech of "there is no turning back" remark,
what has inspired me of his life is his commitment to research and education. I thank him
greatly for managing times out, sometimes in the evenings or weekends, to meet with me and
discuss even the most basics of research. The life of a researcher, despite numerous apparent
difficulties and commitments, therefore appeared to me as tremendously rewarding, as I see
the two professors continually explore and enable new fields of research through their entire
careers.

My acknowledgements cannot end without thanking amazing individuals I encountered
and worked with during my internships at Google Brain and DeepMind. I would like to
thank Ilya Sutskever and Vincent Vanhoucke for giving me the valuable opportunity to do
my first internship at Google Brain right after my first year of PhD. The environment at
Google Brain was incredibly attractive: many reknown researchers and faculties frequented
at microkitchens; computation resources and data were abundant for fast iterations and
quick scaling of research ideas; and research freedom empowered me to work on whatever
topics of interest. In addition, I thank Ilya for introducing me to Sergey Levine of the
University of California Berkeley and Timothy Lillicrap of DeepMind, two individuals who
introduced me to the field of reinforcement learning and robotics and with whom I formed
the longest duration of external collaboration. Sergey has not only been tremendouly helpful
in positioning, brainstorming, and iterating research ideas, but also been a great educator
who valued the growths and successes of all his collaborators. Tim, whose pioneering work
in deep RL for continuous control inspired our joint and my first work in RL, committed
to difficult long-distance collaborations, with meeting times often during his evening times,
and later kindly hosted me for a part-time internship visit at DeepMind. A bulk of my thesis
would not have happened if not for the support from these individuals, along with the research
freedom from my advisors.

Beyond the names listed above, there are many more individuals I feel thankful toward. I
was particularly fortunate to have spent time at the University of Cambridge, Max Planck
Institute, Google Brain and DeepMind, where I met such diverse, open-minded, and intelli-
gent individuals who have and continue to inspire me. While it is hard to exhaustively list
all of them, in no specific order I would like to thank: Charlie Tang, Jimmy Lei Ba, Chi Jin,
Navdeep Jaitly, George Dahl, Chris Maddison, Yujia Li, Nitish Srivastava, Emily Denton,
Laurent Charlin, Alex Graves, Alex Krizhevsky, Ajay Agrawal, Brendan Frey, Richard Zemel
at the University of Toronto; Adam Ścibior, Mateo Rojas-Carulla, Yingzhen Li, Thang Bui,
Nilesh Tripuraneni, Matej Balog, Matthias Bauer, Paul Rubenstein, Chaochao Lu, Alessan-

ix

dro Davide Ialongo, Niki Kilbertus, Robert Pinsler, John Bronskill, Yutian Chen, Hong Ge,
Yarin Gal, Rowan McAllister, Amar Shah, Mark van der Wilk, Mark Rowland, Matthew W.
Hoffman, Felipe Tobar, James R. Lloyd, David Duvenaud, Jose Miguel Hernandez-Lobato,
Carl Edward Rasmussen from the Uiversity of Cambridge; Okan Koc, Dieter Büchler,
Monotonobu Kanagawa, Giambattista Parascandolo, Diana Rebmann, Hans Kersting, Maren
Mahsereci, Atalanti-Anastasia Mastakouri, Vinay Jayaram, Matthias Hohmann, Michael
Hirsch, Sebanstian Trimpe, Philip Hennig, Jan Peters from the Max Planck Insitute for
Intelligent Systems, Tübingen; Natasha Jaques, Eric Zhang, Ethan Holly, Laurent Dinh,
Stephan Zhang, Ben Poole, Jakob N. Foerster, Thang Luong, Deirdre Quillen, Kelvin Xu,
Douglas Eck, Quoc Le, Jascha Sohl-Dickstein, Ian Goodfellow, Sylvain Gelly, Oriol Vinvals,
Samy Bengio, Jeff Dean from Google Brain; Nicolas Heess, Andriy Mnih, Tom Erez, Yuval
Tassa, Gabriel Dulac-Arnold, Jon Scholz, Shakir Mohammed, David Silver, Raia Hadsell,
Shane Legg from DeepMind; Chelsea Finn, Vitchyr Pong, Pulkit Agrawal, Murtaza Dalal,
Marvin Zhang, Justin Fu, Murtaza Dalal, Carlos Florensa Campo, Yan (Rocky) Duan, Xi
(Peter) Chen, John Schulman, Pieter Abbeel from the University of California Berkeley.

Last but not least, I would like to thank my mother Yueqi Zhou for providing me with the
best environments to learn and succeed. On important matters in life and career, she valued
listening to my opinions, shared her thoughts and wisdom patiently, and discussed with me
many hours until we agree on the fundamentals. I thank her sincerely for her continual and
selfless support.

Abstract

Reinforcement learning (RL) is a powerful, generic approach to discovering optimal policies
in complex sequential decision-making problems. Recently, with flexible function approx-
imators such as neural networks, RL has greatly expanded its realm of applications, from
playing computer games with pixel inputs, to mastering the game of Go, to learning parkour
movements by simulated humanoids. However, the common RL approaches are known
to be sample intensive, making them difficult to be applied to real-world problems such
as robotics. This thesis makes several contributions toward developing RL algorithms for
learning in the wild, where sample-efficiency and stability are critical. The key contributions
include Normalized Advantage Functions (NAF), extending Q-learning for continuous ac-
tion problems; Interpolated Policy Gradient (IPG), unifying prior policy gradient algorithm
variants through theoretical analyses on bias and variance; and Temporal Difference Models
(TDM), interpreting a parameterized Q-function as a generalized dynamics model for novel
temporally abstracted model-based planning. Importantly, this thesis highlights that these
algorithms can be seen as bridging gaps between branches of RL – model-based with model-
free, and on-policy with off-policy. The proposed algorithms not only achieve substantial
improvements over the prior approaches, but also provide novel perspectives on how to mix
different branches of RL effectively to gain the best of both worlds. NAF has subsequently
been shown to be able to train two 7-DoF robot arms to open doors using only 2.5 hours of
real-world experience, making it one of the first demonstrations of deep RL approaches on
real robots.

Table of contents

List of figures xvii

List of tables xxi

Nomenclature xxiii

1 Introduction 1
1.1 Reinforcement Learning and Sample Efficiency 1
1.2 Thesis Outline . 2

2 Reinforcement Learning Algorithms 5
2.1 Reinforcement Learning . 5
2.2 Model-based and Model-free Algorithms 7

2.2.1 Model-based Algorithms . 7
2.2.2 Value-based Algorithms . 10
2.2.3 Policy-based Algorithms . 12

2.3 On-Policy and Off-Policy Algorithms . 13
2.3.1 On-Policy Likelihood Ratio Policy Gradient 13
2.3.2 Off-Policy Expected Actor-Critic 14

3 Continuous Deep Q-Learning with Model-based Acceleration 17
3.1 Normalized Advantage Functions . 18

3.1.1 Locally-Invariant Exploration for Normalized Advantage Functions 20
3.2 Accelerating Model-free Learning with Model-based Rollouts 21

3.2.1 Model-Guided Exploration . 21
3.2.2 Imagination Rollouts . 21
3.2.3 Fitting the Dynamics Model . 24

3.3 Experiments in Simulation . 24
3.3.1 Normalized Advantage Functions 25

xiv Table of contents

3.3.2 Evaluating Best-Case Model-Based Improvement with True Models 28
3.3.3 Guided Imagination Rollouts with Fitted Dynamics 29

3.4 Experiments on Real-World Robots . 31
3.4.1 Random Target Reaching . 31
3.4.2 Door Opening . 32

3.5 Discussion . 33

4 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Es-
timation 35
4.1 Interpolated Policy Gradient . 36

4.1.1 Control Variates for Interpolated Policy Gradient 36
4.1.2 Relationship to Prior Policy Gradient and Actor-Critic Methods . . 37
4.1.3 ν = 1: Actor-Critic methods . 37

4.2 Theoretical Analysis . 38
4.2.1 β ̸= π , ν = 0: Policy Gradient with Control Variate and Off-Policy

Sampling . 39
4.2.2 Monotonic Policy Improvement Guarantee 40
4.2.3 General Bounds on the Interpolated Policy Gradient 40

4.3 Related Work . 41
4.4 Experiments . 42

4.4.1 β ̸= π , ν = 0, with the control variate 42
4.4.2 β = π,ν = 1 . 43
4.4.3 General Cases of Interpolated Policy Gradient 44

4.5 Discussion . 45

5 Temporal Difference Models: Model-Free Deep RL for Model-Based Control 47
5.1 Preliminaries . 49
5.2 Temporal Difference Model Learning . 51

5.2.1 From Goal-Conditioned Value Functions to Models 51
5.2.2 Long-Horizon Learning with Temporal Difference Models 52

5.3 Training and Using Temporal Difference Models 53
5.3.1 Reward Function Specification . 53
5.3.2 Policy Extraction with TDMs . 54
5.3.3 Algorithm Summary . 54

5.4 Related Work . 55
5.5 Experiments . 57

5.5.1 TDMs vs Model-Free, Model-Based, and Direct Goal-Conditioned RL 58

Table of contents xv

5.5.2 Ablation Studies . 60
5.6 Conclusion . 60

6 Concluding Remark 63

References 65

Appendix A Supplementary Materials for Chapter 4 75
A.1 Proof for Theorem 1 . 75

A.1.1 Local approximation objective with bounded bias 75
A.1.2 Main proof for Theorem 1 . 77

A.2 Algorithm with Monotonic Convergence Property and its Proof 77
A.3 Proof for Theorem 2 . 79
A.4 Supplementary Experimental Details . 81

A.4.1 Hyperparameters . 81

Appendix B Supplementary Materials for Chapter 5 83
B.1 Experiment Details . 83

B.1.1 Goal State and τ Sampling Strategy 83
B.1.2 Tuned Hyperparameters . 83
B.1.3 Model-free setups . 84
B.1.4 Model-based setup . 84
B.1.5 TDM Network Architecture and Vector-based Supervision 85
B.1.6 Task and Reward Descriptions . 85

List of figures

3.1 (a) Task domains: top row from left (manipulation tasks: peg, gripper, mobile
gripper), bottom row from left (locomotion tasks: cheetah, swimmer6, ant).
(b,c) NAF vs DDPG results on three-joint reacher and peg insertion. On
reacher, the DDPG policy continuously fluctuates the tip around the target,
while NAF stabilizes well at the target. 25

3.2 NAF vs DDPG on three domains. 26
3.3 NAF with exploration noise generated using the precision term (NAF-P)

slightly outperforms the best DDPG result. Precision term is not used until
step 50,000. 27

3.4 Results on NAF with iLQG-guided exploration and imagination rollouts (a)
using true dynamics (b,c) using fitted dynamics. “ImR" denotes using the
imagination rollout with l = 10 steps on the reacher and l = 5 steps on the
gripper. “iLQG-x" indicates mixing x fraction of iLQG episodes. Fitted
dynamics uses time-varying linear models with sample size n = 5, except
“-NN" which fits a neural network to global dynamics. 28

3.5 NAF on multi-target reacher, cheetah, and canada2d, with model-based
acceleration using true dynamics: “ImR" denotes using the imagination
rollout, l = 10 steps. “MPC-x" indicates mixing x fraction of MPC episodes. 30

3.6 Two robots learning to open doors using asynchronous NAF. The final policy
learned with two workers could achieve a 100% success rate on the task
across 20 consecutive trials. 31

3.7 The 7-DoF arm random target reaching with asynchronous NAF on real
robots. Note that 1 worker suffers in both learning speed and final policy
performance. 32

xviii List of figures

3.8 Learning curves for real-world door opening. Learning with two workers
significantly outperforms the single worker, and achieves a 100% success
rate in under 500,000 update steps, corresponding to about 2.5 hours of real
time. 33

4.1 (a) IPG-ν = 0 vs Q-Prop on HalfCheetah-v1, with batch size 5000. IPG-β -
rand30000, which uses 30000 random samples from the replay as samples
from β , outperforms Q-Prop in terms of learning speed. (b) IPG-ν=1 vs other
algorithms on Ant-v1. In this domain, on-policy IPG-ν=1 with on-policy
exploration significantly outperforms DDPG and IPG-ν=1-OU, which use a
heuristic OU (Ornstein–Uhlenbeck) process noise exploration strategy, and
marginally outperforms Q-Prop. 43

4.2 IPG-ν = 0.2-π-CV vs Q-Prop and TRPO on Humanoid-v1 with batch size
10000 in the first 10000 episodes. IPG-ν = 0.2-π-CV, with a small difference
of ν = 0.2 multiplier, out-performs Q-Prop. All these methods have stable,
monotonic policy improvement. The experiment is cut at 10000 episodes
due to heavy compute requirement of Q-Prop and IPG methods, mostly from
fitting the off-policy critic. 46

5.1 The tasks in our experiments: (a) reaching target locations, (b) pushing a
puck to a random target, (c) training the cheetah to run at target velocities,
(d) training an ant to run to a target position or a target position and velocity,
and (e) reaching target locations (real-world Sawyer robot). 58

5.2 The comparison of TDM with the baseline methods in model-free (DDPG),
model-based, and goal-conditioned value functions (HER - Dense) on various
tasks. All plots show the final distance to the goal versus 1000 environment
steps (not rollouts). The bold line shows the mean across 3 random seeds,
and the shaded region show one standard deviation. Our method, which
uses model-free learning, is generally more sample-efficient than model-
free alternatives including DDPG and HER and improves upon the best
model-based performance. 59

5.3 Ablation experiments for (a) scalar vs. vectorized TDMs on 7-DoF simulated
reacher task and (b) different τmax on pusher task. The vectorized variant per-
forms substantially better, while the horizon effectively interpolates between
model-based and model-free learning. 60

List of figures xix

B.1 TDMs with different number of updates per step I on ant target position task.
The maximum distance was set to 5 rather than 6 for this experiment, so the
numbers should be lower than the ones reported in the paper. 84

List of tables

3.1 List of domains. All the domains except ant are 2D. 25
3.2 Best test rewards of DDPG and NAF policies, and the episodes it requires to

reach within 5% of the best value. “-" denotes scores by a random agent. . . 27
3.3 Best-case model-based acceleration with true dynamics models. Best test

rewards of NAF policies (first row), and the episodes it required to reach 5%
of the best value (second row). “0.5" and “1" correspond to the fraction of
MPC episodes. “ImR" means using imagination rollout with rollout length
l = 10 for reacher, canada2d, and l = 5 for cheetah. 29

4.1 Prior policy gradient method objectives as special cases of IPG. 36
4.2 Comparisons on all domains with mini-batch size 10000 for Humanoid and

5000 otherwise. We compare the maximum of average test rewards in the
first 10000 episodes (Humanoid requires more steps to fully converge; see
the Appendix for learning curves). Results outperforming Q-Prop (or IPG-cv-
ν=0 with β = π) are boldface. The two columns show results with on-policy
and off-policy samples for estimating the expected policy gradient. 45

Nomenclature

Roman Symbols

a Action

p State transition probability; initial state probability

pπ
t Marginal state distribution at time t for policy π

Qπ State-action value function (Q-function) of policy π

Q∗ Optimal state-action value function (optimal Q-function)

R Cumulative rewards

r Reward function

s State

V π State value function of policy π

V ∗ Optimal state value function

Greek Symbols

γ Discount factor

π Policy function

ρπ γ-discounted, unnormalized state-visitation frequency of policy π

ρ̃π Non-discounted, unnormalized state-visitation frequency of policy π

τ Trajectory consisting of a sequence of states s and actions a

Acronyms / Abbreviations

xxiv Nomenclature

AC Actor-Critic

DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Network

DQN Deep Q-Network

ES Evolutionary Strategy

GAE Generalized Advantage Estimation

IPG Interpolated Policy Gradient

LSPI Least-Squares Policy Iteration

LSTD Least-Squares Temporal Difference

MDP Markov Decision Process

NAF Normalized Advantage Functions

PG Policy Gradient

POMDP Partially-Observable Markov Decision Process

PPO Proximal Policy Optimization

RL Reinforcement Learning

SGD Stochastic Gradient Descent

SVG Stochastic Value Gradient

TD Temporal Difference

TRPO Trust-Region Policy Optimization

Chapter 1

Introduction

1.1 Reinforcement Learning and Sample Efficiency

We live in the world of sequential data and constant decision-making. The beauty of time,
sequence, and recursion is that simple functions, e.g. laws of physics, can enable rich
complex phenomena, e.g. the earth and us, to emerge as a consequence. We, and other living
organisms capable of decision-making, can choose to predictively alter the course of the
future by acting in the environment. This ability to achieve desired goals through interation
is essential for survival as individuals or species. Richness of goals and how predictably we
can accomplish them have been proposed as key metrics for defining a universal measure of
intelligence (Legg and Hutter, 2007; Salge et al., 2014). How we can most effectively change
the passive dynamics of the world to achieve what we want, is at the core of sequential
decision-making and is the fundamental problem studied in the field of reinforcement learning
(RL)

Reinforcement learning (RL) studies a series of approaches for solving arbitrary goal-
directed sequential decision-making problems with only high-level reward signals and no
supervision. It has recently been extended to utilize large neural network policies and value
functions, and has been successful in solving a range of difficult problems, such as playing
computer games from pixels, the game of Go, and continuous control of humanoids in
simulation (Heess et al., 2017; Lillicrap et al., 2016; Mnih et al., 2015; Schulman et al., 2016;
Silver et al., 2016). The use of deep neural networks (DNNs) to parameterize functions which
are then learned from data minimizes the need for manual feature and policy engineering,
and allows learning end-to-end policies mapping from high-dimensional inputs, such as
images, directly to actions. However, such expressive parametrization also introduces a
number of practical problems. Deep reinforcement learning algorithms tend to be sensitive
to hyperparameter settings, often requiring extensive hyperparameter sweeps to find good

2 Introduction

values. Poor hyperparameter settings tend to produce unstable or non-convergent learning.
Deep RL algorithms also tend to exhibit high sample complexity, often to the point of being
impractical to run on some real physical systems. In this thesis, we propose scalable RL
methods with improved sample efficiency that connect and bridge gaps between branches of
RL: model-based with model-free, and on-policy with off-policy.

1.2 Thesis Outline

• Chapter 2 provides an overview on the basics of model-based, value-based, and policy-
based approaches to reinforcement learning, highlighting their differences in terms of
learning signals and target functions to estimate.

• Chapter 3 discusses normalized advantage functions (NAF) and LQR-based accelera-
tion of Q-learning for continuous control. The content is adapted from:

– Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, Sergey Levine. “Continuous
Deep Q-Learning with Model-based Acceleration”. ICML 2016. (Gu et al.,
2016b)

– Shixiang Gu*, Ethan Holly*, Timothy Lillicrap, Sergey Levine. “Deep Rein-
forcement Learning for Robotic Manipulation with Asynchronous Off-Policy
Updates”. ICRA 2017. (Gu et al., 2017a)

• Chapter 4 discusses interpolated policy gradient (IPG), a framework for unifying off-
policy actor-critic and on-policy Monte Carlo policy gradient and providing theoretical
bounds on the bias induced through imperfect critic and off-policy sampling. The
content is adapted from:

– Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey
Levine. “Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic”.
ICLR 2017. (Gu et al., 2017b)

– Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Bern-
hard Schölkopf, Sergey Levine. “Interpolated Policy Gradient: Merging On-
Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning”. (Gu
et al., 2017c)

• Chapter 5 discusses temporal difference models (TDM) and shows that an off-policy
value-based method with vectorized parameterization, goal-conditioned rewards, and

1.2 Thesis Outline 3

relabeling trick (Andrychowicz et al., 2017) can generalize model-based methods to
achieve substantial improvements in sample efficiency. The content is adapted from:

– Vitchyr Pong*, Shixiang Gu*, Murtaza Dalal, Sergey Levine. “Temporal Differ-
ence Models: Model-Free Deep RL for Model-Based Control”. ICLR 2018. (Pong
et al., 2018)

Each of the papers mentioned above is through multi-author collaboration. However, in every
case I was the (joint) first author. As such, I contributed the most in formulating the research,
implementing the code, writing the paper, and running the experiments. I have also published
the following papers whilst carrying out my PhD, but these have not been included in this
thesis:

• Nilesh Tripuraneni*, Shixiang Gu*, Hong Ge, Zoubin Ghahramani. “Particle Gibbs
for Infinite Hidden Markov Models”. NIPS 2015. (Tripuraneni et al., 2015)

• Shixiang Gu, Zoubin Ghahramani, Richard E. Turner. “Neural Adaptive Sequential
Monte Carlo”. NIPS 2015. (Gu et al., 2015)

• Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih. “MuProp: Unbiased
Backpropagation for Stochastic Neural Networks”. ICLR 2016. (Gu et al., 2016a)

• Eric Jang, Shixiang Gu, Ben Poole. “Categorical Reparametrization with Gumble-
Softmax”. ICLR 2017. (Jang et al., 2017)

• Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, Jose Miguel Hernndez Lobato,
Richard E. Turner, Douglas Eck. “Sequence Tutor: Conservative fine-tuning of
sequence generation models with KL-control”. ICML 2017. (Jaques et al., 2017)

• Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, Sergey Levine. “Leave no Trace:
Learning to Reset for Safe and Autonomous Reinforcement Learning”. ICLR 2018. (Ey-
senbach et al., 2018)

• George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahra-
mani, Sergey Levine. “The Mirage of Action-Dependent Baselines in Reinforcement
Learning”. ICML 2018. (Tucker et al., 2018)

• Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine. “Data-Efficient Hierarchical
Reinforcement Learning”. NIPS 2018. (Nachum et al., 2018)

Chapter 2

Reinforcement Learning Algorithms

This chapter provides an overview of the basic approaches in reinforcement learning. We
first introduce the standard objective, functions, and mathematical notations in RL used
throughout this thesis, and then move on to detail classes of RL algorithms based on two
groupings: (1) model-based and model-free, and (2) on-policy and off-policy. The emphasis
is put on the simplest formulations, which are often most compatible with scalable neural
network function approximations. This also enables us to abstract many approaches in RL to
the most basic forms, and illuminate their advantages, disadvantages and relations. Beyond
the materials covered here, RL has a rich set of algorithms and theoretical analyses. We
will refer readers to the excellent books by Sutton and Barto (1998) and Szepesvári (2010)
for more comprehensive overviews on the history and development of RL, and the survey
by Deisenroth et al. (2013) for a practical understanding into challenges that arise when RL
is applied to real-world applications such as robotics.

2.1 Reinforcement Learning

The basic RL formulation involves an agent interacting with a Markov Decision Pro-
cess (MDP) (S,A,γ,P,r), where S denotes the fully-observed state space of the envi-
ronment and the agent, A denotes the action space, γ denotes the discount factor, P =

{p(s0), p(st+1|st ,at)} denotes the initial state distribution and transition dynamics of the
environment, and r(s,a) denotes the reward function. At time t, an agent in state st ∈ S takes
an action at ∈A according to its policy π(at |st), the state transitions to st+1 according to P,
and the agent receives a reward rt = r(st ,at). The objective is to learn the optimal policy π∗

6 Reinforcement Learning Algorithms

to maximize the γ-discounted cumulative future return,

J(π) = Es0∼p(s0),a0∼π(a0|s0),s1∼p(s1|s0,a0),a1∼π(a1|s1),···

[
∞

∑
t=0

γ
tr(st ,at)

]
(2.1)

= Es0,a0,s1,···∼P,π

[
∞

∑
t=0

γ
tr(st ,at)

]
, (2.2)

π
∗ = argmax

π
J(π) (2.3)

where we assume infinite planning horizon. The difficulty of RL is that we do not know the
dynamics P of the MDP and we can only sample transitions from it, usually in an episodic
manner without control over initial state distributions. In certain cases, we also assume
that we do not know the reward function r(s,a) and only observe its sampled values. For
real-world applications such as robotics, it is crucial to minimize the number of samples
required for learning, i.e. maximize the sample efficiency of the algorithm.

The main goal is to learn the optimal policy π∗, which can be done by directly optimizing
a parameterized π with respect to the above objective, known as policy-based approaches.
Alternative approaches estimate other functions from the experience data, from which π∗ can
be efficiently derived. Two such approaches are value-based and model-based. Value-based
approaches learn the Q-function Qπ(s,a), or state-action value function, which summarizes
the future return of taking action a from state s and following policy π afterwards:

Qπ(st ,at) = Est+1,at+1,···∼P,π|st ,at

[
∞

∑
t ′=t

γ
t ′−tr(st ′,at ′)

]
. (2.4)

The estimated Q-function can then be used to improve the policy. In particular, if the Q-
function Q∗ for the optimal policy π∗ is learned, the optimal policy is directly given by
π∗(at |st) = δ (at = argmaxa Q∗(st ,a)).

Model-based approaches, on the other hand, estimate the dynamics p̂(st+1|st ,at) ≈
p(st+1|st ,at) and the reward function r̂(s,a)≈ r(s,a) through fitting approximators p̂(st+1|st ,at)

and r̂(s,a) from observed transitions {st ,at ,rt ,st+1}, and then use the learned models to
approximately solve for the optimal policy as below,

π
∗ ≈ argmax

π
Ĵ(π) = argmax

π
Es0,a0,s1,···∼P̂,π

[
∞

∑
t=0

γ
t r̂(st ,at)

]
. (2.5)

2.2 Model-based and Model-free Algorithms 7

Importantly, it is also trivial to use the learned model to evaluate an approximation to the
state-action value function of any policy π as,

Qπ(st ,at)≈ Est+1,at+1,···∼P̂,π|st ,at

[
∞

∑
t ′=t

γ
t ′−t r̂(st ′,at ′)

]
. (2.6)

The quality of approximations to π∗ and Qπ depends strongly on the quality of the learned
dynamics P̂ and reward function r̂.

2.2 Model-based and Model-free Algorithms

This section describes three approaches in RL based on being model-based or model-free,
where the model-free includes value-based and policy-based algorithms. For the clarify of
presentation, we explicitly separate model-based from model-free in the discussion here;
however, as we analyze in Chapter 5, there exists subtle connections between model-based
and model-free (particularly value-based).

2.2.1 Model-based Algorithms

Model-based algorithms, more commonly known as optimal control in the control theory
literatures, are a set of algorithms that utilize a learned or available approximate model
of an MDP to solve for the optimal policy without relying on real environment samples.
While classic control often only involves planning with an available model of the robot
or the control system with minimal model learning such as online system identification,
model-based algorithms in RL literatures often involve both model learning as well as
model planning. A diverse set of parameterizations of the model have been explored,
including locally linear dynamics as in linear-quadratic regulator (LQR) systems (Levine
et al., 2016; Li and Todorov, 2004; Todorov and Li, 2005), feed-forward and recurrent
neural networks (Nguyen and Widrow, 1990; Schmidhuber, 1990, 1991; Wahlström et al.,
2015; Watter et al., 2015; Werbos, 1989), and non-parametric probabilistic models such
as Gaussian processes (Deisenroth and Rasmussen, 2011). While subtle differences exist
in their model learning objectives, simple maximium likelihood estimation (MLE) is most
frequently used. Equivalently, they minimize the inclusive Kullback–Leibler (KL) divergence
between p(st+1|st ,at) and a family of variational distribution q(st+1|st ,at) based on transition

8 Reinforcement Learning Algorithms

samples,

p̂ = argmin
q

Est ,at∼P,β [DKL(p(·|st ,at),q(·|st ,at)] (2.7)

= argmax
q

Est ,at ,st+1∼P,β [logq(st+1|st ,at)] . (2.8)

The notation β means that that samples can come from any behavior policy and do not
need to come from on-policy rollouts based on π . This makes the model-based approach
generally seen as an off-policy algorithm, capable of utilizing all samples collected during
learning to make policy improvement. Furthermore, model-based RL can use the rich
learning signals available in predicting high-dimensional observation st+1, e.g. an image,
which is substantially more than predicting scalar rewards or cumulative returns. These
properties make model-based algorithms very sample-efficient when a good, generalizable
model can be learned from samples (Deisenroth and Rasmussen, 2011; Kurutach et al., 2018;
Nagabandi et al., 2017). However, when learning a good model is difficult, e.g. dynamics are
discontinuous and observations are high dimensional, model-based algorithms often exhibit
worse asymptotic performances (with infinite samples) than policy-based or value-based
approaches that are considered model-free (Gu et al., 2016b; Pong et al., 2018).

The choice of parameterization and learning objective for the model affects the model-
based policy performance, but so does the choice of planning algorithm. Given a fitted
model of dynamics p̂, the derivation of the optimal policy is just another RL problem, with
the following additional conditions: (1) samples can be queried infinitely, (2) states can
be reset to any states during rollouts, and (3) dynamics may be differentiable. Therefore,
new algorithms utilizing these additional properties, along with any standard policy-based
or value-based algorithms can be used to derive the policy. In fact, recent results that have
shown more success with model-based RL using neural networks have utilized dynamics-
gradient-free policy derivation from the model (Ha and Schmidhuber, 2018; Kurutach et al.,
2018; Nagabandi et al., 2017). Below are a list of planning algorithm examples to derive the
optimal policy from a model:

1. Closed-form solve, e.g. linear-quadratic regulator (LQR), iterative LQG (iLQG) (Levine
et al., 2016; Li and Todorov, 2004; Todorov and Li, 2005; Watter et al., 2015)

2. Gradient-based action optimization, e.g. model-predictive control (MPC) with gradient-
based action updates

3. Gradient-free action optimization, e.g. MPC with gradient-free action updates (Chebo-
tar et al., 2017b; Nagabandi et al., 2017; Theodorou et al., 2010) and Monte Carlo tree
search

2.2 Model-based and Model-free Algorithms 9

4. Gradient-based policy optimization, e.g. PILCO (Deisenroth and Rasmussen, 2011)

5. Gradient-free policy optimization, e.g. TRPO or evolutionary strategies with model-
based policy evaluation (Ha and Schmidhuber, 2018; Kurutach et al., 2018)

6. Q-learning, e.g. Dyna-Q algorithms (Gu et al., 2016b; Sutton, 1990)

7. Actor-critic method, e.g. stochastic value gradients (SVG) (Heess et al., 2015a)

Taken together, the model parametrization, model learning objective, and planning algorithm
offer a wide range of design choices for model-based algorithms. While a wide gap on
asymptotic performance against model-free algorithms exists at the moment, the hope is that
further research can yield substantially better results for model-based in the future.

Iterative LQG

The iterative Linear-Quadratic Gaussian (iLQG) is a popular model-based algorithm that
optimizes trajectories by iteratively constructing locally optimal linear feedback controllers
under a local linearization of the dynamics p(st+1|st ,at) = N(st+1; fstst + fatat ,Ft) and a
quadratic expansion of the rewards r(st ,at) (Tassa et al., 2012). Under linear dynamics and
quadratic rewards, the action-value function Q(st ,at) and value function V (st) are locally
quadratic and can be computed by dynamics programming.1

Qsa,sat = rsa,sat + f T
satVs,st+1 fsat

Qsat = rsat + f T
satVs,st+1

Vs,st = Qs,st−QT
a,stQ

−1
a,atQa,st

Vst = Qst−QT
a,stQ

−1
a,atQat

Qs,sT =Vs,sT = rs,sT

(2.9)

The time-varying linear feedback controller g(st) = ât +kt +Kt(st− ŝt) maximizes the locally
quadratic Q, where kt =−Q−1

a,atQat , Kt =−Q−1
a,atQa,st , and ŝt , ât denote states and actions of

the current trajectory around which the partial derivatives are computed. Employing the max-
imum entropy objective (Levine and Koltun, 2013), we can also construct a linear-Gaussian
controller, where c is a scalar to adjust for arbitrary scaling of the reward magnitudes,

π
iLQG
t (at |st) =N(at ; ât + kt +Kt(st− ŝt),−cQ−1

a,at) (2.10)

1While standard iLQG notation denotes Q,V as discounted sum of costs, we denote them as sum of rewards
to make them consistent with the rest of the thesis

10 Reinforcement Learning Algorithms

When the dynamics are not known, a particularly effective way to use iLQG is to combine
it with learned time-varying linear models p̂(st+1|st ,at). In this variant of the algorithm,
trajectories are sampled from the controller in Eq. 2.10 and used to fit time-varying linear
dynamics with linear regression. These dynamics are then used with iLQG to obtain a
new controller, typically using a KL-divergence constraint to enforce a trust region, so that
the new controller does not deviate too much from the region in which the samples were
generated (Levine and Abbeel, 2014).

2.2.2 Value-based Algorithms

Value-based approaches are model-free algorithms that estimate value function V (s) or state-
action value function Q(s,a) in order to efficiently solve for the optimal policy. The core of
most value-based approaches is to find functions that satisfy Bellman equations, i.e. their
recursive dynamic programming definitions. While value-based algorithms are very broad in
scope (Sutton and Barto, 1998; Szepesvári, 2010), we will focus on methods that estimate
Qπ or Q∗, since these are methods that can directly utilize off-policy samples for learning.
Specifically, we can re-write Qπ definition in Eq. 2.4 recursively as,

Qπ(st ,at) = Est+1,at+1,···∼P,π|st ,at

[
∞

∑
t ′=t

γ
t ′−tr(st ′,at ′)

]
(2.11)

= r(st ,at)+ γEst+1∼p(·|st ,at),at+1∼π(·|st+1) [Q
π(st+1,at+1)] . (2.12)

This suggests minimizing the following surrogate objective for learning a parameterized
state-action value function Qw to approximate Qπ ,

L(w) = Est ,at ,st+1∼P,β

[
(Qw(st ,at)− yt)

2
]

(2.13)

yt = r(st ,at)+ γEat+1∼π(·|st+1) [Qw(st+1,at+1)] . (2.14)

Such method that optimizes for Bellman consistency is also known as temporal difference
(TD) learning (Tesauro, 1995), a method for approximate dynamic programming. In this
example, it is evaluating Qπ , i.e. performing policy evaluation; however, a different Bellman
equation for Q∗ leads to the renowned Q-learning algorithm (Watkins and Dayan, 1992).
Notice that for these temporal difference learning objectives, we could directly use samples
from any behavior policy β as similarly done in the model-based objective of Eq. 2.8. The
capability for simple off-policy learning enable value-based methods to be more sample
efficient than policy-based approaches which are generally only effective on-policy; however,
since it optimizes for a surrogate Bellman error objective, its convergence is harder to

2.2 Model-based and Model-free Algorithms 11

analyze and guarantee, particularly with nonlinear function approximation and off-policy
sampling (Bhatnagar et al., 2009; Sutton et al., 2009a,b; Tsitsiklis and Van Roy, 1996;
Watkins and Dayan, 1992). With the mainstream application of neural network function
approximations in value-based approaches (Gu et al., 2016b; Lillicrap et al., 2016; Mnih et al.,
2015), a series of techniques have been introduced to combat such instability, such as replay
buffer (Lin, 1992; Mnih et al., 2015; Schaul et al., 2015b), exploration heuristics (Gal and
Ghahramani, 2016; Osband et al., 2016), target networks (Lillicrap et al., 2016; Mnih et al.,
2015), advantage-value decomposition (Gu et al., 2016b; Wang et al., 2016), conservative
target value estimators (Fujimoto et al., 2018; Hasselt, 2010; Van Hasselt et al., 2015), mixing
multi-step returns (Munos et al., 2016), and soft value iteration (Haarnoja et al., 2017; Rawlik
et al., 2013). We will not go through these details and instead focus on their basic forms to
highlight how they relate to model-based and policy-based in later sections.

Q-Learning

Q-learning (Watkins and Dayan, 1992) is one of the most popular value-based algorithms
and makes use of the Bellman optimality equation defined for Q∗,

Q∗(st ,at) = Est+1,at+1,···∼P,π∗|st ,at

[
∞

∑
t ′=t

γ
t ′−tr(st ′,at ′)

]
(2.15)

= r(st ,at)+ γEst+1∼p(·|st ,at)

[
max

a
Q∗(st+1,a)

]
. (2.16)

A practical implementation for deep learning optimizes a parameterized Q-function Qw, a
deep Q-network (DQN) (Mnih et al., 2015), using stochastic gradient descent (SGD) on the
following objective,

L(w) = Est ,at ,st+1∼P,β

[
(Qw(st ,at)− yt)

2
]

(2.17)

yt = r(st ,at)+ γ max
a

Q′(st+1,a), (2.18)

where Q′ denotes the target network which syncs with the main Qw at some fixed inter-
vals (Mnih et al., 2015) or smoothly tracks Qw (Lillicrap et al., 2016). β represents sampling
from replay buffer (Lin, 1992; Mnih et al., 2015), whose policy is effectively a mixture of
all exploration policies, which usually adapt with changing Qw. As noted in Section 2.2.2,
many techniques have been devised to stablize Q-learning with neural network function
approximations.

For discrete action spaces, Eq. 2.17 can be optimized straightforwardly; however, for
continuous action space, the maxa operator makes the target value computation difficult.

12 Reinforcement Learning Algorithms

Actor-critic methods (Sutton et al., 1999a) are thus typically proposed for value-based
approaches in continuous action spaces. In Chapter 3, we discuss how deep Q-learning can
be directly extended to continuous action space by adopting a specific parameterization of
Q-functions.

2.2.3 Policy-based Algorithms

Policy-based (PG) approaches, and in particular policy gradient methods, are model-free
algorithms and considered the most direct way to find the optimal policy, since they do not
involve surrogate objectives as in model-based or value-based approaches. They directly
apply gradient ascent with respect to the RL objective J(π) in Eq. 2.2. Specifically, for a
parameterized stochastic policy πθ , the gradient of J(π) = J(θ) with respect to θ is given
by the following, where τt+1 = {st+1:∞,at+1:∞} denotes a partial trajectory of states and
actions, Q̂(st ,at ,τt+1) = ∑

∞

t ′=t γ t ′−tr(st ′,at ′) denotes γ-discounted cumulative rewards, pπ
t (st)

is the marginal state distribution at time t for policy π , and ρπ(s) = ∑
∞
t=0 γ t pπ

t (st = s) is the
unnormalized γ-discounted state visitation frequency,

∇θ J(θ) = ∇θEs0,a0,s1,···∼P,πθ

[
∞

∑
t=0

γ
tr(st ,at)

]
(2.19)

= Es0,a0,s1,···∼P,πθ

[(
∞

∑
t=0

∇θ logπθ (at |st)

)(
∞

∑
t=0

γ
tr(st ,at)

)]
(2.20)

= Es0,a0,s1,···∼P,πθ

[
∞

∑
t=0

∇θ logπθ (at |st)

(
∞

∑
t ′=t

γ
t ′r(st ′,at ′)

)]
(2.21)

= Es0,a0,s1,···∼P,πθ

[
∞

∑
t=0

∇θ logπθ (at |st)γ
tQ̂(st ,at ,τt+1)

]
(2.22)

=
∞

∑
t=0

γ
tEst∼pπ

t (·),at∼πθ (·|st),τt+1∼P,πθ |st ,at

[
∇θ logπθ (at |st)Q̂(st ,at ,τt+1)

]
(2.23)

= Est∼ρπ (·),at∼πθ (·|st),τt+1∼P,πθ |st ,at

[
∇θ logπθ (at |st)Q̂(st ,at ,τt+1)

]
(2.24)

= Est∼ρπ (·),at∼πθ (·|st) [∇θ logπθ (at |st)Qπ(st ,at)] (2.25)

= Est∼ρπ (·)
[
∇θEat∼πθ (·|st)Q

π(st ,at)
]
. (2.26)

The last line of derivation is based on the definition of Qπ . A subtle detail to note is that in
practical algorithms, we do not use state samples s from ρπ(s), but instead use normalized
undiscounted state visitation frequency ρ̄π(s) ∝ ∑

∞
t=0 pπ

t (st = s). Thomas (2014) discusses
that this induces bias in the gradient estimation; however, this bias is essential for good,

2.3 On-Policy and Off-Policy Algorithms 13

practical performance. In the rest of this thesis, we only discuss additional biases on top of
the practical implementation bias, and also interchangeably use these two definitions of state
visitation distribution with ρπ . Note that to make the original discounted definition of ρπ

normalized, we simply multiply by 1− γ .

2.3 On-Policy and Off-Policy Algorithms

An RL algorithm is considered on-policy if it mainly uses transition samples from the current
policy π to improve the policy at each iteration. By contrast, an off-policy algorithm can
reuse samples from any policy (past policies or arbitrary behavior policies) to make effective
policy improvements on the same batch of data. In this section, we use the policy gradient
derivation in Section 2.2.3 as a starting point and introduce its on-policy and off-policy
variants.

2.3.1 On-Policy Likelihood Ratio Policy Gradient

Policy gradients derived in Eq. 2.19 are on-policy, since their estimations involve expectation
over transitions from policy π . In particular, we call the gradient estimator in Eq. 2.24
Monte Carlo policy gradient estimator or likelihood ratio policy gradient estimator, since it
relies on Monte Carlo estimate of the Q-function Q̂(s,a,τ) and a likelihood ratio or score
function gradient estimator. It is the basis of popular on-policy policy gradient algorithms
such as REINFORCE (Williams, 1992), trust-region policy optimization (TRPO) (Schulman
et al., 2015a), asynchronous advantage actor-critic (A3C) (Mnih et al., 2016), proximal
policy optimization (PPO) (Schulman et al., 2017). In practice, a number of techniques
are required to make this estimator lower variance, such as baselines (Weaver and Tao,
2001; Williams, 1992) and generalized advantage estimation (Schulman et al., 2016). State-
dependent baselines (Mnih and Gregor, 2014; Schulman et al., 2015a; Williams, 1992) are
particularly appealing since they do not introduce bias (Williams, 1992) and can be trained
easily with neural function approximation. Specifically, the state-dependent baseline is
applied as,

∇θ J(θ) = Est∼ρπ (·),at∼πθ (·|st),τt+1∼P,πθ |st ,at

[
∇θ logπθ (at |st)

(
Q̂(st ,at ,τt+1)−Vφ (st)

)]
,

(2.27)

where Vφ is learned to approximate V π . Empirically, this simple unbiased technique leads to
substantial variance reduction (Tucker et al., 2018; Weaver and Tao, 2001; Williams, 1992).
While V π is not the baseline that can optimally reduce the variance (Weaver and Tao, 2001),

14 Reinforcement Learning Algorithms

its estimation is generally simpler and is a preferred choice in practical Monte Carlo policy
gradient algorithms (Mnih et al., 2016; Schulman et al., 2015a, 2017).

The most appealing aspect of on-policy Monte Carlo policy gradient methods is their
simplicity and stability. Because they do not rely on surrogate objectives as optimized in
value-based or model-based approaches and use unbiased Monte Carlo estimate Q̂(s,a,τ),
their convergence properties are easier to analyze and optimization algorithms with provable
policy improvement guarantees have been devised (Gu et al., 2017c; Kakade, 2001; Schulman
et al., 2015a). The high-variance nature of the Monte Carlo estimation can be alleviated by
taking large batch of samples per policy gradient update, or trading it off with slight bias
in gradient estimation that usually does not cause performance degradation in practice (Gu
et al., 2017c; Mnih et al., 2016; Schulman et al., 2016). The downside of these Monte Carlo
methods is that they often cannot utilize off-policy samples effectively without introducing
non-trivial bias, since naíve importance correction does not scale well with action and
temporal dimensions (Levine and Koltun, 2013; Thomas and Brunskill, 2016). This makes
the Monte Carlo policy gradient algorithms very data intensive. However, these algorithms
directly learn π∗ and the approximation of V π is only used for variance reduction, so they
can generally use much simpler function approximations, such as smaller neural networks or
linear function approximation, than in value-based or model-based approaches (Duan et al.,
2016; Gu et al., 2017c; Lillicrap et al., 2016; Rajeswaran et al., 2017). Such simplicity may
sometimes make Monte Carlo policy gradient still a preferred method of choice.

2.3.2 Off-Policy Expected Actor-Critic

To arrive at an off-policy policy gradient algorithm, we again start from the derivation in
Eq. 2.19. In contrast to Eq. 2.24, we call the gradient estimator in Eq. 2.26 deterministic
policy gradient estimator (Gu et al., 2017b,c), expected policy gradient estimator (Asadi
et al., 2017; Ciosek and Whiteson, 2018; Degris et al., 2012), or all-action policy gradient
estimator (Sutton, 2000), since it uses a critic Qπ(s,a) to compute analytic gradient integrated
over immediate action a. Importantly, the critic Qπ can be estimated using off-policy temporal
difference learning. Such off-policy policy evaluation provides the foundation for deriving
off-policy actor-critic algorithms.

Actor-critic methods (Sutton et al., 1999a) optimize a value function Qπ or V π , the
critic, and a policy function π , the actor, iteratively. They are model-free methods and
considered an hybrid approach between value-based and policy-based. The core of the idea
is captured in policy iteration algorithm (Howard, 1964), which uses policy evaluation to
estimate Qπ or V π and uses policy improvement to improve the policy π locally with respect
to the action-value evaluation. Classically, actor-critic algorithms are solved with analytic

2.3 On-Policy and Off-Policy Algorithms 15

updates, such as least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003; Lagoudakis
et al., 2002), which iterates between least-squares temporal difference (LSTD) (Bradtke
and Barto, 1996) solve of Qπn

(s,a) given policy πn at iteration n, and analytic update of
the actor πn+1(a|s) = δ (a = argmaxa′Qπn

(s,a′)). Similarly, with neural network function
approximations, the algorithm alternates between the following two minimization objectives
with respect to Qw and a parameterized policy πθ ,

L(w) = Est ,at ,st+1∼P,β

[
(Qw(st ,at)− yt)

2
]

(2.28)

yt = r(st ,at)+ γEa∼πθ (·|st+1)Q
′(st+1,a) (2.29)

L(θ) =−Est∼P,β
[
Eat∼πθ (·|st)Qw(st ,at)

]
(2.30)

Since optimizing each objective is expensive, practical algorithms often perform a small
number of SGD updates per objective for iteratively learning Qw and πθ . In the limiting case
with a deterministic policy πθ (a|s) = δ (a = µθ (s)), we get deterministic policy gradient
(DPG) algorithm (Lever, 2014; Lillicrap et al., 2016). If we use a stochastic policy (Gu et al.,
2017c; Haarnoja et al., 2018; Heess et al., 2015a), the gradient for the negative policy loss is
given below, where we use ρβ to denote state visitation frequency under policy β ,

−∇θ L(θ) = Est∼ρβ

[
∇θEat∼πθ (·|st)Qw(st ,at)

]
(2.31)

= Est∼ρβ (·),at∼πθ (·|st)
[∇θ logπθ (at |st)Qw(st ,at)] . (2.32)

The second line is unnecessary in most cases, since if the action is discrete, analytic integra-
tion with respect to action is usually tractable, and if the action is continuous and the policy a
simple distribution such as Gaussian, reparameterization trick (Kingma and Welling, 2014)
can be used to compute a lower variance estimator. However, we explicit write this using the
score function estimator form to illuminate the closeness of actor-critic gradient with Monte
Carlo policy gradient in the next section.

As we contrast Eq. 2.26 with Eq. 2.31, we observe that the biases in off-policy actor-critic
gradient only come from two sources: approximation of Qπ through Qw and off-policy state
sampling using ρβ instead of ρπ . In Chapter 4, we show that we can derive theoretical
bounds on policy gradient biases in actor-critic methods based on those two factors, and
empirically demonstrate that by changing design choices in off-policy actor-critic algorithms,
we can better model the stable learning behavior of on-policy Monte Carlo policy gradient
algorithms with significantly improved sample efficiency.

An intriguing property of such stochastic gradient actor-critic algorithm is that by simply
changing the SGD update ratio of the two objectives, it can interpolate between Q-learning

16 Reinforcement Learning Algorithms

and policy gradient, discussed in Section 2.2.2 and Chapter 2.2.3 respectively. Specifi-
cally, if we have many actor updates per critic update, the actor is effectively amortizing
argmaxa Qπ(s,a) at each iteration and the learning dynamics is similar to that of Q-learning.
If we have many critic updates per actor update, the critic is doing full policy evaluation to
estimate Qπ , and the actor is updated using a gradient estimate resembling that of classic
policy gradient. We will discuss such connection more in the next chapter on policy gradient.
In practice, these algorithms often use simple one-to-one update ratio (Lillicrap et al., 2016),
making the analysis of learning dynamics difficult. In Chapter 4, we discuss how a variant of
our interpolated policy gradient (IPG) algorithm, which does 1-to-5000 actor-to-critic up-
dates, performs much more stably than prior methods, possibly due to its closer resemblance
to the stable policy gradient algorithm.

Chapter 3

Continuous Deep Q-Learning with
Model-based Acceleration

In this chapter, we derive a variant of Q-learning (Watkins and Dayan, 1992) that can be
used in continuous domains. Model-free reinforcement learning in domains with continuous
actions is typically handled with policy search methods (Peters et al., 2010; Peters and Schaal,
2006). Integrating value function estimation into these techniques results in actor-critic
algorithms (Hafner and Riedmiller, 2011; Lillicrap et al., 2016; Schulman et al., 2015a),
which combine the benefits of policy search and value function estimation, but at the cost of
training two separate function approximators with respect to different optimization objectives.
Our proposed Q-learning algorithm for continuous domains, which we call normalized
advantage functions (NAF), avoids the need for a second actor or policy function, resulting
in a simpler algorithm. The simpler optimization objective and the choice of value function
parameterization result in an algorithm that is substantially more sample-efficient when used
with large neural network function approximators on a range of continuous control domains.

Beyond deriving an improved model-free deep reinforcement learning algorithm, we also
seek to incorporate elements of model-based RL to accelerate learning, without giving up
the strengths of model-free methods. One approach is for off-policy algorithms such as Q-
learning to incorporate off-policy experience produced by a model-based planner. However,
while this solution is a natural one, our empirical evaluation shows that it is ineffective at
accelerating learning. As we discuss in our evaluation, this is due in part to the nature of value
function estimation algorithms, which must experience both good and bad state transitions
to accurately model the value function landscape. We propose an alternative approach to
incorporating learned models into our continuous-action Q-learning algorithm based on
imagination rollouts: on-policy samples generated under the learned model, analogous to the
Dyna-Q method (Sutton, 1990). We show that this is extremely effective when the learned

18 Continuous Deep Q-Learning with Model-based Acceleration

dynamics model perfectly matches the true one, but degrades dramatically with imperfect
learned models. However, we demonstrate that iteratively fitting local linear models (Li and
Todorov, 2004) to the latest batch of on-policy or off-policy rollouts provides sufficient local
accuracy to achieve substantial improvement using short imagination rollouts in the vicinity
of the real-world samples.

Lastly, we include a demonstration of an asynchronous variant of our NAF algorithm
running across a cluster of robots. We demonstrate that, contrary to commonly held assump-
tions about sample inefficiency of model-free algorithms, off-policy deep Q-function based
algorithms such as NAF can achieve training times that are suitable for real robotic systems.
Our real world experiments show that our approach can be used to learn a door opening skill
from scratch under 2.5 hours with 2 robot arms, using only general-purpose neural network
representations and without any human demonstrations. To the best of our knowledge, this
is the first demonstration of autonomous door opening that does not use human-provided
examples for initialization.

3.1 Normalized Advantage Functions

Q-learning (Watkins and Dayan, 1992) requires evaluating argmaxa Q(s,a) in order to
compute the update target and derive the optimal policy, as shown in Eq. 3.1. When action
a is continuous and Q is a complex function approximation such as a neural network, this
optimization is generally expensive or intractable. A naïve approach to get around this
problem is to discretize the continuous action space; however, this approach scales poorly
with the action dimension since using B bins per dimension for N-dimensional action space
creates BN discrete actions (Lillicrap et al., 2016).

min
θ

Est ,at ,st+1∼β [(Qθ (st ,at)− yt)
2], yt = rt + γ max

a
Q′(st+1,a) (3.1)

µθ (st) = argmax
a

Qθ (st ,a) (3.2)

We propose a simple method to enable Q-learning in continuous action spaces with deep
neural networks, which we refer to as normalized advantage functions (NAF). The idea
behind normalized advantage functions is to represent the Q-function Q(st ,at) in Q-learning
in such a way that its maximum with respect to at , argmaxat Q(st ,at), can be determined
easily and analytically during the Q-learning update. While a number of representations are
possible that allow for analytic maximization, the one we use in our implementation is based
on a neural network that separately outputs a value function term V (s) and an advantage term

3.1 Normalized Advantage Functions 19

A(s,a), which is parameterized as a quadratic function of nonlinear features of the state:

Q(s,a|θ Q) = A(s,a|θ A)+V (s|θV)

A(s,a|θ A) =−1
2
(a−µ(s|θ µ))T P(s|θ P)(a−µ(s|θ µ))

(3.3)

P(s|θ P) is a state-dependent, positive-definite square matrix, which is parametrized by
P(s|θ P) = L(s|θ P)L(s|θ P)T , where L(s|θ P) is a lower-triangular matrix whose entries come
from a linear output layer of a neural network, with the diagonal terms exponentiated. While
this representation is more restrictive than a general neural network function, since the
Q-function is quadratic in a, the action that maximizes the Q-function is always given by
µ(s|θ µ). We use this representation with a deep Q-learning algorithm analogous to Mnih
et al. (2015), using target networks and a replay buffers as described by Lillicrap et al. (2016).
NAF, given by Algorithm 1, is considerably simpler than DDPG.

Algorithm 1 Continuous Q-Learning with NAF

Randomly initialize normalized Q network Q(s,a|θ Q).
Initialize target network Q′ with weight θ Q′ ← θ Q.
Initialize replay buffer R← /0.
for episode=1,M do

Initialize a random process N for action exploration
Receive initial observation state s1 ∼ p(s1)
for t=1,T do

Select action at = µ(st |θ µ)+Nt
Execute at and observe rt and st+1
Store transition (st ,at ,rt ,st+1) in R
for iteration=1, I do

Sample a random minibatch of m transitions from R
Set yi = ri + γV ′(si+1|θ Q′)
Update θ Q by minimizing the loss: L = 1

N ∑i(yi−Q(si,ai|θ Q))2

Update the target network: θ Q′ ← τθ Q +(1− τ)θ Q′

end for
end for

end for

Decomposing Q into an advantage term A and a state-value term V was suggested
by Baird III (1993); Harmon and Baird III (1996), and was recently explored by Wang
et al. (2016) for discrete action problems. Normalized action-value functions have also been
proposed by Rawlik et al. (2013) in the context of an alternative temporal difference learning
algorithm. However, our method is the first to combine such representations with deep neural
networks into an algorithm that can be used to learn policies for a range of challenging

20 Continuous Deep Q-Learning with Model-based Acceleration

continuous control tasks. In general, A does not need to be quadratic, and exploring other
parametric forms such as multimodal distributions is an interesting avenue for future work.

3.1.1 Locally-Invariant Exploration for Normalized Advantage Func-
tions

Exploration is an essential component of reinforcement learning algorithms. The simplest
and most common type of exploration involves randomizing the actions according to some
distribution, either by taking random actions with some probability (Mnih et al., 2015),
or adding Gaussian noise in continuous action spaces (Schulman et al., 2015a). However,
choosing the magnitude of the random exploration noise can be difficult, particularly in high-
dimensional domains where different action dimensions require very different exploration
scales. Furthermore, independent (spherical) Gaussian noise may be inappropriate for tasks
where the optimal behavior requires correlation between action dimensions, as for example
in the case of the swimming snake described in our experiments, which must coordinate the
motion of different body joints to produce a synchronized undulating gait.

The NAF provides us with a simple and natural avenue to obtain an adaptive exploration
strategy, analogously to Boltzmann exploration. The idea is to use the matrix in the quadratic
component of the advantage function as the precision for a Gaussian action distribution.
This naturally causes the policy to become more deterministic along directions where the
advantage function varies steeply, and more random along directions where it is flat (Ciosek
and Whiteson, 2018; Haarnoja et al., 2017; Heess et al., 2012). The corresponding policy is
given by

π(a|s) = expQ(s,a|θ Q) /
∫

expQ(s,a|θ Q) da

=N(µ(s|θ µ),cP(s|θ P)−1).
(3.4)

Previous work also noted that generating Gaussian exploration noise independently for
each time step was not well-suited for many continuous control tasks, particularly simulated
robotic tasks where the actions correspond to torques or velocities (Lillicrap et al., 2016). The
intuition is that, as the length of the time-step decreases, temporally independent Gaussian
exploration will cancel out between time steps. Instead, prior work proposed to sample noise
from an Ornstein-Uhlenbech (OU) process to generate a temporally correlated noise sequence
(Lillicrap et al., 2016). We adopt the same approach in our work, but sample the innovations
for the OU process from the Gaussian distribution in Equation 3.4. Lastly, we note that the
overall scale of P(s|θ P) could vary significantly through the learning, and depends on the

3.2 Accelerating Model-free Learning with Model-based Rollouts 21

magnitude of the cost, which introduces an undesirable additional degree of freedom. We
therefore use a heuristic adaptive-scaling trick to stabilize the noise magnitudes.

3.2 Accelerating Model-free Learning with Model-based
Rollouts

While NAF provides some advantages over actor-critic model-free RL methods in contin-
uous domains, we can improve their data efficiency substantially under some additional
assumptions by exploiting learned models. We will show that incorporating a particular
type of learned model into Q-learning with NAFs significantly improves sample efficiency,
while still allowing the final policy to be finetuned with model-free learning to achieve good
performance without the limitations of imperfect models.

3.2.1 Model-Guided Exploration

One natural approach to incorporating a learned model into an off-policy algorithm such as
Q-learning is to use the learned model to generate good exploratory behaviors using planning
or trajectory optimization. To evaluate this idea, we utilize the iLQG algorithm (Tassa et al.,
2012) to generate good trajectories under the model, and then mix these trajectories together
with on-policy experience by appending them to the replay buffer. Note that all experiences
are still collected from the real environment, except the exploration policy includes an iLQG
component from model-based planning. Interestingly, we show in our evaluation that, even
when such exploration policy is close to optimal, e.g. planning under the perfect model, the
improvement obtained from this approach is often quite small, and varies significantly across
domains and choices of exploration noise. The intuition behind this result is that off-policy
iLQG exploration is too different from the learned policy, and Q-learning must consider
alternatives in order to ascertain the optimality of a given action. That is, it’s not enough to
simply show the algorithm good actions, it must also experience bad actions to understand
which actions are better and which are worse.

3.2.2 Imagination Rollouts

As discussed in the previous section, incorporating off-policy exploration from good, narrow
distributions, such as those induced by iLQG, often does not result in significant improvement
for Q-learning. These results suggest that Q-learning, which learns a policy based on
minimizing temporal differences, inherently requires noisy on-policy actions to succeed. In

22 Continuous Deep Q-Learning with Model-based Acceleration

real-world domains such as robots and autonomous vehicles, this can be undesirable for two
reasons: first, it suggests that large amounts of on-policy experience are required in addition
to good off-policy samples, and second, it implies that the policy must be allowed to make
“its own mistakes” during training, which might involve taking undesirable or dangerous
actions that can damage real-world hardware.

One way to avoid these problems while still allowing for a large amount of on-policy
exploration is to generate synthetic on-policy trajectories under a learned model. Adding
these synthetic samples, which we refer to as imagination rollouts, to the replay buffer
effectively augments the amount of experience available for Q-learning. The particular
approach we use is to perform rollouts in the real world using a mixture of planned iLQG
trajectories and on-policy trajectories, with various mixing coefficients evaluated in our
experiments, and then generate additional synthetic on-policy rollouts using the learned
model from each state visited along the real-world rollouts. This approach can be viewed as a
variant of the Dyna-Q algorithm (Sutton, 1990). However, while Dyna-Q has primarily been
used with small and discrete systems, we show that using iteratively refitted linear models
allows us to extend the approach to deep reinforcement learning on a range of continuous
control domains. In some scenarios, we can even generate all or most of the real rollouts
using off-policy iLQG controllers, which is desirable in safety-critic domains where poorly
trained policies might take dangerous actions. The algorithm is given as Algorithm 2, and is
an extension on Algorithm 1 combining model-based RL.

Imagination rollouts can suffer from severe bias when the learned model is inaccurate. For
example, we found it very difficult to train nonlinear neural network models for the dynamics
that would actually improve the efficiency of Q-learning when used for imagination rollouts.
As discussed in the following section, we found that using iteratively refitted time-varying
linear dynamics produced substantially better results. In either case, we would still like to
preserve the generality and optimality of model-free RL while deriving the benefits of model-
based learning. To that end, we observe that most of the benefit of model-based learning is
derived in the early stages of the learning process, when the policy induced by the neural
network Q-function is poor. As the Q-function becomes more accurate, on-policy behavior
tends to outperform model-based controllers. We therefore propose to switch off imagination
rollouts after a given number of iterations.1 In this framework, the imagination rollouts can
be thought of as an inexpensive way to pretrain the Q-function, such that fine-tuning using
real world experience can quickly converge to an optimal solution.

1In future work, it would be interesting to select this iteration adaptively based on the expected relative
performance of the Q-function policy and model-based planning.

3.2 Accelerating Model-free Learning with Model-based Rollouts 23

Algorithm 2 Imagination Rollouts with Fitted Dynamics and Optional iLQG Exploration

Randomly initialize normalized Q network Q(s,a|θ Q).
Initialize target network Q′ with weight θ Q′ ← θ Q.
Initialize replay buffer R← /0 and fictional buffer R f ← /0.
Initialize additional buffers B← /0,Bold ← /0 with size nT .
Initialize fitted dynamics model M← /0.
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1
Select µ ′(st , t) from {µ(st |θ µ),π iLQG

t (at |st)} with probabilities {p,1− p}
for t = 1,T do

Select action at = µ ′(st , t)+Nt
Execute at and observe rt and st+1
Store transition (st ,at ,rt ,st+1, t) in R and B
if mod (episode ·T + t,m) = 0 and M ̸= /0 then

Sample m (si,ai,ri,si+1, i) from Bold
Use M and µ(s|θ µ) with noise N′ to simulate l steps from each sampled state si
Store all fictional transitions in R f

end if
Sample a random minibatch of m transitions I · l times from R f and I times from R,
and update θ Q,θ Q′ as in Algorithm 1 per minibatch.

end for
if B f is full then
M← FitLocalLinearDynamics(B f) (see Section 3.2.3)
π iLQG← iLQG_OneStep(B f ,M) (see Section 2.2.1)
Bold ← B f ,B f ← /0

end if
end for

24 Continuous Deep Q-Learning with Model-based Acceleration

3.2.3 Fitting the Dynamics Model

In order to obtain good imagination rollouts and improve the efficiency of Q-learning, we
needed to use an effective and data-efficient model learning algorithm. While prior methods
propose a variety of model classes, including neural networks (Heess et al., 2015a), Gaussian
processes (Deisenroth and Rasmussen, 2011), and locally-weighted regression (Atkeson
et al., 1997), we found that we could obtain good results by using iteratively refitted time-
varying linear models, as proposed by Levine and Abbeel (2014). In this approach, instead
of learning a good global model for all states and actions, we aim only to obtain a good local
model around the latest set of samples. This approach requires a few additional assumptions:
namely, it requires the initial state to be either deterministic or low-variance Gaussian, and
it requires the states and actions to all be continuous. To handle domains with more varied
initial states, we can use a mixture of Gaussian initial states with separate time-varying
linear models for each one. The model itself is given by pt(st+1|st ,at) =N(Ft [st ;at]+ ft ,Nt).
Every n episodes, we refit the parameters Ft , ft , and Nt by fitting a Gaussian distribution at
each time step to the vectors [si

t ;ai
t ;si

t+1], where i indicates the sample index, and conditioning
this Gaussian on [st ;at] to obtain the parameters of the linear-Gaussian dynamics at that step.
We use n = 5 in our experiments. Although this approach introduces additional assumptions
beyond the standard model-free RL setting, we show in our evaluation that it produces
impressive gains in sample efficiency on tasks where it can be applied.

3.3 Experiments in Simulation

We evaluated our approach on a set of simulated robotic tasks using the MuJoCo simula-
tor (Todorov et al., 2012). The tasks were based on the benchmarks described by Lillicrap
et al. (2016), and are summarized in Table 3.1 and visualized in Figure 3.1a. Although we
attempted to replicate the tasks in previous work as closely as possible, discrepancies in the
simulator parameters and the contact model produced results that deviate slightly from those
reported in prior work. In all experiments, the input to the policy consisted of the state of the
system, defined in terms of joint angles and root link positions. Angles were often converted
to sine and cosine encoding.

For both our method and the prior DDPG (Lillicrap et al., 2016) algorithm in the com-
parisons, we used neural networks with two layers of 200 rectified linear units (ReLU) to
produce each of the output parameters – the Q-function and policy in DDPG, and the value
function V , the advantage matrix L, and the mean µ for NAF. Since Q-learning was done
with a replay buffer, we applied the Q-learning update 5 times per each step of experience

3.3 Experiments in Simulation 25

Domain Description Domain Description
Cartpole The classic cart-pole swing-up task.

Agent must balance a pole attached to a
cart by applying forces to the cart alone.
The pole starts each episode hanging
upside-down.

Reacher Agent is required to move a 3-DOF arm
from random starting locations to ran-
dom target positions.

Peg Agent is required to insert the tip of a
3-DOF arm from locally-perturbed start-
ing locations to a fixed hole.

Gripper Agent must use an arm with gripper ap-
pendage to grasp an object and manuver
the object to a fixed target.

GripperM Agent must use an arm with gripper at-
tached to a moveable platform to grasp
an object and move it to a fixed target.

Canada2d Agent is required to use an arm with
hockey-stick like appendage to hit a ball
initialzed to a random start location to a
random target location.

Cheetah Agent should move forward as quickly
as possible with a cheetah- like body
that is constrained to the plane.

Swimmer6 Agent should swim in snake-like man-
ner toward the fixed target using six
joints, starting from random poses.

Ant The four-legged ant should move to-
ward the fixed target from a fixed start-
ing position and posture.

Walker2d Agent should move forward as quickly
as possible with a bipedal walker con-
strained to the plane without falling
down or pitching the torso too far for-
ward or backward.

Table 3.1 List of domains. All the domains except ant are 2D.

(a) Example task do-
mains.

(b) NAF and DDPG on
multi-target reacher.

(c) NAF and DDPG on
peg insertion.

Fig. 3.1 (a) Task domains: top row from left (manipulation tasks: peg, gripper, mobile
gripper), bottom row from left (locomotion tasks: cheetah, swimmer6, ant). (b,c) NAF
vs DDPG results on three-joint reacher and peg insertion. On reacher, the DDPG policy
continuously fluctuates the tip around the target, while NAF stabilizes well at the target.

to accelerate learning (I = 5). To ensure a fair comparison, DDPG also updates both the
Q-function and policy parameters 5 times per step.

3.3.1 Normalized Advantage Functions

In this section, we compare NAF and DDPG on 10 representative domains from Lillicrap et al.
(2016), with three additional domains: a four-legged 3D ant, a six-joint 2D swimmer, and a

26 Continuous Deep Q-Learning with Model-based Acceleration

(a) NAF significantly out-
performs DDPG on mov-
ing gripper.

(b) NAF converges faster
than DDPG on swim-
mer6.

(c) NAF converges faster
than DDPG on cheetah
initially, but asymptopti-
cally performs worse.

Fig. 3.2 NAF vs DDPG on three domains.

2D peg. We found the most sensitive hyperparameters to be presence or absence of batch
normalization, base learning rate for Adam (Kingma and Ba, 2014) ∈ {1e−4,1e−3,1e−2},
and exploration noise scale ∈ {0.1,0.3,1.0}. We report the best performance for each domain
in Table 3.2. We were unable to achieve good results with the method of Rawlik et al. (2013)
on our domains, likely due to the complexity of high-dimensional neural network function
approximators.

Figure 3.1b and Figure 3.1c show the performances on the three-joint reacher, peg
insertion, and a gripper with mobile base. While the numerical gap in reacher may be small,
qualitatively there is also a very noticeable difference between NAF and DDPG. DDPG
converges to a solution where the deterministic policy causes the tip to fluctuate continuously
around the target, and does not reach it precisely. NAF, on the other hand, learns a smooth
policy that makes the tip slow down and stabilize at the target. This difference is more
noticeable in peg insertion and moving gripper, as shown by the much faster convergence
rate to the optimal solution. Precision is very important in many real-world robotic tasks,
and these result suggest that NAF may be preferred in such domains.

On locomotion tasks, the performance of the two methods is relatively similar. On the
six-joint swimmer task and four-legged ant, NAF slightly outperforms DDPG in terms of
the convergence speed; however, DDPG is faster on cheetah and finds a better policy on
walker2d. The loss in performance of NAF can potentially be explained by downside of
the mode-seeking behavior, where it is hard to explore other modes once the quadratic
advantage function finds a good one. Choosing a parametric form that is more expressive
than a quadratic could be used to address this limitation in future work.

Figures 3.2a, 3.2b, and 3.2c provide additional results on the comparison experiments
between DDPG and NAF. NAF generally outperforms DDPG. In certain tasks that require

3.3 Experiments in Simulation 27

Fig. 3.3 NAF with exploration noise generated using the precision term (NAF-P) slightly
outperforms the best DDPG result. Precision term is not used until step 50,000.

precision, such as peg insertion, the difference is very noticeable. However, there are also
few cases where NAF underperforms DDPG. The most consistent of such cases is cheetah.
While both DDPG and NAF enable cheetah to run decent distances, it is often observed that
the cheetah movements learned in NAF are little less natural than those from DDPG. We
speculate such behaviors come from a mode-seeking behavior of NAF, and exploring other
parametric forms of NAF, such as multi-modal variants, is a promising avenue for future
work.

Using the learned precision as the noise covariance for exploration allowed for conver-
gence to a better policy on the “canada2d” task, which requires using an arm to strike a puck
toward a target, as shown in Figure 3.3, but did not make a significant difference on the other
domains.

The results on all of the domains are summarized in Table 3.2. Overall, NAF outperformed
DDPG on the majority of tasks, particularly manipulation tasks that require precision and
suffer less from the lack of multimodal Q-functions. This makes this approach particularly
promising for efficient learning of real-world robotic tasks.

Domains - DDPG episodes NAF episodes
Cartpole -2.1 -0.601 420 -0.604 190
Reacher -2.3 -0.509 1370 -0.331 1260

Peg -11 -0.950 690 -0.438 130
Gripper -29 1.03 2420 1.81 1920

GripperM -90 -20.2 1350 -12.4 730
Canada2d -12 -4.64 1040 -4.21 900
Cheetah -0.3 8.23 1590 7.91 2390

Swimmer6 -325 -174 220 -172 190
Ant -4.8 -2.54 2450 -2.58 1350

Walker2d 0.3 2.96 850 1.85 1530

Table 3.2 Best test rewards of DDPG and NAF policies, and the episodes it requires to reach
within 5% of the best value. “-" denotes scores by a random agent.

28 Continuous Deep Q-Learning with Model-based Acceleration

(a) NAF on single-target
reacher.

(b) NAF on single-target
reacher.

(c) NAF on single-target
gripper.

Fig. 3.4 Results on NAF with iLQG-guided exploration and imagination rollouts (a) using
true dynamics (b,c) using fitted dynamics. “ImR" denotes using the imagination rollout with
l = 10 steps on the reacher and l = 5 steps on the gripper. “iLQG-x" indicates mixing x
fraction of iLQG episodes. Fitted dynamics uses time-varying linear models with sample
size n = 5, except “-NN" which fits a neural network to global dynamics.

3.3.2 Evaluating Best-Case Model-Based Improvement with True Mod-
els

In order to determine how best to incorporate model-based components to accelerate model-
free Q-learning, we tested several approaches using the ground truth dynamics, to control for
challenges due to model fitting. We evaluated both of the methods discussed in Section 3.2:
the use of model-based planning to generate good off-policy rollouts in the real world, and
the use of the model to generate on-policy synthetic rollouts.

Figure 3.4a shows the effect of mixing off-policy iLQG experience and imagination
rollouts on the three-joint reacher. It is noticeable that mixing the good off-policy experience
does not significantly improve data-efficiency, while imagination rollouts always improve
data-efficiency or final performance significantly. In the context of Q-learning, this result
is not entirely surprising: Q learning must experience both good and bad actions in order
to determine which actions are preferred, while the good model-based rollouts are so far
removed from the policy in the early stages of learning that they provide little useful informa-
tion. Figure 3.4a also evaluates two different variants of the imagination rollouts approach,
where the rollouts in the real world are performed either using the learned policy, or using
model-based planning with iLQG. In the case of this task, the iLQG rollouts achieve slightly
better results, since the on-policy imagination rollouts sampled around these off-policy states
provide Q-learning with additional information about alternative action not taken by the
iLQG planner. In general, we did not find that off-policy rollouts were consistently better than
on-policy rollouts across all tasks, but they did consistently produce good results. Performing

3.3 Experiments in Simulation 29

off-policy rollouts with iLQG may be desirable in real-world domains, where a partially
learned policy might take undesirable or dangerous actions.

Domains - 0.5 ImR ImR,0.5 ImR,1
Reacher -0.488 -0.449 -0.448 -0.426 -0.548
episodes 740 670 450 430 90

Canada2d -6.23 -6.23 -5.89 -5.88 -12.0
episodes 1970 1580 570 140 210
Cheetah 7.00 7.10 7.36 7.29 6.43
episodes 580 1080 590 740 390

Table 3.3 Best-case model-based acceleration with true dynamics models. Best test rewards
of NAF policies (first row), and the episodes it required to reach 5% of the best value (second
row). “0.5" and “1" correspond to the fraction of MPC episodes. “ImR" means using
imagination rollout with rollout length l = 10 for reacher, canada2d, and l = 5 for cheetah.

In this work, iLQG with true dynamics is used to generate guided exploration trajectories.
While iLQG works for simple manipulation tasks with small number of initial states, it
does not work well for random target reacher or complex locomotion tasks such as cheetah.
We therefore run iLQG with replanning for the experiments reported in Figures 3.5c, 3.5b,
and 3.5a, and Table 3.3. It is important to note that for those experiments, the hyper-
parameters were fixed (batch normalization is on, learning rate is 10−3, and exploration size
is 0.3), and thus the results differ slightly from the experiments in the previous section.

In cheetah and other complex locomotion tasks, MPC policy is usually sub-optimal, and
thus poor performance of mixing MPC experience in Figure 3.5b is expected. On the other
hand, MPC policy works reasonably in hard manipulation tasks such as canada2d, and there
is significant gain from mixing MPC experience as Figure 3.5c shows. However, the most
consistent gain comes from using imagination rollouts in all three domains. In particular,
Figure 3.5c shows that in canada2d, MPC experiences gives very good trajectories, i.e. those
that hit balls in roughly the right directions, and doing rollouts can generate more of this
useful experience, enabling canada2d to learn very quickly. While with true dynamics having
the imagination experience directly means more experience and such result may be trivial, it
is still important to see the benefits of rollouts which only explore up to l = 10 steps away
from the real experience, as reported here. This is an interesting result, since this means the
dynamics model only needs to be accurate around the data trajectories and this significantly
lessens the requirement on fitted models.

3.3.3 Guided Imagination Rollouts with Fitted Dynamics

In this section, we evaluated the performance of imagination rollouts with learned dynamics.
As seen in Figure 3.4b, we found that fitting time-varying linear models following the

30 Continuous Deep Q-Learning with Model-based Acceleration

(a) NAF on multi-target
reacher. Insignificant gain
from mixing MPC expe-
rience. Significant gain
from imagination rollouts.

(b) NAF on cheetah.
Great speeds up with
imagination rollouts, no
gain from mixing MPC
experiences.

(c) NAF on canada2d.
Very significant speed-ups
from mixing MPC experi-
ences, both with or with-
out the rollouts.

Fig. 3.5 NAF on multi-target reacher, cheetah, and canada2d, with model-based acceleration
using true dynamics: “ImR" denotes using the imagination rollout, l = 10 steps. “MPC-x"
indicates mixing x fraction of MPC episodes.

imagination rollout algorithm is substantially better than fitting neural network dynamics
models for the tasks we considered. There is a fundamental tension between efficient learning
and expressive models like neural nets. We cannot hope to learn useful neural network models
with a small number of samples for complex tasks, which makes it difficult to acquire a
good model with fewer samples than are necessary to acquire a good policy. While the
model is trained with supervised learning, which is typically more sample efficient, it often
needs to represent a more complex function (e.g. rigid body physics). However, having
such expressive models is more crucial as we move to improve model accuracy. Figure 3.4b
presents results that compare fitted neural network models with the true dynamics when
combined with imagination rollouts. These results indicate that the learned neural network
models negate the benefits of imagination rollouts on our domains.

To evaluate imagination rollouts with fitted time-varying linear dynamics, we chose
single-target variants of two of the manipulation tasks: the reacher and the gripper task. The
results are shown in Figure 3.4b and 3.4c. We found that imagination rollouts of length 5 to
10 were sufficient for these tasks to achieve significant improvement over the fully model-free
variant of NAF.

Adding imagination rollouts in these domains provided 2-5 factors of improvement in
data efficiency. In order to retain the benefit of model-free learning and allow the policy to
continue improving once it exceeds the quality possible under the learned model, we switch
off the imagination rollouts after 130 episodes (20,000 steps) on the gripper domain. This
produces a small transient drop in the performance of the policy, but the results quickly
improve again. Switching off the imagination rollouts also ensures that Q-learning does not

3.4 Experiments on Real-World Robots 31

Fig. 3.6 Two robots learning to open doors using asynchronous NAF. The final policy learned
with two workers could achieve a 100% success rate on the task across 20 consecutive trials.

diverge after it reaches good values, as were often observed in the gripper. This suggests that
imagination rollouts, in contrast to off-policy exploration discussed in the previous section,
is an effective method for bootstrapping model-free deep RL.

It should be noted that, although time-varying linear models combined with imagination
rollouts provide a substantial boost in sample efficiency, this improvement is provided at some
cost in generality, since effective fitting of time-varying linear models requires relatively
small initial state distributions. With more complex initial state distributions, we might
cluster the trajectories and fit multiple models to account for different modes. Extending the
benefits of time-varying linear models to less restrictive settings is a promising direction and
build on prior work (Fu et al., 2015; Levine et al., 2016). That said, our results show that
imagination rollouts are a very promising approach to accelerating model-free learning when
combined with the right kind of dynamics model.

3.4 Experiments on Real-World Robots

The real-world experiments are conducted with the 7-DoF arm shown in Figure 3.6. For
parallel data collection and training on multiple robot arms, we used an asynchronous variant
of NAF. The algorithm implementation and experimental details are discussed in Gu et al.
(2017a).

3.4.1 Random Target Reaching

In this experiment, we demonstrate the benefits from parallel training with real robots using
the simple reaching task. We set up the same reaching experiment in the real world across up
to four robots. Robots execute policies at 20 Hz, while the training thread simply updates the
network continuously at approximately 100 Hz.

Figure 3.7 confirms that 2 or 4 workers significantly improves learning speed over 1
worker, though the gains on this simple task are not substantial past 2 workers. Importantly,
when the training thread is not synchronized with the data collection thread and the data

32 Continuous Deep Q-Learning with Model-based Acceleration

Fig. 3.7 The 7-DoF arm random target reaching with asynchronous NAF on real robots. Note
that 1 worker suffers in both learning speed and final policy performance.

collection is too slow, it may not just slow down learning but also hurt the final policy
performance, as observed in the 1-worker case. Further discrepancies from the simulation
may also be explained by physical discrepancies among different robots.

3.4.2 Door Opening

The previous section describes a real-world evaluation of asynchronous NAF and demon-
strates that learning can be accelerated by using multiple workers. In this section, we describe
a more complex door opening task. Door opening presents a practical application of robotic
learning that involves complex and discontinuous contact dynamics. Previous work has
demonstrated learning of door opening policies using example demonstration provided by a
human expert (Kalakrishnan et al., 2011). In this work, we demonstrate that we can learn
policies for pulling open a door from scratch using asynchronous NAF. The entire task
required approximately 2.5 hours to learn with two workers learning simultaneously, and the
final policy achieves 100% success rate evaluated across 20 consecutive trials. An illustration
of this task is shown in Figure 3.6, and the supplementary video in Gu et al. (2017a) shows
different stages in the learning process, as well as the final learned policy.

Figure 3.8 illustrates the difference in the learning process between one and two work-
ers, where the horizontal axis shows the number of parameter updates. 100,000 updates
correspond to approximately half an hour, with some delays incurred due to periodic policy
evaluation, which is only used for measuring the reward for the plot. One worker required
significantly more than 4 hours to achieve 100% success rate, while two workers achieved

3.5 Discussion 33

Fig. 3.8 Learning curves for real-world door opening. Learning with two workers significantly
outperforms the single worker, and achieves a 100% success rate in under 500,000 update
steps, corresponding to about 2.5 hours of real time.

the same success rate in 2.5 hours. Qualitatively, the learning process goes through a set
of stages as the robots learn the task, as illustrated by learning curves in Figure 3.8, where
the plateau near reward=0 corresponds to placing the hook near the handle, but not pulling
the door open. In the first stage, the robots are unable to reach the handle, and explore the
free space to determine an effective policy for reaching. Once the robots begin to contact
the handle sporadically, they will occasionally pull on the handle by accident, but require
additional training to be able to reach the handle consistently; this corresponds to the plateau
in the learning curves. At this point, it becomes much easier for the robots to pull open the
door, and a successful policy emerges. The final policy learned by the two workers was able
to open the door every time, including in the presence of exploration noise.

3.5 Discussion

We explored several methods for improving the sample efficiency of model-free deep rein-
forcement learning. We first propose a method for applying standard Q-learning methods
to high-dimensional, continuous domains, using the normalized advantage function (NAF)
representation. This allows us to simplify the more standard actor-critic style algorithms,
while preserving the benefits of nonlinear value function approximation, and allows us to
employ a simple and effective adaptive exploration method. We show that, in comparison
to recently proposed deep actor-critic algorithms, our method tends to learn faster and ac-
quires more accurate policies. We further explore how model-free RL can be accelerated

34 Continuous Deep Q-Learning with Model-based Acceleration

by incorporating learned models, without sacrificing the optimality of the policy in the face
of imperfect model learning. We show that, although Q-learning can incorporate off-policy
experience, learning primarily from off-policy exploration (via model-based planning) only
rarely improves the overall sample efficiency of the algorithm. We postulate that this caused
by the need to observe both successful and unsuccessful actions, in order to obtain an accurate
estimate of the Q-function. We demonstrate that an alternative method based on synthetic
on-policy rollouts achieves substantially improved sample complexity, but only when the
model learning algorithm is chosen carefully. We demonstrate that training neural network
models does not provide substantive improvement in our domains, but simple iteratively
refitted time-varying linear models do provide substantial improvement on domains where
they can be applied.

We further presented an asynchronous variant of NAF can be used to learn complex
robotic manipulation skills from scratch on real physical robotic manipulators. We demon-
strate that our approach can learn a complex door opening task with only a few hours of
training, and our simulated results demonstrate that training times decrease with more learn-
ers. Our technical contribution consists of a novel asynchronous version of the normalized
advantage functions (NAF) deep reinforcement learning algorithm, as well as a number of
practical extensions to enable safe and efficient deep reinforcement learning on physical
systems, and our experiments confirm the benefits of nonlinear deep neural network policies
over simpler shallow representations for complex robotic manipulation tasks.

Chapter 4

Interpolated Policy Gradient: Merging
On-Policy and Off-Policy Gradient
Estimation

One of the simplest ways to learn a neural network policy is to collect a batch of behavior
wherein the policy is used to act in the world, and then compute and apply a policy gradient
update from this data. This is referred to as on-policy learning because all of the updates are
made using data that was collected from the trajectory distribution induced by the current
policy of the agent. It is straightforward to compute unbiased on-policy gradients, and
practical on-policy gradient algorithms tend to be stable and relatively easy to use. A major
drawback of such methods is that they tend to be data inefficient, because their gradient
estimators have high variances.Off-policy algorithms based on Q-learning and actor-critic
learning (Sutton et al., 1999a) have also proven to be an effective approach to deep RL such
as in (Mnih et al., 2015) and (Lillicrap et al., 2016). Such methods reuse samples by storing
them in a memory replay buffer and train a value function or Q-function with off-policy
updates. This improves data efficiency, but often at a cost in stability and ease of use (Duan
et al., 2016; Henderson et al., 2018). In essence, off-policy algorithms make better use of
available data, but often at the cost of biased or high-variance estimates (Dudík et al., 2011;
Jiang and Li, 2016) of the policy gradient that can lead to performance crashes.

We propose Interpolated Policy Gradient (IPG), a parameterized family of policy gradient
methods that interpolate between on-policy and off-policy learning. Such methods are in
general biased, but we show that the bias can be bounded. We show that a number of recent
methods (Gu et al., 2017b; O’Donoghue et al., 2017; Wang et al., 2017) can be viewed
as special cases of this more general family. Furthermore, our empirical results show that

36 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation

β ν CV Examples
- 0 No REINFORCE (Williams, 1992),TRPO (Schulman et al., 2015b)
π 0 Yes Q-Prop (Gu et al., 2017b)
- 1 - DDPG (Lillicrap et al., 2016; Silver et al., 2014),SVG(0) (Heess et al., 2015a)

Table 4.1 Prior policy gradient method objectives as special cases of IPG.

in most cases, a mix of policy gradient and actor-critic updates achieves the best results,
demonstrating the value of considering interpolated policy gradients.

4.1 Interpolated Policy Gradient

Interpolated policy gradient (IPG), mixes likelihood ratio gradient with Q̂(s,a,τ), which
provides unbiased but high-variance gradient estimation, and expected gradient (Asadi et al.,
2017; Ciosek and Whiteson, 2018; Degris et al., 2012; Gu et al., 2017b,c; Sutton, 2000)
through an off-policy fitted critic Qw(s,a), which provides low-variance but biased gradients.
IPG directly interpolates the two terms from Eq. 2.24 and 2.31:

∇θ J(θ)≈ (1−ν)Est∼ρπ (·),at∼π(·|st),τt+1∼P,π [∇θ logπθ (at |st)Q̂(st ,at ,τt+1)]

+νEst∼ρβ (·)[∇θEa∼π(·|st)[Qw(st ,a)]]

= (1−ν)Eπ [∇θ logπθ (at |st)Q̂(st ,at ,τt+1)]+νEβ [∇θ Q̄π
w(st)],

(4.1)

where 0 ≤ ν ≤ 1 and Q̄π
w(st) = Ea∼π(·|st)[Qw(st ,a)], and we use Eπ and Eβ to shorten the

notations for on-policy and off-policy sampling of transitions for gradient computation. For
the simplicity of presentation, we do not include state-dependent baselines for likelihood
ratio terms, but they can be used without affecting the derivation. This gradient estimator
is biased from two sources: off-policy state sampling ρβ , and inaccuracies in the critic Qw.
However, as we show in Section 4.2, we can bound the biases for all the cases, and in some
cases, the algorithm still guarantees monotonic convergence as in Kakade and Langford
(2002); Schulman et al. (2015b).

4.1.1 Control Variates for Interpolated Policy Gradient

While IPG includes ν to trade off bias and variance directly, it contains a likelihood ratio
gradient term, for which we can introduce a control variate (CV) (Ross, 2006) to further

4.1 Interpolated Policy Gradient 37

reduce the estimator variance. The expression for the IPG with control variates is below,

∇θ J(θ)≈ (1−ν)Eπ [∇θ logπθ (at |st)Q̂(st ,at ,τt+1)]+νEβ [∇θ Q̄π
w(st)] (4.2)

= (1−ν)Eπ [∇θ logπθ (at |st)(Q̂(st ,at ,τt+1)−Qw(st ,at))] (4.3)

+(1−ν)Eπ [∇θ Q̄π
w(st)]+νEβ [∇θ Q̄π

w(st)] (4.4)

≈ (1−ν)Eπ [∇θ logπθ (at |st)(Q̂(st ,at ,τt+1)−Qw(st ,at))]+Eβ [∇θ Q̄π
w(st)]. (4.5)

The first approximation indicates the biased approximation from IPG, while the second
approximation indicates replacing the ρπ in the control variate correction term with ρβ and
merging with the last term. The second approximation is a design decision and introduces
additional bias when β ̸= π but it helps simplify the expression to be analyzed more easily,
and the additional benefit from the variance reduction from the control variate could still
outweigh this extra bias. The biases are analyzed in Section 4.2. The likelihood ratio
gradient term is now proportional to the residual in on- and off-policy Q-value or advantage
estimates Q̂(st ,at ,τt+1)−Qw(st ,at) = Â(st ,at ,τt+1)−Aw(st ,at), and therefore, we call this
term residual likelihood ratio gradient. Intuitively, if the off-policy critic estimate is accurate,
this term has a low magnitude and the overall variance of the estimator is reduced.

4.1.2 Relationship to Prior Policy Gradient and Actor-Critic Methods

Crucially, IPG allows interpolating a rich list of prior deep policy gradient methods using
only three parameters: β , ν , and the use of the control variate (CV). The connection is
summarized in Table 4.1 and the algorithm is presented in Algorithm 3. Importantly, a wide
range of prior work has only explored limiting cases of the spectrum, e.g. ν = 0,1, with
or without the control variate. Our work provides a thorough theoretical analysis of the
biases, and in some cases performance guarantees, for each of the method in this spectrum
and empirically demonstrates often the best performing algorithms are in the midst of the
spectrum.

4.1.3 ν = 1: Actor-Critic methods

Before presenting our theoretical analysis, an important special case to discuss is ν = 1,
which corresponds to an expected actor-critic method. Several advantages of this special
case include that the policy can be deterministic and the learning can be done effectively off-
policy, as it does not have to estimate the Monte Carlo critic Q̂ through rolling out on-policy
trajectories or doing high-variance importance correction on off-policy trajectories (Dudík
et al., 2011; Jiang and Li, 2016; Munos et al., 2016). Prior work such as DDPG (Lillicrap

38 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation

Algorithm 3 Interpolated Policy Gradient
β , ν , useCV Initialize w for critic Qw, θ for stochastic policy πθ , and replay buffer R← /0. repeat

1:2:3: Roll-out πθ for E episodes, T time steps each, to collect a batch of data B= {s,a,r}1:T,1:E to R

4: Fit Qw using R and πθ , and fit baseline Vφ (st) using B

5: Compute Monte Carlo advantage estimate Ât,e using B and Vφ

6: if useCV then
7: Compute critic-based advantage estimate Āt,e using B, Qw and πθ

8: Compute and center the learning signals lt,e = Ât,e− Āt,e and set b = 1
9: else

10: Center the learning signals lt,e = Ât,e and set b = ν

11: end if
12: Multiply lt,e by (1−ν)
13: Sample D= s1:M from R and/or B based on β

14: Compute ∇θ J(θ)≈ 1
ET ∑e ∑t ∇θ logπθ (at,e|st,e)lt,e + b

M ∑m ∇θ Q̄π
w(sm)

15: Update policy πθ using ∇θ J(θ)
16: until πθ converges.

et al., 2016) and related Q-learning methods have proposed aggressive off-policy exploration
strategy to exploit these properties of the algorithm. In this work, we compare alternatives
such as using on-policy exploration and stochastic policy with classical DDPG algorithm
designs, and show that in some domains the off-policy exploration can significantly dete-
riorate the performance. Theoretically, we confirm this empirical observation by showing
that the bias from off-policy sampling in β increases monotonically with the total variation
or KL divergence between β and π . Both the empirical and theoretical results indicate that
well-designed actor-critic methods with an on-policy exploration strategy could be a more
reliable alternative than with an off-policy exploration.

4.2 Theoretical Analysis

In this section, we present a theoretical analysis of the bias in the interpolated policy gradient.
This is crucial, since understanding the biases of the methods can improve our intuition about
its performance and make it easier to design new algorithms in the future. Because IPG
includes many prior methods as special cases, our analysis also applies to those methods and
other intermediate cases. We first analyze a special case and derive results for general IPG.
All proofs are in the Appendix.

4.2 Theoretical Analysis 39

4.2.1 β ̸= π , ν = 0: Policy Gradient with Control Variate and Off-
Policy Sampling

This section provides an analysis of the special case of IPG with β ̸= π , ν = 0, and the
control variate. Plugging in to Eq. 4.5, we get an expression similar to Q-Prop (Gu et al.,
2017b),

∇θ J(θ)≈ Eπ [∇θ logπθ (at |st)(Q̂(st ,at ,τt+1)−Qw(st ,at))]+Eβ [∇θ Q̄π
w(st)] (4.6)

= Eπ [∇θ logπθ (at |st)(Â(st ,at ,τt+1)−Aπ
w(st ,at))]+Eβ [∇θ Q̄π

w(st)], (4.7)

except that it also supports utilizing off-policy data for updating the policy. We use Aπ
w(s,a) =

Qw(s,a)−Ea∼π(·|st) [Qw(st ,a)] to denote the advantage estimate from a learned Q-function
Qw ≈ Qπ , and Aπ(s,a) = Qπ(s,a)−V π(s) to later denote the advantage function of policy
π . To analyze the bias for this gradient expression, we first introduce J̃(π, π̃), a local
approximation to J(π), which has been used in prior theoretical work (Kakade and Langford,
2002; Schulman et al., 2015b). The derivation and the bias from this approximation are
discussed in the proof for Theorem 1 in the Appendix.

J(π) = J(π̃)+Eρπ ,π [Aπ̃(st ,at)]≈ J(π̃)+Eρ π̃ ,π [A
π̃(st ,at)] = J̃(π, π̃). (4.8)

Note that J(π) = J̃(π, π̃ = π) and ∇πJ(π) = ∇π J̃(π, π̃ = π). In practice, π̃ corresponds to
policy πk at iteration k and π corresponds next policy πk+1 after parameter update. Thus,
this approximation is often sufficiently good. Next, we write the approximate objective for
Eq. 4.6,

J̃β ,ν=0,CV (π, π̃)≜ J(π̃)+Eρ π̃ ,π [A
π̃(st ,at)−Aπ̃

w(st ,at)]+E
ρβ [Āπ,π̃

w (st)]≈ J̃(π, π̃)

Āπ,π̃
w (st) = Eπ [Aπ̃

w(st , ·)] = Eπ [Qw(st , ·)]−Eπ̃ [Qw(st , ·)].
(4.9)

Note that J̃β ,ν=0(π, π̃ = π) = J̃(π, π̃ = π) = J(π), and ∇π J̃β ,ν=0(π, π̃ = π) equals Eq. 4.6.
We can bound the absolute error between J̃β ,ν=0,CV (π, π̃) and J(π) by the following theorem,
where Dmax

KL (πi,π j) = maxs DKL(πi(·|s),π j(·|s)) is the maximum KL divergence between
πi,π j.

Theorem 1 If ε = maxs |Āπ,π̃
w (s)|,ζ = maxs |Āπ,π̃(s)|, where

Āπ,π̃
w (st) = Eπ [Aπ̃

w(st , ·)] = Eπ [Qw(st , ·)]−Eπ̃ [Qw(st , ·)]
Āπ,π̃(st) = Eπ [Aπ̃(st , ·)] = Eπ [Qπ̃(st , ·)]−Eπ̃ [Qπ̃(st , ·)]

40 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation

then ∥∥∥J(π)− J̃β ,ν=0,CV (π, π̃)
∥∥∥

1
≤ 2

γ

(1− γ)2

(
ε

√
Dmax

KL (π̃,β)+ζ

√
Dmax

KL (π, π̃)

)
Theorem 1 contains two terms: the second term confirms J̃β ,ν=0,CV is a local approximation
around π and deviates from J(π) as π̃ deviates, and the first term bounds the bias from
off-policy sampling using the KL divergence between the policies π̃ and β . This means
that the algorithm fits well with policy gradient methods which constrain the KL divergence
per policy update, such as covariant policy gradient (Bagnell and Schneider, 2003), natural
policy gradient (Kakade and Langford, 2002), REPS (Peters et al., 2010), and trust-region
policy optimization (TRPO) (Schulman et al., 2015b).

4.2.2 Monotonic Policy Improvement Guarantee

Some forms of on-policy policy gradient methods have theoretical guarantees on monotonic
convergence Kakade and Langford (2002); Schulman et al. (2015b). Such guarantees often
correspond to stable empirical performance on challenging problems, even when some of
the constraints are relaxed in practice (Duan et al., 2016; Gu et al., 2017b; Schulman et al.,
2015b). We can show that a variant of IPG allows off-policy sampling while still guaranteeing
monotonic convergence. The algorithm and the proof are provided in the appendix. This
algorithm is usually impractical to implement; however, IPG with trust-region updates when
β ̸= π,ν = 1,CV = true approximates this monotonic algorithm, similar to how TRPO is an
approximation to the theoretically monotonic algorithm proposed by Schulman et al. (2015b).

4.2.3 General Bounds on the Interpolated Policy Gradient

We can establish bias bounds for the general IPG algorithm, with and without the control
variate, using Theorem 2. The additional term that contributes to the bias in the general case
is δ , which represents the error between the advantage estimated by the off-policy critic and
the true Aπ values.

4.3 Related Work 41

Theorem 2 If δ = maxs,a |Aπ̃(s,a)−Aπ̃
w(s,a)|, ε = maxs |Āπ,π̃

w (s)|, ζ = maxs |Āπ,π̃(s)|,

J̃β ,ν(π, π̃)≜ J(π̃)+(1−ν)Eρ π̃ ,π [Â
π̃]+νE

ρβ [Āπ,π̃
w]

J̃β ,ν ,CV (π, π̃)≜ J(π̃)+(1−ν)Eρ π̃ ,π [Â
π̃ −Aπ̃

w]+E
ρβ [Āπ,π̃

w]

then,
∥∥∥J(π)− J̃β ,ν(π, π̃)

∥∥∥
1
≤ νδ

1− γ
+2

γ

(1− γ)2

(
νε

√
Dmax

KL (π̃,β)+ζ

√
Dmax

KL (π, π̃)

)
∥∥∥J(π)− J̃β ,ν ,CV (π, π̃)

∥∥∥
1
≤ νδ

1− γ
+2

γ

(1− γ)2

(
ε

√
Dmax

KL (π̃,β)+ζ

√
Dmax

KL (π, π̃)

)
This bound shows that the bias from directly mixing the expected policy gradient through
ν comes from two terms: how well the critic Qw is approximating Qπ , and how close the
off-policy sampling policy is to the actor policy. We also show that the bias introduced is
proportional to ν while the variance of the high variance likelihood ratio gradient term is
proportional to (1−ν)2, so ν allows directly trading off bias and variance. Theorem 2 fully
bounds bias in the full spectrum of IPG methods; this enables us to analyze how biases arise
and interact and help us design better algorithms.

4.3 Related Work

An overarching aim of this chapter is to help unify on-policy and off-policy policy gradient
algorithms into a single conceptual framework. Q-Prop (Gu et al., 2017b), PGQ (O’Donoghue
et al., 2017), and ACER (Wang et al., 2017) are all recent works that combine on-policy
with off-policy learning. IPG with 0 < ν < 1 and without the control variate relates closely
to PGQ and ACER, but differ in the details. PGQ mixes in the Q-learning Bellman error
objective, and ACER mixes parameter update steps rather than directly mixing gradients.
And both PGQ and ACER come with numerous additional design details that make fair
comparisons with methods like TRPO and Q-Prop difficult. We instead focus on the three
minimal variables of IPG and explore their settings in relation to the closely related TRPO
and Q-Prop methods, in order to theoretically and empirically understand in which situations
we might expect gains from mixing on- and off-policy gradients.

Asides from these more recent works, the use of off-policy samples with policy gradients
has been a popular direction of research (Degris et al., 2012; Jie and Abbeel, 2010; Levine
and Koltun, 2013; Peshkin and Shelton, 2002). Most of these methods rely on variants
of importance sampling (IS) to correct for bias. The use of importance sampling ensures
unbiased estimates, but at the cost of considerable variance, as quantified by the ESS measure
used by Jie and Abbeel (2010). Ignoring importance weights produces bias but, as shown in

42 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation

our analysis and prior work (Wawrzyński, 2009), this bias can be bounded. Therefore, our
IPG estimators have higher bias as the sampling distribution deviates from the policy, while
IS methods have higher variance. Among these importance sampling methods, Levine and
Koltun (2013) evaluates on tasks that are the most similar to our work, but the focus is on
using importance sampling to include demonstrations, rather than to speed up learning from
scratch.

Lastly, there are many methods that combine on- and off-policy data for policy evalua-
tion (Mahmood et al., 2014; Munos et al., 2016; Precup, 2000), mostly through variants of
importance sampling. Combining our methods with more sophisticated policy evaluation
methods will likely lead to further improvements, as done in (Degris et al., 2012). A more
detailed analysis of the effect of importance sampling on bias and variance is left to future
work, where some of the relevant work includes Jiang and Li (2016); Jie and Abbeel (2010);
Mahmood et al. (2014); Precup (2000); Thomas and Brunskill (2016).

4.4 Experiments

In this section, we empirically show that the three parameters of IPG can interpolate different
behaviors and often achieve superior performance versus prior methods that are limiting cases
of this approach. Crucially, all methods share the same algorithmic structure as Algorithm 3,
and we hold the rest of the experimental details fixed. All experiments were performed on
MuJoCo domains in OpenAI Gym (Brockman et al., 2016; Todorov et al., 2012), with results
presented for the average over three seeds. Additional experimental details are provided in
the Appendix.

4.4.1 β ̸= π , ν = 0, with the control variate

We evaluate the performance of the special case of IPG discussed in Section 4.2.1. This case
is of particular interest, since we can derive monotonic convergence results for a variant of
this method under certain conditions, despite the presence of off-policy updates. Figure 4.1a
shows the performance on the HalfCheetah-v1 domain, when the policy update batch size
is 5000 transitions (i.e. 5 episodes). “last” and “rand” indicate if β samples from the most
recent transitions or uniformly from the experience replay. “last05000” would be equivalent
to Q-Prop given ν = 0. Comparing “IPG-β -rand05000” and “Q-Prop” curves, we observe
that by drawing the same number of samples randomly from the replay buffer for estimating
the critic gradient, instead of using the on-policy samples, we get faster convergence. If
we sample batches of size 30000 from the replay buffer, the performance further improves.

4.4 Experiments 43

(a) IPG with ν = 0 and the control variate. (b) IPG with ν = 1.

Fig. 4.1 (a) IPG-ν = 0 vs Q-Prop on HalfCheetah-v1, with batch size 5000. IPG-β -rand30000,
which uses 30000 random samples from the replay as samples from β , outperforms Q-Prop
in terms of learning speed. (b) IPG-ν=1 vs other algorithms on Ant-v1. In this domain,
on-policy IPG-ν=1 with on-policy exploration significantly outperforms DDPG and IPG-
ν=1-OU, which use a heuristic OU (Ornstein–Uhlenbeck) process noise exploration strategy,
and marginally outperforms Q-Prop.

However, as seen in the “IPG-β -last30000” curve, if we instead use the 30000 most recent
samples, the performance degrades. One possible explanation for this is that, while using
random samples from the replay increases the bound on the bias according to Theorem 1, it
also decorrelates the samples within the batch, providing more stable gradients. This is the
original motivation for experience replay in the DQN method (Mnih et al., 2015), and we
have shown that such decorrelated off-policy samples can similarly produce gains for policy
gradient algorithms. See Table 4.2 for results on other domains.

The results for this variant of IPG demonstrate that random sampling from the replay
provides further improvement on top of Q-Prop. Note that these replay buffer samples are
different from standard off-policy samples in DDPG or DQN algorithms, which often use
aggressive heuristic exploration strategies. The samples used by IPG are sampled from prior
policies that follow a conservative trust-region update, resulting in greater regularity but less
exploration. In the next section, we show that in some cases, ensuring that the off-policy
samples are not too off-policy is essential for good performance.

4.4.2 β = π,ν = 1

In this section, we empirically evaluate another special case of IPG, where β = π , indicating
on-policy sampling, and ν = 1, which reduces to a trust-region, on-policy variant of a

44 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation

expected actor-critic method. Although this algorithm performs actor-critic updates, the use
of a trust region makes it more similar to TRPO or Q-Prop than DDPG.

Results for all domains are shown in Table 4.2. Figure 4.1b shows the learning curves
on Ant-v1. Although IPG-ν=1 methods can be off-policy, the policy is updated every 5000
samples to keep it consistent with other IPG methods, while DDPG updates the policy on
every step in the environment and makes other design choices (Lillicrap et al., 2016). We
see that, in this domain, standard DDPG becomes stuck with a mean reward of 1000, while
IPG-ν=1 improves monotonically, achieving a significantly better result. To investigate why
this large discrepancy arises, we also ran IPG-ν=1 with the same OU process exploration
noise as DDPG, and observed large degradation in performance. This provides empirical
support for Theorem 2. It is illuminating to contrast this result with the previous experiment,
where the off-policy samples did not adversely alter the results. In the previous experiments,
the samples came from Gaussian policies updated with trust-regions. The difference between
π and β was therefore approximately bounded by the trust-regions. In the experiment
with Brownian noise, the behaving policy uses temporally correlated noise, with potentially
unbounded KL-divergence from the learned Gaussian policy. In this case, the off-policy
samples result in excessive bias, wiping out the variance reduction benefits of off-policy
sampling. In general, we observed that for the harder Ant-v1 and Walker-v1 domains,
on-policy exploration is more effective, even when doing off-policy state sampling from a
replay buffer. This results suggests the following lesson for designing off-policy actor-critic
methods: for domains where exploration is difficult, it may be more effective to use on-policy
exploration with bounded policy updates than to design heuristic exploration rules such as
the OU process noise, due to the resulting reduction in bias.

4.4.3 General Cases of Interpolated Policy Gradient

Table 4.2 shows the results for experiments where we compare IPG methods with varying
values of ν ; additional results are provided in the Appendix. β ̸= π indicates that the method
uses off-policy samples from the replay buffer, with the same batch size as the on-policy
batch for fair comparison. We ran sweeps over ν = {0.2,0.4,0.6,0.8} and found that ν = 0.2
consistently produce better performance than Q-Prop, TRPO or prior actor-critic methods.
As an example, Figure 4.2 demonstrates that ν = 0.2 outperforms the Q-Prop baseline in
the challenging Humanoid-v1 environment. Importantly, we compared all methods with the
same algorithm designs (exploration, policy, etc.), since Q-Prop and TRPO are IPG-ν=0
with and without the control variate. IPG-ν=1 is a novel variant of the actor-critic method
that differs from DDPG (Lillicrap et al., 2016) and SVG(0) (Heess et al., 2015a) due to the
use of a trust region. The results in Table 4.2 suggest that, in most cases, the best performing

4.5 Discussion 45

HalfCheetah-v1 Ant-v1 Walker-v1 Humanoid-v1
β = π β ̸= π β = π β ̸= π β = π β ̸= π β = π β ̸= π

IPG-ν=0.2 3356 3458 4237 4415 3047 1932 1231 920
IPG-cv-ν=0.2 4216 4023 3943 3421 1896 1411 1651 1613
IPG-ν=1 2962 4767 3469 3780 2704 805 1571 1530
Q-Prop 4178 4182 3374 3479 2832 1692 1423 1519
TRPO 2889 N.A. 1520 N.A. 1487 N.A. 615 N.A.

Table 4.2 Comparisons on all domains with mini-batch size 10000 for Humanoid and 5000
otherwise. We compare the maximum of average test rewards in the first 10000 episodes
(Humanoid requires more steps to fully converge; see the Appendix for learning curves).
Results outperforming Q-Prop (or IPG-cv-ν=0 with β = π) are boldface. The two columns
show results with on-policy and off-policy samples for estimating the expected policy
gradient.

algorithm is one that interpolates between the policy-gradient and actor-critic variants, with
intermediate values of ν .

4.5 Discussion

In this section, we introduced interpolated policy gradient methods, a family of policy
gradient algorithms that allow mixing off-policy learning with on-policy learning while
satisfying performance bounds. This family of algorithms unifies and interpolates on-policy
likelihood ratio policy gradient and off-policy expected policy gradient, and includes a
number of prior works as approximate limiting cases. Empirical results confirm that, in
many cases, interpolated gradients have improved sample-efficiency and stability over the
prior state-of-the-art methods, and the theoretical results provide intuition for analyzing the
cases in which the different methods perform well or poorly. Our hope is that this detailed
analysis of interpolated gradient methods can not only provide for more effective algorithms
in practice, but also give useful insight for future algorithm design.

46 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation

Fig. 4.2 IPG-ν = 0.2-π-CV vs Q-Prop and TRPO on Humanoid-v1 with batch size 10000 in
the first 10000 episodes. IPG-ν = 0.2-π-CV, with a small difference of ν = 0.2 multiplier,
out-performs Q-Prop. All these methods have stable, monotonic policy improvement. The
experiment is cut at 10000 episodes due to heavy compute requirement of Q-Prop and IPG
methods, mostly from fitting the off-policy critic.

Chapter 5

Temporal Difference Models:
Model-Free Deep RL for Model-Based
Control

Reinforcement learning (RL) algorithms provide a formalism for autonomous learning of
complex behaviors. When combined with rich function approximators such as deep neural
networks, RL can provide impressive results on tasks ranging from playing games (Mnih
et al., 2015; Silver et al., 2016), to flying and driving (Lillicrap et al., 2016; Zhang et al.,
2016), to controlling robotic arms (Gu et al., 2017a; Levine et al., 2016). However, these deep
RL algorithms often require a large amount of experience to arrive at an effective solution,
which can severely limit their application to real-world problems where this experience might
need to be gathered directly on a real physical system. Part of the reason for this is that direct,
model-free RL learns only from the reward: experience that receives no reward provides
minimal supervision to the learner.

In contrast, model-based RL algorithms obtain a large amount of supervision from every
sample, since they can use each sample to better learn how to predict the system dynamics –
that is, to learn the “physics” of the problem. Once the dynamics are learned, near-optimal
behavior can in principle be obtained by planning through these dynamics. Model-based
algorithms tend to be substantially more efficient (Deisenroth et al., 2013; Nagabandi et al.,
2017), but often at the cost of larger asymptotic bias: when the dynamics cannot be learned
perfectly, as is the case for most complex problems, the final policy can be highly suboptimal.
Therefore, conventional wisdom holds that model-free methods are less efficient but achieve
the best asymptotic performance, while model-based methods are more efficient but do not
produce policies that are as optimal.

48 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Can we devise methods that retain the efficiency of model-based learning while still
achieving the asymptotic performance of model-free learning? This is the question that
we study in this chapter. The search for methods that combine the best of model-based
and model-free learning has been ongoing for decades, with techniques such as synthetic
experience generation (Sutton, 1990), partial model-based backpropagation (Heess et al.,
2015b; Nguyen and Widrow, 1990), and layering model-free learning on the residuals of
model-based estimation (Chebotar et al., 2017a) being a few examples. However, a direct
connection between model-free and model-based RL has remained elusive. By effectively
bridging the gap between model-free and model-based RL, we should be able to smoothly
transition from learning models to learning policies, obtaining rich supervision from every
sample to quickly gain a moderate level of proficiency, while still converging to an unbiased
solution.

To arrive at a method that combines the strengths of model-free and model-based RL,
we study a variant of goal-conditioned value functions (Andrychowicz et al., 2017; Schaul
et al., 2015a; Sutton et al., 2011). Goal-conditioned value functions learn to predict the value
function for every possible goal state. That is, they answer the following question: what is the
expected reward for reaching a particular state, given that the agent is attempting (as optimally
as possible) to reach it? The particular choice of reward function determines what such a
method actually does, but rewards based on distances to a goal hint at a connection to model-
based learning: if we can predict how easy it is to reach any state from any current state, we
must have some kind of understanding of the underlying “physics.” In this work, we show
that we can develop a method for learning variable-horizon goal-conditioned value functions
where, for a specific choice of reward and horizon, the value function corresponds directly
to a model, while for larger horizons, it more closely resembles model-free approaches.
Extension toward more model-free learning is thus achieved by acquiring “multi-step models”
that can be used to plan over progressively coarser temporal resolutions, eventually arriving
at a fully model-free formulation.

The principle contribution of our work is a new RL algorithm that makes use of this
connection between model-based and model-free learning to learn a specific type of goal-
conditioned value function, which we call a temporal difference model (TDM). This value
function can be learned very efficiently, with sample complexities that are competitive with
model-based RL, and can then be used with an MPC-like method to accomplish desired tasks.
Our empirical experiments demonstrate that this method achieves substantially better sample
complexity than fully model-free learning on a range of challenging continuous control tasks,
while outperforming purely model-based methods in terms of final performance. Furthermore,

5.1 Preliminaries 49

the connection that our method elucidates between model-based and model-free learning
may lead to a range of interesting future methods.

5.1 Preliminaries

In this section, we introduce the reinforcement learning (RL) formalism, temporal difference
Q-learning methods, model-based RL methods, and goal-conditioned value functions. We
will build on these components to develop temporal difference models (TDMs) in the next
section. RL deals with decision making problems that consist of a state space S, action space
A, transition dynamics P(s′ | s,a), and an initial state distribution p0. The goal of the learner
is encapsulated by a reward function r(s,a,s′). Typically, long or infinite horizon tasks
also employ a discount factor γ , and the standard objective is to find a policy π(a | s) that
maximizes the expected discounted sum of rewards, Eπ [∑t γ tr(st ,at ,st+1)], where s0 ∼ p0,
at ∼ π(at |st), and st+1 ∼ P(s′ | s,a).

Q-functions. We will focus on RL algorithms that learn a Q-function. The Q-function
represents the expected total (discounted) reward that can be obtained by the optimal policy
after taking action at in state st , and can be defined recursively as following:

Q(st ,at) = Ep(st+1|st ,at)[r(st ,at ,st+1)+ γ max
a

Q(st+1,a)]. (5.1)

The optimal policy can then recovered according to π(at |st) = δ (at = argmaxa Q(st ,a)).
Deep Q-learning algorithms (Mnih et al., 2015; Riedmiller, 2005; Watkins and Dayan, 1992)
learn the Q-function via an off-policy stochastic gradient descent algorithm, estimating
the expectation in the above equation with samples collected from the environment and
computing its gradient. Q-learning methods can use transition tuples (st ,at ,st+1,rt) collected
from any exploration policy, which generally makes them more efficient than direct policy
search, though still less efficient than purely model-based methods.

Model-based RL and optimal control. Model-based RL takes a different approach to
maximize the expected reward. In model-based RL, the aim is to train a model of the form
f (st ,at) to predict the next state st+1. Once trained, this model can be used to choose actions,
either by backpropagating reward gradients into a policy, or planning directly through the
model. In the latter case, a particularly effective method for employing a learned model is
model-predictive control (MPC), where a new action plan is generated at each time step, and
the first action of that plan is executed, before replanning begins from scratch. MPC can be

50 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

formalized as the following optimization problem:

at = argmax
at:t+T

t+T

∑
i=t

r(si,ai) where si+1 = f (si,ai) ∀ i ∈ {t, ..., t +T −1}. (5.2)

We can also write the dynamics constraint in the above equation in terms of an implicit
dynamics, according to

at = argmax
at:t+T ,st+1:t+T

t+T

∑
i=t

r(si,ai) such that C(si,ai,si+1) = 0 ∀ i ∈ {t, ..., t +T −1}, (5.3)

where C(si,ai,si+1) = 0 if and only if si+1 = f (si,ai). This implicit version will be important
in understanding the connection between model-based and model-free RL.

Goal-conditioned value functions. Q-functions trained for a specific reward are specific
to the corresponding task, and learning a new task requires optimizing an entirely new
Q-function. Goal-conditioned value functions address this limitation by conditioning the
Q-value on some task description vector sg ∈ G in a goal space G. This goal vector induces a
parameterized reward r(st ,at ,st+1,sg), which in turn gives rise to parameterized Q-functions
of the form Q(s,a,sg). A number of goal-conditioned value function methods have been
proposed in the literature, such as universal value functions (Schaul et al., 2015a) and
Horde (Sutton et al., 2011). When the goal corresponds to an entire state, such goal-
conditioned value functions usually predict how well an agent can reach a particular state,
when it is trying to reach it. The knowledge contained in such a value function is intriguingly
close to a model: knowing how well you can reach any state is closely related to understanding
the physics of the environment. With Q-learning, these value functions can be learned for
any goal sg using the same off-policy (st ,at ,st+1) tuples. Relabeling previously visited states
with the reward for any goal leads to a natural data augmentation strategy, since each tuple
can be replicated many times for many different goals without additional data collection.
Andrychowicz et al. (2017) used this property to produce an effective curriculum for solving
multi-goal task with delayed rewards. As we discuss below, relabeling past experience with
different goals enables goal-conditioned value functions to learn much more quickly from
the same amount of data.

5.2 Temporal Difference Model Learning 51

5.2 Temporal Difference Model Learning

In this section, we introduce a type of goal-conditioned value functions called temporal
difference models (TDMs) that provide a direct connection to model-based RL. We will first
motivate this connection by relating the model-based MPC optimizations in Equations (5.2)
and (5.3) to goal-conditioned value functions, and then present our temporal difference model
derivation, which extends this connection from a purely model-based setting into one that
becomes increasingly model-free.

5.2.1 From Goal-Conditioned Value Functions to Models

Let us consider the choice of reward function for the goal conditioned value function.
Although a variety of options have been explored in the literature (Andrychowicz et al., 2017;
Schaul et al., 2015a; Sutton et al., 2011), a particularly intriguing connection to model-based
RL emerges if we set G = S, such that g ∈ G corresponds to a goal state sg ∈ S, and we
consider distance-based reward functions rd of the following form:

rd(st ,at ,st+1,sg) =−D(st+1,sg),

where D(st+1,sg) is a distance, such as the Euclidean distance D(st+1,sg) = ∥st+1− sg∥2.
This choice of reward function seems arbitrary at first glance; however, it is a sensible
function as it connects closely with the implicit dynamics function discussed in Eq. 5.3:
reward is maximum at 0 only if the goal satisfies the dynamics of the MDP. Specifically, if
γ = 0, we have Q(st ,at ,sg) =−D(st+1,sg) at convergence of Q-learning, which means that
Q(st ,at ,sg) = 0 implies that st+1 = sg. Plug this Q-function into the model-based planning
optimization in Equation (5.3), denoting the task control reward as rc, such that the solution
to

at = argmax
at:t+T ,st+1:t+T

t+T

∑
i=t

rc(si,ai) such that Q(si,ai,si+1) = 0 ∀ i ∈ {t, ..., t +T −1} (5.4)

yields a model-based plan. We have now derived a precise connection between model-free
and model-based RL, in that model-free learning of goal-conditioned value functions can
be used to directly produce an implicit model that can be used with MPC-based planning.
However, this connection by itself is not very useful: the resulting implicit model is fully
model-based, and does not provide any kind of long-horizon capability. In the next section,
we show how to extend this connection into the long-horizon setting by introducing the
temporal difference model (TDM).

52 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

5.2.2 Long-Horizon Learning with Temporal Difference Models

If we consider the case where γ > 0, the optimization in Equation (5.4) no longer corresponds
to any optimal control method. In fact, when γ = 0, Q-values have well-defined units: units
of distance between states. For γ > 0, no such interpretation is possible. The key insight
in temporal difference models is to introduce a different mechanism for aggregating long-
horizon rewards. Instead of evaluating Q-values as discounted sums of rewards, we introduce
an additional input τ , which represents the planning horizon, and define the Q-learning
recursion as

Q(st ,at ,sg,τ) = Ep(st+1|st ,at)[−D(st+1,sg)1[τ =0]+max
a

Q(st+1,a,sg,τ−1)1[τ ̸=0]].

(5.5)

The Q-function uses a reward of −D(st+1,sg) when τ = 0 (at which point the episode
terminates), and decrements τ by one at every other step. Since this is still a well-defined Q-
learning recursion, it can be optimized with off-policy data and, just as with goal-conditioned
value functions, we can resample new goals sg and new horizons τ for each tuple (st ,at ,st+1),
even ones that were not actually used when the data was collected. In this way, the TDM can
be trained very efficiently, since every tuple provides supervision for every possible goal and
every possible horizon.

The intuitive interpretation of the TDM is that it tells us how close the agent will get
to a given goal state sg after τ time steps, when it is attempting to reach that state in τ

steps. Alternatively, TDMs can be interpreted as Q-values in a finite-horizon MDP, where
the horizon is determined by τ . For the case where τ = 0, TDMs effectively learn a model,
allowing TDMs to be incorporated into a variety of planning and optimal control schemes at
test time as in Equation (5.4). Thus, we can view TDM learning as an interpolation between
model-based and model-free learning, where τ = 0 corresponds to the single-step prediction
made in model-based learning and τ > 0 corresponds to the long-term prediction made by
typical Q-functions. While the correspondence to models is not the same for τ > 0, if we only
care about the reward at every K step, then we can recover a correspondence by replacing
Equation (5.4) with

at = argmax
at:K:t+T ,st+K:K:t+T

∑
i=t,t+K,...,t+T

rc(si,ai)

such that Q(si,ai,si+K,K−1) = 0 ∀ i ∈ {t, t +K, ..., t +T −K},
(5.6)

where we only optimize over every Kth state and action, i.e. {t : K : t +T} = {t, t +K, t +
2K, ..., t +T}. As the TDM becomes effective for longer horizons, we can increase K until

5.3 Training and Using Temporal Difference Models 53

K = T , and plan over only a single effective time step:

at = argmax
at ,at+T ,st+T

rc(st+T ,at+T) such that Q(st ,at ,st+T ,T −1) = 0. (5.7)

This formulation does result in some loss of generality, since we no longer optimize the
reward at the intermediate steps. This limits the multi-step formulation to terminal reward
problems, but does allow us to accommodate arbitrary reward functions on the terminal state
st+T , which still describes a broad range of practically relevant tasks. Another limitation
is that the current formulation assumes deterministic MDPs to define explicit and implicit
dynamics models, and an extension to stochastic MDPs which then have to consider a
probabilistic variant of goal satisfiability is an interesting future direction. In the next section,
we describe how TDMs can be implemented and used in practice for continuous state and
action spaces.

5.3 Training and Using Temporal Difference Models

The TDM can be trained with any off-policy Q-learning algorithm, such as DQN (Mnih et al.,
2015), DDPG (Lillicrap et al., 2016), NAF (Gu et al., 2016b), and SDQN (Metz et al., 2017).
During off-policy Q-learning, TDMs can benefit from arbitrary relabeling of the goal states g
and the horizon τ , given the same (st ,at ,st+1) tuples from the behavioral policy as done in
(Andrychowicz et al., 2017). This relabeling enables simultaneous, data-efficient learning of
short-horizon and long-horizon behaviors for arbitrary goal states, unlike previously proposed
goal-conditioned value functions that only learn for a single time scale, typically determined
by a discount factor (Andrychowicz et al., 2017; Schaul et al., 2015a). In this section, we
describe the design decisions needed to make practical TDM algorithm.

5.3.1 Reward Function Specification

Q-learning typically optimizes scalar rewards, but TDMs enable us to increase the amount
of supervision available to the Q-function by using a vector-valued reward. Specifically, if
the distance D(s,sg) factors additively over the dimensions, we can train a vector-valued
Q-function that predicts per-dimension distance, with the reward function for dimension j
given by −D j(s j,sg, j). We use the ℓ1 norm in our implementation, which corresponds to
absolute value reward−|s j−sg, j|. The resulting vector-valued Q-function can learn distances
along each dimension separately, providing it with more supervision from each training

54 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

point. Empirically, we found that this modifications provides a substantial boost in sample
efficiency.

We can optionally make an improvement to TDMs if we know that the task reward rc

depends only on some subset of the state or, more generally, state features. In that case, we
can train the TDM to predict distances along only those dimensions or features that are used
by rc, which in practice can substantially simplify the corresponding prediction problem. In
our experiments, we illustrate this property by training TDMs for pushing tasks that predict
distances from an end-effector and pushed object, without accounting for internal joints of
the arm, and similarly for a locomotion task.

5.3.2 Policy Extraction with TDMs

While the TDM optimal control formulation Equation (5.7) drastically reduces the number
of states and actions to be optimized for long-term planning, it requires solving a constrained
optimization problem, which is more computationally expensive than unconstrained problems.
We can remove the need for a constrained optimization through a specific architectural
decision in the design of the function approximator for Q(s,a,sg,τ). We define the Q-
function as Q(s,a,sg,τ) = −∥ f (s,a,sg,τ)− g∥, where f (s,a,sg,τ) outputs a state vector.
By training the TDM with a standard Q-learning method, f (s,a,sg,τ) is trained to explicitly
predict the state that will be reached by a policy attempting to reach sg in τ steps. This model
can then be used to choose the action with fully explicit MPC as below, which also allows
straightforward derivation of a multi-step version as in Equation (5.6).

at = argmax
at ,at+T ,st+T

rc(f (st ,at ,st+T ,T −1),at+T) (5.8)

In the case where the task is to reach a goal state sg, a simpler approach to extract a policy is
to use the TDM directly:

at = argmax
a

Q(st ,a,sg,τ) (5.9)

In our experiments, we use Equations (5.8) and (5.9) to extract a policy.

5.3.3 Algorithm Summary

The algorithm is summarized as Algorithm 4. A crucial difference from prior goal-
conditioned value function methods (Andrychowicz et al., 2017; Schaul et al., 2015a) is
that our algorithm can be used to act according to an arbitrary terminal reward function
rc, both during exploration and at test time. Like other off-policy algorithms (Lillicrap

5.4 Related Work 55

Algorithm 4 Temporal Difference Model Learning
Require: Task reward function rc(s,a), parameterized TDM Qw(s,a,sg,τ), replay buffer B
1: for n = 0, ...,N−1 episodes do
2: s0 ∼ p(s0)
3: for t = 0, ...,T −1 time steps do
4: a∗t = MPC(rc,st ,Qw,T − t){Eq. 5.6, Eq. 5.7, Eq. 5.8, or Eq. 5.9}
5: at = AddNoise(a∗t){Noisy exploration}
6: st+1 ∼ p(st ,at), and store {st ,at ,st+1} in the replay buffer B {Step environment}
7: for i = 0, I−1 iterations do
8: Sample M transitions {sm,am,s′m} from the replay B.
9: Relabel time horizons and goal states τm,sg,m {Section B.1.1}

10: ym =−∥s′m− sg,m∥1[τm = 0]+maxa Q′(s′m,a,sg,m,τm−1)1[τm ̸= 0]
11: L(w) = ∑m(Qw(sm,am,sg,m,τm)− ym)

2/M{Compute the loss}
12: Minimize(w,L(w)){Optimize}
13: end for
14: end for
15: end for

et al., 2016; Mnih et al., 2015), it consists of exploration and Q-function fitting. Noise is
injected for exploration, and Q-function fitting uses standard Q-learning techniques, with
target networks Q′ and experience replay (Lillicrap et al., 2016; Mnih et al., 2015). If we
view the Q-function fitting as model fitting, the algorithm also resembles iterative model-
based RL, which alternates between collecting data using the learned dynamics model for
planning (Deisenroth and Rasmussen, 2011) and fitting the model. Since we focus on
continuous tasks, we use DDPG (Lillicrap et al., 2016), though any Q-learning method could
be used.

The computation cost of the algorithm is mostly determined by the number of updates to
fit the Q-function per transition, I. In general, TDMs can benefit from substantially larger I
than classic model-free methods such as DDPG due to relabeling increasing the amount of
supervision signals. In real-world applications such as robotics where we care most of the
sample efficiency (Gu et al., 2017a), the learning is often bottlenecked by the data collection
rather than the computation, and therefore large I values are usually not a significant problem
and can continuously benefit from the acceleration in computation.

5.4 Related Work

Combining model-based and model-free reinforcement learning techniques is a well-studied
problem, though no single solution has demonstrated all of the benefits of model-based
and model-free learning. Some methods first learn a model and use this model to simulate
experience (Gu et al., 2016b; Sutton, 1990) or compute better gradients for model-free
updates (Heess et al., 2015b; Nguyen and Widrow, 1990). Other methods use model-free

56 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

algorithms to correct for the local errors made by the model (Bansal et al., 2017; Chebotar
et al., 2017a). While these prior methods focused on combining different model-based and
model-free RL techniques, our method proposes an equivalence between these two branches
of RL through a specific generalization of goal-conditioned value function. As a result, our
approach achieves much better sample efficiency in practice on a variety of challenging
reinforcement learning tasks than model-free alternatives, while exceeding the performance
of purely model-based approaches.

We are not the first to study the connection between model-free and model-based methods,
with Boyan (1999) and Parr et al. (2008) being two notable examples. Boyan (1999) shows
that one can extract a model from a value function when using a tabular representation of
the transition function. Parr et al. (2008) shows that, for linear function approximators, the
model-free and model-based RL approaches produce the same value function at convergence.
Our contribution differs substantially from these: we are not aiming to show that model-free
RL with a reward function corresponding to a particular goal performs similarly to model-
based RL at convergence, but rather how we can achieve sample complexity comparable to
model-based RL while retaining the favorable asymptotic performance of model-free RL in
complex tasks with function approximation.

A central component of our method is to train goal-conditioned value functions. Many
variants of goal-conditioned value functions have been proposed in the literature Dosovitskiy
and Koltun (2016); Foster and Dayan (2002); Schaul et al. (2015a); Sutton et al. (2011).
Critically, unlike the works on contextual policies (Caruana, 1998; Da Silva et al., 2012;
Kober and Peters, 2012) which require on-policy trajectories with each new goal, the value
function approaches such as Horde (Sutton et al., 2011) and UVFA (Schaul et al., 2015a) can
reuse off-policy data to learn rich contextual value functions using the same data.

TDMs condition on a policy trying to reach a goal and must predict τ steps into the future.
This type of prediction is similar to the prediction made by prior work on multi-step models
(Mishra et al., 2017; Venkatraman et al., 2016): predict the state after τ actions. An important
difference is that multi-step models do not condition on a policy reaching a goal, and so they
require optimizing over a sequence of actions, making the input space grow linearly with the
planning horizon.

A particularly related UVFA extension is HER Andrychowicz et al. (2017); Kaelbling
(1993). Both HER and our method retroactively relabel past experience with goal states that
are different from the goal aimed for during data collection. However, unlike our method, the
standard UVFA in HER uses a single temporal scale when learning, and does not explicitly
provide for a connection between model-based and model-free learning. The practical result
of these differences is that our approach empirically achieves better sample complexity on a

5.5 Experiments 57

wide range of complex continuous control tasks than HER, while the theoretical connection
between model-based and model-free learning sheds light on the underlying reasons for the
efficiency of UVFA methods such as HER and our algorithm.

TDM can also be seen as an instance of hierarchical RL algorithm (Bacon et al., 2017;
Dayan and Hinton, 1993; Dietterich, 2000; Kaelbling, 1993; Parr and Russell, 1998; Sutton
et al., 1999b) for temporally-extended planning. In constrast with end-to-end model-free
approaches explored in Bacon et al. (2017), TDM learns a goal-conditioned low-level policy
using off-policy RL, and uses model-based planning for the high-level policy with respect to
the task reward.

Lastly, our motivation is shared by other lines of work besides goal-conditioned value
functions that try enhancing supervision signals for model-free RL (Bellemare et al., 2017;
Jaderberg et al., 2017; Silver et al., 2017). Predictron (Silver et al., 2017) augments classic RL
with multi-step reward predictions, while UNREAL (Jaderberg et al., 2017) also augments it
with pixel control as a secondary reward objective. These are substantially different methods
from our work, but share the motivation to achieve efficient RL by increasing the amount of
learning signals from finite data.

5.5 Experiments

Our experiments examine how the sample efficiency and performance of TDMs compare
to both model-based and model-free RL algorithms. We expect to have the efficiency of
model-based RL but with less model bias. We also aim to study the importance of several key
design decisions in TDMs, and evaluate the algorithm on a real-world robotic platform. For
the model-free comparison, we compare to DDPG (Lillicrap et al., 2016), which typically
achieves the best sample efficiency on benchmark tasks (Duan et al., 2016); hindsight
experience replay (HER), which uses goal-conditioned value functions (Andrychowicz et al.,
2017); and DDPG with the same sparse rewards of HER. For the model-based comparison,
we compare to the model-based component in Nagabandi et al. (2017), a recent work that
reports highly efficient learning with neural network dynamics models. Details of the baseline
implementations are in the Appendix. We perform the comparison on five simulated tasks:
(1) a 7 DoF arm reaching various random end-effector targets, (2) an arm pushing a puck
to a target location, (3) a planar cheetah attempting to reach a goal velocity (either forward
or backward), (4) a quadrupedal ant attempting to reach a goal position, and (5) an ant
attempting to reach a goal position and velocity. The tasks are shown in Figure 5.1 and
terminate when either the goal is reached or the time horizon is reached. The pushing task
requires long-horizon reasoning to reach and push the puck. The cheetah and ant tasks

58 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

(a) 7-DoF Reacher (b) Pusher (c) Half Cheetah (d) Ant

(e) Sawyer Robot

Fig. 5.1 The tasks in our experiments: (a) reaching target locations, (b) pushing a puck to a
random target, (c) training the cheetah to run at target velocities, (d) training an ant to run to
a target position or a target position and velocity, and (e) reaching target locations (real-world
Sawyer robot).

require handling many contact discontinuities which is challenging for model-based methods,
with the ant environment having particularly difficult dynamics given the larger state and
action space. The ant position and velocity task presents a scenario where reward shaping
as in traditional RL methods may not lead to optimal behavior, since one cannot maintain
both a desired position and velocity. However, such a task can be very valuable in realistic
settings. For example, if we want the ant to jump, we might instruct it to achieve a particular
velocity at a particular location. We also tested TDMs on a real-world robot arm reaching
end-effector positions, to study its applicability to real-world tasks.

For the simulated and real-world 7-DoF arm, our TDM is trained on all state components.
For the pushing task, our TDM is trained on the hand and puck XY-position. For the half
cheetah task, our TDM is trained on the velocity of the cheetah. For the ant tasks, our TDM
is trained on either the position or the position and velocity for the respective task. Full
details are in the Appendix.

5.5.1 TDMs vs Model-Free, Model-Based, and Direct Goal-Conditioned
RL

The results are shown in Figure 5.2. When compared to the model-free baselines, the pure
model-based method learns learns much faster on all the tasks. However, on the harder
cheetah and ant tasks, its final performance is worse due to model bias. TDMs learn as
quickly or faster than the model-based method, but also always learn policies that are as good
as if not better than the model-free policies. Furthermore, TDMs requires fewer samples
than the model-free baselines on ant tasks and drastically fewer samples on the other tasks.

5.5 Experiments 59

(a) 7-Dof Reacher (b) Pusher (c) Half Cheetah

(d) Ant: Position (e) Ant: Position and Velocity (f) Sawyer Robot (Real-world)

Fig. 5.2 The comparison of TDM with the baseline methods in model-free (DDPG), model-
based, and goal-conditioned value functions (HER - Dense) on various tasks. All plots show
the final distance to the goal versus 1000 environment steps (not rollouts). The bold line shows
the mean across 3 random seeds, and the shaded region show one standard deviation. Our
method, which uses model-free learning, is generally more sample-efficient than model-free
alternatives including DDPG and HER and improves upon the best model-based performance.

We also see that using HER does not lead to an improvement over DDPG. While we were
initially surprised, we realized that a selling point of HER is that it can solve sparse tasks that
would otherwise be unsolvable. In this chapter, we were interested in improving the sample
efficiency and not the feasibility of model-free reinforcement learning algorithms, and so
we focused on tasks that DDPG could already solve. In these sorts of tasks, the advantage
of HER over DDPG with a dense reward is not expected. To evaluate HER as a method to
solve sparse tasks, we included the DDPG-Sparse baseline and we see that HER significantly
outperforms it as expected. In summary, TDMs converge as fast or faster than model-based
(which learns faster than the model-free baselines), while learning as good or better final
policy than model-free baselines on all tasks.

Lastly, we ran the algorithm on a 7-DoF Sawyer robotic arm to learn a real-world analogue
of the reaching task. Figure 5.2f shows that the algorithm outperforms and learns with fewer
samples than DDPG, our model-free baseline. These results show that TDM can scale to
real-world tasks.

60 Temporal Difference Models: Model-Free Deep RL for Model-Based Control

(a) Scalar vs Vectorized TDMs (b) TDMs with different τmax

Fig. 5.3 Ablation experiments for (a) scalar vs. vectorized TDMs on 7-DoF simulated reacher
task and (b) different τmax on pusher task. The vectorized variant performs substantially better,
while the horizon effectively interpolates between model-based and model-free learning.

5.5.2 Ablation Studies

In this section, we discuss two key design choices for TDMs that provide substantially
improved performance. First, Figure 5.3a examines the tradeoffs between the vectorized
and scalar rewards. The results show that the vectorized formulation learns substantially
faster than the naïve scalar variant. Second, Figure 5.3b compares the learning speed for
different horizon values τmax. Performance degrades when the horizon is too low, and learning
becomes slower when the horizon is too high. Interestingly, the performance gap between
τmax = 0 and τmax = {5,15} seems to be consistent with the performance gap observed in
Figure 5.2b between TDM and model-based learning, suggesting that TDMs are effectively
interpolating between model-based and model-free learning.

5.6 Conclusion

In this chapter, we derive a connection between model-based and model-free reinforcement
learning, and present a novel RL algorithm that exploits this connection to greatly improve
on the sample efficiency of state-of-the-art model-free deep RL algorithms. Our temporal
difference models can be viewed both as goal-conditioned value functions and implicit
dynamics models, which enables them to be trained efficiently on off-policy data while still
minimizing the effects of model bias. As a result, they achieve asymptotic performance
that compares favorably with model-free algorithms, but with a sample complexity that is
comparable to purely model-based methods.

While the experiments focus primarily on the new RL algorithm, the relationship between
model-based and model-free RL explored in this chapter provides a number of avenues for
future work. We demonstrated the use of TDMs with a very basic planning approach, but

5.6 Conclusion 61

further exploring how TDMs can be incorporated into powerful constrained optimization
methods for model-predictive control or trajectory optimization is an exciting avenue for
future work. Another direction for future is to further explore how TDMs can be applied to
complex state representations, such as images, where simple distance metrics may no longer
be effective. Although direct application of TDMs to these domains is not straightforward,
a number of works have studied how to construct metric embeddings of images that could
in principle provide viable distance functions. We also note that while the presentation of
TDMs have been in the context of deterministic environments, the extension to stochastic
environments is straightforward: TDMs would learn to predict the expected distance between
the future state and a goal state. Finally, the promise of enabling sample-efficient learning
with the performance of model-free RL and the efficiency of model-based RL is to enable
widespread RL application on real-world systems. Many applications in robotics, autonomous
driving and flight, and other control domains could be explored in future work.

Chapter 6

Concluding Remark

This thesis outlined three approaches to bridge model-based with model-free, and on-policy
with off-policy reinforcement learning, in order to improve stability and sample-efficiency
of the learning algorithms. Normalized advantage functions (NAF) with model-based ac-
celeration in Chapter 3 combined a novel variant of Q-learning with iLQG-based model
samples to accelerate convergence of Q-function. Interpolated policy gradient (IPG) in
Chapter 4 connected on-policy Monte Carlo policy gradient with off-policy actor-critic, and
derived a family of policy gradient methods with theoretical bounds on biases. Temporal
difference models (TDM) in Chapter 5 generalized off-policy value-based approaches to
include model-based approaches as a special case, and derived a novel temporal-extended
variant of optimal control. Importantly, in each of the scenarios, by carefully combining two
approaches, we could achieve the best of both worlds and substantially improve upon either
of the approaches. We believe that more novel and impactful algorithmic improvements can
be further discovered by unifying and interpolating different branches of RL algorithms, and
hope our work could be one of the building blocks toward developing the most intelligent –
versatile and sample-efficient – learning algorithm.

References

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Abbeel, P., and Zaremba, W. (2017). Hindsight experience replay. arXiv preprint
arXiv:1707.01495.

Asadi, K., Allen, C., Roderick, M., Mohamed, A.-r., Konidaris, G., Littman, M., and Amazon,
B. U. (2017). Mean actor critic. stat, 1050:1.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally weighted learning for control.
In Lazy learning, pages 75–113. Springer.

Bacon, P.-L., Harb, J., and Precup, D. (2017). The option-critic architecture. In AAAI, pages
1726–1734.

Bagnell, J. A. and Schneider, J. (2003). Covariant policy search. IJCAI.

Baird III, L. C. (1993). Advantage updating. Technical report, DTIC Document.

Bansal, S., Calandra, R., Xiao, T., Levine, S., and Tomlin, C. J. (2017). Goal-driven dynamics
learning via bayesian optimization. arXiv preprint arXiv:1703.09260.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on
reinforcement learning. arXiv preprint arXiv:1707.06887.

Bhatnagar, S., Precup, D., Silver, D., Sutton, R. S., Maei, H. R., and Szepesvári, C. (2009).
Convergent temporal-difference learning with arbitrary smooth function approximation.
In Advances in Neural Information Processing Systems, pages 1204–1212.

Boyan, J. A. (1999). Least-squares temporal difference learning. In Proceedings of the 16th
International Conference on Machine Learning, pages 49–56.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1-3):33–57.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba,
W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Caruana, R. (1998). Multitask learning. In Learning to learn, pages 95–133. Springer.

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., and Levine, S. (2017a).
Combining model-based and model-free updates for trajectory-centric reinforcement
learning. arXiv preprint arXiv:1703.03078.

66 References

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., and Levine, S. (2017b).
Path integral guided policy search. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 3381–3388. IEEE.

Ciosek, K. and Whiteson, S. (2018). Expected policy gradients. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Da Silva, B., Konidaris, G., and Barto, A. (2012). Learning parameterized skills. arXiv
preprint arXiv:1206.6398.

Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in neural
information processing systems, pages 271–278.

Degris, T., White, M., and Sutton, R. S. (2012). Off-policy actor-critic. International
Conference on Machine Learning (ICML).

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472.

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013). A survey on policy search for
robotics. Foundations and Trends in Robotics, 2(1-2):1–142.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dosovitskiy, A. and Koltun, V. (2016). Learning to act by predicting the future. arXiv
preprint arXiv:1611.01779.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking
deep reinforcement learning for continuous control. International Conference on Machine
Learning (ICML).

Dudík, M., Langford, J., and Li, L. (2011). Doubly robust policy evaluation and learning.
arXiv preprint arXiv:1103.4601.

Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. (2018). Leave no trace: Learning to reset
for safe and autonomous reinforcement learning. International Conference for Learning
Representations.

Foster, D. and Dayan, P. (2002). Structure in the space of value functions. Machine Learning,
49(2):325–346.

Fu, J., Levine, S., and Abbeel, P. (2015). One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. arXiv preprint arXiv:1509.06841.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation error
in actor-critic methods. arXiv preprint arXiv:1802.09477.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059.

References 67

Gu, S., Ghahramani, Z., and Turner, R. E. (2015). Neural adaptive sequential monte carlo. In
Advances in Neural Information Processing Systems, pages 2629–2637.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017a). Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 3389–3396. IEEE.

Gu, S., Levine, S., Sutskever, I., and Mnih, A. (2016a). Muprop: Unbiased backpropagation
for stochastic neural networks. International Conference on Learning Representations
(ICLR).

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S. (2017b). Q-prop: Sample-
efficient policy gradient with an off-policy critic. International Conference for Learning
Representations.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016b). Continuous deep q-learning
with model-based acceleration. In International Conference on Machine Learning, pages
2829–2838.

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., and Levine, S. (2017c).
Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for
deep reinforcement learning. In Advances in Neural Information Processing Systems,
pages 3849–3858.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution.
Neural Information Processing Systems (NIPS).

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement learning with deep
energy-based policies. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1352–1361. JMLR. org.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290.

Hafner, R. and Riedmiller, M. (2011). Reinforcement learning in feedback control. Machine
learning, 84(1-2):137–169.

Harmon, M. E. and Baird III, L. C. (1996). Multi-player residual advantage learning with
general function approximation. Wright Laboratory, WL/AACF, Wright-Patterson Air
Force Base, OH, pages 45433–7308.

Hasselt, H. V. (2010). Double q-learning. In Advances in Neural Information Processing
Systems, pages 2613–2621.

Heess, N., Silver, D., and Teh, Y. W. (2012). Actor-critic reinforcement learning with
energy-based policies. In EWRL, pages 43–58.

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z.,
Eslami, A., Riedmiller, M., et al. (2017). Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286.

68 References

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and Tassa, Y. (2015a). Learning con-
tinuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pages 2944–2952.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., and Erez, T. (2015b). Learning
Continuous Control Policies by Stochastic Value Gradients. arXiv, pages 1–13.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep
reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Howard, R. A. (1964). Dynamic programming and markov processes.

Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The American Statistician,
58(1):30–37.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and
Kavukcuoglu, K. (2017). Reinforcement learning with unsupervised auxiliary tasks.
International Conference on Learning Representations.

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with gumbel-softmax.
International Conference on Learning Representations (ICLR).

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M., Turner, R. E., and Eck, D. (2017).
Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control.
International Conference on Machine Learning (ICML).

Jiang, N. and Li, L. (2016). Doubly robust off-policy value evaluation for reinforcement
learning. In International Conference on Machine Learning, pages 652–661.

Jie, T. and Abbeel, P. (2010). On a connection between importance sampling and the
likelihood ratio policy gradient. In Advances in Neural Information Processing Systems,
pages 1000–1008.

Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains: Preliminary results. In
Proceedings of the tenth international conference on machine learning, volume 951, pages
167–173.

Kahn, G., Zhang, T., Levine, S., and Abbeel, P. (2016). Plato: Policy learning using adaptive
trajectory optimization. arXiv preprint arXiv:1603.00622.

Kakade, S. (2001). A natural policy gradient. In NIPS, volume 14, pages 1531–1538.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement
learning. In International Conference on Machine Learning (ICML), volume 2, pages
267–274.

Kalakrishnan, M., Righetti, L., Pastor, P., and Schaal, S. (2011). Learning force control
policies for compliant manipulation. In International Conference on Intelligent Robots
and Systems (IROS).

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

References 69

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. ICLR.

Kober, J. and Peters, J. (2012). Reinforcement learning in robotics: A survey. In Reinforce-
ment Learning, pages 579–610. Springer.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of machine
learning research, 4(Dec):1107–1149.

Lagoudakis, M. G., Parr, R., and Littman, M. L. (2002). Least-squares methods in reinforce-
ment learning for control. In Hellenic conference on artificial intelligence, pages 249–260.
Springer.

Legg, S. and Hutter, M. (2007). Universal intelligence: A definition of machine intelligence.
Minds and Machines, 17(4):391–444.

Lever, G. (2014). Deterministic policy gradient algorithms.

Levine, S. and Abbeel, P. (2014). Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Information Processing Systems (NIPS),
pages 1071–1079.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(39):1–40.

Levine, S. and Koltun, V. (2013). Guided policy search. In International Conference on
Machine Learning (ICML), pages 1–9.

Li, W. and Todorov, E. (2004). Iterative linear quadratic regulator design for nonlinear
biological movement systems.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D. (2016). Continuous control with deep reinforcement learning. ICLR.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning, 8(3-4):293–321.

Mahmood, A. R., van Hasselt, H. P., and Sutton, R. S. (2014). Weighted importance
sampling for off-policy learning with linear function approximation. In Advances in
Neural Information Processing Systems, pages 3014–3022.

Metz, L., Ibarz, J., Jaitly, N., and Davidson, J. (2017). Discrete sequential prediction of
continuous actions for deep rl. arXiv preprint arXiv:1705.05035.

Mishra, N., Abbeel, P., and Mordatch, I. (2017). Prediction and control with temporal
segment models.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks.
International Conference on Machine Learning (ICML).

70 References

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning (ICML).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. G. (2016). Safe and efficient
off-policy reinforcement learning. arXiv preprint arXiv:1606.02647.

Nachum, O., Gu, S., Lee, H., and Levine, S. (2018). Data-efficient hierarchical reinforcement
learning. Neural Information Processing Systems.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2017). Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint
arXiv:1708.02596.

Nguyen, D. H. and Widrow, B. (1990). Neural networks for self-learning control systems.
IEEE Control systems magazine, 10(3):18–23.

O’Donoghue, B., Munos, R., Kavukcuoglu, K., and Mnih, V. (2017). Pgq: Combining policy
gradient and q-learning. ICLR.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via boot-
strapped dqn. In Advances in neural information processing systems, pages 4026–4034.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and Littman, M. L. (2008). An analysis of
linear models, linear value-function approximation, and feature selection for reinforcement
learning. In International Conference on Machine learning.

Parr, R. and Russell, S. J. (1998). Reinforcement learning with hierarchies of machines. In
Advances in neural information processing systems, pages 1043–1049.

Peshkin, L. and Shelton, C. R. (2002). Learning from scarce experience. arXiv preprint
cs/0204043.

Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In AAAI.
Atlanta.

Peters, J. and Schaal, S. (2006). Policy gradient methods for robotics. In International
Conference on Intelligent Robots and Systems (IROS), pages 2219–2225. IEEE.

Pong, V., Gu, S., Dalal, M., and Levine, S. (2018). Temporal difference models: Model-free
deep rl for model-based control. International Conference for Learning Representations.

Precup, D. (2000). Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series, page 80.

Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade, S. M. (2017). Towards generaliza-
tion and simplicity in continuous control. In Advances in Neural Information Processing
Systems, pages 6550–6561.

References 71

Rawlik, K., Toussaint, M., and Vijayakumar, S. (2013). On stochastic optimal control and
reinforcement learning by approximate inference. Robotics, page 353.

Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages
317–328. Springer.

Ross, S., Gordon, G. J., and Bagnell, D. (2011). A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, volume 1, page 6.

Ross, S. M. (2006). Simulation. Burlington, MA: Elsevier.

Salge, C., Glackin, C., and Polani, D. (2014). Empowerment–an introduction. In Guided
Self-Organization: Inception, pages 67–114. Springer.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015a). Universal value function
approximators. In Proceedings of the 32nd International Conference on Machine Learning,
pages 1312–1320.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015b). Prioritized experience replay.
arXiv preprint arXiv:1511.05952.

Schmidhuber, J. (1990). An on-line algorithm for dynamic reinforcement learning and
planning in reactive environments. In Neural Networks, 1990., 1990 IJCNN International
Joint Conference on, pages 253–258. IEEE.

Schmidhuber, J. (1991). Reinforcement learning in markovian and non-markovian environ-
ments. pages 500–506.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015a). Trust region
policy optimization. In International Conference on Machine Learning (ICML), pages
1889–1897.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and Moritz, P. (2015b). Trust region
policy optimization. In ICML, pages 1889–1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-dimensional
continuous control using generalized advantage estimation. International Conference on
Learning Representations (ICLR).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deter-
ministic policy gradient algorithms. In International Conference on Machine Learning
(ICML).

72 References

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-Arnold,
G., Reichert, D., Rabinowitz, N., Barreto, A., et al. (2017). The predictron: End-to-end
learning and planning. International Conference on Machine Learning.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In International Conference on Machine Learning,
pages 216–224.

Sutton, R. S. (2000). All-action policy gradient. Unpublished.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning, volume 135.
MIT press Cambridge.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and Wiewiora,
E. (2009a). Fast gradient-descent methods for temporal-difference learning with linear
function approximation. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 993–1000. ACM.

Sutton, R. S., Maei, H. R., and Szepesvári, C. (2009b). A convergent o(n) temporal-difference
algorithm for off-policy learning with linear function approximation. In Advances in neural
information processing systems, pages 1609–1616.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., et al. (1999a). Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems (NIPS), volume 99, pages 1057–1063.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D.
(2011). Horde: A scalable real-time architecture for learning knowledge from unsupervised
sensorimotor interaction. In The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 761–768. International Foundation for Autonomous
Agents and Multiagent Systems.

Sutton, R. S., Precup, D., and Singh, S. (1999b). Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures on artificial
intelligence and machine learning, 4(1):1–103.

Tassa, Y., Erez, T., and Todorov, E. (2012). Synthesis and stabilization of complex behaviors
through online trajectory optimization. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 4906–4913. IEEE.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications of the
ACM, 38(3):58–68.

Theodorou, E., Buchli, J., and Schaal, S. (2010). Learning policy improvements with
path integrals. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 828–835.

Thomas, P. (2014). Bias in natural actor-critic algorithms. In ICML, pages 441–448.

References 73

Thomas, P. and Brunskill, E. (2016). Data-efficient off-policy policy evaluation for reinforce-
ment learning. In International Conference on Machine Learning, pages 2139–2148.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE.

Todorov, E. and Li, W. (2005). A generalized iterative lqg method for locally-optimal feed-
back control of constrained nonlinear stochastic systems. In American Control Conference,
2005. Proceedings of the 2005, pages 300–306. IEEE.

Tripuraneni, N., Gu, S., Ge, H., and Ghahramani, Z. (2015). Particle gibbs for infinite
hidden markov models. In Advances in Neural Information Processing Systems, pages
2395–2403.

Tsitsiklis, J. and Van Roy, B. (1996). An analysis of temporal-difference learning with
function approximationtechnical. Technical report, Report LIDS-P-2322). Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R. E., Ghahramani, Z., and Levine, S. (2018). The
mirage of action-dependent baselines in reinforcement learning. International Conference
on Machine Learning.

Van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461.

Venkatraman, A., Capobianco, R., Pinto, L., Hebert, M., Nardi, D., and Bagnell, J. A.
(2016). Improved learning of dynamics models for control. In International Symposium
on Experimental Robotics.

Wahlström, N., Schön, T. B., and Deisenroth, M. P. (2015). From pixels to torques: Policy
learning with deep dynamical models. arXiv preprint arXiv:1502.02251.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N.
(2017). Sample efficient actor-critic with experience replay. International Conference on
Learning Representations (ICLR).

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Freitas, N. (2016).
Dueling network architectures for deep reinforcement learning. International Conference
on Machine Learning (ICML).

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M. (2015). Embed to control: A
locally linear latent dynamics model for control from raw images. In Advances in Neural
Information Processing Systems (NIPS), pages 2728–2736.

Wawrzyński, P. (2009). Real-time reinforcement learning by sequential actor–critics and
experience replay. Neural Networks, 22(10):1484–1497.

Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based reinforcement
learning. In Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence, pages 538–545. Morgan Kaufmann Publishers Inc.

74 References

Werbos, P. J. (1989). Neural networks for control and system identification. In Decision and
Control, 1989., Proceedings of the 28th IEEE Conference on, pages 260–265. IEEE.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256.

Zhang, T., Kahn, G., Levine, S., and Abbeel, P. (2016). Learning deep control policies for
autonomous aerial vehicles with mpc-guided policy search. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 528–535. IEEE.

Appendix A

Supplementary Materials for Chapter 4

A.1 Proof for Theorem 1

A.1.1 Local approximation objective with bounded bias

In the main paper, we introduced the approximate objective J̃(π, π̃) to J(π) during our
theoretical analysis. In this section, we discuss the motivations behind this choice, referencing
the prior work (Kakade and Langford, 2002; Schulman et al., 2015b).

First, the expected return J(π) of a policy π can be written as the sum of the expected
return J(π̃) of another policy π̃ and the expected advantage term between the two policies in
the equation, where Aπ̃(st ,at) is the advantage of policy π̃ ,

J(π) = J(π̃)+Eρπ ,π [Aπ̃(st ,at)].

For the proof, see Lemma 1 in (Schulman et al., 2015b). This expression is still not tractable
to analyze because of the dependency of unnormalized state sampling distribution ρπ on π .
Kakade and Langford (2002); Schulman et al. (2015b) thus introduce a local approximation
by replacing ρπ with ρ π̃ ,

J(π)≈ J(π̃)+Eρ π̃ ,π [A
π̃(st ,at)]≜ J̃(π, π̃).

We can show that J(π) = J̃(π, π̃ = π) and ∇πJ(π) = ∇π J̃(π, π̃ = π), meaning that the
J(π) and J̃(π, π̃) match up to the first order terms. Schulman et al. (2015b) then uses this
property, in combination with minorization-maximization Hunter and Lange (2004), to derive
a monotonic convergence proof for a variant of policy iteration algorithm. To start our proof
for Theorem 1, we first derive the following lemma,

76 Supplementary Materials for Chapter 4

Lemma 3 If ζ = maxs |Āπ,π̃(s)|, then

∥∥J(π)− J̃(π, π̃)
∥∥

1 ≤ 2ζ
γ

(1− γ)2 Dmax
TV (π̃,π)≤ 2ζ

γ

(1− γ)2

√
Dmax

KL (π̃,π)

Proof. We define ρπ
t (st) as the marginal state distribution at time t assuming that the agent

follows policy π from initial state ρ0(st) at time t = 0. Note that from the definition of ρπ ,
ρπ(s) = ∑

∞
t=0 γ tρπ

t (st = s). We can use the following lemma from Kahn et al. (2016), which
is adapted from Ross et al. (2011) and Schulman et al. (2015b).

Lemma 4 (Kahn et al., 2016)∥∥∥ρ
π
t −ρ

β

t

∥∥∥
1
≤ 2tDmax

TV (π,β)≤ 2t
√

Dmax
KL (π,β) (A.1)

Using Lemma 4, the full proof for Lemma 3 is provided below, where Āπ,π̃(s)=Eπ [Aπ̃(st ,at)]

and Aπ̃(st ,at) is the advantage function of π̃ ,∥∥J(π)− J̃(π, π̃)
∥∥

1

=
∥∥∥Eρ π̃ [Āπ,π̃(s)]−Eρπ [Āπ,π̃(s)]

∥∥∥
1

≤
∞

∑
t=0

γ
t
∥∥∥Eρ π̃

t
[Āπ,π̃(s)]−Eρπ

t
[Āπ,π̃(s)]

∥∥∥
1

≤ ζ

∞

∑
t=0

γ
t
∥∥∥ρ

π̃
t −ρ

π
t

∥∥∥
1

≤ 2ζ (
∞

∑
t=0

γ
tt)Dmax

TV (π̃,π)

= 2ζ
γ

(1− γ)2 Dmax
TV (π̃,π)

≤ 2ζ
γ

(1− γ)2

√
Dmax

KL (π, π̃).

(A.2)

This lemma is crucial in our theoretical analysis, as it allows us to tractably bound the biases
of the full spectrum of local IPG objectives J̃β ,ν ,CV (π, π̃) against J(π).

A.2 Algorithm with Monotonic Convergence Property and its Proof 77

A.1.2 Main proof for Theorem 1

Proof. We first prove the bound for
∥∥∥J̃(π, π̃)− J̃β ,ν=0,CV (π, π̃)

∥∥∥
1
. Using Lemma 4, the

bound is given below, with a similar derivation process as in Lemma 3.∥∥∥J̃(π, π̃)− J̃β ,ν=0,CV (π, π̃)
∥∥∥

1

=
∥∥∥J(π̃)+Eρ π̃ ,π [A

π̃(st ,at)]− J(π̃)−Eρ π̃ ,π [A
π̃(st ,at)−Aπ̃

w(st ,at)]−E
ρβ [Āπ,π̃

w (st)]
∥∥∥

1

=
∥∥∥Eρ π̃ [Āπ,π̃

w (s)]−E
ρβ [Āπ,π̃

w (s)]
∥∥∥

1

≤
∞

∑
t=0

γ
t
∥∥∥Eρ π̃

t
[Āπ,π̃

w (s)]−E
ρ

β

t
[Āπ,π̃

w (s)]
∥∥∥

1

≤ ε

∞

∑
t=0

γ
t
∥∥∥ρ

π̃
t −ρ

β

t

∥∥∥
1

≤ 2ε(
∞

∑
t=0

γ
tt)Dmax

TV (π̃,β)

= 2ε
γ

(1− γ)2 Dmax
TV (π̃,β)

≤ 2ε
γ

(1− γ)2

√
Dmax

KL (π̃,β).

(A.3)

Given this bound, we can directly derive the bound for
∥∥∥J̃(π, π̃)− J̃β ,ν=0,CV (π, π̃)

∥∥∥
1

by
combining with Lemma 3,∥∥∥J(π)− J̃β ,ν=0,CV (π, π̃)

∥∥∥
1∥∥∥J(π)− J̃(π, π̃)+ J̃(π, π̃)− J̃β ,ν=0,CV (π, π̃)

∥∥∥
1

≤
∥∥∥J̃(π, π̃)− J̃β ,ν=0,CV (π, π̃)

∥∥∥
1
+
∥∥J(π)− J̃(π, π̃)

∥∥
1

≤ 2
γ

(1− γ)2

(
ε

√
Dmax

KL (π̃,β)+ζ

√
Dmax

KL (π, π̃)

) (A.4)

A.2 Algorithm with Monotonic Convergence Property and
its Proof

Algorithm 5 is a special case of IPG, J̃βi,ν=0,CV (π,πi). We can prove that Algorithm 5
guarantees monotonic improvement, even with off-policy sample usage and imperfect critic
Qw or Aw. This is an interesting result, since most of the prior work have shown such property

78 Supplementary Materials for Chapter 4

Algorithm 5 Policy iteration with non-decreasing returns J(π) and bounded off-policy
sampling
1: Initialize policy π0, and critic Qw
2: repeat
3: Compute all advantage values Aπi(s,a), and choose any off-policy distribution βi
4: Update critic Qw using any method (no requirement for performance)
5: Solve the constrained optimization problem:

6: πi+1← argmaxπ J̃βi,ν=0,CV (π,πi)−C
(

ζ
√

Dmax
KL (π,πi)+ ε

√
Dmax

KL (πi,βi)

)
7: subject to ∑a π(a|s) = 1 ∀s
8: where C = 2γ

(1−γ)2 ,ζ = maxs |Āπ,π̃(s)|,ε = maxs |Āπ,π̃
w (s)|

9: until πi converges.

only for purely on-policy policy gradient methods Kakade and Langford (2002); Schulman
et al. (2015b). We begin by first introducing the following corollary,

Corollary 1

J(π)≥M(π, π̃)≥Mβ ,ν=0,CV (π, π̃),J(π̃) = M(π̃, π̃) = Mβ ,ν=0,CV (π̃, π̃) (A.5)

where

M(π, π̃) = J̃(π, π̃)−Cζ

√
Dmax

KL (π, π̃)

Mβ ,ν=0,CV (π, π̃) = J̃β ,ν=0(π, π̃)−C(ζ
√

Dmax
KL (π, π̃)+ ε

√
Dmax

KL (π̃,β))

Proof. It follows from Theorem 1 in the main text and Theorem 1 in Schulman et al. (2015b).
J(π̃) = Mβ ,ν=0,CV (π̃, π̃) since ζ = ε = 0 when π = π̃ .

Given Corollary 1, we use minorization-maximization (MM) (Hunter and Lange, 2004)
to derive Algorithm 2, a policy iteration algorithm that allows using off-policy samples
while guaranteeing monotonic improvement on J(π). MM suggests that at each iteration,
by maximizing the lower bound, or the minorizer, of the objective, the algorithm can
guarantee monotonic improvement: J(πi+1)≥Mβi,ν=0,CV (πi+1,πi)≥Mβi,ν=0,CV (πi,πi) =

J(πi), where πi+1 ← argmaxπ Mβi,ν=0,CV (π,πi). Importantly, the algorithm guarantees
monotonic improvement regardless of the off-policy distribution βi or the performance of the
critic Qw. This result is a step toward achieving off-policy policy gradient with convergence
guarantee of on-policy algorithms.1

1Schulman et al. (2015b) applies additional bound, ε ≥ 2ε ′
√

Dmax
KL (π, π̃) where ε ′ = maxs,a |Aπ̃

w(s,a)| to
remove dependency on π . In our case, we cannot apply such bound on ζ , since then the inequality in Theorem 1
is still satisfied but the equality is violated, and thus the algorithm no longer guarantees monotonic improvement.

A.3 Proof for Theorem 2 79

We compare our theoretical algorithm with Algorithm 1 in Schulman et al. (2015b), which
guarantees monotonic improvement in a general on-policy policy gradient algorithm. The
main difference is the additional term, −Cε

√
Dmax

KL (π̃,β) to the lower bound. Dmax
KL (π̃,β)

is constant with respect to π , while ε = 0 if π = π̃ and ε ≥ 0 if otherwise. This suggests
that as β becomes more off-policy, the gap between the lower bound and the true objective
widens, proportionally to

√
Dmax

KL (π̃,β). This may make each majorization step end in a
place very close to where it started, i.e. πi+1 very close to πi, and slow down learning. This
again suggests a trade-off that comes in as off-policy samples are used.

A.3 Proof for Theorem 2

We follow the same procedure as the proof for Theorem 1, where we first derive bounds
between J̃(π, π̃) and the other local objectives, and then combine the results with Lemma 3.

To begin the proof, we first derive the bound for the special case where ν = 1. Having
ν = 1, we remove the likelihood ratio policy gradient term, and get the following gradient
expression,

∇θ J(θ)≈ E
ρβ [∇θ Q̄π

w(st)]. (A.6)

This is an off-policy actor-critic algorithm, and is closely connected to DDPG (Lillicrap
et al., 2016), except that it does not use target policy network and its use of a stochastic
policy enables on-policy exploration, trust-region policy updates, and no heuristic additive
exploration noise.

We can introduce the following bound on the local objective J̃β ,ν=1(π, π̃), whose policy
gradient equals A.6 at π = π̃ , similarly to the proof for Theorem 1 in the main text.

Corollary 2 If δ = maxs,a |Aπ̃(s,a)−Aπ̃
w(s,a)|, ε = maxs |Āπ,π̃

w (s)|, and

J̃β ,ν=1(π, π̃) = J(π̃)+E
ρβ [Āπ,π̃

w (st)] (A.7)

then, ∥∥∥J̃(π, π̃)− J̃β ,ν=1(π, π̃)
∥∥∥

1
≤ δ

1− γ
+2ε

γ

(1− γ)2

√
Dmax

KL (π̃,β) (A.8)

80 Supplementary Materials for Chapter 4

Proof. We note that∥∥∥J̃(π, π̃)− J̃β ,ν=1(π, π̃)
∥∥∥

1

=
∥∥∥Eρ π̃ ,π [A

π̃(st ,at)−Aπ̃
w(st ,at)]+ J̃(π, π̃)− J̃β ,ν=0(π, π̃)

∥∥∥
1

≤
∥∥∥Eρ π̃ ,π [A

π̃(st ,at)−Aπ̃
w(st ,at)]

∥∥∥
1
+
∥∥∥J̃(π, π̃)− J̃β ,ν=0(π, π̃)

∥∥∥
1

≤
∞

∑
t=0

γ
t
∥∥∥Eρ π̃

t ,π
[Aπ̃(st ,at)−Aπ̃

w(st ,at)]
∥∥∥

1
+
∥∥∥J̃(π, π̃)− J̃β ,ν=0(π, π̃)

∥∥∥
1

≤ δ

∞

∑
t=0

γ
t +
∥∥∥J̃(π, π̃)− J̃β ,ν=0(π, π̃)

∥∥∥
1

=
δ

1− γ
+
∥∥∥J̃(π, π̃)− J̃β ,ν=0(π, π̃)

∥∥∥
1

≤ δ

1− γ
+2ε

γ

(1− γ)2

√
Dmax

KL (π̃,β),

(A.9)

where the proof uses Theorem 1 at the last step.
Given Corollary 2 and Theorem 1, we are ready to prove the two bounds in Theorem 2.
Proof.∥∥∥J̃(π, π̃)− J̃β ,ν(π, π̃)

∥∥∥
1

=
∥∥∥J(π̃)+Eρ π̃ ,π [A

π̃(st ,at)]− J(π̃)− (1−ν)Eρ π̃ ,π [A
π̃(st ,at)]−νE

ρβ [Āπ,π̃
w (st)]

∥∥∥
1

= ν

∥∥∥Eρ π̃ ,π [A
π̃(st ,at)]−E

ρβ [Āπ,π̃
w (st)]

∥∥∥
1

= ν

∥∥∥Eρ π̃ ,π [A
π̃(st ,at)]−Eρπ [Āπ,π̃

w (st)]+Eρπ [Āπ,π̃
w (st)]−E

ρβ [Āπ,π̃
w (st)]

∥∥∥
1

≤ ν

∥∥∥Eρ π̃ ,π [A
π̃(st ,at)]−Eρπ [Āπ,π̃

w (st)]
∥∥∥

1
+ν

∥∥∥Eρπ [Āπ,π̃
w (st)]−E

ρβ [Āπ,π̃
w (st)]

∥∥∥
1

= ν

∥∥∥Eρ π̃ ,π [A
π̃(st ,at)− Āπ̃

w(st ,at)]
∥∥∥

1
+ν

∥∥∥Eρπ [Āπ,π̃
w (st)]−E

ρβ [Āπ,π̃
w (st)]

∥∥∥
1

≤ νδ

1− γ
+2ε

νγ

(1− γ)2

√
Dmax

KL (π̃,β)

(A.10)

A.4 Supplementary Experimental Details 81∥∥∥J̃(π, π̃)− J̃β ,ν ,CV (π, π̃)
∥∥∥

1

=
∥∥∥J(π̃)+Eρ π̃ ,π [A

π̃(st ,at)]− J(π̃)− (1−ν)Eρ π̃ ,π [A
π̃(st ,at)− Āπ̃

w(st ,at)]−E
ρβ [Āπ,π̃

w (st)]
∥∥∥

1

=
∥∥∥ν(Eρ π̃ ,π [A

π̃(st ,at)]−Eρπ [Āπ,π̃
w (st)])+Eρπ [Āπ,π̃

w (st)]−E
ρβ [Āπ,π̃

w (st)]
∥∥∥

1

≤ ν

∥∥∥Eρ π̃ ,π [A
π̃(st ,at)]−Eρπ [Āπ,π̃

w (st)]
∥∥∥

1
+
∥∥∥Eρπ [Āπ,π̃

w (st)]−E
ρβ [Āπ,π̃

w (st)]
∥∥∥

1

≤ νδ

1− γ
+2ε

γ

(1− γ)2

√
Dmax

KL (π̃,β).

(A.11)

We combine these bounds with Lemma 3 to conclude the proof.

A.4 Supplementary Experimental Details

A.4.1 Hyperparameters

GAE(λ = 0.97) (Schulman et al., 2016) is used for Â estimation. Trust-region update in
TRPO is used as the policy optimizer (Schulman et al., 2015b). The standard Q-fitting routine
from DDPG (Lillicrap et al., 2016) is used for fitting Qw, where Qw is trained with batch size
64, using experience replay of size 1e6, and target network with τ = 0.001. ADAM (Kingma
and Ba, 2014) is used as the optimizer for Qw. Policy network parametrizes a Gaussian
policy with πθ (at |st) = N(µθ (st),Σθ), where µθ is a two-hidden-layer neural network of
size 100− 50 and tanh hidden nonlinearity and linear output, and Σθ is a diagonal, state-
independent variance. For DDPG, the policy network is deterministic and additionally has
tanh activation at the output layer. The critic function Qw is a two-hidden-layer neural
network of size 100−100 with ReLU activation. For the reparameterized control variates,
we use Monte Carlo sample size m = 1.

The trust-region step size for policy update is fixed to 0.1 for HalfCheetah-v1 and
Humanoid-v1, and 0.01 for Ant-v1 and Walker2d-v1, while the learning rate for ADAM
in critic update is fixed to 1e−4 for HalfCheetah-v1, Ant-v1, Humanoid-v1, and 1e−3 for
Walker2d-v1. Those two hyperparameters are found by first running TRPO and DDPG
on each domain, and picking the ones that give best performance for each domain. These
parameters are fixed throughout the experiment to ensure fair comparisons.

As in the Q-Prop implementation (Gu et al., 2017b), the residual learning signal in the
first term is normalized to be zero mean and unit variance. This introduces additional bias to
the gradient estimator, but the bias can be theoretically analyzed by substituting the bounds

82 Supplementary Materials for Chapter 4

with new ν ′ = 1− 1−ν

σ
in the IPG expressions where σ is the empirical standard deviation of

the (residual) learning signal.
The plots in the main text present the mean returns as solid lines, scatter plots of all runs

in the background to visualize variability. For X-axis, one “episode" corresponds to 1000
transitions, which is the default maximum episode length for all domains in our experiments.
Importantly, “Episodes” do not correspond to actual numbers of episodes taken for Ant-v1,
Walker-v1, and Humanoid-v1, since these environments have termination conditions.

Appendix B

Supplementary Materials for Chapter 5

B.1 Experiment Details

In this section, we detail the experimental setups used in our results.

B.1.1 Goal State and τ Sampling Strategy

While Q-learning is valid for any value of sg and τ for each transition tuple (st ,at ,st+1), the
way in which these values are sampled during training can affect learning efficiency. Some
potential strategies for sampling sg are: (1) uniformly sample future states along the actual
trajectory in the buffer (i.e., for st , choose sg = st+k for a random k > 0) as in (Andrychowicz
et al., 2017); (2) uniformly sample goal states from the replay buffer; (3) uniformly sample
goals from a uniform range of valid states. We found that the first strategy performed slightly
better than the others, though not by much. In our experiments, we use the first strategy. The
horizon τ is sampled uniformly at random between 0 and the maximum horizon τmax.

B.1.2 Tuned Hyperparameters

For TDMs, we found the most important hyperparameters to be the reward scale, τmax, and
the number of updates per observations, I. As shown in Figure B.1, TDMs can greatly benefit
from larger values of I, though eventually there are diminishing returns and potentially impact,
mostly likely due to over-fitting. We found that the baselines did not benefit, except for HER
which did benefit from larger I values. For all the model-free algorithms (DDPG, DDPG-
Sparse, HER, and TDMs), we performed a grid search over the reward scale in the range
{0.01,1,100,10000} and the number of updates per observations in the range {1,5,10}. For
HER, we also tuned the weight given to the policy pre-tanh-activation {0,0.01,1}, which is

84 Supplementary Materials for Chapter 5

Fig. B.1 TDMs with different number of updates per step I on ant target position task. The
maximum distance was set to 5 rather than 6 for this experiment, so the numbers should be
lower than the ones reported in the paper.

described in Andrychowicz et al. (2017). For TDMs, we also tuned the best τmax in the range
{15,25,Horizon−1}.

B.1.3 Model-free setups

In all our experiments, we used DDPG (Lillicrap et al., 2016) as the base off-policy model-
free RL algorithm for learning the TDMs Q(s,a,g,sτ). Experience replay (Mnih et al.,
2015) has size of 1 million transitions, and the soft target networks (Lillicrap et al., 2016)
are used with a polyak averaging coefficient of 0.999 for DDPG and TDM and 0.95 for
HER and DDPG-Sparse. For HER and DDPG-Sparse, we also added a penalty on the tanh
pre-activation, as in Andrychowicz et al. (2017). Learning rates of the critic and the actor
are chosen from {1e-4, 1e-3} and {1e-4,1e-3} respectively. Adam (Kingma and Ba, 2014)
is used as the base optimizer with default parameters except the learning rate. The batch
size was 128. The policies and networks are parmaeterized with neural networks with ReLU
hidden activation and two hidden layers of size 300 and 300. The policies have a tanh output
activation, while the critic has no output activation (except for TDM, see B.1.5). For the
goal-conditioned value functions, the goal was concatenated to the observation.

While any distance metric for the TDM reward function can be used, we chose L1 norm
−∥st+1− sg∥1 to ensure that the scalar and vectorized TDMs are consistent.

B.1.4 Model-based setup

For the model-based comparison, we trained a neural network dynamics model with ReLU
activation, no output activation, and two hidden units of size 300 and 300. The model was
trained to predict the difference in state, rather than the full state. The dynamics model is
trained to minimize the mean squared error between the predicted difference and the actual
difference. After each state is observed, we sample a minibatch of size 128 from the replay
buffer (size 1 million) and perform one step of gradient descent on this mean squared error
loss. Twenty rollouts were performed to compute the (per-dimension) mean and standard
deviation of the states, actions, and state differences. We used these statistics to normalize
the states and actions before giving them to the model, and to normalize the state differences
before computing the loss. For MPC, we simulated 512 random action sequences of length

B.1 Experiment Details 85

15 through the learned dynamics model and chose the first action of the sequence with the
highest reward.

B.1.5 TDM Network Architecture and Vector-based Supervision

For TDMs, since we know that the true Q-function must learn to predict (negative) dis-
tances, we incorporate this prior knowledge into the Q-function by parameterizing it as
Q(s,a,sg,τ) =−∥ f (s,a,sg,τ)− sg∥1. Here, f is a vector outputted by a feed-forward neural
network and has the same dimension as the goal. This parameterization ensures that the
Q-function outputs non-positive values, while encouraging the Q-function to learn what we
call a goal-conditioned model: f is encouraged to predict what state will be reached at after
τ , when the policy is trying to reach goal sg.

The scalar supervision regresses

Q(st ,at ,sg,τ) =−∑
j
| f j(st ,at ,sg,τ)− sg, j|

onto

r(st ,at ,st+1,sg)+1[τ = 0]+Q(st+1,a∗,sg,τ−1)1[τ ̸= 0]

=−∑
j

{
|s− st+1|1[τ = 0]+ | f j(st ,a∗,sg,τ−1)− sg, j|1[τ ̸= 0]

}
where a∗ = argmaxaQ(st+1,a,sg,τ−1). The vectorized supervision instead supervises each
component of f , so that

| f j(st ,at ,sg,τ)− sg, j|

regresses onto

|s− st+1|1[τ = 0]+ | f j(st ,a∗,sg,τ−1)− sg, j|1[τ ̸= 0]

for each dimension j of the state.

B.1.6 Task and Reward Descriptions

Benchmark tasks are designed on MuJoCo physics simulator (Todorov et al., 2012) and
OpenAI Gym environments (Brockman et al., 2016). For the simulated and pushing tasks,
we use (5.8) and for the other tasks we use (5.9) for policy extraction. The horizon (length
of episode) for the pusher and ant tasks are 50. The other tasks have a horizon of 100.

86 Supplementary Materials for Chapter 5

7-DoF reacher.: The state consists of 7 joint angles, 7 joint angular velocities, and 3
XYZ observation of the tip of the arm, making it 17 dimensional. The action controls torques
for each joint, totally 7 dimensional. The reward function during optimization control and
for the model-free baseline is the negative Euclidean distance between the XYZ of the tip
and the target XYZ. The targets are sampled randomly from all reachable locations of the
arm at the beginning of each episode. The robot model is taken from the striker and pusher
environments in OpenAI Gym MuJoCo domains (Brockman et al., 2016) and has the same
joint limits and physical parameters.

Many tasks can be solved by expressing a desired goal state or desired goal state compo-
nents. For example, the 7-Dof reacher solves the task when the end effector XYZ component
of its state is equal to the goal location, (x∗,y∗,z∗). One advantage of using a goal-conditioned
model f as in Equation (5.8) is that this desire can be accounted for directly: if we already
know the desired values of some components in st+T , then wen can simply fix those compo-
nents of st+T and optimize over the other dimensions. For example for the 7-Dof reacher, the
optimization problem in Equation (5.8) needed to choose an action becomes

at = argmax
at ,st+T [0:14]

rc(f (st ,at ,st+T [0 : 14]||[x∗,y∗,z∗]))

where || denotes concatenation; st+T [0 : 14] denotes that we only optimize over the first 14
dimensions (the joint angles and velocities), and we omit at+T since the reward is only a
function of the state. Intuitively, this optimization chooses whatever goal joint angles and
joint velocities make it easiest to reach (x∗,y∗,z∗). It then chooses the corresponding action
to get to that goal state in T time steps. We implement the optimization over s[0 : 14] with
stochastic optimization: sample 10,000 different vectors and choose the best value. Lastly,
instead of optimizing over the actions, we use the policy trained in DDPG to choose the
action, since the policy is already trained to choose an action with maximum Q-value for
a given state, goal state, and planning horizon. We found this optimization scheme to be
reliable, but any optimizer can be used to solve Equation (5.8),(5.7), or (5.6).

Pusher: The state consists of 3 joint angles, 3 joint angular velocities, the XY location
of the hand, and the XY location of the puck. The action controls torques for each of the
3 joints. The reward function is the negative Euclidean distance between the puck and the
puck. Once the hand is near (with 0.1) of the puck, the reward is increased by 2 minus the
Euclidean distance between the puck and the goal location. This reward function encourages
the arm to reach the puck. Once the arm reaches the puck, bonus reward begins to have affect,
and the arm is encouraged to bring the puck to the target.

B.1 Experiment Details 87

As in the 7-DoF reacher, we set components of the goal state for the optimal control
formulation. Specifically, we set the goal hand position to be the puck location. To copy
the two-stage reward shaping used by our baselines, the goal XY location for the puck is
initially its current location until the hand reaches the puck, at which point the goal position
for the puck is the target location. Since there are no other states to optimize over, the optimal
control problem is trivial.

Half-Cheetah: The environment is the same as in Brockman et al. (2016). The only
difference is that the reward is the ℓ-1 norm between the velocity and desired velocity v∗.
Our optimal control formulation is again trivial since we set the goal velocity to be v∗. The
goal velocity for rollout was sampled uniformly in the range [−6,6].

Ant: The environment is the same as in Brockman et al. (2016), except that we lowered
the gear ratio to 30 for all joints. The reward is the ℓ-1 norm between the actual and desired
xy-position and xy-velocity (for the position and velocity task) of the torso center of mass.
For the target-position task, the target position was any position within a 6-by-6 square. For
the target-position-and-velocity task, the target position was any position within a 1-by-1
square and any velocity within a 0.05-by-0.05 velocity-box. When computing the distance
for the position-and-velocity task, the velocity distance was weighted by 0.9 and the position
distance was weighted by 0.1.

Sawyer Robot: The state and action spaces are the same as in the 7-DoF simulated robot
except that we also included the measured torques as part of the state space since these can
different from the applied torques. The reward function used is also the ℓ-2 norm to the
desired XYZ position.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Reinforcement Learning and Sample Efficiency
	1.2 Thesis Outline

	2 Reinforcement Learning Algorithms
	2.1 Reinforcement Learning
	2.2 Model-based and Model-free Algorithms
	2.2.1 Model-based Algorithms
	2.2.2 Value-based Algorithms
	2.2.3 Policy-based Algorithms

	2.3 On-Policy and Off-Policy Algorithms
	2.3.1 On-Policy Likelihood Ratio Policy Gradient
	2.3.2 Off-Policy Expected Actor-Critic

	3 Continuous Deep Q-Learning with Model-based Acceleration
	3.1 Normalized Advantage Functions
	3.1.1 Locally-Invariant Exploration for Normalized Advantage Functions

	3.2 Accelerating Model-free Learning with Model-based Rollouts
	3.2.1 Model-Guided Exploration
	3.2.2 Imagination Rollouts
	3.2.3 Fitting the Dynamics Model

	3.3 Experiments in Simulation
	3.3.1 Normalized Advantage Functions
	3.3.2 Evaluating Best-Case Model-Based Improvement with True Models
	3.3.3 Guided Imagination Rollouts with Fitted Dynamics

	3.4 Experiments on Real-World Robots
	3.4.1 Random Target Reaching
	3.4.2 Door Opening

	3.5 Discussion

	4 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation
	4.1 Interpolated Policy Gradient
	4.1.1 Control Variates for Interpolated Policy Gradient
	4.1.2 Relationship to Prior Policy Gradient and Actor-Critic Methods
	4.1.3 =1: Actor-Critic methods

	4.2 Theoretical Analysis
	4.2.1 =, =0: Policy Gradient with Control Variate and Off-Policy Sampling
	4.2.2 Monotonic Policy Improvement Guarantee
	4.2.3 General Bounds on the Interpolated Policy Gradient

	4.3 Related Work
	4.4 Experiments
	4.4.1 =, =0, with the control variate
	4.4.2 =,=1
	4.4.3 General Cases of Interpolated Policy Gradient

	4.5 Discussion

	5 Temporal Difference Models: Model-Free Deep RL for Model-Based Control
	5.1 Preliminaries
	5.2 Temporal Difference Model Learning
	5.2.1 From Goal-Conditioned Value Functions to Models
	5.2.2 Long-Horizon Learning with Temporal Difference Models

	5.3 Training and Using Temporal Difference Models
	5.3.1 Reward Function Specification
	5.3.2 Policy Extraction with TDMs
	5.3.3 Algorithm Summary

	5.4 Related Work
	5.5 Experiments
	5.5.1 TDMs vs Model-Free, Model-Based, and Direct Goal-Conditioned RL
	5.5.2 Ablation Studies

	5.6 Conclusion

	6 Concluding Remark
	References
	Appendix A Supplementary Materials for Chapter 4
	A.1 Proof for Theorem 1
	A.1.1 Local approximation objective with bounded bias
	A.1.2 Main proof for Theorem 1

	A.2 Algorithm with Monotonic Convergence Property and its Proof
	A.3 Proof for Theorem 2
	A.4 Supplementary Experimental Details
	A.4.1 Hyperparameters

	Appendix B Supplementary Materials for Chapter 5
	B.1 Experiment Details
	B.1.1 Goal State and Sampling Strategy
	B.1.2 Tuned Hyperparameters
	B.1.3 Model-free setups
	B.1.4 Model-based setup
	B.1.5 TDM Network Architecture and Vector-based Supervision
	B.1.6 Task and Reward Descriptions

